--- /srv/rebuilderd/tmp/rebuilderdSzYPIf/inputs/macaulay2-common_1.25.11+ds-1_all.deb +++ /srv/rebuilderd/tmp/rebuilderdSzYPIf/out/macaulay2-common_1.25.11+ds-1_all.deb ├── file list │ @@ -1,3 +1,3 @@ │ -rw-r--r-- 0 0 0 4 2025-11-14 16:08:07.000000 debian-binary │ --rw-r--r-- 0 0 0 540356 2025-11-14 16:08:07.000000 control.tar.xz │ --rw-r--r-- 0 0 0 31303512 2025-11-14 16:08:07.000000 data.tar.xz │ +-rw-r--r-- 0 0 0 540520 2025-11-14 16:08:07.000000 control.tar.xz │ +-rw-r--r-- 0 0 0 31303024 2025-11-14 16:08:07.000000 data.tar.xz ├── control.tar.xz │ ├── control.tar │ │ ├── ./control │ │ │ @@ -1,13 +1,13 @@ │ │ │ Package: macaulay2-common │ │ │ Source: macaulay2 │ │ │ Version: 1.25.11+ds-1 │ │ │ Architecture: all │ │ │ Maintainer: Debian Math Team │ │ │ -Installed-Size: 305296 │ │ │ +Installed-Size: 305295 │ │ │ Depends: fonts-katex (>= 0.16.10+~cs6.1.0), libjs-bootsidemenu (>= 1.0.0), libjs-bootstrap5 (>= 5.3.8+dfsg), libjs-d3 (>= 3.5.17), libjs-jquery (>= 3.7.1+dfsg+~3.5.33), libjs-katex (>= 0.16.10+~cs6.1.0), libjs-nouislider (>= 15.8.1+ds), libjs-three (>= 111+dfsg1), node-clipboard (>= 2.0.11+ds+~cs9.6.11), node-fortawesome-fontawesome-free (>= 6.7.2+ds1) │ │ │ Section: math │ │ │ Priority: optional │ │ │ Multi-Arch: foreign │ │ │ Homepage: http://macaulay2.com │ │ │ Description: Software system for algebraic geometry research (common files) │ │ │ Macaulay 2 is a software system for algebraic geometry research, written by │ │ ├── ./md5sums │ │ │ ├── ./md5sums │ │ │ │┄ Files differ ├── data.tar.xz │ ├── data.tar │ │ ├── file list │ │ │ @@ -3470,25 +3470,25 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 37097 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1946 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjoint__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1748 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjunction__Process.out │ │ │ -rw-r--r-- 0 root (0) root (0) 558 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_expected__Dimension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 558 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_linear__System__On__Rational__Surface.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1888 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_parametrization.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1887 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_parametrization.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1272 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_rational__Surface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1596 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_slow__Adjunction__Calculation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2944 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_special__Families__Of__Sommese__Vande__Ven.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 23 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 9249 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjoint__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11329 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjunction__Process.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6620 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_expected__Dimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7258 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_linear__System__On__Rational__Surface.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9579 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_parametrization.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9578 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_parametrization.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9741 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_rational__Surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9319 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_slow__Adjunction__Calculation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12483 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_special__Families__Of__Sommese__Vande__Ven.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13802 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8276 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4437 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/AlgebraicSplines/ │ │ │ @@ -3675,15 +3675,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 3474 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_beilinson.out │ │ │ -rw-r--r-- 0 root (0) root (0) 414 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_bgg.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2077 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_cohomology__Table.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1620 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_direct__Image__Complex_lp__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1294 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_direct__Image__Complex_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3200 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_direct__Image__Complex_lp__Module_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2382 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_pure__Resolution.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2381 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_pure__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 456 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_sym__Ext.out │ │ │ -rw-r--r-- 0 root (0) root (0) 678 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_tate__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1879 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_universal__Extension.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 40 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3763 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/___Exterior.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4089 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/___Regularity.html │ │ │ @@ -3691,15 +3691,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6517 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/_bgg.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12129 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/_cohomology__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5266 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/_direct__Image__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9044 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/_direct__Image__Complex_lp__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10036 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/_direct__Image__Complex_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13003 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/_direct__Image__Complex_lp__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5653 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/_projective__Product.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14096 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/_pure__Resolution.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14095 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/_pure__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6806 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/_sym__Ext.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7650 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/_tate__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7928 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/_universal__Extension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12306 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9532 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5311 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BGG/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BIBasis/ │ │ │ @@ -3724,18 +3724,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 76682 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BeginningMacaulay2/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4226 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BeginningMacaulay2/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2909 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BeginningMacaulay2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Benchmark/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Benchmark/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2927 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Benchmark/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Benchmark/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 423 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Benchmark/example-output/_run__Benchmarks.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 433 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Benchmark/example-output/_run__Benchmarks.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Benchmark/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 29 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Benchmark/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 5574 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Benchmark/html/_run__Benchmarks.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5584 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Benchmark/html/_run__Benchmarks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5233 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Benchmark/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4242 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Benchmark/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2912 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Benchmark/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BernsteinSato/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BernsteinSato/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 289851 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BernsteinSato/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/BernsteinSato/example-output/ │ │ │ @@ -4366,15 +4366,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 422 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_is__Minimal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 217 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_is__Simplex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 505 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_is__Well__Defined_lp__Cell__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 595 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_is__Well__Defined_lp__Cell_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 363 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_max__Cells.out │ │ │ -rw-r--r-- 0 root (0) root (0) 275 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_new__Cell.out │ │ │ -rw-r--r-- 0 root (0) root (0) 228 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_new__Simplex__Cell.out │ │ │ --rw-r--r-- 0 root (0) root (0) 733 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_relabel__Cell__Complex.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 738 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_relabel__Cell__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_ring_lp__Cell__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 520 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_scarf__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2473 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_skeleton_lp__Z__Z_cm__Cell__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1367 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_subcomplex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 821 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_taylor__Complex.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 39 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/.Headline │ │ │ @@ -4407,15 +4407,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7399 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_is__Minimal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5693 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_is__Simplex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8187 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_is__Well__Defined_lp__Cell__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8974 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_is__Well__Defined_lp__Cell_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6426 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_max__Cells.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8432 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_new__Cell.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7358 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_new__Simplex__Cell.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8605 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_relabel__Cell__Complex.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8610 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_relabel__Cell__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5874 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_ring_lp__Cell__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6841 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_scarf__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8430 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_skeleton_lp__Z__Z_cm__Cell__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9468 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_subcomplex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6493 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_taylor__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23005 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19645 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/master.html │ │ │ @@ -4434,15 +4434,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1448 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_is__Quasi__Isomorphism.out │ │ │ -rw-r--r-- 0 root (0) root (0) 771 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_is__Quasi__Isomorphism_lp..._cm__Length__Limit_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 278 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_koszul__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1962 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_minimize_lp__Chain__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 694 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_nonzero__Max.out │ │ │ -rw-r--r-- 0 root (0) root (0) 684 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_prepend__Zero__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 899 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_remove__Zero__Trailing__Terms.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3452 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution__Of__Chain__Complex.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3451 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution__Of__Chain__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 541 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution_lp__Chain__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2570 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_scarf__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 537 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_substitute_lp__Chain__Complex_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 672 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_taylor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1333 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_taylor__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1351 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_trivial__Homological__Truncation.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/ │ │ │ @@ -4465,15 +4465,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5473 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_koszul__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7220 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_koszul__Complex_lp..._cm__Length__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10096 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_minimize_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6612 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_nonzero__Max.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6519 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_nonzero__Min.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5900 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_prepend__Zero__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6665 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_remove__Zero__Trailing__Terms.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12264 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12263 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7373 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex_lp..._cm__Length__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9135 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10433 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_scarf__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5755 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_substitute_lp__Chain__Complex_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5714 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_taylor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6750 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_taylor__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7255 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_taylor__Resolution_lp..._cm__Length__Limit_eq_gt..._rp.html │ │ │ @@ -4502,49 +4502,49 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 12258 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexOperations/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8418 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexOperations/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4775 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ChainComplexOperations/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 123136 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 4377 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___C__S__M.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1501 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Check__Smooth.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4376 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___C__S__M.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1503 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Check__Smooth.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3419 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Check__Toric__Variety__Valid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3442 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Chern.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2404 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Class__In__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 775 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Class__In__Toric__Chow__Ring.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2016 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Comp__Method.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2014 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Comp__Method.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4379 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler.out │ │ │ --rw-r--r-- 0 root (0) root (0) 342 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler__Affine.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 341 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler__Affine.out │ │ │ -rw-r--r-- 0 root (0) root (0) 760 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Inds__Of__Smooth.out │ │ │ --rw-r--r-- 0 root (0) root (0) 667 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Input__Is__Smooth.out │ │ │ --rw-r--r-- 0 root (0) root (0) 624 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Method.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 665 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Input__Is__Smooth.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 622 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Method.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1049 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Multi__Proj__Coord__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6662 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Output.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3327 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Segre.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1666 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Toric__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 570 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/_is__Multi__Homogeneous.out │ │ │ -rw-r--r-- 0 root (0) root (0) 802 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/_probabilistic_spalgorithm.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 665 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 55 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 23694 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___C__S__M.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6375 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Check__Smooth.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23693 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___C__S__M.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6377 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Check__Smooth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11239 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Check__Toric__Variety__Valid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18179 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Chern.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9577 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6409 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Class__In__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7339 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Class__In__Toric__Chow__Ring.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10384 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Comp__Method.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10382 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Comp__Method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18562 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5955 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler__Affine.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5954 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler__Affine.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5903 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Inds__Of__Smooth.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6013 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Input__Is__Smooth.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6466 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Method.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6011 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Input__Is__Smooth.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6464 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8377 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Multi__Proj__Coord__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16398 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Output.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16710 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Segre.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8690 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Toric__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4910 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/_bertini__Check.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5128 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/_configuring_sp__Bertini.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7468 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/_is__Multi__Homogeneous.html │ │ │ @@ -4559,15 +4559,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 2624 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/___Chordal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 304 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/___Ring__Element_sp_pc_sp__Chordal__Net.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1273 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/___Ring__Map_sp__Chordal__Net.out │ │ │ -rw-r--r-- 0 root (0) root (0) 178 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_adjacent__Minors__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2151 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Elim.out │ │ │ -rw-r--r-- 0 root (0) root (0) 969 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1787 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Net.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1202 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1196 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1633 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Tria.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2559 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal_spnetworks_spexamples.out │ │ │ -rw-r--r-- 0 root (0) root (0) 429 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chromatic__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 237 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_codim__Count.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1454 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_components_lp__Chordal__Net_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 414 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_constraint__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 726 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_digraph_lp__Chordal__Net_rp.out │ │ │ @@ -4600,15 +4600,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3907 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/___Get__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7598 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/___Ring__Element_sp_pc_sp__Chordal__Net.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7248 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/___Ring__Map_sp__Chordal__Net.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5071 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/_adjacent__Minors__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10905 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Elim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7288 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9374 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Net.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8344 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8338 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8861 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Tria.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10852 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal_spnetworks_spexamples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5434 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chromatic__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7090 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/_codim__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8141 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/_components_lp__Chordal__Net_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5721 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/_constraint__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7695 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Chordal/html/_digraph_lp__Chordal__Net_rp.html │ │ │ @@ -4801,23 +4801,23 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 36467 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26490 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15240 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 13418 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 13261 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/example-output/___Cohom__Calg.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 13259 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/example-output/___Cohom__Calg.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1045 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/example-output/_cohom__Calg.out │ │ │ -rw-r--r-- 0 root (0) root (0) 982 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/example-output/_cohom__Calg_lp__Normal__Toric__Variety_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 97 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3840 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/___Silent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10103 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/_cohom__Calg.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8434 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/_cohom__Calg_lp__Normal__Toric__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 25594 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25592 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5794 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3603 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CoincidentRootLoci/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CoincidentRootLoci/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 107816 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CoincidentRootLoci/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CoincidentRootLoci/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1103 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CoincidentRootLoci/example-output/___Coincident__Root__Locus_sp_st_sp__Coincident__Root__Locus.out │ │ │ @@ -4900,15 +4900,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 231378 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 650 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___B__G__G__L.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1959 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___B__Ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3164 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Complete__Intersection__Resolutions.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4598 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4596 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4116 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash__Total.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2743 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Ext__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1023 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Ext__Module__Data.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2102 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___S2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1754 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Shamash.out │ │ │ -rw-r--r-- 0 root (0) root (0) 761 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Tate__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1322 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_complexity.out │ │ │ @@ -4932,24 +4932,24 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1851 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_make__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 857 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_make__T.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1336 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_matrix__Factorization.out │ │ │ -rw-r--r-- 0 root (0) root (0) 10478 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_new__Ext.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1284 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_odd__Ext__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 498 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_regularity__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1314 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_splittings.out │ │ │ --rw-r--r-- 0 root (0) root (0) 379 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_sum__Two__Monomials.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 378 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_sum__Two__Monomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 450 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_two__Monomials.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 50 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5986 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___A__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4935 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Augmentation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6307 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___B__G__G__L.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9094 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___B__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5966 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Check.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15259 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15257 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14302 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash__Total.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11218 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Ext__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10327 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Ext__Module__Data.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5284 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5531 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Hom__With__Components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5130 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Layered.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4742 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Lift.html │ │ │ @@ -4994,15 +4994,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10902 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_module__As__Ext.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23042 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_new__Ext.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8736 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_odd__Ext__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5888 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_psi__Maps.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7031 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_regularity__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7383 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_splittings.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5224 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_stable__Hom.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6048 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_sum__Two__Monomials.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6047 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_sum__Two__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5573 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_tensor__With__Components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4869 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_to__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6365 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_two__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 56031 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35373 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15036 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Complexes/ │ │ │ @@ -5341,29 +5341,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 21320 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConformalBlocks/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16146 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConformalBlocks/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9518 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConformalBlocks/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 50933 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 36624 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 36623 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1233 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Gauss_sq_sphypergeometric_spfunction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3314 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.out │ │ │ -rw-r--r-- 0 root (0) root (0) 240 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_base__Fraction__Field.out │ │ │ -rw-r--r-- 0 root (0) root (0) 424 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_connection__Matrices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 240 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_connection__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 494 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_gauge__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 369 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_gauge__Transform.out │ │ │ -rw-r--r-- 0 root (0) root (0) 299 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_is__Epsilon__Factorized.out │ │ │ -rw-r--r-- 0 root (0) root (0) 263 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_is__Integrable.out │ │ │ -rw-r--r-- 0 root (0) root (0) 202 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_normal__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_standard__Monomials.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 56 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 46480 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 46479 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7850 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Gauss_sq_sphypergeometric_spfunction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9213 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5611 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_base__Fraction__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6834 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_connection__Matrices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6189 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_connection__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7537 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_gauge__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7266 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_gauge__Transform.html │ │ │ @@ -5585,136 +5585,136 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 38506 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CpMackeyFunctors/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35258 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CpMackeyFunctors/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16572 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/CpMackeyFunctors/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 239171 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2308 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Chern__Schwartz__Mac__Pherson.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2309 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Chern__Schwartz__Mac__Pherson.out │ │ │ -rw-r--r-- 0 root (0) root (0) 859 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Codim__Bs__Inv.out │ │ │ --rw-r--r-- 0 root (0) root (0) 19792 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Cremona.out │ │ │ --rw-r--r-- 0 root (0) root (0) 526 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Euler__Characteristic.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1795 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp!.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2550 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp^_st_st_sp__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 19786 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Cremona.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 527 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Euler__Characteristic.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1794 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp!.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2551 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp^_st_st_sp__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2314 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_eq_eq_sp__Rational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2465 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_st_sp__Rational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2051 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_st_st_sp__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5318 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_vb_sp__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3568 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_vb_vb_sp__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 7616 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Segre__Class.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6049 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_abstract__Rational__Map.out │ │ │ --rw-r--r-- 0 root (0) root (0) 42548 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_approximate__Inverse__Map.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 7620 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Segre__Class.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6048 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_abstract__Rational__Map.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 42549 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_approximate__Inverse__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1530 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_coefficients_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 33238 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_degree__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1233 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_describe_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 515 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_exceptional__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1047 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_flatten_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 492 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_force__Image.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6561 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1347 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_graph_lp__Ring__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4859 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_ideal_lp__Rational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4857 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_ideal_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11550 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 303 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse__Map_lp..._cm__Verbose_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 46183 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse_lp__Rational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1574 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Birational.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 46182 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse_lp__Rational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1573 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Birational.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3447 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Dominant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1302 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Isomorphism_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 927 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Morphism.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6114 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_kernel_lp__Ring__Map_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1086 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_map_lp__Rational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 18540 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_parametrize_lp__Ideal_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1458 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_point_lp__Quotient__Ring_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4713 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_projective__Degrees.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 18541 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_parametrize_lp__Ideal_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1461 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_point_lp__Quotient__Ring_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4709 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_projective__Degrees.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2351 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_quadro__Quadric__Cremona__Transformation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3884 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2828 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2826 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5782 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Polynomial__Ring_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6397 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ring_cm__Tally_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2775 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_segre.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6868 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cremona__Transformation.out │ │ │ --rw-r--r-- 0 root (0) root (0) 23421 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cubic__Transformation.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3629 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Quadratic__Transformation.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 23418 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cubic__Transformation.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3630 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Quadratic__Transformation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1876 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_substitute_lp__Rational__Map_cm__Polynomial__Ring_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1509 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_super_lp__Rational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1343 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_to__External__String_lp__Rational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1342 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_to__External__String_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4842 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_to__Map.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 607 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 42 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4634 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Blow__Up__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6106 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Certify.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11859 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Chern__Schwartz__Mac__Pherson.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11860 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Chern__Schwartz__Mac__Pherson.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5447 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Codim__Bs__Inv.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4085 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Dominant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8634 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Euler__Characteristic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8635 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Euler__Characteristic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3945 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Num__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20057 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7730 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp!.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7729 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp!.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4917 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp^_sp__Z__Z.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9201 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp^_st_st_sp__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9202 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp^_st_st_sp__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7795 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_eq_eq_sp__Rational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8473 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_st_sp__Rational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8347 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5395 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_us_st.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11362 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_vb_sp__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9704 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_vb_vb_sp__Ideal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17697 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Segre__Class.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16998 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_abstract__Rational__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 51962 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_approximate__Inverse__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17701 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Segre__Class.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16997 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_abstract__Rational__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 51963 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_approximate__Inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4930 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_coefficient__Ring_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7609 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_coefficients_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 40843 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degree__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6344 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degree__Map_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4751 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degree_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4947 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degrees_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6946 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_describe_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5055 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_entries_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8043 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_exceptional__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6321 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_flatten_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6593 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_force__Image.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5773 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_force__Inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14216 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7253 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_graph_lp__Ring__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10892 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_ideal_lp__Rational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10890 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_ideal_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6069 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_image_lp__Rational__Map_cm__String_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6127 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_image_lp__Rational__Map_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20054 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7493 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse__Map_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 53874 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse_lp__Rational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8296 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Birational.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 53873 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse_lp__Rational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8295 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Birational.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10060 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Dominant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5395 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6457 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Inverse__Map_lp__Rational__Map_cm__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7145 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Isomorphism_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6602 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Morphism.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12969 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_kernel_lp__Ring__Map_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7570 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_map_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5896 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_matrix_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4969 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_parametrize.html │ │ │ --rw-r--r-- 0 root (0) root (0) 24378 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_parametrize_lp__Ideal_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 24379 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_parametrize_lp__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4637 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_point.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7559 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_point_lp__Quotient__Ring_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14752 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7562 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_point_lp__Quotient__Ring_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14748 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6686 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10346 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_quadro__Quadric__Cremona__Transformation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14443 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10530 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10528 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12665 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Polynomial__Ring_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14142 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ring_cm__Tally_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8641 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_segre.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4985 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_source_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13797 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Cremona__Transformation.html │ │ │ --rw-r--r-- 0 root (0) root (0) 30345 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Cubic__Transformation.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10721 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Quadratic__Transformation.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 30342 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Cubic__Transformation.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10722 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Quadratic__Transformation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8762 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_substitute_lp__Rational__Map_cm__Polynomial__Ring_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8096 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_super_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5027 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_target_lp__Rational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6971 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_to__External__String_lp__Rational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6970 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_to__External__String_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12995 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/_to__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 66139 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 66133 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37101 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16187 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cremona/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cyclotomic/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cyclotomic/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 6101 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cyclotomic/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cyclotomic/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 455 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cyclotomic/example-output/_cyclotomic__Field.out │ │ │ @@ -5731,37 +5731,37 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4925 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cyclotomic/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3582 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Cyclotomic/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 184137 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 8593 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.out │ │ │ --rw-r--r-- 0 root (0) root (0) 5939 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebras.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 5938 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebras.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1713 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___D__G__Algebra_sp_st_st_sp__D__G__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1577 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___D__G__Algebra_sp_st_st_sp__Ring.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1860 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_sp__D__G__Algebra__Map.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1861 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_sp__D__G__Algebra__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 391 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_us__Z__Z_sp__D__G__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4999 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4998 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1069 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_acyclic__Closure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1532 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_acyclic__Closure_lp..._cm__End__Degree_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 806 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_acyclic__Closure_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1413 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_adjoin__Variables.out │ │ │ --rw-r--r-- 0 root (0) root (0) 750 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_cycles.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 749 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_cycles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2233 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_deviations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1293 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_deviations__To__Poincare.out │ │ │ -rw-r--r-- 0 root (0) root (0) 957 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_dg__Algebra__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1097 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_dg__Algebra__Mult__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6515 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_display__Block__Diff.out │ │ │ -rw-r--r-- 0 root (0) root (0) 968 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_expand__Geom__Series.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7854 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_find__Trivial__Massey__Operation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1911 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_free__D__G__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 516 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_get__Basis.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1319 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_get__Boundary__Preimage.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1182 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_get__Generators.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3935 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Algebra.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3934 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 812 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1992 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 387 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Acyclic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 915 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Golod.out │ │ │ -rw-r--r-- 0 root (0) root (0) 397 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Golod__Homomorphism.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1231 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Homogeneous_lp__D__G__Algebra_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1281 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Homology__Algebra__Trivial.out │ │ │ @@ -5774,41 +5774,41 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 774 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_max__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 404 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_natural.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1690 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_set__Diff.out │ │ │ -rw-r--r-- 0 root (0) root (0) 831 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_to__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7059 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_to__Complex__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 998 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_to__Complex_lp__D__G__Algebra_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 575 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_tor__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 868 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_tor__Algebra_lp__Ring_cm__Ring_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 869 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_tor__Algebra_lp__Ring_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2072 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_tor__Map.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 25 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4441 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Assert__Well__Defined.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16092 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16147 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebras.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16146 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebras.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16114 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6517 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7607 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra_sp_st_st_sp__D__G__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7290 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5524 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___End__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5836 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Gen__Degree__Limit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4826 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7530 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7531 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5519 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_us__Z__Z_sp__D__G__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4675 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Rel__Degree__Limit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5109 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Start__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4822 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___T__M__O__Limit.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13530 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13529 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8081 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8636 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure_lp..._cm__End__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5568 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure_lp..._cm__Start__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7283 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7209 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_adjoin__Variables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5174 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_block__Diff.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5413 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_cycles.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5412 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_cycles.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10576 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_deviations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7683 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_deviations__To__Poincare.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8919 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_deviations_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7137 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_dg__Algebra__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8226 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_dg__Algebra__Mult__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4905 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_diff_lp__D__G__Algebra_cm__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17860 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_display__Block__Diff.html │ │ │ @@ -5822,15 +5822,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5636 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Basis_lp__Z__Z_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8606 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Boundary__Preimage.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5314 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Deg__N__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7840 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8954 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5595 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators_lp..._cm__Start__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7336 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13258 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13257 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6380 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra_lp..._cm__Gen__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5264 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra_lp..._cm__Rel__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7304 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7301 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10051 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6289 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Acyclic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5784 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Acyclic_lp..._cm__End__Degree_eq_gt..._rp.html │ │ │ @@ -5859,15 +5859,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4484 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_target_lp__D__G__Algebra__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6627 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_to__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15267 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_to__Complex__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6430 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_to__Complex_lp__D__G__Algebra_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7367 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6305 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra_lp..._cm__Gen__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5167 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra_lp..._cm__Rel__Degree__Limit_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7754 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra_lp__Ring_cm__Ring_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7755 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra_lp__Ring_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8771 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4554 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_zeroth__Homology.html │ │ │ -rw-r--r-- 0 root (0) root (0) 33333 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35984 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 22250 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DecomposableSparseSystems/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/DecomposableSparseSystems/dump/ │ │ │ @@ -6243,34 +6243,34 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 41804 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 33842 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16747 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 7766 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 794 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/example-output/___Eigen__Solver.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 793 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/example-output/___Eigen__Solver.out │ │ │ -rw-r--r-- 0 root (0) root (0) 385 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/example-output/_zero__Dim__Solve.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 47 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8065 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/_zero__Dim__Solve.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9316 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9315 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4942 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3069 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 14843 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 891 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 892 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_eliminate.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 891 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_eliminate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9029 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9079 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 24 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7359 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/html/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7859 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/html/_eliminate.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7858 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/html/_eliminate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16452 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/html/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15904 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/html/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7141 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5367 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3467 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Elimination/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EliminationMatrices/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EliminationMatrices/dump/ │ │ │ @@ -6458,37 +6458,37 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10407 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EngineTests/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8398 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EngineTests/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6990 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EngineTests/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 10834 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 367 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_lines__Hypersurface.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 366 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_lines__Hypersurface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 193 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_multiple__Cover.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2171 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_rational__Curve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2169 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_rational__Curve.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 48 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 5203 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_lines__Hypersurface.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5202 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_lines__Hypersurface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5211 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_multiple__Cover.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11547 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_rational__Curve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11545 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_rational__Curve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7109 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5529 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3452 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 52732 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 235 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/___Equivariant__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 298 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/___Priority__Queue.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1050 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_build__E__Monomial__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 576 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_build__E__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 346 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_build__E__Ring_lp__Ring_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 222 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_delete__Min.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1286 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb__Toric.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1283 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb__Toric.out │ │ │ -rw-r--r-- 0 root (0) root (0) 399 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 348 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_exponent__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 449 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_inc__Orbit.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_insert_lp__Priority__Queue_cm__Thing_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 248 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_length_lp__Priority__Queue_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 323 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_merge__P__Q.out │ │ │ -rw-r--r-- 0 root (0) root (0) 161 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_min_lp__Priority__Queue_rp.out │ │ │ @@ -6503,15 +6503,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4953 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/___Shift.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3844 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/___Symmetrize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9077 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_build__E__Monomial__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10316 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_build__E__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6607 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_build__E__Ring_lp__Ring_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5895 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_delete__Min.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6472 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9002 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb__Toric.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8999 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb__Toric.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6615 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6126 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_exponent__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7150 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_inc__Orbit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6020 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_insert_lp__Priority__Queue_cm__Thing_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5369 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_length_lp__Priority__Queue_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6478 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_merge__P__Q.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5290 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_min_lp__Priority__Queue_rp.html │ │ │ @@ -6752,70 +6752,70 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10138 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FGLM/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4568 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FGLM/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2981 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FGLM/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 142955 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 29586 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Fast__Minors__Strategy__Tutorial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 29588 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Fast__Minors__Strategy__Tutorial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1035 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Point__Options.out │ │ │ --rw-r--r-- 0 root (0) root (0) 14279 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Regular__In__Codimension__Tutorial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 14276 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Regular__In__Codimension__Tutorial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1054 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Strategy__Default.out │ │ │ -rw-r--r-- 0 root (0) root (0) 337 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Good__Minors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 246 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Random__Submatrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 307 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Submatrix__Largest__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 308 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Submatrix__Smallest__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 533 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_get__Submatrix__Of__Rank.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1786 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Codim__At__Least.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1788 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Codim__At__Least.out │ │ │ -rw-r--r-- 0 root (0) root (0) 275 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Rank__At__Least.out │ │ │ -rw-r--r-- 0 root (0) root (0) 436 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_proj__Dim.out │ │ │ --rw-r--r-- 0 root (0) root (0) 424 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_recursive__Minors.out │ │ │ --rw-r--r-- 0 root (0) root (0) 25045 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_regular__In__Codimension.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 423 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_recursive__Minors.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 25041 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_regular__In__Codimension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 273 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_reorder__Polynomial__Ring.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 586 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 32 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6134 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Det__Strategy.html │ │ │ --rw-r--r-- 0 root (0) root (0) 50410 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Fast__Minors__Strategy__Tutorial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 50412 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Fast__Minors__Strategy__Tutorial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5373 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Max__Minors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4415 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Min__Dimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4447 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Modulus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6808 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Point__Options.html │ │ │ --rw-r--r-- 0 root (0) root (0) 27490 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Regular__In__Codimension__Tutorial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 27487 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Regular__In__Codimension__Tutorial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14641 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Strategy__Default.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9190 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Good__Minors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5703 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Random__Submatrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6319 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Submatrix__Largest__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6235 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Submatrix__Smallest__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10115 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_get__Submatrix__Of__Rank.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11274 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Codim__At__Least.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11276 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Codim__At__Least.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6128 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Dim__At__Most.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9506 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Rank__At__Least.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5364 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Rank__At__Least_lp..._cm__Threads_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10205 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_proj__Dim.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7912 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_recursive__Minors.html │ │ │ --rw-r--r-- 0 root (0) root (0) 43512 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_regular__In__Codimension.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7911 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_recursive__Minors.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 43508 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_regular__In__Codimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6458 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_reorder__Polynomial__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24783 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26704 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7533 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FastMinors/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 25936 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1849 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/___Fitting_spideals_spof_spfinite_spmodules.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1848 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/___Fitting_spideals_spof_spfinite_spmodules.out │ │ │ -rw-r--r-- 0 root (0) root (0) 334 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_affine__Part.out │ │ │ -rw-r--r-- 0 root (0) root (0) 694 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_co1__Fitting.out │ │ │ -rw-r--r-- 0 root (0) root (0) 848 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_gauss__Col.out │ │ │ -rw-r--r-- 0 root (0) root (0) 365 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_gotzmann__Test.out │ │ │ -rw-r--r-- 0 root (0) root (0) 610 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_next__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 197 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_quot__Scheme.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 32 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 10957 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/___Fitting_spideals_spof_spfinite_spmodules.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10956 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/___Fitting_spideals_spof_spfinite_spmodules.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6153 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_affine__Part.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7448 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_co1__Fitting.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7377 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_gauss__Col.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8186 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_gotzmann__Test.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7246 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_next__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5849 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_quot__Scheme.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9538 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/index.html │ │ │ @@ -6868,15 +6868,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 124 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_foreign__Symbol.out │ │ │ -rw-r--r-- 0 root (0) root (0) 688 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_foreign__Union__Type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 311 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_get__Memory.out │ │ │ -rw-r--r-- 0 root (0) root (0) 239 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_mpfr__T.out │ │ │ -rw-r--r-- 0 root (0) root (0) 437 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_mpz__T.out │ │ │ -rw-r--r-- 0 root (0) root (0) 92 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_null__Pointer.out │ │ │ -rw-r--r-- 0 root (0) root (0) 110 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_open__Shared__Library.out │ │ │ --rw-r--r-- 0 root (0) root (0) 729 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_register__Finalizer_lp__Foreign__Object_cm__Function_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 762 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_register__Finalizer_lp__Foreign__Object_cm__Function_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 107 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_size_lp__Foreign__Type_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1003 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_value_lp__Foreign__Object_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 595 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 26 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8246 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Array__Type.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5776 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Array__Type_sp__Visible__List.html │ │ │ @@ -6915,15 +6915,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10668 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_general_splinear_spmodel_spexample.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7181 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_get__Memory.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6912 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_just-in-time_spcompilation_spexample.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5405 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_mpfr__T.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6001 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_mpz__T.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4019 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_null__Pointer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5906 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_open__Shared__Library.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6992 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_register__Finalizer_lp__Foreign__Object_cm__Function_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7025 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_register__Finalizer_lp__Foreign__Object_cm__Function_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4894 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_size_lp__Foreign__Type_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9967 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_value_lp__Foreign__Object_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 46602 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 33232 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11560 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FormalGroupLaws/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FormalGroupLaws/dump/ │ │ │ @@ -7037,16 +7037,16 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 105269 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 338 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/___Bounds.out │ │ │ -rw-r--r-- 0 root (0) root (0) 318 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/___Frobenius__Thresholds.out │ │ │ -rw-r--r-- 0 root (0) root (0) 793 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/___Guess__Strategy.out │ │ │ -rw-r--r-- 0 root (0) root (0) 866 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_compare__F__P__T.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4032 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_fpt.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2460 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_frobenius__Nu.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4031 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_fpt.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2458 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_frobenius__Nu.out │ │ │ -rw-r--r-- 0 root (0) root (0) 760 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_is__F__Jumping__Exponent.out │ │ │ -rw-r--r-- 0 root (0) root (0) 552 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_is__F__P__T.out │ │ │ -rw-r--r-- 0 root (0) root (0) 828 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_is__Simple__Normal__Crossing.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 617 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 12 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5582 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Bounds.html │ │ │ @@ -7057,16 +7057,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4963 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Global__Frobenius__Root.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10580 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Guess__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4665 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Return__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4769 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4735 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Standard__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5945 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Use__Special__Algorithms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14756 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_compare__F__P__T.html │ │ │ --rw-r--r-- 0 root (0) root (0) 25998 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_fpt.html │ │ │ --rw-r--r-- 0 root (0) root (0) 24543 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_frobenius__Nu.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25997 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_fpt.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 24541 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_frobenius__Nu.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13295 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_is__F__Jumping__Exponent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12519 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_is__F__P__T.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9887 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_is__Simple__Normal__Crossing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19600 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20028 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7092 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/FunctionFieldDesingularization/ │ │ │ @@ -8294,28 +8294,28 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 18704 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 123 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/___Point_sp_eq_eq_sp__Point.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/___Point_sp_st_sp__Point.out │ │ │ -rw-r--r-- 0 root (0) root (0) 585 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Power_lp__Ideal_cm__Z__Z_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 860 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Power_lp__List_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 934 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Power_lp__List_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1188 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Product_lp__Ideal_cm__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 210 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Product_lp__List_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1084 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Product_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1159 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_ideal__Of__Projective__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 160 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_point.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 44 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4648 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/___Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5014 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/___Point_sp_eq_eq_sp__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5344 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/___Point_sp_st_sp__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4254 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5986 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power_lp__Ideal_cm__Z__Z_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6146 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power_lp__List_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6220 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power_lp__List_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4559 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8096 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product_lp__Ideal_cm__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5757 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product_lp__List_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7389 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6927 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_ideal__Of__Projective__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5174 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8397 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Hadamard/html/index.html │ │ │ @@ -8418,15 +8418,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 50644 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 920 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/___Appell__F1.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2967 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/___Canonical_sp__Series_sp__Tutorial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 630 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Expts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1007 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Expts__Mult.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4893 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Lead__Term.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4892 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Lead__Term.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5004 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_diff__Ops.out │ │ │ -rw-r--r-- 0 root (0) root (0) 802 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_distraction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 768 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_euler__Operators.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1342 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_gkz.out │ │ │ -rw-r--r-- 0 root (0) root (0) 663 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_is__Torus__Fixed.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4657 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_put__Weyl__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2252 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_solve__Frobenius__Ideal.out │ │ │ @@ -8436,15 +8436,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6663 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Appell__F1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14273 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Canonical_sp__Series_sp__Tutorial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3427 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Theta__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3323 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Wto__T.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3758 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_create__Theta__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6985 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Expts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7875 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Expts__Mult.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11151 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Lead__Term.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11150 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Lead__Term.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12251 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_diff__Ops.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8520 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_distraction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7705 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_euler__Operators.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8983 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_gkz.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7671 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_indicial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6418 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_is__Torus__Fixed.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3906 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_nilsson__Support.html │ │ │ @@ -8458,21 +8458,21 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 21857 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 3422 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/___Homotopy__Lie__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1221 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_ad.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1230 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_allgens.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8128 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_bracket.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8129 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_bracket.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1194 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_bracket__Matrix.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8334 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_ad.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8851 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_allgens.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19381 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_bracket.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19382 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_bracket.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8186 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_bracket__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13226 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5994 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3533 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HyperplaneArrangements/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HyperplaneArrangements/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 233569 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/HyperplaneArrangements/dump/rawdocumentation.dump │ │ │ @@ -8645,18 +8645,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 466 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__Frac__P_lp..._cm__Verbosity_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 707 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__Fractions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1444 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__P__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 570 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_idealizer.out │ │ │ -rw-r--r-- 0 root (0) root (0) 755 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Keep_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 869 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Limit_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 28108 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 28104 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 370 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Variable_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2404 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3675 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2395 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3673 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2595 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ring_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1221 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 173 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_is__Normal_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2065 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_make__S2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 496 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ring__From__Fractions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2043 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_test__Huneke__Question.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/ │ │ │ @@ -8680,18 +8680,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6424 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_ic__P__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8990 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_idealizer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5007 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_idealizer_lp..._cm__Index_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6571 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_idealizer_lp..._cm__Variable_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5652 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7286 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Keep_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7723 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Limit_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 57382 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 57378 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8592 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Variable_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10065 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14289 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10056 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14287 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14718 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ring_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12734 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6087 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_is__Normal_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9648 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_make__S2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6473 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_make__S2_lp..._cm__Variable_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7798 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_ring__From__Fractions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9240 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_test__Huneke__Question.html │ │ │ @@ -8716,34 +8716,34 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 677 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_generators_lp__Finite__Group__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 555 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_generators_lp__Ring__Of__Invariants_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 656 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_group.out │ │ │ -rw-r--r-- 0 root (0) root (0) 636 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_group__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1302 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hilbert__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 606 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hilbert__Series_lp__Ring__Of__Invariants_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 323 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hironaka__Decomposition.out │ │ │ --rw-r--r-- 0 root (0) root (0) 9640 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hsop_spalgorithms.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 9646 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hsop_spalgorithms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 586 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariant__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1302 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 513 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Coefficient__Ring_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1157 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1158 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1326 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Diagonal__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 560 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Finite__Group__Action_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2647 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Finite__Group__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 773 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Linearly__Reductive__Action_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 798 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Linearly__Reductive__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1070 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_is__Abelian.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2617 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_is__Invariant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1075 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_linearly__Reductive__Action.out │ │ │ -rw-r--r-- 0 root (0) root (0) 515 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_molien__Series.out │ │ │ -rw-r--r-- 0 root (0) root (0) 397 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_numgens_lp__Diagonal__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 555 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_numgens_lp__Finite__Group__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 751 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_permutation__Matrix.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3245 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_primary__Invariants.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3203 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_primary__Invariants.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7426 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_primary__Invariants_lp..._cm__Dade_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 606 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_primary__Invariants_lp..._cm__Degree__Vector_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 756 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_primary__Invariants_lp..._cm__Degree__Vector_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 387 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_rank_lp__Diagonal__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 919 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_relations_lp__Finite__Group__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1268 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_reynolds__Operator.out │ │ │ -rw-r--r-- 0 root (0) root (0) 298 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_ring_lp__Group__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2381 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_schreier__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 494 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_secondary__Invariants.out │ │ │ -rw-r--r-- 0 root (0) root (0) 542 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_secondary__Invariants_lp..._cm__Print__Degree__Polynomial_eq_gt..._rp.out │ │ │ @@ -8772,38 +8772,38 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6553 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_generators_lp__Finite__Group__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6507 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_generators_lp__Ring__Of__Invariants_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6798 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_group.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6565 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_group__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10288 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hilbert__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6898 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hilbert__Series_lp__Ring__Of__Invariants_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11550 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hironaka__Decomposition.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23414 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hsop_spalgorithms.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23420 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hsop_spalgorithms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8819 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariant__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11242 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8843 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8291 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6139 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Subring__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8197 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Coefficient__Ring_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8939 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8940 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13243 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Diagonal__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10068 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Finite__Group__Action_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11208 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Finite__Group__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10290 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Linearly__Reductive__Action_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11099 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Linearly__Reductive__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7319 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_is__Abelian.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12644 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_is__Invariant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9495 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_linearly__Reductive__Action.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6393 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_molien__Series.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4196 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_net_lp__Ring__Of__Invariants_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6195 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_numgens_lp__Diagonal__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6233 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_numgens_lp__Finite__Group__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7737 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_permutation__Matrix.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12903 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_primary__Invariants.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12861 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_primary__Invariants.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18009 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_primary__Invariants_lp..._cm__Dade_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10764 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_primary__Invariants_lp..._cm__Degree__Vector_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10914 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_primary__Invariants_lp..._cm__Degree__Vector_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6147 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_rank_lp__Diagonal__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7132 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_relations_lp__Finite__Group__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8243 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_reynolds__Operator.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5298 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_ring_lp__Group__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8361 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_schreier__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8886 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_secondary__Invariants.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11430 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_secondary__Invariants_lp..._cm__Print__Degree__Polynomial_eq_gt..._rp.html │ │ │ @@ -8934,15 +8934,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 78221 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2738 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp1.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2643 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9513 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp3.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2465 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp4.out │ │ │ -rw-r--r-- 0 root (0) root (0) 556 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___J__J.out │ │ │ --rw-r--r-- 0 root (0) root (0) 5997 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Storing_sp__Computations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 5996 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Storing_sp__Computations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 634 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets__Projection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1511 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets__Radical.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1210 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Affine__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1209 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Graph_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2492 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1463 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 442 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Quotient__Ring_rp.out │ │ │ @@ -8955,15 +8955,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 70 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 9118 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/___Example_sp1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9407 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/___Example_sp2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17870 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/___Example_sp3.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10712 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/___Example_sp4.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5311 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/___J__J.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4217 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/___Saturate.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16218 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/___Storing_sp__Computations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16217 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/___Storing_sp__Computations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5102 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/_jet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6255 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4619 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Base.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4534 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Info.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4884 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4662 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Max__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7171 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Projection.html │ │ │ @@ -8987,59 +8987,59 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 101880 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1949 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_all__Gradings.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2784 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_analyze__Strand.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5835 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_canonical__Homotopies.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1036 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2257 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Table.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2260 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Table.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3425 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Tables.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1002 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Det.out │ │ │ --rw-r--r-- 0 root (0) root (0) 268 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_compute__Bound.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1005 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Det.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 269 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_compute__Bound.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6823 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_correspondence__Scroll.out │ │ │ -rw-r--r-- 0 root (0) root (0) 804 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_cox__Matrices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1634 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6875 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3__Betti__Tables.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6874 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3__Betti__Tables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2293 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_homotopy__Ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 720 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_irrelevant__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 551 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_product__Of__Projective__Spaces.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1031 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_relative__Equations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1075 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_relative__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1638 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_relative__Resolution__Twists.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2221 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_resonance__Det.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2222 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_resonance__Det.out │ │ │ -rw-r--r-- 0 root (0) root (0) 129 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_resonance__Scroll.out │ │ │ -rw-r--r-- 0 root (0) root (0) 758 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_scheme__In__Product.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3037 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_schreyer__Name.out │ │ │ -rw-r--r-- 0 root (0) root (0) 813 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_small__Diagonal.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 30 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4913 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/___Fine__Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4489 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/___Scrolls.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7927 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_all__Gradings.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9535 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_analyze__Strand.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6565 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_canonical__Carpet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13299 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_canonical__Homotopies.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11993 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9787 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Table.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9790 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10621 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Tables.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6851 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Det.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6736 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_compute__Bound.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6854 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Det.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6737 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_compute__Bound.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18189 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_correspondence__Scroll.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7392 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_cox__Matrices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9428 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14901 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3__Betti__Tables.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14900 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3__Betti__Tables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5106 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_gorenstein__Double.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8478 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_hankel__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8111 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_homotopy__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6177 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_irrelevant__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8020 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_product__Of__Projective__Spaces.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7118 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_relative__Equations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7204 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_relative__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8344 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_relative__Resolution__Twists.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8321 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_resonance__Det.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8322 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_resonance__Det.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5851 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_resonance__Scroll.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7523 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_scheme__In__Product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10854 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_schreyer__Name.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6384 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_small__Diagonal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 31911 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 22352 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8781 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/toc.html │ │ │ @@ -9163,27 +9163,27 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1849 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LAYOUT.gz │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 33504 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2858 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2411 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L_lp..._cm__Change__Matrix_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1436 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1435 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 476 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/_gcd__L__L__L.out │ │ │ -rw-r--r-- 0 root (0) root (0) 678 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/_is__L__L__L.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 28 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4088 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___B__K__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4034 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Cohen__Engine.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4148 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Cohen__Top__Level.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3951 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Givens.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3444 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Hermite.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10841 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9865 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L_lp..._cm__Change__Matrix_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 22128 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 22127 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3996 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___N__T__L.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3797 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__F__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3817 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__Q__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3999 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__Q__P1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3833 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__R__R.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3866 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__X__D.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4470 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Threshold.html │ │ │ @@ -9199,15 +9199,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 70564 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 604 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/___Working_spwith_splattice_sppolytopes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_adjoint__Polytope.out │ │ │ -rw-r--r-- 0 root (0) root (0) 329 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_ambient__Halfspaces.out │ │ │ --rw-r--r-- 0 root (0) root (0) 596 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_are__Isomorphic.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 595 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_are__Isomorphic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 684 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_cayley.out │ │ │ -rw-r--r-- 0 root (0) root (0) 85 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_codegree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 281 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_degree__Of__Jet__Separation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 312 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_epsilon__Bounds.out │ │ │ -rw-r--r-- 0 root (0) root (0) 304 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_gauss__Fiber.out │ │ │ -rw-r--r-- 0 root (0) root (0) 373 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_gauss__Image.out │ │ │ -rw-r--r-- 0 root (0) root (0) 350 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_gaussk__Fiber.out │ │ │ @@ -9224,15 +9224,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 235 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_toric__Div.out │ │ │ -rw-r--r-- 0 root (0) root (0) 167 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_torus__Embedding.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 17 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5005 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/___Working_spwith_splattice_sppolytopes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5659 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_adjoint__Polytope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5749 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_ambient__Halfspaces.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7712 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_are__Isomorphic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7711 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_are__Isomorphic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9462 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_cayley.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4957 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_codegree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6907 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_degree__Of__Jet__Separation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6587 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_epsilon__Bounds.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6730 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_gauss__Fiber.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6764 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_gauss__Image.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7032 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_gaussk__Fiber.html │ │ │ @@ -9510,15 +9510,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6141 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 68684 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 746 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/example-output/___Local__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1030 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/example-output/___Local__Rings.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1024 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/example-output/_hilbert__Samuel__Function.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1023 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/example-output/_hilbert__Samuel__Function.out │ │ │ -rw-r--r-- 0 root (0) root (0) 316 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/example-output/_is__Well__Defined_lp__Local__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1328 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/example-output/_lift__Up.out │ │ │ -rw-r--r-- 0 root (0) root (0) 372 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/example-output/_local__Complement.out │ │ │ -rw-r--r-- 0 root (0) root (0) 412 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/example-output/_local__Mingens.out │ │ │ -rw-r--r-- 0 root (0) root (0) 574 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/example-output/_local__Modulo.out │ │ │ -rw-r--r-- 0 root (0) root (0) 451 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/example-output/_local__Prune.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2748 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/example-output/_local__Resolution.out │ │ │ @@ -9533,15 +9533,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4116 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_char_lp__Local__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4083 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_coefficient__Ring_lp__Local__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4114 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_degree__Length_lp__Local__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3984 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_degrees_lp__Local__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3974 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_dim_lp__Local__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3969 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_frac_lp__Local__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4099 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_generators_lp__Local__Ring_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10198 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_hilbert__Samuel__Function.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10197 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_hilbert__Samuel__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4116 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_is__Commutative_lp__Local__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5391 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_is__Well__Defined_lp__Local__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10432 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_lift__Up.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7171 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_local__Complement.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7041 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_local__Mingens.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7847 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_local__Modulo.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7139 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/LocalRings/html/_local__Prune.html │ │ │ @@ -9712,15 +9712,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1999 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Expression.out │ │ │ -rw-r--r-- 0 root (0) root (0) 788 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ext^__Z__Z_lp__Matrix_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1449 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ext^__Z__Z_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 548 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Flat__Monoid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 100 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Function__Closure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 340 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Function_sp_at_at_sp__Function.out │ │ │ -rw-r--r-- 0 root (0) root (0) 836 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Function_sp_us_sp__Thing.out │ │ │ --rw-r--r-- 0 root (0) root (0) 414 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Cstats.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 415 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Cstats.out │ │ │ -rw-r--r-- 0 root (0) root (0) 611 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__F.out │ │ │ -rw-r--r-- 0 root (0) root (0) 194 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Lex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 561 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Rev__Lex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 175 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Gamma.out │ │ │ -rw-r--r-- 0 root (0) root (0) 230 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Global__Assign__Hook.out │ │ │ -rw-r--r-- 0 root (0) root (0) 371 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Global__Release__Hook.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6869 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Grassmannian.out │ │ │ @@ -9770,15 +9770,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 248 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_st_st_sp__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 767 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_st_st_sp__Ring__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1114 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_us_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 354 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_us_sp__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 377 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_us_sp__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 484 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_vb_sp__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 565 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_vb_vb_sp__Matrix.out │ │ │ --rw-r--r-- 0 root (0) root (0) 911 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Minimal__Generators.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 912 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Minimal__Generators.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2609 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp^_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 154 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp^_sp__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 552 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp^_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1351 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp^_st_st_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 313 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp_pl_pl_sp__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1502 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp_sl_sp__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 299 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp_st_st_sp__Ring.out │ │ │ @@ -9966,15 +9966,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 128 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_apply_lp__Z__Z_cm__Function_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1347 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_apropos.out │ │ │ -rw-r--r-- 0 root (0) root (0) 180 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_ascii.out │ │ │ -rw-r--r-- 0 root (0) root (0) 112 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_asin.out │ │ │ -rw-r--r-- 0 root (0) root (0) 114 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_asinh.out │ │ │ -rw-r--r-- 0 root (0) root (0) 307 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_assert.out │ │ │ -rw-r--r-- 0 root (0) root (0) 436 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_assigning_spvalues.out │ │ │ --rw-r--r-- 0 root (0) root (0) 235 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_at__End__Of__File_lp__File_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 234 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_at__End__Of__File_lp__File_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 154 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_atan.out │ │ │ -rw-r--r-- 0 root (0) root (0) 245 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_atan2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 207 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_atanh.out │ │ │ -rw-r--r-- 0 root (0) root (0) 624 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_augmented_spassignment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1258 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_autoload.out │ │ │ -rw-r--r-- 0 root (0) root (0) 137 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_base__Filename.out │ │ │ -rw-r--r-- 0 root (0) root (0) 345 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_base__Name.out │ │ │ @@ -9989,15 +9989,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 202 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_between.out │ │ │ -rw-r--r-- 0 root (0) root (0) 332 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_binomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 609 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_block__Matrix__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 223 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_borel_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 725 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_break.out │ │ │ -rw-r--r-- 0 root (0) root (0) 755 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cache.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1307 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_caching_spcomputation_spresults.out │ │ │ --rw-r--r-- 0 root (0) root (0) 591 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cancel__Task_lp__Task_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 592 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cancel__Task_lp__Task_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1803 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_capture.out │ │ │ -rw-r--r-- 0 root (0) root (0) 77 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_ceiling_lp__Number_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 128 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_center__String.out │ │ │ -rw-r--r-- 0 root (0) root (0) 946 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_change__Base.out │ │ │ -rw-r--r-- 0 root (0) root (0) 259 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_change__Directory.out │ │ │ -rw-r--r-- 0 root (0) root (0) 227 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_char.out │ │ │ -rw-r--r-- 0 root (0) root (0) 196 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_characters.out │ │ │ @@ -10021,22 +10021,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 288 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_column__Swap.out │ │ │ -rw-r--r-- 0 root (0) root (0) 175 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_columnate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1095 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_combine.out │ │ │ -rw-r--r-- 0 root (0) root (0) 198 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_command__Interpreter.out │ │ │ -rw-r--r-- 0 root (0) root (0) 149 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_comments.out │ │ │ -rw-r--r-- 0 root (0) root (0) 331 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_common__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 465 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_commonest.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1535 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_communicating_spwith_spprograms.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1547 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_communicating_spwith_spprograms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 225 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_comodule.out │ │ │ -rw-r--r-- 0 root (0) root (0) 372 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compact__Matrix__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 251 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compare__Exchange.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1085 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compose.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2477 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compositions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compress.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4286 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_sp__Groebner_spbases.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4288 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_sp__Groebner_spbases.out │ │ │ -rw-r--r-- 0 root (0) root (0) 640 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_spsyzygies.out │ │ │ -rw-r--r-- 0 root (0) root (0) 103 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_concatenate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1767 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_concatenating_spmatrices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 392 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_conditional_spexecution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 148 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_conjugate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 478 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_conjugate_lp__Partition_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 517 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_constructing_spmaps_spbetween_spmodules.out │ │ │ @@ -10062,15 +10062,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 130 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Directory.out │ │ │ -rw-r--r-- 0 root (0) root (0) 84 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__File__Directory.out │ │ │ -rw-r--r-- 0 root (0) root (0) 90 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__File__Name.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2983 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Layout.out │ │ │ -rw-r--r-- 0 root (0) root (0) 193 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Package.out │ │ │ -rw-r--r-- 0 root (0) root (0) 180 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Position.out │ │ │ -rw-r--r-- 0 root (0) root (0) 81 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Row__Number.out │ │ │ --rw-r--r-- 0 root (0) root (0) 330 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Time.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 329 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Time.out │ │ │ -rw-r--r-- 0 root (0) root (0) 318 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_debug_lp__Package_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 957 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_debug_lp__String_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 691 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_deep__Splice.out │ │ │ -rw-r--r-- 0 root (0) root (0) 201 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_default.out │ │ │ -rw-r--r-- 0 root (0) root (0) 406 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_default__Precision.out │ │ │ -rw-r--r-- 0 root (0) root (0) 443 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_definition_spof_spproduct_sp_lpblock_rp_sporders.out │ │ │ -rw-r--r-- 0 root (0) root (0) 735 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_degree__Group.out │ │ │ @@ -10116,15 +10116,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1720 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eagon__Northcott.out │ │ │ -rw-r--r-- 0 root (0) root (0) 532 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eigenvalues.out │ │ │ -rw-r--r-- 0 root (0) root (0) 717 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eigenvectors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 111 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eint.out │ │ │ -rw-r--r-- 0 root (0) root (0) 103 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Time.out │ │ │ -rw-r--r-- 0 root (0) root (0) 162 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Timing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 366 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elements.out │ │ │ --rw-r--r-- 0 root (0) root (0) 21209 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elimination_spof_spvariables.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 21213 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elimination_spof_spvariables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 782 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_end.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3683 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_end__Package.out │ │ │ -rw-r--r-- 0 root (0) root (0) 487 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_entries.out │ │ │ -rw-r--r-- 0 root (0) root (0) 185 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_entries_lp__Vector_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 605 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_equality_spand_spcontainment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 111 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_erf.out │ │ │ -rw-r--r-- 0 root (0) root (0) 114 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_erfc.out │ │ │ @@ -10265,15 +10265,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1260 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_induced__Map_lp__Module_cm__Module_cm__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 609 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_induced__Map_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1035 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_inheritance.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1187 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_inputting_spa_spmatrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 592 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_insert.out │ │ │ -rw-r--r-- 0 root (0) root (0) 686 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_installing_spassignment_spmethods.out │ │ │ -rw-r--r-- 0 root (0) root (0) 936 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_installing_spaugmented_spassignment_spmethods.out │ │ │ --rw-r--r-- 0 root (0) root (0) 932 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_instances.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 933 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_instances.out │ │ │ -rw-r--r-- 0 root (0) root (0) 316 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_integers_spmodulo_spa_spprime.out │ │ │ -rw-r--r-- 0 root (0) root (0) 315 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_integrate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1162 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersect.out │ │ │ -rw-r--r-- 0 root (0) root (0) 997 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersect_lp__Ideal_cm__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 189 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersect_lp__Set_cm__Set_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 190 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersection_spof_spideals.out │ │ │ -rw-r--r-- 0 root (0) root (0) 188 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_inverse__Erf.out │ │ │ @@ -10405,30 +10405,30 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 769 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 424 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Mutable__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 125 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Ring__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 345 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Ring__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 319 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Ring_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 228 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Vector_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 560 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max.out │ │ │ --rw-r--r-- 0 root (0) root (0) 82 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Allowable__Threads.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 83 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Allowable__Threads.out │ │ │ -rw-r--r-- 0 root (0) root (0) 83 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Exponent.out │ │ │ -rw-r--r-- 0 root (0) root (0) 311 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Position.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1637 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_memoize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1730 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_merge.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2673 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_method.out │ │ │ -rw-r--r-- 0 root (0) root (0) 970 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_method__Options_lp__Function_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6748 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_methods.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2721 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_methods_spfor_spnormal_spforms_spand_spremainder.out │ │ │ -rw-r--r-- 0 root (0) root (0) 551 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_min.out │ │ │ -rw-r--r-- 0 root (0) root (0) 84 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_min__Exponent.out │ │ │ -rw-r--r-- 0 root (0) root (0) 310 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_min__Position.out │ │ │ -rw-r--r-- 0 root (0) root (0) 925 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_mingens_lp__Groebner__Basis_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2181 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_mingens_lp__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 737 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_mingle.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1801 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_minimal__Betti.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1804 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_minimal__Betti.out │ │ │ -rw-r--r-- 0 root (0) root (0) 951 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_minimal__Presentation_lp__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 607 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_minimal__Presentation_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 643 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_minimal__Presentation_lp__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1229 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_minimal__Presentation_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 160 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_minimize__Filename.out │ │ │ -rw-r--r-- 0 root (0) root (0) 504 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_minors_lp__Z__Z_cm__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 318 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_mkdir.out │ │ │ @@ -10502,16 +10502,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 217 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_override.out │ │ │ -rw-r--r-- 0 root (0) root (0) 681 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pack.out │ │ │ -rw-r--r-- 0 root (0) root (0) 144 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_package.out │ │ │ -rw-r--r-- 0 root (0) root (0) 187 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_packages.out │ │ │ -rw-r--r-- 0 root (0) root (0) 498 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_packing_spmonomials_spfor_spefficiency.out │ │ │ -rw-r--r-- 0 root (0) root (0) 131 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pad.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1059 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pairs.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1650 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallel_spprogramming_spwith_spthreads_spand_sptasks.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8671 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallelism_spin_spengine_spcomputations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1649 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallel_spprogramming_spwith_spthreads_spand_sptasks.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8672 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallelism_spin_spengine_spcomputations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parsing_spprecedence_cm_spin_spdetail.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3030 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_part.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1297 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_partition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1097 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_partitions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 652 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 277 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_path.out │ │ │ -rw-r--r-- 0 root (0) root (0) 535 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pdim_lp__Module_rp.out │ │ │ @@ -10519,15 +10519,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 232 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_peek_sq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 267 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_permanents.out │ │ │ -rw-r--r-- 0 root (0) root (0) 874 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_permutations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 495 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pfaffian.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2202 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pfaffians.out │ │ │ -rw-r--r-- 0 root (0) root (0) 301 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pi.out │ │ │ -rw-r--r-- 0 root (0) root (0) 304 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pivots_lp__Matrix_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 13709 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_poincare.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 13708 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_poincare.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2331 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_polarize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4055 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_polynomial_springs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 624 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_position.out │ │ │ -rw-r--r-- 0 root (0) root (0) 475 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_positions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 274 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_powermod.out │ │ │ -rw-r--r-- 0 root (0) root (0) 173 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_precision.out │ │ │ -rw-r--r-- 0 root (0) root (0) 657 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_prefix__Path.out │ │ │ @@ -10561,15 +10561,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3534 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_push__Forward_lp__Ring__Map_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 796 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient__Remainder.out │ │ │ -rw-r--r-- 0 root (0) root (0) 332 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient__Remainder_lp__Ring__Element_cm__Ring__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 825 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient__Remainder_sq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3975 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient_lp__Matrix_cm__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1476 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient_springs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1405 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient_sq.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1250 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__K__Rational__Point.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1252 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__K__Rational__Point.out │ │ │ -rw-r--r-- 0 root (0) root (0) 669 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__Mutable__Matrix_lp__Z__Z_cm__Z__Z_cm__R__R_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 399 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__Subset.out │ │ │ -rw-r--r-- 0 root (0) root (0) 843 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__List_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 138 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1109 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 232 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__Q__Q_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 869 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__Type_rp.out │ │ │ @@ -10587,15 +10587,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 167 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_real__Part.out │ │ │ -rw-r--r-- 0 root (0) root (0) 462 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_realpath.out │ │ │ -rw-r--r-- 0 root (0) root (0) 345 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_recursion__Depth.out │ │ │ -rw-r--r-- 0 root (0) root (0) 729 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_reduce__Hilbert.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5963 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_reduced__Row__Echelon__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1345 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_regex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 160 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_regex__Quote.out │ │ │ --rw-r--r-- 0 root (0) root (0) 606 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_register__Finalizer.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 659 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_register__Finalizer.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1241 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_regularity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 238 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_regularized__Beta.out │ │ │ -rw-r--r-- 0 root (0) root (0) 215 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_regularized__Gamma.out │ │ │ -rw-r--r-- 0 root (0) root (0) 225 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_relativize__Filename.out │ │ │ -rw-r--r-- 0 root (0) root (0) 631 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_remainder.out │ │ │ -rw-r--r-- 0 root (0) root (0) 713 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_remainder_sq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 791 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_remove.out │ │ │ @@ -10656,15 +10656,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_show__User__Structure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 175 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sign.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2452 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_simple_sp__Groebner_spbasis_spcomputations_spover_spvarious_springs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 100 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sin.out │ │ │ -rw-r--r-- 0 root (0) root (0) 933 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_singular__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 294 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_size2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3173 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_smith__Normal__Form_lp__Matrix_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4507 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_solve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4506 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_solve.out │ │ │ -rw-r--r-- 0 root (0) root (0) 891 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_some__Terms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1085 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sort__Columns.out │ │ │ -rw-r--r-- 0 root (0) root (0) 495 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sort_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 582 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sort_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 278 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_source_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_source_lp__Ring__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 564 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_specifying_sptypical_spvalues.out │ │ │ @@ -10779,15 +10779,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 188 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_value_lp__Symbol_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 201 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_values.out │ │ │ -rw-r--r-- 0 root (0) root (0) 256 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_variables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 770 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vars_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vars_lp__Monoid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 759 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vars_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1063 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vector.out │ │ │ --rw-r--r-- 0 root (0) root (0) 12154 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_version.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 12160 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_version.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1121 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_viewing_spthe_spsymbols_spdefined_spso_spfar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 467 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_wedge__Product_lp__Z__Z_cm__Z__Z_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 610 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_weight__Range.out │ │ │ -rw-r--r-- 0 root (0) root (0) 349 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_what_spa_spclass_spis.out │ │ │ -rw-r--r-- 0 root (0) root (0) 708 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_what_spis_spa_sp__Groebner_spbasis_qu.out │ │ │ -rw-r--r-- 0 root (0) root (0) 754 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_while.out │ │ │ -rw-r--r-- 0 root (0) root (0) 133 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_width_lp__Net_rp.out │ │ │ @@ -10955,15 +10955,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4728 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function__Body.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15539 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4006 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5509 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function_sp_at_at_sp__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7789 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function_sp_us_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4452 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__B__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6289 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__C_spgarbage_spcollector.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5636 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Cstats.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5637 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Cstats.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10130 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__F.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4451 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Lex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3562 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__N__U_sp__M__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6755 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Rev__Lex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7031 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Galois__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6301 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Gamma.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4965 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___General__Ordered__Monoid.html │ │ │ @@ -11081,15 +11081,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4540 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Max__Reduction__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4532 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Maximal__Rank.html │ │ │ -rw-r--r-- 0 root (0) root (0) 53205 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Method__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5456 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Method__Function__Binary.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12410 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Method__Function__Single.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21533 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Method__Function__With__Options.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4036 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Michael_sp__E._sp__Stillman.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14175 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimal__Generators.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14176 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimal__Generators.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4587 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimal__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4290 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4303 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimum__Version.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4359 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 71641 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10253 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Module_sp^_sp__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4827 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Module_sp^_sp__List.html │ │ │ @@ -11516,15 +11516,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4087 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_argument.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5900 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_ascii.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5036 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_asin.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4592 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_asinh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6112 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_assert.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7959 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_assigning_spvalues.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3312 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_associative_spalgebras.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5403 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_at__End__Of__File_lp__File_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5402 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_at__End__Of__File_lp__File_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5536 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_atan.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6422 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_atan2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4872 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_atanh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5514 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_augmented_spassignment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6818 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_autoload.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4113 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_backtrace.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5759 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_base__Filename.html │ │ │ @@ -11543,15 +11543,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6825 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_binary_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6309 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_binomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5698 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_block__Matrix__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4765 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_borel_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7894 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_break.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5393 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cache.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7058 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_caching_spcomputation_spresults.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7156 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cancel__Task_lp__Task_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7157 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cancel__Task_lp__Task_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9947 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_capture.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3525 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cdd_pl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4010 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_ceiling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4847 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_ceiling_lp__Number_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4735 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_center__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9145 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_change__Base.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5756 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_change__Directory.html │ │ │ @@ -11626,26 +11626,26 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4496 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_combinatorics.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10649 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_combine.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5834 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_command__Interpreter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4274 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_command__Line.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4034 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_comments.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5641 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_common__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7832 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_commonest.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10415 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_communicating_spwith_spprograms.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10427 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_communicating_spwith_spprograms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9305 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_commutative_spalgebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5835 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_comodule.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5623 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compact__Matrix__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6301 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compare__Exchange.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4308 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_complement.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3784 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_complete.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5048 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8397 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compose.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9441 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compositions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5240 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compress.html │ │ │ --rw-r--r-- 0 root (0) root (0) 18741 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_sp__Groebner_spbases.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 18743 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_sp__Groebner_spbases.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6184 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_spsyzygies.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4959 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_concatenate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8010 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_concatenating_spmatrices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5722 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_conditional_spexecution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4010 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cone.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5043 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_conjugate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5241 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_conjugate_lp__Partition_rp.html │ │ │ @@ -11681,15 +11681,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4785 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Directory.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4627 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__File__Directory.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4966 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__File__Name.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11649 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Layout.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5388 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Package.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5092 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Position.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5030 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Row__Number.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5369 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Time.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5368 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Time.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5519 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debug.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4041 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debug__Error.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4578 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debug__Level.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5587 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debug_lp__Local__Dictionary_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6499 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debug_lp__Package_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7255 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debug_lp__String_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11864 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debugging.html │ │ │ @@ -11771,15 +11771,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9293 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_eigenvectors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5731 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_eigenvectors_lp..._cm__Hermitian_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4676 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_eint.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5250 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Time.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5383 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Timing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4699 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elementary_sparithmetic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5728 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elements.html │ │ │ --rw-r--r-- 0 root (0) root (0) 30239 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elimination_spof_spvariables.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 30243 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elimination_spof_spvariables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6506 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_end.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10237 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_end__Package.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6025 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_endl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3725 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_engine__Debug__Level.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5845 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_entries.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5263 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_entries_lp__Vector_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3713 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_environment.html │ │ │ @@ -12015,15 +12015,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6190 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_install__Method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19100 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_install__Package.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4627 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installed__Packages.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8326 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installing_spassignment_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7636 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installing_spaugmented_spassignment_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7308 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installing_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4456 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instance.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5438 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instances.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5439 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instances.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5573 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_integers_spmodulo_spa_spprime.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6534 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_integrate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3912 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_interpreter__Depth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8720 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10042 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect_lp__Ideal_cm__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5464 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect_lp__R__Ri_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5213 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect_lp__Set_cm__Set_rp.html │ │ │ @@ -12207,15 +12207,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7819 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6836 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Mutable__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5291 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5744 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Ring__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6676 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Ring_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5392 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Vector_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7478 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4900 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Allowable__Threads.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4901 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Allowable__Threads.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3987 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Exponent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7381 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Position.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8914 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_memoize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12634 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_merge.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6091 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_merge__Pairs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19906 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6176 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_method__Options_lp__Function_rp.html │ │ │ @@ -12225,15 +12225,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7462 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_min.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3998 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_min__Exponent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7379 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_min__Position.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5511 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_mingens.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8253 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_mingens_lp__Groebner__Basis_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10229 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_mingens_lp__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8625 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_mingle.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13112 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_minimal__Betti.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13115 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_minimal__Betti.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4960 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_minimal__Presentation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9193 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_minimal__Presentation_lp__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7891 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_minimal__Presentation_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7811 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_minimal__Presentation_lp__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9185 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_minimal__Presentation_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3303 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_minimal_sppresentations_spand_spgenerators.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3863 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_minimize.html │ │ │ @@ -12356,16 +12356,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10924 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_packages.html │ │ │ -rw-r--r-- 0 root (0) root (0) 81466 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_packages_spprovided_spwith_sp__Macaulay2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6367 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_packing_spmonomials_spfor_spefficiency.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5374 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pad.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4194 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pager.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11431 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pairs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6587 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel__Apply.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17634 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel_spprogramming_spwith_spthreads_spand_sptasks.html │ │ │ --rw-r--r-- 0 root (0) root (0) 20418 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallelism_spin_spengine_spcomputations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17633 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel_spprogramming_spwith_spthreads_spand_sptasks.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 20419 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallelism_spin_spengine_spcomputations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5235 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20713 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parsing_spprecedence_cm_spin_spdetail.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18582 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_part.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8686 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_partition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9182 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_partitions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8579 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5428 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_path.html │ │ │ @@ -12376,15 +12376,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6241 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_permanents.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5968 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_permutations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6779 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pfaffian.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10191 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pfaffians.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4294 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pi.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5571 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pivots_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3591 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_plus.html │ │ │ --rw-r--r-- 0 root (0) root (0) 30723 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 30722 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4286 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare__N.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11508 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_polarize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21362 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_polynomial_springs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10503 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_position.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8335 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_positions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4004 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5678 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_powermod.html │ │ │ @@ -12437,15 +12437,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8898 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient__Remainder.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6881 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient__Remainder_lp__Ring__Element_cm__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7601 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient__Remainder_sq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19562 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient_lp__Matrix_cm__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11071 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient_springs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11326 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient_sq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8674 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8452 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__K__Rational__Point.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8454 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__K__Rational__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7540 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__Mutable__Matrix_lp__Z__Z_cm__Z__Z_cm__R__R_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6882 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__Subset.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8553 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__List_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6179 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8430 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__Module_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6646 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__Q__Q_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7913 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__Type_rp.html │ │ │ @@ -12470,15 +12470,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7236 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_realpath.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5742 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_recursion__Depth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4463 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_recursion__Limit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6976 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_reduce__Hilbert.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18941 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_reduced__Row__Echelon__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15105 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_regex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6081 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_regex__Quote.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6500 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_register__Finalizer.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6553 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_register__Finalizer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24328 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_regular_spexpressions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10368 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_regularity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6678 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_regularized__Beta.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5986 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_regularized__Gamma.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4492 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_relations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6356 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_relativize__Filename.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7035 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_remainder.html │ │ │ @@ -12575,15 +12575,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5015 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sin.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5867 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_singular__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4868 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sinh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4086 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_size.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6176 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_size2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3899 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sleep.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12714 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_smith__Normal__Form_lp__Matrix_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19365 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_solve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19364 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_solve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8028 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_some__Terms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5407 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9127 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort__Columns.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6249 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort__Columns_lp..._cm__Degree__Order_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8329 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort__Columns_lp..._cm__Monomial__Order_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6230 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort_lp..._cm__Degree__Order_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8277 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort_lp..._cm__Monomial__Order_eq_gt..._rp.html │ │ │ @@ -12753,15 +12753,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6181 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_values.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6885 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_variables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4498 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6573 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4994 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars_lp__Monoid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6556 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10449 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vector.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17081 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_version.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17087 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_version.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8562 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_view__Help.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6166 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_viewing_spthe_spsymbols_spdefined_spso_spfar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4355 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_wait.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5943 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_wedge__Product_lp__Z__Z_cm__Z__Z_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9826 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_weight__Range.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9258 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_what_spa_spclass_spis.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7520 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_what_spis_spa_sp__Groebner_spbasis_qu.html │ │ │ @@ -13136,15 +13136,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 424 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___A__S__M__Full__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 266 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___A__S__M__Random__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 670 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___A__S__M__To__Monotone__Triangle.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1727 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Functions_spfor_spinvestigating_sppermutations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7736 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Initial_spideals_spof_sp__A__S__M_spideals.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6282 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_sp__A__S__M_spvarieties.out │ │ │ --rw-r--r-- 0 root (0) root (0) 44252 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_spmatrix_sp__Schubert_spvarieties.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 44253 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_spmatrix_sp__Schubert_spvarieties.out │ │ │ -rw-r--r-- 0 root (0) root (0) 680 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___K__Polynomial__A__S__M.out │ │ │ -rw-r--r-- 0 root (0) root (0) 264 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Pipe__Dream.out │ │ │ -rw-r--r-- 0 root (0) root (0) 535 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_anti__Diag__Init.out │ │ │ -rw-r--r-- 0 root (0) root (0) 410 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_augmented__Essential__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 573 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_augmented__Rothe__Diagram.out │ │ │ -rw-r--r-- 0 root (0) root (0) 257 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_avoids__All__Patterns.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1152 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_cohen__Macaulay__A__S__Ms__List.out │ │ │ @@ -13156,15 +13156,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6662 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_double__Schubert__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_entrywise__Max__Rank__Table.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_entrywise__Min__Rank__Table.out │ │ │ -rw-r--r-- 0 root (0) root (0) 219 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_essential__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 258 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_first__Descent.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1732 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_fulton__Gens.out │ │ │ -rw-r--r-- 0 root (0) root (0) 445 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_get__A__S__M.out │ │ │ --rw-r--r-- 0 root (0) root (0) 677 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_grothendieck__Polynomial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 674 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_grothendieck__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 624 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_initial__Ideals__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 160 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_inverse__Of.out │ │ │ -rw-r--r-- 0 root (0) root (0) 274 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_is__A__S__M.out │ │ │ -rw-r--r-- 0 root (0) root (0) 393 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_is__A__S__M__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 178 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_is__A__S__M__Union.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_is__C__D__G.out │ │ │ -rw-r--r-- 0 root (0) root (0) 283 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_is__Cartwright__Sturmfels.out │ │ │ @@ -13206,15 +13206,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 61 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5219 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___A__S__M__Full__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5238 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___A__S__M__Random__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6425 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___A__S__M__To__Monotone__Triangle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19289 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Functions_spfor_spinvestigating_sppermutations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21942 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Initial_spideals_spof_sp__A__S__M_spideals.html │ │ │ -rw-r--r-- 0 root (0) root (0) 30860 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_sp__A__S__M_spvarieties.html │ │ │ --rw-r--r-- 0 root (0) root (0) 58002 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_spmatrix_sp__Schubert_spvarieties.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 58003 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_spmatrix_sp__Schubert_spvarieties.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5711 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___K__Polynomial__A__S__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5746 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Pipe__Dream.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8154 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_anti__Diag__Init.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6391 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_augmented__Essential__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6490 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_augmented__Rothe__Diagram.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5855 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_avoids__All__Patterns.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6720 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_cohen__Macaulay__A__S__Ms__List.html │ │ │ @@ -13226,15 +13226,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 11815 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_double__Schubert__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5563 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_entrywise__Max__Rank__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5550 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_entrywise__Min__Rank__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5912 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_essential__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5521 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_first__Descent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8094 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_fulton__Gens.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5885 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_get__A__S__M.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6451 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_grothendieck__Polynomial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6448 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_grothendieck__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5539 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_initial__Ideals__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5104 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_inverse__Of.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5271 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_is__A__S__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6266 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_is__A__S__M__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5883 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_is__A__S__M__Union.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6101 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_is__C__D__G.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6235 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_is__Cartwright__Sturmfels.html │ │ │ @@ -13274,23 +13274,23 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 48396 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 41062 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17922 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 344861 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1785 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1789 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1035 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid_sp_eq_eq_sp__Matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 766 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid_sp_pl_pl_sp__Matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2370 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid_sp_pl_sp__Matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 556 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid_sp_us_sp__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1025 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroids.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2259 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Working_spwith_sp__Chow_springs_spof_spmatroids.out │ │ │ -rw-r--r-- 0 root (0) root (0) 933 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_affine__Geometry.out │ │ │ --rw-r--r-- 0 root (0) root (0) 701 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_all__Minors.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 702 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_all__Minors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 350 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_are__Isomorphic_lp__Matroid_cm__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 258 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_bases.out │ │ │ -rw-r--r-- 0 root (0) root (0) 570 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_basis__Indicator__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 364 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_characteristic__Polynomial_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 518 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_chromatic__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 209 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_circuits.out │ │ │ -rw-r--r-- 0 root (0) root (0) 847 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_closure.out │ │ │ @@ -13307,15 +13307,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1128 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_extension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 640 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_extension_lp..._cm__Check__Well__Defined_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 514 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_extension_lp..._cm__Entry__Mode_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 397 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_f__Vector_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4033 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_flats.out │ │ │ -rw-r--r-- 0 root (0) root (0) 840 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_fundamental__Circuit.out │ │ │ -rw-r--r-- 0 root (0) root (0) 288 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Cycles.out │ │ │ --rw-r--r-- 0 root (0) root (0) 703 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Isos.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 702 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Isos.out │ │ │ -rw-r--r-- 0 root (0) root (0) 838 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Representation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 516 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Separation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1225 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_ground__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 465 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_has__Minor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 218 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_hyperplanes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5177 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_ideal__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 801 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_ideal_lp__Matroid_rp.out │ │ │ @@ -13347,23 +13347,23 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1562 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_minor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 862 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_modular__Cut.out │ │ │ -rw-r--r-- 0 root (0) root (0) 636 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_modular__Cut_lp..._cm__Check__Well__Defined_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 236 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_nonbases.out │ │ │ -rw-r--r-- 0 root (0) root (0) 548 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_parallel__Connection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 404 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_positive__Orientation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1019 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_projective__Geometry.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1060 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_quick__Isomorphism__Test.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1058 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_quick__Isomorphism__Test.out │ │ │ -rw-r--r-- 0 root (0) root (0) 517 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_rank_lp__Matroid_cm__Set_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 174 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_rank_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 502 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_relabel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_relaxation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 430 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_restriction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 379 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_search__Representation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 546 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_series__Connection.out │ │ │ --rw-r--r-- 0 root (0) root (0) 933 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_set__Representation.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 932 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_set__Representation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 560 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_simple__Matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 998 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_specific__Matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 639 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_spike.out │ │ │ -rw-r--r-- 0 root (0) root (0) 234 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_sum2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 434 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_swirl.out │ │ │ -rw-r--r-- 0 root (0) root (0) 194 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_theta__Matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 794 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_to__Sage__Matroid.out │ │ │ @@ -13373,23 +13373,23 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 372 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_tutte__Polynomial_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 443 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_uniform__Matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 293 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_wheel.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 586 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 26 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5084 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Check__Well__Defined.html │ │ │ --rw-r--r-- 0 root (0) root (0) 36274 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Matroid.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 36278 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8231 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Matroid_sp_eq_eq_sp__Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6933 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Matroid_sp_pl_pl_sp__Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12798 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Matroid_sp_pl_sp__Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7877 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Matroid_sp_us_sp__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9028 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Working_spwith_sp__Chow_springs_spof_spmatroids.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7106 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_affine__Geometry.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7238 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_all__Matroids.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7311 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_all__Minors.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7312 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_all__Minors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7114 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_are__Isomorphic_lp__Matroid_cm__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6768 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_bases.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7033 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_basis__Indicator__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7230 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_characteristic__Polynomial_lp__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7153 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_chromatic__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5760 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_circuits.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6698 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_closure.html │ │ │ @@ -13406,15 +13406,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10392 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_extension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8510 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_extension_lp..._cm__Check__Well__Defined_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7918 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_extension_lp..._cm__Entry__Mode_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6597 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_f__Vector_lp__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12377 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_flats.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9073 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_fundamental__Circuit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5312 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Cycles.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8454 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Isos.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8453 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Isos.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7295 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Representation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7477 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Separation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11288 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_ground__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7294 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_has__Minor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6285 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_hyperplanes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13015 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_ideal__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3906 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_ideal__Orlik__Solomon__Algebra.html │ │ │ @@ -13447,24 +13447,24 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10656 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_minor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10007 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_modular__Cut.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8268 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_modular__Cut_lp..._cm__Check__Well__Defined_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5632 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_nonbases.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6680 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_parallel__Connection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6624 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_positive__Orientation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8066 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_projective__Geometry.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8730 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_quick__Isomorphism__Test.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8728 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_quick__Isomorphism__Test.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6657 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_rank_lp__Matroid_cm__Set_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5120 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_rank_lp__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7363 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_relabel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6890 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_relaxation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6297 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_restriction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7209 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_save__Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6756 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_search__Representation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6594 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_series__Connection.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7365 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_set__Representation.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7364 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_set__Representation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6546 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_simple__Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10720 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_specific__Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7171 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_spike.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7211 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_sum2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5739 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_swirl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5401 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_theta__Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6215 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Matroids/html/_to__Sage__Matroid.html │ │ │ @@ -13486,24 +13486,24 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6717 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MergeTeX/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4915 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MergeTeX/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2953 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MergeTeX/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 35297 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 773 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/___Hybrid.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 771 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/___Hybrid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 303 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_is__Prime_lp__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2748 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_minimal__Primes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 906 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_minimal_spprimes_spof_span_spideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 727 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical.out │ │ │ -rw-r--r-- 0 root (0) root (0) 871 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical__Containment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical_spof_span_spideal.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 46 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 5845 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/___Hybrid.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5843 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/___Hybrid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6514 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_is__Prime_lp__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14066 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_minimal__Primes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5896 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_minimal_spprimes_spof_span_spideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11292 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8579 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical__Containment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5023 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical_spof_span_spideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9886 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/index.html │ │ │ @@ -13544,25 +13544,25 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 31134 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 260 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_hom__Ideal__Polytope.out │ │ │ -rw-r--r-- 0 root (0) root (0) 302 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_hom__Ideal__Polytope_lp..._cm__Coefficient__Ring_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 535 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_m__Mixed__Volume.out │ │ │ -rw-r--r-- 0 root (0) root (0) 896 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_mixed__Multiplicity.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2838 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2837 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 612 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal_lp..._cm__Variable__Base__Name_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 229 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_sec__Milnor__Numbers.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 648 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 30 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7610 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_hom__Ideal__Polytope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6940 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_hom__Ideal__Polytope_lp..._cm__Coefficient__Ring_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8317 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_m__Mixed__Volume.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10285 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_mixed__Multiplicity.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12388 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12387 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8870 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal_lp..._cm__Variable__Base__Name_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7663 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_sec__Milnor__Numbers.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13345 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8216 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4706 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/dump/ │ │ │ @@ -13763,24 +13763,24 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 39612 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 4158 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/example-output/___Msolve.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1654 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/example-output/_msolve__Eliminate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3171 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/example-output/_msolve__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1717 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/example-output/_msolve__Lead__Monomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1338 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/example-output/_msolve__R__U__R.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4938 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/example-output/_msolve__Real__Solutions.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4946 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/example-output/_msolve__Real__Solutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 545 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/example-output/_msolve__Saturate.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 96 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5724 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/html/___Q__Qi.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10399 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/html/_msolve__Eliminate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11550 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/html/_msolve__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10568 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/html/_msolve__Lead__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10503 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/html/_msolve__R__U__R.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14361 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/html/_msolve__Real__Solutions.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14369 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/html/_msolve__Real__Solutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7806 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/html/_msolve__Saturate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18069 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11442 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4504 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Msolve/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiGradedRationalMap/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiGradedRationalMap/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 47286 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiGradedRationalMap/dump/rawdocumentation.dump │ │ │ @@ -13886,27 +13886,27 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 35822 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 369 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/___N__P.out │ │ │ -rw-r--r-- 0 root (0) root (0) 656 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_gr__Gr.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1249 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_hilbert__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 413 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_j__Mult.out │ │ │ --rw-r--r-- 0 root (0) root (0) 260 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Analytic__Spread.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 262 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Analytic__Spread.out │ │ │ -rw-r--r-- 0 root (0) root (0) 573 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Reduction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 596 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_monj__Mult.out │ │ │ -rw-r--r-- 0 root (0) root (0) 805 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_multiplicity__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1239 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_print__Hilbert__Sequence.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 594 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 47 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6190 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/___N__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6706 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_gr__Gr.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8885 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_hilbert__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6040 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_j__Mult.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5704 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Analytic__Spread.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5706 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Analytic__Spread.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6831 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Reduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6478 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_monj__Mult.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9585 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_multiplicity__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6921 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_print__Hilbert__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15265 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9576 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4371 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/toc.html │ │ │ @@ -13959,31 +13959,31 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5192 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiplierIdealsDim2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 379736 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 279 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1954 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp!.out │ │ │ --rw-r--r-- 0 root (0) root (0) 20227 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 20228 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 670 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp_pl_pl_sp__Embedded__Projective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1106 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Fano_lp__Z__Z_cm__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 374 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___G__G.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5148 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___G__G_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1057 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Hom_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 329 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp^_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 951 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_bs_bs_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 728 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_bs_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 507 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_eq_eq_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 390 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_pc_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 399 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_pl_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 447 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_st_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 663 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_st_st_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 905 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_st_st_sp__Ring.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1341 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1277 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp__Multiprojective__Variety.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1340 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1275 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1200 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_lt_lt_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 693 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_st_sp__Multirational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1848 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_st_st_sp__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 772 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 803 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_sp__Multirational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 763 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_vb_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 744 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_vb_sp__Multirational__Map.out │ │ │ @@ -14002,42 +14002,42 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 179 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_coefficient__Ring_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3115 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_cone__Of__Lines.out │ │ │ -rw-r--r-- 0 root (0) root (0) 350 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_conormal__Variety_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 575 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_cycle__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 671 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_decompose_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 324 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 158 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1006 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_cm__Option_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1007 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_cm__Option_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 428 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 426 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degrees_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 722 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2263 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2264 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 155 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_dim_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 482 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_dual_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 809 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_entries_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 239 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_euler_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2030 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_factor_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1459 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_fiber__Product.out │ │ │ -rw-r--r-- 0 root (0) root (0) 673 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_force__Image_lp__Multirational__Map_cm__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1857 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_graph_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1858 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_graph_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 324 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_hilbert__Polynomial_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 384 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_ideal_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1018 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_image_lp__Multirational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 802 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse2.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1408 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1017 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_image_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 801 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse2.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1407 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 932 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Isomorphism_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 386 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Member_lp__Multirational__Map_cm__R__A__T_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 753 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Morphism_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 755 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Morphism_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Subset_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 678 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Well__Defined_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 790 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linear__Span.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1090 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linearly__Normal__Embedding.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1086 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linearly__Normal__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 279 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 534 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multirational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 662 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 665 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2393 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1182 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 251 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 363 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map_lp__Multirational__Map_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2768 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_parametrize_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 490 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_permute_lp__Multiprojective__Variety_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1237 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_point_lp__Multiprojective__Variety_rp.out │ │ │ @@ -14052,15 +14052,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 2154 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_random_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 582 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_rational__Map_lp__Multiprojective__Variety_cm__Tally_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 440 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_ring_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_schubert__Cycle.out │ │ │ -rw-r--r-- 0 root (0) root (0) 151 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_sectional__Genus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 468 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6206 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1051 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1050 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 288 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_shape_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 813 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_shortcuts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3241 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_show_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 512 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_singular__Locus_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 497 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_super_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 352 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_support_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 590 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_tangent__Cone_lp__Embedded__Projective__Variety_cm__Embedded__Projective__Variety_rp.out │ │ │ @@ -14074,15 +14074,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 631 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_⋂.out │ │ │ -rw-r--r-- 0 root (0) root (0) 443 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_⋃.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 641 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 50 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 14090 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8119 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp!.html │ │ │ --rw-r--r-- 0 root (0) root (0) 29042 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 29043 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6724 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp_pl_pl_sp__Embedded__Projective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9902 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Fano_lp__Z__Z_cm__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6913 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___G__G.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11424 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___G__G_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6539 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Grassmannian__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9178 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Hom_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24980 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety.html │ │ │ @@ -14092,16 +14092,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6383 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_eq_eq_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6488 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_pc_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7160 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_pl_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6880 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_st_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6950 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_st_st_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7756 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23929 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8185 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8286 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp__Multiprojective__Variety.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8184 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8284 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5781 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_eq_eq_sp__Multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5662 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_lt_eq_eq_gt_sp__Multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8285 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_lt_lt_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6810 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_st_sp__Multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8946 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7803 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_vb_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8771 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_vb_sp__Multirational__Map.html │ │ │ @@ -14125,42 +14125,42 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5235 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_coefficient__Ring_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9636 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_cone__Of__Lines.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6858 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_conormal__Variety_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7109 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_cycle__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6969 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_decompose_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6063 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5588 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8299 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_cm__Option_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8300 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_cm__Option_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6463 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5572 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degrees_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6152 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8326 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8327 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5238 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_dim_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6476 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_dual_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6560 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_entries_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6757 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_euler_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8712 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_factor_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9165 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_fiber__Product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7344 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_force__Image_lp__Multirational__Map_cm__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9686 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_graph_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9687 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_graph_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6672 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_hilbert__Polynomial_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5548 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_ideal_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8020 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_image_lp__Multirational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7820 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse2.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10240 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8019 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_image_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7819 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse2.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10239 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7121 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Isomorphism_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6650 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Member_lp__Multirational__Map_cm__R__A__T_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6825 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Morphism_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6827 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Morphism_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5906 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Subset_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6889 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Well__Defined_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6529 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linear__Span.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6852 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linearly__Normal__Embedding.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6848 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linearly__Normal__Embedding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5425 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7240 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multirational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7448 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7451 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13837 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7618 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5957 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6783 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map_lp__Multirational__Map_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10280 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_parametrize_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6834 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_permute_lp__Multiprojective__Variety_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7759 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_point_lp__Multiprojective__Variety_rp.html │ │ │ @@ -14177,15 +14177,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7079 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_rational__Map_lp__List_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8188 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_rational__Map_lp__Multiprojective__Variety_cm__Tally_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5781 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_ring_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6808 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_schubert__Cycle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5384 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_sectional__Genus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6085 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre__Embedding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11827 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7309 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7308 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5885 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_shape_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9083 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_shortcuts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8451 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_show_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5740 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_singular__Locus_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5549 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_source_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6708 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_super_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6660 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_support_lp__Multiprojective__Variety_rp.html │ │ │ @@ -14572,15 +14572,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 165 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_count__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 363 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_filter__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2806 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Bipartite__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3579 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 326 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 807 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Regular__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 146 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_graph6__To__Sparse6.out │ │ │ --rw-r--r-- 0 root (0) root (0) 497 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_graph__Complement.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 498 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_graph__Complement.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_graph__To__String.out │ │ │ -rw-r--r-- 0 root (0) root (0) 152 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_is__Planar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1500 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_neighborhood__Complements.out │ │ │ -rw-r--r-- 0 root (0) root (0) 290 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_new__Edges.out │ │ │ -rw-r--r-- 0 root (0) root (0) 215 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_only__Planar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 505 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_relabel__Bipartite.out │ │ │ -rw-r--r-- 0 root (0) root (0) 280 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_relabel__Graph.out │ │ │ @@ -14601,15 +14601,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7805 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_count__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8103 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_filter__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13715 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_generate__Bipartite__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14088 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_generate__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9658 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8443 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Regular__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6502 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_graph6__To__Sparse6.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8740 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_graph__Complement.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8741 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_graph__Complement.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8943 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_graph__To__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5998 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_is__Planar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8315 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_neighborhood__Complements.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7139 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_new__Edges.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6373 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_only__Planar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7363 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_relabel__Bipartite.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8940 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Nauty/html/_relabel__Graph.html │ │ │ @@ -14692,15 +14692,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 179468 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 431 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Dependent__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 791 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Diff__Op.out │ │ │ -rw-r--r-- 0 root (0) root (0) 553 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Diff__Op_sp__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 416 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Hybrid_dq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 498 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Macaulay__Matrix_dq.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2349 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2350 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 614 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_amult.out │ │ │ -rw-r--r-- 0 root (0) root (0) 931 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_coordinate__Change__Ops.out │ │ │ -rw-r--r-- 0 root (0) root (0) 354 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_diff__Op__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 403 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_diff__Op_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 667 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_differential__Primary__Decomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 349 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_eliminating__Dual.out │ │ │ -rw-r--r-- 0 root (0) root (0) 270 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_evaluate_lp__Diff__Op_cm__Abstract__Point_rp.out │ │ │ @@ -14733,15 +14733,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 75 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8524 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Dependent__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9032 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Diff__Op.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7316 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Diff__Op_sp__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5026 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Sampler.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7406 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Hybrid_dq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7805 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Macaulay__Matrix_dq.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7814 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7815 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4027 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Tolerance_sp_lp__Noetherian__Operators_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6738 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_amult.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5314 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_colon.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8444 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_coordinate__Change__Ops.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4120 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_diff__Op.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7027 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_diff__Op__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6518 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_diff__Op_lp__Matrix_rp.html │ │ │ @@ -14830,15 +14830,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8147 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NonminimalComplexes/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5466 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NonminimalComplexes/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3915 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NonminimalComplexes/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 608995 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 3511 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Chow_spring.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3510 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Chow_spring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3270 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___H__H^__Z__Z_lp__Normal__Toric__Variety_cm__Coherent__Sheaf_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1905 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp^_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 908 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp^_st_st_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 840 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp_st_st_sp__Normal__Toric__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1922 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp_us_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 708 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1977 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___O__O_sp__Toric__Divisor.out │ │ │ @@ -14902,17 +14902,17 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1271 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_lattice__Points_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1229 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_make__Simplicial_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1568 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_make__Smooth_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 601 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1011 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 912 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_matrix_lp__Toric__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 543 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_max_lp__Normal__Toric__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1562 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_monomials_lp__Toric__Divisor_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1560 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_monomials_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2228 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_nef__Generators_lp__Normal__Toric__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1001 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Fan_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1002 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Fan_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3171 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__List_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1693 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1965 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Polyhedron_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 704 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1599 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_orbits_lp__Normal__Toric__Variety_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1640 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_orbits_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1605 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_picard__Group_lp__Normal__Toric__Variety_rp.out │ │ │ @@ -14940,15 +14940,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 881 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_vector_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1765 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_vertices_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1650 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_weighted__Projective__Space_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 452 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_weil__Divisor__Group_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 985 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_weil__Divisor__Group_lp__Toric__Map_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 68 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 12849 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Chow_spring.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12848 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Chow_spring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11949 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___H__H^__Z__Z_lp__Normal__Toric__Variety_cm__Coherent__Sheaf_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 27601 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14079 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp^_sp__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9111 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp^_st_st_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9410 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp_st_st_sp__Normal__Toric__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13026 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp_us_sp__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8752 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp_us_sp__Z__Z.html │ │ │ @@ -15017,17 +15017,17 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10561 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_make__Simplicial_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13649 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_make__Smooth_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9577 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_making_spnormal_sptoric_spvarieties.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11442 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12498 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11093 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_matrix_lp__Toric__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9104 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_max_lp__Normal__Toric__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10407 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_monomials_lp__Toric__Divisor_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10405 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_monomials_lp__Toric__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10956 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_nef__Generators_lp__Normal__Toric__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10435 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Fan_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10436 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Fan_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19155 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__List_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13815 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13554 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Polyhedron_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9792 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12084 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_orbits_lp__Normal__Toric__Variety_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10736 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_orbits_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12153 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_picard__Group_lp__Normal__Toric__Variety_rp.html │ │ │ @@ -15343,15 +15343,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 146200 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1059 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Convert__To__Cone.out │ │ │ -rw-r--r-- 0 root (0) root (0) 451 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Numerical__Interpolation__Table.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1473 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Pseudo__Witness__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1517 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_extract__Image__Equations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 443 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_is__On__Image.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1223 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Hilbert__Function.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1219 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Hilbert__Function.out │ │ │ -rw-r--r-- 0 root (0) root (0) 240 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 575 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Dim.out │ │ │ -rw-r--r-- 0 root (0) root (0) 712 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Sample.out │ │ │ -rw-r--r-- 0 root (0) root (0) 184 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Nullity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1569 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Source__Sample.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1201 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_pseudo__Witness__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1181 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_real__Point.out │ │ │ @@ -15360,15 +15360,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 43 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7153 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Convert__To__Cone.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6034 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Max__Threads.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8844 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Numerical__Interpolation__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11290 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Pseudo__Witness__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11363 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_extract__Image__Equations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9536 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_is__On__Image.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12837 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Hilbert__Function.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12833 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Hilbert__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10681 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8623 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Degree_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9337 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Dim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9832 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Sample.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8015 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Nullity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12322 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Source__Sample.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18773 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_pseudo__Witness__Set.html │ │ │ @@ -15410,15 +15410,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 105 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/___Pieri__Root__Count.out │ │ │ -rw-r--r-- 0 root (0) root (0) 279 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_bracket2partition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3900 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_change__Flags.out │ │ │ -rw-r--r-- 0 root (0) root (0) 17148 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_parse__Triplet.out │ │ │ -rw-r--r-- 0 root (0) root (0) 237 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_partition2bracket.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1565 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_print__Statistics.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4092 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_random__Schubert__Problem__Instance.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6389 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_set__Verbose__Level.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6394 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_set__Verbose__Level.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3275 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_solutions__To__Affine__Coords.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1169 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_solve__Schubert__Problem.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3234 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_solve__Simple__Schubert.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 38 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7059 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/___L__Rcheater.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4172 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/___L__Rhomotopies.html │ │ │ @@ -15440,28 +15440,28 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5979 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_change__Flags_lp__Matrix_cm__List_cm__Sequence_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5749 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_check__Incidence__Solution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24857 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_parse__Triplet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7178 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_partition2bracket.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6332 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_print__Statistics.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12111 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_random__Schubert__Problem__Instance.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12125 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_random__Schubert__Problem__Instance_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12640 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_set__Verbose__Level.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12645 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_set__Verbose__Level.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9070 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_solutions__To__Affine__Coords.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9879 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_solve__Schubert__Problem.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5554 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_solve__Schubert__Problem_lp..._cm__Linear__Algebra_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11052 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_solve__Simple__Schubert.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5233 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_wrap__Triplet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25053 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16568 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9573 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 146314 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2603 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/___Lab__Book__Protocol.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2607 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/___Lab__Book__Protocol.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1849 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_all__Semigroups.out │ │ │ -rw-r--r-- 0 root (0) root (0) 321 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_apery.out │ │ │ -rw-r--r-- 0 root (0) root (0) 306 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_apery__Semigroup__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 162 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_apery__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 242 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_buchweitz.out │ │ │ -rw-r--r-- 0 root (0) root (0) 827 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_buchweitz__Criterion.out │ │ │ -rw-r--r-- 0 root (0) root (0) 617 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_buchweitz__Semigroups.out │ │ │ @@ -15487,25 +15487,25 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 207 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Weierstrass__Semigroup.out │ │ │ -rw-r--r-- 0 root (0) root (0) 901 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_known__Example.out │ │ │ -rw-r--r-- 0 root (0) root (0) 254 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_kunz__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 967 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_kunz__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3293 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_make__Unfolding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 169 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_mingens_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 262 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_mu.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1192 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_non__Weierstrass__Semigroups.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1186 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_non__Weierstrass__Semigroups.out │ │ │ -rw-r--r-- 0 root (0) root (0) 123 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_semigroup.out │ │ │ -rw-r--r-- 0 root (0) root (0) 478 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_semigroup__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1464 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_semigroup__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 336 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_socle.out │ │ │ -rw-r--r-- 0 root (0) root (0) 439 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_sums.out │ │ │ -rw-r--r-- 0 root (0) root (0) 73 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 329 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_weight.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 66 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 11639 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/___Lab__Book__Protocol.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11643 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/___Lab__Book__Protocol.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10057 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_all__Semigroups.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5855 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_apery.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6365 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_apery__Semigroup__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5807 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_apery__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6513 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_buchweitz.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7336 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_buchweitz__Criterion.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7682 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_buchweitz__Semigroups.html │ │ │ @@ -15531,15 +15531,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7551 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Weierstrass__Semigroup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7323 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_known__Example.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6317 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_kunz__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6940 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_kunz__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12477 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_make__Unfolding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5900 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_mingens_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6222 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_mu.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8526 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_non__Weierstrass__Semigroups.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8520 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_non__Weierstrass__Semigroups.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5267 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_semigroup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6544 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_semigroup__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8892 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_semigroup__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6322 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_socle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6731 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_sums.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5244 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_type.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6660 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_weight.html │ │ │ @@ -15554,27 +15554,27 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 691 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Degree__Shifts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1610 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1610 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 395 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 285 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Module__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 771 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Number_sp_st_sp__Vector__In__Width.out │ │ │ --rw-r--r-- 0 root (0) root (0) 497 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 496 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 704 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 260 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Polynomial__O__I__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 242 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Polynomial__O__I__Algebra_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1049 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Ring__Element_sp_st_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 474 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Top__Nonminimal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 446 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 998 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Vector__In__Width_sp-_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 900 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Vector__In__Width_sp_pl_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 499 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_degree_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1191 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe__Full.out │ │ │ --rw-r--r-- 0 root (0) root (0) 986 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__Free__O__I__Module__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 919 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__O__I__Resolution_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1074 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__Free__O__I__Module__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 917 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__O__I__Resolution_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 233 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Basis__Elements.out │ │ │ -rw-r--r-- 0 root (0) root (0) 716 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Free__O__I__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 167 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Rank.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1399 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Schreyer__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 533 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 890 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_image_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1124 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_install__Generators__In__Width.out │ │ │ @@ -15586,24 +15586,24 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 556 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Zero_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 532 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Zero_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 548 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_lead__Coefficient_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 667 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_lead__Monomial_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 665 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_lead__Term_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 750 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_make__Free__O__I__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 445 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_make__Polynomial__O__I__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2165 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_minimize__O__I__G__B.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2181 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_minimize__O__I__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 368 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 312 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Free__O__I__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 462 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Module__In__Width_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 396 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__O__I__Resolution_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 397 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__O__I__Resolution_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 220 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Polynomial__O__I__Algebra_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 401 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 792 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 709 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Orbit.out │ │ │ --rw-r--r-- 0 root (0) root (0) 473 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Res.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 474 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Res.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1068 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Syz.out │ │ │ -rw-r--r-- 0 root (0) root (0) 435 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1812 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_reduce__O__I__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 509 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_restricted__Ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 655 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_terms_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 184 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_to__String_lp__Free__O__I__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 145 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_to__String_lp__Polynomial__O__I__Algebra_rp.out │ │ │ @@ -15619,15 +15619,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8418 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9211 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7821 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5764 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5706 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Module__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6433 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Number_sp_st_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5174 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Monomial__Order.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7626 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7625 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6537 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6336 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Polynomial__O__I__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5621 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Polynomial__O__I__Algebra_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6918 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Ring__Element_sp_st_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3860 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Down__Col__Down.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3807 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Down__Col__Up.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3807 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Up__Col__Down.html │ │ │ @@ -15635,16 +15635,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5699 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Top__Nonminimal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6287 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Variable__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9518 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6840 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Vector__In__Width_sp-_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6682 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Vector__In__Width_sp_pl_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5828 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_degree_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6675 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe__Full.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6630 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__Free__O__I__Module__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6270 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__O__I__Resolution_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6718 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__Free__O__I__Module__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6268 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__O__I__Resolution_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5330 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Basis__Elements.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6131 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Free__O__I__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5213 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Rank.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7959 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Schreyer__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5815 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6554 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_image_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7334 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_install__Generators__In__Width.html │ │ │ @@ -15656,24 +15656,24 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6350 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Zero_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6045 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Zero_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6249 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_lead__Coefficient_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6493 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_lead__Monomial_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6235 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_lead__Term_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8244 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_make__Free__O__I__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6466 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_make__Polynomial__O__I__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8915 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_minimize__O__I__G__B.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8931 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_minimize__O__I__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5976 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5391 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Free__O__I__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5627 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Module__In__Width_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5786 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__O__I__Resolution_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5787 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__O__I__Resolution_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5332 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Polynomial__O__I__Algebra_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5767 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8337 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6345 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Orbit.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8522 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Res.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8523 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Res.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9903 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Syz.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5814 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8298 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_reduce__O__I__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6438 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_restricted__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6328 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_terms_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5333 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_to__String_lp__Free__O__I__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5423 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_to__String_lp__Polynomial__O__I__Algebra_rp.html │ │ │ @@ -15693,15 +15693,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 528 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Chain__Complex_sp^_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 420 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Chain__Complex_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 346 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Chain__Complex_sp_pl_pl_sp__Chain__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 520 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Chain__Complex_sp_st_st_sp__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1963 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Chain__Complex_sp_us_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 976 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Chain__Complex_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 377 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Chain__Complex_sp_us_sp__Z__Z_sp_eq_sp__Thing.out │ │ │ --rw-r--r-- 0 root (0) root (0) 5825 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Fast__Nonminimal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 5824 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Fast__Nonminimal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 462 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Graded__Module__Map_sp_vb_sp__Graded__Module__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 514 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Graded__Module__Map_sp_vb_vb_sp__Graded__Module__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 567 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Graded__Module_sp_st_st_sp__Graded__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 554 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Graded__Module_sp_st_st_sp__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 971 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___H__H^__Z__Z_sp__Chain__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 505 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___H__H_sp__Chain__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 537 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___H__H_us__Z__Z_sp__Chain__Complex.out │ │ │ @@ -15763,15 +15763,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4701 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Chain__Complex_sp_st_st_sp__Chain__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4553 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Chain__Complex_sp_st_st_sp__Chain__Complex__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4168 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Chain__Complex_sp_st_st_sp__Graded__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5778 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Chain__Complex_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8731 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Chain__Complex_sp_us_sp__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7658 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Chain__Complex_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6367 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Chain__Complex_sp_us_sp__Z__Z_sp_eq_sp__Thing.html │ │ │ --rw-r--r-- 0 root (0) root (0) 18648 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Fast__Nonminimal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 18647 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Fast__Nonminimal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13919 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Graded__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13078 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Graded__Module__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5641 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Graded__Module__Map_sp_vb_sp__Graded__Module__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5731 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Graded__Module__Map_sp_vb_vb_sp__Graded__Module__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4108 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Graded__Module_sp__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4152 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Graded__Module_sp_st_st_sp__Chain__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5700 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Graded__Module_sp_st_st_sp__Graded__Module.html │ │ │ @@ -16255,56 +16255,56 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6360 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OpenMath/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4999 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OpenMath/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3143 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/OpenMath/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 84707 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 17050 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 17045 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1080 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.1_co_spunique_spgraph_spon_sp8_spvertices_spwith_spexotic_spsolutions_spand_spno_spinduced_spcycle_spof_splength_spat_spleast_sp5.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2542 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2543 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2081 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.3_co_spexamples_spof_spgluing_sptwo_spcycles_spalong_span_spedge.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5401 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.4_co_sp__The_spsquare_spwithin_spa_spsquare.out │ │ │ -rw-r--r-- 0 root (0) root (0) 997 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Generation_spof_spall_sp__S__C__T_sp_lpsimple_cm_spconnected_cm_sp2-connected_rp_spgraphs_spon_spsmall_spnumbers_spof_spvertices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 16187 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Oscillators.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3811 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___S__C__T_spgraphs_spwith_spexotic_spsolutions.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3814 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___S__C__T_spgraphs_spwith_spexotic_spsolutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1682 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_all__Unique__Principal__Minors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 10260 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_find__Real__Solutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 151 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_get__Angles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 429 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_get__Linearly__Stable__Solutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2330 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_identify__Stability.out │ │ │ -rw-r--r-- 0 root (0) root (0) 459 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_is__Stable__Solution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 10664 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_osc__Jacobian.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1211 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_osc__Quadrics.out │ │ │ -rw-r--r-- 0 root (0) root (0) 625 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_osc__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 23259 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_osc__System.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2051 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_show__Exotic__Solutions.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2050 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_show__Exotic__Solutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 241 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_standard__Sols.out │ │ │ -rw-r--r-- 0 root (0) root (0) 236 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_vertex__Spanning__Polynomial.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 33 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 25409 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25404 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6234 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.1_co_spunique_spgraph_spon_sp8_spvertices_spwith_spexotic_spsolutions_spand_spno_spinduced_spcycle_spof_splength_spat_spleast_sp5.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7735 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7736 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7644 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.3_co_spexamples_spof_spgluing_sptwo_spcycles_spalong_span_spedge.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10645 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.4_co_sp__The_spsquare_spwithin_spa_spsquare.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6691 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Generation_spof_spall_sp__S__C__T_sp_lpsimple_cm_spconnected_cm_sp2-connected_rp_spgraphs_spon_spsmall_spnumbers_spof_spvertices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3563 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Harrington-__Schenck-__Stillman.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8190 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___S__C__T_spgraphs_spwith_spexotic_spsolutions.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8193 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___S__C__T_spgraphs_spwith_spexotic_spsolutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8807 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_all__Unique__Principal__Minors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19710 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_find__Real__Solutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6864 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_get__Angles.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6738 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_get__Linearly__Stable__Solutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10573 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_identify__Stability.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7493 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_is__Stable__Solution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20003 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_osc__Jacobian.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7847 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_osc__Quadrics.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8735 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_osc__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 32787 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_osc__System.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9935 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_show__Exotic__Solutions.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9934 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_show__Exotic__Solutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7891 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_standard__Sols.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6388 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_vertex__Spanning__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 40232 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18097 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8240 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Oscillators/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PHCpack/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PHCpack/dump/ │ │ │ @@ -16525,15 +16525,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 12104 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Parsing/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9154 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Parsing/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7244 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Parsing/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 136324 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2842 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___A_spfamily_spof_sppaths_spon_spa_spcone.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2841 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___A_spfamily_spof_sppaths_spon_spa_spcone.out │ │ │ -rw-r--r-- 0 root (0) root (0) 456 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___Array_sp_us_sp__N__C__Polynomial__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 863 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___C__Axis__Tensor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1364 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___C__Mon__Tensor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2634 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___Path.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1530 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___Path__Signatures.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1392 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___Polynomial_sppaths_spof_spdegree_spm.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11000 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___The_spuniversal_spvariety_spand_sptoric_spcoordinates.out │ │ │ @@ -16559,15 +16559,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 204 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_tensor__Log.out │ │ │ -rw-r--r-- 0 root (0) root (0) 886 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_tensor__Parametrization.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2023 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_word__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 387 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_word__Format.out │ │ │ -rw-r--r-- 0 root (0) root (0) 215 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_word__String.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 38 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 11402 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___A_spfamily_spof_sppaths_spon_spa_spcone.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11401 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___A_spfamily_spof_sppaths_spon_spa_spcone.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7073 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___Array_sp_us_sp__N__C__Polynomial__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7959 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___C__Axis__Tensor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8285 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___C__Mon__Tensor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3941 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___Computing_sp__Path_sp__Varieties.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7451 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___N__C__Polynomial__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21351 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___N__C__Ring__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15444 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___Path.html │ │ │ @@ -16963,15 +16963,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 14765 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PlaneCurveLinearSeries/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12202 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PlaneCurveLinearSeries/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4887 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PlaneCurveLinearSeries/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 47371 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1730 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Fat__Points.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1729 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Fat__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 567 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Fat__Points__By__Intersection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 619 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Make__Ring__Maps.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1456 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1010 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Points__By__Intersection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 463 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Points__Mat.out │ │ │ -rw-r--r-- 0 root (0) root (0) 316 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/example-output/_expected__Betti.out │ │ │ -rw-r--r-- 0 root (0) root (0) 234 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/example-output/_min__Max__Resolution.out │ │ │ @@ -16983,15 +16983,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 307 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/example-output/_projective__Points__By__Intersection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 333 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/example-output/_random__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 651 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/example-output/_random__Points__Mat.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 14 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4517 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/html/___All__Random.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4654 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/html/___Verify__Points.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10167 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Fat__Points.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10166 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Fat__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7047 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Fat__Points__By__Intersection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6451 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Make__Ring__Maps.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8176 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7009 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Points__By__Intersection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6970 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Points__Mat.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6070 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/html/_expected__Betti.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5252 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Points/html/_min__Max__Resolution.html │ │ │ @@ -17444,15 +17444,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 162 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_filter.out │ │ │ -rw-r--r-- 0 root (0) root (0) 465 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_filtration.out │ │ │ -rw-r--r-- 0 root (0) root (0) 525 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_flag__Chains.out │ │ │ -rw-r--r-- 0 root (0) root (0) 842 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_flag__Poset.out │ │ │ -rw-r--r-- 0 root (0) root (0) 210 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_flagf__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_flagh__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_gap__Convert__Poset.out │ │ │ --rw-r--r-- 0 root (0) root (0) 591 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_greene__Kleitman__Partition.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 586 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_greene__Kleitman__Partition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 173 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_h__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 290 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_hasse__Diagram.out │ │ │ -rw-r--r-- 0 root (0) root (0) 96 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_height_lp__Poset_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 258 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_hibi__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 907 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_hibi__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 307 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_incomparability__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 269 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_index__Labeling.out │ │ │ @@ -17573,15 +17573,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6119 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_filter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7393 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_filtration.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6942 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_flag__Chains.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7182 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_flag__Poset.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6827 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_flagf__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6830 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_flagh__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7695 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_gap__Convert__Poset.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8204 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_greene__Kleitman__Partition.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8199 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_greene__Kleitman__Partition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6368 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_h__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6162 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_hasse__Diagram.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5339 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_height_lp__Poset_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6756 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_hibi__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9660 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_hibi__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6039 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_incomparability__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6934 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Posets/html/_index__Labeling.html │ │ │ @@ -17695,36 +17695,36 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 81139 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2696 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/___Primary__Decomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3736 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_associated__Primes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_associated_spprimes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 411 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_irreducible__Decomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 280 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_is__Primary.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2222 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_kernel__Of__Localization.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2224 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_kernel__Of__Localization.out │ │ │ -rw-r--r-- 0 root (0) root (0) 627 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_localize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1734 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_primary__Decomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7407 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_primary__Decomposition_lp__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 765 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_primary_spdecomposition.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1389 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_reg__Seq__In__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1390 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_reg__Seq__In__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 423 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_remove__Lowest__Dimension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2249 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_strategies_spfor_spcomputing_spprimary_spdecomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 242 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_top__Components.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 52 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 17690 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_associated__Primes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4670 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_associated_spprimes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5762 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_irreducible__Decomposition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8232 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_is__Primary.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8732 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_kernel__Of__Localization.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8734 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_kernel__Of__Localization.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10172 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_localize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8209 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_primary__Component.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11813 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_primary__Decomposition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21071 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_primary__Decomposition_lp__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5735 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_primary_spdecomposition.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9885 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_reg__Seq__In__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9886 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_reg__Seq__In__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7321 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_remove__Lowest__Dimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10490 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_strategies_spfor_spcomputing_spprimary_spdecomposition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7361 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_top__Components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20841 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13241 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5480 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Probability/ │ │ │ @@ -18143,15 +18143,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1962 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Example_sp__Type_sp[300b].out │ │ │ -rw-r--r-- 0 root (0) root (0) 2633 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Example_sp__Type_sp[300c].out │ │ │ -rw-r--r-- 0 root (0) root (0) 2039 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spall_sppossible_spbetti_sptables_spfor_spquadratic_spcomponent_spof_spinverse_spsystem_spfor_spquartics_spin_sp4_spvariables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9657 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spthe_sp16_spbetti_sptables_sppossible_spfor_spquartic_spforms_spin_sp4_spvariables_cm_spand_spexamples.out │ │ │ -rw-r--r-- 0 root (0) root (0) 13630 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spthe_sp__Betti_spstratum_spof_spa_spgiven_spquartic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3258 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spthe_sppossible_spbetti_sptables_spfor_sppoints_spin_sp__P^3_spwith_spgiven_spgeometry.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1713 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Half_spcanonical_spdegree_sp20.out │ │ │ --rw-r--r-- 0 root (0) root (0) 21833 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 22546 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2741 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Noether-__Lefschetz_spexamples.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7051 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Pfaffians_spon_spquadrics.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1233 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Singularities_spof_splifting_spof_sptype_sp[300b].out │ │ │ -rw-r--r-- 0 root (0) root (0) 4091 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[000]_cm_sp__C__Y_spof_spdegree_sp20.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2380 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[210]_cm_sp__C__Y_spof_spdegree_sp18_spvia_splinkage.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1645 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[310]_cm_sp__C__Y_spof_spdegree_sp17_spvia_splinkage.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2176 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[331]_cm_sp__C__Y_spof_spdegree_sp17_spvia_splinkage.out │ │ │ @@ -18185,15 +18185,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9061 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Example_sp__Type_sp[300b].html │ │ │ -rw-r--r-- 0 root (0) root (0) 9848 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Example_sp__Type_sp[300c].html │ │ │ -rw-r--r-- 0 root (0) root (0) 6828 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spall_sppossible_spbetti_sptables_spfor_spquadratic_spcomponent_spof_spinverse_spsystem_spfor_spquartics_spin_sp4_spvariables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16172 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spthe_sp16_spbetti_sptables_sppossible_spfor_spquartic_spforms_spin_sp4_spvariables_cm_spand_spexamples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19856 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spthe_sp__Betti_spstratum_spof_spa_spgiven_spquartic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9268 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spthe_sppossible_spbetti_sptables_spfor_sppoints_spin_sp__P^3_spwith_spgiven_spgeometry.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8693 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Half_spcanonical_spdegree_sp20.html │ │ │ --rw-r--r-- 0 root (0) root (0) 47481 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 48194 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10984 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Noether-__Lefschetz_spexamples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4123 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Normalize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12440 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Pfaffians_spon_spquadrics.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8586 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Singularities_spof_splifting_spof_sptype_sp[300b].html │ │ │ -rw-r--r-- 0 root (0) root (0) 14692 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Type_sp[000]_cm_sp__C__Y_spof_spdegree_sp20.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12230 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Type_sp[210]_cm_sp__C__Y_spof_spdegree_sp18_spvia_splinkage.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9284 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Type_sp[310]_cm_sp__C__Y_spof_spdegree_sp17_spvia_splinkage.html │ │ │ @@ -18312,44 +18312,44 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 40654 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RInterface/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 31191 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RInterface/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7199 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RInterface/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 4410 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 416 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/example-output/_canonical__Curve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 417 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/example-output/_canonical__Curve.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 61 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 6065 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/_canonical__Curve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6066 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/_canonical__Curve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5886 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4523 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3193 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 27181 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2678 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_disturb.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1358 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_histogram.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1315 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_maximal__Entry.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1522 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_normalize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5055 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_random__Chain__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 510 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_random__Simplicial__Complex.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1161 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_test__Time__For__L__L__Lon__Syzygies.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1157 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_test__Time__For__L__L__Lon__Syzygies.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 44 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3937 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/___Discrete.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4295 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/___With__L__L__L.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4151 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/___Zero__Mean.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9992 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_disturb.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7241 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_histogram.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7257 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_maximal__Entry.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6973 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_normalize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14308 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_random__Chain__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6662 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_random__Simplicial__Complex.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8072 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_test__Time__For__L__L__Lon__Syzygies.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8068 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_test__Time__For__L__L__Lon__Syzygies.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11390 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9528 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4800 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCurves/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCurves/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1330 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCurves/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomCurves/html/ │ │ │ @@ -18396,33 +18396,33 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6319 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4166 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 85866 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 604 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/___Finding_sp__Extreme_sp__Examples.out │ │ │ --rw-r--r-- 0 root (0) root (0) 466 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/___Random__Ideals.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 430 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/___Random__Ideals.out │ │ │ -rw-r--r-- 0 root (0) root (0) 481 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_ideal__Chain__From__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 308 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_ideal__From__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 188 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_is__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 250 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Addition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 894 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Binomial__Edge__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 491 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Binomial__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 564 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Edge__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 479 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Elements__From__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 461 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 285 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 289 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 421 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 359 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Pure__Binomial__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Shellable__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 733 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Shellable__Ideal__Chain.out │ │ │ -rw-r--r-- 0 root (0) root (0) 752 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 426 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Sparse__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 491 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Monomial__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8929 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Step.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8838 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Step.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1615 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Toric__Edge__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 233 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_reg__Seq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 350 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_square__Free.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 39 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5095 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/___Alexander__Probability.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10300 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/___Finding_sp__Extreme_sp__Examples.html │ │ │ @@ -18431,28 +18431,28 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5789 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_is__Shelling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7774 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Addition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7286 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Binomial__Edge__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7700 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Binomial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6565 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Edge__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7793 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Elements__From__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7658 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Ideal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6272 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6276 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7113 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7700 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Pure__Binomial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7367 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Shellable__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7426 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Shellable__Ideal__Chain.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9696 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Shelling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8172 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Sparse__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7458 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Monomial__Ideal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 18085 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Step.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17994 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Step.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8317 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Toric__Edge__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5737 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_reg__Seq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6021 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_square__Free.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5742 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_square__Free_lp__Z__Z_cm__Ring_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 25657 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25621 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17515 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8052 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 151393 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 319 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/example-output/___C__M__Stats.out │ │ │ @@ -18580,15 +18580,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 96387 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 356 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/___Max__Coordinates__To__Replace.out │ │ │ -rw-r--r-- 0 root (0) root (0) 268 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/___Point__Check__Attempts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2427 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/___Replacement.out │ │ │ --rw-r--r-- 0 root (0) root (0) 292 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_dim__Via__Bezout.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 291 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_dim__Via__Bezout.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1455 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_extend__Ideal__By__Non__Zero__Minor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 379 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_find__A__Non__Zero__Minor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1379 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_generic__Projection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 841 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_get__Random__Linear__Forms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2154 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_projection__To__Hypersurface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 805 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_random__Coordinate__Change.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1227 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_random__Points.out │ │ │ @@ -18598,15 +18598,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4748 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Decomposition__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5859 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Dimension__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6001 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Extend__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5743 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Max__Coordinates__To__Replace.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4903 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Num__Threads__To__Use.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6021 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Point__Check__Attempts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9659 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Replacement.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8823 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_dim__Via__Bezout.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8822 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_dim__Via__Bezout.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13400 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_extend__Ideal__By__Non__Zero__Minor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10917 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_find__A__Non__Zero__Minor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11404 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_generic__Projection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7899 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_generic__Projection_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10142 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_get__Random__Linear__Forms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10723 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_projection__To__Hypersurface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9036 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_random__Coordinate__Change.html │ │ │ @@ -18706,26 +18706,26 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1462 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/___Rational__Points2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1247 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_base__Change.out │ │ │ -rw-r--r-- 0 root (0) root (0) 491 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_charpoly.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1084 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_ext__Field.out │ │ │ -rw-r--r-- 0 root (0) root (0) 311 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_global__Height.out │ │ │ -rw-r--r-- 0 root (0) root (0) 298 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_hermite__Normal__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 361 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_integers.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4102 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_rational__Points.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4103 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_rational__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1244 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_zeros.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 37 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5780 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/___Projective__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10338 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_base__Change.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6609 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_charpoly.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12341 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_ext__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5854 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_global__Height.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5818 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_hermite__Normal__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6215 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_integers.html │ │ │ --rw-r--r-- 0 root (0) root (0) 21129 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_rational__Points.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 21130 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_rational__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7798 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_zeros.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19956 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15620 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4519 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReactionNetworks/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReactionNetworks/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 93198 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReactionNetworks/dump/rawdocumentation.dump │ │ │ @@ -18873,52 +18873,52 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 204897 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 8422 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Plane__Curve__Singularities.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3323 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Rees__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 887 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_analytic__Spread.out │ │ │ -rw-r--r-- 0 root (0) root (0) 367 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_distinguished.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3266 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_expected__Rees__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3268 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_expected__Rees__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 966 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_intersect__In__P.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2853 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_is__Linear__Type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 551 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_is__Reduction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3453 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_jacobian__Dual.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1022 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_minimal__Reduction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_minimal__Reduction_lp..._cm__Tries_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 255 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_multiplicity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 972 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_reduction__Number.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5811 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3969 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3965 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 417 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_special__Fiber.out │ │ │ -rw-r--r-- 0 root (0) root (0) 933 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_special__Fiber__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1090 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_symmetric__Kernel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2884 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_symmetric__Kernel_lp..._cm__Variable_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6573 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_versal__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 311 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_which__Gm.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 588 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 13 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 24241 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Plane__Curve__Singularities.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5889 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Trim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10111 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_analytic__Spread.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8171 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_associated__Graded__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11041 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_distinguished.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12236 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_expected__Rees__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12238 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_expected__Rees__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10691 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_intersect__In__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11208 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_intersect__In__P_lp..._cm__Basis__Element__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12231 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_is__Linear__Type.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10239 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_is__Reduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19122 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_jacobian__Dual.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11906 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_minimal__Reduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9434 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_minimal__Reduction_lp..._cm__Basis__Element__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5982 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_minimal__Reduction_lp..._cm__Tries_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8674 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_multiplicity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8843 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_reduction__Number.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16525 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17580 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17576 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11084 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13957 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Minimal__Generators_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9565 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Pair__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15730 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10380 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_special__Fiber.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11700 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_special__Fiber__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5952 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_symmetric__Algebra__Ideal.html │ │ │ @@ -19089,80 +19089,80 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 114689 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1231 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/___Grass.out │ │ │ -rw-r--r-- 0 root (0) root (0) 454 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_affine__Discriminant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2692 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_affine__Resultant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2425 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_cayley__Trick.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6586 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Equations.out │ │ │ --rw-r--r-- 0 root (0) root (0) 17439 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Form.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2422 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_cayley__Trick.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6587 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Equations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 17436 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1436 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_conormal__Variety.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4384 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_discriminant_lp__Ring__Element_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4380 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_discriminant_lp__Ring__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1758 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_dual__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7159 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_dualize.out │ │ │ --rw-r--r-- 0 root (0) root (0) 7651 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_from__Plucker__To__Stiefel.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 7652 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_from__Plucker__To__Stiefel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2051 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_generic__Polynomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5202 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_hurwitz__Form.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3136 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_is__Coisotropic.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1331 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_is__In__Coisotropic.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6760 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_macaulay__Formula.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3132 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_is__Coisotropic.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1332 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_is__In__Coisotropic.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6759 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_macaulay__Formula.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1903 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_plucker.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7137 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 122874 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp__Matrix_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 122875 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5789 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_tangential__Chow__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1268 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_veronese.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 605 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 41 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5949 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Affine__Chart__Grass.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5248 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Affine__Chart__Proj.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5166 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Assume__Ordinary.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4966 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Duality.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9160 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Grass.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6511 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Grass_lp..._cm__Variable_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4737 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Singular__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6413 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_affine__Discriminant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8671 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_affine__Resultant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10654 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_cayley__Trick.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14350 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Equations.html │ │ │ --rw-r--r-- 0 root (0) root (0) 25098 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Form.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10651 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_cayley__Trick.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14351 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Equations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25095 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7973 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_conormal__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11621 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_conormal__Variety_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12075 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_discriminant_lp__Ring__Element_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12071 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_discriminant_lp__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9235 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_dual__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13158 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_dualize.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14855 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_from__Plucker__To__Stiefel.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14856 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_from__Plucker__To__Stiefel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8152 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_generic__Polynomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12389 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_hurwitz__Form.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9185 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_is__Coisotropic.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8218 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_is__In__Coisotropic.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12572 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_macaulay__Formula.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9181 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_is__Coisotropic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8219 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_is__In__Coisotropic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12571 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_macaulay__Formula.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10010 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_plucker.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14373 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 130500 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp__Matrix_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 130501 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16276 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_tangential__Chow__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7768 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/_veronese.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19593 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20713 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7336 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Resultants/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 37681 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 415 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_resource_splimits.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6282 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_run__External__M2.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6285 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_run__External__M2.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 61 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5266 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/___Keep__Statistics__Command.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5527 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/___Pre__Run__Script.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5029 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_is__External__M2__Child.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5095 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_is__External__M2__Parent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7601 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_resource_splimits.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23865 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23868 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5662 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2__Return__Answer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6323 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2_lp..._cm__Keep__Files_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7559 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_suggestions_spfor_spusing_sp__Run__External__M2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9683 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7490 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4878 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SCMAlgebras/ │ │ │ @@ -19204,15 +19204,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8415 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SCSCP/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6794 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SCSCP/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3956 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SCSCP/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 101515 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2515 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/___S__L__Pexpressions.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2514 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/___S__L__Pexpressions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 525 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_arithmetic_spwith_spcircuits.out │ │ │ -rw-r--r-- 0 root (0) root (0) 830 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_compressing_spcircuits.out │ │ │ -rw-r--r-- 0 root (0) root (0) 623 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_creating_spgates.out │ │ │ -rw-r--r-- 0 root (0) root (0) 142 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_declare__Variable.out │ │ │ -rw-r--r-- 0 root (0) root (0) 635 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_differentiating_spcircuits.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1597 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_evaluate_lp__S__L__Program_cm__Mutable__Matrix_cm__Mutable__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 524 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_evaluating_spgates.out │ │ │ @@ -19247,15 +19247,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4088 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_make__Compiled__S__L__Program.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7422 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_make__Interpreted__S__L__Program.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4854 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_make__S__L__Program.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8288 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_measuring_spthe_spsize_spof_spcircuits.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6033 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_undeclare__Variable.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6529 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_value__Hash__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8773 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_working_spwith_spgate_spmatrices.html │ │ │ --rw-r--r-- 0 root (0) root (0) 36825 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 36824 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20897 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6550 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 42778 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 3218 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/example-output/_sl2__Equivariant__Constant__Rank__Matrix.out │ │ │ @@ -19490,29 +19490,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 65102 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SRdeformations/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 45881 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SRdeformations/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 22045 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SRdeformations/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 44888 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2825 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Complex.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2826 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11853 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Complexes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3437 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Homology.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5542 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_are__Pseudo__Inverses.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2088 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_common__Entries.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6984 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_euclidean__Distance.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7308 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_laplacians.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1301 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_numeric__Rank.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9529 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_project__To__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9254 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_pseudo__Inverse.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 84 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3737 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___Laplacian.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3751 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___Projection.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11975 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Complex.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11976 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13012 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Homology.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15236 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_are__Pseudo__Inverses.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3541 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_check__S__V__D__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10080 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_common__Entries.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14702 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_euclidean__Distance.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14335 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_laplacians.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3882 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_new__Chain__Complex__Map.html │ │ │ @@ -19540,24 +19540,24 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 52965 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 859 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_annihilator.out │ │ │ -rw-r--r-- 0 root (0) root (0) 846 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_ideal_spquotients_spand_spsaturation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 259 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_is__Supported__In__Zero__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 807 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_module_spquotients_cm_spsaturation_cm_spand_spannihilator.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1836 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1834 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2582 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 837 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_saturate.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 69 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8747 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/_annihilator.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6560 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/_ideal_spquotients_spand_spsaturation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6876 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/_is__Supported__In__Zero__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7263 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/_module_spquotients_cm_spsaturation_cm_spand_spannihilator.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17356 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17354 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15598 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp__Module_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11944 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/_saturate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12655 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/_saturate_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13853 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11866 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4273 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Saturation/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/ │ │ │ @@ -19591,15 +19591,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1688 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Example_spfrom_sp__Schubert_co_sp__Generation_spof_spformulas.out │ │ │ -rw-r--r-- 0 root (0) root (0) 902 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Example_spfrom_sp__Schubert_co_sp__Grassmannian_spof_splines_spin_sp__P3.out │ │ │ -rw-r--r-- 0 root (0) root (0) 639 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Example_spfrom_sp__Schubert_co_sp__Hilbert_sppolynomial_spand_sp__Todd_spclass_spof_spprojective_sp3-space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 803 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Example_spfrom_sp__Schubert_co_sp__Lines_spon_spa_spquintic_spthreefold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 511 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Example_spfrom_sp__Schubert_co_sp__Riemann-__Roch_spformulas.out │ │ │ -rw-r--r-- 0 root (0) root (0) 569 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Example_spfrom_sp__Schubert_co_sp__The_spnumber_spof_spelliptic_spcubics_spon_spa_spsextic_sp4-fold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 247 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Hom_lp__Abstract__Sheaf_cm__Abstract__Sheaf_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1587 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Lines_spon_sphypersurfaces.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1583 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Lines_spon_sphypersurfaces.out │ │ │ -rw-r--r-- 0 root (0) root (0) 256 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___O__O_sp_us_sp__Abstract__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1332 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___O__O_sp_us_sp__Ring__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 913 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Quotient__Bundles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 869 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Riemann-__Roch_spon_spa_spcurve.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1741 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Riemann-__Roch_spon_spa_spsurface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7382 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Riemann-__Roch_spwithout_spdenominators.out │ │ │ -rw-r--r-- 0 root (0) root (0) 227 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Ring_sp_us_sp__Chern__Class__Variable.out │ │ │ @@ -19711,15 +19711,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5605 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Examples_spfrom_sp__Schubert_cm_sptranslated.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8983 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Flag__Bundle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6370 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Hom_lp__Abstract__Sheaf_cm__Abstract__Sheaf_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5551 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Ideas_spfor_spfuture_spdevelopment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6351 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Incidence__Correspondence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4163 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Intersection__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4202 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Isotropic.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8064 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Lines_spon_sphypersurfaces.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8060 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Lines_spon_sphypersurfaces.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4976 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___O__O_sp_us_sp__Abstract__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6353 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___O__O_sp_us_sp__Ring__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4277 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Pull__Back.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6529 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Quotient__Bundles.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5154 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Riemann-__Roch_spon_spa_spcurve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7875 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Riemann-__Roch_spon_spa_spsurface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11386 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Riemann-__Roch_spwithout_spdenominators.html │ │ │ @@ -19990,37 +19990,37 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 48932 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 505 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_chow__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 690 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_contained__In__Singular__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 895 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_intersection__Product.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1526 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_is__Component__Contained.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1525 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_is__Component__Contained.out │ │ │ -rw-r--r-- 0 root (0) root (0) 435 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_is__Multi__Hom.out │ │ │ -rw-r--r-- 0 root (0) root (0) 277 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_make__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 345 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_make__Product__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 453 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_multiplicity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 881 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_projective__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 932 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_projective__Degrees.out │ │ │ -rw-r--r-- 0 root (0) root (0) 876 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre.out │ │ │ --rw-r--r-- 0 root (0) root (0) 720 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre__Dim__X.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 717 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre__Dim__X.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 97 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7697 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_chow__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8412 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_contained__In__Singular__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9833 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_intersection__Product.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9715 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Component__Contained.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9714 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Component__Contained.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6577 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Multi__Hom.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5950 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_make__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6488 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_make__Product__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7807 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_multiplicity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9364 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_projective__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9107 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_projective__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8878 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_segre.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8748 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_segre__Dim__X.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8745 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_segre__Dim__X.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17760 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13748 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6810 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 44566 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/example-output/ │ │ │ @@ -20349,15 +20349,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 597 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_get__Facet__Bases.out │ │ │ -rw-r--r-- 0 root (0) root (0) 967 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_graph__From__Slack__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 575 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_graphic__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2288 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_grassmann__Section__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1617 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_reconstruct__Slack__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1436 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_reduced__Slack__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1601 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_rehomogenize__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 617 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_rehomogenize__Polynomial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 619 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_rehomogenize__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1011 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_set__Ones__Forest.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6891 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__From__Gale__Circuits.out │ │ │ -rw-r--r-- 0 root (0) root (0) 852 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__From__Gale__Plucker.out │ │ │ -rw-r--r-- 0 root (0) root (0) 802 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__From__Plucker.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1105 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 727 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 15577 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_specific__Slack__Matrix.out │ │ │ @@ -20405,15 +20405,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10463 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_reduced__Slack__Matrix_lp..._cm__Coefficient__Ring_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5375 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_reduced__Slack__Matrix_lp..._cm__Flag__Indices_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7248 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_reduced__Slack__Matrix_lp..._cm__Object_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7130 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_reduced__Slack__Matrix_lp..._cm__Vars_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10128 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6100 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Ideal_lp..._cm__Saturate_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16687 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Ideal_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8305 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Polynomial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8307 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7939 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_set__Ones__Forest.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15037 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Gale__Circuits.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5349 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Gale__Circuits_lp..._cm__Tolerance_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8218 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Gale__Plucker.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8729 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Plucker.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7336 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Plucker_lp..._cm__Object_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11211 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__Ideal.html │ │ │ @@ -20542,18 +20542,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1122 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Multidimensional__Matrix_sp_st_sp__Multidimensional__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 646 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Multidimensional__Matrix_sp_us_sp__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 597 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Ring__Element_sp_st_sp__Multidimensional__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 478 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Sparse__Discriminant_sp__Thing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 930 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Sparse__Resultant_sp__Thing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 326 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_char_lp__Sparse__Discriminant_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 385 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_char_lp__Sparse__Resultant_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1023 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_degree__Determinant.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1022 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_degree__Determinant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 814 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Discriminant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 929 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Resultant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1363 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_determinant_lp__Multidimensional__Matrix_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1362 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_determinant_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 973 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dim_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 494 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_entries_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 561 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_exponents__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 394 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_exponents_lp__Sparse__Discriminant_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 471 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_exponents_lp__Sparse__Resultant_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2043 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_flattening.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1250 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_generic__Laurent__Polynomials.out │ │ │ @@ -20567,15 +20567,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 634 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_random__Multidimensional__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2126 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_rank_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1772 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_reverse__Shape.out │ │ │ -rw-r--r-- 0 root (0) root (0) 537 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_ring_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 457 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_shape.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2104 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sort__Shape.out │ │ │ -rw-r--r-- 0 root (0) root (0) 12400 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Discriminant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 55254 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Resultant.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 55252 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Resultant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 911 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sylvester__Matrix_lp__Multidimensional__Matrix_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 611 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 35 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 10142 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6947 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Multidimensional__Matrix_sp-_sp__Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6345 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Multidimensional__Matrix_sp_eq_eq_sp__Multidimensional__Matrix.html │ │ │ @@ -20585,18 +20585,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6195 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Ring__Element_sp_st_sp__Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5440 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Discriminant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5997 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Discriminant_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5468 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Resultant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6526 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Resultant_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5198 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_char_lp__Sparse__Discriminant_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5264 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_char_lp__Sparse__Resultant_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6901 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_degree__Determinant.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6900 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_degree__Determinant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8190 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Discriminant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8266 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Resultant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8706 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_determinant_lp__Multidimensional__Matrix_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8705 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_determinant_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6122 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dim_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5711 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_entries_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7003 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_exponents__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5551 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_exponents_lp__Sparse__Discriminant_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5569 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_exponents_lp__Sparse__Resultant_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8550 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_flattening.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7760 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_generic__Laurent__Polynomials.html │ │ │ @@ -20610,15 +20610,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6579 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_random__Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8294 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_rank_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7610 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_reverse__Shape.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5628 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_ring_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5589 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_shape.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7887 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sort__Shape.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20153 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Discriminant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 65535 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Resultant.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 65533 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Resultant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7079 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sylvester__Matrix_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21933 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20968 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11034 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 178042 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/dump/rawdocumentation.dump │ │ │ @@ -20645,15 +20645,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 210 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_cycle__Decomposition_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 252 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_elementary__Symmetric__Polynomials_lp__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 223 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_entries_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 439 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_first__Row__Descent_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 505 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_garnir__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 557 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_generalized__Vandermonde__Matrix_lp__List_cm__List_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 787 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_generate__Permutation__Group_lp__List_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3117 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3116 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11027 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 325 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_hook__Length__Formula_lp__Partition_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 538 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_index__Monomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 338 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_index__Tableau_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_inner__Product_lp__Z__Z_cm__Mutable__Matrix_cm__Mutable__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 207 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_list__To__Tableau_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 993 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_matrix__Representation.out │ │ │ @@ -20665,15 +20665,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 556 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_permute__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 297 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_power__Sum__Symmetric__Polynomials_lp__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 274 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_reading__Word_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1936 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_representation__Multiplicity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 410 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_row__Permutation__Tableaux_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 335 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_row__Stabilizer_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 563 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_schur__Polynomial_lp__List_cm__Partition_cm__Polynomial__Ring_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 45653 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 45652 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1508 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_semistandard__Tableaux_lp__Partition_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 206 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_size_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 603 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_sort__Columns__Tableau_lp__Specht__Module__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_sort__Columns__Tableau_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 433 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_specht__Module__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 873 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_specht__Polynomial_lp__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2337 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_specht__Polynomials_lp__Partition_cm__Polynomial__Ring_rp.out │ │ │ @@ -20709,15 +20709,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5388 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_cycle__Decomposition_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5828 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_elementary__Symmetric__Polynomials_lp__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5058 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_entries_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6351 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_first__Row__Descent_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8083 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_garnir__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6758 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_generalized__Vandermonde__Matrix_lp__List_cm__List_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6340 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_generate__Permutation__Group_lp__List_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13551 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13550 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20867 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6155 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_hook__Length__Formula_lp__Partition_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7235 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_index__Monomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6024 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_index__Tableau_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6746 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_inner__Product_lp__Z__Z_cm__Mutable__Matrix_cm__Mutable__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5269 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_list__To__Tableau_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8110 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_matrix__Representation.html │ │ │ @@ -20729,15 +20729,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8676 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_permute__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_power__Sum__Symmetric__Polynomials_lp__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5592 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_reading__Word_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11063 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_representation__Multiplicity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6097 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_row__Permutation__Tableaux_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5783 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_row__Stabilizer_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7427 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_schur__Polynomial_lp__List_cm__Partition_cm__Polynomial__Ring_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 53546 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 53545 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7236 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_semistandard__Tableaux_lp__Partition_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5183 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_size_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6503 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_sort__Columns__Tableau_lp__Specht__Module__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5609 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_sort__Columns__Tableau_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7433 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_specht__Module__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7369 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_specht__Polynomial_lp__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8731 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_specht__Polynomials_lp__Partition_cm__Polynomial__Ring_rp.html │ │ │ @@ -20756,75 +20756,75 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 203984 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 395 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/___Congruence__Of__Curves_sp__Embedded__Projective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 914 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/___G__Mtables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1325 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_ambient__Fivefold.out │ │ │ --rw-r--r-- 0 root (0) root (0) 954 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__Castelnuovo__Surface.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 953 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__Castelnuovo__Surface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1005 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1191 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 614 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_beauville__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 351 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_clean_lp__Hodge__Special__Fourfold_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1173 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1553 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1172 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1555 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 298 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Cubic__Fourfold_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 287 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 286 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 672 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_fano__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 599 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_from__Ordinary__To__Gushel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_is__Admissible.out │ │ │ -rw-r--r-- 0 root (0) root (0) 164 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_is__Admissible__G__M.out │ │ │ -rw-r--r-- 0 root (0) root (0) 716 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_map_lp__Congruence__Of__Curves_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1356 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_mirror__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 357 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_normal__Sheaf.out │ │ │ -rw-r--r-- 0 root (0) root (0) 814 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count.out │ │ │ -rw-r--r-- 0 root (0) root (0) 786 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Cubic__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 973 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 653 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize__Fano__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1972 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize_lp__Hodge__Special__Fourfold_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6387 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6385 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 324 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 393 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold_lp__String_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1499 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Fourfold.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1520 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1519 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 762 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold_lp__Array_cm__Array_cm__String_cm__Thing_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 469 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 530 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold_lp__String_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 413 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_surface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 663 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_surface_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2427 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_surface_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 770 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__External__String_lp__Hodge__Special__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5325 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__Grass.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4324 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__Grass_lp__Embedded__Projective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 531 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_unirational__Parametrization.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 529 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_unirational__Parametrization.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 610 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 23 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6372 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Congruence__Of__Curves.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6988 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Congruence__Of__Curves_sp__Embedded__Projective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7943 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___G__Mtables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9888 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Hodge__Special__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6265 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Intersection__Of__Three__Quadrics__In__P7.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4602 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Singular.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9519 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Special__Cubic__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10070 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Special__Gushel__Mukai__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8773 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Verbose.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7793 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_ambient__Fivefold.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9596 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__Castelnuovo__Surface.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9595 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__Castelnuovo__Surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4945 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10359 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10574 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6841 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_beauville__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5897 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_check_lp__Z__Z_cm__Congruence__Of__Curves_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5533 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_clean_lp__Hodge__Special__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6192 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8687 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9572 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8686 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9574 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6654 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Cubic__Fourfold_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6746 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6745 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6642 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_fano__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5909 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_from__Ordinary__To__Gushel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5585 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_is__Admissible.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5729 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_is__Admissible__G__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5440 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_is__Member_lp__Embedded__Projective__Variety_cm__Congruence__Of__Curves_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7955 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_map_lp__Congruence__Of__Curves_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5595 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_map_lp__Special__Cubic__Fourfold_rp.html │ │ │ @@ -20832,31 +20832,31 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9405 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_mirror__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6394 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_normal__Sheaf.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8483 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7955 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Cubic__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8182 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8186 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize__Fano__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8747 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize_lp__Hodge__Special__Fourfold_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15461 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15459 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6948 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7039 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold_lp__String_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10491 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6591 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Fourfold_lp__String_cm__Z__Z_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12074 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12073 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11528 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold_lp__Array_cm__Array_cm__String_cm__Thing_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7954 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7745 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold_lp__String_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7348 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7730 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_surface_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9302 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_surface_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6144 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__External__String_lp__Hodge__Special__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11933 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__Grass.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10746 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__Grass_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5400 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_trisecant__Flop.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7020 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_unirational__Parametrization.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7018 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_unirational__Parametrization.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37413 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 33496 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14735 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpectralSequences/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpectralSequences/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 228935 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpectralSequences/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/SpectralSequences/example-output/ │ │ │ @@ -21611,15 +21611,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 167989 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 7389 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_action__On__Direct__Image.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1198 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_beilinson.out │ │ │ -rw-r--r-- 0 root (0) root (0) 926 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_beilinson__Bundle.out │ │ │ -rw-r--r-- 0 root (0) root (0) 632 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_beilinson__Contraction.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1718 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_beilinson__Window.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1717 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_beilinson__Window.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2581 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_bgg.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1169 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_coarse__Multigraded__Regularity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2746 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_cohomology__Hash__Table.out │ │ │ -rw-r--r-- 0 root (0) root (0) 837 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_cohomology__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 46657 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_composed__Functions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 8688 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_corner__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6396 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_direct__Image__Complex.out │ │ │ @@ -21654,15 +21654,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3629 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/___Rings.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5229 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/___Sub__Bundle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3791 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/___Tate__Data.html │ │ │ -rw-r--r-- 0 root (0) root (0) 27047 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/_action__On__Direct__Image.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10230 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/_beilinson.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9017 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/_beilinson__Bundle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8471 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/_beilinson__Contraction.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8870 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/_beilinson__Window.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8869 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/_beilinson__Window.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11098 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/_bgg.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8368 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/_coarse__Multigraded__Regularity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12600 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/_cohomology__Hash__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9829 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/_cohomology__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 69064 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/_composed__Functions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5572 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/_contraction__Data.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23178 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TateOnProducts/html/_corner__Complex.html │ │ │ @@ -21790,16 +21790,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 606 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_descend__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 116 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_floor__Log.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1009 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1518 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Power.out │ │ │ -rw-r--r-- 0 root (0) root (0) 227 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Preimage.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1328 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Root.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1117 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Trace__On__Canonical__Module.out │ │ │ --rw-r--r-- 0 root (0) root (0) 488 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__Cohen__Macaulay.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1819 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Injective.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 487 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__Cohen__Macaulay.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1821 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Injective.out │ │ │ -rw-r--r-- 0 root (0) root (0) 637 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Pure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 517 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Rational.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1492 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Regular.out │ │ │ -rw-r--r-- 0 root (0) root (0) 187 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_multiplicative__Order.out │ │ │ -rw-r--r-- 0 root (0) root (0) 416 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_parameter__Test__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 216 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1514 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Ideal.out │ │ │ @@ -21841,16 +21841,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9334 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_descend__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5225 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_floor__Log.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10611 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12408 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5237 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Preimage.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16745 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Root.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8554 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Trace__On__Canonical__Module.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8216 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__Cohen__Macaulay.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15806 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Injective.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8215 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__Cohen__Macaulay.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15808 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Injective.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10346 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Pure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9661 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Rational.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16392 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Regular.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5824 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_multiplicative__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7890 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_parameter__Test__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6302 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14994 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Ideal.html │ │ │ @@ -22057,30 +22057,30 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 37607 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThinSincereQuivers/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 27702 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThinSincereQuivers/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11513 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThinSincereQuivers/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 24388 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1510 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Minimal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1429 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Minimal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6776 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Threaded__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 615 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_matrix_lp__Lineage__Table_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1159 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_minimize_lp__Lineage__Table_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1155 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_reduce.out │ │ │ --rw-r--r-- 0 root (0) root (0) 5165 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1034 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_minimize_lp__Lineage__Table_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1030 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_reduce.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2186 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb_lp..._cm__Verbose_eq_gt..._rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 605 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 77 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6425 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/___Lineage__Table.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7097 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/___Minimal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7016 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/___Minimal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6670 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_matrix_lp__Lineage__Table_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7101 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_minimize_lp__Lineage__Table_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7158 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_reduce.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15868 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6976 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_minimize_lp__Lineage__Table_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7033 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_reduce.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12889 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7430 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21626 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6806 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4627 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Topcom/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Topcom/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 66598 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Topcom/dump/rawdocumentation.dump │ │ │ @@ -22374,17 +22374,17 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 17380 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TriangularSets/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11888 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TriangularSets/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7217 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/TriangularSets/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 31886 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2274 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/___Triangulations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2275 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/___Triangulations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 18048 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_all__Triangulations_lp__Matrix_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 75224 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_generate__Triangulations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 75242 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_generate__Triangulations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 714 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_is__Regular__Triangulation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1654 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_triangulation.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 42 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4460 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/___Chirotope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3951 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/___Cone__Index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7308 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/___Triangulation.html │ │ │ @@ -22392,29 +22392,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 30386 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_all__Triangulations_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3970 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_bistellar__Flip.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3884 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_chirotope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3827 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_delaunay__Subdivision.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3823 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_delaunay__Weights.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3867 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_fine__Star__Triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3781 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_flips.html │ │ │ --rw-r--r-- 0 root (0) root (0) 86004 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_generate__Triangulations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 86022 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_generate__Triangulations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3911 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_gkz__Vector.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3873 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_is__Fine.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9223 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_is__Regular__Triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3883 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_is__Star.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3814 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_naive__Chirotope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4176 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_naive__Is__Triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3807 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_neighbors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3950 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_regular__Fine__Star__Triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3970 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_regular__Fine__Triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4144 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_regular__Triangulation__Weights.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9719 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3727 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_vectors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3837 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_volume__Vector.html │ │ │ --rw-r--r-- 0 root (0) root (0) 24698 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 24699 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10341 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6323 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triangulations/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triplets/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triplets/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 49146 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triplets/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triplets/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 191 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/Triplets/example-output/___Betti1_lp__Triplet_rp.out │ │ │ @@ -23205,15 +23205,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 11114 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VectorGraphics/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9177 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VectorGraphics/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 226382 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1050 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/___Def__Param.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1216 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/___Smart__Lift.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1215 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/___Smart__Lift.out │ │ │ -rw-r--r-- 0 root (0) root (0) 416 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_check__Comparison__Theorem.out │ │ │ -rw-r--r-- 0 root (0) root (0) 406 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_check__Tangent__Space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 862 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_correct__Deformation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 433 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_cotangent__Cohomology1.out │ │ │ -rw-r--r-- 0 root (0) root (0) 774 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_cotangent__Cohomology2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 562 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_ext__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3316 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_families.out │ │ │ @@ -23242,15 +23242,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5713 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Correction__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7708 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Def__Param.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5603 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Degree__Bound.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4933 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Highest__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9463 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Nested__Deformation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5058 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Polynomial__Check.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6067 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Sanity__Check.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8084 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Smart__Lift.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8083 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Smart__Lift.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6958 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Verbose.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4445 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Versal__Deformation__Results.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7850 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/_check__Comparison__Theorem.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7641 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/_check__Tangent__Space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9956 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/_correct__Deformation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5435 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/_correction__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9893 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/_cotangent__Cohomology1.html │ │ │ @@ -23374,15 +23374,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 620 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ceiling_lp__R__Weil__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 264 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_clean__Support.out │ │ │ -rw-r--r-- 0 root (0) root (0) 470 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_clear__Cache.out │ │ │ -rw-r--r-- 0 root (0) root (0) 254 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_coefficient_lp__Basic__List_cm__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 335 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_coefficient_lp__Ideal_cm__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 728 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_coefficients_lp__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2714 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_divisor.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1711 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_dualize.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1714 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_dualize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1174 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_embed__As__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 500 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_find__Element__Of__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 532 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_gbs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 831 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_get__Linear__Diophantine__Solution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 501 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_get__Prime__Count.out │ │ │ -rw-r--r-- 0 root (0) root (0) 357 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_get__Prime__Divisors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 336 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ideal__Power.out │ │ │ @@ -23406,16 +23406,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 441 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__Zero__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 667 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_map__To__Projective__Space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1342 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_non__Cartier__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 780 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_positive__Part.out │ │ │ -rw-r--r-- 0 root (0) root (0) 604 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_primes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 765 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_pullback_lp__Ring__Map_cm__R__Weil__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 846 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ramification__Divisor.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4357 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexify.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1095 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexive__Power.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4352 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexify.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1094 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexive__Power.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ring_lp__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 375 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_to__Q__Weil__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 458 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_to__R__Weil__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 576 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_to__Weil__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 357 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_torsion__Submodule.out │ │ │ -rw-r--r-- 0 root (0) root (0) 364 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_trim_lp__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 174 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_zero__Divisor.out │ │ │ @@ -23445,15 +23445,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6439 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_ceiling_lp__R__Weil__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5314 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_clean__Support.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6048 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_clear__Cache.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6403 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_coefficient_lp__Basic__List_cm__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6550 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_coefficient_lp__Ideal_cm__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8179 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_coefficients_lp__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19737 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_divisor.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12298 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_dualize.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12301 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_dualize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13200 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_embed__As__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7595 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_find__Element__Of__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7315 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_gbs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8371 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_get__Linear__Diophantine__Solution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7242 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_get__Prime__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5737 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_get__Prime__Divisors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6340 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_ideal__Power.html │ │ │ @@ -23478,16 +23478,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5959 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__Zero__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8128 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_map__To__Projective__Space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8342 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_non__Cartier__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6689 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_positive__Part.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7155 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_primes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9116 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_pullback_lp__Ring__Map_cm__R__Weil__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10363 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_ramification__Divisor.html │ │ │ --rw-r--r-- 0 root (0) root (0) 20377 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexify.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9556 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexive__Power.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 20372 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexify.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9555 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexive__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5137 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_ring_lp__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6136 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_to__Q__Weil__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6886 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_to__R__Weil__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7207 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_to__Weil__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6826 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_torsion__Submodule.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6176 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_trim_lp__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4924 2025-11-14 16:08:07.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_zero__Divisor.html │ │ │ @@ -24021,280 +24021,280 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc/macaulay2-common/ │ │ │ -rw-r--r-- 0 root (0) root (0) 17100 2025-11-14 16:08:07.000000 ./usr/share/doc/macaulay2-common/changelog.Debian.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 106822 2025-11-14 16:02:05.000000 ./usr/share/doc/macaulay2-common/copyright │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/doc-base/ │ │ │ -rw-r--r-- 0 root (0) root (0) 577 2025-11-14 15:57:07.000000 ./usr/share/doc-base/macaulay2-common.macaulay2 │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/info/ │ │ │ -rw-r--r-- 0 root (0) root (0) 35711 2025-11-14 16:08:07.000000 ./usr/share/info/A1BrouwerDegrees.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14021 2025-11-14 16:08:07.000000 ./usr/share/info/AInfinity.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14023 2025-11-14 16:08:07.000000 ./usr/share/info/AInfinity.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10523 2025-11-14 16:08:07.000000 ./usr/share/info/AbstractSimplicialComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1491 2025-11-14 16:08:07.000000 ./usr/share/info/AbstractToricVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7475 2025-11-14 16:08:07.000000 ./usr/share/info/AdjointIdeal.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8785 2025-11-14 16:08:07.000000 ./usr/share/info/AdjunctionForSurfaces.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 23074 2025-11-14 16:08:07.000000 ./usr/share/info/AlgebraicSplines.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8654 2025-11-14 16:08:07.000000 ./usr/share/info/AllMarkovBases.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3058 2025-11-14 16:08:07.000000 ./usr/share/info/AnalyzeSheafOnP1.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 38028 2025-11-14 16:08:07.000000 ./usr/share/info/AssociativeAlgebras.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13735 2025-11-14 16:08:07.000000 ./usr/share/info/BGG.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13755 2025-11-14 16:08:07.000000 ./usr/share/info/BGG.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1733 2025-11-14 16:08:07.000000 ./usr/share/info/BIBasis.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 16540 2025-11-14 16:08:07.000000 ./usr/share/info/BeginningMacaulay2.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1534 2025-11-14 16:08:07.000000 ./usr/share/info/Benchmark.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1547 2025-11-14 16:08:07.000000 ./usr/share/info/Benchmark.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 47150 2025-11-14 16:08:07.000000 ./usr/share/info/BernsteinSato.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 21318 2025-11-14 16:08:07.000000 ./usr/share/info/Bertini.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31907 2025-11-14 16:08:07.000000 ./usr/share/info/BettiCharacters.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 21319 2025-11-14 16:08:07.000000 ./usr/share/info/Bertini.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31905 2025-11-14 16:08:07.000000 ./usr/share/info/BettiCharacters.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3389 2025-11-14 16:08:07.000000 ./usr/share/info/BinomialEdgeIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10984 2025-11-14 16:08:07.000000 ./usr/share/info/Binomials.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20100 2025-11-14 16:08:07.000000 ./usr/share/info/BoijSoederberg.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 16450 2025-11-14 16:08:07.000000 ./usr/share/info/Book3264Examples.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1822 2025-11-14 16:08:07.000000 ./usr/share/info/BooleanGB.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6969 2025-11-14 16:08:07.000000 ./usr/share/info/Brackets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1070 2025-11-14 16:08:07.000000 ./usr/share/info/Browse.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 6545 2025-11-14 16:08:07.000000 ./usr/share/info/Bruns.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 20047 2025-11-14 16:08:07.000000 ./usr/share/info/CellularResolutions.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 15811 2025-11-14 16:08:07.000000 ./usr/share/info/ChainComplexExtras.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 6544 2025-11-14 16:08:07.000000 ./usr/share/info/Bruns.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 20058 2025-11-14 16:08:07.000000 ./usr/share/info/CellularResolutions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 15810 2025-11-14 16:08:07.000000 ./usr/share/info/ChainComplexExtras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4454 2025-11-14 16:08:07.000000 ./usr/share/info/ChainComplexOperations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 26077 2025-11-14 16:08:07.000000 ./usr/share/info/CharacteristicClasses.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 22860 2025-11-14 16:08:07.000000 ./usr/share/info/Chordal.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 26099 2025-11-14 16:08:07.000000 ./usr/share/info/CharacteristicClasses.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 22847 2025-11-14 16:08:07.000000 ./usr/share/info/Chordal.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3710 2025-11-14 16:08:07.000000 ./usr/share/info/Classic.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 40809 2025-11-14 16:08:07.000000 ./usr/share/info/CodingTheory.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 5340 2025-11-14 16:08:07.000000 ./usr/share/info/CohomCalg.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 5344 2025-11-14 16:08:07.000000 ./usr/share/info/CohomCalg.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 24922 2025-11-14 16:08:07.000000 ./usr/share/info/CoincidentRootLoci.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 59629 2025-11-14 16:08:07.000000 ./usr/share/info/CompleteIntersectionResolutions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 59637 2025-11-14 16:08:07.000000 ./usr/share/info/CompleteIntersectionResolutions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 224577 2025-11-14 16:08:07.000000 ./usr/share/info/Complexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12241 2025-11-14 16:08:07.000000 ./usr/share/info/ConformalBlocks.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13365 2025-11-14 16:08:07.000000 ./usr/share/info/ConnectionMatrices.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13364 2025-11-14 16:08:07.000000 ./usr/share/info/ConnectionMatrices.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7163 2025-11-14 16:08:07.000000 ./usr/share/info/ConvexInterface.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1758 2025-11-14 16:08:07.000000 ./usr/share/info/ConwayPolynomials.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8622 2025-11-14 16:08:07.000000 ./usr/share/info/CorrespondenceScrolls.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7453 2025-11-14 16:08:07.000000 ./usr/share/info/CotangentSchubert.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 30015 2025-11-14 16:08:07.000000 ./usr/share/info/CpMackeyFunctors.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 96518 2025-11-14 16:08:07.000000 ./usr/share/info/Cremona.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 96532 2025-11-14 16:08:07.000000 ./usr/share/info/Cremona.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1982 2025-11-14 16:08:07.000000 ./usr/share/info/Cyclotomic.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 49519 2025-11-14 16:08:07.000000 ./usr/share/info/DGAlgebras.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 49522 2025-11-14 16:08:07.000000 ./usr/share/info/DGAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4886 2025-11-14 16:08:07.000000 ./usr/share/info/DecomposableSparseSystems.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6087 2025-11-14 16:08:07.000000 ./usr/share/info/Depth.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 18058 2025-11-14 16:08:07.000000 ./usr/share/info/DeterminantalRepresentations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19221 2025-11-14 16:08:07.000000 ./usr/share/info/DiffAlg.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3483 2025-11-14 16:08:07.000000 ./usr/share/info/Dmodules.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15778 2025-11-14 16:08:07.000000 ./usr/share/info/EagonResolution.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 45515 2025-11-14 16:08:07.000000 ./usr/share/info/EdgeIdeals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 2729 2025-11-14 16:08:07.000000 ./usr/share/info/EigenSolver.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 45516 2025-11-14 16:08:07.000000 ./usr/share/info/EdgeIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 2728 2025-11-14 16:08:07.000000 ./usr/share/info/EigenSolver.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4473 2025-11-14 16:08:07.000000 ./usr/share/info/Elimination.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 21219 2025-11-14 16:08:07.000000 ./usr/share/info/EliminationMatrices.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6856 2025-11-14 16:08:07.000000 ./usr/share/info/EllipticCurves.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1690 2025-11-14 16:08:07.000000 ./usr/share/info/EllipticIntegrals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2459 2025-11-14 16:08:07.000000 ./usr/share/info/EngineTests.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 2905 2025-11-14 16:08:07.000000 ./usr/share/info/EnumerationCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 9720 2025-11-14 16:08:07.000000 ./usr/share/info/EquivariantGB.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 2893 2025-11-14 16:08:07.000000 ./usr/share/info/EnumerationCurves.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 9715 2025-11-14 16:08:07.000000 ./usr/share/info/EquivariantGB.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20248 2025-11-14 16:08:07.000000 ./usr/share/info/ExampleSystems.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19433 2025-11-14 16:08:07.000000 ./usr/share/info/ExteriorExtensions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5180 2025-11-14 16:08:07.000000 ./usr/share/info/ExteriorIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10413 2025-11-14 16:08:07.000000 ./usr/share/info/ExteriorModules.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2581 2025-11-14 16:08:07.000000 ./usr/share/info/FGLM.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31687 2025-11-14 16:08:07.000000 ./usr/share/info/FastMinors.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 5213 2025-11-14 16:08:07.000000 ./usr/share/info/FiniteFittingIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31692 2025-11-14 16:08:07.000000 ./usr/share/info/FastMinors.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 5216 2025-11-14 16:08:07.000000 ./usr/share/info/FiniteFittingIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1042 2025-11-14 16:08:07.000000 ./usr/share/info/FirstPackage.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22612 2025-11-14 16:08:07.000000 ./usr/share/info/ForeignFunctions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7402 2025-11-14 16:08:07.000000 ./usr/share/info/FormalGroupLaws.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7408 2025-11-14 16:08:07.000000 ./usr/share/info/FourTiTwo.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7512 2025-11-14 16:08:07.000000 ./usr/share/info/FourierMotzkin.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 17491 2025-11-14 16:08:07.000000 ./usr/share/info/FrobeniusThresholds.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 17496 2025-11-14 16:08:07.000000 ./usr/share/info/FrobeniusThresholds.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1996 2025-11-14 16:08:07.000000 ./usr/share/info/FunctionFieldDesingularization.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 36098 2025-11-14 16:08:07.000000 ./usr/share/info/GKMVarieties.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 36096 2025-11-14 16:08:07.000000 ./usr/share/info/GKMVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 23589 2025-11-14 16:08:07.000000 ./usr/share/info/GameTheory.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2807 2025-11-14 16:08:07.000000 ./usr/share/info/GenericInitialIdeal.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15375 2025-11-14 16:08:07.000000 ./usr/share/info/GeometricDecomposability.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 86371 2025-11-14 16:08:07.000000 ./usr/share/info/GradedLieAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 38442 2025-11-14 16:08:07.000000 ./usr/share/info/GraphicalModels.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22801 2025-11-14 16:08:07.000000 ./usr/share/info/GraphicalModelsMLE.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 14394 2025-11-14 16:08:07.000000 ./usr/share/info/Graphics.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 51498 2025-11-14 16:08:07.000000 ./usr/share/info/Graphs.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 51497 2025-11-14 16:08:07.000000 ./usr/share/info/Graphs.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22296 2025-11-14 16:08:07.000000 ./usr/share/info/GroebnerStrata.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 4700 2025-11-14 16:08:07.000000 ./usr/share/info/GroebnerWalk.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 4457 2025-11-14 16:08:07.000000 ./usr/share/info/Hadamard.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 4701 2025-11-14 16:08:07.000000 ./usr/share/info/GroebnerWalk.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 4462 2025-11-14 16:08:07.000000 ./usr/share/info/Hadamard.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4172 2025-11-14 16:08:07.000000 ./usr/share/info/HigherCIOperators.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 24610 2025-11-14 16:08:07.000000 ./usr/share/info/HighestWeights.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5216 2025-11-14 16:08:07.000000 ./usr/share/info/HodgeIntegrals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 12517 2025-11-14 16:08:07.000000 ./usr/share/info/HolonomicSystems.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 6448 2025-11-14 16:08:07.000000 ./usr/share/info/HomotopyLieAlgebra.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 12515 2025-11-14 16:08:07.000000 ./usr/share/info/HolonomicSystems.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 6459 2025-11-14 16:08:07.000000 ./usr/share/info/HomotopyLieAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 41838 2025-11-14 16:08:07.000000 ./usr/share/info/HyperplaneArrangements.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9253 2025-11-14 16:08:07.000000 ./usr/share/info/IncidenceCorrespondenceCohomology.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6098 2025-11-14 16:08:07.000000 ./usr/share/info/IntegerProgramming.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 26736 2025-11-14 16:08:07.000000 ./usr/share/info/IntegralClosure.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 39464 2025-11-14 16:08:07.000000 ./usr/share/info/InvariantRing.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 26730 2025-11-14 16:08:07.000000 ./usr/share/info/IntegralClosure.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 39450 2025-11-14 16:08:07.000000 ./usr/share/info/InvariantRing.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12011 2025-11-14 16:08:07.000000 ./usr/share/info/InverseSystems.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9404 2025-11-14 16:08:07.000000 ./usr/share/info/InvolutiveBases.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9333 2025-11-14 16:08:07.000000 ./usr/share/info/Isomorphism.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3412 2025-11-14 16:08:07.000000 ./usr/share/info/JSON.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5117 2025-11-14 16:08:07.000000 ./usr/share/info/JSONRPC.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 20221 2025-11-14 16:08:07.000000 ./usr/share/info/Jets.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 24267 2025-11-14 16:08:07.000000 ./usr/share/info/K3Carpets.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 20226 2025-11-14 16:08:07.000000 ./usr/share/info/Jets.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 24284 2025-11-14 16:08:07.000000 ./usr/share/info/K3Carpets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7185 2025-11-14 16:08:07.000000 ./usr/share/info/K3Surfaces.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4847 2025-11-14 16:08:07.000000 ./usr/share/info/Kronecker.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19956 2025-11-14 16:08:07.000000 ./usr/share/info/KustinMiller.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10629 2025-11-14 16:08:07.000000 ./usr/share/info/LLLBases.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10306 2025-11-14 16:08:07.000000 ./usr/share/info/LatticePolytopes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10631 2025-11-14 16:08:07.000000 ./usr/share/info/LLLBases.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10307 2025-11-14 16:08:07.000000 ./usr/share/info/LatticePolytopes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 11907 2025-11-14 16:08:07.000000 ./usr/share/info/LexIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 53836 2025-11-14 16:08:07.000000 ./usr/share/info/LieAlgebraRepresentations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 11223 2025-11-14 16:08:07.000000 ./usr/share/info/LinearTruncations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 11458 2025-11-14 16:08:07.000000 ./usr/share/info/LocalRings.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 11220 2025-11-14 16:08:07.000000 ./usr/share/info/LinearTruncations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 11457 2025-11-14 16:08:07.000000 ./usr/share/info/LocalRings.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 14642 2025-11-14 16:08:07.000000 ./usr/share/info/M0nbar.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8789 2025-11-14 16:08:07.000000 ./usr/share/info/MCMApproximations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1043175 2025-11-14 16:08:07.000000 ./usr/share/info/Macaulay2Doc.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1043218 2025-11-14 16:08:07.000000 ./usr/share/info/Macaulay2Doc.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4315 2025-11-14 16:08:07.000000 ./usr/share/info/MapleInterface.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6010 2025-11-14 16:08:07.000000 ./usr/share/info/Markov.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 29534 2025-11-14 16:08:07.000000 ./usr/share/info/MatchingFields.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 164075 2025-11-14 16:08:07.000000 ./usr/share/info/MatrixFactorizations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37751 2025-11-14 16:08:07.000000 ./usr/share/info/MatrixSchubert.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 66765 2025-11-14 16:08:07.000000 ./usr/share/info/Matroids.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37757 2025-11-14 16:08:07.000000 ./usr/share/info/MatrixSchubert.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 66775 2025-11-14 16:08:07.000000 ./usr/share/info/Matroids.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1333 2025-11-14 16:08:07.000000 ./usr/share/info/MergeTeX.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7092 2025-11-14 16:08:07.000000 ./usr/share/info/MinimalPrimes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7090 2025-11-14 16:08:07.000000 ./usr/share/info/MinimalPrimes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3783 2025-11-14 16:08:07.000000 ./usr/share/info/Miura.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7712 2025-11-14 16:08:07.000000 ./usr/share/info/MixedMultiplicity.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7710 2025-11-14 16:08:07.000000 ./usr/share/info/MixedMultiplicity.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6283 2025-11-14 16:08:07.000000 ./usr/share/info/ModuleDeformations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14932 2025-11-14 16:08:07.000000 ./usr/share/info/MonodromySolver.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14925 2025-11-14 16:08:07.000000 ./usr/share/info/MonodromySolver.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20463 2025-11-14 16:08:07.000000 ./usr/share/info/MonomialAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12699 2025-11-14 16:08:07.000000 ./usr/share/info/MonomialIntegerPrograms.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5726 2025-11-14 16:08:07.000000 ./usr/share/info/MonomialOrbits.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10021 2025-11-14 16:08:07.000000 ./usr/share/info/Msolve.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10102 2025-11-14 16:08:07.000000 ./usr/share/info/Msolve.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10408 2025-11-14 16:08:07.000000 ./usr/share/info/MultiGradedRationalMap.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10201 2025-11-14 16:08:07.000000 ./usr/share/info/MultigradedBGG.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6937 2025-11-14 16:08:07.000000 ./usr/share/info/MultigradedImplicitization.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7281 2025-11-14 16:08:07.000000 ./usr/share/info/MultiplicitySequence.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7286 2025-11-14 16:08:07.000000 ./usr/share/info/MultiplicitySequence.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7533 2025-11-14 16:08:07.000000 ./usr/share/info/MultiplierIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4208 2025-11-14 16:08:07.000000 ./usr/share/info/MultiplierIdealsDim2.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 71952 2025-11-14 16:08:07.000000 ./usr/share/info/MultiprojectiveVarieties.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 71956 2025-11-14 16:08:07.000000 ./usr/share/info/MultiprojectiveVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 21458 2025-11-14 16:08:07.000000 ./usr/share/info/NAGtypes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 85834 2025-11-14 16:08:07.000000 ./usr/share/info/NCAlgebra.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 15874 2025-11-14 16:08:07.000000 ./usr/share/info/Nauty.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14733 2025-11-14 16:08:07.000000 ./usr/share/info/NautyGraphs.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 15876 2025-11-14 16:08:07.000000 ./usr/share/info/Nauty.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14728 2025-11-14 16:08:07.000000 ./usr/share/info/NautyGraphs.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4096 2025-11-14 16:08:07.000000 ./usr/share/info/NoetherNormalization.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 35153 2025-11-14 16:08:07.000000 ./usr/share/info/NoetherianOperators.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 35154 2025-11-14 16:08:07.000000 ./usr/share/info/NoetherianOperators.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9643 2025-11-14 16:08:07.000000 ./usr/share/info/NonPrincipalTestIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2547 2025-11-14 16:08:07.000000 ./usr/share/info/NonminimalComplexes.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 111303 2025-11-14 16:08:07.000000 ./usr/share/info/NormalToricVarieties.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 111293 2025-11-14 16:08:07.000000 ./usr/share/info/NormalToricVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 31263 2025-11-14 16:08:07.000000 ./usr/share/info/Normaliz.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3131 2025-11-14 16:08:07.000000 ./usr/share/info/NumericSolutions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 34508 2025-11-14 16:08:07.000000 ./usr/share/info/NumericalAlgebraicGeometry.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13639 2025-11-14 16:08:07.000000 ./usr/share/info/NumericalCertification.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 17850 2025-11-14 16:08:07.000000 ./usr/share/info/NumericalImplicitization.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 17844 2025-11-14 16:08:07.000000 ./usr/share/info/NumericalImplicitization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3201 2025-11-14 16:08:07.000000 ./usr/share/info/NumericalLinearAlgebra.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31575 2025-11-14 16:08:07.000000 ./usr/share/info/NumericalSchubertCalculus.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 28578 2025-11-14 16:08:07.000000 ./usr/share/info/NumericalSemigroups.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 20284 2025-11-14 16:08:07.000000 ./usr/share/info/OIGroebnerBases.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 45748 2025-11-14 16:08:07.000000 ./usr/share/info/OldChainComplexes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31584 2025-11-14 16:08:07.000000 ./usr/share/info/NumericalSchubertCalculus.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 28573 2025-11-14 16:08:07.000000 ./usr/share/info/NumericalSemigroups.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 20313 2025-11-14 16:08:07.000000 ./usr/share/info/OIGroebnerBases.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 45749 2025-11-14 16:08:07.000000 ./usr/share/info/OldChainComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 67774 2025-11-14 16:08:07.000000 ./usr/share/info/OldPolyhedra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 31097 2025-11-14 16:08:07.000000 ./usr/share/info/OldToricVectorBundles.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2108 2025-11-14 16:08:07.000000 ./usr/share/info/OnlineLookup.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1528 2025-11-14 16:08:07.000000 ./usr/share/info/OpenMath.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 27572 2025-11-14 16:08:07.000000 ./usr/share/info/Oscillators.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 27577 2025-11-14 16:08:07.000000 ./usr/share/info/Oscillators.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 27241 2025-11-14 16:08:07.000000 ./usr/share/info/PHCpack.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2517 2025-11-14 16:08:07.000000 ./usr/share/info/PackageCitations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1714 2025-11-14 16:08:07.000000 ./usr/share/info/PackageTemplate.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9367 2025-11-14 16:08:07.000000 ./usr/share/info/Parametrization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6942 2025-11-14 16:08:07.000000 ./usr/share/info/Parsing.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 31855 2025-11-14 16:08:07.000000 ./usr/share/info/PathSignatures.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 29656 2025-11-14 16:08:07.000000 ./usr/share/info/PencilsOfQuadrics.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4752 2025-11-14 16:08:07.000000 ./usr/share/info/Permanents.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 18991 2025-11-14 16:08:07.000000 ./usr/share/info/Permutations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19599 2025-11-14 16:08:07.000000 ./usr/share/info/PhylogeneticTrees.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 28264 2025-11-14 16:08:07.000000 ./usr/share/info/PieriMaps.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12263 2025-11-14 16:08:07.000000 ./usr/share/info/PlaneCurveLinearSeries.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10005 2025-11-14 16:08:07.000000 ./usr/share/info/Points.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10006 2025-11-14 16:08:07.000000 ./usr/share/info/Points.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 71585 2025-11-14 16:08:07.000000 ./usr/share/info/Polyhedra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1814 2025-11-14 16:08:07.000000 ./usr/share/info/Polymake.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 18578 2025-11-14 16:08:07.000000 ./usr/share/info/PolyominoIdeals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 54567 2025-11-14 16:08:07.000000 ./usr/share/info/Posets.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 54562 2025-11-14 16:08:07.000000 ./usr/share/info/Posets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9934 2025-11-14 16:08:07.000000 ./usr/share/info/PositivityToricBundles.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 15306 2025-11-14 16:08:07.000000 ./usr/share/info/PrimaryDecomposition.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 15309 2025-11-14 16:08:07.000000 ./usr/share/info/PrimaryDecomposition.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10300 2025-11-14 16:08:07.000000 ./usr/share/info/Probability.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9056 2025-11-14 16:08:07.000000 ./usr/share/info/PruneComplex.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2874 2025-11-14 16:08:07.000000 ./usr/share/info/PseudomonomialPrimaryDecomposition.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2268 2025-11-14 16:08:07.000000 ./usr/share/info/Pullback.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5379 2025-11-14 16:08:07.000000 ./usr/share/info/PushForward.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37348 2025-11-14 16:08:07.000000 ./usr/share/info/Python.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37350 2025-11-14 16:08:07.000000 ./usr/share/info/Python.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9376 2025-11-14 16:08:07.000000 ./usr/share/info/QthPower.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6105 2025-11-14 16:08:07.000000 ./usr/share/info/QuadraticIdealExamplesByRoos.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6748 2025-11-14 16:08:07.000000 ./usr/share/info/Quasidegrees.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 56311 2025-11-14 16:08:07.000000 ./usr/share/info/QuaternaryQuartics.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 56338 2025-11-14 16:08:07.000000 ./usr/share/info/QuaternaryQuartics.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13524 2025-11-14 16:08:07.000000 ./usr/share/info/QuillenSuslin.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13459 2025-11-14 16:08:07.000000 ./usr/share/info/RInterface.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1475 2025-11-14 16:08:07.000000 ./usr/share/info/RandomCanonicalCurves.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1476 2025-11-14 16:08:07.000000 ./usr/share/info/RandomCanonicalCurves.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8360 2025-11-14 16:08:07.000000 ./usr/share/info/RandomComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 856 2025-11-14 16:08:07.000000 ./usr/share/info/RandomCurves.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4055 2025-11-14 16:08:07.000000 ./usr/share/info/RandomCurvesOverVerySmallFiniteFields.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3722 2025-11-14 16:08:07.000000 ./usr/share/info/RandomGenus14Curves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14850 2025-11-14 16:08:07.000000 ./usr/share/info/RandomIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14860 2025-11-14 16:08:07.000000 ./usr/share/info/RandomIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 30361 2025-11-14 16:08:07.000000 ./usr/share/info/RandomMonomialIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3585 2025-11-14 16:08:07.000000 ./usr/share/info/RandomObjects.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4030 2025-11-14 16:08:07.000000 ./usr/share/info/RandomPlaneCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14982 2025-11-14 16:08:07.000000 ./usr/share/info/RandomPoints.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14979 2025-11-14 16:08:07.000000 ./usr/share/info/RandomPoints.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7297 2025-11-14 16:08:07.000000 ./usr/share/info/RandomSpaceCurves.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 18618 2025-11-14 16:08:07.000000 ./usr/share/info/RationalMaps.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1703 2025-11-14 16:08:07.000000 ./usr/share/info/RationalPoints.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10731 2025-11-14 16:08:07.000000 ./usr/share/info/RationalPoints2.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10729 2025-11-14 16:08:07.000000 ./usr/share/info/RationalPoints2.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20540 2025-11-14 16:08:07.000000 ./usr/share/info/ReactionNetworks.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10300 2025-11-14 16:08:07.000000 ./usr/share/info/RealRoots.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37257 2025-11-14 16:08:07.000000 ./usr/share/info/ReesAlgebra.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37249 2025-11-14 16:08:07.000000 ./usr/share/info/ReesAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12568 2025-11-14 16:08:07.000000 ./usr/share/info/ReflexivePolytopesDB.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2746 2025-11-14 16:08:07.000000 ./usr/share/info/Regularity.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6359 2025-11-14 16:08:07.000000 ./usr/share/info/RelativeCanonicalResolution.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6017 2025-11-14 16:08:07.000000 ./usr/share/info/ResLengthThree.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7488 2025-11-14 16:08:07.000000 ./usr/share/info/ResidualIntersections.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4695 2025-11-14 16:08:07.000000 ./usr/share/info/ResolutionsOfStanleyReisnerRings.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 45664 2025-11-14 16:08:07.000000 ./usr/share/info/Resultants.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 8793 2025-11-14 16:08:07.000000 ./usr/share/info/RunExternalM2.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 45684 2025-11-14 16:08:07.000000 ./usr/share/info/Resultants.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 8804 2025-11-14 16:08:07.000000 ./usr/share/info/RunExternalM2.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3583 2025-11-14 16:08:07.000000 ./usr/share/info/SCMAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4074 2025-11-14 16:08:07.000000 ./usr/share/info/SCSCP.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13738 2025-11-14 16:08:07.000000 ./usr/share/info/SLPexpressions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13739 2025-11-14 16:08:07.000000 ./usr/share/info/SLPexpressions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8229 2025-11-14 16:08:07.000000 ./usr/share/info/SLnEquivariantMatrices.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 51962 2025-11-14 16:08:07.000000 ./usr/share/info/SRdeformations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 22393 2025-11-14 16:08:07.000000 ./usr/share/info/SVDComplexes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 22394 2025-11-14 16:08:07.000000 ./usr/share/info/SVDComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2644 2025-11-14 16:08:07.000000 ./usr/share/info/SagbiGbDetection.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 9144 2025-11-14 16:08:07.000000 ./usr/share/info/Saturation.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 64564 2025-11-14 16:08:07.000000 ./usr/share/info/Schubert2.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 9141 2025-11-14 16:08:07.000000 ./usr/share/info/Saturation.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 64568 2025-11-14 16:08:07.000000 ./usr/share/info/Schubert2.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5128 2025-11-14 16:08:07.000000 ./usr/share/info/SchurComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4868 2025-11-14 16:08:07.000000 ./usr/share/info/SchurFunctors.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 25155 2025-11-14 16:08:07.000000 ./usr/share/info/SchurRings.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7965 2025-11-14 16:08:07.000000 ./usr/share/info/SchurVeronese.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2654 2025-11-14 16:08:07.000000 ./usr/share/info/SectionRing.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7698 2025-11-14 16:08:07.000000 ./usr/share/info/SegreClasses.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7701 2025-11-14 16:08:07.000000 ./usr/share/info/SegreClasses.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7469 2025-11-14 16:08:07.000000 ./usr/share/info/SemidefiniteProgramming.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8348 2025-11-14 16:08:07.000000 ./usr/share/info/Seminormalization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2626 2025-11-14 16:08:07.000000 ./usr/share/info/Serialization.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 8316 2025-11-14 16:08:07.000000 ./usr/share/info/SimpleDoc.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 8317 2025-11-14 16:08:07.000000 ./usr/share/info/SimpleDoc.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 76323 2025-11-14 16:08:07.000000 ./usr/share/info/SimplicialComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7232 2025-11-14 16:08:07.000000 ./usr/share/info/SimplicialDecomposability.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2966 2025-11-14 16:08:07.000000 ./usr/share/info/SimplicialPosets.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37164 2025-11-14 16:08:07.000000 ./usr/share/info/SlackIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37168 2025-11-14 16:08:07.000000 ./usr/share/info/SlackIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13525 2025-11-14 16:08:07.000000 ./usr/share/info/SpaceCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 27520 2025-11-14 16:08:07.000000 ./usr/share/info/SparseResultants.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37569 2025-11-14 16:08:07.000000 ./usr/share/info/SpechtModule.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 32630 2025-11-14 16:08:07.000000 ./usr/share/info/SpecialFanoFourfolds.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 27506 2025-11-14 16:08:07.000000 ./usr/share/info/SparseResultants.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37570 2025-11-14 16:08:07.000000 ./usr/share/info/SpechtModule.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 32635 2025-11-14 16:08:07.000000 ./usr/share/info/SpecialFanoFourfolds.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 291857 2025-11-14 16:08:07.000000 ./usr/share/info/SpectralSequences.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 12678 2025-11-14 16:08:07.000000 ./usr/share/info/StatGraphs.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 12684 2025-11-14 16:08:07.000000 ./usr/share/info/StatGraphs.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2631 2025-11-14 16:08:07.000000 ./usr/share/info/StatePolytope.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7815 2025-11-14 16:08:07.000000 ./usr/share/info/StronglyStableIdeals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1897 2025-11-14 16:08:07.000000 ./usr/share/info/Style.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1895 2025-11-14 16:08:07.000000 ./usr/share/info/Style.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 29769 2025-11-14 16:08:07.000000 ./usr/share/info/SubalgebraBases.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15726 2025-11-14 16:08:07.000000 ./usr/share/info/SumsOfSquares.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5366 2025-11-14 16:08:07.000000 ./usr/share/info/SuperLinearAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2753 2025-11-14 16:08:07.000000 ./usr/share/info/SwitchingFields.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14147 2025-11-14 16:08:07.000000 ./usr/share/info/SymbolicPowers.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14148 2025-11-14 16:08:07.000000 ./usr/share/info/SymbolicPowers.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2157 2025-11-14 16:08:07.000000 ./usr/share/info/SymmetricPolynomials.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 14151 2025-11-14 16:08:07.000000 ./usr/share/info/TSpreadIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 17554 2025-11-14 16:08:07.000000 ./usr/share/info/Tableaux.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1559 2025-11-14 16:08:07.000000 ./usr/share/info/TangentCone.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 47114 2025-11-14 16:08:07.000000 ./usr/share/info/TateOnProducts.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22604 2025-11-14 16:08:07.000000 ./usr/share/info/TensorComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2389 2025-11-14 16:08:07.000000 ./usr/share/info/TerraciniLoci.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31169 2025-11-14 16:08:07.000000 ./usr/share/info/TestIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31194 2025-11-14 16:08:07.000000 ./usr/share/info/TestIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15058 2025-11-14 16:08:07.000000 ./usr/share/info/Text.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22883 2025-11-14 16:08:07.000000 ./usr/share/info/ThinSincereQuivers.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 8487 2025-11-14 16:08:07.000000 ./usr/share/info/ThreadedGB.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 8123 2025-11-14 16:08:07.000000 ./usr/share/info/ThreadedGB.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13901 2025-11-14 16:08:07.000000 ./usr/share/info/Topcom.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7599 2025-11-14 16:08:07.000000 ./usr/share/info/TorAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7449 2025-11-14 16:08:07.000000 ./usr/share/info/ToricHigherDirectImages.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4014 2025-11-14 16:08:07.000000 ./usr/share/info/ToricInvariants.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6581 2025-11-14 16:08:07.000000 ./usr/share/info/ToricTopology.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 31435 2025-11-14 16:08:07.000000 ./usr/share/info/ToricVectorBundles.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9584 2025-11-14 16:08:07.000000 ./usr/share/info/TriangularSets.info.gz │ │ │ @@ -24305,23 +24305,23 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5772 2025-11-14 16:08:07.000000 ./usr/share/info/Truncations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8693 2025-11-14 16:08:07.000000 ./usr/share/info/Units.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4687 2025-11-14 16:08:07.000000 ./usr/share/info/VNumber.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8877 2025-11-14 16:08:07.000000 ./usr/share/info/Valuations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 44204 2025-11-14 16:08:07.000000 ./usr/share/info/Varieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19378 2025-11-14 16:08:07.000000 ./usr/share/info/VectorFields.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 51845 2025-11-14 16:08:07.000000 ./usr/share/info/VectorGraphics.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 41367 2025-11-14 16:08:07.000000 ./usr/share/info/VersalDeformations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 41369 2025-11-14 16:08:07.000000 ./usr/share/info/VersalDeformations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12693 2025-11-14 16:08:07.000000 ./usr/share/info/VirtualResolutions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10443 2025-11-14 16:08:07.000000 ./usr/share/info/Visualize.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 38070 2025-11-14 16:08:07.000000 ./usr/share/info/WeilDivisors.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 38084 2025-11-14 16:08:07.000000 ./usr/share/info/WeilDivisors.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10700 2025-11-14 16:08:07.000000 ./usr/share/info/WeylAlgebras.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 33226 2025-11-14 16:08:07.000000 ./usr/share/info/WeylGroups.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14775 2025-11-14 16:08:07.000000 ./usr/share/info/WhitneyStratifications.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 33211 2025-11-14 16:08:07.000000 ./usr/share/info/WeylGroups.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14771 2025-11-14 16:08:07.000000 ./usr/share/info/WhitneyStratifications.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8865 2025-11-14 16:08:07.000000 ./usr/share/info/XML.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 49484 2025-11-14 16:08:07.000000 ./usr/share/info/gfanInterface.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 49482 2025-11-14 16:08:07.000000 ./usr/share/info/gfanInterface.info.gz │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/lintian/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/lintian/overrides/ │ │ │ -rw-r--r-- 0 root (0) root (0) 11345 2025-11-14 15:57:07.000000 ./usr/share/lintian/overrides/macaulay2-common │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/Macaulay2/Style/katex/contrib/auto-render.min.js -> ../../../../javascript/katex/contrib/auto-render.js │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/Macaulay2/Style/katex/contrib/copy-tex.min.js -> ../../../../javascript/katex/contrib/copy-tex.js │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/Macaulay2/Style/katex/contrib/render-a11y-string.min.js -> ../../../../javascript/katex/contrib/render-a11y-string.js │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-11-14 16:08:07.000000 ./usr/share/Macaulay2/Style/katex/fonts/KaTeX_AMS-Regular.ttf -> ../../../../fonts/truetype/katex/KaTeX_AMS-Regular.ttf │ │ ├── ./usr/share/doc/Macaulay2/AInfinity/example-output/___Check.out │ │ │ @@ -10,25 +10,25 @@ │ │ │ │ │ │ o2 = cokernel | a b c | │ │ │ │ │ │ 1 │ │ │ o2 : R-module, quotient of R │ │ │ │ │ │ i3 : elapsedTime burkeResolution(M, 7, Check => false) │ │ │ - -- 2.01805s elapsed │ │ │ + -- 1.37547s elapsed │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ o3 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ o3 : Complex │ │ │ │ │ │ i4 : elapsedTime burkeResolution(M, 7, Check => true) │ │ │ - -- 2.36135s elapsed │ │ │ + -- 1.73656s elapsed │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ o4 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ o4 : Complex │ │ ├── ./usr/share/doc/Macaulay2/AInfinity/html/___Check.html │ │ │ @@ -90,28 +90,28 @@ │ │ │ 1 │ │ │ o2 : R-module, quotient of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i3 : elapsedTime burkeResolution(M, 7, Check => false)
│ │ │ - -- 2.01805s elapsed
│ │ │ + -- 1.37547s elapsed
│ │ │  
│ │ │        1      3      9      27      81      243      729      2187
│ │ │  o3 = R  <-- R  <-- R  <-- R   <-- R   <-- R    <-- R    <-- R
│ │ │                                                               
│ │ │       0      1      2      3       4       5        6        7
│ │ │  
│ │ │  o3 : Complex
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i4 : elapsedTime burkeResolution(M, 7, Check => true)
│ │ │ - -- 2.36135s elapsed
│ │ │ + -- 1.73656s elapsed
│ │ │  
│ │ │        1      3      9      27      81      243      729      2187
│ │ │  o4 = R  <-- R  <-- R  <-- R   <-- R   <-- R    <-- R    <-- R
│ │ │                                                               
│ │ │       0      1      2      3       4       5        6        7
│ │ │  
│ │ │  o4 : Complex
│ │ │ ├── html2text {} │ │ │ │ @@ -23,24 +23,24 @@ │ │ │ │ i2 : M = coker vars R │ │ │ │ │ │ │ │ o2 = cokernel | a b c | │ │ │ │ │ │ │ │ 1 │ │ │ │ o2 : R-module, quotient of R │ │ │ │ i3 : elapsedTime burkeResolution(M, 7, Check => false) │ │ │ │ - -- 2.01805s elapsed │ │ │ │ + -- 1.37547s elapsed │ │ │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ │ o3 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ │ │ o3 : Complex │ │ │ │ i4 : elapsedTime burkeResolution(M, 7, Check => true) │ │ │ │ - -- 2.36135s elapsed │ │ │ │ + -- 1.73656s elapsed │ │ │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ │ o4 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ │ │ o4 : Complex │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjoint__Matrix.out │ │ │ @@ -49,15 +49,15 @@ │ │ │ o8 : BettiTally │ │ │ │ │ │ i9 : c=codim I │ │ │ │ │ │ o9 = 4 │ │ │ │ │ │ i10 : elapsedTime fI=res I │ │ │ - -- .0216671s elapsed │ │ │ + -- .0276356s elapsed │ │ │ │ │ │ 1 14 33 28 8 │ │ │ o10 = Pn <-- Pn <-- Pn <-- Pn <-- Pn <-- 0 │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ o10 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjunction__Process.out │ │ │ @@ -87,30 +87,30 @@ │ │ │ o13 : BettiTally │ │ │ │ │ │ i14 : phi=map(P2,Pn,H); │ │ │ │ │ │ o14 : RingMap P2 <-- Pn │ │ │ │ │ │ i15 : elapsedTime betti(I'=trim ker phi) │ │ │ - -- .585455s elapsed │ │ │ + -- .572781s elapsed │ │ │ │ │ │ 0 1 │ │ │ o15 = total: 1 11 │ │ │ 0: 1 . │ │ │ 1: . 3 │ │ │ 2: . 8 │ │ │ │ │ │ o15 : BettiTally │ │ │ │ │ │ i16 : I'== I │ │ │ │ │ │ o16 = true │ │ │ │ │ │ i17 : elapsedTime basePts=primaryDecomposition ideal H; │ │ │ - -- 5.79625s elapsed │ │ │ + -- 5.18575s elapsed │ │ │ │ │ │ i18 : tally apply(basePts,c->(dim c, degree c, betti c)) │ │ │ │ │ │ 0 1 │ │ │ o18 = Tally{(1, 1, total: 1 2) => 5} │ │ │ 0: 1 2 │ │ │ 0 1 │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_parametrization.out │ │ │ @@ -79,40 +79,40 @@ │ │ │ 1: . . │ │ │ 2: . . │ │ │ 3: . 8 │ │ │ │ │ │ o13 : BettiTally │ │ │ │ │ │ i14 : elapsedTime sub(I,H) │ │ │ - -- .0135763s elapsed │ │ │ + -- .0166213s elapsed │ │ │ │ │ │ o14 = ideal (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) │ │ │ │ │ │ o14 : Ideal of P2 │ │ │ │ │ │ i15 : phi=map(P2,Pn,H); │ │ │ │ │ │ o15 : RingMap P2 <-- Pn │ │ │ │ │ │ i16 : elapsedTime betti(I'=trim ker phi) │ │ │ - -- .0549513s elapsed │ │ │ + -- .0653643s elapsed │ │ │ │ │ │ 0 1 │ │ │ o16 = total: 1 12 │ │ │ 0: 1 . │ │ │ 1: . 12 │ │ │ │ │ │ o16 : BettiTally │ │ │ │ │ │ i17 : I'== I │ │ │ │ │ │ o17 = true │ │ │ │ │ │ i18 : elapsedTime basePts=primaryDecomposition ideal H; │ │ │ - -- 2.1225s elapsed │ │ │ + -- 1.543s elapsed │ │ │ │ │ │ i19 : tally apply(basePts,c->(dim c, degree c, betti c)) │ │ │ │ │ │ 0 1 │ │ │ o19 = Tally{(0, 34, total: 1 15) => 1} │ │ │ 0: 1 . │ │ │ 1: . . │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjoint__Matrix.html │ │ │ @@ -149,15 +149,15 @@ │ │ │ │ │ │ o9 = 4 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i10 : elapsedTime fI=res I
│ │ │ - -- .0216671s elapsed
│ │ │ + -- .0276356s elapsed
│ │ │  
│ │ │          1       14       33       28       8
│ │ │  o10 = Pn  <-- Pn   <-- Pn   <-- Pn   <-- Pn  <-- 0
│ │ │                                                    
│ │ │        0       1        2        3        4       5
│ │ │  
│ │ │  o10 : ChainComplex
│ │ │ ├── html2text {} │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ 2: . 12 │ │ │ │ │ │ │ │ o8 : BettiTally │ │ │ │ i9 : c=codim I │ │ │ │ │ │ │ │ o9 = 4 │ │ │ │ i10 : elapsedTime fI=res I │ │ │ │ - -- .0216671s elapsed │ │ │ │ + -- .0276356s elapsed │ │ │ │ │ │ │ │ 1 14 33 28 8 │ │ │ │ o10 = Pn <-- Pn <-- Pn <-- Pn <-- Pn <-- 0 │ │ │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ │ │ o10 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjunction__Process.html │ │ │ @@ -217,15 +217,15 @@ │ │ │ │ │ │ o14 : RingMap P2 <-- Pn │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i15 : elapsedTime betti(I'=trim ker phi)
│ │ │ - -- .585455s elapsed
│ │ │ + -- .572781s elapsed
│ │ │  
│ │ │               0  1
│ │ │  o15 = total: 1 11
│ │ │            0: 1  .
│ │ │            1: .  3
│ │ │            2: .  8
│ │ │  
│ │ │ @@ -238,15 +238,15 @@
│ │ │  
│ │ │  o16 = true
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i17 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ - -- 5.79625s elapsed
│ │ │ + -- 5.18575s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i18 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │  
│ │ │                            0 1
│ │ │ ├── html2text {}
│ │ │ │ @@ -110,28 +110,28 @@
│ │ │ │            6: . 7
│ │ │ │  
│ │ │ │  o13 : BettiTally
│ │ │ │  i14 : phi=map(P2,Pn,H);
│ │ │ │  
│ │ │ │  o14 : RingMap P2 <-- Pn
│ │ │ │  i15 : elapsedTime betti(I'=trim ker phi)
│ │ │ │ - -- .585455s elapsed
│ │ │ │ + -- .572781s elapsed
│ │ │ │  
│ │ │ │               0  1
│ │ │ │  o15 = total: 1 11
│ │ │ │            0: 1  .
│ │ │ │            1: .  3
│ │ │ │            2: .  8
│ │ │ │  
│ │ │ │  o15 : BettiTally
│ │ │ │  i16 : I'== I
│ │ │ │  
│ │ │ │  o16 = true
│ │ │ │  i17 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ │ - -- 5.79625s elapsed
│ │ │ │ + -- 5.18575s elapsed
│ │ │ │  i18 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │ │  
│ │ │ │                            0 1
│ │ │ │  o18 = Tally{(1, 1, total: 1 2) => 5}
│ │ │ │                         0: 1 2
│ │ │ │                            0 1
│ │ │ │              (1, 3, total: 1 3) => 8
│ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_parametrization.html
│ │ │ @@ -193,15 +193,15 @@
│ │ │  
│ │ │  o13 : BettiTally
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i14 : elapsedTime sub(I,H)
│ │ │ - -- .0135763s elapsed
│ │ │ + -- .0166213s elapsed
│ │ │  
│ │ │  o14 = ideal (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
│ │ │  
│ │ │  o14 : Ideal of P2
│ │ │ │ │ │ │ │ │ │ │ │ @@ -210,15 +210,15 @@ │ │ │ │ │ │ o15 : RingMap P2 <-- Pn │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i16 : elapsedTime betti(I'=trim ker phi)
│ │ │ - -- .0549513s elapsed
│ │ │ + -- .0653643s elapsed
│ │ │  
│ │ │               0  1
│ │ │  o16 = total: 1 12
│ │ │            0: 1  .
│ │ │            1: . 12
│ │ │  
│ │ │  o16 : BettiTally
│ │ │ @@ -230,15 +230,15 @@ │ │ │ │ │ │ o17 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i18 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ - -- 2.1225s elapsed
│ │ │ + -- 1.543s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i19 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │  
│ │ │                             0  1
│ │ │ ├── html2text {}
│ │ │ │ @@ -82,36 +82,36 @@
│ │ │ │            0: 1 .
│ │ │ │            1: . .
│ │ │ │            2: . .
│ │ │ │            3: . 8
│ │ │ │  
│ │ │ │  o13 : BettiTally
│ │ │ │  i14 : elapsedTime sub(I,H)
│ │ │ │ - -- .0135763s elapsed
│ │ │ │ + -- .0166213s elapsed
│ │ │ │  
│ │ │ │  o14 = ideal (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
│ │ │ │  
│ │ │ │  o14 : Ideal of P2
│ │ │ │  i15 : phi=map(P2,Pn,H);
│ │ │ │  
│ │ │ │  o15 : RingMap P2 <-- Pn
│ │ │ │  i16 : elapsedTime betti(I'=trim ker phi)
│ │ │ │ - -- .0549513s elapsed
│ │ │ │ + -- .0653643s elapsed
│ │ │ │  
│ │ │ │               0  1
│ │ │ │  o16 = total: 1 12
│ │ │ │            0: 1  .
│ │ │ │            1: . 12
│ │ │ │  
│ │ │ │  o16 : BettiTally
│ │ │ │  i17 : I'== I
│ │ │ │  
│ │ │ │  o17 = true
│ │ │ │  i18 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ │ - -- 2.1225s elapsed
│ │ │ │ + -- 1.543s elapsed
│ │ │ │  i19 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │ │  
│ │ │ │                             0  1
│ │ │ │  o19 = Tally{(0, 34, total: 1 15) => 1}
│ │ │ │                          0: 1  .
│ │ │ │                          1: .  .
│ │ │ │                          2: .  .
│ │ ├── ./usr/share/doc/Macaulay2/BGG/example-output/_pure__Resolution.out
│ │ │ @@ -114,26 +114,26 @@
│ │ │        | 19a+19b  -38a-16b -18a-13b 16a+22b  |
│ │ │        | -10a-29b 39a+21b  -43a-15b 45a-34b  |
│ │ │  
│ │ │                4      4
│ │ │  o13 : Matrix A  <-- A
│ │ │  
│ │ │  i14 : time betti (F = pureResolution(M,{0,2,4}))
│ │ │ - -- used 0.447739s (cpu); 0.367036s (thread); 0s (gc)
│ │ │ + -- used 0.510592s (cpu); 0.41832s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o14 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ │  
│ │ │  o14 : BettiTally
│ │ │  
│ │ │  i15 : time betti (F = pureResolution(11,4,{0,2,4}))
│ │ │ - -- used 0.480185s (cpu); 0.403507s (thread); 0s (gc)
│ │ │ + -- used 0.561711s (cpu); 0.478291s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o15 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ ├── ./usr/share/doc/Macaulay2/BGG/html/_pure__Resolution.html
│ │ │ @@ -253,15 +253,15 @@
│ │ │                4      4
│ │ │  o13 : Matrix A  <-- A
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i14 : time betti (F = pureResolution(M,{0,2,4}))
│ │ │ - -- used 0.447739s (cpu); 0.367036s (thread); 0s (gc)
│ │ │ + -- used 0.510592s (cpu); 0.41832s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o14 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ │  
│ │ │ @@ -272,15 +272,15 @@
│ │ │          
│ │ │

With the form pureResolution(p,q,D) we can directly create the situation of pureResolution(M,D) where M is generic product(m_i+1) x #D-1+sum(m_i) matrix of linear forms defined over a ring with product(m_i+1) * #D-1+sum(m_i) variables of characteristic p, created by the script. For a given number of variables in A this runs much faster than taking a random matrix M.

│ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -192,26 +192,26 @@ │ │ │ │ o18 : ActionOnComplex │ │ │ │ i19 : A2 = action(RI2,G,Sub=>false) │ │ │ │ │ │ │ │ o19 = Complex with 6 actors │ │ │ │ │ │ │ │ o19 : ActionOnComplex │ │ │ │ i20 : elapsedTime a1 = character A1 │ │ │ │ - -- .750459s elapsed │ │ │ │ + -- .762274s elapsed │ │ │ │ │ │ │ │ o20 = Character over R │ │ │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ │ (1, {8}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ │ (2, {11}) => | 1 1 1 1 1 1 | │ │ │ │ (2, {13}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ │ │ o20 : Character │ │ │ │ i21 : elapsedTime a2 = character A2 │ │ │ │ - -- 34.0105s elapsed │ │ │ │ + -- 27.8101s elapsed │ │ │ │ │ │ │ │ o21 = Character over R │ │ │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ │ (1, {16}) => | 6 2 0 0 -1 -1 | │ │ │ │ (2, {19}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ │ (2, {21}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ │ @@ -308,15 +308,15 @@ │ │ │ │ i30 : M = Is2 / I2; │ │ │ │ i31 : B = action(M,G,Sub=>false) │ │ │ │ │ │ │ │ o31 = Module with 6 actors │ │ │ │ │ │ │ │ o31 : ActionOnGradedModule │ │ │ │ i32 : elapsedTime b = character(B,21) │ │ │ │ - -- 14.0834s elapsed │ │ │ │ + -- 12.2831s elapsed │ │ │ │ │ │ │ │ o32 = Character over R │ │ │ │ │ │ │ │ (0, {21}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ │ │ o32 : Character │ │ │ │ i33 : b/T │ │ ├── ./usr/share/doc/Macaulay2/Bruns/example-output/_bruns.out │ │ │ @@ -230,15 +230,15 @@ │ │ │ 0: 1 . . . . │ │ │ 1: . 4 2 . . │ │ │ 2: . 1 6 5 1 │ │ │ │ │ │ o22 : BettiTally │ │ │ │ │ │ i23 : time j=bruns F.dd_3; │ │ │ - -- used 0.232837s (cpu); 0.179806s (thread); 0s (gc) │ │ │ + -- used 0.286995s (cpu); 0.216254s (thread); 0s (gc) │ │ │ │ │ │ o23 : Ideal of S │ │ │ │ │ │ i24 : betti res j │ │ │ │ │ │ 0 1 2 3 4 │ │ │ o24 = total: 1 3 6 5 1 │ │ ├── ./usr/share/doc/Macaulay2/Bruns/html/_bruns.html │ │ │ @@ -380,15 +380,15 @@ │ │ │ │ │ │ o22 : BettiTally │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │
i15 : time betti (F = pureResolution(11,4,{0,2,4}))
│ │ │ - -- used 0.480185s (cpu); 0.403507s (thread); 0s (gc)
│ │ │ + -- used 0.561711s (cpu); 0.478291s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o15 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ │ ├── html2text {}
│ │ │ │ @@ -161,30 +161,30 @@
│ │ │ │        | -30a-29b -29a-24b -47a-39b 38a+2b   |
│ │ │ │        | 19a+19b  -38a-16b -18a-13b 16a+22b  |
│ │ │ │        | -10a-29b 39a+21b  -43a-15b 45a-34b  |
│ │ │ │  
│ │ │ │                4      4
│ │ │ │  o13 : Matrix A  <-- A
│ │ │ │  i14 : time betti (F = pureResolution(M,{0,2,4}))
│ │ │ │ - -- used 0.447739s (cpu); 0.367036s (thread); 0s (gc)
│ │ │ │ + -- used 0.510592s (cpu); 0.41832s (thread); 0s (gc)
│ │ │ │  
│ │ │ │               0 1 2
│ │ │ │  o14 = total: 3 6 3
│ │ │ │            0: 3 . .
│ │ │ │            1: . 6 .
│ │ │ │            2: . . 3
│ │ │ │  
│ │ │ │  o14 : BettiTally
│ │ │ │  With the form pureResolution(p,q,D) we can directly create the situation of
│ │ │ │  pureResolution(M,D) where M is generic product(m_i+1) x #D-1+sum(m_i) matrix of
│ │ │ │  linear forms defined over a ring with product(m_i+1) * #D-1+sum(m_i) variables
│ │ │ │  of characteristic p, created by the script. For a given number of variables in
│ │ │ │  A this runs much faster than taking a random matrix M.
│ │ │ │  i15 : time betti (F = pureResolution(11,4,{0,2,4}))
│ │ │ │ - -- used 0.480185s (cpu); 0.403507s (thread); 0s (gc)
│ │ │ │ + -- used 0.561711s (cpu); 0.478291s (thread); 0s (gc)
│ │ │ │  
│ │ │ │               0 1 2
│ │ │ │  o15 = total: 3 6 3
│ │ │ │            0: 3 . .
│ │ │ │            1: . 6 .
│ │ │ │            2: . . 3
│ │ ├── ./usr/share/doc/Macaulay2/Benchmark/example-output/_run__Benchmarks.out
│ │ │ @@ -1,10 +1,10 @@
│ │ │  -- -*- M2-comint -*- hash: 1330545576567
│ │ │  
│ │ │  i1 : runBenchmarks "res39"
│ │ │ --- beginning computation Fri Nov 14 17:31:11 UTC 2025
│ │ │ --- Linux sbuild 6.12.48+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.48-1 (2025-09-20) x86_64 GNU/Linux
│ │ │ --- AMD EPYC 7702P 64-Core Processor  AuthenticAMD  cpu MHz 1996.250  
│ │ │ +-- beginning computation Fri Nov 21 10:45:50 UTC 2025
│ │ │ +-- Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
│ │ │ +-- Intel Xeon Processor (Skylake, IBRS)  GenuineIntel  cpu MHz 2099.998  
│ │ │  -- Macaulay2 1.25.11, compiled with gcc 15.2.0
│ │ │ --- res39: res of a generic 3 by 9 matrix over ZZ/101: .115525 seconds
│ │ │ +-- res39: res of a generic 3 by 9 matrix over ZZ/101: .157116 seconds
│ │ │  
│ │ │  i2 :
│ │ ├── ./usr/share/doc/Macaulay2/Benchmark/html/_run__Benchmarks.html
│ │ │ @@ -75,19 +75,19 @@
│ │ │          
│ │ │

The tests available are:
"deg2generic" -- gb of a generic ideal of codimension 2 and degree 2
"gb4by4comm" -- gb of the ideal of generic commuting 4 by 4 matrices over ZZ/101
"gb3445" -- gb of an ideal with elements of degree 3,4,4,5 in 8 variables
"gbB148" -- gb of Bayesian graph ideal #148
"res39" -- res of a generic 3 by 9 matrix over ZZ/101
"resG25" -- res of the coordinate ring of Grassmannian(2,5)
"yang-gb1" -- an example of Yang-Hui He arising in string theory
"yang-subring" -- an example of Yang-Hui He

│ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │
i1 : runBenchmarks "res39"
│ │ │ --- beginning computation Fri Nov 14 17:31:11 UTC 2025
│ │ │ --- Linux sbuild 6.12.48+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.48-1 (2025-09-20) x86_64 GNU/Linux
│ │ │ --- AMD EPYC 7702P 64-Core Processor  AuthenticAMD  cpu MHz 1996.250  
│ │ │ +-- beginning computation Fri Nov 21 10:45:50 UTC 2025
│ │ │ +-- Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
│ │ │ +-- Intel Xeon Processor (Skylake, IBRS)  GenuineIntel  cpu MHz 2099.998  
│ │ │  -- Macaulay2 1.25.11, compiled with gcc 15.2.0
│ │ │ --- res39: res of a generic 3 by 9 matrix over ZZ/101: .115525 seconds
│ │ │ +-- res39: res of a generic 3 by 9 matrix over ZZ/101: .157116 seconds │ │ │
│ │ │ │ │ │
│ │ │
│ │ │

For the programmer

│ │ │ ├── html2text {} │ │ │ │ @@ -23,18 +23,18 @@ │ │ │ │ "gb3445" -- gb of an ideal with elements of degree 3,4,4,5 in 8 variables │ │ │ │ "gbB148" -- gb of Bayesian graph ideal #148 │ │ │ │ "res39" -- res of a generic 3 by 9 matrix over ZZ/101 │ │ │ │ "resG25" -- res of the coordinate ring of Grassmannian(2,5) │ │ │ │ "yang-gb1" -- an example of Yang-Hui He arising in string theory │ │ │ │ "yang-subring" -- an example of Yang-Hui He │ │ │ │ i1 : runBenchmarks "res39" │ │ │ │ --- beginning computation Fri Nov 14 17:31:11 UTC 2025 │ │ │ │ --- Linux sbuild 6.12.48+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.48-1 │ │ │ │ -(2025-09-20) x86_64 GNU/Linux │ │ │ │ --- AMD EPYC 7702P 64-Core Processor AuthenticAMD cpu MHz 1996.250 │ │ │ │ +-- beginning computation Fri Nov 21 10:45:50 UTC 2025 │ │ │ │ +-- Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ │ +6.12.57-1 (2025-11-05) x86_64 GNU/Linux │ │ │ │ +-- Intel Xeon Processor (Skylake, IBRS) GenuineIntel cpu MHz 2099.998 │ │ │ │ -- Macaulay2 1.25.11, compiled with gcc 15.2.0 │ │ │ │ --- res39: res of a generic 3 by 9 matrix over ZZ/101: .115525 seconds │ │ │ │ +-- res39: res of a generic 3 by 9 matrix over ZZ/101: .157116 seconds │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_u_n_B_e_n_c_h_m_a_r_k_s is a _c_o_m_m_a_n_d. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Benchmark.m2:297:0. │ │ ├── ./usr/share/doc/Macaulay2/Bertini/dump/rawdocumentation.dump │ │ │ @@ -515,15 +515,15 @@ │ │ │ Pi4uLikiLCJCZXJ0aW5pIn0sIlJhbmRvbUNvbXBsZXgifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwi │ │ │ LCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwie30ifSwiLCAiLFNQQU57fX0sU1BBTntUTzJ7bmV3 │ │ │ IERvY3VtZW50VGFnIGZyb20ge1tiZXJ0aW5pVXNlckhvbW90b3B5LFJhbmRvbVJlYWxdLCJiZXJ0 │ │ │ aW5pVXNlckhvbW90b3B5KC4uLixSYW5kb21SZWFsPT4uLi4pIiwiQmVydGluaSJ9LCJSYW5kb21S │ │ │ ZWFsIn0sVFR7IiA9PiAifSxUVHsiLi4uIn0sIiwgIixTUEFOeyJkZWZhdWx0IHZhbHVlICIsInt9 │ │ │ In0sIiwgIixTUEFOe319LFNQQU57VE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHsiVG9wRGlyZWN0 │ │ │ b3J5IiwiVG9wRGlyZWN0b3J5IiwiQmVydGluaSJ9LCJUb3BEaXJlY3RvcnkifSxUVHsiID0+ICJ9 │ │ │ -LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwiXCIvdG1wL00yLTI4Njg3LTAv │ │ │ +LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwiXCIvdG1wL00yLTQwOTk4LTAv │ │ │ MFwiIn0sIiwgIixTUEFOeyJPcHRpb24gdG8gY2hhbmdlIGRpcmVjdG9yeSBmb3IgZmlsZSBzdG9y │ │ │ YWdlLiJ9fSxTUEFOe1RPMntuZXcgRG9jdW1lbnRUYWcgZnJvbSB7W2JlcnRpbmlVc2VySG9tb3Rv │ │ │ cHksVmVyYm9zZV0sImJlcnRpbmlVc2VySG9tb3RvcHkoLi4uLFZlcmJvc2U9Pi4uLikiLCJCZXJ0 │ │ │ aW5pIn0sIlZlcmJvc2UifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQg │ │ │ dmFsdWUgIiwiZmFsc2UifSwiLCAiLFNQQU57Ik9wdGlvbiB0byBzaWxlbmNlIGFkZGl0aW9uYWwg │ │ │ b3V0cHV0In19fSwgc3ltYm9sIERvY3VtZW50VGFnID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsi │ │ │ YmVydGluaVVzZXJIb21vdG9weSIsImJlcnRpbmlVc2VySG9tb3RvcHkiLCJCZXJ0aW5pIn0sIEtl │ │ │ @@ -1100,15 +1100,15 @@ │ │ │ ZXJ0aW5pUGFyYW1ldGVySG9tb3RvcHkoLi4uLFJhbmRvbVJlYWw9Pi4uLikiLCJCZXJ0aW5pIn0s │ │ │ IlJhbmRvbVJlYWwifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFs │ │ │ dWUgIiwie30ifSwiLCAiLFNQQU57ImFuIG9wdGlvbiB3aGljaCBkZXNpZ25hdGVzIHN5bWJvbHMv │ │ │ c3RyaW5ncy92YXJpYWJsZXMgdGhhdCB3aWxsIGJlIHNldCB0byBiZSBhIHJhbmRvbSByZWFsIG51 │ │ │ bWJlciBvciByYW5kb20gY29tcGxleCBudW1iZXIifX0sU1BBTntUTzJ7bmV3IERvY3VtZW50VGFn │ │ │ IGZyb20geyJUb3BEaXJlY3RvcnkiLCJUb3BEaXJlY3RvcnkiLCJCZXJ0aW5pIn0sIlRvcERpcmVj │ │ │ dG9yeSJ9LFRUeyIgPT4gIn0sVFR7Ii4uLiJ9LCIsICIsU1BBTnsiZGVmYXVsdCB2YWx1ZSAiLCJc │ │ │ -Ii90bXAvTTItMjg2ODctMC8wXCIifSwiLCAiLFNQQU57Ik9wdGlvbiB0byBjaGFuZ2UgZGlyZWN0 │ │ │ +Ii90bXAvTTItNDA5OTgtMC8wXCIifSwiLCAiLFNQQU57Ik9wdGlvbiB0byBjaGFuZ2UgZGlyZWN0 │ │ │ b3J5IGZvciBmaWxlIHN0b3JhZ2UuIn19LFNQQU57VE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHtb │ │ │ YmVydGluaVBhcmFtZXRlckhvbW90b3B5LFZlcmJvc2VdLCJiZXJ0aW5pUGFyYW1ldGVySG9tb3Rv │ │ │ cHkoLi4uLFZlcmJvc2U9Pi4uLikiLCJCZXJ0aW5pIn0sIlZlcmJvc2UifSxUVHsiID0+ICJ9LFRU │ │ │ eyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwiZmFsc2UifSwiLCAiLFNQQU57Ik9w │ │ │ dGlvbiB0byBzaWxlbmNlIGFkZGl0aW9uYWwgb3V0cHV0In19fSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsiYmVydGluaVBhcmFtZXRlckhvbW90b3B5IiwiYmVy │ │ │ dGluaVBhcmFtZXRlckhvbW90b3B5IiwiQmVydGluaSJ9LCBLZXkgPT4gYmVydGluaVBhcmFtZXRl │ │ │ @@ -2449,15 +2449,15 @@ │ │ │ YWw9Pi4uLikiLCJCZXJ0aW5pIn0sIlJhbmRvbVJlYWwifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwi │ │ │ LCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwie30ifSwiLCAiLFNQQU57ImFuIG9wdGlvbiB3aGlj │ │ │ aCBkZXNpZ25hdGVzIHN5bWJvbHMvc3RyaW5ncy92YXJpYWJsZXMgdGhhdCB3aWxsIGJlIHNldCB0 │ │ │ byBiZSBhIHJhbmRvbSByZWFsIG51bWJlciBvciByYW5kb20gY29tcGxleCBudW1iZXIifX0sU1BB │ │ │ TntUTzJ7bmV3IERvY3VtZW50VGFnIGZyb20ge1tiZXJ0aW5pWmVyb0RpbVNvbHZlLFRvcERpcmVj │ │ │ dG9yeV0sImJlcnRpbmlaZXJvRGltU29sdmUoLi4uLFRvcERpcmVjdG9yeT0+Li4uKSIsIkJlcnRp │ │ │ bmkifSwiVG9wRGlyZWN0b3J5In0sVFR7IiA9PiAifSxUVHsiLi4uIn0sIiwgIixTUEFOeyJkZWZh │ │ │ -dWx0IHZhbHVlICIsIlwiL3RtcC9NMi0yODY4Ny0wLzBcIiJ9LCIsICIsU1BBTnsiT3B0aW9uIHRv │ │ │ +dWx0IHZhbHVlICIsIlwiL3RtcC9NMi00MDk5OC0wLzBcIiJ9LCIsICIsU1BBTnsiT3B0aW9uIHRv │ │ │ IGNoYW5nZSBkaXJlY3RvcnkgZm9yIGZpbGUgc3RvcmFnZS4ifX0sU1BBTntUTzJ7bmV3IERvY3Vt │ │ │ ZW50VGFnIGZyb20ge1tiZXJ0aW5pWmVyb0RpbVNvbHZlLFVzZVJlZ2VuZXJhdGlvbl0sImJlcnRp │ │ │ bmlaZXJvRGltU29sdmUoLi4uLFVzZVJlZ2VuZXJhdGlvbj0+Li4uKSIsIkJlcnRpbmkifSwiVXNl │ │ │ UmVnZW5lcmF0aW9uIn0sVFR7IiA9PiAifSxUVHsiLi4uIn0sIiwgIixTUEFOeyJkZWZhdWx0IHZh │ │ │ bHVlICIsIi0xIn0sIiwgIixTUEFOe319LFNQQU57VE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHtb │ │ │ YmVydGluaVplcm9EaW1Tb2x2ZSxWZXJib3NlXSwiYmVydGluaVplcm9EaW1Tb2x2ZSguLi4sVmVy │ │ │ Ym9zZT0+Li4uKSIsIkJlcnRpbmkifSwiVmVyYm9zZSJ9LFRUeyIgPT4gIn0sVFR7Ii4uLiJ9LCIs │ │ ├── ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Parameter__Homotopy.html │ │ │ @@ -72,15 +72,15 @@ │ │ │
  • HomVariableGroup => ..., default value {}, an option to group variables and use multihomogeneous homotopies
  • │ │ │
  • M2Precision (missing documentation) │ │ │ => ..., default value 53,
  • │ │ │
  • OutputStyle (missing documentation) │ │ │ => ..., default value "OutPoints",
  • │ │ │
  • RandomComplex => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │
  • RandomReal => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │ -
  • TopDirectory => ..., default value "/tmp/M2-28687-0/0", Option to change directory for file storage.
  • │ │ │ +
  • TopDirectory => ..., default value "/tmp/M2-40998-0/0", Option to change directory for file storage.
  • │ │ │
  • Verbose => ..., default value false, Option to silence additional output
  • │ │ │ │ │ │ │ │ │
  • Outputs:
      │ │ │
    • S, a list, a list whose entries are lists of solutions for each target system
    • │ │ │
    │ │ │
  • │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ "OutPoints", │ │ │ │ o _R_a_n_d_o_m_C_o_m_p_l_e_x => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ o _R_a_n_d_o_m_R_e_a_l => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ - o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-28687-0/0", Option to │ │ │ │ + o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-40998-0/0", Option to │ │ │ │ change directory for file storage. │ │ │ │ o _V_e_r_b_o_s_e => ..., default value false, Option to silence additional │ │ │ │ output │ │ │ │ * Outputs: │ │ │ │ o S, a _l_i_s_t, a list whose entries are lists of solutions for each │ │ │ │ target system │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ ├── ./usr/share/doc/Macaulay2/Bertini/html/_bertini__User__Homotopy.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ => ..., default value 53, │ │ │
  • OutputStyle (missing documentation) │ │ │ => ..., default value "OutPoints",
  • │ │ │
  • RandomComplex (missing documentation) │ │ │ => ..., default value {},
  • │ │ │
  • RandomReal (missing documentation) │ │ │ => ..., default value {},
  • │ │ │ -
  • TopDirectory => ..., default value "/tmp/M2-28687-0/0", Option to change directory for file storage.
  • │ │ │ +
  • TopDirectory => ..., default value "/tmp/M2-40998-0/0", Option to change directory for file storage.
  • │ │ │
  • Verbose => ..., default value false, Option to silence additional output
  • │ │ │ │ │ │ │ │ │
  • Outputs:
      │ │ │
    • S0, a list, a list of solutions to the target system
    • │ │ │
    │ │ │
  • │ │ │ ├── html2text {} │ │ │ │ @@ -21,15 +21,15 @@ │ │ │ │ value {}, │ │ │ │ o HomVariableGroup (missing documentation) => ..., default value {}, │ │ │ │ o M2Precision (missing documentation) => ..., default value 53, │ │ │ │ o OutputStyle (missing documentation) => ..., default value │ │ │ │ "OutPoints", │ │ │ │ o RandomComplex (missing documentation) => ..., default value {}, │ │ │ │ o RandomReal (missing documentation) => ..., default value {}, │ │ │ │ - o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-28687-0/0", Option to │ │ │ │ + o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-40998-0/0", Option to │ │ │ │ change directory for file storage. │ │ │ │ o _V_e_r_b_o_s_e => ..., default value false, Option to silence additional │ │ │ │ output │ │ │ │ * Outputs: │ │ │ │ o S0, a _l_i_s_t, a list of solutions to the target system │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This method calls Bertini to track a user-defined homotopy. The user needs to │ │ ├── ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Zero__Dim__Solve.html │ │ │ @@ -79,15 +79,15 @@ │ │ │ => ..., default value "main_data", │ │ │
  • NameSolutionsFile (missing documentation) │ │ │ => ..., default value "raw_solutions",
  • │ │ │
  • OutputStyle (missing documentation) │ │ │ => ..., default value "OutPoints",
  • │ │ │
  • RandomComplex => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │
  • RandomReal => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │ -
  • TopDirectory => ..., default value "/tmp/M2-28687-0/0", Option to change directory for file storage.
  • │ │ │ +
  • TopDirectory => ..., default value "/tmp/M2-40998-0/0", Option to change directory for file storage.
  • │ │ │
  • UseRegeneration (missing documentation) │ │ │ => ..., default value -1,
  • │ │ │
  • Verbose => ..., default value false, Option to silence additional output
  • │ │ │ │ │ │ │ │ │
  • Outputs:
      │ │ │
    • S, a list, a list of points that are contained in the variety of F
    • │ │ │ ├── html2text {} │ │ │ │ @@ -32,15 +32,15 @@ │ │ │ │ "OutPoints", │ │ │ │ o _R_a_n_d_o_m_C_o_m_p_l_e_x => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ o _R_a_n_d_o_m_R_e_a_l => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ - o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-28687-0/0", Option to │ │ │ │ + o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-40998-0/0", Option to │ │ │ │ change directory for file storage. │ │ │ │ o UseRegeneration (missing documentation) => ..., default value -1, │ │ │ │ o _V_e_r_b_o_s_e => ..., default value false, Option to silence additional │ │ │ │ output │ │ │ │ * Outputs: │ │ │ │ o S, a _l_i_s_t, a list of points that are contained in the variety of F │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp1.out │ │ │ @@ -76,15 +76,15 @@ │ │ │ i8 : A = action(RI,S7) │ │ │ │ │ │ o8 = Complex with 15 actors │ │ │ │ │ │ o8 : ActionOnComplex │ │ │ │ │ │ i9 : elapsedTime c = character A │ │ │ - -- .470785s elapsed │ │ │ + -- .423646s elapsed │ │ │ │ │ │ o9 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | │ │ │ (1, {2}) => | 0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14 | │ │ │ (2, {3}) => | 0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35 | │ │ │ (3, {4}) => | 0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35 | │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp2.out │ │ │ @@ -100,15 +100,15 @@ │ │ │ i6 : A=action(RI,S6) │ │ │ │ │ │ o6 = Complex with 11 actors │ │ │ │ │ │ o6 : ActionOnComplex │ │ │ │ │ │ i7 : elapsedTime c=character A │ │ │ - -- .391999s elapsed │ │ │ + -- .448543s elapsed │ │ │ │ │ │ o7 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 | │ │ │ (1, {5}) => | 0 1 0 2 0 1 3 0 2 4 6 | │ │ │ (1, {7}) => | 0 0 0 0 0 1 3 0 4 16 60 | │ │ │ (1, {9}) => | 0 0 0 0 2 2 2 0 4 8 20 | │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp3.out │ │ │ @@ -187,27 +187,27 @@ │ │ │ i19 : A2 = action(RI2,G,Sub=>false) │ │ │ │ │ │ o19 = Complex with 6 actors │ │ │ │ │ │ o19 : ActionOnComplex │ │ │ │ │ │ i20 : elapsedTime a1 = character A1 │ │ │ - -- .750459s elapsed │ │ │ + -- .762274s elapsed │ │ │ │ │ │ o20 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ (1, {8}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ (2, {11}) => | 1 1 1 1 1 1 | │ │ │ (2, {13}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ o20 : Character │ │ │ │ │ │ i21 : elapsedTime a2 = character A2 │ │ │ - -- 34.0105s elapsed │ │ │ + -- 27.8101s elapsed │ │ │ │ │ │ o21 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ (1, {16}) => | 6 2 0 0 -1 -1 | │ │ │ (2, {19}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ (2, {21}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ @@ -297,15 +297,15 @@ │ │ │ i31 : B = action(M,G,Sub=>false) │ │ │ │ │ │ o31 = Module with 6 actors │ │ │ │ │ │ o31 : ActionOnGradedModule │ │ │ │ │ │ i32 : elapsedTime b = character(B,21) │ │ │ - -- 14.0834s elapsed │ │ │ + -- 12.2831s elapsed │ │ │ │ │ │ o32 = Character over R │ │ │ │ │ │ (0, {21}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ o32 : Character │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp1.html │ │ │ @@ -162,15 +162,15 @@ │ │ │ │ │ │ o8 : ActionOnComplex
  • │ │ │
    │ │ │
    i9 : elapsedTime c = character A
    │ │ │ - -- .470785s elapsed
    │ │ │ + -- .423646s elapsed
    │ │ │  
    │ │ │  o9 = Character over R
    │ │ │        
    │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │       (1, {2}) => | 0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14 |
    │ │ │       (2, {3}) => | 0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35 |
    │ │ │       (3, {4}) => | 0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35 |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -91,15 +91,15 @@
    │ │ │ │  o7 : List
    │ │ │ │  i8 : A = action(RI,S7)
    │ │ │ │  
    │ │ │ │  o8 = Complex with 15 actors
    │ │ │ │  
    │ │ │ │  o8 : ActionOnComplex
    │ │ │ │  i9 : elapsedTime c = character A
    │ │ │ │ - -- .470785s elapsed
    │ │ │ │ + -- .423646s elapsed
    │ │ │ │  
    │ │ │ │  o9 = Character over R
    │ │ │ │  
    │ │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │ │       (1, {2}) => | 0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14 |
    │ │ │ │       (2, {3}) => | 0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35 |
    │ │ │ │       (3, {4}) => | 0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35 |
    │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp2.html
    │ │ │ @@ -180,15 +180,15 @@
    │ │ │  
    │ │ │  o6 : ActionOnComplex
    │ │ │
    │ │ │
    i7 : elapsedTime c=character A
    │ │ │ - -- .391999s elapsed
    │ │ │ + -- .448543s elapsed
    │ │ │  
    │ │ │  o7 = Character over R
    │ │ │        
    │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │       (1, {5}) => | 0 1 0 2 0 1 3 0 2 4 6 |
    │ │ │       (1, {7}) => | 0 0 0 0 0 1 3 0 4 16 60 |
    │ │ │       (1, {9}) => | 0 0 0 0 2 2 2 0 4 8 20 |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -113,15 +113,15 @@
    │ │ │ │  o5 : List
    │ │ │ │  i6 : A=action(RI,S6)
    │ │ │ │  
    │ │ │ │  o6 = Complex with 11 actors
    │ │ │ │  
    │ │ │ │  o6 : ActionOnComplex
    │ │ │ │  i7 : elapsedTime c=character A
    │ │ │ │ - -- .391999s elapsed
    │ │ │ │ + -- .448543s elapsed
    │ │ │ │  
    │ │ │ │  o7 = Character over R
    │ │ │ │  
    │ │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │ │       (1, {5}) => | 0 1 0 2 0 1 3 0 2 4 6 |
    │ │ │ │       (1, {7}) => | 0 0 0 0 0 1 3 0 4 16 60 |
    │ │ │ │       (1, {9}) => | 0 0 0 0 2 2 2 0 4 8 20 |
    │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp3.html
    │ │ │ @@ -310,30 +310,30 @@
    │ │ │  
    │ │ │  o19 : ActionOnComplex
    │ │ │
    │ │ │
    i20 : elapsedTime a1 = character A1
    │ │ │ - -- .750459s elapsed
    │ │ │ + -- .762274s elapsed
    │ │ │  
    │ │ │  o20 = Character over R
    │ │ │         
    │ │ │        (0, {0}) => | 1 1 1 1 1 1 |
    │ │ │        (1, {8}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 |
    │ │ │        (2, {11}) => | 1 1 1 1 1 1 |
    │ │ │        (2, {13}) => | 1 1 1 1 1 1 |
    │ │ │  
    │ │ │  o20 : Character
    │ │ │
    │ │ │
    i21 : elapsedTime a2 = character A2
    │ │ │ - -- 34.0105s elapsed
    │ │ │ + -- 27.8101s elapsed
    │ │ │  
    │ │ │  o21 = Character over R
    │ │ │         
    │ │ │        (0, {0}) => | 1 1 1 1 1 1 |
    │ │ │        (1, {16}) => | 6 2 0 0 -1 -1 |
    │ │ │        (2, {19}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 |
    │ │ │        (2, {21}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 |
    │ │ │ @@ -467,15 +467,15 @@
    │ │ │  
    │ │ │  o31 : ActionOnGradedModule
    │ │ │
    │ │ │
    i32 : elapsedTime b = character(B,21)
    │ │ │ - -- 14.0834s elapsed
    │ │ │ + -- 12.2831s elapsed
    │ │ │  
    │ │ │  o32 = Character over R
    │ │ │         
    │ │ │        (0, {21}) => | 1 1 1 1 1 1 |
    │ │ │  
    │ │ │  o32 : Character
    │ │ │
    │ │ │
    i23 : time j=bruns F.dd_3;
    │ │ │ - -- used 0.232837s (cpu); 0.179806s (thread); 0s (gc)
    │ │ │ + -- used 0.286995s (cpu); 0.216254s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 : Ideal of S
    │ │ │
    │ │ │
    i24 : betti res j
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -230,15 +230,15 @@
    │ │ │ │  o22 = total: 1 5 8 5 1
    │ │ │ │            0: 1 . . . .
    │ │ │ │            1: . 4 2 . .
    │ │ │ │            2: . 1 6 5 1
    │ │ │ │  
    │ │ │ │  o22 : BettiTally
    │ │ │ │  i23 : time j=bruns F.dd_3;
    │ │ │ │ - -- used 0.232837s (cpu); 0.179806s (thread); 0s (gc)
    │ │ │ │ + -- used 0.286995s (cpu); 0.216254s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o23 : Ideal of S
    │ │ │ │  i24 : betti res j
    │ │ │ │  
    │ │ │ │               0 1 2 3 4
    │ │ │ │  o24 = total: 1 3 6 5 1
    │ │ │ │            0: 1 . . . .
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_boundary.out
    │ │ │ @@ -34,14 +34,14 @@
    │ │ │  
    │ │ │  i12 : f = (cells(2,C))#0;
    │ │ │  
    │ │ │  i13 : boundary(f)
    │ │ │  
    │ │ │  o13 = {(Cell of dimension 1 with label 1, 1), (Cell of dimension 1 with label
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      1, 1), (Cell of dimension 1 with label 1, -1), (Cell of dimension 1
    │ │ │ +      1, -1), (Cell of dimension 1 with label 1, -1), (Cell of dimension 1
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      with label 1, -1)}
    │ │ │ +      with label 1, 1)}
    │ │ │  
    │ │ │  o13 : List
    │ │ │  
    │ │ │  i14 :
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_cell__Complex_lp__Ring_cm__Simplicial__Complex_rp.out
    │ │ │ @@ -24,15 +24,15 @@
    │ │ │  
    │ │ │  o7 : CellComplex
    │ │ │  
    │ │ │  i8 : applyValues(cells C, l -> apply(l,cellLabel))
    │ │ │  
    │ │ │                        5   4    3 2   2 3     4   5
    │ │ │  o8 = HashTable{0 => {x , x y, x y , x y , x*y , x }                                       }
    │ │ │ -                      5 3   5 4   4 2   4 4   5    3 3   5 2   2 4   5 3   5 4   5    5 2
    │ │ │ -               1 => {x y , x y , x y , x y , x y, x y , x y , x y , x y , x y , x y, x y }
    │ │ │ -                      5 4   5 3   5 4   5 2   5 4   5 3   5 4   5 2
    │ │ │ +                      2 4   5 3   5 4   5    5 2   5 3   5 4   4 2   4 4   5    3 3   5 2
    │ │ │ +               1 => {x y , x y , x y , x y, x y , x y , x y , x y , x y , x y, x y , x y }
    │ │ │ +                      5 2   5 4   5 3   5 4   5 2   5 4   5 3   5 4
    │ │ │                 2 => {x y , x y , x y , x y , x y , x y , x y , x y }
    │ │ │  
    │ │ │  o8 : HashTable
    │ │ │  
    │ │ │  i9 :
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_cells.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │  
    │ │ │  i5 : exy = newSimplexCell {vx,vy};
    │ │ │  
    │ │ │  i6 : C = cellComplex(R,{exy,vz});
    │ │ │  
    │ │ │  i7 : cells(C)
    │ │ │  
    │ │ │ -o7 = HashTable{0 => {Cell of dimension 0 with label y, Cell of dimension 0 with label z, Cell of dimension 0 with label x}}
    │ │ │ +o7 = HashTable{0 => {Cell of dimension 0 with label y, Cell of dimension 0 with label x, Cell of dimension 0 with label z}}
    │ │ │                 1 => {Cell of dimension 1 with label x*y}
    │ │ │  
    │ │ │  o7 : HashTable
    │ │ │  
    │ │ │  i8 : R = QQ;
    │ │ │  
    │ │ │  i9 : P = convexHull matrix {{1,1,-1,-1},{1,-1,1,-1}};
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_cells_lp__Z__Z_cm__Cell__Complex_rp.out
    │ │ │ @@ -10,17 +10,17 @@
    │ │ │  
    │ │ │  i5 : exy = newSimplexCell {vx,vy};
    │ │ │  
    │ │ │  i6 : C = cellComplex(R,{exy,vz});
    │ │ │  
    │ │ │  i7 : cells(0,C)
    │ │ │  
    │ │ │ -o7 = {Cell of dimension 0 with label y, Cell of dimension 0 with label x,
    │ │ │ +o7 = {Cell of dimension 0 with label x, Cell of dimension 0 with label z,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Cell of dimension 0 with label z}
    │ │ │ +     Cell of dimension 0 with label y}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : cells(1,C)
    │ │ │  
    │ │ │  o8 = {Cell of dimension 1 with label x*y}
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_hull__Complex.out
    │ │ │ @@ -19,16 +19,16 @@
    │ │ │                             
    │ │ │       -1     0      1      2
    │ │ │  
    │ │ │  o4 : Complex
    │ │ │  
    │ │ │  i5 : cells(1,H)/cellLabel
    │ │ │  
    │ │ │ -       4 5   2        2    4 4    5 3    5 4   3 5
    │ │ │ -o5 = {x y , x y*z, x*y z, x y z, x y z, x y , x y z}
    │ │ │ +       5 3    5 4   3 5    4 5   2        2    4 4
    │ │ │ +o5 = {x y z, x y , x y z, x y , x y*z, x*y z, x y z}
    │ │ │  
    │ │ │  o5 : List
    │ │ │  
    │ │ │  i6 : cells(2,H)/cellLabel
    │ │ │  
    │ │ │         5 4    4 5
    │ │ │  o6 = {x y z, x y z}
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_relabel__Cell__Complex.out
    │ │ │ @@ -22,20 +22,20 @@
    │ │ │  
    │ │ │  i11 : T = new HashTable from {v0 => a^2*b, v1 => b*c^2, v2 => b^2, v3 => a*c};
    │ │ │  
    │ │ │  i12 : relabeledC = relabelCellComplex(C,T);
    │ │ │  
    │ │ │  i13 : for c in cells(0,relabeledC) list cellLabel(c)
    │ │ │  
    │ │ │ -        2      2   2
    │ │ │ -o13 = {a b, b*c , b , a*c}
    │ │ │ +          2   2        2
    │ │ │ +o13 = {b*c , b , a*c, a b}
    │ │ │  
    │ │ │  o13 : List
    │ │ │  
    │ │ │  i14 : for c in cells(1,relabeledC) list cellLabel(c)
    │ │ │  
    │ │ │ -        2   2   2 2   2 2       2     2
    │ │ │ -o14 = {a b*c , a b , b c , a*b*c , a*b c}
    │ │ │ +        2 2       2     2    2   2   2 2
    │ │ │ +o14 = {b c , a*b*c , a*b c, a b*c , a b }
    │ │ │  
    │ │ │  o14 : List
    │ │ │  
    │ │ │  i15 :
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_boundary.html
    │ │ │ @@ -145,17 +145,17 @@
    │ │ │            
    │ │ │
    i13 : boundary(f)
    │ │ │  
    │ │ │  o13 = {(Cell of dimension 1 with label 1, 1), (Cell of dimension 1 with label
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      1, 1), (Cell of dimension 1 with label 1, -1), (Cell of dimension 1
    │ │ │ +      1, -1), (Cell of dimension 1 with label 1, -1), (Cell of dimension 1
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      with label 1, -1)}
    │ │ │ +      with label 1, 1)}
    │ │ │  
    │ │ │  o13 : List
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -42,17 +42,17 @@ │ │ │ │ i10 : P = convexHull matrix {{1,1,-1,-1},{1,-1,1,-1}}; │ │ │ │ i11 : C = cellComplex(R,P); │ │ │ │ i12 : f = (cells(2,C))#0; │ │ │ │ i13 : boundary(f) │ │ │ │ │ │ │ │ o13 = {(Cell of dimension 1 with label 1, 1), (Cell of dimension 1 with label │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 1, 1), (Cell of dimension 1 with label 1, -1), (Cell of dimension 1 │ │ │ │ + 1, -1), (Cell of dimension 1 with label 1, -1), (Cell of dimension 1 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - with label 1, -1)} │ │ │ │ + with label 1, 1)} │ │ │ │ │ │ │ │ o13 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _b_o_u_n_d_a_r_y_C_e_l_l_s_(_C_e_l_l_) -- returns the boundary cells of the given cell │ │ │ │ ********** WWaayyss ttoo uussee bboouunnddaarryy:: ********** │ │ │ │ * boundary(Cell) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_cell__Complex_lp__Ring_cm__Simplicial__Complex_rp.html │ │ │ @@ -129,17 +129,17 @@ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : applyValues(cells C, l -> apply(l,cellLabel))
    │ │ │  
    │ │ │                        5   4    3 2   2 3     4   5
    │ │ │  o8 = HashTable{0 => {x , x y, x y , x y , x*y , x }                                       }
    │ │ │ -                      5 3   5 4   4 2   4 4   5    3 3   5 2   2 4   5 3   5 4   5    5 2
    │ │ │ -               1 => {x y , x y , x y , x y , x y, x y , x y , x y , x y , x y , x y, x y }
    │ │ │ -                      5 4   5 3   5 4   5 2   5 4   5 3   5 4   5 2
    │ │ │ +                      2 4   5 3   5 4   5    5 2   5 3   5 4   4 2   4 4   5    3 3   5 2
    │ │ │ +               1 => {x y , x y , x y , x y, x y , x y , x y , x y , x y , x y, x y , x y }
    │ │ │ +                      5 2   5 4   5 3   5 4   5 2   5 4   5 3   5 4
    │ │ │                 2 => {x y , x y , x y , x y , x y , x y , x y , x y }
    │ │ │  
    │ │ │  o8 : HashTable
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,19 +41,19 @@ │ │ │ │ │ │ │ │ o7 : CellComplex │ │ │ │ i8 : applyValues(cells C, l -> apply(l,cellLabel)) │ │ │ │ │ │ │ │ 5 4 3 2 2 3 4 5 │ │ │ │ o8 = HashTable{0 => {x , x y, x y , x y , x*y , x } │ │ │ │ } │ │ │ │ - 5 3 5 4 4 2 4 4 5 3 3 5 2 2 4 5 3 5 4 │ │ │ │ -5 5 2 │ │ │ │ - 1 => {x y , x y , x y , x y , x y, x y , x y , x y , x y , x y , │ │ │ │ -x y, x y } │ │ │ │ - 5 4 5 3 5 4 5 2 5 4 5 3 5 4 5 2 │ │ │ │ + 2 4 5 3 5 4 5 5 2 5 3 5 4 4 2 4 4 5 │ │ │ │ +3 3 5 2 │ │ │ │ + 1 => {x y , x y , x y , x y, x y , x y , x y , x y , x y , x y, │ │ │ │ +x y , x y } │ │ │ │ + 5 2 5 4 5 3 5 4 5 2 5 4 5 3 5 4 │ │ │ │ 2 => {x y , x y , x y , x y , x y , x y , x y , x y } │ │ │ │ │ │ │ │ o8 : HashTable │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_e_l_l_C_o_m_p_l_e_x -- create a cell complex │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _c_e_l_l_C_o_m_p_l_e_x_(_R_i_n_g_,_S_i_m_p_l_i_c_i_a_l_C_o_m_p_l_e_x_) -- Creates a cell complex from a │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_cells.html │ │ │ @@ -101,15 +101,15 @@ │ │ │
    i6 : C = cellComplex(R,{exy,vz});
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : cells(C)
    │ │ │  
    │ │ │ -o7 = HashTable{0 => {Cell of dimension 0 with label y, Cell of dimension 0 with label z, Cell of dimension 0 with label x}}
    │ │ │ +o7 = HashTable{0 => {Cell of dimension 0 with label y, Cell of dimension 0 with label x, Cell of dimension 0 with label z}}
    │ │ │                 1 => {Cell of dimension 1 with label x*y}
    │ │ │  
    │ │ │  o7 : HashTable
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ i3 : vy = newSimplexCell({},y); │ │ │ │ i4 : vz = newSimplexCell({},z); │ │ │ │ i5 : exy = newSimplexCell {vx,vy}; │ │ │ │ i6 : C = cellComplex(R,{exy,vz}); │ │ │ │ i7 : cells(C) │ │ │ │ │ │ │ │ o7 = HashTable{0 => {Cell of dimension 0 with label y, Cell of dimension 0 with │ │ │ │ -label z, Cell of dimension 0 with label x}} │ │ │ │ +label x, Cell of dimension 0 with label z}} │ │ │ │ 1 => {Cell of dimension 1 with label x*y} │ │ │ │ │ │ │ │ o7 : HashTable │ │ │ │ i8 : R = QQ; │ │ │ │ i9 : P = convexHull matrix {{1,1,-1,-1},{1,-1,1,-1}}; │ │ │ │ i10 : C = cellComplex(R,P); │ │ │ │ i11 : cells C │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_cells_lp__Z__Z_cm__Cell__Complex_rp.html │ │ │ @@ -103,17 +103,17 @@ │ │ │
    i6 : C = cellComplex(R,{exy,vz});
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : cells(0,C)
    │ │ │  
    │ │ │ -o7 = {Cell of dimension 0 with label y, Cell of dimension 0 with label x,
    │ │ │ +o7 = {Cell of dimension 0 with label x, Cell of dimension 0 with label z,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Cell of dimension 0 with label z}
    │ │ │ +     Cell of dimension 0 with label y}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │
    i8 : cells(1,C)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,17 +19,17 @@
    │ │ │ │  i2 : vx = newSimplexCell({},x);
    │ │ │ │  i3 : vy = newSimplexCell({},y);
    │ │ │ │  i4 : vz = newSimplexCell({},z);
    │ │ │ │  i5 : exy = newSimplexCell {vx,vy};
    │ │ │ │  i6 : C = cellComplex(R,{exy,vz});
    │ │ │ │  i7 : cells(0,C)
    │ │ │ │  
    │ │ │ │ -o7 = {Cell of dimension 0 with label y, Cell of dimension 0 with label x,
    │ │ │ │ +o7 = {Cell of dimension 0 with label x, Cell of dimension 0 with label z,
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     Cell of dimension 0 with label z}
    │ │ │ │ +     Cell of dimension 0 with label y}
    │ │ │ │  
    │ │ │ │  o7 : List
    │ │ │ │  i8 : cells(1,C)
    │ │ │ │  
    │ │ │ │  o8 = {Cell of dimension 1 with label x*y}
    │ │ │ │  
    │ │ │ │  o8 : List
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_hull__Complex.html
    │ │ │ @@ -109,16 +109,16 @@
    │ │ │  o4 : Complex
    │ │ │
    │ │ │
    i5 : cells(1,H)/cellLabel
    │ │ │  
    │ │ │ -       4 5   2        2    4 4    5 3    5 4   3 5
    │ │ │ -o5 = {x y , x y*z, x*y z, x y z, x y z, x y , x y z}
    │ │ │ +       5 3    5 4   3 5    4 5   2        2    4 4
    │ │ │ +o5 = {x y z, x y , x y z, x y , x y*z, x*y z, x y z}
    │ │ │  
    │ │ │  o5 : List
    │ │ │
    │ │ │
    i6 : cells(2,H)/cellLabel
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -39,16 +39,16 @@
    │ │ │ │  o4 = S  <-- S  <-- S  <-- S
    │ │ │ │  
    │ │ │ │       -1     0      1      2
    │ │ │ │  
    │ │ │ │  o4 : Complex
    │ │ │ │  i5 : cells(1,H)/cellLabel
    │ │ │ │  
    │ │ │ │ -       4 5   2        2    4 4    5 3    5 4   3 5
    │ │ │ │ -o5 = {x y , x y*z, x*y z, x y z, x y z, x y , x y z}
    │ │ │ │ +       5 3    5 4   3 5    4 5   2        2    4 4
    │ │ │ │ +o5 = {x y z, x y , x y z, x y , x y*z, x*y z, x y z}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : cells(2,H)/cellLabel
    │ │ │ │  
    │ │ │ │         5 4    4 5
    │ │ │ │  o6 = {x y z, x y z}
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_relabel__Cell__Complex.html
    │ │ │ @@ -136,26 +136,26 @@
    │ │ │                
    i12 : relabeledC = relabelCellComplex(C,T);
    │ │ │
    │ │ │
    i13 : for c in cells(0,relabeledC) list cellLabel(c)
    │ │ │  
    │ │ │ -        2      2   2
    │ │ │ -o13 = {a b, b*c , b , a*c}
    │ │ │ +          2   2        2
    │ │ │ +o13 = {b*c , b , a*c, a b}
    │ │ │  
    │ │ │  o13 : List
    │ │ │
    │ │ │
    i14 : for c in cells(1,relabeledC) list cellLabel(c)
    │ │ │  
    │ │ │ -        2   2   2 2   2 2       2     2
    │ │ │ -o14 = {a b*c , a b , b c , a*b*c , a*b c}
    │ │ │ +        2 2       2     2    2   2   2 2
    │ │ │ +o14 = {b c , a*b*c , a*b c, a b*c , a b }
    │ │ │  
    │ │ │  o14 : List
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -31,22 +31,22 @@ │ │ │ │ i8 : v1 = verts#1; │ │ │ │ i9 : v2 = verts#2; │ │ │ │ i10 : v3 = verts#3; │ │ │ │ i11 : T = new HashTable from {v0 => a^2*b, v1 => b*c^2, v2 => b^2, v3 => a*c}; │ │ │ │ i12 : relabeledC = relabelCellComplex(C,T); │ │ │ │ i13 : for c in cells(0,relabeledC) list cellLabel(c) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o13 = {a b, b*c , b , a*c} │ │ │ │ + 2 2 2 │ │ │ │ +o13 = {b*c , b , a*c, a b} │ │ │ │ │ │ │ │ o13 : List │ │ │ │ i14 : for c in cells(1,relabeledC) list cellLabel(c) │ │ │ │ │ │ │ │ - 2 2 2 2 2 2 2 2 │ │ │ │ -o14 = {a b*c , a b , b c , a*b*c , a*b c} │ │ │ │ + 2 2 2 2 2 2 2 2 │ │ │ │ +o14 = {b c , a*b*c , a*b c, a b*c , a b } │ │ │ │ │ │ │ │ o14 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_e_l_l_L_a_b_e_l -- return the label of a cell │ │ │ │ * _R_i_n_g_M_a_p_ _*_*_ _C_e_l_l_C_o_m_p_l_e_x -- tensors labels via a ring map │ │ │ │ ********** WWaayyss ttoo uussee rreellaabbeellCCeellllCCoommpplleexx:: ********** │ │ │ │ * relabelCellComplex(CellComplex,HashTable) │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_minimize_lp__Chain__Complex_rp.out │ │ │ @@ -63,15 +63,15 @@ │ │ │ o11 : ChainComplex │ │ │ │ │ │ i12 : isMinimalChainComplex E │ │ │ │ │ │ o12 = false │ │ │ │ │ │ i13 : time m = minimize (E[1]); │ │ │ - -- used 0.273702s (cpu); 0.213569s (thread); 0s (gc) │ │ │ + -- used 0.354382s (cpu); 0.270474s (thread); 0s (gc) │ │ │ │ │ │ i14 : isQuasiIsomorphism m │ │ │ │ │ │ o14 = true │ │ │ │ │ │ i15 : E[1] == source m │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution__Of__Chain__Complex.out │ │ │ @@ -27,18 +27,18 @@ │ │ │ i5 : C = res(R^1/(ideal vars R))**(R^1/(ideal vars R)^5); │ │ │ │ │ │ i6 : mods = for i from 0 to max C list pushForward(f, C_i); │ │ │ │ │ │ i7 : C = chainComplex for i from min C+1 to max C list map(mods_(i-1),mods_i,substitute(matrix C.dd_i,S)); │ │ │ │ │ │ i8 : time m = resolutionOfChainComplex C; │ │ │ - -- used 0.0947774s (cpu); 0.0947771s (thread); 0s (gc) │ │ │ + -- used 0.106675s (cpu); 0.106678s (thread); 0s (gc) │ │ │ │ │ │ i9 : time n = cartanEilenbergResolution C; │ │ │ - -- used 0.215242s (cpu); 0.17428s (thread); 0s (gc) │ │ │ + -- used 0.260637s (cpu); 0.176393s (thread); 0s (gc) │ │ │ │ │ │ i10 : betti source m │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ o10 = total: 1 19 80 181 312 484 447 156 │ │ │ 0: 1 3 3 1 . . . . │ │ │ 1: . . 1 3 3 . . . │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_minimize_lp__Chain__Complex_rp.html │ │ │ @@ -181,15 +181,15 @@ │ │ │
    │ │ │

    Now we minimize the result. The free summand we added to the end maps to zero, and thus is part of the minimization.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -301,15 +301,15 @@ │ │ │ │ │ │ o21 : A │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -160,15 +160,15 @@ │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o14 = ideal (x x - x x x , x x ) │ │ │ │ 0 3 1 2 4 2 5 │ │ │ │ │ │ │ │ o14 : Ideal of R │ │ │ │ i15 : time csmK=CSM(A,K) │ │ │ │ - -- used 0.66005s (cpu); 0.386905s (thread); 0s (gc) │ │ │ │ + -- used 1.49173s (cpu); 0.438685s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o15 = 7h h + 5h h + 4h h + h + 3h h + h │ │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ │ │ o15 : A │ │ │ │ i16 : csmKHash= CSM(A,K,Output=>HashForm) │ │ │ │ @@ -199,15 +199,15 @@ │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o21 = 9h h + 9h h + 9h h + 3h + 7h h + 3h + 3h + 2h │ │ │ │ 1 2 1 2 1 2 1 1 2 2 1 2 │ │ │ │ │ │ │ │ o21 : A │ │ │ │ i22 : time CSM(A,K,m) │ │ │ │ - -- used 0.0915819s (cpu); 0.0600642s (thread); 0s (gc) │ │ │ │ + -- used 0.127482s (cpu); 0.0808863s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o22 = 7h h + 5h h + 4h h + h + 3h h + h │ │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ │ │ o22 : A │ │ │ │ In the case where the ambient space is a toric variety which is not a product │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Check__Smooth.html │ │ │ @@ -72,15 +72,15 @@ │ │ │ │ │ │ o2 : NormalToricVariety │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i13 : time m = minimize (E[1]);
    │ │ │ - -- used 0.273702s (cpu); 0.213569s (thread); 0s (gc)
    │ │ │ + -- used 0.354382s (cpu); 0.270474s (thread); 0s (gc) │ │ │
    │ │ │
    i14 : isQuasiIsomorphism m
    │ │ │  
    │ │ │  o14 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -81,15 +81,15 @@ │ │ │ │ o11 : ChainComplex │ │ │ │ i12 : isMinimalChainComplex E │ │ │ │ │ │ │ │ o12 = false │ │ │ │ Now we minimize the result. The free summand we added to the end maps to zero, │ │ │ │ and thus is part of the minimization. │ │ │ │ i13 : time m = minimize (E[1]); │ │ │ │ - -- used 0.273702s (cpu); 0.213569s (thread); 0s (gc) │ │ │ │ + -- used 0.354382s (cpu); 0.270474s (thread); 0s (gc) │ │ │ │ i14 : isQuasiIsomorphism m │ │ │ │ │ │ │ │ o14 = true │ │ │ │ i15 : E[1] == source m │ │ │ │ │ │ │ │ o15 = true │ │ │ │ i16 : E' = target m │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex.html │ │ │ @@ -129,21 +129,21 @@ │ │ │
    │ │ │
    i7 : C = chainComplex for i from min C+1 to max C list map(mods_(i-1),mods_i,substitute(matrix C.dd_i,S));
    │ │ │
    │ │ │
    i8 : time m = resolutionOfChainComplex C;
    │ │ │ - -- used 0.0947774s (cpu); 0.0947771s (thread); 0s (gc)
    │ │ │ + -- used 0.106675s (cpu); 0.106678s (thread); 0s (gc) │ │ │
    │ │ │
    i9 : time n = cartanEilenbergResolution C;
    │ │ │ - -- used 0.215242s (cpu); 0.17428s (thread); 0s (gc)
    │ │ │ + -- used 0.260637s (cpu); 0.176393s (thread); 0s (gc) │ │ │
    │ │ │
    i10 : betti source m
    │ │ │  
    │ │ │               0  1  2   3   4   5   6   7
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -49,17 +49,17 @@
    │ │ │ │  
    │ │ │ │  o4 : RingMap R <-- S
    │ │ │ │  i5 : C = res(R^1/(ideal vars R))**(R^1/(ideal vars R)^5);
    │ │ │ │  i6 : mods = for i from 0 to max C list pushForward(f, C_i);
    │ │ │ │  i7 : C = chainComplex for i from min C+1 to max C list map(mods_(i-
    │ │ │ │  1),mods_i,substitute(matrix C.dd_i,S));
    │ │ │ │  i8 : time m = resolutionOfChainComplex C;
    │ │ │ │ - -- used 0.0947774s (cpu); 0.0947771s (thread); 0s (gc)
    │ │ │ │ + -- used 0.106675s (cpu); 0.106678s (thread); 0s (gc)
    │ │ │ │  i9 : time n = cartanEilenbergResolution C;
    │ │ │ │ - -- used 0.215242s (cpu); 0.17428s (thread); 0s (gc)
    │ │ │ │ + -- used 0.260637s (cpu); 0.176393s (thread); 0s (gc)
    │ │ │ │  i10 : betti source m
    │ │ │ │  
    │ │ │ │               0  1  2   3   4   5   6   7
    │ │ │ │  o10 = total: 1 19 80 181 312 484 447 156
    │ │ │ │            0: 1  3  3   1   .   .   .   .
    │ │ │ │            1: .  .  1   3   3   .   .   .
    │ │ │ │            2: .  1  3   3   2   .   .   .
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___C__S__M.out
    │ │ │ @@ -83,15 +83,15 @@
    │ │ │                2              2
    │ │ │  o14 = ideal (x x  - x x x , x x )
    │ │ │                0 3    1 2 4   2 5
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │  
    │ │ │  i15 : time csmK=CSM(A,K)
    │ │ │ - -- used 0.66005s (cpu); 0.386905s (thread); 0s (gc)
    │ │ │ + -- used 1.49173s (cpu); 0.438685s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o15 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o15 : A
    │ │ │  
    │ │ │ @@ -124,15 +124,15 @@
    │ │ │          2 2     2         2     2             2
    │ │ │  o21 = 9h h  + 9h h  + 9h h  + 3h  + 7h h  + 3h  + 3h  + 2h
    │ │ │          1 2     1 2     1 2     1     1 2     2     1     2
    │ │ │  
    │ │ │  o21 : A
    │ │ │  
    │ │ │  i22 : time CSM(A,K,m)
    │ │ │ - -- used 0.0915819s (cpu); 0.0600642s (thread); 0s (gc)
    │ │ │ + -- used 0.127482s (cpu); 0.0808863s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o22 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o22 : A
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Check__Smooth.out
    │ │ │ @@ -9,28 +9,28 @@
    │ │ │  i2 : U = toricProjectiveSpace 7
    │ │ │  
    │ │ │  o2 = U
    │ │ │  
    │ │ │  o2 : NormalToricVariety
    │ │ │  
    │ │ │  i3 : time CSM U
    │ │ │ - -- used 0.23277s (cpu); 0.15461s (thread); 0s (gc)
    │ │ │ + -- used 0.298107s (cpu); 0.198452s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o3 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ │  o3 : -----------------------------------------------------------------------------------------------
    │ │ │       (x x x x x x x x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x )
    │ │ │         0 1 2 3 4 5 6 7     0    1     0    2     0    3     0    4     0    5     0    6     0    7
    │ │ │  
    │ │ │  i4 : time CSM(U,CheckSmooth=>false)
    │ │ │ - -- used 0.359124s (cpu); 0.291528s (thread); 0s (gc)
    │ │ │ + -- used 0.463765s (cpu); 0.362675s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o4 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Comp__Method.out
    │ │ │ @@ -18,29 +18,29 @@
    │ │ │  i3 : R=ZZ/32749[v_0..v_5];
    │ │ │  
    │ │ │  i4 : I=ideal(4*v_3*v_1*v_2-8*v_1*v_3^2,v_5*(v_0*v_1*v_4-v_2^3));
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │  
    │ │ │  i5 : time CSM(I,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.628951s (cpu); 0.306279s (thread); 0s (gc)
    │ │ │ + -- used 1.35493s (cpu); 0.408035s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o5 = 6h  + 14h  + 14h  + 10h
    │ │ │         1      1      1      1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o5 : ------
    │ │ │          6
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i6 : time CSM(I,CompMethod=>PnResidual)
    │ │ │ - -- used 2.27529s (cpu); 1.87843s (thread); 0s (gc)
    │ │ │ + -- used 2.49601s (cpu); 2.15153s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o6 = 6H  + 14H  + 14H  + 10H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          6
    │ │ │ @@ -53,29 +53,29 @@
    │ │ │  i8 : S=QQ[s_0..s_3];
    │ │ │  
    │ │ │  i9 : K=ideal(4*s_3*s_2-s_2^2,(s_0*s_1*s_3-s_2^3));
    │ │ │  
    │ │ │  o9 : Ideal of S
    │ │ │  
    │ │ │  i10 : time CSM(K,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.277885s (cpu); 0.20403s (thread); 0s (gc)
    │ │ │ + -- used 0.364022s (cpu); 0.250835s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o10 = 3h  + 5h
    │ │ │          1     1
    │ │ │  
    │ │ │        ZZ[h ]
    │ │ │            1
    │ │ │  o10 : ------
    │ │ │           4
    │ │ │          h
    │ │ │           1
    │ │ │  
    │ │ │  i11 : time CSM(K,CompMethod=>PnResidual)
    │ │ │ - -- used 0.0819154s (cpu); 0.0819232s (thread); 0s (gc)
    │ │ │ + -- used 0.108303s (cpu); 0.108307s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o11 = 3H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │           4
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler.out
    │ │ │ @@ -21,20 +21,20 @@
    │ │ │               2                                                        2
    │ │ │       - 14254x  - 11226x x  + 2653x x  + 12365x x  - 10226x x  - 12696x )
    │ │ │               3         0 4        1 4         2 4         3 4         4
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : time Euler(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.0786223s (cpu); 0.0359069s (thread); 0s (gc)
    │ │ │ + -- used 0.0915251s (cpu); 0.0481482s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 4
    │ │ │  
    │ │ │  i5 : time Euler I
    │ │ │ - -- used 0.256966s (cpu); 0.152636s (thread); 0s (gc)
    │ │ │ + -- used 0.327957s (cpu); 0.184468s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 4
    │ │ │  
    │ │ │  i6 : EulerIHash=Euler(I,Output=>HashForm);
    │ │ │  
    │ │ │  i7 : A=ring EulerIHash#"CSM"
    │ │ │  
    │ │ │ @@ -62,20 +62,20 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       - x x )
    │ │ │          0 3
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │  
    │ │ │  i10 : time Euler(J,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.133671s (cpu); 0.0748297s (thread); 0s (gc)
    │ │ │ + -- used 0.222021s (cpu); 0.0980177s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 2
    │ │ │  
    │ │ │  i11 : time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1})
    │ │ │ - -- used 0.224953s (cpu); 0.102967s (thread); 0s (gc)
    │ │ │ + -- used 0.284846s (cpu); 0.107509s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = 2
    │ │ │  
    │ │ │  i12 : R=MultiProjCoordRing({2,2})
    │ │ │  
    │ │ │  o12 = R
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler__Affine.out
    │ │ │ @@ -13,12 +13,12 @@
    │ │ │              2    2    2
    │ │ │  o3 = ideal(x  + x  + x  - 1)
    │ │ │              1    2    3
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : time EulerAffine I
    │ │ │ - -- used 0.0603683s (cpu); 0.0550831s (thread); 0s (gc)
    │ │ │ + -- used 0.0854241s (cpu); 0.067132s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Inds__Of__Smooth.out
    │ │ │ @@ -7,29 +7,29 @@
    │ │ │  o1 : PolynomialRing
    │ │ │  
    │ │ │  i2 : I=ideal(R_0*R_1*R_3-R_0^2*R_3,random({0,1},R),random({1,2},R));
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : time CSM(I,Method=>DirectCompletInt)
    │ │ │ - -- used 2.26857s (cpu); 1.16196s (thread); 0s (gc)
    │ │ │ + -- used 7.00733s (cpu); 1.41106s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o3 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ │  o3 : ----------
    │ │ │          3   3
    │ │ │        (h , h )
    │ │ │          1   2
    │ │ │  
    │ │ │  i4 : time CSM(I,Method=>DirectCompletInt,IndsOfSmooth=>{1,2})
    │ │ │ - -- used 2.85984s (cpu); 1.23776s (thread); 0s (gc)
    │ │ │ + -- used 7.09506s (cpu); 1.48743s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o4 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Input__Is__Smooth.out
    │ │ │ @@ -3,43 +3,43 @@
    │ │ │  i1 : R = ZZ/32749[x_0..x_4];
    │ │ │  
    │ │ │  i2 : I=ideal(random(2,R),random(2,R),random(1,R));
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : time CSM I
    │ │ │ - -- used 0.658368s (cpu); 0.396912s (thread); 0s (gc)
    │ │ │ + -- used 1.09084s (cpu); 0.529562s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o3 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o3 : ------
    │ │ │          5
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i4 : time CSM(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.0464211s (cpu); 0.0327346s (thread); 0s (gc)
    │ │ │ + -- used 0.0724668s (cpu); 0.0440665s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o4 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o4 : ------
    │ │ │          5
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i5 : time Chern I
    │ │ │ - -- used 0.0380228s (cpu); 0.0341599s (thread); 0s (gc)
    │ │ │ + -- used 0.069321s (cpu); 0.0622974s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o5 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Method.out
    │ │ │ @@ -7,29 +7,29 @@
    │ │ │  o1 : PolynomialRing
    │ │ │  
    │ │ │  i2 : I=ideal(random(2,R),random(1,R),R_0*R_1*R_6-R_0^3);
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : time CSM I
    │ │ │ - -- used 1.61391s (cpu); 0.920252s (thread); 0s (gc)
    │ │ │ + -- used 4.07732s (cpu); 1.18362s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o3 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o3 : ------
    │ │ │          7
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i4 : time CSM(I,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.483112s (cpu); 0.214874s (thread); 0s (gc)
    │ │ │ + -- used 0.93219s (cpu); 0.285717s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o4 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___C__S__M.html
    │ │ │ @@ -234,15 +234,15 @@
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │
    │ │ │
    i15 : time csmK=CSM(A,K)
    │ │ │ - -- used 0.66005s (cpu); 0.386905s (thread); 0s (gc)
    │ │ │ + -- used 1.49173s (cpu); 0.438685s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o15 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o15 : A
    │ │ │
    │ │ │
    i22 : time CSM(A,K,m)
    │ │ │ - -- used 0.0915819s (cpu); 0.0600642s (thread); 0s (gc)
    │ │ │ + -- used 0.127482s (cpu); 0.0808863s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o22 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o22 : A
    │ │ │
    │ │ │
    i3 : time CSM U
    │ │ │ - -- used 0.23277s (cpu); 0.15461s (thread); 0s (gc)
    │ │ │ + -- used 0.298107s (cpu); 0.198452s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o3 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ │ @@ -88,15 +88,15 @@
    │ │ │       (x x x x x x x x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x )
    │ │ │         0 1 2 3 4 5 6 7     0    1     0    2     0    3     0    4     0    5     0    6     0    7
    │ │ │
    │ │ │
    i4 : time CSM(U,CheckSmooth=>false)
    │ │ │ - -- used 0.359124s (cpu); 0.291528s (thread); 0s (gc)
    │ │ │ + -- used 0.463765s (cpu); 0.362675s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o4 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,30 +16,30 @@
    │ │ │ │  o1 : Package
    │ │ │ │  i2 : U = toricProjectiveSpace 7
    │ │ │ │  
    │ │ │ │  o2 = U
    │ │ │ │  
    │ │ │ │  o2 : NormalToricVariety
    │ │ │ │  i3 : time CSM U
    │ │ │ │ - -- used 0.23277s (cpu); 0.15461s (thread); 0s (gc)
    │ │ │ │ + -- used 0.298107s (cpu); 0.198452s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         7      6      5      4      3      2
    │ │ │ │  o3 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │ │         7      7      7      7      7      7     7
    │ │ │ │  
    │ │ │ │                                                  ZZ[x ..x ]
    │ │ │ │                                                      0   7
    │ │ │ │  o3 : --------------------------------------------------------------------------
    │ │ │ │  ---------------------
    │ │ │ │       (x x x x x x x x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x ,
    │ │ │ │  - x  + x , - x  + x )
    │ │ │ │         0 1 2 3 4 5 6 7     0    1     0    2     0    3     0    4     0    5
    │ │ │ │  0    6     0    7
    │ │ │ │  i4 : time CSM(U,CheckSmooth=>false)
    │ │ │ │ - -- used 0.359124s (cpu); 0.291528s (thread); 0s (gc)
    │ │ │ │ + -- used 0.463765s (cpu); 0.362675s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         7      6      5      4      3      2
    │ │ │ │  o4 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │ │         7      7      7      7      7      7     7
    │ │ │ │  
    │ │ │ │                                                  ZZ[x ..x ]
    │ │ │ │                                                      0   7
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Comp__Method.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : time CSM(I,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.628951s (cpu); 0.306279s (thread); 0s (gc)
    │ │ │ + -- used 1.35493s (cpu); 0.408035s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o5 = 6h  + 14h  + 14h  + 10h
    │ │ │         1      1      1      1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │         h
    │ │ │          1
    │ │ │
    │ │ │
    i6 : time CSM(I,CompMethod=>PnResidual)
    │ │ │ - -- used 2.27529s (cpu); 1.87843s (thread); 0s (gc)
    │ │ │ + -- used 2.49601s (cpu); 2.15153s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o6 = 6H  + 14H  + 14H  + 10H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          6
    │ │ │ @@ -142,15 +142,15 @@
    │ │ │  
    │ │ │  o9 : Ideal of S
    │ │ │
    │ │ │
    i10 : time CSM(K,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.277885s (cpu); 0.20403s (thread); 0s (gc)
    │ │ │ + -- used 0.364022s (cpu); 0.250835s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o10 = 3h  + 5h
    │ │ │          1     1
    │ │ │  
    │ │ │        ZZ[h ]
    │ │ │            1
    │ │ │ @@ -159,15 +159,15 @@
    │ │ │          h
    │ │ │           1
    │ │ │
    │ │ │
    i11 : time CSM(K,CompMethod=>PnResidual)
    │ │ │ - -- used 0.0819154s (cpu); 0.0819232s (thread); 0s (gc)
    │ │ │ + -- used 0.108303s (cpu); 0.108307s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o11 = 3H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │           4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -32,28 +32,28 @@
    │ │ │ │  using the regenerative cascade implemented in Bertini. This is done by choosing
    │ │ │ │  the option bertini, provided Bertini is _i_n_s_t_a_l_l_e_d_ _a_n_d_ _c_o_n_f_i_g_u_r_e_d.
    │ │ │ │  i3 : R=ZZ/32749[v_0..v_5];
    │ │ │ │  i4 : I=ideal(4*v_3*v_1*v_2-8*v_1*v_3^2,v_5*(v_0*v_1*v_4-v_2^3));
    │ │ │ │  
    │ │ │ │  o4 : Ideal of R
    │ │ │ │  i5 : time CSM(I,CompMethod=>ProjectiveDegree)
    │ │ │ │ - -- used 0.628951s (cpu); 0.306279s (thread); 0s (gc)
    │ │ │ │ + -- used 1.35493s (cpu); 0.408035s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         5      4      3      2
    │ │ │ │  o5 = 6h  + 14h  + 14h  + 10h
    │ │ │ │         1      1      1      1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o5 : ------
    │ │ │ │          6
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  i6 : time CSM(I,CompMethod=>PnResidual)
    │ │ │ │ - -- used 2.27529s (cpu); 1.87843s (thread); 0s (gc)
    │ │ │ │ + -- used 2.49601s (cpu); 2.15153s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         5      4      3      2
    │ │ │ │  o6 = 6H  + 14H  + 14H  + 10H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o6 : -----
    │ │ │ │          6
    │ │ │ │ @@ -62,28 +62,28 @@
    │ │ │ │  
    │ │ │ │  o7 = 2
    │ │ │ │  i8 : S=QQ[s_0..s_3];
    │ │ │ │  i9 : K=ideal(4*s_3*s_2-s_2^2,(s_0*s_1*s_3-s_2^3));
    │ │ │ │  
    │ │ │ │  o9 : Ideal of S
    │ │ │ │  i10 : time CSM(K,CompMethod=>ProjectiveDegree)
    │ │ │ │ - -- used 0.277885s (cpu); 0.20403s (thread); 0s (gc)
    │ │ │ │ + -- used 0.364022s (cpu); 0.250835s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          3     2
    │ │ │ │  o10 = 3h  + 5h
    │ │ │ │          1     1
    │ │ │ │  
    │ │ │ │        ZZ[h ]
    │ │ │ │            1
    │ │ │ │  o10 : ------
    │ │ │ │           4
    │ │ │ │          h
    │ │ │ │           1
    │ │ │ │  i11 : time CSM(K,CompMethod=>PnResidual)
    │ │ │ │ - -- used 0.0819154s (cpu); 0.0819232s (thread); 0s (gc)
    │ │ │ │ + -- used 0.108303s (cpu); 0.108307s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          3     2
    │ │ │ │  o11 = 3H  + 5H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o11 : -----
    │ │ │ │           4
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler.html
    │ │ │ @@ -125,23 +125,23 @@
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │
    │ │ │
    i4 : time Euler(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.0786223s (cpu); 0.0359069s (thread); 0s (gc)
    │ │ │ + -- used 0.0915251s (cpu); 0.0481482s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 4
    │ │ │
    │ │ │
    i5 : time Euler I
    │ │ │ - -- used 0.256966s (cpu); 0.152636s (thread); 0s (gc)
    │ │ │ + -- used 0.327957s (cpu); 0.184468s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 4
    │ │ │
    │ │ │
    i6 : EulerIHash=Euler(I,Output=>HashForm);
    │ │ │ @@ -189,23 +189,23 @@ │ │ │
    │ │ │

    Note that the ideal J above is a complete intersection, thus we may change the method option which may speed computation in some cases. We may also note that the ideal generated by the first 2 generators of I defines a smooth scheme and input this information into the method. This may also improve computation speed.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : time Euler(J,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.133671s (cpu); 0.0748297s (thread); 0s (gc)
    │ │ │ + -- used 0.222021s (cpu); 0.0980177s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 2
    │ │ │
    │ │ │
    i11 : time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1})
    │ │ │ - -- used 0.224953s (cpu); 0.102967s (thread); 0s (gc)
    │ │ │ + -- used 0.284846s (cpu); 0.107509s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = 2
    │ │ │
    │ │ │
    │ │ │

    Now consider an example in \PP^2 \times \PP^2.

    │ │ │ ├── html2text {} │ │ │ │ @@ -74,19 +74,19 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 │ │ │ │ - 14254x - 11226x x + 2653x x + 12365x x - 10226x x - 12696x ) │ │ │ │ 3 0 4 1 4 2 4 3 4 4 │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : time Euler(I,InputIsSmooth=>true) │ │ │ │ - -- used 0.0786223s (cpu); 0.0359069s (thread); 0s (gc) │ │ │ │ + -- used 0.0915251s (cpu); 0.0481482s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 4 │ │ │ │ i5 : time Euler I │ │ │ │ - -- used 0.256966s (cpu); 0.152636s (thread); 0s (gc) │ │ │ │ + -- used 0.327957s (cpu); 0.184468s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 4 │ │ │ │ i6 : EulerIHash=Euler(I,Output=>HashForm); │ │ │ │ i7 : A=ring EulerIHash#"CSM" │ │ │ │ │ │ │ │ o7 = A │ │ │ │ │ │ │ │ @@ -114,19 +114,19 @@ │ │ │ │ o9 : Ideal of R │ │ │ │ Note that the ideal J above is a complete intersection, thus we may change the │ │ │ │ method option which may speed computation in some cases. We may also note that │ │ │ │ the ideal generated by the first 2 generators of I defines a smooth scheme and │ │ │ │ input this information into the method. This may also improve computation │ │ │ │ speed. │ │ │ │ i10 : time Euler(J,Method=>DirectCompleteInt) │ │ │ │ - -- used 0.133671s (cpu); 0.0748297s (thread); 0s (gc) │ │ │ │ + -- used 0.222021s (cpu); 0.0980177s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = 2 │ │ │ │ i11 : time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1}) │ │ │ │ - -- used 0.224953s (cpu); 0.102967s (thread); 0s (gc) │ │ │ │ + -- used 0.284846s (cpu); 0.107509s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = 2 │ │ │ │ Now consider an example in \PP^2 \times \PP^2. │ │ │ │ i12 : R=MultiProjCoordRing({2,2}) │ │ │ │ │ │ │ │ o12 = R │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler__Affine.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ │ │ o3 : Ideal of R │ │ │
    │ │ │
    i4 : time EulerAffine I
    │ │ │ - -- used 0.0603683s (cpu); 0.0550831s (thread); 0s (gc)
    │ │ │ + -- used 0.0854241s (cpu); 0.067132s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │
    │ │ │
    │ │ │

    Observe that the algorithm is a probabilistic algorithm and may give a wrong answer with a small but nonzero probability. Read more under probabilistic algorithm.

    │ │ │ ├── html2text {} │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ │ │ │ │ 2 2 2 │ │ │ │ o3 = ideal(x + x + x - 1) │ │ │ │ 1 2 3 │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : time EulerAffine I │ │ │ │ - -- used 0.0603683s (cpu); 0.0550831s (thread); 0s (gc) │ │ │ │ + -- used 0.0854241s (cpu); 0.067132s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 2 │ │ │ │ Observe that the algorithm is a probabilistic algorithm and may give a wrong │ │ │ │ answer with a small but nonzero probability. Read more under _p_r_o_b_a_b_i_l_i_s_t_i_c │ │ │ │ _a_l_g_o_r_i_t_h_m. │ │ │ │ ********** WWaayyss ttoo uussee EEuulleerrAAffffiinnee:: ********** │ │ │ │ * EulerAffine(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Inds__Of__Smooth.html │ │ │ @@ -70,15 +70,15 @@ │ │ │ │ │ │ o2 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time CSM(I,Method=>DirectCompletInt)
    │ │ │ - -- used 2.26857s (cpu); 1.16196s (thread); 0s (gc)
    │ │ │ + -- used 7.00733s (cpu); 1.41106s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o3 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ │ @@ -87,15 +87,15 @@
    │ │ │        (h , h )
    │ │ │          1   2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time CSM(I,Method=>DirectCompletInt,IndsOfSmooth=>{1,2})
    │ │ │ - -- used 2.85984s (cpu); 1.23776s (thread); 0s (gc)
    │ │ │ + -- used 7.09506s (cpu); 1.48743s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o4 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,28 +16,28 @@
    │ │ │ │  o1 = R
    │ │ │ │  
    │ │ │ │  o1 : PolynomialRing
    │ │ │ │  i2 : I=ideal(R_0*R_1*R_3-R_0^2*R_3,random({0,1},R),random({1,2},R));
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time CSM(I,Method=>DirectCompletInt)
    │ │ │ │ - -- used 2.26857s (cpu); 1.16196s (thread); 0s (gc)
    │ │ │ │ + -- used 7.00733s (cpu); 1.41106s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         2 2     2         2
    │ │ │ │  o3 = 2h h  + 2h h  + 5h h
    │ │ │ │         1 2     1 2     1 2
    │ │ │ │  
    │ │ │ │       ZZ[h ..h ]
    │ │ │ │           1   2
    │ │ │ │  o3 : ----------
    │ │ │ │          3   3
    │ │ │ │        (h , h )
    │ │ │ │          1   2
    │ │ │ │  i4 : time CSM(I,Method=>DirectCompletInt,IndsOfSmooth=>{1,2})
    │ │ │ │ - -- used 2.85984s (cpu); 1.23776s (thread); 0s (gc)
    │ │ │ │ + -- used 7.09506s (cpu); 1.48743s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         2 2     2         2
    │ │ │ │  o4 = 2h h  + 2h h  + 5h h
    │ │ │ │         1 2     1 2     1 2
    │ │ │ │  
    │ │ │ │       ZZ[h ..h ]
    │ │ │ │           1   2
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Input__Is__Smooth.html
    │ │ │ @@ -66,15 +66,15 @@
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time CSM I
    │ │ │ - -- used 0.658368s (cpu); 0.396912s (thread); 0s (gc)
    │ │ │ + -- used 1.09084s (cpu); 0.529562s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o3 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ @@ -83,15 +83,15 @@
    │ │ │         h
    │ │ │          1
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time CSM(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.0464211s (cpu); 0.0327346s (thread); 0s (gc)
    │ │ │ + -- used 0.0724668s (cpu); 0.0440665s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o4 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ @@ -105,15 +105,15 @@
    │ │ │          
    │ │ │

    Note that one could, equivalently, use the command Chern instead in this case.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : time Chern I
    │ │ │ - -- used 0.0380228s (cpu); 0.0341599s (thread); 0s (gc)
    │ │ │ + -- used 0.069321s (cpu); 0.0622974s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o5 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -9,42 +9,42 @@
    │ │ │ │  input ideal is known to define a smooth subscheme setting this option to true
    │ │ │ │  will speed up computations (it is set to false by default).
    │ │ │ │  i1 : R = ZZ/32749[x_0..x_4];
    │ │ │ │  i2 : I=ideal(random(2,R),random(2,R),random(1,R));
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time CSM I
    │ │ │ │ - -- used 0.658368s (cpu); 0.396912s (thread); 0s (gc)
    │ │ │ │ + -- used 1.09084s (cpu); 0.529562s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         3
    │ │ │ │  o3 = 4h
    │ │ │ │         1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o3 : ------
    │ │ │ │          5
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  i4 : time CSM(I,InputIsSmooth=>true)
    │ │ │ │ - -- used 0.0464211s (cpu); 0.0327346s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0724668s (cpu); 0.0440665s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         3
    │ │ │ │  o4 = 4h
    │ │ │ │         1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o4 : ------
    │ │ │ │          5
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  Note that one could, equivalently, use the command _C_h_e_r_n instead in this case.
    │ │ │ │  i5 : time Chern I
    │ │ │ │ - -- used 0.0380228s (cpu); 0.0341599s (thread); 0s (gc)
    │ │ │ │ + -- used 0.069321s (cpu); 0.0622974s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         3
    │ │ │ │  o5 = 4h
    │ │ │ │         1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Method.html
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │
    │ │ │
    i3 : time CSM I
    │ │ │ - -- used 1.61391s (cpu); 0.920252s (thread); 0s (gc)
    │ │ │ + -- used 4.07732s (cpu); 1.18362s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o3 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ @@ -87,15 +87,15 @@
    │ │ │         h
    │ │ │          1
    │ │ │
    │ │ │
    i4 : time CSM(I,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.483112s (cpu); 0.214874s (thread); 0s (gc)
    │ │ │ + -- used 0.93219s (cpu); 0.285717s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o4 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,28 +18,28 @@
    │ │ │ │  o1 = R
    │ │ │ │  
    │ │ │ │  o1 : PolynomialRing
    │ │ │ │  i2 : I=ideal(random(2,R),random(1,R),R_0*R_1*R_6-R_0^3);
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time CSM I
    │ │ │ │ - -- used 1.61391s (cpu); 0.920252s (thread); 0s (gc)
    │ │ │ │ + -- used 4.07732s (cpu); 1.18362s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          5      4     3
    │ │ │ │  o3 = 12h  + 10h  + 6h
    │ │ │ │          1      1     1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o3 : ------
    │ │ │ │          7
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  i4 : time CSM(I,Method=>DirectCompleteInt)
    │ │ │ │ - -- used 0.483112s (cpu); 0.214874s (thread); 0s (gc)
    │ │ │ │ + -- used 0.93219s (cpu); 0.285717s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          5      4     3
    │ │ │ │  o4 = 12h  + 10h  + 6h
    │ │ │ │          1      1     1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.out
    │ │ │ @@ -16,32 +16,32 @@
    │ │ │  
    │ │ │  o2 : Digraph
    │ │ │  
    │ │ │  i3 : G = chordalGraph digraph hashTable{a=>{b,c},b=>{c},c=>{d},d=>{}};
    │ │ │  
    │ │ │  i4 : tree = elimTree G
    │ │ │  
    │ │ │ -o4 = ElimTree{a => b   }
    │ │ │ +o4 = ElimTree{a => c}
    │ │ │                b => c
    │ │ │                c => d
    │ │ │ -              d => null
    │ │ │ +              d => b
    │ │ │  
    │ │ │  o4 : ElimTree
    │ │ │  
    │ │ │  i5 : rnk = hashTable{"a0"=>a, "a1"=>a, "b0"=>b, "b1"=>b, "b2"=>b,
    │ │ │                       "c0"=>c, "d0"=>d, "c1"=>c, "d1"=>d};
    │ │ │  
    │ │ │  i6 : eqs = hashTable{"a0" => ({a},{}), "a1" => ({},{}),
    │ │ │                       "b0" => ({b},{}), "b1" => ({},{}), "b2" => ({b},{}),
    │ │ │                       "c0" => ({c},{}), "c1" => ({},{}),
    │ │ │                       "d0" => ({},{}), "d1" => ({d},{}) };
    │ │ │  
    │ │ │  i7 : chordalNet(eqs,rnk,tree,DG)
    │ │ │  
    │ │ │ -o7 = ChordalNet{ d => { , d}    }
    │ │ │ -                 b => {b,  , b}
    │ │ │ -                 a => {a,  }
    │ │ │ +o7 = ChordalNet{ a => {a,  }    }
    │ │ │                   c => { , c}
    │ │ │ +                 d => { , d}
    │ │ │ +                 b => {b,  , b}
    │ │ │  
    │ │ │  o7 : ChordalNet
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.html
    │ │ │ @@ -102,18 +102,18 @@
    │ │ │                
    i3 : G = chordalGraph digraph hashTable{a=>{b,c},b=>{c},c=>{d},d=>{}};
    │ │ │
    │ │ │
    i4 : tree = elimTree G
    │ │ │  
    │ │ │ -o4 = ElimTree{a => b   }
    │ │ │ +o4 = ElimTree{a => c}
    │ │ │                b => c
    │ │ │                c => d
    │ │ │ -              d => null
    │ │ │ +              d => b
    │ │ │  
    │ │ │  o4 : ElimTree
    │ │ │
    │ │ │
    i5 : rnk = hashTable{"a0"=>a, "a1"=>a, "b0"=>b, "b1"=>b, "b2"=>b,
    │ │ │ @@ -128,18 +128,18 @@
    │ │ │                       "d0" => ({},{}), "d1" => ({d},{}) };
    │ │ │
    │ │ │
    i7 : chordalNet(eqs,rnk,tree,DG)
    │ │ │  
    │ │ │ -o7 = ChordalNet{ d => { , d}    }
    │ │ │ -                 b => {b,  , b}
    │ │ │ -                 a => {a,  }
    │ │ │ +o7 = ChordalNet{ a => {a,  }    }
    │ │ │                   c => { , c}
    │ │ │ +                 d => { , d}
    │ │ │ +                 b => {b,  , b}
    │ │ │  
    │ │ │  o7 : ChordalNet
    │ │ │
    │ │ │
    
    │ │ │        
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -32,32 +32,32 @@
    │ │ │ │               d0 => {}
    │ │ │ │               d1 => {}
    │ │ │ │  
    │ │ │ │  o2 : Digraph
    │ │ │ │  i3 : G = chordalGraph digraph hashTable{a=>{b,c},b=>{c},c=>{d},d=>{}};
    │ │ │ │  i4 : tree = elimTree G
    │ │ │ │  
    │ │ │ │ -o4 = ElimTree{a => b   }
    │ │ │ │ +o4 = ElimTree{a => c}
    │ │ │ │                b => c
    │ │ │ │                c => d
    │ │ │ │ -              d => null
    │ │ │ │ +              d => b
    │ │ │ │  
    │ │ │ │  o4 : ElimTree
    │ │ │ │  i5 : rnk = hashTable{"a0"=>a, "a1"=>a, "b0"=>b, "b1"=>b, "b2"=>b,
    │ │ │ │                       "c0"=>c, "d0"=>d, "c1"=>c, "d1"=>d};
    │ │ │ │  i6 : eqs = hashTable{"a0" => ({a},{}), "a1" => ({},{}),
    │ │ │ │                       "b0" => ({b},{}), "b1" => ({},{}), "b2" => ({b},{}),
    │ │ │ │                       "c0" => ({c},{}), "c1" => ({},{}),
    │ │ │ │                       "d0" => ({},{}), "d1" => ({d},{}) };
    │ │ │ │  i7 : chordalNet(eqs,rnk,tree,DG)
    │ │ │ │  
    │ │ │ │ -o7 = ChordalNet{ d => { , d}    }
    │ │ │ │ -                 b => {b,  , b}
    │ │ │ │ -                 a => {a,  }
    │ │ │ │ +o7 = ChordalNet{ a => {a,  }    }
    │ │ │ │                   c => { , c}
    │ │ │ │ +                 d => { , d}
    │ │ │ │ +                 b => {b,  , b}
    │ │ │ │  
    │ │ │ │  o7 : ChordalNet
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _d_i_s_p_l_a_y_N_e_t -- displays a chordal network using Graphivz
    │ │ │ │      * _d_i_g_r_a_p_h_(_C_h_o_r_d_a_l_N_e_t_) -- digraph associated to a chordal network
    │ │ │ │  ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: **********
    │ │ │ │      * _c_h_o_r_d_a_l_N_e_t_(_H_a_s_h_T_a_b_l_e_,_H_a_s_h_T_a_b_l_e_,_E_l_i_m_T_r_e_e_,_D_i_g_r_a_p_h_) -- construct chordal
    │ │ ├── ./usr/share/doc/Macaulay2/CohomCalg/example-output/___Cohom__Calg.out
    │ │ │ @@ -184,15 +184,15 @@
    │ │ │        {0, -1, 0, 0, 0, -1}, {0, 0, -1, 0, 0, -1}, {0, 0, 0, -1, 0, -1}, {0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │        0, 0, 0, -1, -1}}
    │ │ │  
    │ │ │  o19 : List
    │ │ │  
    │ │ │  i20 : elapsedTime hvecs = cohomCalg(X, D2)
    │ │ │ - -- 2.97386s elapsed
    │ │ │ + -- 3.16613s elapsed
    │ │ │  
    │ │ │  o20 = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0},
    │ │ │        -----------------------------------------------------------------------
    │ │ │        {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │        0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -265,45 +265,45 @@
    │ │ │  i22 : degree(X_3 + X_7 + X_8)
    │ │ │  
    │ │ │  o22 = {0, 0, 1, 2, 0, -1}
    │ │ │  
    │ │ │  o22 : List
    │ │ │  
    │ │ │  i23 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 + X_8)
    │ │ │ - -- .390976s elapsed
    │ │ │ + -- .49874s elapsed
    │ │ │  
    │ │ │  o23 = {1, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o23 : List
    │ │ │  
    │ │ │  i24 : elapsedTime cohomvec2 = for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,0,-1))
    │ │ │ - -- 10.3301s elapsed
    │ │ │ + -- 9.71568s elapsed
    │ │ │  
    │ │ │  o24 = {1, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o24 : List
    │ │ │  
    │ │ │  i25 : assert(cohomvec1 == cohomvec2)
    │ │ │  
    │ │ │  i26 : degree(X_3 + X_7 - X_8)
    │ │ │  
    │ │ │  o26 = {0, 0, 1, 2, -2, -1}
    │ │ │  
    │ │ │  o26 : List
    │ │ │  
    │ │ │  i27 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 - X_8)
    │ │ │ - -- .344562s elapsed
    │ │ │ + -- .513736s elapsed
    │ │ │  
    │ │ │  o27 = {0, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o27 : List
    │ │ │  
    │ │ │  i28 : elapsedTime cohomvec2 = elapsedTime for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,-2,-1))
    │ │ │ - -- .556898s elapsed
    │ │ │ - -- .556932s elapsed
    │ │ │ + -- .44879s elapsed
    │ │ │ + -- .448822s elapsed
    │ │ │  
    │ │ │  o28 = {0, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o28 : List
    │ │ │  
    │ │ │  i29 : assert(cohomvec1 == cohomvec2)
    │ │ ├── ./usr/share/doc/Macaulay2/CohomCalg/html/index.html
    │ │ │ @@ -309,15 +309,15 @@
    │ │ │  
    │ │ │  o19 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : elapsedTime hvecs = cohomCalg(X, D2)
    │ │ │ - -- 2.97386s elapsed
    │ │ │ + -- 3.16613s elapsed
    │ │ │  
    │ │ │  o20 = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0},
    │ │ │        -----------------------------------------------------------------------
    │ │ │        {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │        0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -399,25 +399,25 @@
    │ │ │  
    │ │ │  o22 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i23 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 + X_8)
    │ │ │ - -- .390976s elapsed
    │ │ │ + -- .49874s elapsed
    │ │ │  
    │ │ │  o23 = {1, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o23 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i24 : elapsedTime cohomvec2 = for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,0,-1))
    │ │ │ - -- 10.3301s elapsed
    │ │ │ + -- 9.71568s elapsed
    │ │ │  
    │ │ │  o24 = {1, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o24 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -433,26 +433,26 @@ │ │ │ │ │ │ o26 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i27 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 - X_8)
    │ │ │ - -- .344562s elapsed
    │ │ │ + -- .513736s elapsed
    │ │ │  
    │ │ │  o27 = {0, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o27 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : elapsedTime cohomvec2 = elapsedTime for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,-2,-1))
    │ │ │ - -- .556898s elapsed
    │ │ │ - -- .556932s elapsed
    │ │ │ + -- .44879s elapsed
    │ │ │ + -- .448822s elapsed
    │ │ │  
    │ │ │  o28 = {0, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o28 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -182,15 +182,15 @@ │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {0, -1, 0, 0, 0, -1}, {0, 0, -1, 0, 0, -1}, {0, 0, 0, -1, 0, -1}, {0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 0, 0, 0, -1, -1}} │ │ │ │ │ │ │ │ o19 : List │ │ │ │ i20 : elapsedTime hvecs = cohomCalg(X, D2) │ │ │ │ - -- 2.97386s elapsed │ │ │ │ + -- 3.16613s elapsed │ │ │ │ │ │ │ │ o20 = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ @@ -262,42 +262,42 @@ │ │ │ │ {2, 2, 3, 1, -4, -6} => {{0, 1, 0, 0, 0}, {{1, 1x1*x2}}} │ │ │ │ i22 : degree(X_3 + X_7 + X_8) │ │ │ │ │ │ │ │ o22 = {0, 0, 1, 2, 0, -1} │ │ │ │ │ │ │ │ o22 : List │ │ │ │ i23 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 + X_8) │ │ │ │ - -- .390976s elapsed │ │ │ │ + -- .49874s elapsed │ │ │ │ │ │ │ │ o23 = {1, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o23 : List │ │ │ │ i24 : elapsedTime cohomvec2 = for j from 0 to dim X list rank HH^j(X, OO_X │ │ │ │ (0,0,1,2,0,-1)) │ │ │ │ - -- 10.3301s elapsed │ │ │ │ + -- 9.71568s elapsed │ │ │ │ │ │ │ │ o24 = {1, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o24 : List │ │ │ │ i25 : assert(cohomvec1 == cohomvec2) │ │ │ │ i26 : degree(X_3 + X_7 - X_8) │ │ │ │ │ │ │ │ o26 = {0, 0, 1, 2, -2, -1} │ │ │ │ │ │ │ │ o26 : List │ │ │ │ i27 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 - X_8) │ │ │ │ - -- .344562s elapsed │ │ │ │ + -- .513736s elapsed │ │ │ │ │ │ │ │ o27 = {0, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o27 : List │ │ │ │ i28 : elapsedTime cohomvec2 = elapsedTime for j from 0 to dim X list rank HH^j │ │ │ │ (X, OO_X(0,0,1,2,-2,-1)) │ │ │ │ - -- .556898s elapsed │ │ │ │ - -- .556932s elapsed │ │ │ │ + -- .44879s elapsed │ │ │ │ + -- .448822s elapsed │ │ │ │ │ │ │ │ o28 = {0, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o28 : List │ │ │ │ i29 : assert(cohomvec1 == cohomvec2) │ │ │ │ _c_o_h_o_m_C_a_l_g computes cohomology vectors by calling CohomCalg. It also stashes │ │ │ │ it's results in the toric variety's cache table, so computations need not be │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ o5 : QuotientRing │ │ │ │ │ │ i6 : len = 10 │ │ │ │ │ │ o6 = 10 │ │ │ │ │ │ i7 : time G = EisenbudShamash(ff,F,len) │ │ │ - -- used 6.82125s (cpu); 5.19893s (thread); 0s (gc) │ │ │ + -- used 8.25558s (cpu); 6.06138s (thread); 0s (gc) │ │ │ │ │ │ / S \1 / S \5 / S \12 / S \20 / S \28 / S \36 / S \44 / S \52 / S \60 / S \68 / S \76 │ │ │ o7 = |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| │ │ │ | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | │ │ │ |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| │ │ │ \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / │ │ │ │ │ │ @@ -140,37 +140,37 @@ │ │ │ i19 : R1 = R/ideal ff │ │ │ │ │ │ o19 = R1 │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ │ │ i20 : FF = time Shamash(R1,F,4) │ │ │ - -- used 0.184033s (cpu); 0.107007s (thread); 0s (gc) │ │ │ + -- used 0.243111s (cpu); 0.143715s (thread); 0s (gc) │ │ │ │ │ │ 1 6 18 38 66 │ │ │ o20 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ o20 : Complex │ │ │ │ │ │ i21 : GG = time EisenbudShamash(ff,F,4) │ │ │ - -- used 0.953554s (cpu); 0.724234s (thread); 0s (gc) │ │ │ + -- used 1.16745s (cpu); 0.868973s (thread); 0s (gc) │ │ │ │ │ │ / R\1 / R\6 / R\18 / R\38 / R\66 │ │ │ o21 = |--| <-- |--| <-- |--| <-- |--| <-- |--| │ │ │ | 3| | 3| | 3| | 3| | 3| │ │ │ \c / \c / \c / \c / \c / │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ o21 : Complex │ │ │ │ │ │ i22 : GG = time EisenbudShamash(R1,F[2],4) │ │ │ - -- used 0.945085s (cpu); 0.740101s (thread); 0s (gc) │ │ │ + -- used 1.17528s (cpu); 0.896051s (thread); 0s (gc) │ │ │ │ │ │ 1 6 18 38 66 │ │ │ o22 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ -2 -1 0 1 2 │ │ │ │ │ │ o22 : Complex │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_sum__Two__Monomials.out │ │ │ @@ -2,21 +2,21 @@ │ │ │ │ │ │ i1 : setRandomSeed 0 │ │ │ -- setting random seed to 0 │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : sumTwoMonomials(2,3) │ │ │ - -- used 0.404052s (cpu); 0.333488s (thread); 0s (gc) │ │ │ + -- used 0.601574s (cpu); 0.417504s (thread); 0s (gc) │ │ │ 2 │ │ │ Tally{{{2, 2}, {1, 2}} => 3} │ │ │ │ │ │ - -- used 0.200262s (cpu); 0.124311s (thread); 0s (gc) │ │ │ + -- used 0.31077s (cpu); 0.163318s (thread); 0s (gc) │ │ │ 3 │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ │ │ - -- used 3.607e-06s (cpu); 3.135e-06s (thread); 0s (gc) │ │ │ + -- used 3.994e-06s (cpu); 3.139e-06s (thread); 0s (gc) │ │ │ 4 │ │ │ Tally{} │ │ │ │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_two__Monomials.out │ │ │ @@ -2,23 +2,23 @@ │ │ │ │ │ │ i1 : setRandomSeed 0 │ │ │ -- setting random seed to 0 │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : twoMonomials(2,3) │ │ │ - -- used 0.829311s (cpu); 0.613928s (thread); 0s (gc) │ │ │ + -- used 1.33608s (cpu); 0.740316s (thread); 0s (gc) │ │ │ 2 │ │ │ Tally{{{1, 1}} => 2 } │ │ │ {{2, 2}, {1, 2}} => 4 │ │ │ │ │ │ - -- used 0.41129s (cpu); 0.337464s (thread); 0s (gc) │ │ │ + -- used 0.576241s (cpu); 0.397863s (thread); 0s (gc) │ │ │ 3 │ │ │ Tally{{{2, 2}, {1, 2}} => 2} │ │ │ {{3, 3}, {2, 3}} => 1 │ │ │ │ │ │ - -- used 0.193175s (cpu); 0.136002s (thread); 0s (gc) │ │ │ + -- used 0.295479s (cpu); 0.157144s (thread); 0s (gc) │ │ │ 4 │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash.html │ │ │ @@ -131,15 +131,15 @@ │ │ │ │ │ │ o6 = 10 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time G = EisenbudShamash(ff,F,len)
    │ │ │ - -- used 6.82125s (cpu); 5.19893s (thread); 0s (gc)
    │ │ │ + -- used 8.25558s (cpu); 6.06138s (thread); 0s (gc)
    │ │ │  
    │ │ │       /    S   \1     /    S   \5     /    S   \12     /    S   \20     /    S   \28     /    S   \36     /    S   \44     /    S   \52     /    S   \60     /    S   \68     /    S   \76
    │ │ │  o7 = |--------|  <-- |--------|  <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|
    │ │ │       |  2   3 |      |  2   3 |      |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |
    │ │ │       |(x , x )|      |(x , x )|      |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|
    │ │ │       \  0   1 /      \  0   1 /      \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /
    │ │ │                                                                                                                                                                                
    │ │ │ @@ -295,28 +295,28 @@
    │ │ │  
    │ │ │  o19 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : FF = time Shamash(R1,F,4)
    │ │ │ - -- used 0.184033s (cpu); 0.107007s (thread); 0s (gc)
    │ │ │ + -- used 0.243111s (cpu); 0.143715s (thread); 0s (gc)
    │ │ │  
    │ │ │          1       6       18       38       66
    │ │ │  o20 = R1  <-- R1  <-- R1   <-- R1   <-- R1
    │ │ │                                           
    │ │ │        0       1       2        3        4
    │ │ │  
    │ │ │  o20 : Complex
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : GG = time EisenbudShamash(ff,F,4)
    │ │ │ - -- used 0.953554s (cpu); 0.724234s (thread); 0s (gc)
    │ │ │ + -- used 1.16745s (cpu); 0.868973s (thread); 0s (gc)
    │ │ │  
    │ │ │        / R\1     / R\6     / R\18     / R\38     / R\66
    │ │ │  o21 = |--|  <-- |--|  <-- |--|   <-- |--|   <-- |--|
    │ │ │        | 3|      | 3|      | 3|       | 3|       | 3|
    │ │ │        \c /      \c /      \c /       \c /       \c /
    │ │ │                                                   
    │ │ │        0         1         2          3          4
    │ │ │ @@ -328,15 +328,15 @@
    │ │ │          
    │ │ │

    The function also deals correctly with complexes F where min F is not 0:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i22 : GG = time EisenbudShamash(R1,F[2],4)
    │ │ │ - -- used 0.945085s (cpu); 0.740101s (thread); 0s (gc)
    │ │ │ + -- used 1.17528s (cpu); 0.896051s (thread); 0s (gc)
    │ │ │  
    │ │ │          1       6       18       38       66
    │ │ │  o22 = R1  <-- R1  <-- R1   <-- R1   <-- R1
    │ │ │                                           
    │ │ │        -2      -1      0        1        2
    │ │ │  
    │ │ │  o22 : Complex
    │ │ │ ├── html2text {} │ │ │ │ @@ -49,15 +49,15 @@ │ │ │ │ o5 = R │ │ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ i6 : len = 10 │ │ │ │ │ │ │ │ o6 = 10 │ │ │ │ i7 : time G = EisenbudShamash(ff,F,len) │ │ │ │ - -- used 6.82125s (cpu); 5.19893s (thread); 0s (gc) │ │ │ │ + -- used 8.25558s (cpu); 6.06138s (thread); 0s (gc) │ │ │ │ │ │ │ │ / S \1 / S \5 / S \12 / S \20 / S │ │ │ │ \28 / S \36 / S \44 / S \52 / S \60 / │ │ │ │ S \68 / S \76 │ │ │ │ o7 = |--------| <-- |--------| <-- |--------| <-- |--------| <-- |------- │ │ │ │ -| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |- │ │ │ │ -------| <-- |--------| │ │ │ │ @@ -165,36 +165,36 @@ │ │ │ │ o18 : Matrix R <-- R │ │ │ │ i19 : R1 = R/ideal ff │ │ │ │ │ │ │ │ o19 = R1 │ │ │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ i20 : FF = time Shamash(R1,F,4) │ │ │ │ - -- used 0.184033s (cpu); 0.107007s (thread); 0s (gc) │ │ │ │ + -- used 0.243111s (cpu); 0.143715s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 6 18 38 66 │ │ │ │ o20 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o20 : Complex │ │ │ │ i21 : GG = time EisenbudShamash(ff,F,4) │ │ │ │ - -- used 0.953554s (cpu); 0.724234s (thread); 0s (gc) │ │ │ │ + -- used 1.16745s (cpu); 0.868973s (thread); 0s (gc) │ │ │ │ │ │ │ │ / R\1 / R\6 / R\18 / R\38 / R\66 │ │ │ │ o21 = |--| <-- |--| <-- |--| <-- |--| <-- |--| │ │ │ │ | 3| | 3| | 3| | 3| | 3| │ │ │ │ \c / \c / \c / \c / \c / │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o21 : Complex │ │ │ │ The function also deals correctly with complexes F where min F is not 0: │ │ │ │ i22 : GG = time EisenbudShamash(R1,F[2],4) │ │ │ │ - -- used 0.945085s (cpu); 0.740101s (thread); 0s (gc) │ │ │ │ + -- used 1.17528s (cpu); 0.896051s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 6 18 38 66 │ │ │ │ o22 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ │ │ -2 -1 0 1 2 │ │ │ │ │ │ │ │ o22 : Complex │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_sum__Two__Monomials.html │ │ │ @@ -79,23 +79,23 @@ │ │ │ │ │ │ o1 = 0 │ │ │
    │ │ │
    i2 : sumTwoMonomials(2,3)
    │ │ │ - -- used 0.404052s (cpu); 0.333488s (thread); 0s (gc)
    │ │ │ + -- used 0.601574s (cpu); 0.417504s (thread); 0s (gc)
    │ │ │  2
    │ │ │  Tally{{{2, 2}, {1, 2}} => 3}
    │ │ │  
    │ │ │ - -- used 0.200262s (cpu); 0.124311s (thread); 0s (gc)
    │ │ │ + -- used 0.31077s (cpu); 0.163318s (thread); 0s (gc)
    │ │ │  3
    │ │ │  Tally{{{2, 2}, {1, 2}} => 1}
    │ │ │  
    │ │ │ - -- used 3.607e-06s (cpu); 3.135e-06s (thread); 0s (gc)
    │ │ │ + -- used 3.994e-06s (cpu); 3.139e-06s (thread); 0s (gc)
    │ │ │  4
    │ │ │  Tally{}
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,23 +18,23 @@ │ │ │ │ appropriate syzygy M of M0 = R/(m1+m2) where m1 and m2 are monomials of the │ │ │ │ same degree. │ │ │ │ i1 : setRandomSeed 0 │ │ │ │ -- setting random seed to 0 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ i2 : sumTwoMonomials(2,3) │ │ │ │ - -- used 0.404052s (cpu); 0.333488s (thread); 0s (gc) │ │ │ │ + -- used 0.601574s (cpu); 0.417504s (thread); 0s (gc) │ │ │ │ 2 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 3} │ │ │ │ │ │ │ │ - -- used 0.200262s (cpu); 0.124311s (thread); 0s (gc) │ │ │ │ + -- used 0.31077s (cpu); 0.163318s (thread); 0s (gc) │ │ │ │ 3 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ │ │ │ │ - -- used 3.607e-06s (cpu); 3.135e-06s (thread); 0s (gc) │ │ │ │ + -- used 3.994e-06s (cpu); 3.139e-06s (thread); 0s (gc) │ │ │ │ 4 │ │ │ │ Tally{} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_w_o_M_o_n_o_m_i_a_l_s -- tally the sequences of BRanks for certain examples │ │ │ │ ********** WWaayyss ttoo uussee ssuummTTwwooMMoonnoommiiaallss:: ********** │ │ │ │ * sumTwoMonomials(ZZ,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_two__Monomials.html │ │ │ @@ -83,25 +83,25 @@ │ │ │ │ │ │ o1 = 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : twoMonomials(2,3)
    │ │ │ - -- used 0.829311s (cpu); 0.613928s (thread); 0s (gc)
    │ │ │ + -- used 1.33608s (cpu); 0.740316s (thread); 0s (gc)
    │ │ │  2
    │ │ │  Tally{{{1, 1}} => 2        }
    │ │ │        {{2, 2}, {1, 2}} => 4
    │ │ │  
    │ │ │ - -- used 0.41129s (cpu); 0.337464s (thread); 0s (gc)
    │ │ │ + -- used 0.576241s (cpu); 0.397863s (thread); 0s (gc)
    │ │ │  3
    │ │ │  Tally{{{2, 2}, {1, 2}} => 2}
    │ │ │        {{3, 3}, {2, 3}} => 1
    │ │ │  
    │ │ │ - -- used 0.193175s (cpu); 0.136002s (thread); 0s (gc)
    │ │ │ + -- used 0.295479s (cpu); 0.157144s (thread); 0s (gc)
    │ │ │  4
    │ │ │  Tally{{{2, 2}, {1, 2}} => 1}
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,25 +20,25 @@ │ │ │ │ that is, for an appropriate syzygy M of M0 = R/(m1, m2) where m1 and m2 are │ │ │ │ monomials of the same degree. │ │ │ │ i1 : setRandomSeed 0 │ │ │ │ -- setting random seed to 0 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ i2 : twoMonomials(2,3) │ │ │ │ - -- used 0.829311s (cpu); 0.613928s (thread); 0s (gc) │ │ │ │ + -- used 1.33608s (cpu); 0.740316s (thread); 0s (gc) │ │ │ │ 2 │ │ │ │ Tally{{{1, 1}} => 2 } │ │ │ │ {{2, 2}, {1, 2}} => 4 │ │ │ │ │ │ │ │ - -- used 0.41129s (cpu); 0.337464s (thread); 0s (gc) │ │ │ │ + -- used 0.576241s (cpu); 0.397863s (thread); 0s (gc) │ │ │ │ 3 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 2} │ │ │ │ {{3, 3}, {2, 3}} => 1 │ │ │ │ │ │ │ │ - -- used 0.193175s (cpu); 0.136002s (thread); 0s (gc) │ │ │ │ + -- used 0.295479s (cpu); 0.157144s (thread); 0s (gc) │ │ │ │ 4 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_w_o_M_o_n_o_m_i_a_l_s -- tally the sequences of BRanks for certain examples │ │ │ │ ********** WWaayyss ttoo uussee ttwwooMMoonnoommiiaallss:: ********** │ │ │ │ * twoMonomials(ZZ,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.out │ │ │ @@ -27,18 +27,18 @@ │ │ │ - ϵ*z*dy + 2ϵ - ϵ, x*dx + y*dy + z*dz - 2ϵ) │ │ │ │ │ │ o7 : Ideal of D │ │ │ │ │ │ i8 : assert(holonomicRank I == 4) │ │ │ │ │ │ i9 : elapsedTime A = connectionMatrices I; │ │ │ - -- 2.86586s elapsed │ │ │ + -- 2.52753s elapsed │ │ │ │ │ │ i10 : elapsedTime assert isIntegrable A │ │ │ - -- 5.93547s elapsed │ │ │ + -- 4.2643s elapsed │ │ │ │ │ │ i11 : netList A │ │ │ │ │ │ +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ o11 = || 2ϵ/x -y/x -z/x 0 | | │ │ │ || (4x2y2ϵ^2+4xy2zϵ^2-2x2z2ϵ^2-2y2z2ϵ^2-4xz3ϵ^2+x3zϵ-3xy2zϵ+2xz3ϵ)/(2x4y2+2x3y3+x4yz+2x3y2z+x2y3z-x4z2-x3yz2-x2y2z2-xy3z2-x3z3-2x2yz3-xy2z3) (2x3y2ϵ-2x2y3ϵ+2x3yzϵ-2xy3zϵ-x3z2ϵ+x2yz2ϵ-xy2z2ϵ+y3z2ϵ-2x3yz+2xy3z)/(2x4y2+2x3y3+x4yz+2x3y2z+x2y3z-x4z2-x3yz2-x2y2z2-xy3z2-x3z3-2x2yz3-xy2z3) (-2x2y2zϵ-x3z2ϵ-3xy2z2ϵ+x2z3ϵ+y2z3ϵ+4xz4ϵ+2xy2z2-2xz4)/(2x4y2+2x3y3+x4yz+2x3y2z+x2y3z-x4z2-x3yz2-x2y2z2-xy3z2-x3z3-2x2yz3-xy2z3) (-xyz+xz2+yz2-z3)/(2x2y+2xy2-x2z-2xyz-y2z) | | │ │ │ || (-2xyz2ϵ^2-2y2z2ϵ^2-4yz3ϵ^2+2x2y2ϵ+x2yzϵ+xy2zϵ+2y2z2ϵ+2yz3ϵ)/(2x3y2z+x3yz2+x2y2z2-x3z3-xy2z3-x2z4-xyz4) (x2yz2ϵ+2xy2z2ϵ+y3z2ϵ+2xyz3ϵ+2y2z3ϵ-2x2y3-x2y2z-xy3z-x2yz2-y3z2-xyz3-y2z3)/(2x3y2z+x3yz2+x2y2z2-x3z3-xy2z3-x2z4-xyz4) (2x2y2ϵ+x2yzϵ+xy2zϵ-2x2z2ϵ+xyz2ϵ+y2z2ϵ-2xz3ϵ+2yz3ϵ-2x2y2-x2yz-xy2z+x2z2-y2z2+xz3-yz3)/(2x3y2+x3yz+x2y2z-x3z2-xy2z2-x2z3-xyz3) (-yz+z2)/(2xy-xz-yz) | | │ │ │ @@ -56,24 +56,24 @@ │ │ │ +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ │ │ │ i12 : F = baseFractionField D; │ │ │ │ │ │ i13 : B = {1_D,dx,dy,dx*dy}; │ │ │ │ │ │ i14 : elapsedTime g = gaugeMatrix(I, B); │ │ │ - -- .758247s elapsed │ │ │ + -- .534281s elapsed │ │ │ │ │ │ 4 4 │ │ │ o14 : Matrix F <-- F │ │ │ │ │ │ i15 : elapsedTime A1 = gaugeTransform(g, A); │ │ │ - -- 1.51935s elapsed │ │ │ + -- 1.14614s elapsed │ │ │ │ │ │ i16 : elapsedTime assert isIntegrable A1 │ │ │ - -- .837147s elapsed │ │ │ + -- .897697s elapsed │ │ │ │ │ │ i17 : netList A1 │ │ │ │ │ │ +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ o17 = || 0 1 0 0 | | │ │ │ || (-2ϵ^2+ϵ)/(x2-z2) (3xϵ+zϵ-2x)/(x2-z2) (yϵ+zϵ)/(x2-z2) (-y-z)/(x-z) | | │ │ │ || 0 0 0 1 | | │ │ │ @@ -96,18 +96,18 @@ │ │ │ {0, 0, ϵ*(y^2-z^2), ϵ*(x+y)*(y+z)}, │ │ │ {0, 0, 0, -(x+y)*(x+z)*(y+z)}}); │ │ │ │ │ │ 4 4 │ │ │ o18 : Matrix F <-- F │ │ │ │ │ │ i19 : elapsedTime A2 = gaugeTransform(changeEps, A1); │ │ │ - -- .427948s elapsed │ │ │ + -- .328817s elapsed │ │ │ │ │ │ i20 : elapsedTime assert isIntegrable A2 │ │ │ - -- .715487s elapsed │ │ │ + -- .660632s elapsed │ │ │ │ │ │ i21 : netList A2 │ │ │ │ │ │ +-------------------------------------------------------------------------------------------+ │ │ │ o21 = || ϵ/(x+z) 2zϵ/(x2-z2) 0 0 | | │ │ │ || 0 ϵ/(x-z) 0 ϵ/(x+y) | | │ │ │ || 0 0 ϵ/(x+z) (-yϵ+zϵ)/(x2+xy+xz+yz) | | │ │ ├── ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.out │ │ │ @@ -16,18 +16,18 @@ │ │ │ │ │ │ 2 │ │ │ o6 = {1, dx, dy, dy } │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : elapsedTime A = connectionMatrices I; │ │ │ - -- .226112s elapsed │ │ │ + -- .202671s elapsed │ │ │ │ │ │ i8 : elapsedTime assert isIntegrable A │ │ │ - -- .152683s elapsed │ │ │ + -- .178234s elapsed │ │ │ │ │ │ i9 : netList A │ │ │ │ │ │ +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ o9 = || 0 1 0 0 || │ │ │ || 0 -1/x 1/x y/x || │ │ │ || -1/2xy -1/y (-x-3y+1)/2xy (-x-y+1)/2x || │ │ ├── ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.html │ │ │ @@ -118,21 +118,21 @@ │ │ │
    │ │ │

    Then, we compute the system in connection form and verify that it meets the integrability conditions.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -82,15 +82,15 @@ │ │ │ │ 2 2 │ │ │ │ - a*c + e - b*c + f │ │ │ │ ----------*v, x + ----------*v) │ │ │ │ d*e - a*f d*e - a*f │ │ │ │ │ │ │ │ o5 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v] │ │ │ │ i6 : time phi^** q │ │ │ │ - -- used 0.15576s (cpu); 0.155761s (thread); 0s (gc) │ │ │ │ + -- used 0.175447s (cpu); 0.175448s (thread); 0s (gc) │ │ │ │ │ │ │ │ e d c b a │ │ │ │ o6 = ideal (u - -*v, t - -*v, z - -*v, y - -*v, x - -*v) │ │ │ │ f f f f f │ │ │ │ │ │ │ │ o6 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v] │ │ │ │ i7 : oo == p │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Segre__Class.html │ │ │ @@ -134,59 +134,59 @@ │ │ │ x x - 2x x x x + x x - 2x x x x - 2x x x x + 4x x x x + x x + 4x x x x - 2x x x x - 2x x x x - 2x x x x + x x │ │ │ 3 4 2 3 4 5 2 5 1 3 4 6 1 2 5 6 0 3 5 6 1 6 1 2 4 7 0 3 4 7 0 2 5 7 0 1 6 7 0 7 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : elapsedTime A = connectionMatrices I;
    │ │ │ - -- 2.86586s elapsed
    │ │ │ + -- 2.52753s elapsed │ │ │
    │ │ │
    i10 : elapsedTime assert isIntegrable A
    │ │ │ - -- 5.93547s elapsed
    │ │ │ + -- 4.2643s elapsed │ │ │
    │ │ │
    i11 : netList A
    │ │ │  
    │ │ │        +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ @@ -167,30 +167,30 @@
    │ │ │              
    │ │ │
    i13 : B = {1_D,dx,dy,dx*dy};
    │ │ │
    │ │ │
    i14 : elapsedTime g = gaugeMatrix(I, B);
    │ │ │ - -- .758247s elapsed
    │ │ │ + -- .534281s elapsed
    │ │ │  
    │ │ │                4      4
    │ │ │  o14 : Matrix F  <-- F
    │ │ │
    │ │ │
    i15 : elapsedTime A1 = gaugeTransform(g, A);
    │ │ │ - -- 1.51935s elapsed
    │ │ │ + -- 1.14614s elapsed │ │ │
    │ │ │
    i16 : elapsedTime assert isIntegrable A1
    │ │ │ - -- .837147s elapsed
    │ │ │ + -- .897697s elapsed │ │ │
    │ │ │
    i17 : netList A1
    │ │ │  
    │ │ │        +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ @@ -227,21 +227,21 @@
    │ │ │                4      4
    │ │ │  o18 : Matrix F  <-- F
    │ │ │
    │ │ │
    i19 : elapsedTime A2 = gaugeTransform(changeEps, A1);
    │ │ │ - -- .427948s elapsed
    │ │ │ + -- .328817s elapsed │ │ │
    │ │ │
    i20 : elapsedTime assert isIntegrable A2
    │ │ │ - -- .715487s elapsed
    │ │ │ + -- .660632s elapsed │ │ │
    │ │ │
    i21 : netList A2
    │ │ │  
    │ │ │        +-------------------------------------------------------------------------------------------+
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -41,17 +41,17 @@
    │ │ │ │  
    │ │ │ │  o7 : Ideal of D
    │ │ │ │  First, we check that the system has finite holonomic rank using _h_o_l_o_n_o_m_i_c_R_a_n_k.
    │ │ │ │  i8 : assert(holonomicRank I == 4)
    │ │ │ │  Then, we compute the system in connection form and verify that it meets the
    │ │ │ │  integrability conditions.
    │ │ │ │  i9 : elapsedTime A = connectionMatrices I;
    │ │ │ │ - -- 2.86586s elapsed
    │ │ │ │ + -- 2.52753s elapsed
    │ │ │ │  i10 : elapsedTime assert isIntegrable A
    │ │ │ │ - -- 5.93547s elapsed
    │ │ │ │ + -- 4.2643s elapsed
    │ │ │ │  i11 : netList A
    │ │ │ │  
    │ │ │ │        +----------------------------------------------------------------------------------------------------------
    │ │ │ │  -----------------------------------------------------------------------------------------------------------------
    │ │ │ │  -----------------------------------------------------------------------------------------------------------------
    │ │ │ │  -----------------------------------------------------------------------------------------------------------------
    │ │ │ │  -----------------------------------------------------------------------------------------------------------------
    │ │ │ │ @@ -227,22 +227,22 @@
    │ │ │ │  -----------------------------------------------------------------------------------+
    │ │ │ │  Next, we use _g_a_u_g_e_ _m_a_t_r_i_x for changing base to a base given by suitable set of
    │ │ │ │  standard monomials, and compute the _g_a_u_g_e_ _t_r_a_n_s_f_o_r_m with respect to this gauge
    │ │ │ │  matrix.
    │ │ │ │  i12 : F = baseFractionField D;
    │ │ │ │  i13 : B = {1_D,dx,dy,dx*dy};
    │ │ │ │  i14 : elapsedTime g = gaugeMatrix(I, B);
    │ │ │ │ - -- .758247s elapsed
    │ │ │ │ + -- .534281s elapsed
    │ │ │ │  
    │ │ │ │                4      4
    │ │ │ │  o14 : Matrix F  <-- F
    │ │ │ │  i15 : elapsedTime A1 = gaugeTransform(g, A);
    │ │ │ │ - -- 1.51935s elapsed
    │ │ │ │ + -- 1.14614s elapsed
    │ │ │ │  i16 : elapsedTime assert isIntegrable A1
    │ │ │ │ - -- .837147s elapsed
    │ │ │ │ + -- .897697s elapsed
    │ │ │ │  i17 : netList A1
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  --------------------------------------------------------------------------+
    │ │ │ │  o17 = || 0                            1                      0
    │ │ │ │  0                                                      |
    │ │ │ │ @@ -300,17 +300,17 @@
    │ │ │ │                {0, ϵ*(x^2-z^2), 0, ϵ*(x+y)*(x+z)},
    │ │ │ │                {0, 0, ϵ*(y^2-z^2), ϵ*(x+y)*(y+z)},
    │ │ │ │                {0, 0, 0, -(x+y)*(x+z)*(y+z)}});
    │ │ │ │  
    │ │ │ │                4      4
    │ │ │ │  o18 : Matrix F  <-- F
    │ │ │ │  i19 : elapsedTime A2 = gaugeTransform(changeEps, A1);
    │ │ │ │ - -- .427948s elapsed
    │ │ │ │ + -- .328817s elapsed
    │ │ │ │  i20 : elapsedTime assert isIntegrable A2
    │ │ │ │ - -- .715487s elapsed
    │ │ │ │ + -- .660632s elapsed
    │ │ │ │  i21 : netList A2
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------+
    │ │ │ │  o21 = || ϵ/(x+z) 2zϵ/(x2-z2) 0       0                      |
    │ │ │ │  |
    │ │ │ │        || 0       ϵ/(x-z)     0       ϵ/(x+y)                |
    │ │ ├── ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.html
    │ │ │ @@ -100,21 +100,21 @@
    │ │ │          
    │ │ │

    Finally, we can compute the connection matrices.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : elapsedTime A = connectionMatrices I;
    │ │ │ - -- .226112s elapsed
    │ │ │ + -- .202671s elapsed │ │ │
    │ │ │
    i8 : elapsedTime assert isIntegrable A
    │ │ │ - -- .152683s elapsed
    │ │ │ + -- .178234s elapsed │ │ │
    │ │ │
    i9 : netList A
    │ │ │  
    │ │ │       +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,17 +20,17 @@
    │ │ │ │  
    │ │ │ │                     2
    │ │ │ │  o6 = {1, dx, dy, dy }
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  Finally, we can compute the connection matrices.
    │ │ │ │  i7 : elapsedTime A = connectionMatrices I;
    │ │ │ │ - -- .226112s elapsed
    │ │ │ │ + -- .202671s elapsed
    │ │ │ │  i8 : elapsedTime assert isIntegrable A
    │ │ │ │ - -- .152683s elapsed
    │ │ │ │ + -- .178234s elapsed
    │ │ │ │  i9 : netList A
    │ │ │ │  
    │ │ │ │       +-------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  -----------------+
    │ │ │ │  o9 = || 0                                                       1
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Chern__Schwartz__Mac__Pherson.out
    │ │ │ @@ -13,27 +13,27 @@
    │ │ │  o2 = ideal (- x  + x x , - x x  + x x , - x  + x x )
    │ │ │                 1    0 2     1 2    0 3     2    1 3
    │ │ │  
    │ │ │  o2 : Ideal of GF 78125[x ..x ]
    │ │ │                          0   4
    │ │ │  
    │ │ │  i3 : time ChernSchwartzMacPherson C
    │ │ │ - -- used 2.22491s (cpu); 1.26478s (thread); 0s (gc)
    │ │ │ + -- used 2.54937s (cpu); 1.23001s (thread); 0s (gc)
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o3 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o3 : -----
    │ │ │          5
    │ │ │         H
    │ │ │  
    │ │ │  i4 : time ChernSchwartzMacPherson(C,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 1.33783s (cpu); 0.951359s (thread); 0s (gc)
    │ │ │ + -- used 1.56651s (cpu); 1.00413s (thread); 0s (gc)
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o4 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │          5
    │ │ │ @@ -62,27 +62,27 @@
    │ │ │          0,2 1,3    0,1 2,3
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o8 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │  
    │ │ │  i9 : time ChernClass G
    │ │ │ - -- used 0.32008s (cpu); 0.18723s (thread); 0s (gc)
    │ │ │ + -- used 0.396739s (cpu); 0.210773s (thread); 0s (gc)
    │ │ │  
    │ │ │          9      8      7      6      5      4     3
    │ │ │  o9 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o9 : -----
    │ │ │         10
    │ │ │        H
    │ │ │  
    │ │ │  i10 : time ChernClass(G,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.107679s (cpu); 0.0382531s (thread); 0s (gc)
    │ │ │ + -- used 0.199055s (cpu); 0.0461506s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6      5      4     3
    │ │ │  o10 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o10 : -----
    │ │ │          10
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Cremona.out
    │ │ │ @@ -1,56 +1,56 @@
    │ │ │  -- -*- M2-comint -*- hash: 10433409267944421825
    │ │ │  
    │ │ │  i1 : ZZ/300007[t_0..t_6];
    │ │ │  
    │ │ │  i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.00444651s (cpu); 0.00444181s (thread); 0s (gc)
    │ │ │ + -- used 0.00494813s (cpu); 0.00494459s (thread); 0s (gc)
    │ │ │  
    │ │ │              ZZ              ZZ                3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o2 = map (------[t ..t ], ------[x ..x ], {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   300007  0   9       2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │  
    │ │ │                 ZZ                 ZZ
    │ │ │  o2 : RingMap ------[t ..t ] <-- ------[x ..x ]
    │ │ │               300007  0   6      300007  0   9
    │ │ │  
    │ │ │  i3 : time J = kernel(phi,2)
    │ │ │ - -- used 0.139982s (cpu); 0.0709074s (thread); 0s (gc)
    │ │ │ + -- used 0.15929s (cpu); 0.0773956s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = ideal (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x 
    │ │ │               6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │       ------------------------------------------------------------------------
    │ │ │       - x x  + x x , x x  - x x  + x x )
    │ │ │          1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o3 : Ideal of ------[x ..x ]
    │ │ │                300007  0   9
    │ │ │  
    │ │ │  i4 : time degreeMap phi
    │ │ │ - -- used 0.0273929s (cpu); 0.0273949s (thread); 0s (gc)
    │ │ │ + -- used 0.0333093s (cpu); 0.0333147s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │  
    │ │ │  i5 : time projectiveDegrees phi
    │ │ │ - -- used 0.660336s (cpu); 0.467597s (thread); 0s (gc)
    │ │ │ + -- used 0.653756s (cpu); 0.481141s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o5 : List
    │ │ │  
    │ │ │  i6 : time projectiveDegrees(phi,NumDegrees=>0)
    │ │ │ - -- used 0.061525s (cpu); 0.0615308s (thread); 0s (gc)
    │ │ │ + -- used 0.0734494s (cpu); 0.0734566s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = {5}
    │ │ │  
    │ │ │  o6 : List
    │ │ │  
    │ │ │  i7 : time phi = toMap(phi,Dominant=>J)
    │ │ │ - -- used 0.00224979s (cpu); 0.00225137s (thread); 0s (gc)
    │ │ │ + -- used 0.00268903s (cpu); 0.0026917s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                         ZZ
    │ │ │                                                                       ------[x ..x ]
    │ │ │              ZZ                                                       300007  0   9                                                  3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o7 = map (------[t ..t ], ----------------------------------------------------------------------------------------------------, {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )      2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │                              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -59,15 +59,15 @@
    │ │ │                                                                             ------[x ..x ]
    │ │ │                 ZZ                                                          300007  0   9
    │ │ │  o7 : RingMap ------[t ..t ] <-- ----------------------------------------------------------------------------------------------------
    │ │ │               300007  0   6      (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )
    │ │ │                                    6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │  i8 : time psi = inverseMap phi
    │ │ │ - -- used 0.464618s (cpu); 0.385971s (thread); 0s (gc)
    │ │ │ + -- used 0.426705s (cpu); 0.426486s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                         ZZ
    │ │ │                                                       ------[x ..x ]
    │ │ │                                                       300007  0   9                                                ZZ              3                2               2    2                        2                          2     2        2                               2                                   2               2             2                       3                                                 2                 2    2                                  2    2                 2                                                 3                         2      2    2      2                                              2
    │ │ │  o8 = map (----------------------------------------------------------------------------------------------------, ------[t ..t ], {x  - 2x x x  + x x  - x x x  + x x  + x x  + x x x  - x x x  + x x  - 2x x x  - x x x  - 2x x , x x  - x x  - x x x  + x x x  + x x x  + x x  - 2x x x  - x x x  + x x x , x x  - x x x  + x x  - x x x  + x x  - x x x  - x x x , x  - x x x  + x x x  + x x x  - 2x x x  - x x x , x x  - x x x  + x x  + x x  - x x x  - x x x  - x x x , x x  - x x  - x x x  + x x  + x x x  + x x x  - 2x x x  - x x x  + x x x , x  - 2x x x  - x x x  + x x  + x x  + x x  + x x  + x x x  - 2x x x  - x x x  - x x x  - 2x x })
    │ │ │            (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )  300007  0   6     2     1 2 3    0 3    1 2 5    0 5    1 6    0 2 6    0 4 6    1 7     0 2 7    0 4 7     0 9   2 3    1 3    1 2 6    0 3 6    0 5 6    1 8     0 2 8    0 4 8    0 1 9   2 3    1 3 6    0 6    0 3 8    1 9    0 2 9    0 4 9   3    1 3 8    0 6 8    1 2 9     0 3 9    0 5 9   3 6    2 3 8    0 8    2 9    1 3 9    0 6 9    0 7 9   3 6    3 8    2 6 8    1 8    2 3 9    2 5 9     1 6 9    1 7 9    0 8 9   6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6 9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -76,32 +76,32 @@
    │ │ │                                                          ------[x ..x ]
    │ │ │                                                          300007  0   9                                                   ZZ
    │ │ │  o8 : RingMap ---------------------------------------------------------------------------------------------------- <-- ------[t ..t ]
    │ │ │               (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )     300007  0   6
    │ │ │                 6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │  i9 : time isInverseMap(phi,psi)
    │ │ │ - -- used 0.00957768s (cpu); 0.00958237s (thread); 0s (gc)
    │ │ │ + -- used 0.0109459s (cpu); 0.0109462s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : time degreeMap psi
    │ │ │ - -- used 0.36608s (cpu); 0.250674s (thread); 0s (gc)
    │ │ │ + -- used 0.602774s (cpu); 0.315889s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 1
    │ │ │  
    │ │ │  i11 : time projectiveDegrees psi
    │ │ │ - -- used 5.12293s (cpu); 4.38974s (thread); 0s (gc)
    │ │ │ + -- used 5.73761s (cpu); 5.28828s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o11 : List
    │ │ │  
    │ │ │  i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.00214853s (cpu); 0.00214909s (thread); 0s (gc)
    │ │ │ + -- used 0.00262949s (cpu); 0.0026352s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │        target: Proj(------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -147,15 +147,15 @@
    │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │                        }
    │ │ │  
    │ │ │  o12 : RationalMap (cubic rational map from PP^6 to PP^9)
    │ │ │  
    │ │ │  i13 : time phi = rationalMap(phi,Dominant=>2)
    │ │ │ - -- used 0.159869s (cpu); 0.0819959s (thread); 0s (gc)
    │ │ │ + -- used 0.183775s (cpu); 0.0994517s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                                     ZZ
    │ │ │        target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │ @@ -217,15 +217,15 @@
    │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │                        }
    │ │ │  
    │ │ │  o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i14 : time phi^(-1)
    │ │ │ - -- used 0.494847s (cpu); 0.414351s (thread); 0s (gc)
    │ │ │ + -- used 0.474241s (cpu); 0.474098s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                                     ZZ
    │ │ │        source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │                                   300007  0   1   2   3   4   5   6   7   8   9
    │ │ │                {
    │ │ │                 x x  - x x  + x x ,
    │ │ │ @@ -275,71 +275,71 @@
    │ │ │                         x  - 2x x x  - x x x  + x x  + x x  + x x  + x x  + x x x  - 2x x x  - x x x  - x x x  - 2x x
    │ │ │                          6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6 9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │                        }
    │ │ │  
    │ │ │  o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9 to PP^6)
    │ │ │  
    │ │ │  i15 : time degrees phi^(-1)
    │ │ │ - -- used 0.343614s (cpu); 0.269496s (thread); 0s (gc)
    │ │ │ + -- used 0.467431s (cpu); 0.33733s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o15 : List
    │ │ │  
    │ │ │  i16 : time degrees phi
    │ │ │ - -- used 0.017066s (cpu); 0.0167813s (thread); 0s (gc)
    │ │ │ + -- used 0.0854163s (cpu); 0.0273704s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o16 : List
    │ │ │  
    │ │ │  i17 : time describe phi
    │ │ │ - -- used 0.00287351s (cpu); 0.00287412s (thread); 0s (gc)
    │ │ │ + -- used 0.00385199s (cpu); 0.00385848s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = rational map defined by forms of degree 3
    │ │ │        source variety: PP^6
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {1, 3, 9, 17, 21, 15, 5}
    │ │ │        coefficient ring: ZZ/300007
    │ │ │  
    │ │ │  i18 : time describe phi^(-1)
    │ │ │ - -- used 0.00949367s (cpu); 0.00949464s (thread); 0s (gc)
    │ │ │ + -- used 0.0113802s (cpu); 0.0113873s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 = rational map defined by forms of degree 3
    │ │ │        source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        target variety: PP^6
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {5, 15, 21, 17, 9, 3, 1}
    │ │ │        number of minimal representatives: 1
    │ │ │        dimension base locus: 4
    │ │ │        degree base locus: 24
    │ │ │        coefficient ring: ZZ/300007
    │ │ │  
    │ │ │  i19 : time (f,g) = graph phi^-1; f;
    │ │ │ - -- used 0.00910182s (cpu); 0.00910265s (thread); 0s (gc)
    │ │ │ + -- used 0.0113772s (cpu); 0.0113841s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety of PP^9 x PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i21 : time degrees f
    │ │ │ - -- used 1.2811s (cpu); 0.962879s (thread); 0s (gc)
    │ │ │ + -- used 1.25598s (cpu); 0.99891s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = {904, 508, 268, 130, 56, 20, 5}
    │ │ │  
    │ │ │  o21 : List
    │ │ │  
    │ │ │  i22 : time degree f
    │ │ │ - -- used 1.588e-05s (cpu); 1.5509e-05s (thread); 0s (gc)
    │ │ │ + -- used 1.5999e-05s (cpu); 1.5275e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = 1
    │ │ │  
    │ │ │  i23 : time describe f
    │ │ │ - -- used 0.00176246s (cpu); 0.00176335s (thread); 0s (gc)
    │ │ │ + -- used 0.00164428s (cpu); 0.00164941s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = rational map defined by multiforms of degree {1, 0}
    │ │ │        source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20 hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2, 0},{2, 0})
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true
    │ │ │        projective degrees: {904, 508, 268, 130, 56, 20, 5}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Euler__Characteristic.out
    │ │ │ @@ -3,18 +3,18 @@
    │ │ │  i1 : I = Grassmannian(1,4,CoefficientRing=>ZZ/190181);
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o1 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │  
    │ │ │  i2 : time EulerCharacteristic I
    │ │ │ - -- used 0.32363s (cpu); 0.192112s (thread); 0s (gc)
    │ │ │ + -- used 0.347424s (cpu); 0.185975s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │  
    │ │ │  i3 : time EulerCharacteristic(I,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0112392s (cpu); 0.0109549s (thread); 0s (gc)
    │ │ │ + -- used 0.0806659s (cpu); 0.0211387s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = 10
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp!.out
    │ │ │ @@ -8,15 +8,15 @@
    │ │ │  
    │ │ │  o3 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^5
    │ │ │       target variety: PP^5
    │ │ │       coefficient ring: QQ
    │ │ │  
    │ │ │  i4 : time phi! ;
    │ │ │ - -- used 0.0555729s (cpu); 0.0551512s (thread); 0s (gc)
    │ │ │ + -- used 0.115264s (cpu); 0.0738434s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (Cremona transformation of PP^5 of type (2,2))
    │ │ │  
    │ │ │  i5 : describe phi
    │ │ │  
    │ │ │  o5 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^5
    │ │ │ @@ -37,15 +37,15 @@
    │ │ │  
    │ │ │  o8 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^4
    │ │ │       target variety: PP^5
    │ │ │       coefficient ring: QQ
    │ │ │  
    │ │ │  i9 : time phi! ;
    │ │ │ - -- used 0.0359549s (cpu); 0.0356875s (thread); 0s (gc)
    │ │ │ + -- used 0.0692033s (cpu); 0.0559029s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : RationalMap (quadratic rational map from PP^4 to PP^5)
    │ │ │  
    │ │ │  i10 : describe phi
    │ │ │  
    │ │ │  o10 = rational map defined by forms of degree 2
    │ │ │        source variety: PP^4
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp^_st_st_sp__Ideal.out
    │ │ │ @@ -67,15 +67,15 @@
    │ │ │       - a*c + e         - b*c + f
    │ │ │       ----------*v, x + ----------*v)
    │ │ │        d*e - a*f         d*e - a*f
    │ │ │  
    │ │ │  o5 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ │  
    │ │ │  i6 : time phi^** q
    │ │ │ - -- used 0.15576s (cpu); 0.155761s (thread); 0s (gc)
    │ │ │ + -- used 0.175447s (cpu); 0.175448s (thread); 0s (gc)
    │ │ │  
    │ │ │                  e        d        c        b        a
    │ │ │  o6 = ideal (u - -*v, t - -*v, z - -*v, y - -*v, x - -*v)
    │ │ │                  f        f        f        f        f
    │ │ │  
    │ │ │  o6 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Segre__Class.out
    │ │ │ @@ -47,50 +47,50 @@
    │ │ │                                                                            P7
    │ │ │  o3 : Ideal of -------------------------------------------------------------------------------------------------------------------------
    │ │ │                 2 2                2 2                                        2 2                                                    2 2
    │ │ │                x x  - 2x x x x  + x x  - 2x x x x  - 2x x x x  + 4x x x x  + x x  + 4x x x x  - 2x x x x  - 2x x x x  - 2x x x x  + x x
    │ │ │                 3 4     2 3 4 5    2 5     1 3 4 6     1 2 5 6     0 3 5 6    1 6     1 2 4 7     0 3 4 7     0 2 5 7     0 1 6 7    0 7
    │ │ │  
    │ │ │  i4 : time SegreClass X
    │ │ │ - -- used 0.798226s (cpu); 0.509602s (thread); 0s (gc)
    │ │ │ + -- used 0.814937s (cpu); 0.521661s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o4 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │          8
    │ │ │         H
    │ │ │  
    │ │ │  i5 : time SegreClass lift(X,P7)
    │ │ │ - -- used 0.549131s (cpu); 0.33326s (thread); 0s (gc)
    │ │ │ + -- used 0.66787s (cpu); 0.368635s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o5 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o5 : -----
    │ │ │          8
    │ │ │         H
    │ │ │  
    │ │ │  i6 : time SegreClass(X,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0212624s (cpu); 0.0207391s (thread); 0s (gc)
    │ │ │ + -- used 0.0440606s (cpu); 0.0257815s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o6 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          8
    │ │ │         H
    │ │ │  
    │ │ │  i7 : time SegreClass(lift(X,P7),Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0974975s (cpu); 0.0969659s (thread); 0s (gc)
    │ │ │ + -- used 0.161371s (cpu); 0.123243s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o7 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o7 : -----
    │ │ │          8
    │ │ │ @@ -98,22 +98,22 @@
    │ │ │  
    │ │ │  i8 : o4 == o6 and o5 == o7
    │ │ │  
    │ │ │  o8 = true
    │ │ │  
    │ │ │  i9 : use ZZ/100003[x_0..x_6]
    │ │ │  
    │ │ │ -o9     ZZ
    │ │ │ -= ------[x ..x ]
    │ │ │ -  100003  0   6
    │ │ │ +       ZZ
    │ │ │ +o9 = ------[x ..x ]
    │ │ │ +     100003  0   6
    │ │ │  
    │ │ │  o9 : PolynomialRing
    │ │ │  
    │ │ │  i10 : time phi = inverseMap toMap(minors(2,matrix{{x_0,x_1,x_3,x_4,x_5},{x_1,x_2,x_4,x_5,x_6}}),Dominant=>2)
    │ │ │ - -- used 0.197315s (cpu); 0.0983952s (thread); 0s (gc)
    │ │ │ + -- used 0.0684174s (cpu); 0.0684036s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                          ZZ
    │ │ │                                                        ------[y ..y ]
    │ │ │                                                        100003  0   9                                                ZZ              2                              2
    │ │ │  o10 = map (----------------------------------------------------------------------------------------------------, ------[x ..x ], {y  - y y  - y y , y y  - y y , y  - y y  - y y , y y  + y y  - y y , y y  - y y , y y  - y y  - y y , y y  - y y  - y y })
    │ │ │             (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )  100003  0   6     3    0 5    1 6   3 4    1 7   4    2 7    0 9   2 5    3 5    1 8   4 5    1 9   4 8    2 9    3 9   7 8    4 9    6 9
    │ │ │               5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │ @@ -122,15 +122,15 @@
    │ │ │                                                           ------[y ..y ]
    │ │ │                                                           100003  0   9                                                   ZZ
    │ │ │  o10 : RingMap ---------------------------------------------------------------------------------------------------- <-- ------[x ..x ]
    │ │ │                (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )     100003  0   6
    │ │ │                  5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │  
    │ │ │  i11 : time SegreClass phi
    │ │ │ - -- used 0.169509s (cpu); 0.169514s (thread); 0s (gc)
    │ │ │ + -- used 0.401922s (cpu); 0.258737s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o11 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │          10
    │ │ │ @@ -150,27 +150,27 @@
    │ │ │                                                            100003  0   9
    │ │ │  o12 : Ideal of ----------------------------------------------------------------------------------------------------
    │ │ │                 (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )
    │ │ │                   5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │  
    │ │ │  i13 : -- Segre class of B in G(1,4)
    │ │ │        time SegreClass B
    │ │ │ - -- used 0.518764s (cpu); 0.315789s (thread); 0s (gc)
    │ │ │ + -- used 0.433085s (cpu); 0.292436s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o13 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o13 : -----
    │ │ │          10
    │ │ │         H
    │ │ │  
    │ │ │  i14 : -- Segre class of B in P^9
    │ │ │        time SegreClass lift(B,ambient ring B)
    │ │ │ - -- used 1.31381s (cpu); 0.860817s (thread); 0s (gc)
    │ │ │ + -- used 1.6597s (cpu); 0.959849s (thread); 0s (gc)
    │ │ │  
    │ │ │             9       8       7      6     5
    │ │ │  o14 = 2764H  - 984H  + 294H  - 67H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o14 : -----
    │ │ │          10
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_abstract__Rational__Map.out
    │ │ │ @@ -17,32 +17,32 @@
    │ │ │  
    │ │ │  o3 = QQ[u ..u ]
    │ │ │           0   5
    │ │ │  
    │ │ │  o3 : PolynomialRing
    │ │ │  
    │ │ │  i4 : time psi = abstractRationalMap(P4,P5,f)
    │ │ │ - -- used 0.000416542s (cpu); 0.000408857s (thread); 0s (gc)
    │ │ │ + -- used 0.000423495s (cpu); 0.000417624s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: given by a function
    │ │ │  
    │ │ │  o4 : AbstractRationalMap (rational map from PP^4 to PP^5)
    │ │ │  
    │ │ │  i5 : time projectiveDegrees(psi,3)
    │ │ │ - -- used 0.32875s (cpu); 0.185077s (thread); 0s (gc)
    │ │ │ + -- used 0.384359s (cpu); 0.209633s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 2
    │ │ │  
    │ │ │  i6 : time rationalMap psi
    │ │ │ - -- used 0.510248s (cpu); 0.373012s (thread); 0s (gc)
    │ │ │ + -- used 0.491678s (cpu); 0.398209s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: {
    │ │ │ @@ -113,48 +113,48 @@
    │ │ │                  1    0 2     1 2    0 3     2    1 3
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o13 : Ideal of -----[x ..x ]
    │ │ │                 65521  0   3
    │ │ │  
    │ │ │  i14 : time T = abstractRationalMap(I,"OADP")
    │ │ │ - -- used 0.151084s (cpu); 0.0733367s (thread); 0s (gc)
    │ │ │ + -- used 0.174075s (cpu); 0.0799249s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │        defining forms: given by a function
    │ │ │  
    │ │ │  o14 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │  
    │ │ │  i15 : time projectiveDegrees(T,2)
    │ │ │ - -- used 3.78487s (cpu); 1.95126s (thread); 0s (gc)
    │ │ │ + -- used 4.77447s (cpu); 2.37718s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3
    │ │ │  
    │ │ │  i16 : time T2 = T * T
    │ │ │ - -- used 2.8112e-05s (cpu); 2.7842e-05s (thread); 0s (gc)
    │ │ │ + -- used 3.1017e-05s (cpu); 2.9941e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │        defining forms: given by a function
    │ │ │  
    │ │ │  o16 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │  
    │ │ │  i17 : time projectiveDegrees(T2,2)
    │ │ │ - -- used 6.44263s (cpu); 3.37969s (thread); 0s (gc)
    │ │ │ + -- used 7.58588s (cpu); 3.654s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = 1
    │ │ │  
    │ │ │  i18 : p = apply(3,i->random(ZZ/65521))|{1}
    │ │ │  
    │ │ │  o18 = {-6648, -23396, -12311, 1}
    │ │ │  
    │ │ │ @@ -169,15 +169,15 @@
    │ │ │  i20 : T q
    │ │ │  
    │ │ │  o20 = {-6648, -23396, -12311, 1}
    │ │ │  
    │ │ │  o20 : List
    │ │ │  
    │ │ │  i21 : time f = rationalMap T
    │ │ │ - -- used 5.32932s (cpu); 2.87316s (thread); 0s (gc)
    │ │ │ + -- used 6.13876s (cpu); 3.10611s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_approximate__Inverse__Map.out
    │ │ │ @@ -54,15 +54,15 @@
    │ │ │  -- approximateInverseMap: step 4 of 10
    │ │ │  -- approximateInverseMap: step 5 of 10
    │ │ │  -- approximateInverseMap: step 6 of 10
    │ │ │  -- approximateInverseMap: step 7 of 10
    │ │ │  -- approximateInverseMap: step 8 of 10
    │ │ │  -- approximateInverseMap: step 9 of 10
    │ │ │  -- approximateInverseMap: step 10 of 10
    │ │ │ - -- used 0.238191s (cpu); 0.186212s (thread); 0s (gc)
    │ │ │ + -- used 0.321101s (cpu); 0.245484s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                    ZZ
    │ │ │       source: Proj(--[t , t , t , t , t , t , t , t , t ])
    │ │ │                    97  0   1   2   3   4   5   6   7   8
    │ │ │                                  ZZ
    │ │ │       target: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │  
    │ │ │  i4 : assert(phi * psi == 1 and psi * phi == 1)
    │ │ │  
    │ │ │  i5 : time psi' = approximateInverseMap(phi,CodimBsInv=>5);
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ - -- used 0.218651s (cpu); 0.155471s (thread); 0s (gc)
    │ │ │ + -- used 0.263418s (cpu); 0.185948s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │  
    │ │ │  i6 : assert(psi == psi')
    │ │ │  
    │ │ │  i7 : phi = rationalMap map(P8,ZZ/97[x_0..x_11]/ideal(x_1*x_3-8*x_2*x_3+25*x_3^2-25*x_2*x_4-22*x_3*x_4+x_0*x_5+13*x_2*x_5+41*x_3*x_5-x_0*x_6+12*x_2*x_6+25*x_1*x_7+25*x_3*x_7+23*x_5*x_7-3*x_6*x_7+2*x_0*x_8+11*x_1*x_8-37*x_3*x_8-23*x_4*x_8-33*x_6*x_8+8*x_0*x_9+10*x_1*x_9-25*x_2*x_9-9*x_3*x_9+3*x_4*x_9+24*x_5*x_9-27*x_6*x_9-5*x_0*x_10+28*x_1*x_10+37*x_2*x_10+9*x_4*x_10+27*x_6*x_10-25*x_0*x_11+9*x_2*x_11+27*x_4*x_11-27*x_5*x_11,x_2^2+17*x_2*x_3-14*x_3^2-13*x_2*x_4+34*x_3*x_4+44*x_0*x_5-30*x_2*x_5+27*x_3*x_5+31*x_2*x_6-36*x_3*x_6-x_0*x_7+13*x_1*x_7+8*x_3*x_7+9*x_5*x_7+46*x_6*x_7+41*x_0*x_8-7*x_1*x_8-34*x_3*x_8-9*x_4*x_8-46*x_6*x_8-17*x_0*x_9+32*x_1*x_9-8*x_2*x_9-35*x_3*x_9-46*x_4*x_9+26*x_5*x_9+17*x_6*x_9+15*x_0*x_10+35*x_1*x_10+34*x_2*x_10+20*x_4*x_10+14*x_0*x_11+36*x_1*x_11+35*x_2*x_11-17*x_4*x_11,x_1*x_2-40*x_2*x_3+28*x_3^2-x_0*x_4+5*x_2*x_4-16*x_3*x_4+5*x_0*x_5-36*x_2*x_5+37*x_3*x_5+48*x_2*x_6-5*x_1*x_7-5*x_3*x_7+x_5*x_7+20*x_6*x_7+10*x_0*x_8+34*x_1*x_8+41*x_3*x_8-x_4*x_8+x_6*x_8+40*x_0*x_9-32*x_1*x_9+5*x_2*x_9-11*x_3*x_9-20*x_4*x_9+45*x_5*x_9-14*x_6*x_9-25*x_0*x_10+45*x_1*x_10-41*x_2*x_10-46*x_4*x_10+8*x_6*x_10-28*x_0*x_11+11*x_2*x_11+14*x_4*x_11-8*x_5*x_11),{t_4^2+t_0*t_5+t_1*t_5+35*t_2*t_5+10*t_3*t_5+25*t_4*t_5-5*t_5^2-14*t_0*t_6-14*t_1*t_6-5*t_2*t_6-13*t_4*t_6+37*t_5*t_6+22*t_6^2-31*t_3*t_7+26*t_4*t_7+12*t_5*t_7-45*t_6*t_7-46*t_3*t_8+37*t_4*t_8+28*t_5*t_8+33*t_6*t_8,t_3*t_4+4*t_0*t_5+39*t_1*t_5-40*t_2*t_5+40*t_3*t_5+26*t_4*t_5-20*t_5^2+41*t_0*t_6+36*t_1*t_6-22*t_2*t_6+36*t_4*t_6-30*t_5*t_6-13*t_6^2-25*t_3*t_7+5*t_4*t_7-35*t_5*t_7+10*t_6*t_7+11*t_3*t_8+46*t_4*t_8+29*t_5*t_8+28*t_6*t_8,t_2*t_4-5*t_0*t_5-40*t_1*t_5+12*t_2*t_5+47*t_3*t_5+37*t_4*t_5+25*t_5^2-27*t_0*t_6-22*t_1*t_6+27*t_2*t_6-23*t_4*t_6+5*t_5*t_6-13*t_6^2-39*t_3*t_7-29*t_4*t_7+9*t_5*t_7+39*t_6*t_7+36*t_3*t_8+13*t_4*t_8+26*t_5*t_8+37*t_6*t_8,t_0*t_4-t_0*t_5-8*t_1*t_5-35*t_2*t_5-10*t_3*t_5-33*t_4*t_5+5*t_5^2+15*t_0*t_6+15*t_1*t_6+5*t_2*t_6+15*t_4*t_6-38*t_5*t_6-22*t_6^2+31*t_3*t_7-25*t_4*t_7-19*t_5*t_7+47*t_6*t_7+46*t_3*t_8-36*t_4*t_8-35*t_5*t_8-31*t_6*t_8,t_2*t_3-t_0*t_5-t_1*t_5-35*t_2*t_5-10*t_3*t_5-33*t_4*t_5+5*t_5^2+14*t_0*t_6+14*t_1*t_6+5*t_2*t_6+14*t_4*t_6-31*t_5*t_6-24*t_6^2+32*t_3*t_7-25*t_4*t_7-19*t_5*t_7+47*t_6*t_7+46*t_3*t_8-36*t_4*t_8-35*t_5*t_8-31*t_6*t_8,t_1*t_3-7*t_1*t_5+t_1*t_6+t_4*t_6-7*t_5*t_6+2*t_6^2-t_3*t_7,t_0*t_3-46*t_0*t_5-39*t_1*t_5-43*t_2*t_5-41*t_3*t_5-26*t_4*t_5-28*t_5^2-35*t_0*t_6-36*t_1*t_6+20*t_2*t_6-36*t_4*t_6+9*t_5*t_6+15*t_6^2+26*t_3*t_7-5*t_4*t_7+35*t_5*t_7-10*t_6*t_7-10*t_3*t_8-46*t_4*t_8+47*t_5*t_8-25*t_6*t_8,t_2^2-46*t_1*t_4-33*t_0*t_5-45*t_1*t_5-39*t_2*t_5-39*t_3*t_5-46*t_4*t_5-29*t_5^2-48*t_0*t_6-38*t_1*t_6-30*t_2*t_6+19*t_4*t_6-44*t_5*t_6-47*t_6^2-36*t_0*t_7-46*t_1*t_7+t_2*t_7-44*t_3*t_7+48*t_4*t_7-14*t_5*t_7+4*t_6*t_7-36*t_0*t_8-46*t_1*t_8+47*t_2*t_8-34*t_3*t_8-24*t_4*t_8-12*t_5*t_8-47*t_6*t_8+47*t_7*t_8,t_1*t_2+6*t_1*t_5+5*t_0*t_6-2*t_1*t_6-t_4*t_6-t_5*t_6+5*t_0*t_7+t_1*t_7-2*t_2*t_7-7*t_5*t_7+2*t_6*t_7-2*t_1*t_8+3*t_7*t_8,t_0*t_2+t_1*t_4+5*t_0*t_5+32*t_1*t_5-20*t_2*t_5-47*t_3*t_5-37*t_4*t_5-25*t_5^2+19*t_0*t_6+22*t_1*t_6-25*t_2*t_6+25*t_4*t_6-5*t_5*t_6+13*t_6^2+5*t_0*t_7+t_1*t_7+39*t_3*t_7+28*t_4*t_7-9*t_5*t_7-39*t_6*t_7+4*t_0*t_8+t_1*t_8-36*t_3*t_8-14*t_4*t_8-26*t_5*t_8-37*t_6*t_8,t_0*t_1-39*t_1*t_4+40*t_1*t_5-37*t_0*t_6-39*t_1*t_6+19*t_4*t_6-39*t_5*t_6-38*t_0*t_7+39*t_1*t_7+19*t_2*t_7+18*t_5*t_7-19*t_6*t_7+19*t_1*t_8+20*t_7*t_8,t_0^2+12*t_1*t_4+20*t_0*t_5+27*t_1*t_5-8*t_2*t_5+37*t_3*t_5+28*t_4*t_5+30*t_5^2-46*t_0*t_6+24*t_1*t_6-40*t_2*t_6+25*t_4*t_6+16*t_5*t_6-35*t_6^2+29*t_0*t_7+12*t_1*t_7-35*t_2*t_7-8*t_3*t_7-18*t_4*t_7+42*t_5*t_7-12*t_6*t_7-6*t_0*t_8+12*t_1*t_8-15*t_3*t_8+9*t_4*t_8+20*t_5*t_8-30*t_6*t_8+4*t_7*t_8})
    │ │ │  
    │ │ │ @@ -192,15 +192,15 @@
    │ │ │  o7 : RationalMap (quadratic rational map from PP^8 to 8-dimensional subvariety of PP^11)
    │ │ │  
    │ │ │  i8 : -- without the option 'CodimBsInv=>4', it takes about triple time 
    │ │ │       time psi=approximateInverseMap(phi,CodimBsInv=>4)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ - -- used 2.12103s (cpu); 1.6772s (thread); 0s (gc)
    │ │ │ + -- used 2.08827s (cpu); 1.75951s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = -- rational map --
    │ │ │                                  ZZ
    │ │ │       source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │                                  97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │               {
    │ │ │                                  2
    │ │ │ @@ -258,15 +258,15 @@
    │ │ │  
    │ │ │  i10 : -- in this case we can remedy enabling the option Certify
    │ │ │        time psi = approximateInverseMap(phi,CodimBsInv=>4,Certify=>true)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │  Certify: output certified!
    │ │ │ - -- used 3.22893s (cpu); 2.56331s (thread); 0s (gc)
    │ │ │ + -- used 3.12417s (cpu); 2.70652s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = -- rational map --
    │ │ │                                   ZZ
    │ │ │        source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │                                   97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │                {
    │ │ │                                   2
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_degree__Map.out
    │ │ │ @@ -9,27 +9,27 @@
    │ │ │                                   2                  2                             2                                       2                                                2                                                           2                                                                       2                                                                              2                                                                                            2         2                 2                             2                                       2                                              2                                                           2                                                                   2                                                                               2                                                                                          2        2                   2                            2                                      2                                                  2                                                          2                                                                      2                                                                               2                                                                                            2        2                   2                             2                                      2                                                 2                                                          2                                                                    2                                                                               2                                                                                          2         2                2                          2                                      2                                                 2                                                           2                                                                       2                                                                            2                                                                                          2        2                  2                         2                                       2                                                2                                                           2                                                                      2                                                                               2                                                                                        2       2                  2                             2                                    2                                                2                                                          2                                                                    2                                                                               2                                                                                       2       2                 2                           2                                      2                                                 2                                                            2                                                                       2                                                                                2                                                                                           2        2                   2                             2                                       2                                                  2                                                            2                                                                   2                                                                            2                                                                                          2      2                 2                            2                                       2                                                2                                                         2                                                                        2                                                                               2                                                                                          2     2                   2                             2                                      2                                                   2                                                          2                                                                     2                                                                               2                                                                                          2         2                2                            2                                       2                                                 2                                                           2                                                                      2                                                                                  2                                                                                              2      2                  2                            2                                    2                                                2                                                            2                                                                    2                                                                                2                                                                                          2       2                  2                            2                                    2                                                   2                                                        2                                                                         2                                                                               2                                                                                           2       2                  2                             2                                       2                                                 2                                                          2                                                                       2                                                                               2                                                                                       2
    │ │ │  o4 = map (ringP8, ringP14, {- 95x  + 181x x  + 1028x  - 1384x x  - 1455x x  + 559x  - 502x x  + 1264x x  - 162x x  + 1209x  - 180x x  - 504x x  - 1168x x  - 676x x  + 501x  + 73x x  + 1263x x  + 1035x x  + 844x x  + 1593x x  + 785x  + 982x x  - 412x x  + 1335x x  + 1136x x  + 826x x  + 1078x x  + 1158x  + 335x x  - 982x x  - 1479x x  - 15x x  + 1363x x  + 1397x x  - 575x x  - 71x  + 1255x x  - 1138x x  - 1590x x  + 604x x  + 1182x x  - 63x x  - 1382x x  - 1255x x  - 613x , - 1444x  + 575x x  + 767x  - 1495x x  + 1631x x  - 217x  - 294x x  - 1511x x  - 504x x  - 1284x  - 1459x x  + 152x x  + 141x x  - 10x x  - 95x  + 1056x x  + 654x x  + 1397x x  - 930x x  + 578x x  - 696x  + 759x x  + 733x x  + 505x x  - 609x x  + 526x x  - 659x x  + 846x  + 1253x x  - 1519x x  + 635x x  + 576x x  + 54x x  - 1261x x  - 822x x  - 257x  - 986x x  + 356x x  - 1488x x  - 1561x x  - 850x x  - 85x x  - 1350x x  - 783x x  - 1335x , - 871x  + 1006x x  - 1399x  - 1636x x  - 699x x  - 769x  - 307x x  - 1645x x  - 502x x  - 719x  + 1405x x  + 870x x  - 1133x x  + 425x x  - 1203x  - 1601x x  + 117x x  - 382x x  + 318x x  - 117x x  - 560x  + 1135x x  + 1468x x  + 869x x  - 943x x  - 335x x  - 1218x x  + 201x  - 11x x  + 540x x  - 710x x  - 489x x  + 1605x x  + 1663x x  - 423x x  + 1246x  + 97x x  - 644x x  + 1655x x  + 1219x x  + 1476x x  + 1355x x  + 1594x x  + 893x x  + 1150x , - 143x  + 1240x x  - 1042x  + 1649x x  + 1024x x  + 794x  + 1442x x  - 1263x x  + 537x x  - 82x  - 734x x  - 1569x x  - 798x x  - 366x x  + 1289x  - 569x x  - 254x x  + 237x x  - 1234x x  - 807x x  + 264x  - 202x x  - 616x x  + 44x x  + 1465x x  + 685x x  + 1630x x  - 406x  - 123x x  - 4x x  + 1583x x  + 1235x x  + 162x x  + 1034x x  - 1035x x  + 737x  + 660x x  + 1459x x  - 359x x  - 1291x x  + 1638x x  - 325x x  - 631x x  + 73x x  - 1471x , - 1340x  + 31x x  - 994x  - 880x x  - 89x x  + 574x  + 760x x  - 1054x x  + 772x x  - 239x  - 443x x  + 1240x x  + 637x x  - 1423x x  + 320x  - 1363x x  - 1139x x  - 158x x  - 325x x  - 1578x x  + 32x  + 695x x  + 305x x  + 1012x x  + 1492x x  + 1290x x  + 1579x x  - 342x  - 83x x  - 104x x  + 998x x  - 92x x  + 1554x x  + 201x x  - 237x x  + 160x  - 228x x  - 543x x  - 1147x x  - 376x x  + 1313x x  + 603x x  + 106x x  - 1361x x  + 699x , - 228x  - 1510x x  + 277x  - 4x x  - 22x x  - 1526x  + 234x x  + 969x x  + 1253x x  - 1426x  - 1474x x  + 947x x  + 194x x  - 316x x  - 988x  - 1211x x  + 1087x x  + 536x x  - 491x x  + 870x x  - 659x  + 1490x x  - 469x x  + 1190x x  + 807x x  + 650x x  + 448x x  - 1353x  - 218x x  + 759x x  - 253x x  + 830x x  - 1080x x  - 143x x  - 1313x x  - 374x  - 180x x  + 741x x  + 742x x  - 1254x x  + 458x x  - 345x x  + 597x x  + 1567x x  - 31x , 1120x  + 709x x  - 1538x  - 1048x x  - 162x x  - 1518x  - 73x x  + 380x x  + 533x x  - 286x  + 1374x x  - 74x x  - 22x x  + 1535x x  - 1071x  - 839x x  - 560x x  + 928x x  + 335x x  - 1008x x  + 810x  - 448x x  - 357x x  - 107x x  + 40x x  + 784x x  - 1423x x  + 1276x  + 147x x  + 443x x  - 598x x  - 1077x x  - 1214x x  + 322x x  - 1408x x  + 72x  - 63x x  - 1513x x  - 791x x  + 11x x  + 77x x  + 836x x  - 1100x x  + 1637x x  - 788x , 1331x  + 318x x  - 704x  + 51x x  + 275x x  + 1149x  + 1526x x  + 768x x  + 414x x  - 782x  - 262x x  + 686x x  - 380x x  + 1377x x  + 1077x  + 1650x x  - 1129x x  - 508x x  + 846x x  + 1513x x  + 460x  - 1626x x  - 1024x x  + 862x x  + 1352x x  - 188x x  - 1382x x  - 650x  + 55x x  - 326x x  + 1037x x  + 705x x  - 667x x  + 1483x x  + 1661x x  - 1652x  - 1052x x  - 692x x  - 542x x  + 162x x  + 582x x  - 1369x x  + 934x x  + 1392x x  + 1227x , - 346x  + 1408x x  - 1225x  - 1536x x  - 1028x x  - 985x  - 210x x  - 1312x x  + 915x x  + 1633x  - 202x x  - 1636x x  - 1653x x  - 480x x  - 1260x  - 813x x  - 1623x x  - 1429x x  + 1094x x  - 747x x  + 955x  + 898x x  - 795x x  - 35x x  - 566x x  + 1631x x  - 324x x  + 926x  - 132x x  - 9x x  - 1290x x  - 543x x  + 902x x  + 735x x  - 342x x  - 400x  + 900x x  - 463x x  + 694x x  - 1262x x  - 1449x x  - 448x x  - 1402x x  - 731x x  - 996x , 301x  + 166x x  - 955x  - 739x x  - 1199x x  - 319x  + 1047x x  - 532x x  + 902x x  + 1195x  - 663x x  + 1215x x  - 534x x  - 332x x  - 973x  + 772x x  - 308x x  + 315x x  - 454x x  - 483x x  - 239x  - 1313x x  - 419x x  - 1340x x  - 1388x x  - 1340x x  - 1665x x  - 333x  - 465x x  - 1084x x  + 676x x  - 1612x x  - 288x x  + 11x x  - 1170x x  - 189x  + 498x x  - 889x x  + 693x x  + 1460x x  - 473x x  - 414x x  - 122x x  - 1659x x  - 1421x , 14x  - 1049x x  + 1506x  + 1235x x  + 642x x  - 1034x  + 460x x  + 150x x  + 760x x  - 1246x  - 1407x x  + 1570x x  + 1403x x  - 1610x x  - 431x  + 574x x  + 893x x  - 657x x  + 417x x  + 1362x x  + 224x  + 268x x  + 1097x x  + 1132x x  + 148x x  + 1331x x  - 77x x  - 756x  + 228x x  + 136x x  - 1484x x  - 1478x x  - 13x x  + 1620x x  - 701x x  - 769x  - 760x x  - 492x x  - 1077x x  - 1249x x  - 834x x  - 395x x  - 1358x x  - 988x x  + 113x , - 1634x  - 13x x  + 805x  - 21x x  - 1655x x  + 1479x  - 1510x x  - 646x x  + 225x x  - 1411x  + 1227x x  - 1108x x  + 1291x x  - 59x x  - 142x  + 586x x  - 676x x  + 655x x  - 1476x x  + 453x x  - 1076x  - 1152x x  + 1373x x  - 1191x x  - 416x x  + 699x x  + 317x x  + 825x  - 1560x x  - 488x x  - 1035x x  - 1561x x  - 644x x  - 1178x x  - 1320x x  + 158x  + 889x x  + 1444x x  - 1486x x  - 1211x x  + 1269x x  - 1228x x  + 568x x  + 1591x x  + 1207x , 105x  - 538x x  - 1222x  - 277x x  + 716x x  - 1067x  - 428x x  + 154x x  - 469x x  + 77x  + 538x x  - 179x x  + 921x x  - 223x x  + 1093x  - 262x x  + 1299x x  + 631x x  + 1486x x  - 1280x x  - 121x  - 50x x  - 978x x  - 694x x  - 531x x  + 505x x  + 1412x x  - 1061x  + 1202x x  + 448x x  - 187x x  + 1276x x  - 121x x  + 1361x x  + 697x x  + 682x  + 1592x x  + 705x x  - 227x x  - 7x x  - 1423x x  - 1446x x  - 1578x x  + 1511x x  + 917x , 1270x  - 391x x  - 1116x  - 287x x  + 653x x  + 1643x  + 1623x x  + 514x x  - 14x x  - 90x  + 1232x x  - 1434x x  + 1296x x  + 1522x x  + 136x  - 623x x  - 607x x  + 18x x  + 896x x  - 29x x  + 1059x  - 1053x x  + 1643x x  + 1652x x  - 1190x x  - 1073x x  + 1470x x  - 944x  - 93x x  - 187x x  - 994x x  - 1415x x  - 229x x  - 796x x  + 1642x x  + 1600x  - 344x x  + 905x x  + 1032x x  - 538x x  - 891x x  + 1243x x  + 1290x x  + 490x x  - 1148x , 1613x  + 175x x  - 1346x  - 1000x x  - 1217x x  - 729x  - 1296x x  + 1456x x  + 745x x  + 539x  + 525x x  - 811x x  + 753x x  + 1362x x  + 1629x  - 840x x  + 513x x  + 429x x  + 842x x  + 1414x x  - 308x  + 1415x x  - 1461x x  - 1135x x  + 701x x  + 766x x  + 785x x  + 1503x  + 147x x  + 929x x  - 1220x x  - 853x x  + 493x x  + 226x x  + 1416x x  + 280x  - 7x x  + 1632x x  + 520x x  + 1259x x  + 157x x  + 1596x x  + 655x x  - 42x x  - 586x })
    │ │ │                                   0       0 1        1        0 2        1 2       2       0 3        1 3       2 3        3       0 4       1 4        2 4       3 4       4      0 5        1 5        2 5       3 5        4 5       5       0 6       1 6        2 6        3 6       4 6        5 6        6       0 7       1 7        2 7      3 7        4 7        5 7       6 7      7        0 8        1 8        2 8       3 8        4 8      5 8        6 8        7 8       8         0       0 1       1        0 2        1 2       2       0 3        1 3       2 3        3        0 4       1 4       2 4      3 4      4        0 5       1 5        2 5       3 5       4 5       5       0 6       1 6       2 6       3 6       4 6       5 6       6        0 7        1 7       2 7       3 7      4 7        5 7       6 7       7       0 8       1 8        2 8        3 8       4 8      5 8        6 8       7 8        8        0        0 1        1        0 2       1 2       2       0 3        1 3       2 3       3        0 4       1 4        2 4       3 4        4        0 5       1 5       2 5       3 5       4 5       5        0 6        1 6       2 6       3 6       4 6        5 6       6      0 7       1 7       2 7       3 7        4 7        5 7       6 7        7      0 8       1 8        2 8        3 8        4 8        5 8        6 8       7 8        8        0        0 1        1        0 2        1 2       2        0 3        1 3       2 3      3       0 4        1 4       2 4       3 4        4       0 5       1 5       2 5        3 5       4 5       5       0 6       1 6      2 6        3 6       4 6        5 6       6       0 7     1 7        2 7        3 7       4 7        5 7        6 7       7       0 8        1 8       2 8        3 8        4 8       5 8       6 8      7 8        8         0      0 1       1       0 2      1 2       2       0 3        1 3       2 3       3       0 4        1 4       2 4        3 4       4        0 5        1 5       2 5       3 5        4 5      5       0 6       1 6        2 6        3 6        4 6        5 6       6      0 7       1 7       2 7      3 7        4 7       5 7       6 7       7       0 8       1 8        2 8       3 8        4 8       5 8       6 8        7 8       8        0        0 1       1     0 2      1 2        2       0 3       1 3        2 3        3        0 4       1 4       2 4       3 4       4        0 5        1 5       2 5       3 5       4 5       5        0 6       1 6        2 6       3 6       4 6       5 6        6       0 7       1 7       2 7       3 7        4 7       5 7        6 7       7       0 8       1 8       2 8        3 8       4 8       5 8       6 8        7 8      8       0       0 1        1        0 2       1 2        2      0 3       1 3       2 3       3        0 4      1 4      2 4        3 4        4       0 5       1 5       2 5       3 5        4 5       5       0 6       1 6       2 6      3 6       4 6        5 6        6       0 7       1 7       2 7        3 7        4 7       5 7        6 7      7      0 8        1 8       2 8      3 8      4 8       5 8        6 8        7 8       8       0       0 1       1      0 2       1 2        2        0 3       1 3       2 3       3       0 4       1 4       2 4        3 4        4        0 5        1 5       2 5       3 5        4 5       5        0 6        1 6       2 6        3 6       4 6        5 6       6      0 7       1 7        2 7       3 7       4 7        5 7        6 7        7        0 8       1 8       2 8       3 8       4 8        5 8       6 8        7 8        8        0        0 1        1        0 2        1 2       2       0 3        1 3       2 3        3       0 4        1 4        2 4       3 4        4       0 5        1 5        2 5        3 5       4 5       5       0 6       1 6      2 6       3 6        4 6       5 6       6       0 7     1 7        2 7       3 7       4 7       5 7       6 7       7       0 8       1 8       2 8        3 8        4 8       5 8        6 8       7 8       8      0       0 1       1       0 2        1 2       2        0 3       1 3       2 3        3       0 4        1 4       2 4       3 4       4       0 5       1 5       2 5       3 5       4 5       5        0 6       1 6        2 6        3 6        4 6        5 6       6       0 7        1 7       2 7        3 7       4 7      5 7        6 7       7       0 8       1 8       2 8        3 8       4 8       5 8       6 8        7 8        8     0        0 1        1        0 2       1 2        2       0 3       1 3       2 3        3        0 4        1 4        2 4        3 4       4       0 5       1 5       2 5       3 5        4 5       5       0 6        1 6        2 6       3 6        4 6      5 6       6       0 7       1 7        2 7        3 7      4 7        5 7       6 7       7       0 8       1 8        2 8        3 8       4 8       5 8        6 8       7 8       8         0      0 1       1      0 2        1 2        2        0 3       1 3       2 3        3        0 4        1 4        2 4      3 4       4       0 5       1 5       2 5        3 5       4 5        5        0 6        1 6        2 6       3 6       4 6       5 6       6        0 7       1 7        2 7        3 7       4 7        5 7        6 7       7       0 8        1 8        2 8        3 8        4 8        5 8       6 8        7 8        8      0       0 1        1       0 2       1 2        2       0 3       1 3       2 3      3       0 4       1 4       2 4       3 4        4       0 5        1 5       2 5        3 5        4 5       5      0 6       1 6       2 6       3 6       4 6        5 6        6        0 7       1 7       2 7        3 7       4 7        5 7       6 7       7        0 8       1 8       2 8     3 8        4 8        5 8        6 8        7 8       8       0       0 1        1       0 2       1 2        2        0 3       1 3      2 3      3        0 4        1 4        2 4        3 4       4       0 5       1 5      2 5       3 5      4 5        5        0 6        1 6        2 6        3 6        4 6        5 6       6      0 7       1 7       2 7        3 7       4 7       5 7        6 7        7       0 8       1 8        2 8       3 8       4 8        5 8        6 8       7 8        8       0       0 1        1        0 2        1 2       2        0 3        1 3       2 3       3       0 4       1 4       2 4        3 4        4       0 5       1 5       2 5       3 5        4 5       5        0 6        1 6        2 6       3 6       4 6       5 6        6       0 7       1 7        2 7       3 7       4 7       5 7        6 7       7     0 8        1 8       2 8        3 8       4 8        5 8       6 8      7 8       8
    │ │ │  
    │ │ │  o4 : RingMap ringP8 <-- ringP14
    │ │ │  
    │ │ │  i5 : time degreeMap phi
    │ │ │ - -- used 0.0457634s (cpu); 0.0457644s (thread); 0s (gc)
    │ │ │ + -- used 0.0567179s (cpu); 0.0567184s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │  
    │ │ │  i6 : -- Compose phi:P^8--->P^14 with a linear projection P^14--->P^8 from a general subspace of P^14 
    │ │ │       -- of dimension 5 (so that the composition phi':P^8--->P^8 must have degree equal to deg(G(1,5))=14)
    │ │ │       phi'=phi*map(ringP14,ringP8,for i to 8 list random(1,ringP14))
    │ │ │  
    │ │ │                                   2                  2                           2                                      2                                                 2                                                           2                                                                   2                                                                              2                                                                                          2        2                  2                              2                                       2                                                2                                                             2                                                                  2                                                                              2                                                                                            2        2                  2                             2                                       2                                                2                                                           2                                                                      2                                                                              2                                                                                         2         2                 2                            2                                       2                                                  2                                                             2                                                                    2                                                                                2                                                                                             2       2                   2                            2                                     2                                                2                                                          2                                                                  2                                                                                   2                                                                                            2        2                2                           2                                      2                                                  2                                                            2                                                                      2                                                                                 2                                                                                          2   2                   2                           2                                     2                                                  2                                                           2                                                                    2                                                                              2                                                                                         2      2                  2                           2                                      2                                                  2                                                             2                                                                       2                                                                              2                                                                                          2         2                  2                            2                                     2                                                 2                                                              2                                                                    2                                                                               2                                                                                        2
    │ │ │  o6 = map (ringP8, ringP8, {- 780x  - 506x x  + 1537x  - 132x x  - 928x x  + 386x  - 102x x  + 422x x  + 725x x  - 1073x  - 905x x  - 830x x  + 1500x x  + 276x x  + 1533x  - 653x x  + 1558x x  + 939x x  - 1432x x  + 462x x  - 329x  - 92x x  + 661x x  - 1298x x  - 684x x  + 70x x  - 715x x  + 1093x  + 581x x  + 329x x  + 454x x  - 911x x  - 84x x  - 1452x x  - 809x x  + 1202x  + 1353x x  + 1503x x  + 482x x  + 893x x  - 643x x  + 598x x  + 110x x  + 1064x x  - 472x , - 522x  - 583x x  + 1339x  + 1535x x  - 1317x x  + 1113x  - 169x x  + 1440x x  - 1657x x  + 721x  + 40x x  - 1576x x  - 367x x  + 257x x  - 1454x  + 1612x x  + 1529x x  - 1068x x  + 560x x  - 1441x x  + 608x  - 92x x  - 1006x x  + 285x x  + 102x x  - 397x x  + 66x x  - 643x  - 38x x  + 1380x x  + 1069x x  - 426x x  + 1147x x  + 982x x  + 10x x  - 662x  + 16x x  + 1561x x  + 1597x x  + 512x x  + 1288x x  - 1253x x  + 1317x x  + 1481x x  - 354x , - 640x  - 1551x x  + 469x  + 1482x x  - 1593x x  - 986x  + 471x x  + 612x x  + 1228x x  + 1156x  - 731x x  + 1503x x  - 628x x  + 674x x  - 799x  + 1137x x  + 844x x  + 589x x  - 666x x  + 829x x  - 1024x  - 170x x  + 450x x  + 1497x x  + 1204x x  - 907x x  + 1621x x  - 417x  + 1297x x  + 1444x x  + 4x x  + 398x x  + 996x x  - 1031x x  + 239x x  + 303x  + 1215x x  - 83x x  + 1571x x  - 1543x x  - 925x x  - 694x x  + 151x x  - 520x x  + 880x , - 1210x  - 222x x  + 185x  + 245x x  + 1059x x  - 322x  + 238x x  + 962x x  + 1260x x  - 1581x  + 50x x  + 1352x x  - 1465x x  + 1555x x  + 1333x  + 1362x x  + 1365x x  + 1168x x  - 1401x x  + 149x x  - 652x  + 1378x x  - 557x x  - 112x x  + 26x x  + 315x x  + 111x x  + 1592x  - 283x x  - 1454x x  + 907x x  + 212x x  + 400x x  + 1049x x  - 882x x  - 1429x  - 183x x  + 1571x x  - 1286x x  - 1179x x  + 1319x x  + 240x x  - 1100x x  + 1500x x  - 348x , 1051x  - 1325x x  + 1354x  - 346x x  - 1532x x  - 466x  + 163x x  - 659x x  - 291x x  + 966x  + 789x x  + 393x x  + 403x x  - 1199x x  - 570x  - 93x x  - 492x x  - 418x x  + 713x x  - 1323x x  - 1384x  - 830x x  - 54x x  - 306x x  + 709x x  + 421x x  - 954x x  - 299x  + 1053x x  - 1080x x  + 686x x  + 170x x  - 1272x x  - 1661x x  + 1235x x  + 1553x  - 1454x x  - 1411x x  - 1195x x  - 962x x  + 737x x  - 390x x  + 957x x  + 1538x x  + 1234x , - 509x  + 9x x  - 1563x  - 710x x  - 642x x  + 541x  + 220x x  - 1214x x  - 16x x  + 1008x  - 1088x x  + 755x x  - 886x x  - 1433x x  + 1154x  + 1627x x  - 1547x x  - 951x x  + 866x x  + 163x x  - 1142x  - 668x x  + 1361x x  + 1324x x  - 490x x  + 282x x  - 1133x x  - 612x  + 805x x  - 126x x  + 1296x x  - 973x x  + 1271x x  - 1646x x  + 844x x  + 1073x  - 1452x x  - 1112x x  - 141x x  + 176x x  - 1579x x  - 78x x  + 848x x  - 1365x x  + 711x , x  + 1543x x  - 1076x  + 493x x  - 526x x  + 868x  - 582x x  - 996x x  + 206x x  - 419x  + 1258x x  - 391x x  + 1002x x  - 1539x x  + 931x  - 1504x x  + 810x x  + 324x x  + 1356x x  + 313x x  + 772x  + 299x x  + 1186x x  + 718x x  + 407x x  - 64x x  - 828x x  - 1393x  + 94x x  - 290x x  - 766x x  + 950x x  - 640x x  + 265x x  - 1640x x  - 1403x  - 126x x  + 891x x  - 1519x x  - 927x x  - 1335x x  - 1448x x  - x x  - 1103x x  - 1152x , 821x  + 558x x  - 1174x  - 168x x  + 986x x  + 790x  + 549x x  + 817x x  + 1396x x  + 695x  + 1211x x  + 878x x  - 1061x x  - 1244x x  - 880x  + 1409x x  - 567x x  + 1240x x  + 1126x x  - 1262x x  + 490x  + 1553x x  + 1276x x  + 805x x  + 576x x  - 1076x x  + 1617x x  - 495x  - 750x x  - 277x x  + 544x x  + 1479x x  - 784x x  - 64x x  - 1203x x  + 405x  + 1013x x  + 604x x  + 1301x x  + 1003x x  + 235x x  + 696x x  + 939x x  - 714x x  - 879x , - 1452x  + 727x x  - 1159x  + 449x x  - 1169x x  + 732x  + 575x x  - 600x x  + 924x x  - 837x  + 1298x x  - 860x x  + 1010x x  + 774x x  + 319x  + 1087x x  - 1120x x  + 1439x x  + 1175x x  - 1648x x  + 985x  - 1317x x  - 878x x  + 399x x  - 1339x x  + 70x x  - 463x x  + 470x  - 628x x  - 907x x  + 748x x  + 98x x  + 1150x x  + 1140x x  + 1308x x  + 621x  + 369x x  - 991x x  - 1186x x  + 61x x  - 907x x  - 681x x  - 1528x x  + 717x x  + 854x })
    │ │ │                                   0       0 1        1       0 2       1 2       2       0 3       1 3       2 3        3       0 4       1 4        2 4       3 4        4       0 5        1 5       2 5        3 5       4 5       5      0 6       1 6        2 6       3 6      4 6       5 6        6       0 7       1 7       2 7       3 7      4 7        5 7       6 7        7        0 8        1 8       2 8       3 8       4 8       5 8       6 8        7 8       8        0       0 1        1        0 2        1 2        2       0 3        1 3        2 3       3      0 4        1 4       2 4       3 4        4        0 5        1 5        2 5       3 5        4 5       5      0 6        1 6       2 6       3 6       4 6      5 6       6      0 7        1 7        2 7       3 7        4 7       5 7      6 7       7      0 8        1 8        2 8       3 8        4 8        5 8        6 8        7 8       8        0        0 1       1        0 2        1 2       2       0 3       1 3        2 3        3       0 4        1 4       2 4       3 4       4        0 5       1 5       2 5       3 5       4 5        5       0 6       1 6        2 6        3 6       4 6        5 6       6        0 7        1 7     2 7       3 7       4 7        5 7       6 7       7        0 8      1 8        2 8        3 8       4 8       5 8       6 8       7 8       8         0       0 1       1       0 2        1 2       2       0 3       1 3        2 3        3      0 4        1 4        2 4        3 4        4        0 5        1 5        2 5        3 5       4 5       5        0 6       1 6       2 6      3 6       4 6       5 6        6       0 7        1 7       2 7       3 7       4 7        5 7       6 7        7       0 8        1 8        2 8        3 8        4 8       5 8        6 8        7 8       8       0        0 1        1       0 2        1 2       2       0 3       1 3       2 3       3       0 4       1 4       2 4        3 4       4      0 5       1 5       2 5       3 5        4 5        5       0 6      1 6       2 6       3 6       4 6       5 6       6        0 7        1 7       2 7       3 7        4 7        5 7        6 7        7        0 8        1 8        2 8       3 8       4 8       5 8       6 8        7 8        8        0     0 1        1       0 2       1 2       2       0 3        1 3      2 3        3        0 4       1 4       2 4        3 4        4        0 5        1 5       2 5       3 5       4 5        5       0 6        1 6        2 6       3 6       4 6        5 6       6       0 7       1 7        2 7       3 7        4 7        5 7       6 7        7        0 8        1 8       2 8       3 8        4 8      5 8       6 8        7 8       8   0        0 1        1       0 2       1 2       2       0 3       1 3       2 3       3        0 4       1 4        2 4        3 4       4        0 5       1 5       2 5        3 5       4 5       5       0 6        1 6       2 6       3 6      4 6       5 6        6      0 7       1 7       2 7       3 7       4 7       5 7        6 7        7       0 8       1 8        2 8       3 8        4 8        5 8    6 8        7 8        8      0       0 1        1       0 2       1 2       2       0 3       1 3        2 3       3        0 4       1 4        2 4        3 4       4        0 5       1 5        2 5        3 5        4 5       5        0 6        1 6       2 6       3 6        4 6        5 6       6       0 7       1 7       2 7        3 7       4 7      5 7        6 7       7        0 8       1 8        2 8        3 8       4 8       5 8       6 8       7 8       8         0       0 1        1       0 2        1 2       2       0 3       1 3       2 3       3        0 4       1 4        2 4       3 4       4        0 5        1 5        2 5        3 5        4 5       5        0 6       1 6       2 6        3 6      4 6       5 6       6       0 7       1 7       2 7      3 7        4 7        5 7        6 7       7       0 8       1 8        2 8      3 8       4 8       5 8        6 8       7 8       8
    │ │ │  
    │ │ │  o6 : RingMap ringP8 <-- ringP8
    │ │ │  
    │ │ │  i7 : time degreeMap phi'
    │ │ │ - -- used 1.25058s (cpu); 0.717537s (thread); 0s (gc)
    │ │ │ + -- used 1.47848s (cpu); 0.919267s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 14
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_force__Image.out
    │ │ │ @@ -5,14 +5,14 @@
    │ │ │  o2 : Ideal of P6
    │ │ │  
    │ │ │  i3 : Phi = rationalMap(X,Dominant=>2);
    │ │ │  
    │ │ │  o3 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i4 : time forceImage(Phi,ideal 0_(target Phi))
    │ │ │ - -- used 0.000650229s (cpu); 0.000643546s (thread); 0s (gc)
    │ │ │ + -- used 0.000887956s (cpu); 0.000882588s (thread); 0s (gc)
    │ │ │  
    │ │ │  i5 : Phi;
    │ │ │  
    │ │ │  o5 : RationalMap (cubic dominant rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_graph.out
    │ │ │ @@ -35,15 +35,15 @@
    │ │ │                        - x  + x x
    │ │ │                           3    2 4
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │  
    │ │ │  i3 : time (p1,p2) = graph phi;
    │ │ │ - -- used 0.0163279s (cpu); 0.0160383s (thread); 0s (gc)
    │ │ │ + -- used 0.0550647s (cpu); 0.0237999s (thread); 0s (gc)
    │ │ │  
    │ │ │  i4 : p1
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │                                    ZZ                                 ZZ
    │ │ │       source: subvariety of Proj(------[x , x , x , x , x ]) x Proj(------[y , y , y , y , y , y ]) defined by
    │ │ │                                  190181  0   1   2   3   4          190181  0   1   2   3   4   5
    │ │ │ @@ -173,15 +173,15 @@
    │ │ │  i8 : projectiveDegrees p2
    │ │ │  
    │ │ │  o8 = {51, 28, 14, 6, 2}
    │ │ │  
    │ │ │  o8 : List
    │ │ │  
    │ │ │  i9 : time g = graph p2;
    │ │ │ - -- used 0.0333595s (cpu); 0.0330733s (thread); 0s (gc)
    │ │ │ + -- used 0.0677857s (cpu); 0.0385186s (thread); 0s (gc)
    │ │ │  
    │ │ │  i10 : g_0;
    │ │ │  
    │ │ │  o10 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to PP^4)
    │ │ │  
    │ │ │  i11 : g_1;
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_ideal_lp__Rational__Map_rp.out
    │ │ │ @@ -33,15 +33,15 @@
    │ │ │                        x  - x x
    │ │ │                         1    0 3
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic rational map from hypersurface in PP^5 to PP^4)
    │ │ │  
    │ │ │  i3 : time ideal phi
    │ │ │ - -- used 0.00349994s (cpu); 0.00349466s (thread); 0s (gc)
    │ │ │ + -- used 0.00425008s (cpu); 0.00424618s (thread); 0s (gc)
    │ │ │  
    │ │ │               2                                     2                      
    │ │ │  o3 = ideal (x  - x x , x x  - x x  + x x , x x  - x  + x x , x x  - x x  +
    │ │ │               4    3 5   2 4    3 4    1 5   2 3    3    1 4   1 2    1 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │              2
    │ │ │       x x , x  - x x )
    │ │ │ @@ -108,15 +108,15 @@
    │ │ │                        y
    │ │ │                         4
    │ │ │                       }
    │ │ │  
    │ │ │  o5 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^5 x PP^4 to PP^4)
    │ │ │  
    │ │ │  i6 : time ideal phi'
    │ │ │ - -- used 0.0958263s (cpu); 0.0958318s (thread); 0s (gc)
    │ │ │ + -- used 0.109886s (cpu); 0.109888s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = ideal 1
    │ │ │  
    │ │ │                                                                                                              QQ[x ..x , y ..y ]
    │ │ │                                                                                                                  0   5   0   4
    │ │ │  o6 : Ideal of --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    │ │ │                                                                                                                                                                                                       2
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse__Map.out
    │ │ │ @@ -72,15 +72,15 @@
    │ │ │                        w w  - w w  + w w
    │ │ │                         2 4    1 5    0 6
    │ │ │                       }
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic Cremona transformation of PP^20)
    │ │ │  
    │ │ │  i2 : time psi = inverseMap phi
    │ │ │ - -- used 0.160001s (cpu); 0.105062s (thread); 0s (gc)
    │ │ │ + -- used 0.235496s (cpu); 0.135689s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = -- rational map --
    │ │ │       source: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       target: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       defining forms: {
    │ │ │ @@ -158,15 +158,15 @@
    │ │ │  o4 = map (QQ[w ..w  ], QQ[w ..w  ], {w  w   - w  w   - w  w   - w  w   - w w  , w  w   - w  w   - w  w   - w  w   - w w  , w  w   - w  w   - w  w   - w  w   - w w  , w  w   - w  w   + w  w   - w  w   - w w  , w  w   - w  w   + w  w   + w  w   - w w  , w w   - w w   + w w   + w w   + w w  , w  w   - w  w   + w  w   - w  w   - w w  , w  w   - w  w   + w  w   + w  w   - w w  , w w   - w w   + w w   + w w   + w w  , w  w   - w  w   - w  w   + w  w   - w w  , w w   - w w   - w w   + w w   + w w  , w  w   - w  w   - w  w   + w  w   - w w  , w  w   - w  w   - w  w   + w  w   - w w  , w w   - w w   - w w   + w w   + w w  , w w   - w w   - w w   + w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   + w w   - w w  , w w   - w w   + w w   + w w   - w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   + w w   - w w  , w w   - w w   - w w   + w w   - w w  , w w  - w w  - w w  + w w  - w w })
    │ │ │                0   26       0   26     21 22    20 23    15 24    10 25    0 26   19 22    18 23    16 24    11 25    1 26   19 20    18 21    17 24    12 25    2 26   15 19    16 21    17 23    13 25    3 26   10 19    11 21    12 23    13 24    4 26   0 19    1 21    2 23    3 24    4 25   15 18    16 20    17 22    14 25    5 26   10 18    11 20    12 22    14 24    6 26   0 18    1 20    2 22    5 24    6 25   12 16    11 17    13 18    14 19    7 26   2 16    1 17    3 18    5 19    7 25   12 15    10 17    13 20    14 21    8 26   11 15    10 16    13 22    14 23    9 26   2 15    0 17    3 20    5 21    8 25   1 15    0 16    3 22    5 23    9 25   5 13    3 14    7 15    8 16    9 17   5 12    2 14    6 17    8 18    7 20   3 12    2 13    4 17    8 19    7 21   5 11    1 14    6 16    9 18    7 22   3 11    1 13    4 16    9 19    7 23   2 11    1 12    4 18    6 19    7 24   7 10    8 11    9 12    6 13    4 14   5 10    0 14    6 15    9 20    8 22   3 10    0 13    4 15    9 21    8 23   2 10    0 12    4 20    6 21    8 24   1 10    0 11    4 22    6 23    9 24   4 5    3 6    0 7    1 8    2 9
    │ │ │  
    │ │ │  o4 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ │  
    │ │ │  i5 : time psi = inverseMap phi
    │ │ │ - -- used 0.352191s (cpu); 0.207925s (thread); 0s (gc)
    │ │ │ + -- used 0.419041s (cpu); 0.224983s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = map (QQ[w ..w  ], QQ[w ..w  ], {- w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , w  w   - w  w   + w  w   - w  w   - w w  , - w  w   + w  w   - w  w   + w  w   - w  w  , - w  w   + w  w   - w  w   + w  w   - w  w  , w w   - w w   + w w   + w  w   - w  w  , - w w   + w w   + w  w   + w w   - w w  , - w w   + w w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , w  w   - w  w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w  - w w  - w w   + w w   - w w  , - w w  + w w  + w w   - w w   + w w  , w w  - w w  - w w  + w w   - w w  })
    │ │ │                0   26       0   26       5 22    8 23    14 24    13 25    0 26     5 18    8 19    14 20    10 25    1 26     5 16    8 17    13 20    10 24    2 26     5 15    14 17    13 19    10 23    3 26     5 21    20 23    19 24    17 25    4 26     8 15    14 16    13 18    10 22    6 26     8 21    20 22    18 24    16 25    7 26   17 18    16 19    15 20    10 21    9 26     13 21    17 22    16 23    15 24    11 26     14 21    19 22    18 23    15 25    12 26   0 21    4 22    7 23    12 24    11 25     4 18    7 19    12 20    1 21    9 25     4 16    7 17    11 20    2 21    9 24     4 15    12 17    11 19    3 21    9 23     7 15    12 16    11 18    6 21    9 22   12 13    11 14    0 15    3 22    6 23   10 12    9 14    1 15    3 18    6 19   10 11    9 13    2 15    3 16    6 17   8 9    7 10    1 16    2 18    6 20   5 9    4 10    1 17    2 19    3 20   8 11    7 13    0 16    2 22    6 24   5 11    4 13    0 17    2 23    3 24   8 12    7 14    0 18    1 22    6 25   5 12    4 14    0 19    1 23    3 25   5 7    4 8    0 20    1 24    2 25     5 6    3 8    0 10    1 13    2 14   4 6    3 7    0 9    1 11    2 12
    │ │ │  
    │ │ │  o5 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse_lp__Rational__Map_rp.out
    │ │ │ @@ -28,15 +28,15 @@
    │ │ │                        - -------x  + ---------x x  + ------------x x  - ----------x x  - -----x  - -----------x x  + -------------x x x  + -------------x x x  - --------x x  - ----------x x  + -------------x x x  - ----------x x  - -----------x x  + ----------x x  + ------x  + -----------x x  + ----------x x x  - -----------x x x  - -------x x  + -------------x x x  + ------------x x x x  - -----------x x x  + -----------x x x  - ------------x x x  + ----------x x  - -----------x x  - ------------x x x  - ---------x x  - ------------x x x  - -----------x x x  + -----------x x  - ----------x x  + -------x x  + --------x x  + ------x  + ---------x x  - ------------x x x  - -------------x x x  - ----------x x  + --------------x x x  + -------------x x x x  - ------------x x x  + -------------x x x  + ------------x x x  + ----------x x  + -----------x x x  - -------------x x x x  - ----------x x x  + --------------x x x x  - -------------x x x x  + -------------x x x  - ------------x x x  + ---------x x x  - ------------x x x  + ---------x x  - ---------x x  - -----------x x x  - ----------x x  + -----------x x x  + -----------x x x  + ----------x x  - -----------x x x  - -----------x x x  - ------------x x x  - ----------x x  + ---------x x  - ------x x  - --------x x  - ----------x x  - -----x
    │ │ │                           290304 0    3888000  0 1    2939328000  0 1    163296000 0 1   20250 1    228614400  0 2    41150592000  0 1 2    41150592000  0 1 2    3888000 1 2     3572100  0 2    10287648000  0 1 2    342921600 1 2    114307200  0 2    63504000  1 2    25200 2     76204800  0 3    42336000  0 1 3    428652000  0 1 3    212625 1 3     5334336000  0 2 3    9601804800  0 1 2 3    489888000  1 2 3    222264000  0 2 3    12002256000 1 2 3    66679200  2 3    666792000  0 3     666792000  0 1 3    47628000 1 3    1333584000  0 2 3    444528000  1 2 3    777924000  2 3    55566000  0 3    105840 1 3    3472875 2 3    11025 3    4665600  0 4    2939328000  0 1 4     4898880000  0 1 4    29160000  1 4     41150592000  0 2 4    20575296000  0 1 2 4    4898880000  1 2 4    20575296000  0 2 4    1371686400  1 2 4    95256000  2 4     40824000  0 3 4     8573040000  0 1 3 4    11664000  1 3 4     24004512000  0 2 3 4    34292160000  1 2 3 4    12002256000  2 3 4     333396000  0 3 4    5292000  1 3 4    1333584000  2 3 4    3969000  3 4    6804000  0 4    272160000  0 1 4    58320000  1 4    190512000  0 2 4    4898880000 1 2 4    190512000 2 4    476280000  0 3 4    204120000  1 3 4    2857680000  2 3 4    23814000  3 4    30618000 0 4    46656 1 4   12757500 2 4    51030000  3 4   30375 4
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (rational map from PP^4 to PP^4)
    │ │ │  
    │ │ │  i3 : time inverse phi
    │ │ │ - -- used 0.061068s (cpu); 0.0610645s (thread); 0s (gc)
    │ │ │ + -- used 0.114781s (cpu); 0.114784s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       defining forms: {
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Birational.out
    │ │ │ @@ -40,18 +40,18 @@
    │ │ │                        - t  + t t
    │ │ │                           3    2 4
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │  
    │ │ │  i3 : time isBirational phi
    │ │ │ - -- used 0.0179228s (cpu); 0.0179213s (thread); 0s (gc)
    │ │ │ + -- used 0.0223973s (cpu); 0.022399s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │  
    │ │ │  i4 : time isBirational(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0136015s (cpu); 0.0132332s (thread); 0s (gc)
    │ │ │ + -- used 0.0440701s (cpu); 0.0184816s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Dominant.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  i2 : phi = rationalMap ideal jacobian ideal det matrix{{x_0..x_4},{x_1..x_5},{x_2..x_6},{x_3..x_7},{x_4..x_8}};
    │ │ │  
    │ │ │  o2 : RationalMap (rational map from PP^8 to PP^8)
    │ │ │  
    │ │ │  i3 : time isDominant(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 2.50039s (cpu); 1.97646s (thread); 0s (gc)
    │ │ │ + -- used 2.76343s (cpu); 2.27517s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │  
    │ │ │  i4 : P7 = ZZ/101[x_0..x_7];
    │ │ │  
    │ │ │  i5 : -- hyperelliptic curve of genus 3
    │ │ │       C = ideal(x_4*x_5+23*x_5^2-23*x_0*x_6-18*x_1*x_6+6*x_2*x_6+37*x_3*x_6+23*x_4*x_6-26*x_5*x_6+2*x_6^2-25*x_0*x_7+45*x_1*x_7+30*x_2*x_7-49*x_3*x_7-49*x_4*x_7+50*x_5*x_7,x_3*x_5-24*x_5^2+21*x_0*x_6+x_1*x_6+46*x_3*x_6+27*x_4*x_6+5*x_5*x_6+35*x_6^2+20*x_0*x_7-23*x_1*x_7+8*x_2*x_7-22*x_3*x_7+20*x_4*x_7-15*x_5*x_7,x_2*x_5+47*x_5^2-40*x_0*x_6+37*x_1*x_6-25*x_2*x_6-22*x_3*x_6-8*x_4*x_6+27*x_5*x_6+15*x_6^2-23*x_0*x_7-42*x_1*x_7+27*x_2*x_7+35*x_3*x_7+39*x_4*x_7+24*x_5*x_7,x_1*x_5+15*x_5^2+49*x_0*x_6+8*x_1*x_6-31*x_2*x_6+9*x_3*x_6+38*x_4*x_6-36*x_5*x_6-30*x_6^2-33*x_0*x_7+26*x_1*x_7+32*x_2*x_7+27*x_3*x_7+6*x_4*x_7+36*x_5*x_7,x_0*x_5+30*x_5^2-11*x_0*x_6-38*x_1*x_6+13*x_2*x_6-32*x_3*x_6-30*x_4*x_6+4*x_5*x_6-28*x_6^2-30*x_0*x_7-6*x_1*x_7-45*x_2*x_7+34*x_3*x_7+20*x_4*x_7+48*x_5*x_7,x_3*x_4+46*x_5^2-37*x_0*x_6+27*x_1*x_6+33*x_2*x_6+8*x_3*x_6-32*x_4*x_6+42*x_5*x_6-34*x_6^2-37*x_0*x_7-28*x_1*x_7+10*x_2*x_7-27*x_3*x_7-42*x_4*x_7-8*x_5*x_7,x_2*x_4-25*x_5^2-4*x_0*x_6+2*x_1*x_6-31*x_2*x_6-5*x_3*x_6+16*x_4*x_6-24*x_5*x_6+31*x_6^2-30*x_0*x_7+32*x_1*x_7+12*x_2*x_7-40*x_3*x_7+3*x_4*x_7-28*x_5*x_7,x_0*x_4+15*x_5^2+48*x_0*x_6-50*x_1*x_6+46*x_2*x_6-48*x_3*x_6-23*x_4*x_6-28*x_5*x_6+39*x_6^2+38*x_1*x_7-5*x_3*x_7+5*x_4*x_7-34*x_5*x_7,x_3^2-31*x_5^2+41*x_0*x_6-30*x_1*x_6-4*x_2*x_6+43*x_3*x_6+23*x_4*x_6+7*x_5*x_6+31*x_6^2-19*x_0*x_7+25*x_1*x_7-49*x_2*x_7-16*x_3*x_7-45*x_4*x_7+25*x_5*x_7,x_2*x_3+13*x_5^2-45*x_0*x_6-22*x_1*x_6+33*x_2*x_6-26*x_3*x_6-21*x_4*x_6+34*x_5*x_6-21*x_6^2-47*x_0*x_7-10*x_1*x_7+29*x_2*x_7-46*x_3*x_7-x_4*x_7+20*x_5*x_7,x_1*x_3+22*x_5^2+4*x_0*x_6+3*x_1*x_6+45*x_2*x_6+37*x_3*x_6+17*x_4*x_6+36*x_5*x_6-2*x_6^2-31*x_0*x_7+3*x_1*x_7-12*x_2*x_7+19*x_3*x_7+28*x_4*x_7+30*x_5*x_7,x_0*x_3-47*x_5^2-43*x_0*x_6+6*x_1*x_6-40*x_2*x_6+21*x_3*x_6+26*x_4*x_6-5*x_5*x_6-5*x_6^2+4*x_0*x_7-15*x_1*x_7+18*x_2*x_7-31*x_3*x_7+50*x_4*x_7-46*x_5*x_7,x_2^2+4*x_5^2+31*x_0*x_6+41*x_1*x_6+31*x_2*x_6+28*x_3*x_6+42*x_4*x_6-28*x_5*x_6-4*x_6^2-7*x_0*x_7+15*x_1*x_7-9*x_2*x_7+31*x_3*x_7+3*x_4*x_7+7*x_5*x_7,x_1*x_2-46*x_5^2-6*x_0*x_6-50*x_1*x_6+32*x_2*x_6-10*x_3*x_6+42*x_4*x_6+33*x_5*x_6+18*x_6^2-9*x_0*x_7-20*x_1*x_7+45*x_2*x_7-9*x_3*x_7+10*x_4*x_7-8*x_5*x_7,x_0*x_2-9*x_5^2+34*x_0*x_6-45*x_1*x_6+19*x_2*x_6+24*x_3*x_6+23*x_4*x_6-37*x_5*x_6-44*x_6^2+24*x_0*x_7-33*x_2*x_7+41*x_3*x_7-40*x_4*x_7+4*x_5*x_7,x_1^2+x_1*x_4+x_4^2-28*x_5^2-33*x_0*x_6-17*x_1*x_6+11*x_3*x_6+20*x_4*x_6+25*x_5*x_6-21*x_6^2-22*x_0*x_7+24*x_1*x_7-14*x_2*x_7+5*x_3*x_7-39*x_4*x_7-18*x_5*x_7,x_0*x_1-47*x_5^2-5*x_0*x_6-9*x_1*x_6-45*x_2*x_6+48*x_3*x_6+45*x_4*x_6-29*x_5*x_6+3*x_6^2+29*x_0*x_7+40*x_1*x_7+46*x_2*x_7+27*x_3*x_7-36*x_4*x_7-39*x_5*x_7,x_0^2-31*x_5^2+36*x_0*x_6-30*x_1*x_6-10*x_2*x_6+42*x_3*x_6+9*x_4*x_6+34*x_5*x_6-6*x_6^2+48*x_0*x_7-47*x_1*x_7-19*x_2*x_7+25*x_3*x_7+28*x_4*x_7+34*x_5*x_7);
    │ │ │ @@ -21,12 +21,12 @@
    │ │ │  
    │ │ │  i6 : phi = rationalMap(C,3,2);
    │ │ │  
    │ │ │  o6 : RationalMap (cubic rational map from PP^7 to PP^7)
    │ │ │  
    │ │ │  i7 : time isDominant(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 3.85067s (cpu); 2.52355s (thread); 0s (gc)
    │ │ │ + -- used 3.95494s (cpu); 2.77947s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = false
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_kernel_lp__Ring__Map_cm__Z__Z_rp.out
    │ │ │ @@ -6,23 +6,23 @@
    │ │ │  o1 = map (QQ[x ..x ], QQ[y ..y  ], {- 5x x  + x x  + x x  + 35x x  - 7x x  + x x  - x x  - 49x  - 5x x  + 2x x  - x x  + 27x x  - 4x  + x x  - 7x x  + 2x x  - 2x x  + 14x x  - 4x x , - x x  - 6x x  - 5x x  + 2x x  + x x  + x x  - 5x x  - x x  + 2x x  + 7x x  - 2x x  + 2x x  - 3x x , - 25x  + 9x x  + 10x x  - 2x x  - x  + 29x x  - x x  - 7x x  - 13x x  + 3x x  + x x  - x x  + 2x x  - x x  + 7x x  - 2x x  - 8x x  + 2x x  - 3x x , x x  + x x  + x  + 7x x  - 9x x  + 12x x  - 4x  + 2x x  + 2x x  - 14x x  + 4x x  + x x  - x x  - 14x x  + x x , - 5x x  + x x  - 7x x  + 8x x  - 5x x  + 2x x  - x x  + x x  - x x  + 7x x  - 2x x  - x x  + 7x x  - 2x x , x x  + x  - 7x x  - 8x x  + x x  + x x  + 2x x  - x x  + x x  - 7x x  + 2x x  + x x  - 7x x  + 2x x , x x  + x  - 8x x  + x x  + 6x x  - 2x  + x x  + x x  - 7x x  + 2x x  + x x  - 7x x  + 2x x , x x  - 7x x  + x x  + x x  - 7x x  + 2x  - x x , - 4x x  + x x  - x  - 7x x  + 8x x  + x x  - x x  - 6x x  + 2x  - x x  - x x  + 7x x  - 2x x  - x x  + 7x x  - 2x x , - 5x x  + 2x  + x x  - x  - x x  + 8x x  - 10x x  + 2x x  + 2x x  - 2x x  + 14x x  - 4x x  + 5x x  - 3x x  - 2x x  + 7x x  - 2x x  - 3x x , - 5x x  + x x  + x x  - 4x x  - x x  + x x  + x x , x x  - x x  + 5x x  + x x  - 14x x  - x x  - 8x x  - 8x x  + 2x x  + 4x x  + 2x x  + 4x x  + 3x x  - 7x x  + 2x x  - 3x x })
    │ │ │                0   8       0   11        0 3    2 4    3 4      0 5     2 5    3 5    4 5      5     0 6     2 6    4 6      5 6     6    4 7     5 7     6 7     4 8      5 8     6 8     1 2     1 5     0 6     1 6    4 6    5 6     0 7    1 7     2 7     5 7     6 7     1 8     7 8       0     0 2      0 4     2 4    4      0 5    2 5     4 5      0 6     4 6    5 6    0 7     2 7    4 7     5 7     6 7     0 8     4 8     7 8   2 4    3 4    4     2 5     4 5      5 6     6     3 7     4 7      5 7     6 7    3 8    4 8      5 8    6 8      0 4    2 4     2 5     4 5     0 6     2 6    4 6    5 6    4 7     5 7     6 7    4 8     5 8     6 8   0 4    4     1 5     4 5    0 6    1 6     4 6    5 6    4 7     5 7     6 7    4 8     5 8     6 8   2 3    4     4 5    4 6     5 6     6    3 7    4 7     5 7     6 7    4 8     5 8     6 8   1 3     1 5    1 6    4 6     5 6     6    3 7      0 3    3 4    4     0 5     4 5    0 6    4 6     5 6     6    3 7    4 7     5 7     6 7    4 8     5 8     6 8      0 2     2    2 4    4    2 5     4 5      0 6     5 6     2 7     4 7      5 7     6 7     0 8     2 8     4 8     5 8     6 8     7 8      0 1    1 2    1 4     0 6    1 6    4 6    0 7   0 2    1 2     0 4    1 4      1 5    2 5     4 5     0 6     1 6     4 6     2 7     0 8     1 8     5 8     6 8     7 8
    │ │ │  
    │ │ │  o1 : RingMap QQ[x ..x ] <-- QQ[y ..y  ]
    │ │ │                   0   8          0   11
    │ │ │  
    │ │ │  i2 : time kernel(phi,1)
    │ │ │ - -- used 0.0172216s (cpu); 0.0172186s (thread); 0s (gc)
    │ │ │ + -- used 0.0211963s (cpu); 0.0211957s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal ()
    │ │ │  
    │ │ │  o2 : Ideal of QQ[y ..y  ]
    │ │ │                    0   11
    │ │ │  
    │ │ │  i3 : time kernel(phi,2)
    │ │ │ - -- used 0.848508s (cpu); 0.44358s (thread); 0s (gc)
    │ │ │ + -- used 1.17382s (cpu); 0.549973s (thread); 0s (gc)
    │ │ │  
    │ │ │                             2                                                
    │ │ │  o3 = ideal (y y  + y y  + y  + 5y y  + y y  + 5y y  - y y  - 4y y  - 5y y  -
    │ │ │               2 4    3 4    4     2 5    3 5     4 5    1 6     2 6     5 6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                                                             
    │ │ │       4y y  - 2y y  - y y  + 4y y  - 5y y  - 4y y  + 3y y  - 4y y  - y y   -
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_parametrize_lp__Ideal_rp.out
    │ │ │ @@ -26,15 +26,15 @@
    │ │ │                8           9
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o2 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │  
    │ │ │  i3 : time parametrize L
    │ │ │ - -- used 0.0052255s (cpu); 0.00522062s (thread); 0s (gc)
    │ │ │ + -- used 0.00593595s (cpu); 0.00593509s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -116,15 +116,15 @@
    │ │ │               5 9           6 9           7 9           8 9           9
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o4 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │  
    │ │ │  i5 : time parametrize Q
    │ │ │ - -- used 0.556987s (cpu); 0.397597s (thread); 0s (gc)
    │ │ │ + -- used 0.562135s (cpu); 0.420996s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_point_lp__Quotient__Ring_rp.out
    │ │ │ @@ -1,15 +1,15 @@
    │ │ │  -- -*- M2-comint -*- hash: 3560583829489988690
    │ │ │  
    │ │ │  i1 : f = inverseMap specialQuadraticTransformation(9,ZZ/33331);
    │ │ │  
    │ │ │  o1 : RationalMap (cubic rational map from 8-dimensional subvariety of PP^11 to PP^8)
    │ │ │  
    │ │ │  i2 : time p = point source f
    │ │ │ - -- used 0.44597s (cpu); 0.215856s (thread); 0s (gc)
    │ │ │ + -- used 0.508042s (cpu); 0.221036s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal (y   - 9235y  , y  + 11075y  , y  - 5847y  , y  + 7396y  , y  +
    │ │ │               10        11   9         11   8        11   7        11   6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       13530y  , y  + 4359y  , y  - 2924y  , y  + 13040y  , y  + 6904y  , y  -
    │ │ │             11   5        11   4        11   3         11   2        11   1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -20,12 +20,12 @@
    │ │ │                                                             -----[y ..y  ]
    │ │ │                                                             33331  0   11
    │ │ │  o2 : Ideal of -------------------------------------------------------------------------------------------------------
    │ │ │                (y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y , y y  - y y  + y y )
    │ │ │                  6 7    5 8    4 11   3 7    2 8    1 11   3 5    2 6    0 11   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │  i3 : time p == f^* f p
    │ │ │ - -- used 0.2051s (cpu); 0.130409s (thread); 0s (gc)
    │ │ │ + -- used 0.232304s (cpu); 0.135531s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_projective__Degrees.out
    │ │ │ @@ -8,15 +8,15 @@
    │ │ │                       0   4              0   5       1    0 2     1 2    0 3     2    1 3     1 3    0 4     2 3    1 4     3    2 4
    │ │ │  
    │ │ │  o2 : RingMap GF 109561[t ..t ] <-- GF 109561[x ..x ]
    │ │ │                          0   4                 0   5
    │ │ │  
    │ │ │  i3 : time projectiveDegrees(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0148041s (cpu); 0.0144893s (thread); 0s (gc)
    │ │ │ + -- used 0.0574287s (cpu); 0.0214412s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = {1, 2, 4, 4, 2}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : psi=inverseMap(toMap(phi,Dominant=>infinity))
    │ │ │  
    │ │ │ @@ -30,15 +30,15 @@
    │ │ │                           0   5
    │ │ │  o4 : RingMap ------------------ <-- GF 109561[t ..t ]
    │ │ │               x x  - x x  + x x                 0   4
    │ │ │                2 3    1 4    0 5
    │ │ │  
    │ │ │  i5 : time projectiveDegrees(psi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0112491s (cpu); 0.0109601s (thread); 0s (gc)
    │ │ │ + -- used 0.02459s (cpu); 0.012773s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = {2, 4, 4, 2, 1}
    │ │ │  
    │ │ │  o5 : List
    │ │ │  
    │ │ │  i6 : -- Cremona transformation of P^6 defined by the quadrics through a rational octic surface
    │ │ │       phi = map specialCremonaTransformation(7,ZZ/300007)
    │ │ │ @@ -48,21 +48,21 @@
    │ │ │            300007  0   6   300007  0   6     2 4    1 5          0 4          1 4          4         0 5          1 5         2 5          4 5         5          3 6         4 6         5 6   2 3    0 5          1 3          1 4          4         0 5          1 5         2 5          4 5         5          3 6         4 6         5 6        0 3         1 4         3 4         4          0 5         1 5         2 5          3 5          4 5         5         3 6          4 6         5 6          0 1          1         0 2          1 2         2          1 4          1 5         2 5          0 6         1 6         2 6         0          1         0 2         1 2         2         1 4          4         0 5         1 5          2 5          4 5         5         0 6         1 6          2 6          3 6         4 6         5 6
    │ │ │  
    │ │ │                 ZZ                 ZZ
    │ │ │  o6 : RingMap ------[x ..x ] <-- ------[x ..x ]
    │ │ │               300007  0   6      300007  0   6
    │ │ │  
    │ │ │  i7 : time projectiveDegrees phi
    │ │ │ - -- used 5.0365e-05s (cpu); 4.5084e-05s (thread); 0s (gc)
    │ │ │ + -- used 5.1133e-05s (cpu); 4.309e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {1, 2, 4, 8, 8, 4, 1}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : time projectiveDegrees(phi,NumDegrees=>1)
    │ │ │ - -- used 2.0038e-05s (cpu); 1.9887e-05s (thread); 0s (gc)
    │ │ │ + -- used 2.7846e-05s (cpu); 2.7662e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = {4, 1}
    │ │ │  
    │ │ │  o8 : List
    │ │ │  
    │ │ │  i9 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.out
    │ │ │ @@ -3,15 +3,15 @@
    │ │ │  i1 : ZZ/33331[x_0..x_6]; V = ideal(x_4^2-x_3*x_5,x_2*x_4-x_1*x_5,x_2*x_3-x_1*x_4,x_2^2-x_0*x_5,x_1*x_2-x_0*x_4,x_1^2-x_0*x_3,x_6);
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o2 : Ideal of -----[x ..x ]
    │ │ │                33331  0   6
    │ │ │  
    │ │ │  i3 : time phi = rationalMap(V,3,2)
    │ │ │ - -- used 0.0958343s (cpu); 0.0957853s (thread); 0s (gc)
    │ │ │ + -- used 0.118235s (cpu); 0.118018s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                      ZZ
    │ │ │       source: Proj(-----[x , x , x , x , x , x , x ])
    │ │ │                    33331  0   1   2   3   4   5   6
    │ │ │                      ZZ
    │ │ │       target: Proj(-----[y , y , y , y , y , y , y , y , y , y , y  , y  , y  , y  ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ring_cm__Tally_rp.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │                     0         1         2         3        4         5
    │ │ │  
    │ │ │  o4 : Ideal of X
    │ │ │  
    │ │ │  i5 : D = new Tally from {H => 2,C => 1};
    │ │ │  
    │ │ │  i6 : time phi = rationalMap D
    │ │ │ - -- used 0.0288893s (cpu); 0.0288899s (thread); 0s (gc)
    │ │ │ + -- used 0.0345504s (cpu); 0.0345514s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │                                    ZZ
    │ │ │       source: subvariety of Proj(-----[x , x , x , x , x , x ]) defined by
    │ │ │                                  65521  0   1   2   3   4   5
    │ │ │               {
    │ │ │                   2                  2
    │ │ │ @@ -123,13 +123,13 @@
    │ │ │                        x x x  + x x x  + x x x  + x x  + x x x  - 2x x x  + x x
    │ │ │                         0 1 5    0 2 5    1 2 5    2 5    1 4 5     2 4 5    4 5
    │ │ │                       }
    │ │ │  
    │ │ │  o6 : RationalMap (cubic rational map from surface in PP^5 to PP^20)
    │ │ │  
    │ │ │  i7 : time ? image(phi,"F4")
    │ │ │ - -- used 1.28365s (cpu); 0.786418s (thread); 0s (gc)
    │ │ │ + -- used 1.83073s (cpu); 0.707445s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = surface of degree 38 and sectional genus 20 in PP^20 cut out by 153
    │ │ │       hypersurfaces of degree 2
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cremona__Transformation.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1330846641081
    │ │ │  
    │ │ │  i1 : time apply(1..12,i -> describe specialCremonaTransformation(i,ZZ/3331))
    │ │ │ - -- used 1.47583s (cpu); 1.14802s (thread); 0s (gc)
    │ │ │ + -- used 1.63261s (cpu); 1.23775s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = (rational map defined by forms of degree 3,
    │ │ │        source variety: PP^3                      
    │ │ │        target variety: PP^3                      
    │ │ │        dominance: true                           
    │ │ │        birationality: true                       
    │ │ │        projective degrees: {1, 3, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cubic__Transformation.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730018912715498288
    │ │ │  
    │ │ │  i1 : time specialCubicTransformation 9
    │ │ │ - -- used 0.0942055s (cpu); 0.0942043s (thread); 0s (gc)
    │ │ │ + -- used 0.10734s (cpu); 0.107339s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6
    │ │ │       target: subvariety of Proj(QQ[t , t , t , t , t , t , t , t , t , t ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -62,15 +62,15 @@
    │ │ │                        8x x  - 12x x  + 24x  - 11x x  + 17x x x  - 24x x  - 10x x  + 11x x  - 3x  - 6x x  + 28x x x  - 70x x  - 21x x x  + 47x x x  - 13x x  - 14x x  + 66x x  - 22x x  - 20x  + 2x x  - 2x x x  - 10x x  - 11x x x  + 8x x x  - 5x x  + 3x x x  + 23x x x  - 11x x x  - 12x x  + 3x x  - 3x x  - 2x x  + 3x x  + x  - 11x x  + 14x x x  + 34x x  - 6x x x  - 16x x x  + 3x x  - 15x x x  - 66x x x  + 12x x x  + 30x x  - 19x x x  + 2x x x  - 5x x x  - 2x x x  - 7x x  + 6x x  + 21x x  - 3x x  - 21x x  + x x  + 5x  - 8x x  + 7x x x  - 32x x  - 13x x x  + 28x x x  - 9x x  + 70x x x  - 27x x x  - 36x x  + x x x  + 4x x x  - 7x x x  - 2x x x  + 3x x  - 25x x x  - 23x x x  + 4x x x  + 27x x x  - 14x x x  - 9x x  - 2x x  + 10x x  - 6x x  - 10x x  + 3x x  - 2x x
    │ │ │                          0 1      0 1      1      0 2      0 1 2      1 2      0 2      1 2     2     0 3      0 1 3      1 3      0 2 3      1 2 3      2 3      0 3      1 3      2 3      3     0 4     0 1 4      1 4      0 2 4     1 2 4     2 4     0 3 4      1 3 4      2 3 4      3 4     0 4     1 4     2 4     3 4    4      0 5      0 1 5      1 5     0 2 5      1 2 5     2 5      0 3 5      1 3 5      2 3 5      3 5      0 4 5     1 4 5     2 4 5     3 4 5     4 5     0 5      1 5     2 5      3 5    4 5     5     0 6     0 1 6      1 6      0 2 6      1 2 6     2 6      1 3 6      2 3 6      3 6    0 4 6     1 4 6     2 4 6     3 4 6     4 6      0 5 6      1 5 6     2 5 6      3 5 6      4 5 6     5 6     0 6      1 6     2 6      3 6     4 6     5 6
    │ │ │                       }
    │ │ │  
    │ │ │  o1 : RationalMap (cubic birational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i2 : time describe oo
    │ │ │ - -- used 0.0185862s (cpu); 0.0185866s (thread); 0s (gc)
    │ │ │ + -- used 0.0208837s (cpu); 0.0208845s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^6
    │ │ │       target variety: complete intersection of type (2,2,2) in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 3, 9, 17, 21, 16, 8}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Quadratic__Transformation.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729200582376678705
    │ │ │  
    │ │ │  i1 : time specialQuadraticTransformation 4
    │ │ │ - -- used 0.0735881s (cpu); 0.0735702s (thread); 0s (gc)
    │ │ │ + -- used 0.0817777s (cpu); 0.0815726s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6   7   8
    │ │ │       target: subvariety of Proj(QQ[y , y , y , y , y , y , y , y , y , y ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -50,15 +50,15 @@
    │ │ │                        x x  - x x  + x x  - x x  - x  - x x
    │ │ │                         0 1    0 4    3 6    4 6    6    5 7
    │ │ │                       }
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic birational map from PP^8 to hypersurface in PP^9)
    │ │ │  
    │ │ │  i2 : time describe oo
    │ │ │ - -- used 0.109311s (cpu); 0.029848s (thread); 0s (gc)
    │ │ │ + -- used 0.124479s (cpu); 0.0289614s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^8
    │ │ │       target variety: hypersurface of degree 3 in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 2, 4, 8, 16, 21, 17, 9, 3}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_to__External__String_lp__Rational__Map_rp.out
    │ │ │ @@ -7,34 +7,34 @@
    │ │ │  i2 : str = toExternalString phi;
    │ │ │  
    │ │ │  i3 : #str
    │ │ │  
    │ │ │  o3 = 6927
    │ │ │  
    │ │ │  i4 : time phi' = value str;
    │ │ │ - -- used 0.0222424s (cpu); 0.0222414s (thread); 0s (gc)
    │ │ │ + -- used 0.0271641s (cpu); 0.027162s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │  
    │ │ │  i5 : time describe phi'
    │ │ │ - -- used 0.00518727s (cpu); 0.00518762s (thread); 0s (gc)
    │ │ │ + -- used 0.00651753s (cpu); 0.00651952s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^3
    │ │ │       target variety: smooth quadric hypersurface in PP^4
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {1, 3, 4, 2}
    │ │ │       number of minimal representatives: 1
    │ │ │       dimension base locus: 1
    │ │ │       degree base locus: 5
    │ │ │       coefficient ring: ZZ/33331
    │ │ │  
    │ │ │  i6 : time describe inverse phi'
    │ │ │ - -- used 0.00429438s (cpu); 0.00429504s (thread); 0s (gc)
    │ │ │ + -- used 0.00522394s (cpu); 0.00522827s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = rational map defined by forms of degree 2
    │ │ │       source variety: smooth quadric hypersurface in PP^4
    │ │ │       target variety: PP^3
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {2, 4, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Chern__Schwartz__Mac__Pherson.html
    │ │ │ @@ -97,30 +97,30 @@
    │ │ │  o2 : Ideal of GF 78125[x ..x ]
    │ │ │                          0   4
    │ │ │
    │ │ │
    i3 : time ChernSchwartzMacPherson C
    │ │ │ - -- used 2.22491s (cpu); 1.26478s (thread); 0s (gc)
    │ │ │ + -- used 2.54937s (cpu); 1.23001s (thread); 0s (gc)
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o3 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o3 : -----
    │ │ │          5
    │ │ │         H
    │ │ │
    │ │ │
    i4 : time ChernSchwartzMacPherson(C,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 1.33783s (cpu); 0.951359s (thread); 0s (gc)
    │ │ │ + -- used 1.56651s (cpu); 1.00413s (thread); 0s (gc)
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o4 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │          5
    │ │ │ @@ -167,30 +167,30 @@
    │ │ │  o8 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │
    │ │ │
    i9 : time ChernClass G
    │ │ │ - -- used 0.32008s (cpu); 0.18723s (thread); 0s (gc)
    │ │ │ + -- used 0.396739s (cpu); 0.210773s (thread); 0s (gc)
    │ │ │  
    │ │ │          9      8      7      6      5      4     3
    │ │ │  o9 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o9 : -----
    │ │ │         10
    │ │ │        H
    │ │ │
    │ │ │
    i10 : time ChernClass(G,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.107679s (cpu); 0.0382531s (thread); 0s (gc)
    │ │ │ + -- used 0.199055s (cpu); 0.0461506s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6      5      4     3
    │ │ │  o10 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o10 : -----
    │ │ │          10
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -39,26 +39,26 @@
    │ │ │ │                 2                           2
    │ │ │ │  o2 = ideal (- x  + x x , - x x  + x x , - x  + x x )
    │ │ │ │                 1    0 2     1 2    0 3     2    1 3
    │ │ │ │  
    │ │ │ │  o2 : Ideal of GF 78125[x ..x ]
    │ │ │ │                          0   4
    │ │ │ │  i3 : time ChernSchwartzMacPherson C
    │ │ │ │ - -- used 2.22491s (cpu); 1.26478s (thread); 0s (gc)
    │ │ │ │ + -- used 2.54937s (cpu); 1.23001s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         4     3     2
    │ │ │ │  o3 = 3H  + 5H  + 3H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o3 : -----
    │ │ │ │          5
    │ │ │ │         H
    │ │ │ │  i4 : time ChernSchwartzMacPherson(C,Certify=>true)
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 1.33783s (cpu); 0.951359s (thread); 0s (gc)
    │ │ │ │ + -- used 1.56651s (cpu); 1.00413s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         4     3     2
    │ │ │ │  o4 = 3H  + 5H  + 3H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o4 : -----
    │ │ │ │          5
    │ │ │ │ @@ -88,26 +88,26 @@
    │ │ │ │          0,2 1,3    0,1 2,3
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o8 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p
    │ │ │ │  ]
    │ │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │ │  i9 : time ChernClass G
    │ │ │ │ - -- used 0.32008s (cpu); 0.18723s (thread); 0s (gc)
    │ │ │ │ + -- used 0.396739s (cpu); 0.210773s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          9      8      7      6      5      4     3
    │ │ │ │  o9 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o9 : -----
    │ │ │ │         10
    │ │ │ │        H
    │ │ │ │  i10 : time ChernClass(G,Certify=>true)
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 0.107679s (cpu); 0.0382531s (thread); 0s (gc)
    │ │ │ │ + -- used 0.199055s (cpu); 0.0461506s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9      8      7      6      5      4     3
    │ │ │ │  o10 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o10 : -----
    │ │ │ │          10
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Euler__Characteristic.html
    │ │ │ @@ -85,24 +85,24 @@
    │ │ │  o1 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │
    │ │ │
    i2 : time EulerCharacteristic I
    │ │ │ - -- used 0.32363s (cpu); 0.192112s (thread); 0s (gc)
    │ │ │ + -- used 0.347424s (cpu); 0.185975s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │
    │ │ │
    i3 : time EulerCharacteristic(I,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0112392s (cpu); 0.0109549s (thread); 0s (gc)
    │ │ │ + -- used 0.0806659s (cpu); 0.0211387s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = 10
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -31,20 +31,20 @@ │ │ │ │ i1 : I = Grassmannian(1,4,CoefficientRing=>ZZ/190181); │ │ │ │ │ │ │ │ ZZ │ │ │ │ o1 : Ideal of ------[p ..p , p , p , p , p , p , p , p , p │ │ │ │ ] │ │ │ │ 190181 0,1 0,2 1,2 0,3 1,3 2,3 0,4 1,4 2,4 3,4 │ │ │ │ i2 : time EulerCharacteristic I │ │ │ │ - -- used 0.32363s (cpu); 0.192112s (thread); 0s (gc) │ │ │ │ + -- used 0.347424s (cpu); 0.185975s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 10 │ │ │ │ i3 : time EulerCharacteristic(I,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 0.0112392s (cpu); 0.0109549s (thread); 0s (gc) │ │ │ │ + -- used 0.0806659s (cpu); 0.0211387s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = 10 │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ No test is made to see if the projective variety is smooth. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _e_u_l_e_r_(_P_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y_) -- topological Euler characteristic of a │ │ │ │ (smooth) projective variety │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp!.html │ │ │ @@ -86,15 +86,15 @@ │ │ │ target variety: PP^5 │ │ │ coefficient ring: QQ
    │ │ │
    │ │ │
    i4 : time phi! ;
    │ │ │ - -- used 0.0555729s (cpu); 0.0551512s (thread); 0s (gc)
    │ │ │ + -- used 0.115264s (cpu); 0.0738434s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (Cremona transformation of PP^5 of type (2,2))
    │ │ │
    │ │ │
    i5 : describe phi
    │ │ │ @@ -127,15 +127,15 @@
    │ │ │       target variety: PP^5
    │ │ │       coefficient ring: QQ
    │ │ │
    │ │ │
    i9 : time phi! ;
    │ │ │ - -- used 0.0359549s (cpu); 0.0356875s (thread); 0s (gc)
    │ │ │ + -- used 0.0692033s (cpu); 0.0559029s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : RationalMap (quadratic rational map from PP^4 to PP^5)
    │ │ │
    │ │ │
    i10 : describe phi
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,15 +21,15 @@
    │ │ │ │  i3 : describe phi
    │ │ │ │  
    │ │ │ │  o3 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^5
    │ │ │ │       target variety: PP^5
    │ │ │ │       coefficient ring: QQ
    │ │ │ │  i4 : time phi! ;
    │ │ │ │ - -- used 0.0555729s (cpu); 0.0551512s (thread); 0s (gc)
    │ │ │ │ + -- used 0.115264s (cpu); 0.0738434s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : RationalMap (Cremona transformation of PP^5 of type (2,2))
    │ │ │ │  i5 : describe phi
    │ │ │ │  
    │ │ │ │  o5 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^5
    │ │ │ │       target variety: PP^5
    │ │ │ │ @@ -47,15 +47,15 @@
    │ │ │ │  i8 : describe phi
    │ │ │ │  
    │ │ │ │  o8 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^4
    │ │ │ │       target variety: PP^5
    │ │ │ │       coefficient ring: QQ
    │ │ │ │  i9 : time phi! ;
    │ │ │ │ - -- used 0.0359549s (cpu); 0.0356875s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0692033s (cpu); 0.0559029s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 : RationalMap (quadratic rational map from PP^4 to PP^5)
    │ │ │ │  i10 : describe phi
    │ │ │ │  
    │ │ │ │  o10 = rational map defined by forms of degree 2
    │ │ │ │        source variety: PP^4
    │ │ │ │        target variety: PP^5
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp^_st_st_sp__Ideal.html
    │ │ │ @@ -153,15 +153,15 @@
    │ │ │  
    │ │ │  o5 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ │
    │ │ │
    i6 : time phi^** q
    │ │ │ - -- used 0.15576s (cpu); 0.155761s (thread); 0s (gc)
    │ │ │ + -- used 0.175447s (cpu); 0.175448s (thread); 0s (gc)
    │ │ │  
    │ │ │                  e        d        c        b        a
    │ │ │  o6 = ideal (u - -*v, t - -*v, z - -*v, y - -*v, x - -*v)
    │ │ │                  f        f        f        f        f
    │ │ │  
    │ │ │  o6 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ │
    │ │ │
    i4 : time SegreClass X
    │ │ │ - -- used 0.798226s (cpu); 0.509602s (thread); 0s (gc)
    │ │ │ + -- used 0.814937s (cpu); 0.521661s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o4 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │          8
    │ │ │         H
    │ │ │
    │ │ │
    i5 : time SegreClass lift(X,P7)
    │ │ │ - -- used 0.549131s (cpu); 0.33326s (thread); 0s (gc)
    │ │ │ + -- used 0.66787s (cpu); 0.368635s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o5 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o5 : -----
    │ │ │          8
    │ │ │         H
    │ │ │
    │ │ │
    i6 : time SegreClass(X,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0212624s (cpu); 0.0207391s (thread); 0s (gc)
    │ │ │ + -- used 0.0440606s (cpu); 0.0257815s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o6 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          8
    │ │ │         H
    │ │ │
    │ │ │
    i7 : time SegreClass(lift(X,P7),Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0974975s (cpu); 0.0969659s (thread); 0s (gc)
    │ │ │ + -- used 0.161371s (cpu); 0.123243s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o7 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o7 : -----
    │ │ │          8
    │ │ │ @@ -203,25 +203,25 @@
    │ │ │          
    │ │ │

    The method also accepts as input a ring map phi representing a rational map $\Phi:X\dashrightarrow Y$ between projective varieties. In this case, the method returns the push-forward to the Chow ring of the ambient projective space of $X$ of the Segre class of the base locus of $\Phi$ in $X$, i.e., it basically computes SegreClass ideal matrix phi. In the next example, we compute the Segre class of the base locus of a birational map $\mathbb{G}(1,4)\subset\mathbb{P}^9 \dashrightarrow \mathbb{P}^6$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : use ZZ/100003[x_0..x_6]
    │ │ │  
    │ │ │ -o9     ZZ
    │ │ │ -= ------[x ..x ]
    │ │ │ -  100003  0   6
    │ │ │ +       ZZ
    │ │ │ +o9 = ------[x ..x ]
    │ │ │ +     100003  0   6
    │ │ │  
    │ │ │  o9 : PolynomialRing
    │ │ │
    │ │ │
    i10 : time phi = inverseMap toMap(minors(2,matrix{{x_0,x_1,x_3,x_4,x_5},{x_1,x_2,x_4,x_5,x_6}}),Dominant=>2)
    │ │ │ - -- used 0.197315s (cpu); 0.0983952s (thread); 0s (gc)
    │ │ │ + -- used 0.0684174s (cpu); 0.0684036s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                          ZZ
    │ │ │                                                        ------[y ..y ]
    │ │ │                                                        100003  0   9                                                ZZ              2                              2
    │ │ │  o10 = map (----------------------------------------------------------------------------------------------------, ------[x ..x ], {y  - y y  - y y , y y  - y y , y  - y y  - y y , y y  + y y  - y y , y y  - y y , y y  - y y  - y y , y y  - y y  - y y })
    │ │ │             (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )  100003  0   6     3    0 5    1 6   3 4    1 7   4    2 7    0 9   2 5    3 5    1 8   4 5    1 9   4 8    2 9    3 9   7 8    4 9    6 9
    │ │ │               5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │ @@ -233,15 +233,15 @@
    │ │ │                (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )     100003  0   6
    │ │ │                  5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │
    │ │ │
    i11 : time SegreClass phi
    │ │ │ - -- used 0.169509s (cpu); 0.169514s (thread); 0s (gc)
    │ │ │ + -- used 0.401922s (cpu); 0.258737s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o11 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │          10
    │ │ │ @@ -267,30 +267,30 @@
    │ │ │                   5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │
    │ │ │
    i13 : -- Segre class of B in G(1,4)
    │ │ │        time SegreClass B
    │ │ │ - -- used 0.518764s (cpu); 0.315789s (thread); 0s (gc)
    │ │ │ + -- used 0.433085s (cpu); 0.292436s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o13 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o13 : -----
    │ │ │          10
    │ │ │         H
    │ │ │
    │ │ │
    i14 : -- Segre class of B in P^9
    │ │ │        time SegreClass lift(B,ambient ring B)
    │ │ │ - -- used 1.31381s (cpu); 0.860817s (thread); 0s (gc)
    │ │ │ + -- used 1.6597s (cpu); 0.959849s (thread); 0s (gc)
    │ │ │  
    │ │ │             9       8       7      6     5
    │ │ │  o14 = 2764H  - 984H  + 294H  - 67H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o14 : -----
    │ │ │          10
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -81,47 +81,47 @@
    │ │ │ │                 2 2                2 2                                        2
    │ │ │ │  2                                                    2 2
    │ │ │ │                x x  - 2x x x x  + x x  - 2x x x x  - 2x x x x  + 4x x x x  + x x
    │ │ │ │  + 4x x x x  - 2x x x x  - 2x x x x  - 2x x x x  + x x
    │ │ │ │                 3 4     2 3 4 5    2 5     1 3 4 6     1 2 5 6     0 3 5 6    1
    │ │ │ │  6     1 2 4 7     0 3 4 7     0 2 5 7     0 1 6 7    0 7
    │ │ │ │  i4 : time SegreClass X
    │ │ │ │ - -- used 0.798226s (cpu); 0.509602s (thread); 0s (gc)
    │ │ │ │ + -- used 0.814937s (cpu); 0.521661s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5       4      3
    │ │ │ │  o4 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o4 : -----
    │ │ │ │          8
    │ │ │ │         H
    │ │ │ │  i5 : time SegreClass lift(X,P7)
    │ │ │ │ - -- used 0.549131s (cpu); 0.33326s (thread); 0s (gc)
    │ │ │ │ + -- used 0.66787s (cpu); 0.368635s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5      4      3
    │ │ │ │  o5 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o5 : -----
    │ │ │ │          8
    │ │ │ │         H
    │ │ │ │  i6 : time SegreClass(X,Certify=>true)
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 0.0212624s (cpu); 0.0207391s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0440606s (cpu); 0.0257815s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5       4      3
    │ │ │ │  o6 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o6 : -----
    │ │ │ │          8
    │ │ │ │         H
    │ │ │ │  i7 : time SegreClass(lift(X,P7),Certify=>true)
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 0.0974975s (cpu); 0.0969659s (thread); 0s (gc)
    │ │ │ │ + -- used 0.161371s (cpu); 0.123243s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5      4      3
    │ │ │ │  o7 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o7 : -----
    │ │ │ │          8
    │ │ │ │ @@ -134,22 +134,22 @@
    │ │ │ │  method returns the push-forward to the Chow ring of the ambient projective
    │ │ │ │  space of $X$ of the Segre class of the base locus of $\Phi$ in $X$, i.e., it
    │ │ │ │  basically computes SegreClass ideal matrix phi. In the next example, we compute
    │ │ │ │  the Segre class of the base locus of a birational map $\mathbb{G}
    │ │ │ │  (1,4)\subset\mathbb{P}^9 \dashrightarrow \mathbb{P}^6$.
    │ │ │ │  i9 : use ZZ/100003[x_0..x_6]
    │ │ │ │  
    │ │ │ │ -o9     ZZ
    │ │ │ │ -= ------[x ..x ]
    │ │ │ │ -  100003  0   6
    │ │ │ │ +       ZZ
    │ │ │ │ +o9 = ------[x ..x ]
    │ │ │ │ +     100003  0   6
    │ │ │ │  
    │ │ │ │  o9 : PolynomialRing
    │ │ │ │  i10 : time phi = inverseMap toMap(minors(2,matrix{{x_0,x_1,x_3,x_4,x_5},
    │ │ │ │  {x_1,x_2,x_4,x_5,x_6}}),Dominant=>2)
    │ │ │ │ - -- used 0.197315s (cpu); 0.0983952s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0684174s (cpu); 0.0684036s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                          ZZ
    │ │ │ │                                                        ------[y ..y ]
    │ │ │ │                                                        100003  0   9
    │ │ │ │  ZZ              2                              2
    │ │ │ │  o10 = map (--------------------------------------------------------------------
    │ │ │ │  --------------------------------, ------[x ..x ], {y  - y y  - y y , y y  - y y
    │ │ │ │ @@ -169,15 +169,15 @@
    │ │ │ │  o10 : RingMap -----------------------------------------------------------------
    │ │ │ │  ----------------------------------- <-- ------[x ..x ]
    │ │ │ │                (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y
    │ │ │ │  - y y  + y y , y y  - y y  + y y )     100003  0   6
    │ │ │ │                  5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6
    │ │ │ │  1 7    0 8   2 3    1 4    0 5
    │ │ │ │  i11 : time SegreClass phi
    │ │ │ │ - -- used 0.169509s (cpu); 0.169514s (thread); 0s (gc)
    │ │ │ │ + -- used 0.401922s (cpu); 0.258737s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9      8      7      6     5
    │ │ │ │  o11 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o11 : -----
    │ │ │ │          10
    │ │ │ │ @@ -198,26 +198,26 @@
    │ │ │ │  ------------------------------------
    │ │ │ │                 (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y
    │ │ │ │  - y y  + y y , y y  - y y  + y y )
    │ │ │ │                   5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2
    │ │ │ │  6    1 7    0 8   2 3    1 4    0 5
    │ │ │ │  i13 : -- Segre class of B in G(1,4)
    │ │ │ │        time SegreClass B
    │ │ │ │ - -- used 0.518764s (cpu); 0.315789s (thread); 0s (gc)
    │ │ │ │ + -- used 0.433085s (cpu); 0.292436s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9      8      7      6     5
    │ │ │ │  o13 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o13 : -----
    │ │ │ │          10
    │ │ │ │         H
    │ │ │ │  i14 : -- Segre class of B in P^9
    │ │ │ │        time SegreClass lift(B,ambient ring B)
    │ │ │ │ - -- used 1.31381s (cpu); 0.860817s (thread); 0s (gc)
    │ │ │ │ + -- used 1.6597s (cpu); 0.959849s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │             9       8       7      6     5
    │ │ │ │  o14 = 2764H  - 984H  + 294H  - 67H  + 9H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o14 : -----
    │ │ │ │          10
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_abstract__Rational__Map.html
    │ │ │ @@ -101,15 +101,15 @@
    │ │ │  
    │ │ │  o3 : PolynomialRing
    │ │ │
    │ │ │
    i4 : time psi = abstractRationalMap(P4,P5,f)
    │ │ │ - -- used 0.000416542s (cpu); 0.000408857s (thread); 0s (gc)
    │ │ │ + -- used 0.000423495s (cpu); 0.000417624s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: given by a function
    │ │ │ @@ -119,23 +119,23 @@
    │ │ │            
    │ │ │

    Now we compute first the degree of the forms defining the abstract map psi and then the corresponding concrete rational map.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : time projectiveDegrees(psi,3)
    │ │ │ - -- used 0.32875s (cpu); 0.185077s (thread); 0s (gc)
    │ │ │ + -- used 0.384359s (cpu); 0.209633s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 2
    │ │ │
    │ │ │
    i6 : time rationalMap psi
    │ │ │ - -- used 0.510248s (cpu); 0.373012s (thread); 0s (gc)
    │ │ │ + -- used 0.491678s (cpu); 0.398209s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: {
    │ │ │ @@ -233,15 +233,15 @@
    │ │ │  o13 : Ideal of -----[x ..x ]
    │ │ │                 65521  0   3
    │ │ │
    │ │ │
    i14 : time T = abstractRationalMap(I,"OADP")
    │ │ │ - -- used 0.151084s (cpu); 0.0733367s (thread); 0s (gc)
    │ │ │ + -- used 0.174075s (cpu); 0.0799249s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ @@ -253,26 +253,26 @@
    │ │ │            
    │ │ │

    The degree of the forms defining the abstract map T can be obtained by the following command:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i15 : time projectiveDegrees(T,2)
    │ │ │ - -- used 3.78487s (cpu); 1.95126s (thread); 0s (gc)
    │ │ │ + -- used 4.77447s (cpu); 2.37718s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3
    │ │ │
    │ │ │

    We verify that the composition of T with itself is defined by linear forms:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i16 : time T2 = T * T
    │ │ │ - -- used 2.8112e-05s (cpu); 2.7842e-05s (thread); 0s (gc)
    │ │ │ + -- used 3.1017e-05s (cpu); 2.9941e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ @@ -281,15 +281,15 @@
    │ │ │  
    │ │ │  o16 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │
    │ │ │
    i17 : time projectiveDegrees(T2,2)
    │ │ │ - -- used 6.44263s (cpu); 3.37969s (thread); 0s (gc)
    │ │ │ + -- used 7.58588s (cpu); 3.654s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = 1
    │ │ │
    │ │ │

    We verify that the composition of T with itself leaves a random point fixed:

    │ │ │ │ │ │ @@ -322,15 +322,15 @@ │ │ │ │ │ │
    │ │ │

    We now compute the concrete rational map corresponding to T:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i21 : time f = rationalMap T
    │ │ │ - -- used 5.32932s (cpu); 2.87316s (thread); 0s (gc)
    │ │ │ + -- used 6.13876s (cpu); 3.10611s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,32 +35,32 @@
    │ │ │ │  i3 : P5 := QQ[u_0..u_5]
    │ │ │ │  
    │ │ │ │  o3 = QQ[u ..u ]
    │ │ │ │           0   5
    │ │ │ │  
    │ │ │ │  o3 : PolynomialRing
    │ │ │ │  i4 : time psi = abstractRationalMap(P4,P5,f)
    │ │ │ │ - -- used 0.000416542s (cpu); 0.000408857s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000423495s (cpu); 0.000417624s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = -- rational map --
    │ │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │ │                        0   1   2   3   4   5
    │ │ │ │       defining forms: given by a function
    │ │ │ │  
    │ │ │ │  o4 : AbstractRationalMap (rational map from PP^4 to PP^5)
    │ │ │ │  Now we compute first the degree of the forms defining the abstract map psi and
    │ │ │ │  then the corresponding concrete rational map.
    │ │ │ │  i5 : time projectiveDegrees(psi,3)
    │ │ │ │ - -- used 0.32875s (cpu); 0.185077s (thread); 0s (gc)
    │ │ │ │ + -- used 0.384359s (cpu); 0.209633s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = 2
    │ │ │ │  i6 : time rationalMap psi
    │ │ │ │ - -- used 0.510248s (cpu); 0.373012s (thread); 0s (gc)
    │ │ │ │ + -- used 0.491678s (cpu); 0.398209s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = -- rational map --
    │ │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │ │                        0   1   2   3   4   5
    │ │ │ │       defining forms: {
    │ │ │ │ @@ -139,48 +139,48 @@
    │ │ │ │  o13 = ideal (- x  + x x , - x x  + x x , - x  + x x )
    │ │ │ │                  1    0 2     1 2    0 3     2    1 3
    │ │ │ │  
    │ │ │ │                   ZZ
    │ │ │ │  o13 : Ideal of -----[x ..x ]
    │ │ │ │                 65521  0   3
    │ │ │ │  i14 : time T = abstractRationalMap(I,"OADP")
    │ │ │ │ - -- used 0.151084s (cpu); 0.0733367s (thread); 0s (gc)
    │ │ │ │ + -- used 0.174075s (cpu); 0.0799249s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o14 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │        defining forms: given by a function
    │ │ │ │  
    │ │ │ │  o14 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │ │  The degree of the forms defining the abstract map T can be obtained by the
    │ │ │ │  following command:
    │ │ │ │  i15 : time projectiveDegrees(T,2)
    │ │ │ │ - -- used 3.78487s (cpu); 1.95126s (thread); 0s (gc)
    │ │ │ │ + -- used 4.77447s (cpu); 2.37718s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o15 = 3
    │ │ │ │  We verify that the composition of T with itself is defined by linear forms:
    │ │ │ │  i16 : time T2 = T * T
    │ │ │ │ - -- used 2.8112e-05s (cpu); 2.7842e-05s (thread); 0s (gc)
    │ │ │ │ + -- used 3.1017e-05s (cpu); 2.9941e-05s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o16 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │        defining forms: given by a function
    │ │ │ │  
    │ │ │ │  o16 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │ │  i17 : time projectiveDegrees(T2,2)
    │ │ │ │ - -- used 6.44263s (cpu); 3.37969s (thread); 0s (gc)
    │ │ │ │ + -- used 7.58588s (cpu); 3.654s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o17 = 1
    │ │ │ │  We verify that the composition of T with itself leaves a random point fixed:
    │ │ │ │  i18 : p = apply(3,i->random(ZZ/65521))|{1}
    │ │ │ │  
    │ │ │ │  o18 = {-6648, -23396, -12311, 1}
    │ │ │ │  
    │ │ │ │ @@ -193,15 +193,15 @@
    │ │ │ │  i20 : T q
    │ │ │ │  
    │ │ │ │  o20 = {-6648, -23396, -12311, 1}
    │ │ │ │  
    │ │ │ │  o20 : List
    │ │ │ │  We now compute the concrete rational map corresponding to T:
    │ │ │ │  i21 : time f = rationalMap T
    │ │ │ │ - -- used 5.32932s (cpu); 2.87316s (thread); 0s (gc)
    │ │ │ │ + -- used 6.13876s (cpu); 3.10611s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o21 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_approximate__Inverse__Map.html
    │ │ │ @@ -139,15 +139,15 @@
    │ │ │  -- approximateInverseMap: step 4 of 10
    │ │ │  -- approximateInverseMap: step 5 of 10
    │ │ │  -- approximateInverseMap: step 6 of 10
    │ │ │  -- approximateInverseMap: step 7 of 10
    │ │ │  -- approximateInverseMap: step 8 of 10
    │ │ │  -- approximateInverseMap: step 9 of 10
    │ │ │  -- approximateInverseMap: step 10 of 10
    │ │ │ - -- used 0.238191s (cpu); 0.186212s (thread); 0s (gc)
    │ │ │ + -- used 0.321101s (cpu); 0.245484s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                    ZZ
    │ │ │       source: Proj(--[t , t , t , t , t , t , t , t , t ])
    │ │ │                    97  0   1   2   3   4   5   6   7   8
    │ │ │                                  ZZ
    │ │ │       target: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │ @@ -200,15 +200,15 @@
    │ │ │            
    │ │ │
    i5 : time psi' = approximateInverseMap(phi,CodimBsInv=>5);
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ - -- used 0.218651s (cpu); 0.155471s (thread); 0s (gc)
    │ │ │ + -- used 0.263418s (cpu); 0.185948s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │
    │ │ │
    i6 : assert(psi == psi')
    │ │ │ @@ -295,15 +295,15 @@ │ │ │
    │ │ │
    i8 : -- without the option 'CodimBsInv=>4', it takes about triple time 
    │ │ │       time psi=approximateInverseMap(phi,CodimBsInv=>4)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ - -- used 2.12103s (cpu); 1.6772s (thread); 0s (gc)
    │ │ │ + -- used 2.08827s (cpu); 1.75951s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = -- rational map --
    │ │ │                                  ZZ
    │ │ │       source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │                                  97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │               {
    │ │ │                                  2
    │ │ │ @@ -367,15 +367,15 @@
    │ │ │              
    │ │ │
    i10 : -- in this case we can remedy enabling the option Certify
    │ │ │        time psi = approximateInverseMap(phi,CodimBsInv=>4,Certify=>true)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │  Certify: output certified!
    │ │ │ - -- used 3.22893s (cpu); 2.56331s (thread); 0s (gc)
    │ │ │ + -- used 3.12417s (cpu); 2.70652s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = -- rational map --
    │ │ │                                   ZZ
    │ │ │        source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │                                   97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │                {
    │ │ │                                   2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -135,15 +135,15 @@
    │ │ │ │  -- approximateInverseMap: step 4 of 10
    │ │ │ │  -- approximateInverseMap: step 5 of 10
    │ │ │ │  -- approximateInverseMap: step 6 of 10
    │ │ │ │  -- approximateInverseMap: step 7 of 10
    │ │ │ │  -- approximateInverseMap: step 8 of 10
    │ │ │ │  -- approximateInverseMap: step 9 of 10
    │ │ │ │  -- approximateInverseMap: step 10 of 10
    │ │ │ │ - -- used 0.238191s (cpu); 0.186212s (thread); 0s (gc)
    │ │ │ │ + -- used 0.321101s (cpu); 0.245484s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │                    ZZ
    │ │ │ │       source: Proj(--[t , t , t , t , t , t , t , t , t ])
    │ │ │ │                    97  0   1   2   3   4   5   6   7   8
    │ │ │ │                                  ZZ
    │ │ │ │       target: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ │ @@ -252,15 +252,15 @@
    │ │ │ │  
    │ │ │ │  o3 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │ │  i4 : assert(phi * psi == 1 and psi * phi == 1)
    │ │ │ │  i5 : time psi' = approximateInverseMap(phi,CodimBsInv=>5);
    │ │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ │ - -- used 0.218651s (cpu); 0.155471s (thread); 0s (gc)
    │ │ │ │ + -- used 0.263418s (cpu); 0.185948s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │ │  i6 : assert(psi == psi')
    │ │ │ │  A more complicated example is the following (here _i_n_v_e_r_s_e_M_a_p takes a lot of
    │ │ │ │  time!).
    │ │ │ │  i7 : phi = rationalMap map(P8,ZZ/97[x_0..x_11]/ideal(x_1*x_3-8*x_2*x_3+25*x_3^2-25*x_2*x_4-
    │ │ │ │  22*x_3*x_4+x_0*x_5+13*x_2*x_5+41*x_3*x_5-x_0*x_6+12*x_2*x_6+25*x_1*x_7+25*x_3*x_7+23*x_5*x_7-
    │ │ │ │ @@ -418,15 +418,15 @@
    │ │ │ │  
    │ │ │ │  o7 : RationalMap (quadratic rational map from PP^8 to 8-dimensional subvariety of PP^11)
    │ │ │ │  i8 : -- without the option 'CodimBsInv=>4', it takes about triple time
    │ │ │ │       time psi=approximateInverseMap(phi,CodimBsInv=>4)
    │ │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ │ - -- used 2.12103s (cpu); 1.6772s (thread); 0s (gc)
    │ │ │ │ + -- used 2.08827s (cpu); 1.75951s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = -- rational map --
    │ │ │ │                                  ZZ
    │ │ │ │       source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │ │                                  97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │ │               {
    │ │ │ │                                  2
    │ │ │ │ @@ -526,15 +526,15 @@
    │ │ │ │  o9 = false
    │ │ │ │  i10 : -- in this case we can remedy enabling the option Certify
    │ │ │ │        time psi = approximateInverseMap(phi,CodimBsInv=>4,Certify=>true)
    │ │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 3.22893s (cpu); 2.56331s (thread); 0s (gc)
    │ │ │ │ + -- used 3.12417s (cpu); 2.70652s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = -- rational map --
    │ │ │ │                                   ZZ
    │ │ │ │        source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │ │                                   97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │ │                {
    │ │ │ │                                   2
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_degree__Map.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o4 : RingMap ringP8 <-- ringP14
    │ │ │
    │ │ │
    i5 : time degreeMap phi
    │ │ │ - -- used 0.0457634s (cpu); 0.0457644s (thread); 0s (gc)
    │ │ │ + -- used 0.0567179s (cpu); 0.0567184s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │
    │ │ │
    i6 : -- Compose phi:P^8--->P^14 with a linear projection P^14--->P^8 from a general subspace of P^14 
    │ │ │ @@ -113,15 +113,15 @@
    │ │ │  
    │ │ │  o6 : RingMap ringP8 <-- ringP8
    │ │ │
    │ │ │
    i7 : time degreeMap phi'
    │ │ │ - -- used 1.25058s (cpu); 0.717537s (thread); 0s (gc)
    │ │ │ + -- used 1.47848s (cpu); 0.919267s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 14
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -266,15 +266,15 @@ │ │ │ │ 4 0 5 1 5 2 5 3 5 4 5 5 0 6 │ │ │ │ 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 │ │ │ │ 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 │ │ │ │ 8 3 8 4 8 5 8 6 8 7 8 8 │ │ │ │ │ │ │ │ o4 : RingMap ringP8 <-- ringP14 │ │ │ │ i5 : time degreeMap phi │ │ │ │ - -- used 0.0457634s (cpu); 0.0457644s (thread); 0s (gc) │ │ │ │ + -- used 0.0567179s (cpu); 0.0567184s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 1 │ │ │ │ i6 : -- Compose phi:P^8--->P^14 with a linear projection P^14--->P^8 from a │ │ │ │ general subspace of P^14 │ │ │ │ -- of dimension 5 (so that the composition phi':P^8--->P^8 must have │ │ │ │ degree equal to deg(G(1,5))=14) │ │ │ │ phi'=phi*map(ringP14,ringP8,for i to 8 list random(1,ringP14)) │ │ │ │ @@ -418,15 +418,15 @@ │ │ │ │ 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 │ │ │ │ 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 │ │ │ │ 7 4 7 5 7 6 7 7 0 8 1 8 2 8 │ │ │ │ 3 8 4 8 5 8 6 8 7 8 8 │ │ │ │ │ │ │ │ o6 : RingMap ringP8 <-- ringP8 │ │ │ │ i7 : time degreeMap phi' │ │ │ │ - -- used 1.25058s (cpu); 0.717537s (thread); 0s (gc) │ │ │ │ + -- used 1.47848s (cpu); 0.919267s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = 14 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_g_r_e_e_(_R_a_t_i_o_n_a_l_M_a_p_) -- degree of a rational map │ │ │ │ * _p_r_o_j_e_c_t_i_v_e_D_e_g_r_e_e_s -- projective degrees of a rational map between │ │ │ │ projective varieties │ │ │ │ ********** WWaayyss ttoo uussee ddeeggrreeeeMMaapp:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_force__Image.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ │ │ │ o3 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time forceImage(Phi,ideal 0_(target Phi))
    │ │ │ - -- used 0.000650229s (cpu); 0.000643546s (thread); 0s (gc)
    │ │ │ + -- used 0.000887956s (cpu); 0.000882588s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : Phi;
    │ │ │  
    │ │ │  o5 : RationalMap (cubic dominant rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ │ │ │ │ o2 : Ideal of P6 │ │ │ │ i3 : Phi = rationalMap(X,Dominant=>2); │ │ │ │ │ │ │ │ o3 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of │ │ │ │ PP^9) │ │ │ │ i4 : time forceImage(Phi,ideal 0_(target Phi)) │ │ │ │ - -- used 0.000650229s (cpu); 0.000643546s (thread); 0s (gc) │ │ │ │ + -- used 0.000887956s (cpu); 0.000882588s (thread); 0s (gc) │ │ │ │ i5 : Phi; │ │ │ │ │ │ │ │ o5 : RationalMap (cubic dominant rational map from PP^6 to 6-dimensional │ │ │ │ subvariety of PP^9) │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ If the declaration is false, nonsensical answers may result. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_graph.html │ │ │ @@ -113,15 +113,15 @@ │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time (p1,p2) = graph phi;
    │ │ │ - -- used 0.0163279s (cpu); 0.0160383s (thread); 0s (gc)
    │ │ │ + -- used 0.0550647s (cpu); 0.0237999s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : p1
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │ @@ -272,15 +272,15 @@
    │ │ │            
    │ │ │          
    │ │ │          

    When the source of the rational map is a multi-projective variety, the method returns all the projections.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -98,15 +98,15 @@ │ │ │ │ │ │ │ │ w w - w w + w w │ │ │ │ 2 4 1 5 0 6 │ │ │ │ } │ │ │ │ │ │ │ │ o1 : RationalMap (quadratic Cremona transformation of PP^20) │ │ │ │ i2 : time psi = inverseMap phi │ │ │ │ - -- used 0.160001s (cpu); 0.105062s (thread); 0s (gc) │ │ │ │ + -- used 0.235496s (cpu); 0.135689s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = -- rational map -- │ │ │ │ source: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w , w , w , w │ │ │ │ , w , w , w , w , w , w , w ]) │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 │ │ │ │ 14 15 16 17 18 19 20 │ │ │ │ target: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w , w , w , w │ │ │ │ @@ -216,15 +216,15 @@ │ │ │ │ 15 9 20 8 22 3 10 0 13 4 15 9 21 8 23 2 10 0 12 4 │ │ │ │ 20 6 21 8 24 1 10 0 11 4 22 6 23 9 24 4 5 3 6 0 7 │ │ │ │ 1 8 2 9 │ │ │ │ │ │ │ │ o4 : RingMap QQ[w ..w ] <-- QQ[w ..w ] │ │ │ │ 0 26 0 26 │ │ │ │ i5 : time psi = inverseMap phi │ │ │ │ - -- used 0.352191s (cpu); 0.207925s (thread); 0s (gc) │ │ │ │ + -- used 0.419041s (cpu); 0.224983s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = map (QQ[w ..w ], QQ[w ..w ], {- w w + w w + w w - w w - w w , │ │ │ │ - w w + w w + w w - w w - w w , - w w + w w + w w - w w - │ │ │ │ w w , - w w - w w + w w - w w - w w , - w w - w w + w w - │ │ │ │ w w - w w , - w w - w w + w w - w w - w w , - w w - w w + │ │ │ │ w w - w w - w w , w w - w w + w w - w w - w w , - w w + │ │ │ │ w w - w w + w w - w w , - w w + w w - w w + w w - w w │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_inverse_lp__Rational__Map_rp.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o2 : RationalMap (rational map from PP^4 to PP^4) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : time g = graph p2;
    │ │ │ - -- used 0.0333595s (cpu); 0.0330733s (thread); 0s (gc)
    │ │ │ + -- used 0.0677857s (cpu); 0.0385186s (thread); 0s (gc) │ │ │
    │ │ │
    i10 : g_0;
    │ │ │  
    │ │ │  o10 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to PP^4)
    │ │ │ ├── html2text {} │ │ │ │ @@ -50,15 +50,15 @@ │ │ │ │ - x + x x │ │ │ │ 3 2 4 │ │ │ │ } │ │ │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in │ │ │ │ PP^5) │ │ │ │ i3 : time (p1,p2) = graph phi; │ │ │ │ - -- used 0.0163279s (cpu); 0.0160383s (thread); 0s (gc) │ │ │ │ + -- used 0.0550647s (cpu); 0.0237999s (thread); 0s (gc) │ │ │ │ i4 : p1 │ │ │ │ │ │ │ │ o4 = -- rational map -- │ │ │ │ ZZ ZZ │ │ │ │ source: subvariety of Proj(------[x , x , x , x , x ]) x Proj(------[y , y │ │ │ │ , y , y , y , y ]) defined by │ │ │ │ 190181 0 1 2 3 4 190181 0 │ │ │ │ @@ -192,15 +192,15 @@ │ │ │ │ │ │ │ │ o8 = {51, 28, 14, 6, 2} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ When the source of the rational map is a multi-projective variety, the method │ │ │ │ returns all the projections. │ │ │ │ i9 : time g = graph p2; │ │ │ │ - -- used 0.0333595s (cpu); 0.0330733s (thread); 0s (gc) │ │ │ │ + -- used 0.0677857s (cpu); 0.0385186s (thread); 0s (gc) │ │ │ │ i10 : g_0; │ │ │ │ │ │ │ │ o10 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety │ │ │ │ of PP^4 x PP^5 x PP^5 to PP^4) │ │ │ │ i11 : g_1; │ │ │ │ │ │ │ │ o11 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_ideal_lp__Rational__Map_rp.html │ │ │ @@ -111,15 +111,15 @@ │ │ │ │ │ │ o2 : RationalMap (quadratic rational map from hypersurface in PP^5 to PP^4) │ │ │
    │ │ │
    i3 : time ideal phi
    │ │ │ - -- used 0.00349994s (cpu); 0.00349466s (thread); 0s (gc)
    │ │ │ + -- used 0.00425008s (cpu); 0.00424618s (thread); 0s (gc)
    │ │ │  
    │ │ │               2                                     2                      
    │ │ │  o3 = ideal (x  - x x , x x  - x x  + x x , x x  - x  + x x , x x  - x x  +
    │ │ │               4    3 5   2 4    3 4    1 5   2 3    3    1 4   1 2    1 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │              2
    │ │ │       x x , x  - x x )
    │ │ │ @@ -195,15 +195,15 @@
    │ │ │  
    │ │ │  o5 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^5 x PP^4 to PP^4)
    │ │ │
    │ │ │
    i6 : time ideal phi'
    │ │ │ - -- used 0.0958263s (cpu); 0.0958318s (thread); 0s (gc)
    │ │ │ + -- used 0.109886s (cpu); 0.109888s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = ideal 1
    │ │ │  
    │ │ │                                                                                                              QQ[x ..x , y ..y ]
    │ │ │                                                                                                                  0   5   0   4
    │ │ │  o6 : Ideal of --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    │ │ │                                                                                                                                                                                                       2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,15 +46,15 @@
    │ │ │ │                         2
    │ │ │ │                        x  - x x
    │ │ │ │                         1    0 3
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o2 : RationalMap (quadratic rational map from hypersurface in PP^5 to PP^4)
    │ │ │ │  i3 : time ideal phi
    │ │ │ │ - -- used 0.00349994s (cpu); 0.00349466s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00425008s (cpu); 0.00424618s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               2                                     2
    │ │ │ │  o3 = ideal (x  - x x , x x  - x x  + x x , x x  - x  + x x , x x  - x x  +
    │ │ │ │               4    3 5   2 4    3 4    1 5   2 3    3    1 4   1 2    1 3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │              2
    │ │ │ │       x x , x  - x x )
    │ │ │ │ @@ -121,15 +121,15 @@
    │ │ │ │                        y
    │ │ │ │                         4
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o5 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of
    │ │ │ │  PP^5 x PP^4 to PP^4)
    │ │ │ │  i6 : time ideal phi'
    │ │ │ │ - -- used 0.0958263s (cpu); 0.0958318s (thread); 0s (gc)
    │ │ │ │ + -- used 0.109886s (cpu); 0.109888s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = ideal 1
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  QQ[x ..x , y ..y ]
    │ │ │ │  
    │ │ │ │  0   5   0   4
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_inverse__Map.html
    │ │ │ @@ -153,15 +153,15 @@
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic Cremona transformation of PP^20)
    │ │ │
    │ │ │
    i2 : time psi = inverseMap phi
    │ │ │ - -- used 0.160001s (cpu); 0.105062s (thread); 0s (gc)
    │ │ │ + -- used 0.235496s (cpu); 0.135689s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = -- rational map --
    │ │ │       source: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       target: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       defining forms: {
    │ │ │ @@ -251,15 +251,15 @@
    │ │ │  o4 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ │
    │ │ │
    i5 : time psi = inverseMap phi
    │ │ │ - -- used 0.352191s (cpu); 0.207925s (thread); 0s (gc)
    │ │ │ + -- used 0.419041s (cpu); 0.224983s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = map (QQ[w ..w  ], QQ[w ..w  ], {- w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , w  w   - w  w   + w  w   - w  w   - w w  , - w  w   + w  w   - w  w   + w  w   - w  w  , - w  w   + w  w   - w  w   + w  w   - w  w  , w w   - w w   + w w   + w  w   - w  w  , - w w   + w w   + w  w   + w w   - w w  , - w w   + w w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , w  w   - w  w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w  - w w  - w w   + w w   - w w  , - w w  + w w  + w w   - w w   + w w  , w w  - w w  - w w  + w w   - w w  })
    │ │ │                0   26       0   26       5 22    8 23    14 24    13 25    0 26     5 18    8 19    14 20    10 25    1 26     5 16    8 17    13 20    10 24    2 26     5 15    14 17    13 19    10 23    3 26     5 21    20 23    19 24    17 25    4 26     8 15    14 16    13 18    10 22    6 26     8 21    20 22    18 24    16 25    7 26   17 18    16 19    15 20    10 21    9 26     13 21    17 22    16 23    15 24    11 26     14 21    19 22    18 23    15 25    12 26   0 21    4 22    7 23    12 24    11 25     4 18    7 19    12 20    1 21    9 25     4 16    7 17    11 20    2 21    9 24     4 15    12 17    11 19    3 21    9 23     7 15    12 16    11 18    6 21    9 22   12 13    11 14    0 15    3 22    6 23   10 12    9 14    1 15    3 18    6 19   10 11    9 13    2 15    3 16    6 17   8 9    7 10    1 16    2 18    6 20   5 9    4 10    1 17    2 19    3 20   8 11    7 13    0 16    2 22    6 24   5 11    4 13    0 17    2 23    3 24   8 12    7 14    0 18    1 22    6 25   5 12    4 14    0 19    1 23    3 25   5 7    4 8    0 20    1 24    2 25     5 6    3 8    0 10    1 13    2 14   4 6    3 7    0 9    1 11    2 12
    │ │ │  
    │ │ │  o5 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ │
    │ │ │
    i3 : time inverse phi
    │ │ │ - -- used 0.061068s (cpu); 0.0610645s (thread); 0s (gc)
    │ │ │ + -- used 0.114781s (cpu); 0.114784s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       defining forms: {
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -290,15 +290,15 @@
    │ │ │ │  58320000  1 4    190512000  0 2 4    4898880000 1 2 4    190512000 2 4
    │ │ │ │  476280000  0 3 4    204120000  1 3 4    2857680000  2 3 4    23814000  3 4
    │ │ │ │  30618000 0 4    46656 1 4   12757500 2 4    51030000  3 4   30375 4
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o2 : RationalMap (rational map from PP^4 to PP^4)
    │ │ │ │  i3 : time inverse phi
    │ │ │ │ - -- used 0.061068s (cpu); 0.0610645s (thread); 0s (gc)
    │ │ │ │ + -- used 0.114781s (cpu); 0.114784s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │       source: Proj(QQ[x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       target: Proj(QQ[x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       defining forms: {
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_is__Birational.html
    │ │ │ @@ -123,24 +123,24 @@
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │
    │ │ │
    i3 : time isBirational phi
    │ │ │ - -- used 0.0179228s (cpu); 0.0179213s (thread); 0s (gc)
    │ │ │ + -- used 0.0223973s (cpu); 0.022399s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │
    │ │ │
    i4 : time isBirational(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0136015s (cpu); 0.0132332s (thread); 0s (gc)
    │ │ │ + -- used 0.0440701s (cpu); 0.0184816s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -58,20 +58,20 @@ │ │ │ │ - t + t t │ │ │ │ 3 2 4 │ │ │ │ } │ │ │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in │ │ │ │ PP^5) │ │ │ │ i3 : time isBirational phi │ │ │ │ - -- used 0.0179228s (cpu); 0.0179213s (thread); 0s (gc) │ │ │ │ + -- used 0.0223973s (cpu); 0.022399s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ i4 : time isBirational(phi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 0.0136015s (cpu); 0.0132332s (thread); 0s (gc) │ │ │ │ + -- used 0.0440701s (cpu); 0.0184816s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_D_o_m_i_n_a_n_t -- whether a rational map is dominant │ │ │ │ ********** WWaayyss ttoo uussee iissBBiirraattiioonnaall:: ********** │ │ │ │ * isBirational(RationalMap) │ │ │ │ * isBirational(RingMap) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_is__Dominant.html │ │ │ @@ -86,15 +86,15 @@ │ │ │ o2 : RationalMap (rational map from PP^8 to PP^8) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time isDominant(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 2.50039s (cpu); 1.97646s (thread); 0s (gc)
    │ │ │ + -- used 2.76343s (cpu); 2.27517s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : P7 = ZZ/101[x_0..x_7];
    │ │ │ @@ -115,15 +115,15 @@ │ │ │ o6 : RationalMap (cubic rational map from PP^7 to PP^7) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time isDominant(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 3.85067s (cpu); 2.52355s (thread); 0s (gc)
    │ │ │ + -- used 3.95494s (cpu); 2.77947s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = false
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ i1 : P8 = ZZ/101[x_0..x_8]; │ │ │ │ i2 : phi = rationalMap ideal jacobian ideal det matrix{{x_0..x_4},{x_1..x_5},{x_2..x_6},{x_3..x_7}, │ │ │ │ {x_4..x_8}}; │ │ │ │ │ │ │ │ o2 : RationalMap (rational map from PP^8 to PP^8) │ │ │ │ i3 : time isDominant(phi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 2.50039s (cpu); 1.97646s (thread); 0s (gc) │ │ │ │ + -- used 2.76343s (cpu); 2.27517s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ i4 : P7 = ZZ/101[x_0..x_7]; │ │ │ │ i5 : -- hyperelliptic curve of genus 3 │ │ │ │ C = ideal(x_4*x_5+23*x_5^2-23*x_0*x_6-18*x_1*x_6+6*x_2*x_6+37*x_3*x_6+23*x_4*x_6- │ │ │ │ 26*x_5*x_6+2*x_6^2-25*x_0*x_7+45*x_1*x_7+30*x_2*x_7-49*x_3*x_7-49*x_4*x_7+50*x_5*x_7,x_3*x_5- │ │ │ │ 24*x_5^2+21*x_0*x_6+x_1*x_6+46*x_3*x_6+27*x_4*x_6+5*x_5*x_6+35*x_6^2+20*x_0*x_7- │ │ │ │ @@ -65,15 +65,15 @@ │ │ │ │ │ │ │ │ o5 : Ideal of P7 │ │ │ │ i6 : phi = rationalMap(C,3,2); │ │ │ │ │ │ │ │ o6 : RationalMap (cubic rational map from PP^7 to PP^7) │ │ │ │ i7 : time isDominant(phi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 3.85067s (cpu); 2.52355s (thread); 0s (gc) │ │ │ │ + -- used 3.95494s (cpu); 2.77947s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = false │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_B_i_r_a_t_i_o_n_a_l -- whether a rational map is birational │ │ │ │ ********** WWaayyss ttoo uussee iissDDoommiinnaanntt:: ********** │ │ │ │ * isDominant(RationalMap) │ │ │ │ * isDominant(RingMap) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_kernel_lp__Ring__Map_cm__Z__Z_rp.html │ │ │ @@ -90,26 +90,26 @@ │ │ │ o1 : RingMap QQ[x ..x ] <-- QQ[y ..y ] │ │ │ 0 8 0 11 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time kernel(phi,1)
    │ │ │ - -- used 0.0172216s (cpu); 0.0172186s (thread); 0s (gc)
    │ │ │ + -- used 0.0211963s (cpu); 0.0211957s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal ()
    │ │ │  
    │ │ │  o2 : Ideal of QQ[y ..y  ]
    │ │ │                    0   11
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time kernel(phi,2)
    │ │ │ - -- used 0.848508s (cpu); 0.44358s (thread); 0s (gc)
    │ │ │ + -- used 1.17382s (cpu); 0.549973s (thread); 0s (gc)
    │ │ │  
    │ │ │                             2                                                
    │ │ │  o3 = ideal (y y  + y y  + y  + 5y y  + y y  + 5y y  - y y  - 4y y  - 5y y  -
    │ │ │               2 4    3 4    4     2 5    3 5     4 5    1 6     2 6     5 6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                                                             
    │ │ │       4y y  - 2y y  - y y  + 4y y  - 5y y  - 4y y  + 3y y  - 4y y  - y y   -
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -69,22 +69,22 @@
    │ │ │ │  4 8     5 8     6 8     7 8      0 1    1 2    1 4     0 6    1 6    4 6    0 7
    │ │ │ │  0 2    1 2     0 4    1 4      1 5    2 5     4 5     0 6     1 6     4 6     2
    │ │ │ │  7     0 8     1 8     5 8     6 8     7 8
    │ │ │ │  
    │ │ │ │  o1 : RingMap QQ[x ..x ] <-- QQ[y ..y  ]
    │ │ │ │                   0   8          0   11
    │ │ │ │  i2 : time kernel(phi,1)
    │ │ │ │ - -- used 0.0172216s (cpu); 0.0172186s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0211963s (cpu); 0.0211957s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = ideal ()
    │ │ │ │  
    │ │ │ │  o2 : Ideal of QQ[y ..y  ]
    │ │ │ │                    0   11
    │ │ │ │  i3 : time kernel(phi,2)
    │ │ │ │ - -- used 0.848508s (cpu); 0.44358s (thread); 0s (gc)
    │ │ │ │ + -- used 1.17382s (cpu); 0.549973s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                             2
    │ │ │ │  o3 = ideal (y y  + y y  + y  + 5y y  + y y  + 5y y  - y y  - 4y y  - 5y y  -
    │ │ │ │               2 4    3 4    4     2 5    3 5     4 5    1 6     2 6     5 6
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │  
    │ │ │ │       4y y  - 2y y  - y y  + 4y y  - 5y y  - 4y y  + 3y y  - 4y y  - y y   -
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_parametrize_lp__Ideal_rp.html
    │ │ │ @@ -105,15 +105,15 @@
    │ │ │  o2 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time parametrize L
    │ │ │ - -- used 0.0052255s (cpu); 0.00522062s (thread); 0s (gc)
    │ │ │ + -- used 0.00593595s (cpu); 0.00593509s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -201,15 +201,15 @@
    │ │ │  o4 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time parametrize Q
    │ │ │ - -- used 0.556987s (cpu); 0.397597s (thread); 0s (gc)
    │ │ │ + -- used 0.562135s (cpu); 0.420996s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -40,15 +40,15 @@
    │ │ │ │       - 849671x  + 3034137x )
    │ │ │ │                8           9
    │ │ │ │  
    │ │ │ │                   ZZ
    │ │ │ │  o2 : Ideal of --------[x ..x ]
    │ │ │ │                10000019  0   9
    │ │ │ │  i3 : time parametrize L
    │ │ │ │ - -- used 0.0052255s (cpu); 0.00522062s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00593595s (cpu); 0.00593509s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │       source: Proj(--------[t , t , t , t , t , t ])
    │ │ │ │                    10000019  0   1   2   3   4   5
    │ │ │ │                       ZZ
    │ │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ │ @@ -136,15 +136,15 @@
    │ │ │ │       1211601x x  - 2168594x x  - 1801762x x  + 3022242x x  + 3618789x )
    │ │ │ │               5 9           6 9           7 9           8 9           9
    │ │ │ │  
    │ │ │ │                   ZZ
    │ │ │ │  o4 : Ideal of --------[x ..x ]
    │ │ │ │                10000019  0   9
    │ │ │ │  i5 : time parametrize Q
    │ │ │ │ - -- used 0.556987s (cpu); 0.397597s (thread); 0s (gc)
    │ │ │ │ + -- used 0.562135s (cpu); 0.420996s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │       source: Proj(--------[t , t , t , t , t , t , t ])
    │ │ │ │                    10000019  0   1   2   3   4   5   6
    │ │ │ │                       ZZ
    │ │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_point_lp__Quotient__Ring_rp.html
    │ │ │ @@ -78,15 +78,15 @@
    │ │ │  
    │ │ │  o1 : RationalMap (cubic rational map from 8-dimensional subvariety of PP^11 to PP^8)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time p = point source f
    │ │ │ - -- used 0.44597s (cpu); 0.215856s (thread); 0s (gc)
    │ │ │ + -- used 0.508042s (cpu); 0.221036s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal (y   - 9235y  , y  + 11075y  , y  - 5847y  , y  + 7396y  , y  +
    │ │ │               10        11   9         11   8        11   7        11   6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       13530y  , y  + 4359y  , y  - 2924y  , y  + 13040y  , y  + 6904y  , y  -
    │ │ │             11   5        11   4        11   3         11   2        11   1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -100,15 +100,15 @@
    │ │ │                (y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y , y y  - y y  + y y )
    │ │ │                  6 7    5 8    4 11   3 7    2 8    1 11   3 5    2 6    0 11   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time p == f^* f p
    │ │ │ - -- used 0.2051s (cpu); 0.130409s (thread); 0s (gc)
    │ │ │ + -- used 0.232304s (cpu); 0.135531s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ documentation) , see _p_o_i_n_t_(_M_u_l_t_i_p_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y_). │ │ │ │ Below we verify the birationality of a rational map. │ │ │ │ i1 : f = inverseMap specialQuadraticTransformation(9,ZZ/33331); │ │ │ │ │ │ │ │ o1 : RationalMap (cubic rational map from 8-dimensional subvariety of PP^11 to │ │ │ │ PP^8) │ │ │ │ i2 : time p = point source f │ │ │ │ - -- used 0.44597s (cpu); 0.215856s (thread); 0s (gc) │ │ │ │ + -- used 0.508042s (cpu); 0.221036s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = ideal (y - 9235y , y + 11075y , y - 5847y , y + 7396y , y + │ │ │ │ 10 11 9 11 8 11 7 11 6 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 13530y , y + 4359y , y - 2924y , y + 13040y , y + 6904y , y - │ │ │ │ 11 5 11 4 11 3 11 2 11 1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -40,15 +40,15 @@ │ │ │ │ o2 : Ideal of ----------------------------------------------------------------- │ │ │ │ -------------------------------------- │ │ │ │ (y y - y y + y y , y y - y y + y y , y y - y y + y y , y │ │ │ │ y - y y + y y , y y - y y + y y ) │ │ │ │ 6 7 5 8 4 11 3 7 2 8 1 11 3 5 2 6 0 11 │ │ │ │ 3 4 1 6 0 8 2 4 1 5 0 7 │ │ │ │ i3 : time p == f^* f p │ │ │ │ - -- used 0.2051s (cpu); 0.130409s (thread); 0s (gc) │ │ │ │ + -- used 0.232304s (cpu); 0.135531s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m_K_R_a_t_i_o_n_a_l_P_o_i_n_t -- pick a random K rational point on the scheme X │ │ │ │ defined by I │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * point(PolynomialRing) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ 0 4 0 5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time projectiveDegrees(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0148041s (cpu); 0.0144893s (thread); 0s (gc)
    │ │ │ + -- used 0.0574287s (cpu); 0.0214412s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = {1, 2, 4, 4, 2}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -117,15 +117,15 @@ │ │ │ 2 3 1 4 0 5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time projectiveDegrees(psi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0112491s (cpu); 0.0109601s (thread); 0s (gc)
    │ │ │ + -- used 0.02459s (cpu); 0.012773s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = {2, 4, 4, 2, 1}
    │ │ │  
    │ │ │  o5 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -143,25 +143,25 @@ │ │ │ o6 : RingMap ------[x ..x ] <-- ------[x ..x ] │ │ │ 300007 0 6 300007 0 6 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time projectiveDegrees phi
    │ │ │ - -- used 5.0365e-05s (cpu); 4.5084e-05s (thread); 0s (gc)
    │ │ │ + -- used 5.1133e-05s (cpu); 4.309e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {1, 2, 4, 8, 8, 4, 1}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time projectiveDegrees(phi,NumDegrees=>1)
    │ │ │ - -- used 2.0038e-05s (cpu); 1.9887e-05s (thread); 0s (gc)
    │ │ │ + -- used 2.7846e-05s (cpu); 2.7662e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = {4, 1}
    │ │ │  
    │ │ │  o8 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -53,15 +53,15 @@ │ │ │ │ 0 4 0 5 1 0 2 1 2 0 3 │ │ │ │ 2 1 3 1 3 0 4 2 3 1 4 3 2 4 │ │ │ │ │ │ │ │ o2 : RingMap GF 109561[t ..t ] <-- GF 109561[x ..x ] │ │ │ │ 0 4 0 5 │ │ │ │ i3 : time projectiveDegrees(phi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 0.0148041s (cpu); 0.0144893s (thread); 0s (gc) │ │ │ │ + -- used 0.0574287s (cpu); 0.0214412s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = {1, 2, 4, 4, 2} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : psi=inverseMap(toMap(phi,Dominant=>infinity)) │ │ │ │ │ │ │ │ GF 109561[x ..x ] │ │ │ │ @@ -76,15 +76,15 @@ │ │ │ │ GF 109561[x ..x ] │ │ │ │ 0 5 │ │ │ │ o4 : RingMap ------------------ <-- GF 109561[t ..t ] │ │ │ │ x x - x x + x x 0 4 │ │ │ │ 2 3 1 4 0 5 │ │ │ │ i5 : time projectiveDegrees(psi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 0.0112491s (cpu); 0.0109601s (thread); 0s (gc) │ │ │ │ + -- used 0.02459s (cpu); 0.012773s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = {2, 4, 4, 2, 1} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : -- Cremona transformation of P^6 defined by the quadrics through a │ │ │ │ rational octic surface │ │ │ │ phi = map specialCremonaTransformation(7,ZZ/300007) │ │ │ │ @@ -119,21 +119,21 @@ │ │ │ │ 4 5 5 0 6 1 6 2 6 3 6 4 6 │ │ │ │ 5 6 │ │ │ │ │ │ │ │ ZZ ZZ │ │ │ │ o6 : RingMap ------[x ..x ] <-- ------[x ..x ] │ │ │ │ 300007 0 6 300007 0 6 │ │ │ │ i7 : time projectiveDegrees phi │ │ │ │ - -- used 5.0365e-05s (cpu); 4.5084e-05s (thread); 0s (gc) │ │ │ │ + -- used 5.1133e-05s (cpu); 4.309e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {1, 2, 4, 8, 8, 4, 1} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : time projectiveDegrees(phi,NumDegrees=>1) │ │ │ │ - -- used 2.0038e-05s (cpu); 1.9887e-05s (thread); 0s (gc) │ │ │ │ + -- used 2.7846e-05s (cpu); 2.7662e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = {4, 1} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ Another way to use this method is by passing an integer i as second argument. │ │ │ │ However, this is equivalent to first projectiveDegrees(phi,NumDegrees=>i) and │ │ │ │ generally it is not faster. │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.html │ │ │ @@ -88,15 +88,15 @@ │ │ │ o2 : Ideal of -----[x ..x ] │ │ │ 33331 0 6 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time phi = rationalMap(V,3,2)
    │ │ │ - -- used 0.0958343s (cpu); 0.0957853s (thread); 0s (gc)
    │ │ │ + -- used 0.118235s (cpu); 0.118018s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                      ZZ
    │ │ │       source: Proj(-----[x , x , x , x , x , x , x ])
    │ │ │                    33331  0   1   2   3   4   5   6
    │ │ │                      ZZ
    │ │ │       target: Proj(-----[y , y , y , y , y , y , y , y , y , y , y  , y  , y  , y  ])
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │  i1 : ZZ/33331[x_0..x_6]; V = ideal(x_4^2-x_3*x_5,x_2*x_4-x_1*x_5,x_2*x_3-
    │ │ │ │  x_1*x_4,x_2^2-x_0*x_5,x_1*x_2-x_0*x_4,x_1^2-x_0*x_3,x_6);
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o2 : Ideal of -----[x ..x ]
    │ │ │ │                33331  0   6
    │ │ │ │  i3 : time phi = rationalMap(V,3,2)
    │ │ │ │ - -- used 0.0958343s (cpu); 0.0957853s (thread); 0s (gc)
    │ │ │ │ + -- used 0.118235s (cpu); 0.118018s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │                      ZZ
    │ │ │ │       source: Proj(-----[x , x , x , x , x , x , x ])
    │ │ │ │                    33331  0   1   2   3   4   5   6
    │ │ │ │                      ZZ
    │ │ │ │       target: Proj(-----[y , y , y , y , y , y , y , y , y , y , y  , y  , y  ,
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ring_cm__Tally_rp.html
    │ │ │ @@ -111,15 +111,15 @@
    │ │ │              
    │ │ │                
    i5 : D = new Tally from {H => 2,C => 1};
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time phi = rationalMap D
    │ │ │ - -- used 0.0288893s (cpu); 0.0288899s (thread); 0s (gc)
    │ │ │ + -- used 0.0345504s (cpu); 0.0345514s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │                                    ZZ
    │ │ │       source: subvariety of Proj(-----[x , x , x , x , x , x ]) defined by
    │ │ │                                  65521  0   1   2   3   4   5
    │ │ │               {
    │ │ │                   2                  2
    │ │ │ @@ -219,15 +219,15 @@
    │ │ │  
    │ │ │  o6 : RationalMap (cubic rational map from surface in PP^5 to PP^20)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time ? image(phi,"F4")
    │ │ │ - -- used 1.28365s (cpu); 0.786418s (thread); 0s (gc)
    │ │ │ + -- used 1.83073s (cpu); 0.707445s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = surface of degree 38 and sectional genus 20 in PP^20 cut out by 153
    │ │ │       hypersurfaces of degree 2
    │ │ │ │ │ │ │ │ │ │ │ │

    See also the package WeilDivisors, which provides general tools for working with divisors.

    │ │ │ ├── html2text {} │ │ │ │ @@ -40,15 +40,15 @@ │ │ │ │ │ │ │ │ o4 = ideal(- 32646x - 28377x + 26433x - 29566x + 3783x + 26696x ) │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ │ │ o4 : Ideal of X │ │ │ │ i5 : D = new Tally from {H => 2,C => 1}; │ │ │ │ i6 : time phi = rationalMap D │ │ │ │ - -- used 0.0288893s (cpu); 0.0288899s (thread); 0s (gc) │ │ │ │ + -- used 0.0345504s (cpu); 0.0345514s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = -- rational map -- │ │ │ │ ZZ │ │ │ │ source: subvariety of Proj(-----[x , x , x , x , x , x ]) defined by │ │ │ │ 65521 0 1 2 3 4 5 │ │ │ │ { │ │ │ │ 2 2 │ │ │ │ @@ -169,15 +169,15 @@ │ │ │ │ 2 2 │ │ │ │ x x x + x x x + x x x + x x + x x x - 2x x x + x x │ │ │ │ 0 1 5 0 2 5 1 2 5 2 5 1 4 5 2 4 5 4 5 │ │ │ │ } │ │ │ │ │ │ │ │ o6 : RationalMap (cubic rational map from surface in PP^5 to PP^20) │ │ │ │ i7 : time ? image(phi,"F4") │ │ │ │ - -- used 1.28365s (cpu); 0.786418s (thread); 0s (gc) │ │ │ │ + -- used 1.83073s (cpu); 0.707445s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = surface of degree 38 and sectional genus 20 in PP^20 cut out by 153 │ │ │ │ hypersurfaces of degree 2 │ │ │ │ See also the package _W_e_i_l_D_i_v_i_s_o_r_s, which provides general tools for working │ │ │ │ with divisors. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_t_i_o_n_a_l_M_a_p -- makes a rational map │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_special__Cremona__Transformation.html │ │ │ @@ -70,15 +70,15 @@ │ │ │
    │ │ │

    Description

    │ │ │

    A Cremona transformation is said to be special if the base locus scheme is smooth and irreducible. To ensure this condition, the field K must be large enough but no check is made.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time apply(1..12,i -> describe specialCremonaTransformation(i,ZZ/3331))
    │ │ │ - -- used 1.47583s (cpu); 1.14802s (thread); 0s (gc)
    │ │ │ + -- used 1.63261s (cpu); 1.23775s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = (rational map defined by forms of degree 3,
    │ │ │        source variety: PP^3                      
    │ │ │        target variety: PP^3                      
    │ │ │        dominance: true                           
    │ │ │        birationality: true                       
    │ │ │        projective degrees: {1, 3, 3, 1}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,15 +16,15 @@
    │ │ │ │              K, according to the classification given in Table 1 of _S_p_e_c_i_a_l
    │ │ │ │              _c_u_b_i_c_ _C_r_e_m_o_n_a_ _t_r_a_n_s_f_o_r_m_a_t_i_o_n_s_ _o_f_ _P_6_ _a_n_d_ _P_7.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  A Cremona transformation is said to be special if the base locus scheme is
    │ │ │ │  smooth and irreducible. To ensure this condition, the field K must be large
    │ │ │ │  enough but no check is made.
    │ │ │ │  i1 : time apply(1..12,i -> describe specialCremonaTransformation(i,ZZ/3331))
    │ │ │ │ - -- used 1.47583s (cpu); 1.14802s (thread); 0s (gc)
    │ │ │ │ + -- used 1.63261s (cpu); 1.23775s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = (rational map defined by forms of degree 3,
    │ │ │ │        source variety: PP^3
    │ │ │ │        target variety: PP^3
    │ │ │ │        dominance: true
    │ │ │ │        birationality: true
    │ │ │ │        projective degrees: {1, 3, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_special__Cubic__Transformation.html
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │

    The field K is required to be large enough.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time specialCubicTransformation 9
    │ │ │ - -- used 0.0942055s (cpu); 0.0942043s (thread); 0s (gc)
    │ │ │ + -- used 0.10734s (cpu); 0.107339s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6
    │ │ │       target: subvariety of Proj(QQ[t , t , t , t , t , t , t , t , t , t ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │  
    │ │ │  o1 : RationalMap (cubic birational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │
    │ │ │
    i2 : time describe oo
    │ │ │ - -- used 0.0185862s (cpu); 0.0185866s (thread); 0s (gc)
    │ │ │ + -- used 0.0208837s (cpu); 0.0208845s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^6
    │ │ │       target variety: complete intersection of type (2,2,2) in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 3, 9, 17, 21, 16, 8}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │            o a _r_a_t_i_o_n_a_l_ _m_a_p, an example of special cubic birational
    │ │ │ │              transformation over K, according to the classification given in
    │ │ │ │              Table 2 of _S_p_e_c_i_a_l_ _c_u_b_i_c_ _b_i_r_a_t_i_o_n_a_l_ _t_r_a_n_s_f_o_r_m_a_t_i_o_n_s_ _o_f_ _p_r_o_j_e_c_t_i_v_e
    │ │ │ │              _s_p_a_c_e_s.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  The field K is required to be large enough.
    │ │ │ │  i1 : time specialCubicTransformation 9
    │ │ │ │ - -- used 0.0942055s (cpu); 0.0942043s (thread); 0s (gc)
    │ │ │ │ + -- used 0.10734s (cpu); 0.107339s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = -- rational map --
    │ │ │ │       source: Proj(QQ[x , x , x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4   5   6
    │ │ │ │       target: subvariety of Proj(QQ[t , t , t , t , t , t , t , t , t , t ])
    │ │ │ │  defined by
    │ │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │ │ @@ -323,15 +323,15 @@
    │ │ │ │  6     4 6      0 5 6      1 5 6     2 5 6      3 5 6      4 5 6     5 6     0 6
    │ │ │ │  1 6     2 6      3 6     4 6     5 6
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o1 : RationalMap (cubic birational map from PP^6 to 6-dimensional subvariety of
    │ │ │ │  PP^9)
    │ │ │ │  i2 : time describe oo
    │ │ │ │ - -- used 0.0185862s (cpu); 0.0185866s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0208837s (cpu); 0.0208845s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = rational map defined by forms of degree 3
    │ │ │ │       source variety: PP^6
    │ │ │ │       target variety: complete intersection of type (2,2,2) in PP^9
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true
    │ │ │ │       projective degrees: {1, 3, 9, 17, 21, 16, 8}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_special__Quadratic__Transformation.html
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │

    The field K is required to be large enough.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time specialQuadraticTransformation 4
    │ │ │ - -- used 0.0735881s (cpu); 0.0735702s (thread); 0s (gc)
    │ │ │ + -- used 0.0817777s (cpu); 0.0815726s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6   7   8
    │ │ │       target: subvariety of Proj(QQ[y , y , y , y , y , y , y , y , y , y ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -126,15 +126,15 @@
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic birational map from PP^8 to hypersurface in PP^9)
    │ │ │
    │ │ │
    i2 : time describe oo
    │ │ │ - -- used 0.109311s (cpu); 0.029848s (thread); 0s (gc)
    │ │ │ + -- used 0.124479s (cpu); 0.0289614s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^8
    │ │ │       target variety: hypersurface of degree 3 in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 2, 4, 8, 16, 21, 17, 9, 3}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │            o a _r_a_t_i_o_n_a_l_ _m_a_p, an example of special quadratic birational
    │ │ │ │              transformation over K, according to the classification given in
    │ │ │ │              Table 1 of _E_x_a_m_p_l_e_s_ _o_f_ _s_p_e_c_i_a_l_ _q_u_a_d_r_a_t_i_c_ _b_i_r_a_t_i_o_n_a_l_ _t_r_a_n_s_f_o_r_m_a_t_i_o_n_s
    │ │ │ │              _i_n_t_o_ _c_o_m_p_l_e_t_e_ _i_n_t_e_r_s_e_c_t_i_o_n_s_ _o_f_ _q_u_a_d_r_i_c_s.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  The field K is required to be large enough.
    │ │ │ │  i1 : time specialQuadraticTransformation 4
    │ │ │ │ - -- used 0.0735881s (cpu); 0.0735702s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0817777s (cpu); 0.0815726s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = -- rational map --
    │ │ │ │       source: Proj(QQ[x , x , x , x , x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4   5   6   7   8
    │ │ │ │       target: subvariety of Proj(QQ[y , y , y , y , y , y , y , y , y , y ])
    │ │ │ │  defined by
    │ │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │ │ @@ -78,15 +78,15 @@
    │ │ │ │                                                     2
    │ │ │ │                        x x  - x x  + x x  - x x  - x  - x x
    │ │ │ │                         0 1    0 4    3 6    4 6    6    5 7
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o1 : RationalMap (quadratic birational map from PP^8 to hypersurface in PP^9)
    │ │ │ │  i2 : time describe oo
    │ │ │ │ - -- used 0.109311s (cpu); 0.029848s (thread); 0s (gc)
    │ │ │ │ + -- used 0.124479s (cpu); 0.0289614s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^8
    │ │ │ │       target variety: hypersurface of degree 3 in PP^9
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true
    │ │ │ │       projective degrees: {1, 2, 4, 8, 16, 21, 17, 9, 3}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_to__External__String_lp__Rational__Map_rp.html
    │ │ │ @@ -88,23 +88,23 @@
    │ │ │  
    │ │ │  o3 = 6927
    │ │ │
    │ │ │
    i4 : time phi' = value str;
    │ │ │ - -- used 0.0222424s (cpu); 0.0222414s (thread); 0s (gc)
    │ │ │ + -- used 0.0271641s (cpu); 0.027162s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │
    │ │ │
    i5 : time describe phi'
    │ │ │ - -- used 0.00518727s (cpu); 0.00518762s (thread); 0s (gc)
    │ │ │ + -- used 0.00651753s (cpu); 0.00651952s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^3
    │ │ │       target variety: smooth quadric hypersurface in PP^4
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {1, 3, 4, 2}
    │ │ │ @@ -113,15 +113,15 @@
    │ │ │       degree base locus: 5
    │ │ │       coefficient ring: ZZ/33331
    │ │ │
    │ │ │
    i6 : time describe inverse phi'
    │ │ │ - -- used 0.00429438s (cpu); 0.00429504s (thread); 0s (gc)
    │ │ │ + -- used 0.00522394s (cpu); 0.00522827s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = rational map defined by forms of degree 2
    │ │ │       source variety: smooth quadric hypersurface in PP^4
    │ │ │       target variety: PP^3
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {2, 4, 3, 1}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,32 +19,32 @@
    │ │ │ │  
    │ │ │ │  o1 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │ │  i2 : str = toExternalString phi;
    │ │ │ │  i3 : #str
    │ │ │ │  
    │ │ │ │  o3 = 6927
    │ │ │ │  i4 : time phi' = value str;
    │ │ │ │ - -- used 0.0222424s (cpu); 0.0222414s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0271641s (cpu); 0.027162s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │ │  i5 : time describe phi'
    │ │ │ │ - -- used 0.00518727s (cpu); 0.00518762s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00651753s (cpu); 0.00651952s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = rational map defined by forms of degree 3
    │ │ │ │       source variety: PP^3
    │ │ │ │       target variety: smooth quadric hypersurface in PP^4
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │ │       projective degrees: {1, 3, 4, 2}
    │ │ │ │       number of minimal representatives: 1
    │ │ │ │       dimension base locus: 1
    │ │ │ │       degree base locus: 5
    │ │ │ │       coefficient ring: ZZ/33331
    │ │ │ │  i6 : time describe inverse phi'
    │ │ │ │ - -- used 0.00429438s (cpu); 0.00429504s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00522394s (cpu); 0.00522827s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = rational map defined by forms of degree 2
    │ │ │ │       source variety: smooth quadric hypersurface in PP^4
    │ │ │ │       target variety: PP^3
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │ │       projective degrees: {2, 4, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/index.html
    │ │ │ @@ -58,29 +58,29 @@
    │ │ │              
    │ │ │
    i1 : ZZ/300007[t_0..t_6];
    │ │ │
    │ │ │
    i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.00444651s (cpu); 0.00444181s (thread); 0s (gc)
    │ │ │ + -- used 0.00494813s (cpu); 0.00494459s (thread); 0s (gc)
    │ │ │  
    │ │ │              ZZ              ZZ                3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o2 = map (------[t ..t ], ------[x ..x ], {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   300007  0   9       2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │  
    │ │ │                 ZZ                 ZZ
    │ │ │  o2 : RingMap ------[t ..t ] <-- ------[x ..x ]
    │ │ │               300007  0   6      300007  0   9
    │ │ │
    │ │ │
    i3 : time J = kernel(phi,2)
    │ │ │ - -- used 0.139982s (cpu); 0.0709074s (thread); 0s (gc)
    │ │ │ + -- used 0.15929s (cpu); 0.0773956s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = ideal (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x 
    │ │ │               6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │       ------------------------------------------------------------------------
    │ │ │       - x x  + x x , x x  - x x  + x x )
    │ │ │          1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │ @@ -88,43 +88,43 @@
    │ │ │  o3 : Ideal of ------[x ..x ]
    │ │ │                300007  0   9
    │ │ │
    │ │ │
    i4 : time degreeMap phi
    │ │ │ - -- used 0.0273929s (cpu); 0.0273949s (thread); 0s (gc)
    │ │ │ + -- used 0.0333093s (cpu); 0.0333147s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │
    │ │ │
    i5 : time projectiveDegrees phi
    │ │ │ - -- used 0.660336s (cpu); 0.467597s (thread); 0s (gc)
    │ │ │ + -- used 0.653756s (cpu); 0.481141s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o5 : List
    │ │ │
    │ │ │
    i6 : time projectiveDegrees(phi,NumDegrees=>0)
    │ │ │ - -- used 0.061525s (cpu); 0.0615308s (thread); 0s (gc)
    │ │ │ + -- used 0.0734494s (cpu); 0.0734566s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = {5}
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : time phi = toMap(phi,Dominant=>J)
    │ │ │ - -- used 0.00224979s (cpu); 0.00225137s (thread); 0s (gc)
    │ │ │ + -- used 0.00268903s (cpu); 0.0026917s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                         ZZ
    │ │ │                                                                       ------[x ..x ]
    │ │ │              ZZ                                                       300007  0   9                                                  3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o7 = map (------[t ..t ], ----------------------------------------------------------------------------------------------------, {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )      2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │                              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -136,15 +136,15 @@
    │ │ │               300007  0   6      (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )
    │ │ │                                    6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │
    │ │ │
    i8 : time psi = inverseMap phi
    │ │ │ - -- used 0.464618s (cpu); 0.385971s (thread); 0s (gc)
    │ │ │ + -- used 0.426705s (cpu); 0.426486s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                         ZZ
    │ │ │                                                       ------[x ..x ]
    │ │ │                                                       300007  0   9                                                ZZ              3                2               2    2                        2                          2     2        2                               2                                   2               2             2                       3                                                 2                 2    2                                  2    2                 2                                                 3                         2      2    2      2                                              2
    │ │ │  o8 = map (----------------------------------------------------------------------------------------------------, ------[t ..t ], {x  - 2x x x  + x x  - x x x  + x x  + x x  + x x x  - x x x  + x x  - 2x x x  - x x x  - 2x x , x x  - x x  - x x x  + x x x  + x x x  + x x  - 2x x x  - x x x  + x x x , x x  - x x x  + x x  - x x x  + x x  - x x x  - x x x , x  - x x x  + x x x  + x x x  - 2x x x  - x x x , x x  - x x x  + x x  + x x  - x x x  - x x x  - x x x , x x  - x x  - x x x  + x x  + x x x  + x x x  - 2x x x  - x x x  + x x x , x  - 2x x x  - x x x  + x x  + x x  + x x  + x x  + x x x  - 2x x x  - x x x  - x x x  - 2x x })
    │ │ │            (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )  300007  0   6     2     1 2 3    0 3    1 2 5    0 5    1 6    0 2 6    0 4 6    1 7     0 2 7    0 4 7     0 9   2 3    1 3    1 2 6    0 3 6    0 5 6    1 8     0 2 8    0 4 8    0 1 9   2 3    1 3 6    0 6    0 3 8    1 9    0 2 9    0 4 9   3    1 3 8    0 6 8    1 2 9     0 3 9    0 5 9   3 6    2 3 8    0 8    2 9    1 3 9    0 6 9    0 7 9   3 6    3 8    2 6 8    1 8    2 3 9    2 5 9     1 6 9    1 7 9    0 8 9   6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6 9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -156,44 +156,44 @@
    │ │ │               (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )     300007  0   6
    │ │ │                 6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │
    │ │ │
    i9 : time isInverseMap(phi,psi)
    │ │ │ - -- used 0.00957768s (cpu); 0.00958237s (thread); 0s (gc)
    │ │ │ + -- used 0.0109459s (cpu); 0.0109462s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    │ │ │
    i10 : time degreeMap psi
    │ │ │ - -- used 0.36608s (cpu); 0.250674s (thread); 0s (gc)
    │ │ │ + -- used 0.602774s (cpu); 0.315889s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 1
    │ │ │
    │ │ │
    i11 : time projectiveDegrees psi
    │ │ │ - -- used 5.12293s (cpu); 4.38974s (thread); 0s (gc)
    │ │ │ + -- used 5.73761s (cpu); 5.28828s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o11 : List
    │ │ │
    │ │ │

    We repeat the example using the type RationalMap and using deterministic methods.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -53,15 +53,15 @@ │ │ │ │ 2 │ │ │ │ o6 = y T │ │ │ │ 2 │ │ │ │ │ │ │ │ o6 : R[T ..T ] │ │ │ │ 1 3 │ │ │ │ i7 : H = HH(KR) │ │ │ │ -Finding easy relations : -- used 0.0174708s (cpu); 0.016392s │ │ │ │ +Finding easy relations : -- used 0.176554s (cpu); 0.0403878s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = H │ │ │ │ │ │ │ │ o7 : PolynomialRing, 3 skew commutative variable(s) │ │ │ │ i8 : homologyClass(KR,z1*z2) │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Module.html │ │ │ @@ -129,15 +129,15 @@ │ │ │ │ │ │ o5 : Complex │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.00214853s (cpu); 0.00214909s (thread); 0s (gc)
    │ │ │ + -- used 0.00262949s (cpu); 0.0026352s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │        target: Proj(------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -242,15 +242,15 @@
    │ │ │  
    │ │ │  o12 : RationalMap (cubic rational map from PP^6 to PP^9)
    │ │ │
    │ │ │
    i13 : time phi = rationalMap(phi,Dominant=>2)
    │ │ │ - -- used 0.159869s (cpu); 0.0819959s (thread); 0s (gc)
    │ │ │ + -- used 0.183775s (cpu); 0.0994517s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                                     ZZ
    │ │ │        target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │ @@ -315,15 +315,15 @@
    │ │ │  
    │ │ │  o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │
    │ │ │
    i14 : time phi^(-1)
    │ │ │ - -- used 0.494847s (cpu); 0.414351s (thread); 0s (gc)
    │ │ │ + -- used 0.474241s (cpu); 0.474098s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                                     ZZ
    │ │ │        source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │                                   300007  0   1   2   3   4   5   6   7   8   9
    │ │ │                {
    │ │ │                 x x  - x x  + x x ,
    │ │ │ @@ -376,49 +376,49 @@
    │ │ │  
    │ │ │  o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9 to PP^6)
    │ │ │
    │ │ │
    i15 : time degrees phi^(-1)
    │ │ │ - -- used 0.343614s (cpu); 0.269496s (thread); 0s (gc)
    │ │ │ + -- used 0.467431s (cpu); 0.33733s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o15 : List
    │ │ │
    │ │ │
    i16 : time degrees phi
    │ │ │ - -- used 0.017066s (cpu); 0.0167813s (thread); 0s (gc)
    │ │ │ + -- used 0.0854163s (cpu); 0.0273704s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o16 : List
    │ │ │
    │ │ │
    i17 : time describe phi
    │ │ │ - -- used 0.00287351s (cpu); 0.00287412s (thread); 0s (gc)
    │ │ │ + -- used 0.00385199s (cpu); 0.00385848s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = rational map defined by forms of degree 3
    │ │ │        source variety: PP^6
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {1, 3, 9, 17, 21, 15, 5}
    │ │ │        coefficient ring: ZZ/300007
    │ │ │
    │ │ │
    i18 : time describe phi^(-1)
    │ │ │ - -- used 0.00949367s (cpu); 0.00949464s (thread); 0s (gc)
    │ │ │ + -- used 0.0113802s (cpu); 0.0113873s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 = rational map defined by forms of degree 3
    │ │ │        source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        target variety: PP^6
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {5, 15, 21, 17, 9, 3, 1}
    │ │ │ @@ -427,41 +427,41 @@
    │ │ │        degree base locus: 24
    │ │ │        coefficient ring: ZZ/300007
    │ │ │
    │ │ │
    i19 : time (f,g) = graph phi^-1; f;
    │ │ │ - -- used 0.00910182s (cpu); 0.00910265s (thread); 0s (gc)
    │ │ │ + -- used 0.0113772s (cpu); 0.0113841s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety of PP^9 x PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │
    │ │ │
    i21 : time degrees f
    │ │ │ - -- used 1.2811s (cpu); 0.962879s (thread); 0s (gc)
    │ │ │ + -- used 1.25598s (cpu); 0.99891s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = {904, 508, 268, 130, 56, 20, 5}
    │ │ │  
    │ │ │  o21 : List
    │ │ │
    │ │ │
    i22 : time degree f
    │ │ │ - -- used 1.588e-05s (cpu); 1.5509e-05s (thread); 0s (gc)
    │ │ │ + -- used 1.5999e-05s (cpu); 1.5275e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = 1
    │ │ │
    │ │ │
    i23 : time describe f
    │ │ │ - -- used 0.00176246s (cpu); 0.00176335s (thread); 0s (gc)
    │ │ │ + -- used 0.00164428s (cpu); 0.00164941s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = rational map defined by multiforms of degree {1, 0}
    │ │ │        source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20 hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2, 0},{2, 0})
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true
    │ │ │        projective degrees: {904, 508, 268, 130, 56, 20, 5}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -25,15 +25,15 @@
    │ │ │ │  map) from a list of $m+1$ homogeneous elements of the same degree in $K
    │ │ │ │  [x_0,...,x_n]/I$.
    │ │ │ │  Below is an example using the methods provided by this package, dealing with a
    │ │ │ │  birational transformation $\Phi:\mathbb{P}^6 \dashrightarrow \mathbb{G}
    │ │ │ │  (2,4)\subset\mathbb{P}^9$ of bidegree $(3,3)$.
    │ │ │ │  i1 : ZZ/300007[t_0..t_6];
    │ │ │ │  i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ │ - -- used 0.00444651s (cpu); 0.00444181s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00494813s (cpu); 0.00494459s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              ZZ              ZZ                3                2    2
    │ │ │ │  2        2                      2                  2    2                 2
    │ │ │ │  3                2    2                2                                 2
    │ │ │ │  2    2                                  2        2                      2
    │ │ │ │  2                        2                         2    2                 2
    │ │ │ │  3                2    2
    │ │ │ │ @@ -52,43 +52,43 @@
    │ │ │ │  0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4
    │ │ │ │  3 4 5    2 5    3 6    2 4 6
    │ │ │ │  
    │ │ │ │                 ZZ                 ZZ
    │ │ │ │  o2 : RingMap ------[t ..t ] <-- ------[x ..x ]
    │ │ │ │               300007  0   6      300007  0   9
    │ │ │ │  i3 : time J = kernel(phi,2)
    │ │ │ │ - -- used 0.139982s (cpu); 0.0709074s (thread); 0s (gc)
    │ │ │ │ + -- used 0.15929s (cpu); 0.0773956s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = ideal (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x
    │ │ │ │               6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       - x x  + x x , x x  - x x  + x x )
    │ │ │ │          1 6    0 8   2 4    1 5    0 7
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o3 : Ideal of ------[x ..x ]
    │ │ │ │                300007  0   9
    │ │ │ │  i4 : time degreeMap phi
    │ │ │ │ - -- used 0.0273929s (cpu); 0.0273949s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0333093s (cpu); 0.0333147s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = 1
    │ │ │ │  i5 : time projectiveDegrees phi
    │ │ │ │ - -- used 0.660336s (cpu); 0.467597s (thread); 0s (gc)
    │ │ │ │ + -- used 0.653756s (cpu); 0.481141s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : time projectiveDegrees(phi,NumDegrees=>0)
    │ │ │ │ - -- used 0.061525s (cpu); 0.0615308s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0734494s (cpu); 0.0734566s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = {5}
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  i7 : time phi = toMap(phi,Dominant=>J)
    │ │ │ │ - -- used 0.00224979s (cpu); 0.00225137s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00268903s (cpu); 0.0026917s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                                         ZZ
    │ │ │ │                                                                       ------[x
    │ │ │ │  ..x ]
    │ │ │ │              ZZ                                                       300007  0
    │ │ │ │  9                                                  3                2    2
    │ │ │ │  2        2                      2                  2    2                 2
    │ │ │ │ @@ -123,15 +123,15 @@
    │ │ │ │  o7 : RingMap ------[t ..t ] <-- -----------------------------------------------
    │ │ │ │  -----------------------------------------------------
    │ │ │ │               300007  0   6      (x x  - x x  + x x , x x  - x x  + x x , x x  -
    │ │ │ │  x x  + x x , x x  - x x  + x x , x x  - x x  + x x )
    │ │ │ │                                    6 7    5 8    4 9   3 7    2 8    1 9   3 5
    │ │ │ │  2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ │  i8 : time psi = inverseMap phi
    │ │ │ │ - -- used 0.464618s (cpu); 0.385971s (thread); 0s (gc)
    │ │ │ │ + -- used 0.426705s (cpu); 0.426486s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                         ZZ
    │ │ │ │                                                       ------[x ..x ]
    │ │ │ │                                                       300007  0   9
    │ │ │ │  ZZ              3                2               2    2
    │ │ │ │  2                          2     2        2                               2
    │ │ │ │  2               2             2                       3
    │ │ │ │ @@ -164,31 +164,31 @@
    │ │ │ │  o8 : RingMap ------------------------------------------------------------------
    │ │ │ │  ---------------------------------- <-- ------[t ..t ]
    │ │ │ │               (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x
    │ │ │ │  - x x  + x x , x x  - x x  + x x )     300007  0   6
    │ │ │ │                 6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │ │  1 6    0 8   2 4    1 5    0 7
    │ │ │ │  i9 : time isInverseMap(phi,psi)
    │ │ │ │ - -- used 0.00957768s (cpu); 0.00958237s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0109459s (cpu); 0.0109462s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 = true
    │ │ │ │  i10 : time degreeMap psi
    │ │ │ │ - -- used 0.36608s (cpu); 0.250674s (thread); 0s (gc)
    │ │ │ │ + -- used 0.602774s (cpu); 0.315889s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = 1
    │ │ │ │  i11 : time projectiveDegrees psi
    │ │ │ │ - -- used 5.12293s (cpu); 4.38974s (thread); 0s (gc)
    │ │ │ │ + -- used 5.73761s (cpu); 5.28828s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o11 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │ │  
    │ │ │ │  o11 : List
    │ │ │ │  We repeat the example using the type _R_a_t_i_o_n_a_l_M_a_p and using deterministic
    │ │ │ │  methods.
    │ │ │ │  i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ │ - -- used 0.00214853s (cpu); 0.00214909s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00262949s (cpu); 0.0026352s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o12 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ │ @@ -233,15 +233,15 @@
    │ │ │ │                            3                2    2
    │ │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │ │                        }
    │ │ │ │  
    │ │ │ │  o12 : RationalMap (cubic rational map from PP^6 to PP^9)
    │ │ │ │  i13 : time phi = rationalMap(phi,Dominant=>2)
    │ │ │ │ - -- used 0.159869s (cpu); 0.0819959s (thread); 0s (gc)
    │ │ │ │ + -- used 0.183775s (cpu); 0.0994517s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o13 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │ │                                     ZZ
    │ │ │ │        target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x
    │ │ │ │ @@ -304,15 +304,15 @@
    │ │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │ │                        }
    │ │ │ │  
    │ │ │ │  o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of
    │ │ │ │  PP^9)
    │ │ │ │  i14 : time phi^(-1)
    │ │ │ │ - -- used 0.494847s (cpu); 0.414351s (thread); 0s (gc)
    │ │ │ │ + -- used 0.474241s (cpu); 0.474098s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o14 = -- rational map --
    │ │ │ │                                     ZZ
    │ │ │ │        source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x
    │ │ │ │  ]) defined by
    │ │ │ │                                   300007  0   1   2   3   4   5   6   7   8   9
    │ │ │ │                {
    │ │ │ │ @@ -373,67 +373,67 @@
    │ │ │ │                          6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6
    │ │ │ │  9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │ │                        }
    │ │ │ │  
    │ │ │ │  o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9
    │ │ │ │  to PP^6)
    │ │ │ │  i15 : time degrees phi^(-1)
    │ │ │ │ - -- used 0.343614s (cpu); 0.269496s (thread); 0s (gc)
    │ │ │ │ + -- used 0.467431s (cpu); 0.33733s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o15 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │ │  
    │ │ │ │  o15 : List
    │ │ │ │  i16 : time degrees phi
    │ │ │ │ - -- used 0.017066s (cpu); 0.0167813s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0854163s (cpu); 0.0273704s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o16 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │ │  
    │ │ │ │  o16 : List
    │ │ │ │  i17 : time describe phi
    │ │ │ │ - -- used 0.00287351s (cpu); 0.00287412s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00385199s (cpu); 0.00385848s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o17 = rational map defined by forms of degree 3
    │ │ │ │        source variety: PP^6
    │ │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5
    │ │ │ │  hypersurfaces of degree 2
    │ │ │ │        dominance: true
    │ │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │ │        projective degrees: {1, 3, 9, 17, 21, 15, 5}
    │ │ │ │        coefficient ring: ZZ/300007
    │ │ │ │  i18 : time describe phi^(-1)
    │ │ │ │ - -- used 0.00949367s (cpu); 0.00949464s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0113802s (cpu); 0.0113873s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o18 = rational map defined by forms of degree 3
    │ │ │ │        source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5
    │ │ │ │  hypersurfaces of degree 2
    │ │ │ │        target variety: PP^6
    │ │ │ │        dominance: true
    │ │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │ │        projective degrees: {5, 15, 21, 17, 9, 3, 1}
    │ │ │ │        number of minimal representatives: 1
    │ │ │ │        dimension base locus: 4
    │ │ │ │        degree base locus: 24
    │ │ │ │        coefficient ring: ZZ/300007
    │ │ │ │  i19 : time (f,g) = graph phi^-1; f;
    │ │ │ │ - -- used 0.00910182s (cpu); 0.00910265s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0113772s (cpu); 0.0113841s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety
    │ │ │ │  of PP^9 x PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │ │  i21 : time degrees f
    │ │ │ │ - -- used 1.2811s (cpu); 0.962879s (thread); 0s (gc)
    │ │ │ │ + -- used 1.25598s (cpu); 0.99891s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o21 = {904, 508, 268, 130, 56, 20, 5}
    │ │ │ │  
    │ │ │ │  o21 : List
    │ │ │ │  i22 : time degree f
    │ │ │ │ - -- used 1.588e-05s (cpu); 1.5509e-05s (thread); 0s (gc)
    │ │ │ │ + -- used 1.5999e-05s (cpu); 1.5275e-05s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o22 = 1
    │ │ │ │  i23 : time describe f
    │ │ │ │ - -- used 0.00176246s (cpu); 0.00176335s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00164428s (cpu); 0.00164941s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o23 = rational map defined by multiforms of degree {1, 0}
    │ │ │ │        source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20
    │ │ │ │  hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1,
    │ │ │ │  1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2,
    │ │ │ │  0},{2, 0})
    │ │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.out
    │ │ │ @@ -155,15 +155,15 @@
    │ │ │                                    2     2     2       2 2     2 2      2 2      2 2     2 2        2 2       2 2        2       2       2
    │ │ │         Differential => {a, b, c, a T , b T , c T , a*b c T , b c T , -a b T , -a c T , b c T T , -a c T T , b c T T , -a T T , c T T , b T T }
    │ │ │                                      1     2     3         1       4        6        5       3 4        3 5       2 4      1 7     3 7     2 7
    │ │ │  
    │ │ │  o16 : DGAlgebra
    │ │ │  
    │ │ │  i17 : HHg = HH g
    │ │ │ -Finding easy relations           :  -- used 0.0144857s (cpu); 0.0137147s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0532394s (cpu); 0.0244794s (thread); 0s (gc)
    │ │ │  
    │ │ │                            ZZ
    │ │ │                           ---[a..c]
    │ │ │              ZZ           101
    │ │ │  o17 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │             101  1   2           3   1     1
    │ │ │                          (c, b, a )
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebras.out
    │ │ │ @@ -30,15 +30,15 @@
    │ │ │        Underlying algebra => R[S ..S ]
    │ │ │                                 1   4
    │ │ │        Differential => {a, b, c, d}
    │ │ │  
    │ │ │  o4 : DGAlgebra
    │ │ │  
    │ │ │  i5 : HB = HH B
    │ │ │ -Finding easy relations           :  -- used 0.0271647s (cpu); 0.0257159s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.211682s (cpu); 0.0477386s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HB
    │ │ │  
    │ │ │  o5 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i6 : describe HB
    │ │ │  
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │                                      2
    │ │ │        Differential => {a, b, c, d, a T }
    │ │ │                                        1
    │ │ │  
    │ │ │  o9 : DGAlgebra
    │ │ │  
    │ │ │  i10 : homologyAlgebra(C,GenDegreeLimit=>4,RelDegreeLimit=>4)
    │ │ │ -Finding easy relations           :  -- used 0.0189381s (cpu); 0.0176869s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0513298s (cpu); 0.0231484s (thread); 0s (gc)
    │ │ │  
    │ │ │         ZZ
    │ │ │  o10 = ---[X ..X ]
    │ │ │        101  1   3
    │ │ │  
    │ │ │  o10 : PolynomialRing, 3 skew commutative variable(s)
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_sp__D__G__Algebra__Map.out
    │ │ │ @@ -55,15 +55,15 @@
    │ │ │                 {2} | 0 |
    │ │ │                 {2} | 0 |
    │ │ │                 {2} | 1 |
    │ │ │  
    │ │ │  o6 : ComplexMap
    │ │ │  
    │ │ │  i7 : HHg = HH g
    │ │ │ -Finding easy relations           :  -- used 0.014071s (cpu); 0.0132964s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0294315s (cpu); 0.0167663s (thread); 0s (gc)
    │ │ │  
    │ │ │                           ZZ
    │ │ │                          ---[a..c]
    │ │ │             ZZ           101
    │ │ │  o7 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │            101  1   2           3   1     1
    │ │ │                         (c, b, a )
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.out
    │ │ │ @@ -49,15 +49,15 @@
    │ │ │                                1                                                             {6} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d c b a |     3
    │ │ │                                                                                      
    │ │ │                                                                                     2
    │ │ │  
    │ │ │  o6 : Complex
    │ │ │  
    │ │ │  i7 : HKR = HH KR
    │ │ │ -Finding easy relations           :  -- used 0.125504s (cpu); 0.0655203s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.161803s (cpu); 0.0614886s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = HKR
    │ │ │  
    │ │ │  o7 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i8 : ideal HKR
    │ │ │  
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │  i9 : R' = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^3,d^3,a*c,a*d,b*c,b*d,a^2*b^2-c^2*d^2}
    │ │ │  
    │ │ │  o9 = R'
    │ │ │  
    │ │ │  o9 : QuotientRing
    │ │ │  
    │ │ │  i10 : HKR' = HH koszulComplexDGA R'
    │ │ │ -Finding easy relations           :  -- used 0.578089s (cpu); 0.496293s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.64093s (cpu); 0.627997s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = HKR'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │  
    │ │ │  i11 : numgens HKR'
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_cycles.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o3 = {1, 4, 6, 4, 1}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0244722s (cpu); 0.0208419s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0346814s (cpu); 0.022011s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i5 : numgens HA
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Algebra.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o3 = {1, 4, 6, 4, 1}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0182011s (cpu); 0.0174142s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.033895s (cpu); 0.0213071s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i5 : R = ZZ/101[a,b,c,d]/ideal{a^4,b^4,c^4,d^4,a^3*b^3*c^3*d^3}
    │ │ │  
    │ │ │ @@ -46,15 +46,15 @@
    │ │ │  i7 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o7 = {1, 5, 10, 10, 4}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0854845s (cpu); 0.082415s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.219504s (cpu); 0.116153s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = HA
    │ │ │  
    │ │ │  o8 : QuotientRing
    │ │ │  
    │ │ │  i9 : numgens HA
    │ │ │  
    │ │ │ @@ -114,15 +114,15 @@
    │ │ │  i15 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o15 = {1, 7, 7, 1}
    │ │ │  
    │ │ │  o15 : List
    │ │ │  
    │ │ │  i16 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.053164s (cpu); 0.0517839s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.103942s (cpu); 0.0769724s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = HA
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │  
    │ │ │  i17 : R = ZZ/101[a,b,c,d]
    │ │ │  
    │ │ │ @@ -151,14 +151,14 @@
    │ │ │         Underlying algebra => S[T ..T ]
    │ │ │                                  1   4
    │ │ │         Differential => {a, b, c, d}
    │ │ │  
    │ │ │  o20 : DGAlgebra
    │ │ │  
    │ │ │  i21 : HB = homologyAlgebra(B,GenDegreeLimit=>7,RelDegreeLimit=>14)
    │ │ │ -Finding easy relations           :  -- used 0.018217s (cpu); 0.0174421s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0342109s (cpu); 0.0210835s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = HB
    │ │ │  
    │ │ │  o21 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i22 :
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Class.out
    │ │ │ @@ -43,15 +43,15 @@
    │ │ │  o6 = y T
    │ │ │          2
    │ │ │  
    │ │ │  o6 : R[T ..T ]
    │ │ │          1   3
    │ │ │  
    │ │ │  i7 : H = HH(KR)
    │ │ │ -Finding easy relations           :  -- used 0.0174708s (cpu); 0.016392s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.176554s (cpu); 0.0403878s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = H
    │ │ │  
    │ │ │  o7 : PolynomialRing, 3 skew commutative variable(s)
    │ │ │  
    │ │ │  i8 : homologyClass(KR,z1*z2)
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Module.out
    │ │ │ @@ -34,15 +34,15 @@
    │ │ │  o5 = R  <-- R  <-- R  <-- R  <-- R
    │ │ │                                    
    │ │ │       0      1      2      3      4
    │ │ │  
    │ │ │  o5 : Complex
    │ │ │  
    │ │ │  i6 : HKR = HH(KR)
    │ │ │ - -- used 0.217734s (cpu); 0.156685s (thread); 0s (gc)
    │ │ │ + -- used 0.307416s (cpu); 0.172301s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o6 = HKR
    │ │ │  
    │ │ │  o6 : QuotientRing
    │ │ │  
    │ │ │  i7 : degList = first entries vars Q / degree / first
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_massey__Triple__Product.out
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │                 2
    │ │ │  o9 = (true, x y T T T  - x x y T T T )
    │ │ │               2 2 1 2 3    1 2 2 2 3 4
    │ │ │  
    │ │ │  o9 : Sequence
    │ │ │  
    │ │ │  i10 : z123 = masseyTripleProduct(KR,z1,z2,z3)
    │ │ │ -Finding easy relations           :  -- used 0.540699s (cpu); 0.470132s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.712029s (cpu); 0.585218s (thread); 0s (gc)
    │ │ │  
    │ │ │               2
    │ │ │  o10 = x x y z T T T T
    │ │ │         1 2 2   2 3 4 5
    │ │ │  
    │ │ │  o10 : R[T ..T ]
    │ │ │           1   5
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_massey__Triple__Product_lp__D__G__Algebra_cm__Z__Z_cm__Z__Z_cm__Z__Z_rp.out
    │ │ │ @@ -27,15 +27,15 @@
    │ │ │                                 1   4
    │ │ │        Differential => {t , t , t , t }
    │ │ │                          1   2   3   4
    │ │ │  
    │ │ │  o4 : DGAlgebra
    │ │ │  
    │ │ │  i5 : H = HH(KR)
    │ │ │ -Finding easy relations           :  -- used 0.248008s (cpu); 0.24363s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.17719s (cpu); 0.163612s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = H
    │ │ │  
    │ │ │  o5 : QuotientRing
    │ │ │  
    │ │ │  i6 : masseys = masseyTripleProduct(KR,1,1,1);
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_tor__Algebra_lp__Ring_cm__Ring_rp.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │  i3 : S = R/ideal{a^3*b^3*c^3*d^3}
    │ │ │  
    │ │ │  o3 = S
    │ │ │  
    │ │ │  o3 : QuotientRing
    │ │ │  
    │ │ │  i4 : HB = torAlgebra(R,S,GenDegreeLimit=>4,RelDegreeLimit=>8)
    │ │ │ - -- used 0.47227s (cpu); 0.407795s (thread); 0s (gc)
    │ │ │ + -- used 0.602356s (cpu); 0.503688s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o4 = HB
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │  
    │ │ │  i5 : numgens HB
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.html
    │ │ │ @@ -289,15 +289,15 @@
    │ │ │          
    │ │ │

    One can also obtain the map on homology induced by a DGAlgebra map.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i17 : HHg = HH g
    │ │ │ -Finding easy relations           :  -- used 0.0144857s (cpu); 0.0137147s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0532394s (cpu); 0.0244794s (thread); 0s (gc)
    │ │ │  
    │ │ │                            ZZ
    │ │ │                           ---[a..c]
    │ │ │              ZZ           101
    │ │ │  o17 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │             101  1   2           3   1     1
    │ │ │                          (c, b, a )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -210,15 +210,15 @@
    │ │ │ │  a c T , b c T T , -a c T T , b c T T , -a T T , c T T , b T T }
    │ │ │ │                                      1     2     3         1       4        6
    │ │ │ │  5       3 4        3 5       2 4      1 7     3 7     2 7
    │ │ │ │  
    │ │ │ │  o16 : DGAlgebra
    │ │ │ │  One can also obtain the map on homology induced by a DGAlgebra map.
    │ │ │ │  i17 : HHg = HH g
    │ │ │ │ -Finding easy relations           :  -- used 0.0144857s (cpu); 0.0137147s
    │ │ │ │ +Finding easy relations           :  -- used 0.0532394s (cpu); 0.0244794s
    │ │ │ │  (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                            ZZ
    │ │ │ │                           ---[a..c]
    │ │ │ │              ZZ           101
    │ │ │ │  o17 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │ │             101  1   2           3   1     1
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebras.html
    │ │ │ @@ -113,15 +113,15 @@
    │ │ │          
    │ │ │

    One can compute the homology algebra of a DGAlgebra using the homology (or HH) command.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -174,15 +174,15 @@ │ │ │ │ │ │ o9 : DGAlgebra │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -42,15 +42,15 @@ │ │ │ │ 1 4 │ │ │ │ Differential => {a, b, c, d} │ │ │ │ │ │ │ │ o4 : DGAlgebra │ │ │ │ One can compute the homology algebra of a DGAlgebra using the homology (or HH) │ │ │ │ command. │ │ │ │ i5 : HB = HH B │ │ │ │ -Finding easy relations : -- used 0.0271647s (cpu); 0.0257159s │ │ │ │ +Finding easy relations : -- used 0.211682s (cpu); 0.0477386s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = HB │ │ │ │ │ │ │ │ o5 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ i6 : describe HB │ │ │ │ │ │ │ │ @@ -87,15 +87,15 @@ │ │ │ │ 1 5 │ │ │ │ 2 │ │ │ │ Differential => {a, b, c, d, a T } │ │ │ │ 1 │ │ │ │ │ │ │ │ o9 : DGAlgebra │ │ │ │ i10 : homologyAlgebra(C,GenDegreeLimit=>4,RelDegreeLimit=>4) │ │ │ │ -Finding easy relations : -- used 0.0189381s (cpu); 0.0176869s │ │ │ │ +Finding easy relations : -- used 0.0513298s (cpu); 0.0231484s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o10 = ---[X ..X ] │ │ │ │ 101 1 3 │ │ │ │ │ │ │ │ o10 : PolynomialRing, 3 skew commutative variable(s) │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra__Map.html │ │ │ @@ -144,15 +144,15 @@ │ │ │ │ │ │ o6 : ComplexMap │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -242,15 +242,15 @@ │ │ │ │ │ │ o15 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : HB = HH B
    │ │ │ -Finding easy relations           :  -- used 0.0271647s (cpu); 0.0257159s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.211682s (cpu); 0.0477386s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HB
    │ │ │  
    │ │ │  o5 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │
    i10 : homologyAlgebra(C,GenDegreeLimit=>4,RelDegreeLimit=>4)
    │ │ │ -Finding easy relations           :  -- used 0.0189381s (cpu); 0.0176869s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0513298s (cpu); 0.0231484s (thread); 0s (gc)
    │ │ │  
    │ │ │         ZZ
    │ │ │  o10 = ---[X ..X ]
    │ │ │        101  1   3
    │ │ │  
    │ │ │  o10 : PolynomialRing, 3 skew commutative variable(s)
    │ │ │
    │ │ │
    i7 : HHg = HH g
    │ │ │ -Finding easy relations           :  -- used 0.014071s (cpu); 0.0132964s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0294315s (cpu); 0.0167663s (thread); 0s (gc)
    │ │ │  
    │ │ │                           ZZ
    │ │ │                          ---[a..c]
    │ │ │             ZZ           101
    │ │ │  o7 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │            101  1   2           3   1     1
    │ │ │                         (c, b, a )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -62,15 +62,15 @@
    │ │ │ │       2 : R  <------------- R  : 2
    │ │ │ │                 {2} | 0 |
    │ │ │ │                 {2} | 0 |
    │ │ │ │                 {2} | 1 |
    │ │ │ │  
    │ │ │ │  o6 : ComplexMap
    │ │ │ │  i7 : HHg = HH g
    │ │ │ │ -Finding easy relations           :  -- used 0.014071s (cpu); 0.0132964s
    │ │ │ │ +Finding easy relations           :  -- used 0.0294315s (cpu); 0.0167663s
    │ │ │ │  (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                           ZZ
    │ │ │ │                          ---[a..c]
    │ │ │ │             ZZ           101
    │ │ │ │  o7 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │ │            101  1   2           3   1     1
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.html
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │          
    │ │ │

    Since the Koszul complex is a DG algebra, its homology is itself an algebra. One can obtain this algebra using the command homology, homologyAlgebra, or HH (all commands work). This algebra structure can detect whether or not the ring is a complete intersection or Gorenstein.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -166,15 +166,15 @@ │ │ │ │ │ │ o9 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -76,15 +76,15 @@ │ │ │ │ │ │ │ │ o6 : Complex │ │ │ │ Since the Koszul complex is a DG algebra, its homology is itself an algebra. │ │ │ │ One can obtain this algebra using the command homology, homologyAlgebra, or HH │ │ │ │ (all commands work). This algebra structure can detect whether or not the ring │ │ │ │ is a complete intersection or Gorenstein. │ │ │ │ i7 : HKR = HH KR │ │ │ │ -Finding easy relations : -- used 0.125504s (cpu); 0.0655203s │ │ │ │ +Finding easy relations : -- used 0.161803s (cpu); 0.0614886s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = HKR │ │ │ │ │ │ │ │ o7 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ i8 : ideal HKR │ │ │ │ │ │ │ │ @@ -94,16 +94,16 @@ │ │ │ │ i9 : R' = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^3,d^3,a*c,a*d,b*c,b*d,a^2*b^2- │ │ │ │ c^2*d^2} │ │ │ │ │ │ │ │ o9 = R' │ │ │ │ │ │ │ │ o9 : QuotientRing │ │ │ │ i10 : HKR' = HH koszulComplexDGA R' │ │ │ │ -Finding easy relations : -- used 0.578089s (cpu); 0.496293s │ │ │ │ -(thread); 0s (gc) │ │ │ │ +Finding easy relations : -- used 0.64093s (cpu); 0.627997s (thread); │ │ │ │ +0s (gc) │ │ │ │ │ │ │ │ o10 = HKR' │ │ │ │ │ │ │ │ o10 : QuotientRing │ │ │ │ i11 : numgens HKR' │ │ │ │ │ │ │ │ o11 = 34 │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_cycles.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ │ │ o3 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ o2 : DGAlgebra │ │ │ │ i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o3 = {1, 4, 6, 4, 1} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : HA = homologyAlgebra(A) │ │ │ │ -Finding easy relations : -- used 0.0244722s (cpu); 0.0208419s │ │ │ │ +Finding easy relations : -- used 0.0346814s (cpu); 0.022011s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = HA │ │ │ │ │ │ │ │ o4 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ i5 : numgens HA │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra.html │ │ │ @@ -103,15 +103,15 @@ │ │ │ │ │ │ o3 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : HKR = HH KR
    │ │ │ -Finding easy relations           :  -- used 0.125504s (cpu); 0.0655203s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.161803s (cpu); 0.0614886s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = HKR
    │ │ │  
    │ │ │  o7 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │
    i10 : HKR' = HH koszulComplexDGA R'
    │ │ │ -Finding easy relations           :  -- used 0.578089s (cpu); 0.496293s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.64093s (cpu); 0.627997s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = HKR'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │
    │ │ │
    i4 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0244722s (cpu); 0.0208419s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0346814s (cpu); 0.022011s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │
    i4 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0182011s (cpu); 0.0174142s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.033895s (cpu); 0.0213071s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │ @@ -148,15 +148,15 @@ │ │ │ │ │ │ o7 : List
    │ │ │
    │ │ │
    i8 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0854845s (cpu); 0.082415s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.219504s (cpu); 0.116153s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = HA
    │ │ │  
    │ │ │  o8 : QuotientRing
    │ │ │
    │ │ │
    i16 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.053164s (cpu); 0.0517839s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.103942s (cpu); 0.0769724s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = HA
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │
    │ │ │ @@ -302,15 +302,15 @@ │ │ │ │ │ │ o20 : DGAlgebra
    │ │ │
    │ │ │
    i21 : HB = homologyAlgebra(B,GenDegreeLimit=>7,RelDegreeLimit=>14)
    │ │ │ -Finding easy relations           :  -- used 0.018217s (cpu); 0.0174421s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0342109s (cpu); 0.0210835s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = HB
    │ │ │  
    │ │ │  o21 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -33,15 +33,15 @@ │ │ │ │ o2 : DGAlgebra │ │ │ │ i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o3 = {1, 4, 6, 4, 1} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : HA = homologyAlgebra(A) │ │ │ │ -Finding easy relations : -- used 0.0182011s (cpu); 0.0174142s │ │ │ │ +Finding easy relations : -- used 0.033895s (cpu); 0.0213071s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = HA │ │ │ │ │ │ │ │ o4 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ Note that HA is a graded commutative polynomial ring (i.e. an exterior algebra) │ │ │ │ since R is a complete intersection. │ │ │ │ @@ -60,15 +60,15 @@ │ │ │ │ o6 : DGAlgebra │ │ │ │ i7 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o7 = {1, 5, 10, 10, 4} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : HA = homologyAlgebra(A) │ │ │ │ -Finding easy relations : -- used 0.0854845s (cpu); 0.082415s │ │ │ │ +Finding easy relations : -- used 0.219504s (cpu); 0.116153s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = HA │ │ │ │ │ │ │ │ o8 : QuotientRing │ │ │ │ i9 : numgens HA │ │ │ │ │ │ │ │ @@ -122,15 +122,15 @@ │ │ │ │ o14 : DGAlgebra │ │ │ │ i15 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o15 = {1, 7, 7, 1} │ │ │ │ │ │ │ │ o15 : List │ │ │ │ i16 : HA = homologyAlgebra(A) │ │ │ │ -Finding easy relations : -- used 0.053164s (cpu); 0.0517839s │ │ │ │ +Finding easy relations : -- used 0.103942s (cpu); 0.0769724s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = HA │ │ │ │ │ │ │ │ o16 : QuotientRing │ │ │ │ One can check that HA has Poincare duality since R is Gorenstein. │ │ │ │ If your DGAlgebra has generators in even degrees, then one must specify the │ │ │ │ @@ -158,15 +158,15 @@ │ │ │ │ o20 = {Ring => S } │ │ │ │ Underlying algebra => S[T ..T ] │ │ │ │ 1 4 │ │ │ │ Differential => {a, b, c, d} │ │ │ │ │ │ │ │ o20 : DGAlgebra │ │ │ │ i21 : HB = homologyAlgebra(B,GenDegreeLimit=>7,RelDegreeLimit=>14) │ │ │ │ -Finding easy relations : -- used 0.018217s (cpu); 0.0174421s │ │ │ │ +Finding easy relations : -- used 0.0342109s (cpu); 0.0210835s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = HB │ │ │ │ │ │ │ │ o21 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ ********** WWaayyss ttoo uussee hhoommoollooggyyAAllggeebbrraa:: ********** │ │ │ │ * homologyAlgebra(DGAlgebra) │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Class.html │ │ │ @@ -135,15 +135,15 @@ │ │ │ o6 : R[T ..T ] │ │ │ 1 3
    │ │ │
    │ │ │
    i7 : H = HH(KR)
    │ │ │ -Finding easy relations           :  -- used 0.0174708s (cpu); 0.016392s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.176554s (cpu); 0.0403878s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = H
    │ │ │  
    │ │ │  o7 : PolynomialRing, 3 skew commutative variable(s)
    │ │ │
    │ │ │
    i6 : HKR = HH(KR)
    │ │ │ - -- used 0.217734s (cpu); 0.156685s (thread); 0s (gc)
    │ │ │ + -- used 0.307416s (cpu); 0.172301s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o6 = HKR
    │ │ │  
    │ │ │  o6 : QuotientRing
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ 1 4 6 4 1 │ │ │ │ o5 = R <-- R <-- R <-- R <-- R │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o5 : Complex │ │ │ │ i6 : HKR = HH(KR) │ │ │ │ - -- used 0.217734s (cpu); 0.156685s (thread); 0s (gc) │ │ │ │ + -- used 0.307416s (cpu); 0.172301s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ o6 = HKR │ │ │ │ │ │ │ │ o6 : QuotientRing │ │ │ │ The following is the graded canonical module of R: │ │ │ │ i7 : degList = first entries vars Q / degree / first │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_massey__Triple__Product.html │ │ │ @@ -192,15 +192,15 @@ │ │ │
    │ │ │

    Given cycles z1,z2,z3 such that z1*z2 and z2*z3 are boundaries, the Massey triple product of the homology classes represented by z1,z2 and z3 is the homology class of lift12*z3 + z1*lift23. To see this, we compute and check:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -49,15 +49,15 @@ │ │ │ │ Underlying algebra => R[T ..T ] │ │ │ │ 1 4 │ │ │ │ Differential => {t , t , t , t } │ │ │ │ 1 2 3 4 │ │ │ │ │ │ │ │ o4 : DGAlgebra │ │ │ │ i5 : H = HH(KR) │ │ │ │ -Finding easy relations : -- used 0.248008s (cpu); 0.24363s (thread); │ │ │ │ +Finding easy relations : -- used 0.17719s (cpu); 0.163612s (thread); │ │ │ │ 0s (gc) │ │ │ │ │ │ │ │ o5 = H │ │ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ i6 : masseys = masseyTripleProduct(KR,1,1,1); │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra_lp__Ring_cm__Ring_rp.html │ │ │ @@ -97,15 +97,15 @@ │ │ │ │ │ │ o3 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ i2 : M = coker matrix {{a^3*b^3*c^3*d^3}}; │ │ │ │ i3 : S = R/ideal{a^3*b^3*c^3*d^3} │ │ │ │ │ │ │ │ o3 = S │ │ │ │ │ │ │ │ o3 : QuotientRing │ │ │ │ i4 : HB = torAlgebra(R,S,GenDegreeLimit=>4,RelDegreeLimit=>8) │ │ │ │ - -- used 0.47227s (cpu); 0.407795s (thread); 0s (gc) │ │ │ │ + -- used 0.602356s (cpu); 0.503688s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ o4 = HB │ │ │ │ │ │ │ │ o4 : QuotientRing │ │ │ │ i5 : numgens HB │ │ │ │ │ │ │ │ o5 = 35 │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_delete__Edges.out │ │ │ @@ -14,15 +14,15 @@ │ │ │ │ │ │ o3 = {{a, b}, {d, e}} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : gprime = deleteEdges (g,T) │ │ │ │ │ │ -o4 = HyperGraph{"edges" => {{c, d}, {b, c}, {a, e}}} │ │ │ +o4 = HyperGraph{"edges" => {{b, c}, {a, e}, {c, d}}} │ │ │ "ring" => S │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ │ │ o4 : HyperGraph │ │ │ │ │ │ i5 : h = hyperGraph {a*b*c,c*d*e,a*e} │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_random__Hyper__Graph.out │ │ │ @@ -2,20 +2,20 @@ │ │ │ │ │ │ i1 : R = QQ[x_1..x_5]; │ │ │ │ │ │ i2 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ i3 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ -o3 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ - 3 4 5 1 4 1 2 3 5 │ │ │ +i4 : randomHyperGraph(R,{3,2,4}) │ │ │ + │ │ │ +o4 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ + 2 3 5 3 4 1 2 4 5 │ │ │ "ring" => R │ │ │ "vertices" => {x , x , x , x , x } │ │ │ 1 2 3 4 5 │ │ │ │ │ │ -o3 : HyperGraph │ │ │ - │ │ │ -i4 : randomHyperGraph(R,{3,2,4}) │ │ │ +o4 : HyperGraph │ │ │ │ │ │ i5 : randomHyperGraph(R,{4,4,2,2}) -- impossible, returns null when time/branch limit reached │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/html/_delete__Edges.html │ │ │ @@ -97,15 +97,15 @@ │ │ │ o3 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ i3 : T = {{a,b},{d,e}} │ │ │ │ │ │ │ │ o3 = {{a, b}, {d, e}} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : gprime = deleteEdges (g,T) │ │ │ │ │ │ │ │ -o4 = HyperGraph{"edges" => {{c, d}, {b, c}, {a, e}}} │ │ │ │ +o4 = HyperGraph{"edges" => {{b, c}, {a, e}, {c, d}}} │ │ │ │ "ring" => S │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ │ │ │ │ o4 : HyperGraph │ │ │ │ i5 : h = hyperGraph {a*b*c,c*d*e,a*e} │ │ │ │ │ │ │ │ o5 = HyperGraph{"edges" => {{a, b, c}, {a, e}, {c, d, e}}} │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/html/_random__Hyper__Graph.html │ │ │ @@ -85,28 +85,28 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ + │ │ │ + │ │ │ + │ │ │ - │ │ │ - │ │ │ - │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -23,23 +23,23 @@ │ │ │ │ sizes using a random recursive algorithm. Limits can be placed on the both │ │ │ │ number of recursive steps taken (see _B_r_a_n_c_h_L_i_m_i_t) and on the time taken (see │ │ │ │ _T_i_m_e_L_i_m_i_t). The method will return null if it cannot find a hypergraph within │ │ │ │ the branch and time limits. │ │ │ │ i1 : R = QQ[x_1..x_5]; │ │ │ │ i2 : randomHyperGraph(R,{3,2,4}) │ │ │ │ i3 : randomHyperGraph(R,{3,2,4}) │ │ │ │ +i4 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ │ │ -o3 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ │ - 3 4 5 1 4 1 2 3 5 │ │ │ │ +o4 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ │ + 2 3 5 3 4 1 2 4 5 │ │ │ │ "ring" => R │ │ │ │ "vertices" => {x , x , x , x , x } │ │ │ │ 1 2 3 4 5 │ │ │ │ │ │ │ │ -o3 : HyperGraph │ │ │ │ -i4 : randomHyperGraph(R,{3,2,4}) │ │ │ │ +o4 : HyperGraph │ │ │ │ i5 : randomHyperGraph(R,{4,4,2,2}) -- impossible, returns null when time/branch │ │ │ │ limit reached │ │ │ │ The randomHyperGraph method will return null immediately if the sizes of the │ │ │ │ edges fail to pass the LYM-inequality: $1/(n choose D_1) + 1/(n choose D_2) + │ │ │ │ ... + 1/(n choose D_m) \leq 1$ where $n$ is the number of variables in R and │ │ │ │ $m$ is the length of D. Note that even if D passes this inequality, it is not │ │ │ │ necessarily true that there is some hypergraph with edge sizes given by D. See │ │ ├── ./usr/share/doc/Macaulay2/EigenSolver/example-output/___Eigen__Solver.out │ │ │ @@ -15,14 +15,14 @@ │ │ │ a*b*e*f + a*d*e*f + c*d*e*f, a*b*c*d*e + a*b*c*d*f + a*b*c*e*f + │ │ │ ------------------------------------------------------------------------ │ │ │ a*b*d*e*f + a*c*d*e*f + b*c*d*e*f, a*b*c*d*e*f - 1) │ │ │ │ │ │ o2 : Ideal of QQ[a..f] │ │ │ │ │ │ i3 : elapsedTime sols = zeroDimSolve I; │ │ │ - -- .221824s elapsed │ │ │ + -- .25087s elapsed │ │ │ │ │ │ i4 : #sols -- 156 solutions │ │ │ │ │ │ o4 = 156 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/EigenSolver/html/index.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │ o2 : Ideal of QQ[a..f] │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -29,22 +29,22 @@ │ │ │ │ i3 : g = x^2+c*x+d │ │ │ │ │ │ │ │ 2 │ │ │ │ o3 = x + x*c + d │ │ │ │ │ │ │ │ o3 : R │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ │ - -- used 0.00273025s (cpu); 0.0027266s (thread); 0s (gc) │ │ │ │ + -- used 0.00311468s (cpu); 0.00311082s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ │ - -- used 0.00165107s (cpu); 0.00165116s (thread); 0s (gc) │ │ │ │ + -- used 0.00173627s (cpu); 0.0017362s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_eliminate.html │ │ │ @@ -97,26 +97,26 @@ │ │ │ │ │ │ o3 : R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -30,22 +30,22 @@ │ │ │ │ i3 : g = x^2+c*x+d │ │ │ │ │ │ │ │ 2 │ │ │ │ o3 = x + x*c + d │ │ │ │ │ │ │ │ o3 : R │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ │ - -- used 0.00260364s (cpu); 0.00260073s (thread); 0s (gc) │ │ │ │ + -- used 0.00321028s (cpu); 0.00320693s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ │ - -- used 0.00151871s (cpu); 0.00151973s (thread); 0s (gc) │ │ │ │ + -- used 0.0020097s (cpu); 0.00201106s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ @@ -105,15 +105,15 @@ │ │ │ │ │ │ o3 : R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : z123 = masseyTripleProduct(KR,z1,z2,z3)
    │ │ │ -Finding easy relations           :  -- used 0.540699s (cpu); 0.470132s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.712029s (cpu); 0.585218s (thread); 0s (gc)
    │ │ │  
    │ │ │               2
    │ │ │  o10 = x x y z T T T T
    │ │ │         1 2 2   2 3 4 5
    │ │ │  
    │ │ │  o10 : R[T ..T ]
    │ │ │           1   5
    │ │ │ ├── html2text {} │ │ │ │ @@ -90,15 +90,15 @@ │ │ │ │ Note that the first return value of _g_e_t_B_o_u_n_d_a_r_y_P_r_e_i_m_a_g_e indicates that the │ │ │ │ inputs are indeed boundaries, and the second value is the lift of the boundary │ │ │ │ along the differential. │ │ │ │ Given cycles z1,z2,z3 such that z1*z2 and z2*z3 are boundaries, the Massey │ │ │ │ triple product of the homology classes represented by z1,z2 and z3 is the │ │ │ │ homology class of lift12*z3 + z1*lift23. To see this, we compute and check: │ │ │ │ i10 : z123 = masseyTripleProduct(KR,z1,z2,z3) │ │ │ │ -Finding easy relations : -- used 0.540699s (cpu); 0.470132s │ │ │ │ +Finding easy relations : -- used 0.712029s (cpu); 0.585218s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 │ │ │ │ o10 = x x y z T T T T │ │ │ │ 1 2 2 2 3 4 5 │ │ │ │ │ │ │ │ o10 : R[T ..T ] │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_massey__Triple__Product_lp__D__G__Algebra_cm__Z__Z_cm__Z__Z_cm__Z__Z_rp.html │ │ │ @@ -119,15 +119,15 @@ │ │ │ │ │ │ o4 : DGAlgebra │ │ │
    │ │ │
    i5 : H = HH(KR)
    │ │ │ -Finding easy relations           :  -- used 0.248008s (cpu); 0.24363s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.17719s (cpu); 0.163612s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = H
    │ │ │  
    │ │ │  o5 : QuotientRing
    │ │ │
    │ │ │
    i4 : HB = torAlgebra(R,S,GenDegreeLimit=>4,RelDegreeLimit=>8)
    │ │ │ - -- used 0.47227s (cpu); 0.407795s (thread); 0s (gc)
    │ │ │ + -- used 0.602356s (cpu); 0.503688s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o4 = HB
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │
    │ │ │
    i4 : gprime = deleteEdges (g,T)
    │ │ │  
    │ │ │ -o4 = HyperGraph{"edges" => {{c, d}, {b, c}, {a, e}}}
    │ │ │ +o4 = HyperGraph{"edges" => {{b, c}, {a, e}, {c, d}}}
    │ │ │                  "ring" => S
    │ │ │                  "vertices" => {a, b, c, d, e}
    │ │ │  
    │ │ │  o4 : HyperGraph
    │ │ │
    │ │ │
    i2 : randomHyperGraph(R,{3,2,4})
    │ │ │
    │ │ │ -
    i3 : randomHyperGraph(R,{3,2,4})
    │ │ │ +              
    i3 : randomHyperGraph(R,{3,2,4})
    │ │ │ +
    │ │ │ +
    i4 : randomHyperGraph(R,{3,2,4})
    │ │ │  
    │ │ │ -o3 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}}
    │ │ │ -                              3   4   5     1   4     1   2   3   5
    │ │ │ +o4 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}}
    │ │ │ +                              2   3   5     3   4     1   2   4   5
    │ │ │                  "ring" => R
    │ │ │                  "vertices" => {x , x , x , x , x }
    │ │ │                                  1   2   3   4   5
    │ │ │  
    │ │ │ -o3 : HyperGraph
    │ │ │ -
    │ │ │ -
    i4 : randomHyperGraph(R,{3,2,4})
    │ │ │ +o4 : HyperGraph │ │ │
    │ │ │
    i5 : randomHyperGraph(R,{4,4,2,2}) -- impossible, returns null when time/branch limit reached
    │ │ │
    │ │ │
    i3 : elapsedTime sols = zeroDimSolve I;
    │ │ │ - -- .221824s elapsed
    │ │ │ + -- .25087s elapsed │ │ │
    │ │ │
    i4 : #sols -- 156 solutions
    │ │ │  
    │ │ │  o4 = 156
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ a*b*e*f + a*d*e*f + c*d*e*f, a*b*c*d*e + a*b*c*d*f + a*b*c*e*f + │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ a*b*d*e*f + a*c*d*e*f + b*c*d*e*f, a*b*c*d*e*f - 1) │ │ │ │ │ │ │ │ o2 : Ideal of QQ[a..f] │ │ │ │ i3 : elapsedTime sols = zeroDimSolve I; │ │ │ │ - -- .221824s elapsed │ │ │ │ + -- .25087s elapsed │ │ │ │ i4 : #sols -- 156 solutions │ │ │ │ │ │ │ │ o4 = 156 │ │ │ │ The authors would like to acknowledge the June 2020 Macaulay2 workshop held │ │ │ │ virtually at Warwick, where this package was first developed. │ │ │ │ RReeffeerreenncceess: │ │ │ │ * [1] Sturmfels, Bernd. Solving systems of polynomial equations. No. 97. │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.out │ │ │ @@ -17,23 +17,23 @@ │ │ │ │ │ │ 2 │ │ │ o3 = x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ - -- used 0.00273025s (cpu); 0.0027266s (thread); 0s (gc) │ │ │ + -- used 0.00311468s (cpu); 0.00311082s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ - -- used 0.00165107s (cpu); 0.00165116s (thread); 0s (gc) │ │ │ + -- used 0.00173627s (cpu); 0.0017362s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_eliminate.out │ │ │ @@ -17,23 +17,23 @@ │ │ │ │ │ │ 2 │ │ │ o3 = x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ - -- used 0.00260364s (cpu); 0.00260073s (thread); 0s (gc) │ │ │ + -- used 0.00321028s (cpu); 0.00320693s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ - -- used 0.00151871s (cpu); 0.00151973s (thread); 0s (gc) │ │ │ + -- used 0.0020097s (cpu); 0.00201106s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ │ │ 8 5 │ │ │ o3 = x + x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ i4 : time eliminate(ideal(f,g),x) │ │ │ - -- used 1.58822s (cpu); 1.34056s (thread); 0s (gc) │ │ │ + -- used 1.49259s (cpu); 1.3277s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o4 = ideal(a b*c - a d + a b - b - 6a b*c - 18a b c + 7b c + 48a b c - │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c - 46a b c + 35b c + 15a b*c - 35b c + 21b c - 7b c + b*c + │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -73,15 +73,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ 3 4 4 │ │ │ - 216b*c*d + 2052a*d - 1944d ) │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ - -- used 0.016203s (cpu); 0.0162067s (thread); 0s (gc) │ │ │ + -- used 0.0157317s (cpu); 0.0157336s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o5 = ideal(- a b*c + a d - a b + b + 6a b*c + 18a b c - 7b c - 48a b c + │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c + 46a b c - 35b c - 15a b*c + 35b c - 21b c + 7b c - b*c - │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ │ │ 8 5 │ │ │ o4 = x + x + x*c + d │ │ │ │ │ │ o4 : R │ │ │ │ │ │ i5 : time eliminate(ideal(f,g),x) │ │ │ - -- used 1.63414s (cpu); 1.39781s (thread); 0s (gc) │ │ │ + -- used 1.62498s (cpu); 1.45343s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o5 = ideal(a b*c - a d + a b - b - 6a b*c - 18a b c + 7b c + 48a b c - │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c - 46a b c + 35b c + 15a b*c - 35b c + 21b c - 7b c + b*c + │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -75,15 +75,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ 3 4 4 │ │ │ - 216b*c*d + 2052a*d - 1944d ) │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : time ideal resultant(f,g,x) │ │ │ - -- used 0.0157643s (cpu); 0.0157658s (thread); 0s (gc) │ │ │ + -- used 0.0165227s (cpu); 0.0165251s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o6 = ideal(- a b*c + a d - a b + b + 6a b*c + 18a b c - 7b c - 48a b c + │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c + 46a b c - 35b c - 15a b*c + 35b c - 21b c + 7b c - b*c - │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.html │ │ │ @@ -103,26 +103,26 @@ │ │ │ │ │ │ o3 : R │ │ │
    │ │ │
    i4 : time eliminate(x,ideal(f,g))
    │ │ │ - -- used 0.00273025s (cpu); 0.0027266s (thread); 0s (gc)
    │ │ │ + -- used 0.00311468s (cpu); 0.00311082s (thread); 0s (gc)
    │ │ │  
    │ │ │                        2    2             2           2
    │ │ │  o4 = ideal(a*b*c - b*c  - a d + a*c*d - b  + 2b*d - d )
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.00165107s (cpu); 0.00165116s (thread); 0s (gc)
    │ │ │ + -- used 0.00173627s (cpu); 0.0017362s (thread); 0s (gc)
    │ │ │  
    │ │ │                          2    2             2           2
    │ │ │  o5 = ideal(- a*b*c + b*c  + a d - a*c*d + b  - 2b*d + d )
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │
    │ │ │
    i4 : time eliminate(x,ideal(f,g))
    │ │ │ - -- used 0.00260364s (cpu); 0.00260073s (thread); 0s (gc)
    │ │ │ + -- used 0.00321028s (cpu); 0.00320693s (thread); 0s (gc)
    │ │ │  
    │ │ │                        2    2             2           2
    │ │ │  o4 = ideal(a*b*c - b*c  - a d + a*c*d - b  + 2b*d - d )
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.00151871s (cpu); 0.00151973s (thread); 0s (gc)
    │ │ │ + -- used 0.0020097s (cpu); 0.00201106s (thread); 0s (gc)
    │ │ │  
    │ │ │                          2    2             2           2
    │ │ │  o5 = ideal(- a*b*c + b*c  + a d - a*c*d + b  - 2b*d + d )
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │
    │ │ │
    i4 : time eliminate(ideal(f,g),x)
    │ │ │ - -- used 1.58822s (cpu); 1.34056s (thread); 0s (gc)
    │ │ │ + -- used 1.49259s (cpu); 1.3277s (thread); 0s (gc)
    │ │ │  
    │ │ │              7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o4 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -164,15 +164,15 @@
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.016203s (cpu); 0.0162067s (thread); 0s (gc)
    │ │ │ + -- used 0.0157317s (cpu); 0.0157336s (thread); 0s (gc)
    │ │ │  
    │ │ │                7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o5 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,15 +35,15 @@
    │ │ │ │  i3 : g = x^8+x^5+c*x+d
    │ │ │ │  
    │ │ │ │        8    5
    │ │ │ │  o3 = x  + x  + x*c + d
    │ │ │ │  
    │ │ │ │  o3 : R
    │ │ │ │  i4 : time eliminate(ideal(f,g),x)
    │ │ │ │ - -- used 1.58822s (cpu); 1.34056s (thread); 0s (gc)
    │ │ │ │ + -- used 1.49259s (cpu); 1.3277s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o4 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -90,15 +90,15 @@
    │ │ │ │       + 792a*b c*d - 1512a*b*c d + 648a*c d - 360a b*d  + 648a c*d  - 504b d
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                 3          4        4
    │ │ │ │       - 216b*c*d  + 2052a*d  - 1944d )
    │ │ │ │  
    │ │ │ │  o4 : Ideal of R
    │ │ │ │  i5 : time ideal resultant(f,g,x)
    │ │ │ │ - -- used 0.016203s (cpu); 0.0162067s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0157317s (cpu); 0.0157336s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o5 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html
    │ │ │ @@ -104,15 +104,15 @@
    │ │ │  
    │ │ │  o4 : R
    │ │ │
    │ │ │
    i5 : time eliminate(ideal(f,g),x)
    │ │ │ - -- used 1.63414s (cpu); 1.39781s (thread); 0s (gc)
    │ │ │ + -- used 1.62498s (cpu); 1.45343s (thread); 0s (gc)
    │ │ │  
    │ │ │              7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o5 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -163,15 +163,15 @@
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │
    │ │ │
    i6 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.0157643s (cpu); 0.0157658s (thread); 0s (gc)
    │ │ │ + -- used 0.0165227s (cpu); 0.0165251s (thread); 0s (gc)
    │ │ │  
    │ │ │                7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o6 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,15 +30,15 @@
    │ │ │ │  i4 : g = x^8+x^5+c*x+d
    │ │ │ │  
    │ │ │ │        8    5
    │ │ │ │  o4 = x  + x  + x*c + d
    │ │ │ │  
    │ │ │ │  o4 : R
    │ │ │ │  i5 : time eliminate(ideal(f,g),x)
    │ │ │ │ - -- used 1.63414s (cpu); 1.39781s (thread); 0s (gc)
    │ │ │ │ + -- used 1.62498s (cpu); 1.45343s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o5 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -85,15 +85,15 @@
    │ │ │ │       + 792a*b c*d - 1512a*b*c d + 648a*c d - 360a b*d  + 648a c*d  - 504b d
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                 3          4        4
    │ │ │ │       - 216b*c*d  + 2052a*d  - 1944d )
    │ │ │ │  
    │ │ │ │  o5 : Ideal of R
    │ │ │ │  i6 : time ideal resultant(f,g,x)
    │ │ │ │ - -- used 0.0157643s (cpu); 0.0157658s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0165227s (cpu); 0.0165251s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o6 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/dump/rawdocumentation.dump
    │ │ │ @@ -1,8 +1,8 @@
    │ │ │ -# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Fri Nov 14 16:08:08 2025
    │ │ │ +# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Fri Nov 14 16:08:07 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │  #:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=17
    │ │ │  RW51bWVyYXRpb25DdXJ2ZXM=
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_lines__Hypersurface.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1331975673177
    │ │ │  
    │ │ │  i1 : time for n from 2 to 10 list linesHypersurface(n)
    │ │ │ - -- used 0.0281527s (cpu); 0.0281536s (thread); 0s (gc)
    │ │ │ + -- used 0.033298s (cpu); 0.0332966s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       289139638632755625, 520764738758073845321}
    │ │ │  
    │ │ │  o1 : List
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_rational__Curve.out
    │ │ │ @@ -37,83 +37,83 @@
    │ │ │  i6 : rationalCurve(2) - rationalCurve(1)/8
    │ │ │  
    │ │ │  o6 = 609250
    │ │ │  
    │ │ │  o6 : QQ
    │ │ │  
    │ │ │  i7 : time for D in T list rationalCurve(2,D) - rationalCurve(1,D)/8
    │ │ │ - -- used 0.319804s (cpu); 0.271811s (thread); 0s (gc)
    │ │ │ + -- used 0.366024s (cpu); 0.306752s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {609250, 92288, 52812, 22428, 9728}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : time rationalCurve(3)
    │ │ │ - -- used 0.213965s (cpu); 0.186717s (thread); 0s (gc)
    │ │ │ + -- used 0.144792s (cpu); 0.1448s (thread); 0s (gc)
    │ │ │  
    │ │ │       8564575000
    │ │ │  o8 = ----------
    │ │ │           27
    │ │ │  
    │ │ │  o8 : QQ
    │ │ │  
    │ │ │  i9 : time for D in T list rationalCurve(3,D)
    │ │ │ - -- used 5.81349s (cpu); 5.09017s (thread); 0s (gc)
    │ │ │ + -- used 5.13325s (cpu); 4.48798s (thread); 0s (gc)
    │ │ │  
    │ │ │        8564575000  422690816           4834592  11239424
    │ │ │  o9 = {----------, ---------, 6424365, -------, --------}
    │ │ │            27          27                 3        27
    │ │ │  
    │ │ │  o9 : List
    │ │ │  
    │ │ │  i10 : time rationalCurve(3) - rationalCurve(1)/27
    │ │ │ - -- used 0.226884s (cpu); 0.173069s (thread); 0s (gc)
    │ │ │ + -- used 0.137606s (cpu); 0.137613s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 317206375
    │ │ │  
    │ │ │  o10 : QQ
    │ │ │  
    │ │ │  i11 : time for D in T list rationalCurve(3,D) - rationalCurve(1,D)/27
    │ │ │ - -- used 5.49819s (cpu); 4.75893s (thread); 0s (gc)
    │ │ │ + -- used 5.5059s (cpu); 4.78334s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {317206375, 15655168, 6424326, 1611504, 416256}
    │ │ │  
    │ │ │  o11 : List
    │ │ │  
    │ │ │  i12 : time rationalCurve(4)
    │ │ │ - -- used 1.61994s (cpu); 1.42301s (thread); 0s (gc)
    │ │ │ + -- used 1.51568s (cpu); 1.36753s (thread); 0s (gc)
    │ │ │  
    │ │ │        15517926796875
    │ │ │  o12 = --------------
    │ │ │              64
    │ │ │  
    │ │ │  o12 : QQ
    │ │ │  
    │ │ │  i13 : time rationalCurve(4,{4,2})
    │ │ │ - -- used 7.4159s (cpu); 5.81762s (thread); 0s (gc)
    │ │ │ + -- used 7.13168s (cpu); 5.86697s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = 3883914084
    │ │ │  
    │ │ │  o13 : QQ
    │ │ │  
    │ │ │  i14 : time rationalCurve(4) - rationalCurve(2)/8
    │ │ │ - -- used 1.69129s (cpu); 1.46867s (thread); 0s (gc)
    │ │ │ + -- used 1.73708s (cpu); 1.52062s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = 242467530000
    │ │ │  
    │ │ │  o14 : QQ
    │ │ │  
    │ │ │  i15 : time rationalCurve(4,{4,2}) - rationalCurve(2,{4,2})/8
    │ │ │ - -- used 7.49608s (cpu); 5.96479s (thread); 0s (gc)
    │ │ │ + -- used 6.96733s (cpu); 5.66473s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3883902528
    │ │ │  
    │ │ │  o15 : QQ
    │ │ │  
    │ │ │  i16 : time rationalCurve(4,{3,3}) - rationalCurve(2,{3,3})/8
    │ │ │ - -- used 8.14034s (cpu); 6.23141s (thread); 0s (gc)
    │ │ │ + -- used 6.96812s (cpu); 5.73245s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 1139448384
    │ │ │  
    │ │ │  o16 : QQ
    │ │ │  
    │ │ │  i17 :
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/html/_lines__Hypersurface.html
    │ │ │ @@ -71,15 +71,15 @@
    │ │ │            

    Computes the number of lines on a general hypersurface of degree 2n - 3 in \mathbb P^n.

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the number of lines on a general hypersurface of degree │ │ │ │ 2n - 3 in \mathbb P^n │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Computes the number of lines on a general hypersurface of degree 2n - 3 in │ │ │ │ \mathbb P^n. │ │ │ │ i1 : time for n from 2 to 10 list linesHypersurface(n) │ │ │ │ - -- used 0.0281527s (cpu); 0.0281536s (thread); 0s (gc) │ │ │ │ + -- used 0.033298s (cpu); 0.0332966s (thread); 0s (gc) │ │ │ │ │ │ │ │ o1 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 289139638632755625, 520764738758073845321} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ ********** WWaayyss ttoo uussee lliinneessHHyyppeerrssuurrffaaccee:: ********** │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/html/_rational__Curve.html │ │ │ @@ -152,15 +152,15 @@ │ │ │

    The numbers of conics on general complete intersection Calabi-Yau threefolds can be computed as follows:

    │ │ │

    │ │ │ │ │ │
    │ │ │
    i1 : time for n from 2 to 10 list linesHypersurface(n)
    │ │ │ - -- used 0.0281527s (cpu); 0.0281536s (thread); 0s (gc)
    │ │ │ + -- used 0.033298s (cpu); 0.0332966s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       289139638632755625, 520764738758073845321}
    │ │ │  
    │ │ │  o1 : List
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : time for D in T list rationalCurve(2,D) - rationalCurve(1,D)/8
    │ │ │ - -- used 0.319804s (cpu); 0.271811s (thread); 0s (gc)
    │ │ │ + -- used 0.366024s (cpu); 0.306752s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {609250, 92288, 52812, 22428, 9728}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ @@ -168,27 +168,27 @@ │ │ │

    For rational curves of degree 3:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -198,15 +198,15 @@ │ │ │

    The number of rational curves of degree 3 on a general quintic threefold can be computed as follows:

    │ │ │

    │ │ │ │ │ │
    │ │ │
    i8 : time rationalCurve(3)
    │ │ │ - -- used 0.213965s (cpu); 0.186717s (thread); 0s (gc)
    │ │ │ + -- used 0.144792s (cpu); 0.1448s (thread); 0s (gc)
    │ │ │  
    │ │ │       8564575000
    │ │ │  o8 = ----------
    │ │ │           27
    │ │ │  
    │ │ │  o8 : QQ
    │ │ │
    │ │ │
    i9 : time for D in T list rationalCurve(3,D)
    │ │ │ - -- used 5.81349s (cpu); 5.09017s (thread); 0s (gc)
    │ │ │ + -- used 5.13325s (cpu); 4.48798s (thread); 0s (gc)
    │ │ │  
    │ │ │        8564575000  422690816           4834592  11239424
    │ │ │  o9 = {----------, ---------, 6424365, -------, --------}
    │ │ │            27          27                 3        27
    │ │ │  
    │ │ │  o9 : List
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : time rationalCurve(3) - rationalCurve(1)/27
    │ │ │ - -- used 0.226884s (cpu); 0.173069s (thread); 0s (gc)
    │ │ │ + -- used 0.137606s (cpu); 0.137613s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 317206375
    │ │ │  
    │ │ │  o10 : QQ
    │ │ │
    │ │ │ @@ -214,15 +214,15 @@ │ │ │

    The numbers of rational curves of degree 3 on general complete intersection Calabi-Yau threefolds can be computed as follows:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i11 : time for D in T list rationalCurve(3,D) - rationalCurve(1,D)/27
    │ │ │ - -- used 5.49819s (cpu); 4.75893s (thread); 0s (gc)
    │ │ │ + -- used 5.5059s (cpu); 4.78334s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {317206375, 15655168, 6424326, 1611504, 416256}
    │ │ │  
    │ │ │  o11 : List
    │ │ │
    │ │ │ @@ -230,27 +230,27 @@ │ │ │

    For rational curves of degree 4:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i12 : time rationalCurve(4)
    │ │ │ - -- used 1.61994s (cpu); 1.42301s (thread); 0s (gc)
    │ │ │ + -- used 1.51568s (cpu); 1.36753s (thread); 0s (gc)
    │ │ │  
    │ │ │        15517926796875
    │ │ │  o12 = --------------
    │ │ │              64
    │ │ │  
    │ │ │  o12 : QQ
    │ │ │
    │ │ │
    i13 : time rationalCurve(4,{4,2})
    │ │ │ - -- used 7.4159s (cpu); 5.81762s (thread); 0s (gc)
    │ │ │ + -- used 7.13168s (cpu); 5.86697s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = 3883914084
    │ │ │  
    │ │ │  o13 : QQ
    │ │ │
    │ │ │ @@ -258,15 +258,15 @@ │ │ │

    The number of rational curves of degree 4 on a general quintic threefold can be computed as follows:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i14 : time rationalCurve(4) - rationalCurve(2)/8
    │ │ │ - -- used 1.69129s (cpu); 1.46867s (thread); 0s (gc)
    │ │ │ + -- used 1.73708s (cpu); 1.52062s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = 242467530000
    │ │ │  
    │ │ │  o14 : QQ
    │ │ │
    │ │ │ @@ -274,25 +274,25 @@ │ │ │

    The numbers of rational curves of degree 4 on general complete intersections of types (4,2) and (3,3) in \mathbb P^5 can be computed as follows:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i15 : time rationalCurve(4,{4,2}) - rationalCurve(2,{4,2})/8
    │ │ │ - -- used 7.49608s (cpu); 5.96479s (thread); 0s (gc)
    │ │ │ + -- used 6.96733s (cpu); 5.66473s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3883902528
    │ │ │  
    │ │ │  o15 : QQ
    │ │ │
    │ │ │
    i16 : time rationalCurve(4,{3,3}) - rationalCurve(2,{3,3})/8
    │ │ │ - -- used 8.14034s (cpu); 6.23141s (thread); 0s (gc)
    │ │ │ + -- used 6.96812s (cpu); 5.73245s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 1139448384
    │ │ │  
    │ │ │  o16 : QQ
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -59,85 +59,85 @@ │ │ │ │ │ │ │ │ o6 = 609250 │ │ │ │ │ │ │ │ o6 : QQ │ │ │ │ The numbers of conics on general complete intersection Calabi-Yau threefolds │ │ │ │ can be computed as follows: │ │ │ │ i7 : time for D in T list rationalCurve(2,D) - rationalCurve(1,D)/8 │ │ │ │ - -- used 0.319804s (cpu); 0.271811s (thread); 0s (gc) │ │ │ │ + -- used 0.366024s (cpu); 0.306752s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {609250, 92288, 52812, 22428, 9728} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ For rational curves of degree 3: │ │ │ │ i8 : time rationalCurve(3) │ │ │ │ - -- used 0.213965s (cpu); 0.186717s (thread); 0s (gc) │ │ │ │ + -- used 0.144792s (cpu); 0.1448s (thread); 0s (gc) │ │ │ │ │ │ │ │ 8564575000 │ │ │ │ o8 = ---------- │ │ │ │ 27 │ │ │ │ │ │ │ │ o8 : QQ │ │ │ │ i9 : time for D in T list rationalCurve(3,D) │ │ │ │ - -- used 5.81349s (cpu); 5.09017s (thread); 0s (gc) │ │ │ │ + -- used 5.13325s (cpu); 4.48798s (thread); 0s (gc) │ │ │ │ │ │ │ │ 8564575000 422690816 4834592 11239424 │ │ │ │ o9 = {----------, ---------, 6424365, -------, --------} │ │ │ │ 27 27 3 27 │ │ │ │ │ │ │ │ o9 : List │ │ │ │ The number of rational curves of degree 3 on a general quintic threefold can be │ │ │ │ computed as follows: │ │ │ │ i10 : time rationalCurve(3) - rationalCurve(1)/27 │ │ │ │ - -- used 0.226884s (cpu); 0.173069s (thread); 0s (gc) │ │ │ │ + -- used 0.137606s (cpu); 0.137613s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = 317206375 │ │ │ │ │ │ │ │ o10 : QQ │ │ │ │ The numbers of rational curves of degree 3 on general complete intersection │ │ │ │ Calabi-Yau threefolds can be computed as follows: │ │ │ │ i11 : time for D in T list rationalCurve(3,D) - rationalCurve(1,D)/27 │ │ │ │ - -- used 5.49819s (cpu); 4.75893s (thread); 0s (gc) │ │ │ │ + -- used 5.5059s (cpu); 4.78334s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = {317206375, 15655168, 6424326, 1611504, 416256} │ │ │ │ │ │ │ │ o11 : List │ │ │ │ For rational curves of degree 4: │ │ │ │ i12 : time rationalCurve(4) │ │ │ │ - -- used 1.61994s (cpu); 1.42301s (thread); 0s (gc) │ │ │ │ + -- used 1.51568s (cpu); 1.36753s (thread); 0s (gc) │ │ │ │ │ │ │ │ 15517926796875 │ │ │ │ o12 = -------------- │ │ │ │ 64 │ │ │ │ │ │ │ │ o12 : QQ │ │ │ │ i13 : time rationalCurve(4,{4,2}) │ │ │ │ - -- used 7.4159s (cpu); 5.81762s (thread); 0s (gc) │ │ │ │ + -- used 7.13168s (cpu); 5.86697s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 = 3883914084 │ │ │ │ │ │ │ │ o13 : QQ │ │ │ │ The number of rational curves of degree 4 on a general quintic threefold can be │ │ │ │ computed as follows: │ │ │ │ i14 : time rationalCurve(4) - rationalCurve(2)/8 │ │ │ │ - -- used 1.69129s (cpu); 1.46867s (thread); 0s (gc) │ │ │ │ + -- used 1.73708s (cpu); 1.52062s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = 242467530000 │ │ │ │ │ │ │ │ o14 : QQ │ │ │ │ The numbers of rational curves of degree 4 on general complete intersections of │ │ │ │ types (4,2) and (3,3) in \mathbb P^5 can be computed as follows: │ │ │ │ i15 : time rationalCurve(4,{4,2}) - rationalCurve(2,{4,2})/8 │ │ │ │ - -- used 7.49608s (cpu); 5.96479s (thread); 0s (gc) │ │ │ │ + -- used 6.96733s (cpu); 5.66473s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = 3883902528 │ │ │ │ │ │ │ │ o15 : QQ │ │ │ │ i16 : time rationalCurve(4,{3,3}) - rationalCurve(2,{3,3})/8 │ │ │ │ - -- used 8.14034s (cpu); 6.23141s (thread); 0s (gc) │ │ │ │ + -- used 6.96812s (cpu); 5.73245s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = 1139448384 │ │ │ │ │ │ │ │ o16 : QQ │ │ │ │ ********** WWaayyss ttoo uussee rraattiioonnaallCCuurrvvee:: ********** │ │ │ │ * rationalCurve(ZZ) │ │ │ │ * rationalCurve(ZZ,List) │ │ ├── ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb__Toric.out │ │ │ @@ -10,34 +10,34 @@ │ │ │ o3 = map (R, S, {x , x x , x x , x }) │ │ │ 1 1 0 1 0 0 │ │ │ │ │ │ o3 : RingMap R <-- S │ │ │ │ │ │ i4 : G = egbToric(m, OutFile=>stdio) │ │ │ 3 │ │ │ - -- used .00193395 seconds │ │ │ - -- used .000576761 seconds │ │ │ + -- used .0021113 seconds │ │ │ + -- used .000596318 seconds │ │ │ (9, 9) │ │ │ new stuff found │ │ │ 4 │ │ │ - -- used .00342678 seconds │ │ │ - -- used .00437517 seconds │ │ │ + -- used .00384151 seconds │ │ │ + -- used .00495504 seconds │ │ │ (16, 26) │ │ │ new stuff found │ │ │ 5 │ │ │ - -- used .00818257 seconds │ │ │ - -- used .0263901 seconds │ │ │ + -- used .00847061 seconds │ │ │ + -- used .0273416 seconds │ │ │ (25, 60) │ │ │ 6 │ │ │ - -- used .0178533 seconds │ │ │ - -- used .204629 seconds │ │ │ + -- used .01908 seconds │ │ │ + -- used .223418 seconds │ │ │ (36, 120) │ │ │ 7 │ │ │ - -- used .0386938 seconds │ │ │ - -- used .823841 seconds │ │ │ + -- used .0432785 seconds │ │ │ + -- used .896477 seconds │ │ │ (49, 217) │ │ │ │ │ │ 2 │ │ │ o4 = {- y + y , - y y + y , - y y + y y , - y y + │ │ │ 1,0 0,1 1,1 0,0 1,0 2,1 0,0 2,0 1,0 2,1 1,0 │ │ │ ------------------------------------------------------------------------ │ │ │ y y , - y y + y y , - y y + y y , - y y + │ │ ├── ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb__Toric.html │ │ │ @@ -101,34 +101,34 @@ │ │ │ o3 : RingMap R <-- S
    │ │ │
    │ │ │
    i4 : G = egbToric(m, OutFile=>stdio)
    │ │ │  3
    │ │ │ -     -- used .00193395 seconds
    │ │ │ -     -- used .000576761 seconds
    │ │ │ +     -- used .0021113 seconds
    │ │ │ +     -- used .000596318 seconds
    │ │ │  (9, 9)
    │ │ │  new stuff found
    │ │ │  4
    │ │ │ -     -- used .00342678 seconds
    │ │ │ -     -- used .00437517 seconds
    │ │ │ +     -- used .00384151 seconds
    │ │ │ +     -- used .00495504 seconds
    │ │ │  (16, 26)
    │ │ │  new stuff found
    │ │ │  5
    │ │ │ -     -- used .00818257 seconds
    │ │ │ -     -- used .0263901 seconds
    │ │ │ +     -- used .00847061 seconds
    │ │ │ +     -- used .0273416 seconds
    │ │ │  (25, 60)
    │ │ │  6
    │ │ │ -     -- used .0178533 seconds
    │ │ │ -     -- used .204629 seconds
    │ │ │ +     -- used .01908 seconds
    │ │ │ +     -- used .223418 seconds
    │ │ │  (36, 120)
    │ │ │  7
    │ │ │ -     -- used .0386938 seconds
    │ │ │ -     -- used .823841 seconds
    │ │ │ +     -- used .0432785 seconds
    │ │ │ +     -- used .896477 seconds
    │ │ │  (49, 217)
    │ │ │  
    │ │ │                                     2
    │ │ │  o4 = {- y    + y   , - y   y    + y   , - y   y    + y   y   , - y   y    +
    │ │ │           1,0    0,1     1,1 0,0    1,0     2,1 0,0    2,0 1,0     2,1 1,0  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y   y   , - y   y    + y   y   , - y   y    + y   y   , - y   y    +
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -33,34 +33,34 @@
    │ │ │ │                    2               2
    │ │ │ │  o3 = map (R, S, {x , x x , x x , x })
    │ │ │ │                    1   1 0   1 0   0
    │ │ │ │  
    │ │ │ │  o3 : RingMap R <-- S
    │ │ │ │  i4 : G = egbToric(m, OutFile=>stdio)
    │ │ │ │  3
    │ │ │ │ -     -- used .00193395 seconds
    │ │ │ │ -     -- used .000576761 seconds
    │ │ │ │ +     -- used .0021113 seconds
    │ │ │ │ +     -- used .000596318 seconds
    │ │ │ │  (9, 9)
    │ │ │ │  new stuff found
    │ │ │ │  4
    │ │ │ │ -     -- used .00342678 seconds
    │ │ │ │ -     -- used .00437517 seconds
    │ │ │ │ +     -- used .00384151 seconds
    │ │ │ │ +     -- used .00495504 seconds
    │ │ │ │  (16, 26)
    │ │ │ │  new stuff found
    │ │ │ │  5
    │ │ │ │ -     -- used .00818257 seconds
    │ │ │ │ -     -- used .0263901 seconds
    │ │ │ │ +     -- used .00847061 seconds
    │ │ │ │ +     -- used .0273416 seconds
    │ │ │ │  (25, 60)
    │ │ │ │  6
    │ │ │ │ -     -- used .0178533 seconds
    │ │ │ │ -     -- used .204629 seconds
    │ │ │ │ +     -- used .01908 seconds
    │ │ │ │ +     -- used .223418 seconds
    │ │ │ │  (36, 120)
    │ │ │ │  7
    │ │ │ │ -     -- used .0386938 seconds
    │ │ │ │ -     -- used .823841 seconds
    │ │ │ │ +     -- used .0432785 seconds
    │ │ │ │ +     -- used .896477 seconds
    │ │ │ │  (49, 217)
    │ │ │ │  
    │ │ │ │                                     2
    │ │ │ │  o4 = {- y    + y   , - y   y    + y   , - y   y    + y   y   , - y   y    +
    │ │ │ │           1,0    0,1     1,1 0,0    1,0     2,1 0,0    2,0 1,0     2,1 1,0
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       y   y   , - y   y    + y   y   , - y   y    + y   y   , - y   y    +
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/___Fast__Minors__Strategy__Tutorial.out
    │ │ │ @@ -462,50 +462,50 @@
    │ │ │                 3 2 4     3 6
    │ │ │  o27 = ideal(12x x x  - 4x x )
    │ │ │                 3 7 9     3 9
    │ │ │  
    │ │ │  o27 : Ideal of S
    │ │ │  
    │ │ │  i28 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Random))
    │ │ │ - -- used 0.157442s (cpu); 0.120698s (thread); 0s (gc)
    │ │ │ + -- used 0.223464s (cpu); 0.158617s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 2
    │ │ │  
    │ │ │  i29 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallest))
    │ │ │ - -- used 0.302486s (cpu); 0.208099s (thread); 0s (gc)
    │ │ │ + -- used 0.427294s (cpu); 0.279967s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = 3
    │ │ │  
    │ │ │  i30 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallestTerm))
    │ │ │ - -- used 0.495085s (cpu); 0.319904s (thread); 0s (gc)
    │ │ │ + -- used 0.566383s (cpu); 0.35712s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 1
    │ │ │  
    │ │ │  i31 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexLargest))
    │ │ │ - -- used 0.21162s (cpu); 0.169556s (thread); 0s (gc)
    │ │ │ + -- used 0.285631s (cpu); 0.215034s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 2
    │ │ │  
    │ │ │  i32 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallest))
    │ │ │ - -- used 0.375002s (cpu); 0.205247s (thread); 0s (gc)
    │ │ │ + -- used 0.417682s (cpu); 0.217536s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = 3
    │ │ │  
    │ │ │  i33 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallestTerm))
    │ │ │ - -- used 0.338148s (cpu); 0.23363s (thread); 0s (gc)
    │ │ │ + -- used 0.369391s (cpu); 0.247172s (thread); 0s (gc)
    │ │ │  
    │ │ │  o33 = 3
    │ │ │  
    │ │ │  i34 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexLargest))
    │ │ │ - -- used 0.298624s (cpu); 0.191542s (thread); 0s (gc)
    │ │ │ + -- used 0.388877s (cpu); 0.252549s (thread); 0s (gc)
    │ │ │  
    │ │ │  o34 = 3
    │ │ │  
    │ │ │  i35 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Points))
    │ │ │ - -- used 14.9955s (cpu); 10.1647s (thread); 0s (gc)
    │ │ │ + -- used 18.7751s (cpu); 11.9769s (thread); 0s (gc)
    │ │ │  
    │ │ │  o35 = 1
    │ │ │  
    │ │ │  i36 : peek StrategyDefault
    │ │ │  
    │ │ │  o36 = OptionTable{GRevLexLargest => 0      }
    │ │ │                    GRevLexSmallest => 16
    │ │ │ @@ -514,15 +514,15 @@
    │ │ │                    LexSmallest => 16
    │ │ │                    LexSmallestTerm => 16
    │ │ │                    Points => 0
    │ │ │                    Random => 16
    │ │ │                    RandomNonzero => 16
    │ │ │  
    │ │ │  i37 : time chooseGoodMinors(20, 6, M, J, Strategy=>StrategyDefault, Verbose=>true);
    │ │ │ - -- used 0.48632s (cpu); 0.444696s (thread); 0s (gc)
    │ │ │ + -- used 0.469793s (cpu); 0.392208s (thread); 0s (gc)
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ @@ -582,15 +582,15 @@
    │ │ │  i41 : ptsStratGeometric = new OptionTable from (options chooseGoodMinors)#PointOptions;
    │ │ │  
    │ │ │  i42 : ptsStratGeometric#ExtendField --look at the default value
    │ │ │  
    │ │ │  o42 = true
    │ │ │  
    │ │ │  i43 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratGeometric))
    │ │ │ - -- used 0.495057s (cpu); 0.461267s (thread); 0s (gc)
    │ │ │ + -- used 0.775404s (cpu); 0.627815s (thread); 0s (gc)
    │ │ │  
    │ │ │  o43 = 2
    │ │ │  
    │ │ │  i44 : ptsStratRational = ptsStratGeometric++{ExtendField=>false} --change that value
    │ │ │  
    │ │ │  o44 = OptionTable{DecompositionStrategy => Decompose}
    │ │ │                    DimensionFunction => dim
    │ │ │ @@ -605,47 +605,47 @@
    │ │ │  o44 : OptionTable
    │ │ │  
    │ │ │  i45 : ptsStratRational.ExtendField --look at our changed value
    │ │ │  
    │ │ │  o45 = false
    │ │ │  
    │ │ │  i46 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratRational))
    │ │ │ - -- used 0.512127s (cpu); 0.390896s (thread); 0s (gc)
    │ │ │ + -- used 0.525895s (cpu); 0.453821s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = 2
    │ │ │  
    │ │ │  i47 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefault)
    │ │ │ - -- used 3.35648s (cpu); 3.0338s (thread); 0s (gc)
    │ │ │ + -- used 4.22618s (cpu); 3.788s (thread); 0s (gc)
    │ │ │  
    │ │ │  i48 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultNonRandom)
    │ │ │ - -- used 0.728099s (cpu); 0.636148s (thread); 0s (gc)
    │ │ │ + -- used 0.918908s (cpu); 0.79026s (thread); 0s (gc)
    │ │ │  
    │ │ │  o48 = true
    │ │ │  
    │ │ │  i49 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Random)
    │ │ │ - -- used 2.71868s (cpu); 2.52715s (thread); 0s (gc)
    │ │ │ + -- used 3.67055s (cpu); 3.2299s (thread); 0s (gc)
    │ │ │  
    │ │ │  i50 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallest)
    │ │ │ - -- used 2.3572s (cpu); 2.00446s (thread); 0s (gc)
    │ │ │ + -- used 2.86661s (cpu); 2.32854s (thread); 0s (gc)
    │ │ │  
    │ │ │  i51 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallestTerm)
    │ │ │ - -- used 0.874751s (cpu); 0.777483s (thread); 0s (gc)
    │ │ │ + -- used 0.914114s (cpu); 0.837908s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = true
    │ │ │  
    │ │ │  i52 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallest)
    │ │ │ - -- used 2.70655s (cpu); 2.28905s (thread); 0s (gc)
    │ │ │ + -- used 3.14597s (cpu); 2.56774s (thread); 0s (gc)
    │ │ │  
    │ │ │  i53 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallestTerm)
    │ │ │ - -- used 3.1076s (cpu); 2.68758s (thread); 0s (gc)
    │ │ │ + -- used 3.73908s (cpu); 3.12886s (thread); 0s (gc)
    │ │ │  
    │ │ │  i54 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Points)
    │ │ │ - -- used 9.26442s (cpu); 7.71318s (thread); 0s (gc)
    │ │ │ + -- used 11.0621s (cpu); 8.99055s (thread); 0s (gc)
    │ │ │  
    │ │ │  o54 = true
    │ │ │  
    │ │ │  i55 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultWithPoints)
    │ │ │ - -- used 7.30189s (cpu); 6.0694s (thread); 0s (gc)
    │ │ │ + -- used 8.49863s (cpu); 6.81937s (thread); 0s (gc)
    │ │ │  
    │ │ │  o55 = true
    │ │ │  
    │ │ │  i56 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/___Regular__In__Codimension__Tutorial.out
    │ │ │ @@ -7,20 +7,20 @@
    │ │ │  o2 : Ideal of S
    │ │ │  
    │ │ │  i3 : dim (S/J)
    │ │ │  
    │ │ │  o3 = 4
    │ │ │  
    │ │ │  i4 : time regularInCodimension(1, S/J)
    │ │ │ - -- used 0.853916s (cpu); 0.601439s (thread); 0s (gc)
    │ │ │ + -- used 1.1689s (cpu); 0.770007s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 : time regularInCodimension(2, S/J)
    │ │ │ - -- used 11.1488s (cpu); 8.3419s (thread); 0s (gc)
    │ │ │ + -- used 12.7954s (cpu); 8.81984s (thread); 0s (gc)
    │ │ │  
    │ │ │  i6 : time regularInCodimension(1, S/J, Verbose=>true)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 452.908 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │ @@ -87,21 +87,21 @@
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 49, and computed = 39
    │ │ │  regularInCodimension:  singularLocus dimension verified by isCodimAtLeast
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 2
    │ │ │ -regularInCodimension:  Loop completed, submatrices considered = 49, and compute -- used 1.46811s (cpu); 1.03558s (thread); 0s (gc)
    │ │ │ +regularInCodimension:  Loop completed, submatrices considered = 49, and compute -- used 1.71456s (cpu); 1.17351s (thread); 0s (gc)
    │ │ │  d = 39.  singular locus dimension appears to be = 2
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : time regularInCodimension(1, S/J, MaxMinors=>10, Verbose=>true)
    │ │ │ - -- used 0.181418s (cpu); 0.129355s (thread); 0s (gc)
    │ │ │ + -- used 0.213908s (cpu); 0.143687s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -115,15 +115,15 @@
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 10, and computed = 10
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 10, and computed = 10.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i8 : time regularInCodimension(1, S/J, MaxMinors=>10, Strategy=>StrategyRandom, Verbose=>true)
    │ │ │ - -- used 0.138676s (cpu); 0.098481s (thread); 0s (gc)
    │ │ │ + -- used 0.190505s (cpu); 0.121459s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -137,15 +137,15 @@
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 10, and computed = 10
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 10, and computed = 10.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i9 : time regularInCodimension(1, S/J, MaxMinors=>10, MinMinorsFunction => t->3, Verbose=>true)
    │ │ │ - -- used 0.568112s (cpu); 0.444722s (thread); 0s (gc)
    │ │ │ + -- used 0.71169s (cpu); 0.501039s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 3, and computed = 3
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │ @@ -165,15 +165,15 @@
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 10, and computed = 10
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 10, and computed = 10.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i10 : time regularInCodimension(1, S/J, MaxMinors=>25, CodimCheckFunction => t->t/5, MinMinorsFunction => t->2, Verbose=>true)
    │ │ │ - -- used 0.710929s (cpu); 0.526468s (thread); 0s (gc)
    │ │ │ + -- used 0.83097s (cpu); 0.563867s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 2, and computed = 2
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 4
    │ │ │ @@ -214,15 +214,15 @@
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 25, and computed = 23
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 25, and computed = 23.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i11 : time regularInCodimension(1, S/J, MaxMinors=>25, UseOnlyFastCodim => true, Verbose=>true)
    │ │ │ - -- used 0.467454s (cpu); 0.323483s (thread); 0s (gc)
    │ │ │ + -- used 0.537069s (cpu); 0.340705s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/___Strategy__Default.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 5509279875405941999
    │ │ │  
    │ │ │  i1 : T=ZZ/7[a..i]/ideal(f*h-e*i,c*h-b*i,f*g-d*i,e*g-d*h,c*g-a*i,b*g-a*h,c*e-b*f,c*d-a*f,b*d-a*e,g^3-h^2*i-g*i^2,d*g^2-e*h*i-d*i^2,a*g^2-b*h*i-a*i^2,d^2*g-e^2*i-d*f*i,a*d*g-b*e*i-a*f*i,a^2*g-b^2*i-a*c*i,d^3-e^2*f-d*f^2,a*d^2-b*e*f-a*f^2,a^2*d-b^2*f-a*c*f,c^3+f^3-i^3,b*c^2+e*f^2-h*i^2,a*c^2+d*f^2-g*i^2,b^2*c+e^2*f-h^2*i,a*b*c+d*e*f-g*h*i,a^2*c+d^2*f-g^2*i,b^3+e^3-h^3,a*b^2+d*e^2-g*h^2,a^2*b+d^2*e-g^2*h,a^3+e^2*f+d*f^2-h^2*i-g*i^2);
    │ │ │  
    │ │ │  i2 : elapsedTime regularInCodimension(1, T, Strategy=>StrategyDefault)
    │ │ │ - -- 1.52401s elapsed
    │ │ │ + -- 1.56027s elapsed
    │ │ │  
    │ │ │  o2 = true
    │ │ │  
    │ │ │  i3 : peek StrategyDefault
    │ │ │  
    │ │ │  o3 = OptionTable{GRevLexLargest => 0      }
    │ │ │                   GRevLexSmallest => 16
    │ │ │ @@ -16,12 +16,12 @@
    │ │ │                   LexSmallest => 16
    │ │ │                   LexSmallestTerm => 16
    │ │ │                   Points => 0
    │ │ │                   Random => 16
    │ │ │                   RandomNonzero => 16
    │ │ │  
    │ │ │  i4 : elapsedTime regularInCodimension(1, T, Strategy=>LexSmallestTerm)
    │ │ │ - -- .982994s elapsed
    │ │ │ + -- .973482s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Codim__At__Least.out
    │ │ │ @@ -16,29 +16,29 @@
    │ │ │  i5 : r = rank myDiff;
    │ │ │  
    │ │ │  i6 : J = chooseGoodMinors(15, r, myDiff, Strategy=>StrategyDefaultNonRandom);
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : time isCodimAtLeast(3, J)
    │ │ │ - -- used 0.00400072s (cpu); 0.00264049s (thread); 0s (gc)
    │ │ │ + -- used 0.00399898s (cpu); 0.00320476s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = true
    │ │ │  
    │ │ │  i8 : I = ideal(x_2^8*x_10^3-3*x_1*x_2^7*x_10^2*x_11+3*x_1^2*x_2^6*x_10*x_11^2-x_1^3*x_2^5*x_11^3,x_5^5*x_6^3*x_11^3-3*x_5^6*x_6^2*x_11^2*x_12+3*x_5^7*x_6*x_11*x_12^2-x_5^8*x_12^3,x_1^5*x_2^3*x_4^3-3*x_1^6*x_2^2*x_4^2*x_5+3*x_1^7*x_2*x_4*x_5^2-x_1^8*x_5^3,x_6^8*x_11^3-3*x_5*x_6^7*x_11^2*x_12+3*x_5^2*x_6^6*x_11*x_12^2-x_5^3*x_6^5*x_12^3,x_8^3*x_10^8-3*x_7*x_8^2*x_10^7*x_11+3*x_7^2*x_8*x_10^6*x_11^2-x_7^3*x_10^5*x_11^3,x_2^8*x_4^3-3*x_1*x_2^7*x_4^2*x_5+3*x_1^2*x_2^6*x_4*x_5^2-x_1^3*x_2^5*x_5^3,-x_6^3*x_11^8+3*x_5*x_6^2*x_11^7*x_12-3*x_5^2*x_6*x_11^6*x_12^2+x_5^3*x_11^5*x_12^3,-x_6^3*x_7^3*x_9^5+3*x_4*x_6^2*x_7^2*x_9^6-3*x_4^2*x_6*x_7*x_9^7+x_4^3*x_9^8,x_8^8*x_10^3-3*x_7*x_8^7*x_10^2*x_11+3*x_7^2*x_8^6*x_10*x_11^2-x_7^3*x_8^5*x_11^3,x_2^5*x_3^3*x_11^3-3*x_2^6*x_3^2*x_11^2*x_12+3*x_2^7*x_3*x_11*x_12^2-x_2^8*x_12^3);
    │ │ │  
    │ │ │                 ZZ
    │ │ │  o8 : Ideal of ---[x  , x , x , x , x  , x , x , x  , x , x , x , x ]
    │ │ │                127  11   8   1   9   12   6   5   10   2   4   3   7
    │ │ │  
    │ │ │  i9 : time isCodimAtLeast(5, I, PairLimit => 5, Verbose=>true)
    │ │ │ - -- used 0.00245125s (cpu); 0.00248215s (thread); 0s (gc)
    │ │ │ + -- used 0.00021504s (cpu); 0.00323491s (thread); 0s (gc)
    │ │ │  isCodimAtLeast: Computing codim of monomials based on ideal generators.
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : time isCodimAtLeast(5, I, PairLimit => 200, Verbose=>false)
    │ │ │ - -- used 0.00231197s (cpu); 0.0023101s (thread); 0s (gc)
    │ │ │ + -- used 0.000549463s (cpu); 0.00293562s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = true
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_proj__Dim.out
    │ │ │ @@ -7,17 +7,17 @@
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : pdim(module I)
    │ │ │  
    │ │ │  o3 = 2
    │ │ │  
    │ │ │  i4 : time projDim(module I, Strategy=>StrategyRandom)
    │ │ │ - -- used 0.237579s (cpu); 0.142956s (thread); 0s (gc)
    │ │ │ + -- used 0.320525s (cpu); 0.175817s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │  
    │ │ │  i5 : time projDim(module I, Strategy=>StrategyRandom, MinDimension => 1)
    │ │ │ - -- used 0.0109946s (cpu); 0.0128064s (thread); 0s (gc)
    │ │ │ + -- used 0.0136194s (cpu); 0.0160085s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_recursive__Minors.out
    │ │ │ @@ -4,20 +4,20 @@
    │ │ │  
    │ │ │  i2 : M = random(R^{5,5,5,5,5,5}, R^7);
    │ │ │  
    │ │ │               6      7
    │ │ │  o2 : Matrix R  <-- R
    │ │ │  
    │ │ │  i3 : time I2 = recursiveMinors(4, M, Threads=>0);
    │ │ │ - -- used 0.493613s (cpu); 0.449433s (thread); 0s (gc)
    │ │ │ + -- used 0.569372s (cpu); 0.496535s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : time I1 = minors(4, M, Strategy=>Cofactor);
    │ │ │ - -- used 1.51523s (cpu); 1.31036s (thread); 0s (gc)
    │ │ │ + -- used 1.48311s (cpu); 1.3422s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │  
    │ │ │  i5 : I1 == I2
    │ │ │  
    │ │ │  o5 = true
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_regular__In__Codimension.out
    │ │ │ @@ -17,44 +17,44 @@
    │ │ │  i6 : S = T/I;
    │ │ │  
    │ │ │  i7 : dim S
    │ │ │  
    │ │ │  o7 = 3
    │ │ │  
    │ │ │  i8 : time regularInCodimension(1, S)
    │ │ │ - -- used 0.67198s (cpu); 0.551786s (thread); 0s (gc)
    │ │ │ + -- used 0.8055s (cpu); 0.606382s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │  
    │ │ │  i9 : time regularInCodimension(2, S)
    │ │ │ - -- used 6.48256s (cpu); 4.93012s (thread); 0s (gc)
    │ │ │ + -- used 7.51845s (cpu); 5.45067s (thread); 0s (gc)
    │ │ │  
    │ │ │  i10 : R = QQ[c, f, g, h]/ideal(g^3+h^3+1,f*g^3+f*h^3+f,c*g^3+c*h^3+c,f^2*g^3+f^2*h^3+f^2,c*f*g^3+c*f*h^3+c*f,c^2*g^3+c^2*h^3+c^2,f^3*g^3+f^3*h^3+f^3,c*f^2*g^3+c*f^2*h^3+c*f^2,c^2*f*g^3+c^2*f*h^3+c^2*f,c^3-f^2-c,c^3*h-f^2*h-c*h,c^3*g-f^2*g-c*g,c^3*h^2-f^2*h^2-c*h^2,c^3*g*h-f^2*g*h-c*g*h,c^3*g^2-f^2*g^2-c*g^2,c^3*h^3-f^2*h^3-c*h^3,c^3*g*h^2-f^2*g*h^2-c*g*h^2,c^3*g^2*h-f^2*g^2*h-c*g^2*h,c^3*g^3+f^2*h^3+c*h^3+f^2+c);
    │ │ │  
    │ │ │  i11 : dim(R)
    │ │ │  
    │ │ │  o11 = 2
    │ │ │  
    │ │ │  i12 : time (dim singularLocus (R))
    │ │ │ - -- used 0.020027s (cpu); 0.0198154s (thread); 0s (gc)
    │ │ │ + -- used 0.0199989s (cpu); 0.0218343s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -1
    │ │ │  
    │ │ │  i13 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.192016s (cpu); 0.160849s (thread); 0s (gc)
    │ │ │ + -- used 0.219085s (cpu); 0.153646s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = true
    │ │ │  
    │ │ │  i14 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.909538s (cpu); 0.600324s (thread); 0s (gc)
    │ │ │ + -- used 1.12326s (cpu); 0.731085s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 : time regularInCodimension(2, R)
    │ │ │ - -- used 1.3289s (cpu); 0.899094s (thread); 0s (gc)
    │ │ │ + -- used 1.56518s (cpu); 1.02244s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = true
    │ │ │  
    │ │ │  i16 : time regularInCodimension(2, S, Verbose=>true)
    │ │ │  regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 minors, we will compute up to 327.599 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ @@ -386,15 +386,15 @@
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │ -internalChooseMinor: Ch -- used 6.59871s (cpu); 5.02176s (thread); 0s (gc)
    │ │ │ +internalChooseMinor: Ch -- used 7.8949s (cpu); 5.778s (thread); 0s (gc)
    │ │ │  oosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ @@ -430,15 +430,15 @@
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 328, and computed = 180
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 1
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 328, and computed = 180.  singular locus dimension appears to be = 1
    │ │ │  
    │ │ │  i17 : time regularInCodimension(2, S, Verbose=>true, MaxMinors=>30)
    │ │ │ - -- used 1.29022s (cpu); 0.996476s (thread); 0s (gc)
    │ │ │ + -- used 1.59609s (cpu); 1.19372s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 minors, we will compute up to 30 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │ @@ -490,59 +490,59 @@
    │ │ │  i18 : StrategyCurrent#Random = 0;
    │ │ │  
    │ │ │  i19 : StrategyCurrent#LexSmallest = 100;
    │ │ │  
    │ │ │  i20 : StrategyCurrent#LexSmallestTerm = 0;
    │ │ │  
    │ │ │  i21 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.31652s (cpu); 0.221889s (thread); 0s (gc)
    │ │ │ + -- used 0.372363s (cpu); 0.244349s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │  
    │ │ │  i22 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.121412s (cpu); 0.0729141s (thread); 0s (gc)
    │ │ │ + -- used 0.159993s (cpu); 0.0846935s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = true
    │ │ │  
    │ │ │  i23 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.36055s (cpu); 0.269016s (thread); 0s (gc)
    │ │ │ + -- used 0.440651s (cpu); 0.318695s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = true
    │ │ │  
    │ │ │  i24 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 1.61547s (cpu); 1.20594s (thread); 0s (gc)
    │ │ │ + -- used 2.10858s (cpu); 1.50239s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │  
    │ │ │  i25 : StrategyCurrent#LexSmallest = 0;
    │ │ │  
    │ │ │  i26 : StrategyCurrent#LexSmallestTerm = 100;
    │ │ │  
    │ │ │  i27 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.16839s (cpu); 1.58684s (thread); 0s (gc)
    │ │ │ + -- used 2.71354s (cpu); 1.85257s (thread); 0s (gc)
    │ │ │  
    │ │ │  i28 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.24976s (cpu); 1.60689s (thread); 0s (gc)
    │ │ │ + -- used 2.72213s (cpu); 1.8053s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │  
    │ │ │  i29 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.419528s (cpu); 0.335678s (thread); 0s (gc)
    │ │ │ + -- used 0.500127s (cpu); 0.363283s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = true
    │ │ │  
    │ │ │  i30 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.6816s (cpu); 0.545534s (thread); 0s (gc)
    │ │ │ + -- used 0.866356s (cpu); 0.65138s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │  
    │ │ │  i31 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 0.990173s (cpu); 0.815558s (thread); 0s (gc)
    │ │ │ + -- used 1.24983s (cpu); 0.961592s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = true
    │ │ │  
    │ │ │  i32 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.68103s (cpu); 1.31918s (thread); 0s (gc)
    │ │ │ + -- used 1.95305s (cpu); 1.51345s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = true
    │ │ │  
    │ │ │  i33 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/___Fast__Minors__Strategy__Tutorial.html
    │ │ │ @@ -620,71 +620,71 @@
    │ │ │          
    │ │ │

    Here the $1$ passed to the function says how many minors to compute. For instance, let's compute 8 minors for each of these strategies and see if that was enough to verify that the ring is regular in codimension 1. In other words, if the dimension of $J$ plus the ideal of partial minors is $\leq 1$ (since $S/J$ has dimension 3).

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i28 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Random))
    │ │ │ - -- used 0.157442s (cpu); 0.120698s (thread); 0s (gc)
    │ │ │ + -- used 0.223464s (cpu); 0.158617s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 2
    │ │ │
    │ │ │
    i29 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallest))
    │ │ │ - -- used 0.302486s (cpu); 0.208099s (thread); 0s (gc)
    │ │ │ + -- used 0.427294s (cpu); 0.279967s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = 3
    │ │ │
    │ │ │
    i30 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallestTerm))
    │ │ │ - -- used 0.495085s (cpu); 0.319904s (thread); 0s (gc)
    │ │ │ + -- used 0.566383s (cpu); 0.35712s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 1
    │ │ │
    │ │ │
    i31 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexLargest))
    │ │ │ - -- used 0.21162s (cpu); 0.169556s (thread); 0s (gc)
    │ │ │ + -- used 0.285631s (cpu); 0.215034s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 2
    │ │ │
    │ │ │
    i32 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallest))
    │ │ │ - -- used 0.375002s (cpu); 0.205247s (thread); 0s (gc)
    │ │ │ + -- used 0.417682s (cpu); 0.217536s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = 3
    │ │ │
    │ │ │
    i33 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallestTerm))
    │ │ │ - -- used 0.338148s (cpu); 0.23363s (thread); 0s (gc)
    │ │ │ + -- used 0.369391s (cpu); 0.247172s (thread); 0s (gc)
    │ │ │  
    │ │ │  o33 = 3
    │ │ │
    │ │ │
    i34 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexLargest))
    │ │ │ - -- used 0.298624s (cpu); 0.191542s (thread); 0s (gc)
    │ │ │ + -- used 0.388877s (cpu); 0.252549s (thread); 0s (gc)
    │ │ │  
    │ │ │  o34 = 3
    │ │ │
    │ │ │
    i35 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Points))
    │ │ │ - -- used 14.9955s (cpu); 10.1647s (thread); 0s (gc)
    │ │ │ + -- used 18.7751s (cpu); 11.9769s (thread); 0s (gc)
    │ │ │  
    │ │ │  o35 = 1
    │ │ │
    │ │ │
    │ │ │

    Indeed, in this example, even computing determinants of 1,000 random submatrices is not typically enough to verify that $V(J)$ is regular in codimension 1. On the other hand, Points is almost always quite effective at finding valuable submatrices, but can be quite slow. In this particular example, we can see that LexSmallestTerm also performs very well (and does it quickly). Since different strategies work better or worse on different examples, the default strategy actually mixes and matches various strategies. The default strategy, which we now elucidate,

    │ │ │ @@ -709,15 +709,15 @@ │ │ │
    │ │ │

    says that we should use GRevLexSmallest, GRevLexSmallestTerm, LexSmallest, LexSmallestTerm, Random, RandomNonzero all with equal probability (note RandomNonzero, which we have not yet discussed chooses random submatrices where no row or column is zero, which is good for working in sparse matrices). For instance, if we run:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i37 : time chooseGoodMinors(20, 6, M, J, Strategy=>StrategyDefault, Verbose=>true);
    │ │ │ - -- used 0.48632s (cpu); 0.444696s (thread); 0s (gc)
    │ │ │ + -- used 0.469793s (cpu); 0.392208s (thread); 0s (gc)
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ @@ -820,15 +820,15 @@
    │ │ │  
    │ │ │  o42 = true
    │ │ │
    │ │ │
    i43 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratGeometric))
    │ │ │ - -- used 0.495057s (cpu); 0.461267s (thread); 0s (gc)
    │ │ │ + -- used 0.775404s (cpu); 0.627815s (thread); 0s (gc)
    │ │ │  
    │ │ │  o43 = 2
    │ │ │
    │ │ │
    i44 : ptsStratRational = ptsStratGeometric++{ExtendField=>false} --change that value
    │ │ │ @@ -852,15 +852,15 @@
    │ │ │  
    │ │ │  o45 = false
    │ │ │
    │ │ │
    i46 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratRational))
    │ │ │ - -- used 0.512127s (cpu); 0.390896s (thread); 0s (gc)
    │ │ │ + -- used 0.525895s (cpu); 0.453821s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = 2
    │ │ │
    │ │ │
    │ │ │

    Other options may also be passed to the RandomPoints package via the PointOptions option.

    │ │ │ @@ -868,69 +868,69 @@ │ │ │
    │ │ │

    regularInCodimension: It is reasonable to think that you should find a few minors (with one strategy or another), and see if perhaps the minors you have computed so far are enough to verify our ring is regular in codimension 1. This is exactly what regularInCodimension does. One can control at a fine level how frequently new minors are computed, and how frequently the dimension of what we have computed so far is checked, by the option codimCheckFunction. For more on that, see RegularInCodimensionTutorial and regularInCodimension. Let us finish running regularInCodimension on our example with several different strategies.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i47 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefault)
    │ │ │ - -- used 3.35648s (cpu); 3.0338s (thread); 0s (gc)
    │ │ │ + -- used 4.22618s (cpu); 3.788s (thread); 0s (gc) │ │ │
    │ │ │
    i48 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultNonRandom)
    │ │ │ - -- used 0.728099s (cpu); 0.636148s (thread); 0s (gc)
    │ │ │ + -- used 0.918908s (cpu); 0.79026s (thread); 0s (gc)
    │ │ │  
    │ │ │  o48 = true
    │ │ │
    │ │ │
    i49 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Random)
    │ │ │ - -- used 2.71868s (cpu); 2.52715s (thread); 0s (gc)
    │ │ │ + -- used 3.67055s (cpu); 3.2299s (thread); 0s (gc) │ │ │
    │ │ │
    i50 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallest)
    │ │ │ - -- used 2.3572s (cpu); 2.00446s (thread); 0s (gc)
    │ │ │ + -- used 2.86661s (cpu); 2.32854s (thread); 0s (gc) │ │ │
    │ │ │
    i51 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallestTerm)
    │ │ │ - -- used 0.874751s (cpu); 0.777483s (thread); 0s (gc)
    │ │ │ + -- used 0.914114s (cpu); 0.837908s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = true
    │ │ │
    │ │ │
    i52 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallest)
    │ │ │ - -- used 2.70655s (cpu); 2.28905s (thread); 0s (gc)
    │ │ │ + -- used 3.14597s (cpu); 2.56774s (thread); 0s (gc) │ │ │
    │ │ │
    i53 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallestTerm)
    │ │ │ - -- used 3.1076s (cpu); 2.68758s (thread); 0s (gc)
    │ │ │ + -- used 3.73908s (cpu); 3.12886s (thread); 0s (gc) │ │ │
    │ │ │
    i54 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Points)
    │ │ │ - -- used 9.26442s (cpu); 7.71318s (thread); 0s (gc)
    │ │ │ + -- used 11.0621s (cpu); 8.99055s (thread); 0s (gc)
    │ │ │  
    │ │ │  o54 = true
    │ │ │
    │ │ │
    i55 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultWithPoints)
    │ │ │ - -- used 7.30189s (cpu); 6.0694s (thread); 0s (gc)
    │ │ │ + -- used 8.49863s (cpu); 6.81937s (thread); 0s (gc)
    │ │ │  
    │ │ │  o55 = true
    │ │ │
    │ │ │
    │ │ │

    If regularInCodimension outputs nothing, then it couldn't verify that the ring was regular in that codimension. We set MaxMinors => 100 to keep it from running too long with an ineffective strategy. Again, even though GRevLexSmallest and GRevLexSmallestTerm are not effective in this particular example, in others they perform better than other strategies. Note similar considerations also apply to projDim.

    │ │ │ ├── html2text {} │ │ │ │ @@ -486,44 +486,44 @@ │ │ │ │ o27 : Ideal of S │ │ │ │ Here the $1$ passed to the function says how many minors to compute. For │ │ │ │ instance, let's compute 8 minors for each of these strategies and see if that │ │ │ │ was enough to verify that the ring is regular in codimension 1. In other words, │ │ │ │ if the dimension of $J$ plus the ideal of partial minors is $\leq 1$ (since $S/ │ │ │ │ J$ has dimension 3). │ │ │ │ i28 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Random)) │ │ │ │ - -- used 0.157442s (cpu); 0.120698s (thread); 0s (gc) │ │ │ │ + -- used 0.223464s (cpu); 0.158617s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = 2 │ │ │ │ i29 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallest)) │ │ │ │ - -- used 0.302486s (cpu); 0.208099s (thread); 0s (gc) │ │ │ │ + -- used 0.427294s (cpu); 0.279967s (thread); 0s (gc) │ │ │ │ │ │ │ │ o29 = 3 │ │ │ │ i30 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallestTerm)) │ │ │ │ - -- used 0.495085s (cpu); 0.319904s (thread); 0s (gc) │ │ │ │ + -- used 0.566383s (cpu); 0.35712s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = 1 │ │ │ │ i31 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexLargest)) │ │ │ │ - -- used 0.21162s (cpu); 0.169556s (thread); 0s (gc) │ │ │ │ + -- used 0.285631s (cpu); 0.215034s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = 2 │ │ │ │ i32 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallest)) │ │ │ │ - -- used 0.375002s (cpu); 0.205247s (thread); 0s (gc) │ │ │ │ + -- used 0.417682s (cpu); 0.217536s (thread); 0s (gc) │ │ │ │ │ │ │ │ o32 = 3 │ │ │ │ i33 : time dim (J + chooseGoodMinors(8, 6, M, J, │ │ │ │ Strategy=>GRevLexSmallestTerm)) │ │ │ │ - -- used 0.338148s (cpu); 0.23363s (thread); 0s (gc) │ │ │ │ + -- used 0.369391s (cpu); 0.247172s (thread); 0s (gc) │ │ │ │ │ │ │ │ o33 = 3 │ │ │ │ i34 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexLargest)) │ │ │ │ - -- used 0.298624s (cpu); 0.191542s (thread); 0s (gc) │ │ │ │ + -- used 0.388877s (cpu); 0.252549s (thread); 0s (gc) │ │ │ │ │ │ │ │ o34 = 3 │ │ │ │ i35 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Points)) │ │ │ │ - -- used 14.9955s (cpu); 10.1647s (thread); 0s (gc) │ │ │ │ + -- used 18.7751s (cpu); 11.9769s (thread); 0s (gc) │ │ │ │ │ │ │ │ o35 = 1 │ │ │ │ Indeed, in this example, even computing determinants of 1,000 random │ │ │ │ submatrices is not typically enough to verify that $V(J)$ is regular in │ │ │ │ codimension 1. On the other hand, Points is almost always quite effective at │ │ │ │ finding valuable submatrices, but can be quite slow. In this particular │ │ │ │ example, we can see that LexSmallestTerm also performs very well (and does it │ │ │ │ @@ -544,15 +544,15 @@ │ │ │ │ says that we should use GRevLexSmallest, GRevLexSmallestTerm, LexSmallest, │ │ │ │ LexSmallestTerm, Random, RandomNonzero all with equal probability (note │ │ │ │ RandomNonzero, which we have not yet discussed chooses random submatrices where │ │ │ │ no row or column is zero, which is good for working in sparse matrices). For │ │ │ │ instance, if we run: │ │ │ │ i37 : time chooseGoodMinors(20, 6, M, J, Strategy=>StrategyDefault, │ │ │ │ Verbose=>true); │ │ │ │ - -- used 0.48632s (cpu); 0.444696s (thread); 0s (gc) │ │ │ │ + -- used 0.469793s (cpu); 0.392208s (thread); 0s (gc) │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ │ @@ -633,15 +633,15 @@ │ │ │ │ i41 : ptsStratGeometric = new OptionTable from (options │ │ │ │ chooseGoodMinors)#PointOptions; │ │ │ │ i42 : ptsStratGeometric#ExtendField --look at the default value │ │ │ │ │ │ │ │ o42 = true │ │ │ │ i43 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, │ │ │ │ PointOptions=>ptsStratGeometric)) │ │ │ │ - -- used 0.495057s (cpu); 0.461267s (thread); 0s (gc) │ │ │ │ + -- used 0.775404s (cpu); 0.627815s (thread); 0s (gc) │ │ │ │ │ │ │ │ o43 = 2 │ │ │ │ i44 : ptsStratRational = ptsStratGeometric++{ExtendField=>false} --change that │ │ │ │ value │ │ │ │ │ │ │ │ o44 = OptionTable{DecompositionStrategy => Decompose} │ │ │ │ DimensionFunction => dim │ │ │ │ @@ -655,58 +655,58 @@ │ │ │ │ │ │ │ │ o44 : OptionTable │ │ │ │ i45 : ptsStratRational.ExtendField --look at our changed value │ │ │ │ │ │ │ │ o45 = false │ │ │ │ i46 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, │ │ │ │ PointOptions=>ptsStratRational)) │ │ │ │ - -- used 0.512127s (cpu); 0.390896s (thread); 0s (gc) │ │ │ │ + -- used 0.525895s (cpu); 0.453821s (thread); 0s (gc) │ │ │ │ │ │ │ │ o46 = 2 │ │ │ │ Other options may also be passed to the _R_a_n_d_o_m_P_o_i_n_t_s package via the │ │ │ │ _P_o_i_n_t_O_p_t_i_o_n_s option. │ │ │ │ rreegguullaarrIInnCCooddiimmeennssiioonn:: It is reasonable to think that you should find a few │ │ │ │ minors (with one strategy or another), and see if perhaps the minors you have │ │ │ │ computed so far are enough to verify our ring is regular in codimension 1. This │ │ │ │ is exactly what regularInCodimension does. One can control at a fine level how │ │ │ │ frequently new minors are computed, and how frequently the dimension of what we │ │ │ │ have computed so far is checked, by the option codimCheckFunction. For more on │ │ │ │ that, see _R_e_g_u_l_a_r_I_n_C_o_d_i_m_e_n_s_i_o_n_T_u_t_o_r_i_a_l and _r_e_g_u_l_a_r_I_n_C_o_d_i_m_e_n_s_i_o_n. Let us finish │ │ │ │ running regularInCodimension on our example with several different strategies. │ │ │ │ i47 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>StrategyDefault) │ │ │ │ - -- used 3.35648s (cpu); 3.0338s (thread); 0s (gc) │ │ │ │ + -- used 4.22618s (cpu); 3.788s (thread); 0s (gc) │ │ │ │ i48 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>StrategyDefaultNonRandom) │ │ │ │ - -- used 0.728099s (cpu); 0.636148s (thread); 0s (gc) │ │ │ │ + -- used 0.918908s (cpu); 0.79026s (thread); 0s (gc) │ │ │ │ │ │ │ │ o48 = true │ │ │ │ i49 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Random) │ │ │ │ - -- used 2.71868s (cpu); 2.52715s (thread); 0s (gc) │ │ │ │ + -- used 3.67055s (cpu); 3.2299s (thread); 0s (gc) │ │ │ │ i50 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>LexSmallest) │ │ │ │ - -- used 2.3572s (cpu); 2.00446s (thread); 0s (gc) │ │ │ │ + -- used 2.86661s (cpu); 2.32854s (thread); 0s (gc) │ │ │ │ i51 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>LexSmallestTerm) │ │ │ │ - -- used 0.874751s (cpu); 0.777483s (thread); 0s (gc) │ │ │ │ + -- used 0.914114s (cpu); 0.837908s (thread); 0s (gc) │ │ │ │ │ │ │ │ o51 = true │ │ │ │ i52 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>GRevLexSmallest) │ │ │ │ - -- used 2.70655s (cpu); 2.28905s (thread); 0s (gc) │ │ │ │ + -- used 3.14597s (cpu); 2.56774s (thread); 0s (gc) │ │ │ │ i53 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>GRevLexSmallestTerm) │ │ │ │ - -- used 3.1076s (cpu); 2.68758s (thread); 0s (gc) │ │ │ │ + -- used 3.73908s (cpu); 3.12886s (thread); 0s (gc) │ │ │ │ i54 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Points) │ │ │ │ - -- used 9.26442s (cpu); 7.71318s (thread); 0s (gc) │ │ │ │ + -- used 11.0621s (cpu); 8.99055s (thread); 0s (gc) │ │ │ │ │ │ │ │ o54 = true │ │ │ │ i55 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>StrategyDefaultWithPoints) │ │ │ │ - -- used 7.30189s (cpu); 6.0694s (thread); 0s (gc) │ │ │ │ + -- used 8.49863s (cpu); 6.81937s (thread); 0s (gc) │ │ │ │ │ │ │ │ o55 = true │ │ │ │ If regularInCodimension outputs nothing, then it couldn't verify that the ring │ │ │ │ was regular in that codimension. We set MaxMinors => 100 to keep it from │ │ │ │ running too long with an ineffective strategy. Again, even though │ │ │ │ GRevLexSmallest and GRevLexSmallestTerm are not effective in this particular │ │ │ │ example, in others they perform better than other strategies. Note similar │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/___Regular__In__Codimension__Tutorial.html │ │ │ @@ -81,23 +81,23 @@ │ │ │
    │ │ │

    It is the cone over $P^2 \times E$ where $E$ is an elliptic curve. We have embedded it with a Segre embedding inside $P^8$. In particular, this example is even regular in codimension 3.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : time regularInCodimension(1, S/J)
    │ │ │ - -- used 0.853916s (cpu); 0.601439s (thread); 0s (gc)
    │ │ │ + -- used 1.1689s (cpu); 0.770007s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │
    │ │ │
    i5 : time regularInCodimension(2, S/J)
    │ │ │ - -- used 11.1488s (cpu); 8.3419s (thread); 0s (gc)
    │ │ │ + -- used 12.7954s (cpu); 8.81984s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    We try to verify that $S/J$ is regular in codimension 1 or 2 by computing the ideal made up of a small number of minors of the Jacobian matrix. In this example, instead of computing all relevant 1465128 minors to compute the singular locus, and then trying to compute the dimension of the ideal they generate, we instead compute a few of them. regularInCodimension returns true if it verified that the ring is regular in codim 1 or 2 (respectively) and null if not. Because of the randomness that exists in terms of selecting minors, the execution time can actually vary quite a bit. Let's take a look at what is occurring by using the Verbose option. We go through the output and explain what each line is telling us.

    │ │ │
    │ │ │ │ │ │ @@ -172,29 +172,29 @@ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ internalChooseMinor: Choosing Random │ │ │ regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 49, and computed = 39 │ │ │ regularInCodimension: singularLocus dimension verified by isCodimAtLeast │ │ │ regularInCodimension: partial singular locus dimension computed, = 2 │ │ │ -regularInCodimension: Loop completed, submatrices considered = 49, and compute -- used 1.46811s (cpu); 1.03558s (thread); 0s (gc) │ │ │ +regularInCodimension: Loop completed, submatrices considered = 49, and compute -- used 1.71456s (cpu); 1.17351s (thread); 0s (gc) │ │ │ d = 39. singular locus dimension appears to be = 2 │ │ │ │ │ │ o6 = true │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    MaxMinors. The first output says that we will compute up to 452.9 minors before giving up. We can control that by setting the option MaxMinors.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : time regularInCodimension(1, S/J, MaxMinors=>10, Verbose=>true)
    │ │ │ - -- used 0.181418s (cpu); 0.129355s (thread); 0s (gc)
    │ │ │ + -- used 0.213908s (cpu); 0.143687s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -219,15 +219,15 @@
    │ │ │          
    │ │ │

    Selecting submatrices of the Jacobian. We also see output like: ``Choosing LexSmallest'' or ``Choosing Random''. This is saying how we are selecting a given submatrix. For instance, we can run:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i8 : time regularInCodimension(1, S/J, MaxMinors=>10, Strategy=>StrategyRandom, Verbose=>true)
    │ │ │ - -- used 0.138676s (cpu); 0.098481s (thread); 0s (gc)
    │ │ │ + -- used 0.190505s (cpu); 0.121459s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -252,15 +252,15 @@
    │ │ │          
    │ │ │

    Computing minors vs considering the dimension of what has been computed. Periodically we compute the codimension of the partial ideal of minors we have computed so far. There are two options to control this. First, we can tell the function when to first compute the dimension of the working partial ideal of minors.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : time regularInCodimension(1, S/J, MaxMinors=>10, MinMinorsFunction => t->3, Verbose=>true)
    │ │ │ - -- used 0.568112s (cpu); 0.444722s (thread); 0s (gc)
    │ │ │ + -- used 0.71169s (cpu); 0.501039s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 3, and computed = 3
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │ @@ -291,15 +291,15 @@
    │ │ │          
    │ │ │

    CodimCheckFunction. The option CodimCheckFunction controls how frequently the dimension of the partial ideal of minors is computed. For instance, setting CodimCheckFunction => t -> t/5 will say it should compute dimension after every 5 minors are examined. In general, after the output of the CodimCheckFunction increases by an integer we compute the codimension again. The default function has the space between computations grow exponentially.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : time regularInCodimension(1, S/J, MaxMinors=>25, CodimCheckFunction => t->t/5, MinMinorsFunction => t->2, Verbose=>true)
    │ │ │ - -- used 0.710929s (cpu); 0.526468s (thread); 0s (gc)
    │ │ │ + -- used 0.83097s (cpu); 0.563867s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 2, and computed = 2
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 4
    │ │ │ @@ -348,15 +348,15 @@
    │ │ │          
    │ │ │

    isCodimAtLeast and dim. We see the lines about the ``isCodimAtLeast failed''. This means that isCodimAtLeast was not enough on its own to verify that our ring is regular in codimension 1. After this, ``partial singular locus dimension computed'' indicates we did a complete dimension computation of the partial ideal defining the singular locus. How isCodimAtLeast is called can be controlled via the options SPairsFunction and PairLimit, which are simply passed to isCodimAtLeast. You can force the function to only use isCodimAtLeast and not call dimension by setting UseOnlyFastCodim => true.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i11 : time regularInCodimension(1, S/J, MaxMinors=>25, UseOnlyFastCodim => true, Verbose=>true)
    │ │ │ - -- used 0.467454s (cpu); 0.323483s (thread); 0s (gc)
    │ │ │ + -- used 0.537069s (cpu); 0.340705s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -24,19 +24,19 @@
    │ │ │ │  i3 : dim (S/J)
    │ │ │ │  
    │ │ │ │  o3 = 4
    │ │ │ │  It is the cone over $P^2 \times E$ where $E$ is an elliptic curve. We have
    │ │ │ │  embedded it with a Segre embedding inside $P^8$. In particular, this example is
    │ │ │ │  even regular in codimension 3.
    │ │ │ │  i4 : time regularInCodimension(1, S/J)
    │ │ │ │ - -- used 0.853916s (cpu); 0.601439s (thread); 0s (gc)
    │ │ │ │ + -- used 1.1689s (cpu); 0.770007s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = true
    │ │ │ │  i5 : time regularInCodimension(2, S/J)
    │ │ │ │ - -- used 11.1488s (cpu); 8.3419s (thread); 0s (gc)
    │ │ │ │ + -- used 12.7954s (cpu); 8.81984s (thread); 0s (gc)
    │ │ │ │  We try to verify that $S/J$ is regular in codimension 1 or 2 by computing the
    │ │ │ │  ideal made up of a small number of minors of the Jacobian matrix. In this
    │ │ │ │  example, instead of computing all relevant 1465128 minors to compute the
    │ │ │ │  singular locus, and then trying to compute the dimension of the ideal they
    │ │ │ │  generate, we instead compute a few of them. regularInCodimension returns true
    │ │ │ │  if it verified that the ring is regular in codim 1 or 2 (respectively) and null
    │ │ │ │  if not. Because of the randomness that exists in terms of selecting minors, the
    │ │ │ │ @@ -121,22 +121,22 @@
    │ │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices
    │ │ │ │  considered: 49, and computed = 39
    │ │ │ │  regularInCodimension:  singularLocus dimension verified by isCodimAtLeast
    │ │ │ │  regularInCodimension:  partial singular locus dimension computed, = 2
    │ │ │ │  regularInCodimension:  Loop completed, submatrices considered = 49, and compute
    │ │ │ │ --- used 1.46811s (cpu); 1.03558s (thread); 0s (gc)
    │ │ │ │ +-- used 1.71456s (cpu); 1.17351s (thread); 0s (gc)
    │ │ │ │  d = 39.  singular locus dimension appears to be = 2
    │ │ │ │  
    │ │ │ │  o6 = true
    │ │ │ │  MMaaxxMMiinnoorrss.. The first output says that we will compute up to 452.9 minors before
    │ │ │ │  giving up. We can control that by setting the option MaxMinors.
    │ │ │ │  i7 : time regularInCodimension(1, S/J, MaxMinors=>10, Verbose=>true)
    │ │ │ │ - -- used 0.181418s (cpu); 0.129355s (thread); 0s (gc)
    │ │ │ │ + -- used 0.213908s (cpu); 0.143687s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 10 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │ @@ -159,15 +159,15 @@
    │ │ │ │  There are other finer ways to control the MaxMinors option, but they will not
    │ │ │ │  be discussed in this tutorial. See _r_e_g_u_l_a_r_I_n_C_o_d_i_m_e_n_s_i_o_n.
    │ │ │ │  SSeelleeccttiinngg ssuubbmmaattrriicceess ooff tthhee JJaaccoobbiiaann.. We also see output like: ``Choosing
    │ │ │ │  LexSmallest'' or ``Choosing Random''. This is saying how we are selecting a
    │ │ │ │  given submatrix. For instance, we can run:
    │ │ │ │  i8 : time regularInCodimension(1, S/J, MaxMinors=>10, Strategy=>StrategyRandom,
    │ │ │ │  Verbose=>true)
    │ │ │ │ - -- used 0.138676s (cpu); 0.098481s (thread); 0s (gc)
    │ │ │ │ + -- used 0.190505s (cpu); 0.121459s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 10 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │ @@ -197,15 +197,15 @@
    │ │ │ │  CCoommppuuttiinngg mmiinnoorrss vvss ccoonnssiiddeerriinngg tthhee ddiimmeennssiioonn ooff wwhhaatt hhaass bbeeeenn ccoommppuutteedd..
    │ │ │ │  Periodically we compute the codimension of the partial ideal of minors we have
    │ │ │ │  computed so far. There are two options to control this. First, we can tell the
    │ │ │ │  function when to first compute the dimension of the working partial ideal of
    │ │ │ │  minors.
    │ │ │ │  i9 : time regularInCodimension(1, S/J, MaxMinors=>10, MinMinorsFunction => t-
    │ │ │ │  >3, Verbose=>true)
    │ │ │ │ - -- used 0.568112s (cpu); 0.444722s (thread); 0s (gc)
    │ │ │ │ + -- used 0.71169s (cpu); 0.501039s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 10 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices
    │ │ │ │ @@ -243,15 +243,15 @@
    │ │ │ │  dimension of the partial ideal of minors is computed. For instance, setting
    │ │ │ │  CodimCheckFunction => t -> t/5 will say it should compute dimension after every
    │ │ │ │  5 minors are examined. In general, after the output of the CodimCheckFunction
    │ │ │ │  increases by an integer we compute the codimension again. The default function
    │ │ │ │  has the space between computations grow exponentially.
    │ │ │ │  i10 : time regularInCodimension(1, S/J, MaxMinors=>25, CodimCheckFunction => t-
    │ │ │ │  >t/5, MinMinorsFunction => t->2, Verbose=>true)
    │ │ │ │ - -- used 0.710929s (cpu); 0.526468s (thread); 0s (gc)
    │ │ │ │ + -- used 0.83097s (cpu); 0.563867s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 25 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices
    │ │ │ │  considered: 2, and computed = 2
    │ │ │ │ @@ -308,15 +308,15 @@
    │ │ │ │  dimension computed'' indicates we did a complete dimension computation of the
    │ │ │ │  partial ideal defining the singular locus. How isCodimAtLeast is called can be
    │ │ │ │  controlled via the options SPairsFunction and PairLimit, which are simply
    │ │ │ │  passed to _i_s_C_o_d_i_m_A_t_L_e_a_s_t. You can force the function to only use isCodimAtLeast
    │ │ │ │  and not call dimension by setting UseOnlyFastCodim => true.
    │ │ │ │  i11 : time regularInCodimension(1, S/J, MaxMinors=>25, UseOnlyFastCodim =>
    │ │ │ │  true, Verbose=>true)
    │ │ │ │ - -- used 0.467454s (cpu); 0.323483s (thread); 0s (gc)
    │ │ │ │ + -- used 0.537069s (cpu); 0.340705s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 25 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/___Strategy__Default.html
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │              
    │ │ │
    i1 : T=ZZ/7[a..i]/ideal(f*h-e*i,c*h-b*i,f*g-d*i,e*g-d*h,c*g-a*i,b*g-a*h,c*e-b*f,c*d-a*f,b*d-a*e,g^3-h^2*i-g*i^2,d*g^2-e*h*i-d*i^2,a*g^2-b*h*i-a*i^2,d^2*g-e^2*i-d*f*i,a*d*g-b*e*i-a*f*i,a^2*g-b^2*i-a*c*i,d^3-e^2*f-d*f^2,a*d^2-b*e*f-a*f^2,a^2*d-b^2*f-a*c*f,c^3+f^3-i^3,b*c^2+e*f^2-h*i^2,a*c^2+d*f^2-g*i^2,b^2*c+e^2*f-h^2*i,a*b*c+d*e*f-g*h*i,a^2*c+d^2*f-g^2*i,b^3+e^3-h^3,a*b^2+d*e^2-g*h^2,a^2*b+d^2*e-g^2*h,a^3+e^2*f+d*f^2-h^2*i-g*i^2);
    │ │ │
    │ │ │
    i2 : elapsedTime regularInCodimension(1, T, Strategy=>StrategyDefault)
    │ │ │ - -- 1.52401s elapsed
    │ │ │ + -- 1.56027s elapsed
    │ │ │  
    │ │ │  o2 = true
    │ │ │
    │ │ │ In this particular example, on one machine, we list average time to completion of each of the above strategies after 100 runs.
      │ │ │
    • StrategyDefault: 1.65 seconds
    • │ │ │ @@ -122,15 +122,15 @@ │ │ │
    • StrategyPoints: choose all submatrices via Points.
    • │ │ │
    • StrategyDefaultWithPoints: like StrategyDefault but replaces the Random and RandomNonZero submatrices as with matrices chosen as in Points.
    • │ │ │
    │ │ │ Additionally, a MutableHashTable named StrategyCurrent is also exported. It begins as the default strategy, but the user can modify it.

    Using a single heuristic Alternatively, if the user only wants to use say LexSmallestTerm they can set, Strategy to point to that symbol, instead of a creating a custom strategy HashTable. For example: │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : elapsedTime regularInCodimension(1, T, Strategy=>LexSmallestTerm)
    │ │ │ - -- .982994s elapsed
    │ │ │ + -- .973482s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ i1 : T=ZZ/7[a..i]/ideal(f*h-e*i,c*h-b*i,f*g-d*i,e*g-d*h,c*g-a*i,b*g-a*h,c*e- │ │ │ │ b*f,c*d-a*f,b*d-a*e,g^3-h^2*i-g*i^2,d*g^2-e*h*i-d*i^2,a*g^2-b*h*i-a*i^2,d^2*g- │ │ │ │ e^2*i-d*f*i,a*d*g-b*e*i-a*f*i,a^2*g-b^2*i-a*c*i,d^3-e^2*f-d*f^2,a*d^2-b*e*f- │ │ │ │ a*f^2,a^2*d-b^2*f-a*c*f,c^3+f^3-i^3,b*c^2+e*f^2-h*i^2,a*c^2+d*f^2- │ │ │ │ g*i^2,b^2*c+e^2*f-h^2*i,a*b*c+d*e*f-g*h*i,a^2*c+d^2*f-g^2*i,b^3+e^3- │ │ │ │ h^3,a*b^2+d*e^2-g*h^2,a^2*b+d^2*e-g^2*h,a^3+e^2*f+d*f^2-h^2*i-g*i^2); │ │ │ │ i2 : elapsedTime regularInCodimension(1, T, Strategy=>StrategyDefault) │ │ │ │ - -- 1.52401s elapsed │ │ │ │ + -- 1.56027s elapsed │ │ │ │ │ │ │ │ o2 = true │ │ │ │ In this particular example, on one machine, we list average time to completion │ │ │ │ of each of the above strategies after 100 runs. │ │ │ │ * StrategyDefault: 1.65 seconds │ │ │ │ * StrategyRandom: 8.32 seconds │ │ │ │ * StrategyDefaultNonRandom: 0.99 seconds │ │ │ │ @@ -135,15 +135,15 @@ │ │ │ │ Additionally, a MutableHashTable named StrategyCurrent is also exported. It │ │ │ │ begins as the default strategy, but the user can modify it. │ │ │ │ │ │ │ │ UUssiinngg aa ssiinnggllee hheeuurriissttiicc Alternatively, if the user only wants to use say │ │ │ │ LexSmallestTerm they can set, Strategy to point to that symbol, instead of a │ │ │ │ creating a custom strategy HashTable. For example: │ │ │ │ i4 : elapsedTime regularInCodimension(1, T, Strategy=>LexSmallestTerm) │ │ │ │ - -- .982994s elapsed │ │ │ │ + -- .973482s elapsed │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _S_t_r_a_t_e_g_y_D_e_f_a_u_l_t is an _o_p_t_i_o_n_ _t_a_b_l_e. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/FastMinors.m2:1993:0. │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_is__Codim__At__Least.html │ │ │ @@ -114,15 +114,15 @@ │ │ │ │ │ │ o6 : Ideal of R
    │ │ │
    │ │ │
    i7 : time isCodimAtLeast(3, J)
    │ │ │ - -- used 0.00400072s (cpu); 0.00264049s (thread); 0s (gc)
    │ │ │ + -- used 0.00399898s (cpu); 0.00320476s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = true
    │ │ │
    │ │ │
    │ │ │

    The function works by computing gb(I, PairLimit=>f(i)) for successive values of i. Here f(i) is a function that takes t, some approximation of the base degree value of the polynomial ring (for example, in a standard graded polynomial ring, this is probably expected to be \{1\}). And i is a counting variable. You can provide your own function by calling isCodimAtLeast(n, I, SPairsFunction=>( (i) -> f(i) ), the default function is SPairsFunction=>i->ceiling(1.5^i) Perhaps more commonly however, the user may want to instead tell the function to compute for larger values of i. This is done via the option PairLimit. This is the max value of i to be plugged into SPairsFunction before the function gives up. In other words, PairLimit=>5 will tell the function to check codimension 5 times.

    │ │ │ @@ -136,24 +136,24 @@ │ │ │ o8 : Ideal of ---[x , x , x , x , x , x , x , x , x , x , x , x ] │ │ │ 127 11 8 1 9 12 6 5 10 2 4 3 7
    │ │ │
    │ │ │
    i9 : time isCodimAtLeast(5, I, PairLimit => 5, Verbose=>true)
    │ │ │ - -- used 0.00245125s (cpu); 0.00248215s (thread); 0s (gc)
    │ │ │ + -- used 0.00021504s (cpu); 0.00323491s (thread); 0s (gc)
    │ │ │  isCodimAtLeast: Computing codim of monomials based on ideal generators.
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    │ │ │
    i10 : time isCodimAtLeast(5, I, PairLimit => 200, Verbose=>false)
    │ │ │ - -- used 0.00231197s (cpu); 0.0023101s (thread); 0s (gc)
    │ │ │ + -- used 0.000549463s (cpu); 0.00293562s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = true
    │ │ │
    │ │ │
    │ │ │

    Notice in the first case the function returned null, because the depth of search was not high enough. It only computed codim 5 times. The second returned true, but it did so as soon as the answer was found (and before we hit the PairLimit limit).

    │ │ │ ├── html2text {} │ │ │ │ @@ -38,15 +38,15 @@ │ │ │ │ 30 12 │ │ │ │ o4 : Matrix R <-- R │ │ │ │ i5 : r = rank myDiff; │ │ │ │ i6 : J = chooseGoodMinors(15, r, myDiff, Strategy=>StrategyDefaultNonRandom); │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : time isCodimAtLeast(3, J) │ │ │ │ - -- used 0.00400072s (cpu); 0.00264049s (thread); 0s (gc) │ │ │ │ + -- used 0.00399898s (cpu); 0.00320476s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = true │ │ │ │ The function works by computing gb(I, PairLimit=>f(i)) for successive values of │ │ │ │ i. Here f(i) is a function that takes t, some approximation of the base degree │ │ │ │ value of the polynomial ring (for example, in a standard graded polynomial │ │ │ │ ring, this is probably expected to be \{1\}). And i is a counting variable. You │ │ │ │ can provide your own function by calling isCodimAtLeast(n, I, SPairsFunction=> │ │ │ │ @@ -72,20 +72,20 @@ │ │ │ │ x_7^3*x_8^5*x_11^3,x_2^5*x_3^3*x_11^3- │ │ │ │ 3*x_2^6*x_3^2*x_11^2*x_12+3*x_2^7*x_3*x_11*x_12^2-x_2^8*x_12^3); │ │ │ │ │ │ │ │ ZZ │ │ │ │ o8 : Ideal of ---[x , x , x , x , x , x , x , x , x , x , x , x ] │ │ │ │ 127 11 8 1 9 12 6 5 10 2 4 3 7 │ │ │ │ i9 : time isCodimAtLeast(5, I, PairLimit => 5, Verbose=>true) │ │ │ │ - -- used 0.00245125s (cpu); 0.00248215s (thread); 0s (gc) │ │ │ │ + -- used 0.00021504s (cpu); 0.00323491s (thread); 0s (gc) │ │ │ │ isCodimAtLeast: Computing codim of monomials based on ideal generators. │ │ │ │ │ │ │ │ o9 = true │ │ │ │ i10 : time isCodimAtLeast(5, I, PairLimit => 200, Verbose=>false) │ │ │ │ - -- used 0.00231197s (cpu); 0.0023101s (thread); 0s (gc) │ │ │ │ + -- used 0.000549463s (cpu); 0.00293562s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = true │ │ │ │ Notice in the first case the function returned null, because the depth of │ │ │ │ search was not high enough. It only computed codim 5 times. The second returned │ │ │ │ true, but it did so as soon as the answer was found (and before we hit the │ │ │ │ PairLimit limit). │ │ │ │ ********** WWaayyss ttoo uussee iissCCooddiimmAAttLLeeaasstt:: ********** │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_proj__Dim.html │ │ │ @@ -99,23 +99,23 @@ │ │ │ │ │ │ o3 = 2
    │ │ │
    │ │ │
    i4 : time projDim(module I, Strategy=>StrategyRandom)
    │ │ │ - -- used 0.237579s (cpu); 0.142956s (thread); 0s (gc)
    │ │ │ + -- used 0.320525s (cpu); 0.175817s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │
    │ │ │
    i5 : time projDim(module I, Strategy=>StrategyRandom, MinDimension => 1)
    │ │ │ - -- used 0.0109946s (cpu); 0.0128064s (thread); 0s (gc)
    │ │ │ + -- used 0.0136194s (cpu); 0.0160085s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │
    │ │ │
    │ │ │

    The option MaxMinors can be used to control how many minors are computed at each step. If this is not specified, the number of minors is a function of the dimension $d$ of the polynomial ring and the possible minors $c$. Specifically it is 10 * d + 2 * log_1.3(c). Otherwise the user can set the option MaxMinors => ZZ to specify that a fixed integer is used for each step. Alternatively, the user can control the number of minors computed at each step by setting the option MaxMinors => List. In this case, the list specifies how many minors to be computed at each step, (working backwards). Finally, you can also set MaxMinors to be a custom function of the dimension $d$ of the polynomial ring and the maximum number of minors.

    │ │ │ ├── html2text {} │ │ │ │ @@ -44,19 +44,19 @@ │ │ │ │ i2 : I = ideal((x^3+y)^2, (x^2+y^2)^2, (x+y^3)^2, (x*y)^2); │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : pdim(module I) │ │ │ │ │ │ │ │ o3 = 2 │ │ │ │ i4 : time projDim(module I, Strategy=>StrategyRandom) │ │ │ │ - -- used 0.237579s (cpu); 0.142956s (thread); 0s (gc) │ │ │ │ + -- used 0.320525s (cpu); 0.175817s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 1 │ │ │ │ i5 : time projDim(module I, Strategy=>StrategyRandom, MinDimension => 1) │ │ │ │ - -- used 0.0109946s (cpu); 0.0128064s (thread); 0s (gc) │ │ │ │ + -- used 0.0136194s (cpu); 0.0160085s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 1 │ │ │ │ The option MaxMinors can be used to control how many minors are computed at │ │ │ │ each step. If this is not specified, the number of minors is a function of the │ │ │ │ dimension $d$ of the polynomial ring and the possible minors $c$. Specifically │ │ │ │ it is 10 * d + 2 * log_1.3(c). Otherwise the user can set the option MaxMinors │ │ │ │ => ZZ to specify that a fixed integer is used for each step. Alternatively, the │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_recursive__Minors.html │ │ │ @@ -92,23 +92,23 @@ │ │ │ 6 7 │ │ │ o2 : Matrix R <-- R
    │ │ │
    │ │ │
    i3 : time I2 = recursiveMinors(4, M, Threads=>0);
    │ │ │ - -- used 0.493613s (cpu); 0.449433s (thread); 0s (gc)
    │ │ │ + -- used 0.569372s (cpu); 0.496535s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │
    │ │ │
    i4 : time I1 = minors(4, M, Strategy=>Cofactor);
    │ │ │ - -- used 1.51523s (cpu); 1.31036s (thread); 0s (gc)
    │ │ │ + -- used 1.48311s (cpu); 1.3422s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : I1 == I2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -27,19 +27,19 @@
    │ │ │ │  strategy for minors
    │ │ │ │  i1 : R = QQ[x,y];
    │ │ │ │  i2 : M = random(R^{5,5,5,5,5,5}, R^7);
    │ │ │ │  
    │ │ │ │               6      7
    │ │ │ │  o2 : Matrix R  <-- R
    │ │ │ │  i3 : time I2 = recursiveMinors(4, M, Threads=>0);
    │ │ │ │ - -- used 0.493613s (cpu); 0.449433s (thread); 0s (gc)
    │ │ │ │ + -- used 0.569372s (cpu); 0.496535s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 : Ideal of R
    │ │ │ │  i4 : time I1 = minors(4, M, Strategy=>Cofactor);
    │ │ │ │ - -- used 1.51523s (cpu); 1.31036s (thread); 0s (gc)
    │ │ │ │ + -- used 1.48311s (cpu); 1.3422s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : Ideal of R
    │ │ │ │  i5 : I1 == I2
    │ │ │ │  
    │ │ │ │  o5 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _m_i_n_o_r_s -- ideal generated by minors
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_regular__In__Codimension.html
    │ │ │ @@ -131,23 +131,23 @@
    │ │ │  
    │ │ │  o7 = 3
    │ │ │
    │ │ │
    i8 : time regularInCodimension(1, S)
    │ │ │ - -- used 0.67198s (cpu); 0.551786s (thread); 0s (gc)
    │ │ │ + -- used 0.8055s (cpu); 0.606382s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │
    │ │ │
    i9 : time regularInCodimension(2, S)
    │ │ │ - -- used 6.48256s (cpu); 4.93012s (thread); 0s (gc)
    │ │ │ + -- used 7.51845s (cpu); 5.45067s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    There are numerous examples where regularInCodimension is several orders of magnitude faster that calls of dim singularLocus.

    │ │ │
    │ │ │
    │ │ │ @@ -165,39 +165,39 @@ │ │ │ │ │ │ o11 = 2
    │ │ │
    │ │ │
    i12 : time (dim singularLocus (R))
    │ │ │ - -- used 0.020027s (cpu); 0.0198154s (thread); 0s (gc)
    │ │ │ + -- used 0.0199989s (cpu); 0.0218343s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -1
    │ │ │
    │ │ │
    i13 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.192016s (cpu); 0.160849s (thread); 0s (gc)
    │ │ │ + -- used 0.219085s (cpu); 0.153646s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = true
    │ │ │
    │ │ │
    i14 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.909538s (cpu); 0.600324s (thread); 0s (gc)
    │ │ │ + -- used 1.12326s (cpu); 0.731085s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = true
    │ │ │
    │ │ │
    i15 : time regularInCodimension(2, R)
    │ │ │ - -- used 1.3289s (cpu); 0.899094s (thread); 0s (gc)
    │ │ │ + -- used 1.56518s (cpu); 1.02244s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = true
    │ │ │
    │ │ │
    │ │ │

    The function works by choosing interesting looking submatrices, computing their determinants, and periodically (based on a logarithmic growth setting), computing the dimension of a subideal of the Jacobian. The option Verbose can be used to see this in action.

    │ │ │ @@ -537,15 +537,15 @@ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ -internalChooseMinor: Ch -- used 6.59871s (cpu); 5.02176s (thread); 0s (gc) │ │ │ +internalChooseMinor: Ch -- used 7.8949s (cpu); 5.778s (thread); 0s (gc) │ │ │ oosing GRevLexSmallestTerm │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ internalChooseMinor: Choosing Random │ │ │ internalChooseMinor: Choosing Random │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ @@ -589,15 +589,15 @@ │ │ │
    │ │ │

    The maximum number of minors considered can be controlled by the option MaxMinors. Alternatively, it can be controlled in a more precise way by passing a function to the option MaxMinors. This function should have two inputs; the first is minimum number of minors needed to determine whether the ring is regular in codimension n, and the second is the total number of minors available in the Jacobian. The function regularInCodimension does not recompute determinants, so MaxMinors or is only an upper bound on the number of minors computed.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i17 : time regularInCodimension(2, S, Verbose=>true, MaxMinors=>30)
    │ │ │ - -- used 1.29022s (cpu); 0.996476s (thread); 0s (gc)
    │ │ │ + -- used 1.59609s (cpu); 1.19372s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 minors, we will compute up to 30 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │ @@ -666,39 +666,39 @@
    │ │ │              
    │ │ │
    i20 : StrategyCurrent#LexSmallestTerm = 0;
    │ │ │
    │ │ │
    i21 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.31652s (cpu); 0.221889s (thread); 0s (gc)
    │ │ │ + -- used 0.372363s (cpu); 0.244349s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │
    │ │ │
    i22 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.121412s (cpu); 0.0729141s (thread); 0s (gc)
    │ │ │ + -- used 0.159993s (cpu); 0.0846935s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = true
    │ │ │
    │ │ │
    i23 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.36055s (cpu); 0.269016s (thread); 0s (gc)
    │ │ │ + -- used 0.440651s (cpu); 0.318695s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = true
    │ │ │
    │ │ │
    i24 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 1.61547s (cpu); 1.20594s (thread); 0s (gc)
    │ │ │ + -- used 2.10858s (cpu); 1.50239s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │
    │ │ │
    i25 : StrategyCurrent#LexSmallest = 0;
    │ │ │ @@ -708,53 +708,53 @@ │ │ │
    │ │ │
    i26 : StrategyCurrent#LexSmallestTerm = 100;
    │ │ │
    │ │ │
    i27 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.16839s (cpu); 1.58684s (thread); 0s (gc)
    │ │ │ + -- used 2.71354s (cpu); 1.85257s (thread); 0s (gc) │ │ │
    │ │ │
    i28 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.24976s (cpu); 1.60689s (thread); 0s (gc)
    │ │ │ + -- used 2.72213s (cpu); 1.8053s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │
    │ │ │
    i29 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.419528s (cpu); 0.335678s (thread); 0s (gc)
    │ │ │ + -- used 0.500127s (cpu); 0.363283s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = true
    │ │ │
    │ │ │
    i30 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.6816s (cpu); 0.545534s (thread); 0s (gc)
    │ │ │ + -- used 0.866356s (cpu); 0.65138s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │
    │ │ │
    i31 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 0.990173s (cpu); 0.815558s (thread); 0s (gc)
    │ │ │ + -- used 1.24983s (cpu); 0.961592s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = true
    │ │ │
    │ │ │
    i32 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.68103s (cpu); 1.31918s (thread); 0s (gc)
    │ │ │ + -- used 1.95305s (cpu); 1.51345s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = true
    │ │ │
    │ │ │
    │ │ │

    The minimum number of minors computed before checking the codimension can also be controlled by an option MinMinorsFunction. This is should be a function of a single variable, the number of minors computed. Finally, via the option CodimCheckFunction, you can pass the regularInCodimension a function which controls how frequently the codimension of the partial Jacobian ideal is computed. By default this is the floor of 1.3^k. Finally, passing the option Modulus => p will do the computation after changing the coefficient ring to ZZ/p.

    │ │ │ ├── html2text {} │ │ │ │ @@ -72,19 +72,19 @@ │ │ │ │ │ │ │ │ o5 : Ideal of T │ │ │ │ i6 : S = T/I; │ │ │ │ i7 : dim S │ │ │ │ │ │ │ │ o7 = 3 │ │ │ │ i8 : time regularInCodimension(1, S) │ │ │ │ - -- used 0.67198s (cpu); 0.551786s (thread); 0s (gc) │ │ │ │ + -- used 0.8055s (cpu); 0.606382s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : time regularInCodimension(2, S) │ │ │ │ - -- used 6.48256s (cpu); 4.93012s (thread); 0s (gc) │ │ │ │ + -- used 7.51845s (cpu); 5.45067s (thread); 0s (gc) │ │ │ │ There are numerous examples where regularInCodimension is several orders of │ │ │ │ magnitude faster that calls of dim singularLocus. │ │ │ │ The following is a (pruned) affine chart on an Abelian surface obtained as a │ │ │ │ product of two elliptic curves. It is nonsingular, as our function verifies. If │ │ │ │ one does not prune it, then the dim singularLocus call takes an enormous amount │ │ │ │ of time, otherwise the running times of dim singularLocus and our function are │ │ │ │ frequently about the same. │ │ │ │ @@ -92,27 +92,27 @@ │ │ │ │ (g^3+h^3+1,f*g^3+f*h^3+f,c*g^3+c*h^3+c,f^2*g^3+f^2*h^3+f^2,c*f*g^3+c*f*h^3+c*f,c^2*g^3+c^2*h^3+c^2,f^3*g^3+f^3*h^3+f^3,c*f^2*g^3+c*f^2*h^3+c*f^2,c^2*f*g^3+c^2*f*h^3+c^2*f,c^3- │ │ │ │ f^2-c,c^3*h-f^2*h-c*h,c^3*g-f^2*g-c*g,c^3*h^2-f^2*h^2-c*h^2,c^3*g*h-f^2*g*h-c*g*h,c^3*g^2-f^2*g^2-c*g^2,c^3*h^3-f^2*h^3-c*h^3,c^3*g*h^2-f^2*g*h^2-c*g*h^2,c^3*g^2*h-f^2*g^2*h- │ │ │ │ c*g^2*h,c^3*g^3+f^2*h^3+c*h^3+f^2+c); │ │ │ │ i11 : dim(R) │ │ │ │ │ │ │ │ o11 = 2 │ │ │ │ i12 : time (dim singularLocus (R)) │ │ │ │ - -- used 0.020027s (cpu); 0.0198154s (thread); 0s (gc) │ │ │ │ + -- used 0.0199989s (cpu); 0.0218343s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 = -1 │ │ │ │ i13 : time regularInCodimension(2, R) │ │ │ │ - -- used 0.192016s (cpu); 0.160849s (thread); 0s (gc) │ │ │ │ + -- used 0.219085s (cpu); 0.153646s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 = true │ │ │ │ i14 : time regularInCodimension(2, R) │ │ │ │ - -- used 0.909538s (cpu); 0.600324s (thread); 0s (gc) │ │ │ │ + -- used 1.12326s (cpu); 0.731085s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = true │ │ │ │ i15 : time regularInCodimension(2, R) │ │ │ │ - -- used 1.3289s (cpu); 0.899094s (thread); 0s (gc) │ │ │ │ + -- used 1.56518s (cpu); 1.02244s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = true │ │ │ │ The function works by choosing interesting looking submatrices, computing their │ │ │ │ determinants, and periodically (based on a logarithmic growth setting), │ │ │ │ computing the dimension of a subideal of the Jacobian. The option Verbose can │ │ │ │ be used to see this in action. │ │ │ │ i16 : time regularInCodimension(2, S, Verbose=>true) │ │ │ │ @@ -461,15 +461,15 @@ │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ -internalChooseMinor: Ch -- used 6.59871s (cpu); 5.02176s (thread); 0s (gc) │ │ │ │ +internalChooseMinor: Ch -- used 7.8949s (cpu); 5.778s (thread); 0s (gc) │ │ │ │ oosing GRevLexSmallestTerm │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ │ @@ -515,15 +515,15 @@ │ │ │ │ a function to the option MaxMinors. This function should have two inputs; the │ │ │ │ first is minimum number of minors needed to determine whether the ring is │ │ │ │ regular in codimension n, and the second is the total number of minors │ │ │ │ available in the Jacobian. The function regularInCodimension does not recompute │ │ │ │ determinants, so MaxMinors or is only an upper bound on the number of minors │ │ │ │ computed. │ │ │ │ i17 : time regularInCodimension(2, S, Verbose=>true, MaxMinors=>30) │ │ │ │ - -- used 1.29022s (cpu); 0.996476s (thread); 0s (gc) │ │ │ │ + -- used 1.59609s (cpu); 1.19372s (thread); 0s (gc) │ │ │ │ regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 │ │ │ │ minors, we will compute up to 30 of them. │ │ │ │ regularInCodimension: About to enter loop │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ │ @@ -590,51 +590,51 @@ │ │ │ │ because there are a small number of entries with nonzero constant terms, which │ │ │ │ are selected repeatedly). However, in our first example, the LexSmallestTerm is │ │ │ │ much faster, and Random does not perform well at all. │ │ │ │ i18 : StrategyCurrent#Random = 0; │ │ │ │ i19 : StrategyCurrent#LexSmallest = 100; │ │ │ │ i20 : StrategyCurrent#LexSmallestTerm = 0; │ │ │ │ i21 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.31652s (cpu); 0.221889s (thread); 0s (gc) │ │ │ │ + -- used 0.372363s (cpu); 0.244349s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = true │ │ │ │ i22 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.121412s (cpu); 0.0729141s (thread); 0s (gc) │ │ │ │ + -- used 0.159993s (cpu); 0.0846935s (thread); 0s (gc) │ │ │ │ │ │ │ │ o22 = true │ │ │ │ i23 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.36055s (cpu); 0.269016s (thread); 0s (gc) │ │ │ │ + -- used 0.440651s (cpu); 0.318695s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = true │ │ │ │ i24 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 1.61547s (cpu); 1.20594s (thread); 0s (gc) │ │ │ │ + -- used 2.10858s (cpu); 1.50239s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = true │ │ │ │ i25 : StrategyCurrent#LexSmallest = 0; │ │ │ │ i26 : StrategyCurrent#LexSmallestTerm = 100; │ │ │ │ i27 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 2.16839s (cpu); 1.58684s (thread); 0s (gc) │ │ │ │ + -- used 2.71354s (cpu); 1.85257s (thread); 0s (gc) │ │ │ │ i28 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 2.24976s (cpu); 1.60689s (thread); 0s (gc) │ │ │ │ + -- used 2.72213s (cpu); 1.8053s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = true │ │ │ │ i29 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.419528s (cpu); 0.335678s (thread); 0s (gc) │ │ │ │ + -- used 0.500127s (cpu); 0.363283s (thread); 0s (gc) │ │ │ │ │ │ │ │ o29 = true │ │ │ │ i30 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.6816s (cpu); 0.545534s (thread); 0s (gc) │ │ │ │ + -- used 0.866356s (cpu); 0.65138s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = true │ │ │ │ i31 : time regularInCodimension(1, S, Strategy=>StrategyRandom) │ │ │ │ - -- used 0.990173s (cpu); 0.815558s (thread); 0s (gc) │ │ │ │ + -- used 1.24983s (cpu); 0.961592s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = true │ │ │ │ i32 : time regularInCodimension(1, S, Strategy=>StrategyRandom) │ │ │ │ - -- used 1.68103s (cpu); 1.31918s (thread); 0s (gc) │ │ │ │ + -- used 1.95305s (cpu); 1.51345s (thread); 0s (gc) │ │ │ │ │ │ │ │ o32 = true │ │ │ │ The minimum number of minors computed before checking the codimension can also │ │ │ │ be controlled by an option MinMinorsFunction. This is should be a function of a │ │ │ │ single variable, the number of minors computed. Finally, via the option │ │ │ │ CodimCheckFunction, you can pass the regularInCodimension a function which │ │ │ │ controls how frequently the codimension of the partial Jacobian ideal is │ │ ├── ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/___Fitting_spideals_spof_spfinite_spmodules.out │ │ │ @@ -81,23 +81,23 @@ │ │ │ │ │ │ i14 : K3=nextDegree(gens ker Q2,2,S); │ │ │ │ │ │ 8 8 │ │ │ o14 : Matrix R <-- R │ │ │ │ │ │ i15 : time I=co1Fitting(K3) │ │ │ - -- used 0.00283257s (cpu); 0.00282918s (thread); 0s (gc) │ │ │ + -- used 0.00307148s (cpu); 0.00306843s (thread); 0s (gc) │ │ │ │ │ │ o15 = ideal (a a + a - a , a a - a , a a + a - a , a a - a ) │ │ │ 9 11 5 12 3 11 6 9 10 4 11 3 10 5 │ │ │ │ │ │ o15 : Ideal of R │ │ │ │ │ │ i16 : time J=fittingIdeal(2-1,coker K3); │ │ │ - -- used 0.00630435s (cpu); 0.00630588s (thread); 0s (gc) │ │ │ + -- used 0.0065673s (cpu); 0.00656968s (thread); 0s (gc) │ │ │ │ │ │ o16 : Ideal of R │ │ │ │ │ │ i17 : I==J │ │ │ │ │ │ o17 = true │ │ ├── ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/___Fitting_spideals_spof_spfinite_spmodules.html │ │ │ @@ -202,26 +202,26 @@ │ │ │ 8 8 │ │ │ o14 : Matrix R <-- R
    │ │ │
    │ │ │
    i15 : time I=co1Fitting(K3)
    │ │ │ - -- used 0.00283257s (cpu); 0.00282918s (thread); 0s (gc)
    │ │ │ + -- used 0.00307148s (cpu); 0.00306843s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = ideal (a a   + a  - a  , a a   - a , a a   + a  - a  , a a   - a )
    │ │ │                9 11    5    12   3 11    6   9 10    4    11   3 10    5
    │ │ │  
    │ │ │  o15 : Ideal of R
    │ │ │
    │ │ │
    i16 : time J=fittingIdeal(2-1,coker K3);
    │ │ │ - -- used 0.00630435s (cpu); 0.00630588s (thread); 0s (gc)
    │ │ │ + -- used 0.0065673s (cpu); 0.00656968s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │
    │ │ │
    i17 : I==J
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -95,22 +95,22 @@
    │ │ │ │                2      6
    │ │ │ │  o13 : Matrix R  <-- R
    │ │ │ │  i14 : K3=nextDegree(gens ker Q2,2,S);
    │ │ │ │  
    │ │ │ │                8      8
    │ │ │ │  o14 : Matrix R  <-- R
    │ │ │ │  i15 : time I=co1Fitting(K3)
    │ │ │ │ - -- used 0.00283257s (cpu); 0.00282918s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00307148s (cpu); 0.00306843s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o15 = ideal (a a   + a  - a  , a a   - a , a a   + a  - a  , a a   - a )
    │ │ │ │                9 11    5    12   3 11    6   9 10    4    11   3 10    5
    │ │ │ │  
    │ │ │ │  o15 : Ideal of R
    │ │ │ │  i16 : time J=fittingIdeal(2-1,coker K3);
    │ │ │ │ - -- used 0.00630435s (cpu); 0.00630588s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0065673s (cpu); 0.00656968s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o16 : Ideal of R
    │ │ │ │  i17 : I==J
    │ │ │ │  
    │ │ │ │  o17 = true
    │ │ │ │  Note that our method is a bit faster for this small example, and for rank 2
    │ │ │ │  quotients of S^3=\mathbb{Z}[x,y]^3 the time difference is massive.
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Object.out
    │ │ │ @@ -4,19 +4,19 @@
    │ │ │  
    │ │ │  o1 = 5
    │ │ │  
    │ │ │  o1 : ForeignObject of type int32
    │ │ │  
    │ │ │  i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7ff9a1968ea0}
    │ │ │ +o2 = int32{Address => 0x7fbf748292f0}
    │ │ │  
    │ │ │  i3 : address x
    │ │ │  
    │ │ │ -o3 = 0x7ff9a1968ea0
    │ │ │ +o3 = 0x7fbf748292f0
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │  
    │ │ │  i4 : class x
    │ │ │  
    │ │ │  o4 = int32
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Pointer__Array__Type.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │  
    │ │ │  o2 = {the, quick, brown, fox, jumps, over, the, lazy, dog}
    │ │ │  
    │ │ │  o2 : ForeignObject of type char**
    │ │ │  
    │ │ │  i3 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o3 = {0x7ff9a19b2640, 0x7ff9a19b25e0, 0x7ff9a19b25d0}
    │ │ │ +o3 = {0x7fbf7487efe0, 0x7fbf7487efd0, 0x7fbf7487efc0}
    │ │ │  
    │ │ │  o3 : ForeignObject of type void**
    │ │ │  
    │ │ │  i4 : x = charstarstar {"foo", "bar", "baz"}
    │ │ │  
    │ │ │  o4 = {foo, bar, baz}
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Pointer__Array__Type_sp__Visible__List.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = {foo, bar}
    │ │ │  
    │ │ │  o1 : ForeignObject of type char**
    │ │ │  
    │ │ │  i2 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o2 = {0x7ff9a19b23d0, 0x7ff9a19b23c0, 0x7ff9a19b23b0}
    │ │ │ +o2 = {0x7fbf7487edf0, 0x7fbf7487ede0, 0x7fbf7487edd0}
    │ │ │  
    │ │ │  o2 : ForeignObject of type void**
    │ │ │  
    │ │ │  i3 : int2star = foreignPointerArrayType(2 * int)
    │ │ │  
    │ │ │  o3 = int32[2]*
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Pointer__Type_sp__Pointer.out
    │ │ │ @@ -1,15 +1,15 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730835169888399450
    │ │ │  
    │ │ │  i1 : ptr = address int 0
    │ │ │  
    │ │ │ -o1 = 0x7ff9a4235e20
    │ │ │ +o1 = 0x7fbf774b3710
    │ │ │  
    │ │ │  o1 : Pointer
    │ │ │  
    │ │ │  i2 : voidstar ptr
    │ │ │  
    │ │ │ -o2 = 0x7ff9a4235e20
    │ │ │ +o2 = 0x7fbf774b3710
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Type_sp__Pointer.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = 5
    │ │ │  
    │ │ │  o1 : ForeignObject of type int32
    │ │ │  
    │ │ │  i2 : ptr = address x
    │ │ │  
    │ │ │ -o2 = 0x7ff9a19685d0
    │ │ │ +o2 = 0x7fbf748294d0
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │  
    │ │ │  i3 : int ptr
    │ │ │  
    │ │ │  o3 = 5
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Type_sp_st_spvoidstar.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 1731230829183683930
    │ │ │  
    │ │ │  i1 : ptr = voidstar address int 5
    │ │ │  
    │ │ │ -o1 = 0x7ff9a19681f0
    │ │ │ +o1 = 0x7fbf74855a50
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │  
    │ │ │  i2 : int * ptr
    │ │ │  
    │ │ │  o2 = 5
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Union__Type_sp__Thing.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = myunion
    │ │ │  
    │ │ │  o1 : ForeignUnionType
    │ │ │  
    │ │ │  i2 : myunion 27
    │ │ │  
    │ │ │ -o2 = HashTable{"bar" => 6.95187e-310}
    │ │ │ +o2 = HashTable{"bar" => 6.93956e-310}
    │ │ │                 "foo" => 27
    │ │ │  
    │ │ │  o2 : ForeignObject of type myunion
    │ │ │  
    │ │ │  i3 : myunion pi
    │ │ │  
    │ │ │  o3 = HashTable{"bar" => 3.14159   }
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Pointer.out
    │ │ │ @@ -4,28 +4,28 @@
    │ │ │  
    │ │ │  o1 = 20
    │ │ │  
    │ │ │  o1 : ForeignObject of type int32
    │ │ │  
    │ │ │  i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7ff9a191e520}
    │ │ │ +o2 = int32{Address => 0x7fbf74829fb0}
    │ │ │  
    │ │ │  i3 : ptr = address x
    │ │ │  
    │ │ │ -o3 = 0x7ff9a191e520
    │ │ │ +o3 = 0x7fbf74829fb0
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │  
    │ │ │  i4 : ptr + 5
    │ │ │  
    │ │ │ -o4 = 0x7ff9a191e525
    │ │ │ +o4 = 0x7fbf74829fb5
    │ │ │  
    │ │ │  o4 : Pointer
    │ │ │  
    │ │ │  i5 : ptr - 3
    │ │ │  
    │ │ │ -o5 = 0x7ff9a191e51d
    │ │ │ +o5 = 0x7fbf74829fad
    │ │ │  
    │ │ │  o5 : Pointer
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Shared__Library.out
    │ │ │ @@ -4,10 +4,10 @@
    │ │ │  
    │ │ │  o1 = mpfr
    │ │ │  
    │ │ │  o1 : SharedLibrary
    │ │ │  
    │ │ │  i2 : peek mpfr
    │ │ │  
    │ │ │ -o2 = SharedLibrary{0x7ff9b01dc550, mpfr}
    │ │ │ +o2 = SharedLibrary{0x7fbf88cff550, mpfr}
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/__st_spvoidstar_sp_eq_sp__Thing.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = 5
    │ │ │  
    │ │ │  o1 : ForeignObject of type int32
    │ │ │  
    │ │ │  i2 : ptr = address x
    │ │ │  
    │ │ │ -o2 = 0x7ff9a1968480
    │ │ │ +o2 = 0x7fbf74855d70
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │  
    │ │ │  i3 : *ptr = int 6
    │ │ │  
    │ │ │  o3 = 6
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_address.out
    │ │ │ @@ -1,15 +1,15 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730181884377373595
    │ │ │  
    │ │ │  i1 : address int
    │ │ │  
    │ │ │ -o1 = 0x563b04170b40
    │ │ │ +o1 = 0x555972e3bb40
    │ │ │  
    │ │ │  o1 : Pointer
    │ │ │  
    │ │ │  i2 : address int 5
    │ │ │  
    │ │ │ -o2 = 0x7ff9a191e630
    │ │ │ +o2 = 0x7fbf748297f0
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_foreign__Function.out
    │ │ │ @@ -78,14 +78,14 @@
    │ │ │  
    │ │ │  o16 = free
    │ │ │  
    │ │ │  o16 : ForeignFunction
    │ │ │  
    │ │ │  i17 : x = malloc 8
    │ │ │  
    │ │ │ -o17 = 0x7fc08c06a460
    │ │ │ +o17 = 0x7efcf806a460
    │ │ │  
    │ │ │  o17 : ForeignObject of type void*
    │ │ │  
    │ │ │  i18 : registerFinalizer(x, free)
    │ │ │  
    │ │ │  i19 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_get__Memory.out
    │ │ │ @@ -1,21 +1,21 @@
    │ │ │  -- -*- M2-comint -*- hash: 10647988412767280310
    │ │ │  
    │ │ │  i1 : ptr = getMemory 8
    │ │ │  
    │ │ │ -o1 = 0x7ff9aba19160
    │ │ │ +o1 = 0x7fbf842f8490
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │  
    │ │ │  i2 : ptr = getMemory(8, Atomic => true)
    │ │ │  
    │ │ │ -o2 = 0x7ff9a191e0c0
    │ │ │ +o2 = 0x7fbf74829140
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │  
    │ │ │  i3 : ptr = getMemory int
    │ │ │  
    │ │ │ -o3 = 0x7ff9a1968fd0
    │ │ │ +o3 = 0x7fbf74829020
    │ │ │  
    │ │ │  o3 : ForeignObject of type void*
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_register__Finalizer_lp__Foreign__Object_cm__Function_rp.out
    │ │ │ @@ -17,18 +17,19 @@
    │ │ │  o3 = finalizer
    │ │ │  
    │ │ │  o3 : FunctionClosure
    │ │ │  
    │ │ │  i4 : for i to 9 do (x := malloc 8; registerFinalizer(x, finalizer))
    │ │ │  
    │ │ │  i5 : collectGarbage()
    │ │ │ -freeing memory at 0x7ff99407f900
    │ │ │ -freeing memory at 0x7ff99407f920
    │ │ │ -freeing memory at 0x7ff99407f8a0
    │ │ │ -freeing memory at 0x7ff99407f1c0
    │ │ │ -freeing memory at 0x7ff99407f1a0
    │ │ │ -freeing memory at 0x7ff99407f860
    │ │ │ -freeing memory at 0x7ff99407f880
    │ │ │ -freeing memory at 0x7ff99407f8c0
    │ │ │ -freeing memory at 0x7ff99407f8e0
    │ │ │ +freeing memory at 0x7fbf5c07f1c0
    │ │ │ +freeing memory at 0x7fbf5c07f8c0
    │ │ │ +freeing memory at 0x7fbf5c07f8a0
    │ │ │ +freeing memory at 0x7fbf5c07f1a0
    │ │ │ +freeing memory at 0x7fbf5c07f900
    │ │ │ +freeing memory at 0x7fbf5c07f8e0
    │ │ │ +freeing memory at 0x7fbf5c07f940
    │ │ │ +freeing memory at 0x7fbf5c07f920
    │ │ │ +freeing memory at 0x7fbf5c07f860
    │ │ │ +freeing memory at 0x7fbf5c07f880
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_value_lp__Foreign__Object_rp.out
    │ │ │ @@ -20,21 +20,21 @@
    │ │ │  
    │ │ │  o4 = 5
    │ │ │  
    │ │ │  o4 : RR (of precision 53)
    │ │ │  
    │ │ │  i5 : x = voidstar address int 5
    │ │ │  
    │ │ │ -o5 = 0x7ff9a1968860
    │ │ │ +o5 = 0x7fbf748559e0
    │ │ │  
    │ │ │  o5 : ForeignObject of type void*
    │ │ │  
    │ │ │  i6 : value x
    │ │ │  
    │ │ │ -o6 = 0x7ff9a1968860
    │ │ │ +o6 = 0x7fbf748559e0
    │ │ │  
    │ │ │  o6 : Pointer
    │ │ │  
    │ │ │  i7 : x = charstar "Hello, world!"
    │ │ │  
    │ │ │  o7 = Hello, world!
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Object.html
    │ │ │ @@ -64,27 +64,27 @@
    │ │ │  o1 : ForeignObject of type int32
    │ │ │
    │ │ │
    i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7ff9a1968ea0}
    │ │ │ +o2 = int32{Address => 0x7fbf748292f0} │ │ │
    │ │ │
    │ │ │

    To get this, use address.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : address x
    │ │ │  
    │ │ │ -o3 = 0x7ff9a1968ea0
    │ │ │ +o3 = 0x7fbf748292f0
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │
    │ │ │
    │ │ │

    Use class to determine the type of the object.

    │ │ │ ├── html2text {} │ │ │ │ @@ -10,19 +10,19 @@ │ │ │ │ i1 : x = int 5 │ │ │ │ │ │ │ │ o1 = 5 │ │ │ │ │ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ i2 : peek x │ │ │ │ │ │ │ │ -o2 = int32{Address => 0x7ff9a1968ea0} │ │ │ │ +o2 = int32{Address => 0x7fbf748292f0} │ │ │ │ To get this, use _a_d_d_r_e_s_s. │ │ │ │ i3 : address x │ │ │ │ │ │ │ │ -o3 = 0x7ff9a1968ea0 │ │ │ │ +o3 = 0x7fbf748292f0 │ │ │ │ │ │ │ │ o3 : Pointer │ │ │ │ Use _c_l_a_s_s to determine the type of the object. │ │ │ │ i4 : class x │ │ │ │ │ │ │ │ o4 = int32 │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Pointer__Array__Type.html │ │ │ @@ -74,15 +74,15 @@ │ │ │ o2 : ForeignObject of type char**
    │ │ │
    │ │ │
    i3 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o3 = {0x7ff9a19b2640, 0x7ff9a19b25e0, 0x7ff9a19b25d0}
    │ │ │ +o3 = {0x7fbf7487efe0, 0x7fbf7487efd0, 0x7fbf7487efc0}
    │ │ │  
    │ │ │  o3 : ForeignObject of type void**
    │ │ │
    │ │ │
    │ │ │

    Foreign pointer arrays may be subscripted using _.

    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ "lazy", "dog"} │ │ │ │ │ │ │ │ o2 = {the, quick, brown, fox, jumps, over, the, lazy, dog} │ │ │ │ │ │ │ │ o2 : ForeignObject of type char** │ │ │ │ i3 : voidstarstar {address int 0, address int 1, address int 2} │ │ │ │ │ │ │ │ -o3 = {0x7ff9a19b2640, 0x7ff9a19b25e0, 0x7ff9a19b25d0} │ │ │ │ +o3 = {0x7fbf7487efe0, 0x7fbf7487efd0, 0x7fbf7487efc0} │ │ │ │ │ │ │ │ o3 : ForeignObject of type void** │ │ │ │ Foreign pointer arrays may be subscripted using __. │ │ │ │ i4 : x = charstarstar {"foo", "bar", "baz"} │ │ │ │ │ │ │ │ o4 = {foo, bar, baz} │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Pointer__Array__Type_sp__Visible__List.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ o1 : ForeignObject of type char**
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o2 = {0x7ff9a19b23d0, 0x7ff9a19b23c0, 0x7ff9a19b23b0}
    │ │ │ +o2 = {0x7fbf7487edf0, 0x7fbf7487ede0, 0x7fbf7487edd0}
    │ │ │  
    │ │ │  o2 : ForeignObject of type void**
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : int2star = foreignPointerArrayType(2 * int)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,15 +20,15 @@
    │ │ │ │  i1 : charstarstar {"foo", "bar"}
    │ │ │ │  
    │ │ │ │  o1 = {foo, bar}
    │ │ │ │  
    │ │ │ │  o1 : ForeignObject of type char**
    │ │ │ │  i2 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │ │  
    │ │ │ │ -o2 = {0x7ff9a19b23d0, 0x7ff9a19b23c0, 0x7ff9a19b23b0}
    │ │ │ │ +o2 = {0x7fbf7487edf0, 0x7fbf7487ede0, 0x7fbf7487edd0}
    │ │ │ │  
    │ │ │ │  o2 : ForeignObject of type void**
    │ │ │ │  i3 : int2star = foreignPointerArrayType(2 * int)
    │ │ │ │  
    │ │ │ │  o3 = int32[2]*
    │ │ │ │  
    │ │ │ │  o3 : ForeignPointerArrayType
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Pointer__Type_sp__Pointer.html
    │ │ │ @@ -73,24 +73,24 @@
    │ │ │            

    To cast a Macaulay2 pointer to a foreign object with a pointer type, give the type followed by the pointer.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : ptr = address int 0
    │ │ │  
    │ │ │ -o1 = 0x7ff9a4235e20
    │ │ │ +o1 = 0x7fbf774b3710
    │ │ │  
    │ │ │  o1 : Pointer
    │ │ │
    │ │ │
    i2 : voidstar ptr
    │ │ │  
    │ │ │ -o2 = 0x7ff9a4235e20
    │ │ │ +o2 = 0x7fbf774b3710
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -15,20 +15,20 @@ │ │ │ │ * Outputs: │ │ │ │ o a _f_o_r_e_i_g_n_ _o_b_j_e_c_t, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ To cast a Macaulay2 pointer to a foreign object with a pointer type, give the │ │ │ │ type followed by the pointer. │ │ │ │ i1 : ptr = address int 0 │ │ │ │ │ │ │ │ -o1 = 0x7ff9a4235e20 │ │ │ │ +o1 = 0x7fbf774b3710 │ │ │ │ │ │ │ │ o1 : Pointer │ │ │ │ i2 : voidstar ptr │ │ │ │ │ │ │ │ -o2 = 0x7ff9a4235e20 │ │ │ │ +o2 = 0x7fbf774b3710 │ │ │ │ │ │ │ │ o2 : ForeignObject of type void* │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _F_o_r_e_i_g_n_P_o_i_n_t_e_r_T_y_p_e_ _P_o_i_n_t_e_r -- cast a Macaulay2 pointer to a foreign │ │ │ │ pointer │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Type_sp__Pointer.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : ptr = address x
    │ │ │  
    │ │ │ -o2 = 0x7ff9a19685d0
    │ │ │ +o2 = 0x7fbf748294d0
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : int ptr
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,15 +18,15 @@
    │ │ │ │  i1 : x = int 5
    │ │ │ │  
    │ │ │ │  o1 = 5
    │ │ │ │  
    │ │ │ │  o1 : ForeignObject of type int32
    │ │ │ │  i2 : ptr = address x
    │ │ │ │  
    │ │ │ │ -o2 = 0x7ff9a19685d0
    │ │ │ │ +o2 = 0x7fbf748294d0
    │ │ │ │  
    │ │ │ │  o2 : Pointer
    │ │ │ │  i3 : int ptr
    │ │ │ │  
    │ │ │ │  o3 = 5
    │ │ │ │  
    │ │ │ │  o3 : ForeignObject of type int32
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Type_sp_st_spvoidstar.html
    │ │ │ @@ -73,15 +73,15 @@
    │ │ │            

    This is syntactic sugar for T value ptr (see ForeignType Pointer) for dereferencing pointers.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : ptr = voidstar address int 5
    │ │ │  
    │ │ │ -o1 = 0x7ff9a19681f0
    │ │ │ +o1 = 0x7fbf74855a50
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │
    │ │ │
    i2 : int * ptr
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -14,15 +14,15 @@
    │ │ │ │      * Outputs:
    │ │ │ │            o a _f_o_r_e_i_g_n_ _o_b_j_e_c_t, of type T;
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  This is syntactic sugar for T value ptr (see _F_o_r_e_i_g_n_T_y_p_e_ _P_o_i_n_t_e_r) for
    │ │ │ │  dereferencing pointers.
    │ │ │ │  i1 : ptr = voidstar address int 5
    │ │ │ │  
    │ │ │ │ -o1 = 0x7ff9a19681f0
    │ │ │ │ +o1 = 0x7fbf74855a50
    │ │ │ │  
    │ │ │ │  o1 : ForeignObject of type void*
    │ │ │ │  i2 : int * ptr
    │ │ │ │  
    │ │ │ │  o2 = 5
    │ │ │ │  
    │ │ │ │  o2 : ForeignObject of type int32
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Union__Type_sp__Thing.html
    │ │ │ @@ -82,15 +82,15 @@
    │ │ │  o1 : ForeignUnionType
    │ │ │
    │ │ │
    i2 : myunion 27
    │ │ │  
    │ │ │ -o2 = HashTable{"bar" => 6.95187e-310}
    │ │ │ +o2 = HashTable{"bar" => 6.93956e-310}
    │ │ │                 "foo" => 27
    │ │ │  
    │ │ │  o2 : ForeignObject of type myunion
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ i1 : myunion = foreignUnionType("myunion", {"foo" => int, "bar" => double}) │ │ │ │ │ │ │ │ o1 = myunion │ │ │ │ │ │ │ │ o1 : ForeignUnionType │ │ │ │ i2 : myunion 27 │ │ │ │ │ │ │ │ -o2 = HashTable{"bar" => 6.95187e-310} │ │ │ │ +o2 = HashTable{"bar" => 6.93956e-310} │ │ │ │ "foo" => 27 │ │ │ │ │ │ │ │ o2 : ForeignObject of type myunion │ │ │ │ i3 : myunion pi │ │ │ │ │ │ │ │ o3 = HashTable{"bar" => 3.14159 } │ │ │ │ "foo" => 1413754136 │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Pointer.html │ │ │ @@ -64,50 +64,50 @@ │ │ │ o1 : ForeignObject of type int32 │ │ │
    │ │ │
    i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7ff9a191e520}
    │ │ │ +o2 = int32{Address => 0x7fbf74829fb0} │ │ │
    │ │ │
    │ │ │

    These pointers can be accessed using address.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : ptr = address x
    │ │ │  
    │ │ │ -o3 = 0x7ff9a191e520
    │ │ │ +o3 = 0x7fbf74829fb0
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │
    │ │ │
    │ │ │

    Simple arithmetic can be performed on pointers.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : ptr + 5
    │ │ │  
    │ │ │ -o4 = 0x7ff9a191e525
    │ │ │ +o4 = 0x7fbf74829fb5
    │ │ │  
    │ │ │  o4 : Pointer
    │ │ │
    │ │ │
    i5 : ptr - 3
    │ │ │  
    │ │ │ -o5 = 0x7ff9a191e51d
    │ │ │ +o5 = 0x7fbf74829fad
    │ │ │  
    │ │ │  o5 : Pointer
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,30 +10,30 @@ │ │ │ │ i1 : x = int 20 │ │ │ │ │ │ │ │ o1 = 20 │ │ │ │ │ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ i2 : peek x │ │ │ │ │ │ │ │ -o2 = int32{Address => 0x7ff9a191e520} │ │ │ │ +o2 = int32{Address => 0x7fbf74829fb0} │ │ │ │ These pointers can be accessed using _a_d_d_r_e_s_s. │ │ │ │ i3 : ptr = address x │ │ │ │ │ │ │ │ -o3 = 0x7ff9a191e520 │ │ │ │ +o3 = 0x7fbf74829fb0 │ │ │ │ │ │ │ │ o3 : Pointer │ │ │ │ Simple arithmetic can be performed on pointers. │ │ │ │ i4 : ptr + 5 │ │ │ │ │ │ │ │ -o4 = 0x7ff9a191e525 │ │ │ │ +o4 = 0x7fbf74829fb5 │ │ │ │ │ │ │ │ o4 : Pointer │ │ │ │ i5 : ptr - 3 │ │ │ │ │ │ │ │ -o5 = 0x7ff9a191e51d │ │ │ │ +o5 = 0x7fbf74829fad │ │ │ │ │ │ │ │ o5 : Pointer │ │ │ │ ******** MMeennuu ******** │ │ │ │ * _n_u_l_l_P_o_i_n_t_e_r -- the null pointer │ │ │ │ * _a_d_d_r_e_s_s -- pointer to type or object │ │ │ │ * _F_o_r_e_i_g_n_T_y_p_e_ _P_o_i_n_t_e_r -- dereference a pointer │ │ │ │ ********** FFuunnccttiioonnss aanndd mmeetthhooddss rreettuurrnniinngg aa ppooiinntteerr:: ********** │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Shared__Library.html │ │ │ @@ -64,15 +64,15 @@ │ │ │ o1 : SharedLibrary │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : peek mpfr
    │ │ │  
    │ │ │ -o2 = SharedLibrary{0x7ff9b01dc550, mpfr}
    │ │ │ +o2 = SharedLibrary{0x7fbf88cff550, mpfr} │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Menu

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : address int
    │ │ │  
    │ │ │ -o1 = 0x563b04170b40
    │ │ │ +o1 = 0x555972e3bb40
    │ │ │  
    │ │ │  o1 : Pointer
    │ │ │
    │ │ │
    │ │ │

    If x is a foreign object, then this returns the address to the object. It behaves like the & "address-of" operator in C.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : address int 5
    │ │ │  
    │ │ │ -o2 = 0x7ff9a191e630
    │ │ │ +o2 = 0x7fbf748297f0
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,22 +11,22 @@ │ │ │ │ * Outputs: │ │ │ │ o a _p_o_i_n_t_e_r, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ If x is a foreign type, then this returns the address to the ffi_type struct │ │ │ │ used by libffi to identify the type. │ │ │ │ i1 : address int │ │ │ │ │ │ │ │ -o1 = 0x563b04170b40 │ │ │ │ +o1 = 0x555972e3bb40 │ │ │ │ │ │ │ │ o1 : Pointer │ │ │ │ If x is a foreign object, then this returns the address to the object. It │ │ │ │ behaves like the & "address-of" operator in C. │ │ │ │ i2 : address int 5 │ │ │ │ │ │ │ │ -o2 = 0x7ff9a191e630 │ │ │ │ +o2 = 0x7fbf748297f0 │ │ │ │ │ │ │ │ o2 : Pointer │ │ │ │ ********** WWaayyss ttoo uussee aaddddrreessss:: ********** │ │ │ │ * address(ForeignObject) │ │ │ │ * address(ForeignType) │ │ │ │ * address(Nothing) (missing documentation) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/_foreign__Function.html │ │ │ @@ -232,15 +232,15 @@ │ │ │ o16 : ForeignFunction │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : x = malloc 8
    │ │ │  
    │ │ │ -o17 = 0x7fc08c06a460
    │ │ │ +o17 = 0x7efcf806a460
    │ │ │  
    │ │ │  o17 : ForeignObject of type void*
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : registerFinalizer(x, free)
    │ │ │ ├── html2text {} │ │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ i16 : free = foreignFunction("free", void, voidstar) │ │ │ │ │ │ │ │ o16 = free │ │ │ │ │ │ │ │ o16 : ForeignFunction │ │ │ │ i17 : x = malloc 8 │ │ │ │ │ │ │ │ -o17 = 0x7fc08c06a460 │ │ │ │ +o17 = 0x7efcf806a460 │ │ │ │ │ │ │ │ o17 : ForeignObject of type void* │ │ │ │ i18 : registerFinalizer(x, free) │ │ │ │ ********** WWaayyss ttoo uussee ffoorreeiiggnnFFuunnccttiioonn:: ********** │ │ │ │ * foreignFunction(Pointer,String,ForeignType,VisibleList) │ │ │ │ * foreignFunction(SharedLibrary,String,ForeignType,ForeignType) │ │ │ │ * foreignFunction(SharedLibrary,String,ForeignType,VisibleList) │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/_get__Memory.html │ │ │ @@ -77,43 +77,43 @@ │ │ │

    Allocate n bytes of memory using the GC garbage collector.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : ptr = getMemory 8
    │ │ │  
    │ │ │ -o1 = 0x7ff9aba19160
    │ │ │ +o1 = 0x7fbf842f8490
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │
    │ │ │
    │ │ │

    If the memory will not contain any pointers, then set the Atomic option to true.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : ptr = getMemory(8, Atomic => true)
    │ │ │  
    │ │ │ -o2 = 0x7ff9a191e0c0
    │ │ │ +o2 = 0x7fbf74829140
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │
    │ │ │
    │ │ │

    Alternatively, a foreign object type T may be specified. In this case, the number of bytes and whether the Atomic option should be set will be determined automatically.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : ptr = getMemory int
    │ │ │  
    │ │ │ -o3 = 0x7ff9a1968fd0
    │ │ │ +o3 = 0x7fbf74829020
    │ │ │  
    │ │ │  o3 : ForeignObject of type void*
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -14,30 +14,30 @@ │ │ │ │ o Atomic => ..., default value false │ │ │ │ * Outputs: │ │ │ │ o an instance of the type _v_o_i_d_s_t_a_r, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Allocate n bytes of memory using the _G_C_ _g_a_r_b_a_g_e_ _c_o_l_l_e_c_t_o_r. │ │ │ │ i1 : ptr = getMemory 8 │ │ │ │ │ │ │ │ -o1 = 0x7ff9aba19160 │ │ │ │ +o1 = 0x7fbf842f8490 │ │ │ │ │ │ │ │ o1 : ForeignObject of type void* │ │ │ │ If the memory will not contain any pointers, then set the Atomic option to │ │ │ │ _t_r_u_e. │ │ │ │ i2 : ptr = getMemory(8, Atomic => true) │ │ │ │ │ │ │ │ -o2 = 0x7ff9a191e0c0 │ │ │ │ +o2 = 0x7fbf74829140 │ │ │ │ │ │ │ │ o2 : ForeignObject of type void* │ │ │ │ Alternatively, a foreign object type T may be specified. In this case, the │ │ │ │ number of bytes and whether the Atomic option should be set will be determined │ │ │ │ automatically. │ │ │ │ i3 : ptr = getMemory int │ │ │ │ │ │ │ │ -o3 = 0x7ff9a1968fd0 │ │ │ │ +o3 = 0x7fbf74829020 │ │ │ │ │ │ │ │ o3 : ForeignObject of type void* │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_g_i_s_t_e_r_F_i_n_a_l_i_z_e_r_(_F_o_r_e_i_g_n_O_b_j_e_c_t_,_F_u_n_c_t_i_o_n_) -- register a finalizer for a │ │ │ │ foreign object │ │ │ │ ********** WWaayyss ttoo uussee ggeettMMeemmoorryy:: ********** │ │ │ │ * getMemory(ForeignType) │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/_register__Finalizer_lp__Foreign__Object_cm__Function_rp.html │ │ │ @@ -100,23 +100,24 @@ │ │ │ │ │ │
    i4 : for i to 9 do (x := malloc 8; registerFinalizer(x, finalizer))
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : collectGarbage()
    │ │ │ -freeing memory at 0x7ff99407f900
    │ │ │ -freeing memory at 0x7ff99407f920
    │ │ │ -freeing memory at 0x7ff99407f8a0
    │ │ │ -freeing memory at 0x7ff99407f1c0
    │ │ │ -freeing memory at 0x7ff99407f1a0
    │ │ │ -freeing memory at 0x7ff99407f860
    │ │ │ -freeing memory at 0x7ff99407f880
    │ │ │ -freeing memory at 0x7ff99407f8c0
    │ │ │ -freeing memory at 0x7ff99407f8e0
    │ │ │ +freeing memory at 0x7fbf5c07f1c0 │ │ │ +freeing memory at 0x7fbf5c07f8c0 │ │ │ +freeing memory at 0x7fbf5c07f8a0 │ │ │ +freeing memory at 0x7fbf5c07f1a0 │ │ │ +freeing memory at 0x7fbf5c07f900 │ │ │ +freeing memory at 0x7fbf5c07f8e0 │ │ │ +freeing memory at 0x7fbf5c07f940 │ │ │ +freeing memory at 0x7fbf5c07f920 │ │ │ +freeing memory at 0x7fbf5c07f860 │ │ │ +freeing memory at 0x7fbf5c07f880 │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : x = voidstar address int 5
    │ │ │  
    │ │ │ -o5 = 0x7ff9a1968860
    │ │ │ +o5 = 0x7fbf748559e0
    │ │ │  
    │ │ │  o5 : ForeignObject of type void*
    │ │ │
    │ │ │
    i6 : value x
    │ │ │  
    │ │ │ -o6 = 0x7ff9a1968860
    │ │ │ +o6 = 0x7fbf748559e0
    │ │ │  
    │ │ │  o6 : Pointer
    │ │ │
    │ │ │
    │ │ │

    Foreign string objects are converted to strings.

    │ │ │ ├── html2text {} │ │ │ │ @@ -34,20 +34,20 @@ │ │ │ │ │ │ │ │ o4 = 5 │ │ │ │ │ │ │ │ o4 : RR (of precision 53) │ │ │ │ Foreign pointer objects are converted to _P_o_i_n_t_e_r objects. │ │ │ │ i5 : x = voidstar address int 5 │ │ │ │ │ │ │ │ -o5 = 0x7ff9a1968860 │ │ │ │ +o5 = 0x7fbf748559e0 │ │ │ │ │ │ │ │ o5 : ForeignObject of type void* │ │ │ │ i6 : value x │ │ │ │ │ │ │ │ -o6 = 0x7ff9a1968860 │ │ │ │ +o6 = 0x7fbf748559e0 │ │ │ │ │ │ │ │ o6 : Pointer │ │ │ │ Foreign string objects are converted to strings. │ │ │ │ i7 : x = charstar "Hello, world!" │ │ │ │ │ │ │ │ o7 = Hello, world! │ │ ├── ./usr/share/doc/Macaulay2/FourTiTwo/example-output/_put__Matrix.out │ │ │ @@ -6,27 +6,27 @@ │ │ │ | 1 2 3 4 | │ │ │ │ │ │ 2 4 │ │ │ o1 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i2 : s = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-15954-0/0 │ │ │ +o2 = /tmp/M2-20955-0/0 │ │ │ │ │ │ i3 : F = openOut(s) │ │ │ │ │ │ -o3 = /tmp/M2-15954-0/0 │ │ │ +o3 = /tmp/M2-20955-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : putMatrix(F,A) │ │ │ │ │ │ i5 : close(F) │ │ │ │ │ │ -o5 = /tmp/M2-15954-0/0 │ │ │ +o5 = /tmp/M2-20955-0/0 │ │ │ │ │ │ o5 : File │ │ │ │ │ │ i6 : getMatrix(s) │ │ │ │ │ │ o6 = | 1 1 1 1 | │ │ │ | 1 2 3 4 | │ │ ├── ./usr/share/doc/Macaulay2/FourTiTwo/html/_put__Matrix.html │ │ │ @@ -79,36 +79,36 @@ │ │ │ o1 : Matrix ZZ <-- ZZ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : s = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-15954-0/0
    │ │ │ +o2 = /tmp/M2-20955-0/0 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : F = openOut(s)
    │ │ │  
    │ │ │ -o3 = /tmp/M2-15954-0/0
    │ │ │ +o3 = /tmp/M2-20955-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : putMatrix(F,A)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : close(F)
    │ │ │  
    │ │ │ -o5 = /tmp/M2-15954-0/0
    │ │ │ +o5 = /tmp/M2-20955-0/0
    │ │ │  
    │ │ │  o5 : File
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : getMatrix(s)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,24 +16,24 @@
    │ │ │ │  o1 = | 1 1 1 1 |
    │ │ │ │       | 1 2 3 4 |
    │ │ │ │  
    │ │ │ │                2       4
    │ │ │ │  o1 : Matrix ZZ  <-- ZZ
    │ │ │ │  i2 : s = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-15954-0/0
    │ │ │ │ +o2 = /tmp/M2-20955-0/0
    │ │ │ │  i3 : F = openOut(s)
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-15954-0/0
    │ │ │ │ +o3 = /tmp/M2-20955-0/0
    │ │ │ │  
    │ │ │ │  o3 : File
    │ │ │ │  i4 : putMatrix(F,A)
    │ │ │ │  i5 : close(F)
    │ │ │ │  
    │ │ │ │ -o5 = /tmp/M2-15954-0/0
    │ │ │ │ +o5 = /tmp/M2-20955-0/0
    │ │ │ │  
    │ │ │ │  o5 : File
    │ │ │ │  i6 : getMatrix(s)
    │ │ │ │  
    │ │ │ │  o6 = | 1 1 1 1 |
    │ │ │ │       | 1 2 3 4 |
    │ │ ├── ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_fpt.out
    │ │ │ @@ -155,31 +155,31 @@
    │ │ │  i26 : numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true) -- FinalAttempt improves the estimate slightly
    │ │ │  
    │ │ │  o26 = {.142067, .144}
    │ │ │  
    │ │ │  o26 : List
    │ │ │  
    │ │ │  i27 : time numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true)
    │ │ │ - -- used 2.29687s (cpu); 1.3621s (thread); 0s (gc)
    │ │ │ + -- used 2.70051s (cpu); 1.49378s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = {.142067, .144}
    │ │ │  
    │ │ │  o27 : List
    │ │ │  
    │ │ │  i28 : time fpt(f, DepthOfSearch => 3, Attempts => 7)
    │ │ │ - -- used 1.29681s (cpu); 0.79399s (thread); 0s (gc)
    │ │ │ + -- used 1.7628s (cpu); 0.907823s (thread); 0s (gc)
    │ │ │  
    │ │ │        1
    │ │ │  o28 = -
    │ │ │        7
    │ │ │  
    │ │ │  o28 : QQ
    │ │ │  
    │ │ │  i29 : time fpt(f, DepthOfSearch => 4)
    │ │ │ - -- used 1.10683s (cpu); 0.719671s (thread); 0s (gc)
    │ │ │ + -- used 1.27054s (cpu); 0.7324s (thread); 0s (gc)
    │ │ │  
    │ │ │        1
    │ │ │  o29 = -
    │ │ │        7
    │ │ │  
    │ │ │  o29 : QQ
    │ │ ├── ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_frobenius__Nu.out
    │ │ │ @@ -43,34 +43,34 @@
    │ │ │  o12 = 220
    │ │ │  
    │ │ │  i13 : R = ZZ/17[x,y,z];
    │ │ │  
    │ │ │  i14 : f = x^3 + y^4 + z^5; -- a diagonal polynomial
    │ │ │  
    │ │ │  i15 : time frobeniusNu(3, f)
    │ │ │ - -- used 0.00400825s (cpu); 0.00419427s (thread); 0s (gc)
    │ │ │ + -- used 0.00797316s (cpu); 0.00585066s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3756
    │ │ │  
    │ │ │  i16 : time frobeniusNu(3, f, UseSpecialAlgorithms => false)
    │ │ │ - -- used 0.382087s (cpu); 0.251102s (thread); 0s (gc)
    │ │ │ + -- used 0.409194s (cpu); 0.285425s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 3756
    │ │ │  
    │ │ │  i17 : R = ZZ/5[x,y,z];
    │ │ │  
    │ │ │  i18 : f = x^3 + y^3 + z^3 + x*y*z;
    │ │ │  
    │ │ │  i19 : time frobeniusNu(4, f) -- ContainmentTest is set to FrobeniusRoot, by default
    │ │ │ - -- used 0.270979s (cpu); 0.184269s (thread); 0s (gc)
    │ │ │ + -- used 0.428106s (cpu); 0.250064s (thread); 0s (gc)
    │ │ │  
    │ │ │  o19 = 499
    │ │ │  
    │ │ │  i20 : time frobeniusNu(4, f, ContainmentTest => StandardPower)
    │ │ │ - -- used 1.51677s (cpu); 1.13247s (thread); 0s (gc)
    │ │ │ + -- used 1.38941s (cpu); 1.1782s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = 499
    │ │ │  
    │ │ │  i21 : R = ZZ/3[x,y];
    │ │ │  
    │ │ │  i22 : M = ideal(x, y);
    │ │ │  
    │ │ │ @@ -85,34 +85,34 @@
    │ │ │  o24 = 8
    │ │ │  
    │ │ │  i25 : R = ZZ/5[x,y,z];
    │ │ │  
    │ │ │  i26 : f = x^2*y^4 + y^2*z^7 + z^2*x^8;
    │ │ │  
    │ │ │  i27 : time frobeniusNu(5, f) -- uses binary search (default)
    │ │ │ - -- used 1.05755s (cpu); 0.695354s (thread); 0s (gc)
    │ │ │ + -- used 1.17913s (cpu); 0.730188s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = 1124
    │ │ │  
    │ │ │  i28 : time frobeniusNu(5, f, Search => Linear)
    │ │ │ - -- used 1.51572s (cpu); 0.951915s (thread); 0s (gc)
    │ │ │ + -- used 1.68964s (cpu); 1.03283s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 1124
    │ │ │  
    │ │ │  i29 : M = ideal(x, y, z);
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │  
    │ │ │  i30 : time frobeniusNu(2, M, M^2) -- uses binary search (default)
    │ │ │ - -- used 1.72643s (cpu); 1.38582s (thread); 0s (gc)
    │ │ │ + -- used 1.77277s (cpu); 1.48674s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 97
    │ │ │  
    │ │ │  i31 : time frobeniusNu(2, M, M^2, Search => Linear) -- but linear search gets luckier
    │ │ │ - -- used 0.613124s (cpu); 0.515605s (thread); 0s (gc)
    │ │ │ + -- used 0.576568s (cpu); 0.506767s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 97
    │ │ │  
    │ │ │  i32 : R = ZZ/7[x,y];
    │ │ │  
    │ │ │  i33 : f = (x - 1)^3 - (y - 2)^2;
    │ │ ├── ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_fpt.html
    │ │ │ @@ -363,37 +363,37 @@
    │ │ │          
    │ │ │

    The computations performed when FinalAttempt is set to true are often slow, and often fail to improve the estimate, and for this reason, this option should be used sparingly. It is often more effective to increase the values of Attempts or DepthOfSearch, instead.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -228,29 +228,29 @@ │ │ │ │ │ │ │ │ o26 : List │ │ │ │ The computations performed when FinalAttempt is set to true are often slow, and │ │ │ │ often fail to improve the estimate, and for this reason, this option should be │ │ │ │ used sparingly. It is often more effective to increase the values of Attempts │ │ │ │ or DepthOfSearch, instead. │ │ │ │ i27 : time numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true) │ │ │ │ - -- used 2.29687s (cpu); 1.3621s (thread); 0s (gc) │ │ │ │ + -- used 2.70051s (cpu); 1.49378s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = {.142067, .144} │ │ │ │ │ │ │ │ o27 : List │ │ │ │ i28 : time fpt(f, DepthOfSearch => 3, Attempts => 7) │ │ │ │ - -- used 1.29681s (cpu); 0.79399s (thread); 0s (gc) │ │ │ │ + -- used 1.7628s (cpu); 0.907823s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 │ │ │ │ o28 = - │ │ │ │ 7 │ │ │ │ │ │ │ │ o28 : QQ │ │ │ │ i29 : time fpt(f, DepthOfSearch => 4) │ │ │ │ - -- used 1.10683s (cpu); 0.719671s (thread); 0s (gc) │ │ │ │ + -- used 1.27054s (cpu); 0.7324s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 │ │ │ │ o29 = - │ │ │ │ 7 │ │ │ │ │ │ │ │ o29 : QQ │ │ │ │ As seen in several examples above, when the exact answer is not found, a list │ │ ├── ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_frobenius__Nu.html │ │ │ @@ -192,23 +192,23 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i27 : time numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true)
    │ │ │ - -- used 2.29687s (cpu); 1.3621s (thread); 0s (gc)
    │ │ │ + -- used 2.70051s (cpu); 1.49378s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = {.142067, .144}
    │ │ │  
    │ │ │  o27 : List
    │ │ │
    │ │ │
    i28 : time fpt(f, DepthOfSearch => 3, Attempts => 7)
    │ │ │ - -- used 1.29681s (cpu); 0.79399s (thread); 0s (gc)
    │ │ │ + -- used 1.7628s (cpu); 0.907823s (thread); 0s (gc)
    │ │ │  
    │ │ │        1
    │ │ │  o28 = -
    │ │ │        7
    │ │ │  
    │ │ │  o28 : QQ
    │ │ │
    │ │ │
    i29 : time fpt(f, DepthOfSearch => 4)
    │ │ │ - -- used 1.10683s (cpu); 0.719671s (thread); 0s (gc)
    │ │ │ + -- used 1.27054s (cpu); 0.7324s (thread); 0s (gc)
    │ │ │  
    │ │ │        1
    │ │ │  o29 = -
    │ │ │        7
    │ │ │  
    │ │ │  o29 : QQ
    │ │ │
    │ │ │
    i14 : f = x^3 + y^4 + z^5; -- a diagonal polynomial
    │ │ │
    │ │ │
    i15 : time frobeniusNu(3, f)
    │ │ │ - -- used 0.00400825s (cpu); 0.00419427s (thread); 0s (gc)
    │ │ │ + -- used 0.00797316s (cpu); 0.00585066s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3756
    │ │ │
    │ │ │
    i16 : time frobeniusNu(3, f, UseSpecialAlgorithms => false)
    │ │ │ - -- used 0.382087s (cpu); 0.251102s (thread); 0s (gc)
    │ │ │ + -- used 0.409194s (cpu); 0.285425s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 3756
    │ │ │
    │ │ │
    │ │ │

    The valid values for the option ContainmentTest are FrobeniusPower, FrobeniusRoot, and StandardPower. The default value of this option depends on what is passed to frobeniusNu. Indeed, by default, ContainmentTest is set to FrobeniusRoot if frobeniusNu is passed a ring element $f$, and is set to StandardPower if frobeniusNu is passed an ideal $I$. We describe the consequences of setting ContainmentTest to each of these values below.

    │ │ │ @@ -225,23 +225,23 @@ │ │ │ │ │ │
    i18 : f = x^3 + y^3 + z^3 + x*y*z;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i19 : time frobeniusNu(4, f) -- ContainmentTest is set to FrobeniusRoot, by default
    │ │ │ - -- used 0.270979s (cpu); 0.184269s (thread); 0s (gc)
    │ │ │ + -- used 0.428106s (cpu); 0.250064s (thread); 0s (gc)
    │ │ │  
    │ │ │  o19 = 499
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : time frobeniusNu(4, f, ContainmentTest => StandardPower)
    │ │ │ - -- used 1.51677s (cpu); 1.13247s (thread); 0s (gc)
    │ │ │ + -- used 1.38941s (cpu); 1.1782s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = 499
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Finally, when ContainmentTest is set to FrobeniusPower, then instead of producing the invariant $\nu_I^J(p^e)$ as defined above, frobeniusNu instead outputs the maximal integer $n$ such that the $n$^{th} (generalized) Frobenius power of $I$ is not contained in the $p^e$-th Frobenius power of $J$. Here, the $n$^{th} Frobenius power of $I$, when $n$ is a nonnegative integer, is as defined in the paper Frobenius Powers by Hernández, Teixeira, and Witt, which can be computed with the function frobeniusPower, from the TestIdeals package. In particular, frobeniusNu(e,I,J) and frobeniusNu(e,I,J,ContainmentTest=>FrobeniusPower) need not agree. However, they will agree when $I$ is a principal ideal.

    │ │ │ @@ -287,46 +287,46 @@ │ │ │ │ │ │
    i26 : f = x^2*y^4 + y^2*z^7 + z^2*x^8;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i27 : time frobeniusNu(5, f) -- uses binary search (default)
    │ │ │ - -- used 1.05755s (cpu); 0.695354s (thread); 0s (gc)
    │ │ │ + -- used 1.17913s (cpu); 0.730188s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = 1124
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : time frobeniusNu(5, f, Search => Linear)
    │ │ │ - -- used 1.51572s (cpu); 0.951915s (thread); 0s (gc)
    │ │ │ + -- used 1.68964s (cpu); 1.03283s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 1124
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : M = ideal(x, y, z);
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i30 : time frobeniusNu(2, M, M^2) -- uses binary search (default)
    │ │ │ - -- used 1.72643s (cpu); 1.38582s (thread); 0s (gc)
    │ │ │ + -- used 1.77277s (cpu); 1.48674s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 97
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i31 : time frobeniusNu(2, M, M^2, Search => Linear) -- but linear search gets luckier
    │ │ │ - -- used 0.613124s (cpu); 0.515605s (thread); 0s (gc)
    │ │ │ + -- used 0.576568s (cpu); 0.506767s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 97
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    The option AtOrigin (default value true) can be turned off to tell frobeniusNu to effectively do the computation over all possible maximal ideals $J$ and take the minimum.

    │ │ │ ├── html2text {} │ │ │ │ @@ -106,19 +106,19 @@ │ │ │ │ algorithms, namely diagonal polynomials, binomials, forms in two variables, and │ │ │ │ polynomials whose factors are in simple normal crossing. This feature can be │ │ │ │ disabled by setting the option UseSpecialAlgorithms (default value true) to │ │ │ │ false. │ │ │ │ i13 : R = ZZ/17[x,y,z]; │ │ │ │ i14 : f = x^3 + y^4 + z^5; -- a diagonal polynomial │ │ │ │ i15 : time frobeniusNu(3, f) │ │ │ │ - -- used 0.00400825s (cpu); 0.00419427s (thread); 0s (gc) │ │ │ │ + -- used 0.00797316s (cpu); 0.00585066s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = 3756 │ │ │ │ i16 : time frobeniusNu(3, f, UseSpecialAlgorithms => false) │ │ │ │ - -- used 0.382087s (cpu); 0.251102s (thread); 0s (gc) │ │ │ │ + -- used 0.409194s (cpu); 0.285425s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = 3756 │ │ │ │ The valid values for the option ContainmentTest are FrobeniusPower, │ │ │ │ FrobeniusRoot, and StandardPower. The default value of this option depends on │ │ │ │ what is passed to frobeniusNu. Indeed, by default, ContainmentTest is set to │ │ │ │ FrobeniusRoot if frobeniusNu is passed a ring element $f$, and is set to │ │ │ │ StandardPower if frobeniusNu is passed an ideal $I$. We describe the │ │ │ │ @@ -133,19 +133,19 @@ │ │ │ │ is contained in $J$. The output is unaffected, but this option often speeds up │ │ │ │ computations, specially when a polynomial or principal ideal is passed as the │ │ │ │ second argument. │ │ │ │ i17 : R = ZZ/5[x,y,z]; │ │ │ │ i18 : f = x^3 + y^3 + z^3 + x*y*z; │ │ │ │ i19 : time frobeniusNu(4, f) -- ContainmentTest is set to FrobeniusRoot, by │ │ │ │ default │ │ │ │ - -- used 0.270979s (cpu); 0.184269s (thread); 0s (gc) │ │ │ │ + -- used 0.428106s (cpu); 0.250064s (thread); 0s (gc) │ │ │ │ │ │ │ │ o19 = 499 │ │ │ │ i20 : time frobeniusNu(4, f, ContainmentTest => StandardPower) │ │ │ │ - -- used 1.51677s (cpu); 1.13247s (thread); 0s (gc) │ │ │ │ + -- used 1.38941s (cpu); 1.1782s (thread); 0s (gc) │ │ │ │ │ │ │ │ o20 = 499 │ │ │ │ Finally, when ContainmentTest is set to FrobeniusPower, then instead of │ │ │ │ producing the invariant $\nu_I^J(p^e)$ as defined above, frobeniusNu instead │ │ │ │ outputs the maximal integer $n$ such that the $n$^{th} (generalized) Frobenius │ │ │ │ power of $I$ is not contained in the $p^e$-th Frobenius power of $J$. Here, the │ │ │ │ $n$^{th} Frobenius power of $I$, when $n$ is a nonnegative integer, is as │ │ │ │ @@ -167,31 +167,31 @@ │ │ │ │ The function frobeniusNu works by searching through the list of potential │ │ │ │ integers $n$ and checking containments of $I^n$ in the specified Frobenius │ │ │ │ power of $J$. The way this search is approached is specified by the option │ │ │ │ Search, which can be set to Binary (the default value) or Linear. │ │ │ │ i25 : R = ZZ/5[x,y,z]; │ │ │ │ i26 : f = x^2*y^4 + y^2*z^7 + z^2*x^8; │ │ │ │ i27 : time frobeniusNu(5, f) -- uses binary search (default) │ │ │ │ - -- used 1.05755s (cpu); 0.695354s (thread); 0s (gc) │ │ │ │ + -- used 1.17913s (cpu); 0.730188s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = 1124 │ │ │ │ i28 : time frobeniusNu(5, f, Search => Linear) │ │ │ │ - -- used 1.51572s (cpu); 0.951915s (thread); 0s (gc) │ │ │ │ + -- used 1.68964s (cpu); 1.03283s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = 1124 │ │ │ │ i29 : M = ideal(x, y, z); │ │ │ │ │ │ │ │ o29 : Ideal of R │ │ │ │ i30 : time frobeniusNu(2, M, M^2) -- uses binary search (default) │ │ │ │ - -- used 1.72643s (cpu); 1.38582s (thread); 0s (gc) │ │ │ │ + -- used 1.77277s (cpu); 1.48674s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = 97 │ │ │ │ i31 : time frobeniusNu(2, M, M^2, Search => Linear) -- but linear search gets │ │ │ │ luckier │ │ │ │ - -- used 0.613124s (cpu); 0.515605s (thread); 0s (gc) │ │ │ │ + -- used 0.576568s (cpu); 0.506767s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = 97 │ │ │ │ The option AtOrigin (default value true) can be turned off to tell frobeniusNu │ │ │ │ to effectively do the computation over all possible maximal ideals $J$ and take │ │ │ │ the minimum. │ │ │ │ i32 : R = ZZ/7[x,y]; │ │ │ │ i33 : f = (x - 1)^3 - (y - 2)^2; │ │ ├── ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_orbit__Closure.out │ │ │ @@ -208,21 +208,21 @@ │ │ │ | 3/7 5/4 3/7 10 | │ │ │ | 6/7 2/9 5 3/2 | │ │ │ │ │ │ 3 4 │ │ │ o26 : Matrix QQ <-- QQ │ │ │ │ │ │ i27 : time C = orbitClosure(X,Mat) │ │ │ - -- used 0.59381s (cpu); 0.347086s (thread); 0s (gc) │ │ │ + -- used 1.67413s (cpu); 0.44972s (thread); 0s (gc) │ │ │ │ │ │ o27 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ o27 : KClass │ │ │ │ │ │ i28 : time C = orbitClosure(X,Mat, RREFMethod => true) │ │ │ - -- used 1.80474s (cpu); 1.03709s (thread); 0s (gc) │ │ │ + -- used 2.82467s (cpu); 0.995262s (thread); 0s (gc) │ │ │ │ │ │ o28 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ o28 : KClass │ │ │ │ │ │ i29 : │ │ ├── ./usr/share/doc/Macaulay2/GKMVarieties/html/_orbit__Closure.html │ │ │ @@ -386,25 +386,25 @@ │ │ │ 3 4 │ │ │ o26 : Matrix QQ <-- QQ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i27 : time C = orbitClosure(X,Mat)
    │ │ │ - -- used 0.59381s (cpu); 0.347086s (thread); 0s (gc)
    │ │ │ + -- used 1.67413s (cpu); 0.44972s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = an "equivariant K-class" on a GKM variety 
    │ │ │  
    │ │ │  o27 : KClass
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : time C = orbitClosure(X,Mat, RREFMethod => true)
    │ │ │ - -- used 1.80474s (cpu); 1.03709s (thread); 0s (gc)
    │ │ │ + -- used 2.82467s (cpu); 0.995262s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = an "equivariant K-class" on a GKM variety 
    │ │ │  
    │ │ │  o28 : KClass
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -241,21 +241,21 @@ │ │ │ │ o26 = | 7 6 3/10 10/9 | │ │ │ │ | 3/7 5/4 3/7 10 | │ │ │ │ | 6/7 2/9 5 3/2 | │ │ │ │ │ │ │ │ 3 4 │ │ │ │ o26 : Matrix QQ <-- QQ │ │ │ │ i27 : time C = orbitClosure(X,Mat) │ │ │ │ - -- used 0.59381s (cpu); 0.347086s (thread); 0s (gc) │ │ │ │ + -- used 1.67413s (cpu); 0.44972s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ │ │ o27 : KClass │ │ │ │ i28 : time C = orbitClosure(X,Mat, RREFMethod => true) │ │ │ │ - -- used 1.80474s (cpu); 1.03709s (thread); 0s (gc) │ │ │ │ + -- used 2.82467s (cpu); 0.995262s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ │ │ o28 : KClass │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_e_n_e_r_a_l_i_z_e_d_F_l_a_g_V_a_r_i_e_t_y -- makes a generalized flag variety as a GKM │ │ │ │ variety │ │ ├── ./usr/share/doc/Macaulay2/Graphs/example-output/_new__Digraph.out │ │ │ @@ -32,12 +32,12 @@ │ │ │ 5 => {6} │ │ │ 6 => {} │ │ │ │ │ │ o2 : SortedDigraph │ │ │ │ │ │ i3 : keys H │ │ │ │ │ │ -o3 = {map, digraph, newDigraph} │ │ │ +o3 = {map, newDigraph, digraph} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Graphs/html/_new__Digraph.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ o2 : SortedDigraph │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : keys H
    │ │ │  
    │ │ │ -o3 = {map, digraph, newDigraph}
    │ │ │ +o3 = {map, newDigraph, digraph}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -36,15 +36,15 @@ │ │ │ │ 4 => {} │ │ │ │ 5 => {6} │ │ │ │ 6 => {} │ │ │ │ │ │ │ │ o2 : SortedDigraph │ │ │ │ i3 : keys H │ │ │ │ │ │ │ │ -o3 = {map, digraph, newDigraph} │ │ │ │ +o3 = {map, newDigraph, digraph} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_o_p_S_o_r_t -- topologically sort the vertices of a digraph │ │ │ │ * _S_o_r_t_e_d_D_i_g_r_a_p_h -- hashtable used in topSort │ │ │ │ * _t_o_p_o_l_o_g_i_c_a_l_S_o_r_t -- outputs a list of vertices in a topologically sorted │ │ │ │ order of a DAG. │ │ ├── ./usr/share/doc/Macaulay2/GroebnerWalk/example-output/___Groebner__Walk.out │ │ │ @@ -11,21 +11,21 @@ │ │ │ i3 : R2 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}]; │ │ │ │ │ │ i4 : I2 = sub(I1, R2); │ │ │ │ │ │ o4 : Ideal of R2 │ │ │ │ │ │ i5 : elapsedTime gb I2 │ │ │ - -- 2.81604s elapsed │ │ │ + -- 2.12829s elapsed │ │ │ │ │ │ o5 = GroebnerBasis[status: done; S-pairs encountered up to degree 16] │ │ │ │ │ │ o5 : GroebnerBasis │ │ │ │ │ │ i6 : elapsedTime groebnerWalk(gb I1, R2) │ │ │ - -- 2.45746s elapsed │ │ │ + -- 1.73568s elapsed │ │ │ │ │ │ o6 = GroebnerBasis[status: done; S-pairs encountered up to degree 0] │ │ │ │ │ │ o6 : GroebnerBasis │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/GroebnerWalk/html/index.html │ │ │ @@ -92,30 +92,30 @@ │ │ │ │ │ │ o4 : Ideal of R2 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime gb I2
    │ │ │ - -- 2.81604s elapsed
    │ │ │ + -- 2.12829s elapsed
    │ │ │  
    │ │ │  o5 = GroebnerBasis[status: done; S-pairs encountered up to degree 16]
    │ │ │  
    │ │ │  o5 : GroebnerBasis
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    but it is faster to compute directly in the first order and then use the Groebner walk.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : elapsedTime groebnerWalk(gb I1, R2)
    │ │ │ - -- 2.45746s elapsed
    │ │ │ + -- 1.73568s elapsed
    │ │ │  
    │ │ │  o6 = GroebnerBasis[status: done; S-pairs encountered up to degree 0]
    │ │ │  
    │ │ │  o6 : GroebnerBasis
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -38,23 +38,23 @@ │ │ │ │ using a different weight vector and then graded reverse lexicographic we could │ │ │ │ substitute and compute directly, │ │ │ │ i3 : R2 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}]; │ │ │ │ i4 : I2 = sub(I1, R2); │ │ │ │ │ │ │ │ o4 : Ideal of R2 │ │ │ │ i5 : elapsedTime gb I2 │ │ │ │ - -- 2.81604s elapsed │ │ │ │ + -- 2.12829s elapsed │ │ │ │ │ │ │ │ o5 = GroebnerBasis[status: done; S-pairs encountered up to degree 16] │ │ │ │ │ │ │ │ o5 : GroebnerBasis │ │ │ │ but it is faster to compute directly in the first order and then use the │ │ │ │ Groebner walk. │ │ │ │ i6 : elapsedTime groebnerWalk(gb I1, R2) │ │ │ │ - -- 2.45746s elapsed │ │ │ │ + -- 1.73568s elapsed │ │ │ │ │ │ │ │ o6 = GroebnerBasis[status: done; S-pairs encountered up to degree 0] │ │ │ │ │ │ │ │ o6 : GroebnerBasis │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The target ring must be the same ring as the ring of the starting ideal, except │ │ │ │ with different monomial order. The ring must be a polynomial ring over a field. │ │ ├── ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Power_lp__List_cm__Z__Z_rp.out │ │ │ @@ -6,20 +6,22 @@ │ │ │ o1 = {Point{1, 1, -}, Point{1, 0, 1}, Point{1, 2, 4}} │ │ │ 2 │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : hadamardPower(L,3) │ │ │ │ │ │ - 1 │ │ │ -o2 = {Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16}, │ │ │ - 4 │ │ │ + 1 │ │ │ +o2 = {Point{1, 0, -}, Point{1, 0, 2}, Point{1, 2, 1}, Point{1, 0, 4}, │ │ │ + 2 │ │ │ ------------------------------------------------------------------------ │ │ │ - 1 1 │ │ │ - Point{1, 0, 1}, Point{1, 1, -}, Point{1, 0, 2}, Point{1, 0, -}, Point{1, │ │ │ - 8 2 │ │ │ + 1 │ │ │ + Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16}, │ │ │ + 4 │ │ │ ------------------------------------------------------------------------ │ │ │ - 2, 1}, Point{1, 0, 4}} │ │ │ + 1 │ │ │ + Point{1, 0, 1}, Point{1, 1, -}} │ │ │ + 8 │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Product_lp__List_cm__List_rp.out │ │ │ @@ -2,12 +2,12 @@ │ │ │ │ │ │ i1 : L = {point{0,1}, point{1,2}}; │ │ │ │ │ │ i2 : M = {point{1,0}, point{2,2}}; │ │ │ │ │ │ i3 : hadamardProduct(L,M) │ │ │ │ │ │ -o3 = {Point{1, 0}, Point{0, 2}, Point{2, 4}} │ │ │ +o3 = {Point{2, 4}, Point{1, 0}, Point{0, 2}} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power_lp__List_cm__Z__Z_rp.html │ │ │ @@ -84,23 +84,25 @@ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : hadamardPower(L,3)
    │ │ │  
    │ │ │ -                  1                                                    
    │ │ │ -o2 = {Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16},
    │ │ │ -                  4                                                    
    │ │ │ +                  1                                                  
    │ │ │ +o2 = {Point{1, 0, -}, Point{1, 0, 2}, Point{1, 2, 1}, Point{1, 0, 4},
    │ │ │ +                  2                                                  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -                                 1                               1
    │ │ │ -     Point{1, 0, 1}, Point{1, 1, -}, Point{1, 0, 2}, Point{1, 0, -}, Point{1,
    │ │ │ -                                 8                               2
    │ │ │ +                 1                                                    
    │ │ │ +     Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16},
    │ │ │ +                 4                                                    
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     2, 1}, Point{1, 0, 4}}
    │ │ │ +                                 1
    │ │ │ +     Point{1, 0, 1}, Point{1, 1, -}}
    │ │ │ +                                 8
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,22 +22,24 @@ │ │ │ │ o1 = {Point{1, 1, -}, Point{1, 0, 1}, Point{1, 2, 4}} │ │ │ │ 2 │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : hadamardPower(L,3) │ │ │ │ │ │ │ │ 1 │ │ │ │ -o2 = {Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16}, │ │ │ │ - 4 │ │ │ │ +o2 = {Point{1, 0, -}, Point{1, 0, 2}, Point{1, 2, 1}, Point{1, 0, 4}, │ │ │ │ + 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 1 1 │ │ │ │ - Point{1, 0, 1}, Point{1, 1, -}, Point{1, 0, 2}, Point{1, 0, -}, Point{1, │ │ │ │ - 8 2 │ │ │ │ + 1 │ │ │ │ + Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16}, │ │ │ │ + 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 2, 1}, Point{1, 0, 4}} │ │ │ │ + 1 │ │ │ │ + Point{1, 0, 1}, Point{1, 1, -}} │ │ │ │ + 8 │ │ │ │ │ │ │ │ o2 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _h_a_d_a_m_a_r_d_P_o_w_e_r_(_L_i_s_t_,_Z_Z_) -- computes the $r$-th Hadmard powers of a set │ │ │ │ points │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product_lp__List_cm__List_rp.html │ │ │ @@ -83,15 +83,15 @@ │ │ │
    i2 : M = {point{1,0}, point{2,2}};
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : hadamardProduct(L,M)
    │ │ │  
    │ │ │ -o3 = {Point{1, 0}, Point{0, 2}, Point{2, 4}}
    │ │ │ +o3 = {Point{2, 4}, Point{1, 0}, Point{0, 2}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ Given two sets of points $L$ and $M$ returns the list of (well-defined) │ │ │ │ entrywise multiplication of pairs of points in the cartesian product $L\times │ │ │ │ M$. │ │ │ │ i1 : L = {point{0,1}, point{1,2}}; │ │ │ │ i2 : M = {point{1,0}, point{2,2}}; │ │ │ │ i3 : hadamardProduct(L,M) │ │ │ │ │ │ │ │ -o3 = {Point{1, 0}, Point{0, 2}, Point{2, 4}} │ │ │ │ +o3 = {Point{2, 4}, Point{1, 0}, Point{0, 2}} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _h_a_d_a_m_a_r_d_P_r_o_d_u_c_t_(_L_i_s_t_,_L_i_s_t_) -- Hadamard product of two sets of points │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Hadamard.m2:345:0. │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Lead__Term.out │ │ │ @@ -44,19 +44,19 @@ │ │ │ o5 = {9, 1, 99999, 9999999, 3, 999} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : netList cssLeadTerm(Hbeta, w) │ │ │ Warning: F4 Algorithm not available over current coefficient ring or inhomogeneous ideal. │ │ │ Converting to Naive algorithm. │ │ │ - -- .000003256s elapsed │ │ │ - -- .000002485s elapsed │ │ │ - -- .000004138s elapsed │ │ │ - -- .000002776s elapsed │ │ │ - -- .000001283s elapsed │ │ │ + -- .000006768s elapsed │ │ │ + -- .000006482s elapsed │ │ │ + -- .000006335s elapsed │ │ │ + -- .000006597s elapsed │ │ │ + -- .00000717s elapsed │ │ │ │ │ │ +----------------------------------------------------+ │ │ │ | 1 5 5 5 | │ │ │ | - - - - - - | │ │ │ | 2 2 2 2 | │ │ │ o6 = |x x x x | │ │ │ | 1 2 4 5 | │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_solve__Frobenius__Ideal.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : R = QQ[t_1..t_5]; │ │ │ │ │ │ i2 : I = ideal(t_1+t_2+t_3+t_4+t_5, t_1+t_2-t_4, t_2+t_3-t_4, t_1*t_3, t_2*t_4); │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : solveFrobeniusIdeal I │ │ │ - -- .000003547s elapsed │ │ │ + -- .000006287s elapsed │ │ │ Warning: F4 Algorithm not available over current coefficient ring or inhomogeneous ideal. │ │ │ Converting to Naive algorithm. │ │ │ │ │ │ │ │ │ o3 = {1, - 2logX + 3logX - 2logX + logX , - logX + logX - logX + logX , │ │ │ 0 1 2 3 0 1 2 4 │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -24,15 +24,15 @@ │ │ │ 2 4 0 4 4 1 2 4 2 4 4 3 4 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : W = makeWeylAlgebra(QQ[x_1..x_5]); │ │ │ │ │ │ i5 : solveFrobeniusIdeal(I, W) │ │ │ - -- .000003737s elapsed │ │ │ + -- .000007114s elapsed │ │ │ Warning: F4 Algorithm not available over current coefficient ring or inhomogeneous ideal. │ │ │ Converting to Naive algorithm. │ │ │ │ │ │ │ │ │ o5 = {1, - 2logX + 3logX - 2logX + logX , - logX + logX - logX + logX , │ │ │ 0 1 2 3 0 1 2 4 │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Lead__Term.html │ │ │ @@ -134,19 +134,19 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : netList cssLeadTerm(Hbeta, w)
    │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or inhomogeneous ideal.
    │ │ │  Converting to Naive algorithm.
    │ │ │ - -- .000003256s elapsed
    │ │ │ - -- .000002485s elapsed
    │ │ │ - -- .000004138s elapsed
    │ │ │ - -- .000002776s elapsed
    │ │ │ - -- .000001283s elapsed
    │ │ │ + -- .000006768s elapsed
    │ │ │ + -- .000006482s elapsed
    │ │ │ + -- .000006335s elapsed
    │ │ │ + -- .000006597s elapsed
    │ │ │ + -- .00000717s elapsed
    │ │ │  
    │ │ │       +----------------------------------------------------+
    │ │ │       |   1 5   5 5                                        |
    │ │ │       | - - - - - -                                        |
    │ │ │       |   2 2   2 2                                        |
    │ │ │  o6 = |x   x x   x                                         |
    │ │ │       | 1   2 4   5                                        |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -57,19 +57,19 @@
    │ │ │ │  o5 = {9, 1, 99999, 9999999, 3, 999}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : netList cssLeadTerm(Hbeta, w)
    │ │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or
    │ │ │ │  inhomogeneous ideal.
    │ │ │ │  Converting to Naive algorithm.
    │ │ │ │ - -- .000003256s elapsed
    │ │ │ │ - -- .000002485s elapsed
    │ │ │ │ - -- .000004138s elapsed
    │ │ │ │ - -- .000002776s elapsed
    │ │ │ │ - -- .000001283s elapsed
    │ │ │ │ + -- .000006768s elapsed
    │ │ │ │ + -- .000006482s elapsed
    │ │ │ │ + -- .000006335s elapsed
    │ │ │ │ + -- .000006597s elapsed
    │ │ │ │ + -- .00000717s elapsed
    │ │ │ │  
    │ │ │ │       +----------------------------------------------------+
    │ │ │ │       |   1 5   5 5                                        |
    │ │ │ │       | - - - - - -                                        |
    │ │ │ │       |   2 2   2 2                                        |
    │ │ │ │  o6 = |x   x x   x                                         |
    │ │ │ │       | 1   2 4   5                                        |
    │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/html/_solve__Frobenius__Ideal.html
    │ │ │ @@ -84,15 +84,15 @@
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : solveFrobeniusIdeal I
    │ │ │ - -- .000003547s elapsed
    │ │ │ + -- .000006287s elapsed
    │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or inhomogeneous ideal.
    │ │ │  Converting to Naive algorithm.
    │ │ │  
    │ │ │                                                                               
    │ │ │  o3 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │                  0        1        2       3        0       1       2       4 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -113,15 +113,15 @@
    │ │ │              
    │ │ │                
    i4 : W = makeWeylAlgebra(QQ[x_1..x_5]);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : solveFrobeniusIdeal(I, W)
    │ │ │ - -- .000003737s elapsed
    │ │ │ + -- .000007114s elapsed
    │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or inhomogeneous ideal.
    │ │ │  Converting to Naive algorithm.
    │ │ │  
    │ │ │                                                                               
    │ │ │  o5 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │                  0        1        2       3        0       1       2       4 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,15 +17,15 @@
    │ │ │ │  Here is [_S_S_T, Example 2.3.16]:
    │ │ │ │  i1 : R = QQ[t_1..t_5];
    │ │ │ │  i2 : I = ideal(t_1+t_2+t_3+t_4+t_5, t_1+t_2-t_4, t_2+t_3-t_4, t_1*t_3,
    │ │ │ │  t_2*t_4);
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : solveFrobeniusIdeal I
    │ │ │ │ - -- .000003547s elapsed
    │ │ │ │ + -- .000006287s elapsed
    │ │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or
    │ │ │ │  inhomogeneous ideal.
    │ │ │ │  Converting to Naive algorithm.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o3 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │ │                  0        1        2       3        0       1       2       4
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │         1             1             1             3                 2
    │ │ │ │       - -logX logX  - -logX logX  - -logX logX  - -logX logX  + logX }
    │ │ │ │         2    4    0   4    4    1   2    4    2   4    4    3       4
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : W = makeWeylAlgebra(QQ[x_1..x_5]);
    │ │ │ │  i5 : solveFrobeniusIdeal(I, W)
    │ │ │ │ - -- .000003737s elapsed
    │ │ │ │ + -- .000007114s elapsed
    │ │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or
    │ │ │ │  inhomogeneous ideal.
    │ │ │ │  Converting to Naive algorithm.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o5 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │ │                  0        1        2       3        0       1       2       4
    │ │ ├── ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_bracket.out
    │ │ │ @@ -85,19 +85,16 @@
    │ │ │  
    │ │ │  o13 = 600
    │ │ │  
    │ │ │  i14 : H' = select(keys H, k->H#k != 0);
    │ │ │  
    │ │ │  i15 : H'
    │ │ │  
    │ │ │ -o15 = {({T , T }, T T  + T T  - z*T   + y*T  ), ({T , T }, - T T  + y*T  ),
    │ │ │ -          3   7    4 6    3 7      11      13      2   9      2 9      16  
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      ({T , T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, - T T  + z*T  ),
    │ │ │ -         1   9      5 6    1 9      14      17      4   7      4 7      13  
    │ │ │ +o15 = {({T , T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, - T T  + z*T  ),
    │ │ │ +          1   9      5 6    1 9      14      17      4   7      4 7      13  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        ({T , T  }, T T  - T T   + x*T  ), ({T , T }, - T T  + z*T  ), ({T ,
    │ │ │           1   10    4 6    1 10      20      5   9      5 9      16      3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │        T }, T T  - z*T   + x*T  ), ({T , T }, - T T  - T T  - z*T   + x*T  ),
    │ │ │         7    3 7      11      12      5   6      5 6    1 9      14      17  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -151,22 +148,25 @@
    │ │ │        -----------------------------------------------------------------------
    │ │ │        z*T  ), ({T , T  }, T T  - T T   - z*T   + z*T  ), ({T , T }, T T  +
    │ │ │           17      5   10    4 9    5 10      17      19      3   8    2 6  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        T T  + T T  + y*T   - z*T  ), ({T , T }, T T  + y*T   - z*T  ), ({T ,
    │ │ │         3 8    4 9      14      17      3   6    3 6      11      12      5 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  - T T   + z*T   + z*T  )}
    │ │ │ -       7      5 7    4 10      12      20
    │ │ │ +      T }, - T T  - T T   + z*T   + z*T  ), ({T , T }, T T  + T T  - z*T   +
    │ │ │ +       7      5 7    4 10      12      20      3   7    4 6    3 7      11  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      y*T  ), ({T , T }, - T T  + y*T  )}
    │ │ │ +         13      2   9      2 9      16
    │ │ │  
    │ │ │  o15 : List
    │ │ │  
    │ │ │  i16 : H#(H'_0)
    │ │ │  
    │ │ │ -o16 = 1
    │ │ │ +o16 = -1
    │ │ │  
    │ │ │  o16 : S[T ..T  ]
    │ │ │           1   99
    │ │ │  
    │ │ │  i17 : bracketMatrix(A,1,2)
    │ │ │  
    │ │ │  o17 = | 0    -T_8 -T_6 -T_7 -T_10 |
    │ │ ├── ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_bracket.html
    │ │ │ @@ -215,19 +215,16 @@
    │ │ │                
    i14 : H' = select(keys H, k->H#k != 0);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : H'
    │ │ │  
    │ │ │ -o15 = {({T , T }, T T  + T T  - z*T   + y*T  ), ({T , T }, - T T  + y*T  ),
    │ │ │ -          3   7    4 6    3 7      11      13      2   9      2 9      16  
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      ({T , T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, - T T  + z*T  ),
    │ │ │ -         1   9      5 6    1 9      14      17      4   7      4 7      13  
    │ │ │ +o15 = {({T , T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, - T T  + z*T  ),
    │ │ │ +          1   9      5 6    1 9      14      17      4   7      4 7      13  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        ({T , T  }, T T  - T T   + x*T  ), ({T , T }, - T T  + z*T  ), ({T ,
    │ │ │           1   10    4 6    1 10      20      5   9      5 9      16      3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │        T }, T T  - z*T   + x*T  ), ({T , T }, - T T  - T T  - z*T   + x*T  ),
    │ │ │         7    3 7      11      12      5   6      5 6    1 9      14      17  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -281,25 +278,28 @@
    │ │ │        -----------------------------------------------------------------------
    │ │ │        z*T  ), ({T , T  }, T T  - T T   - z*T   + z*T  ), ({T , T }, T T  +
    │ │ │           17      5   10    4 9    5 10      17      19      3   8    2 6  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        T T  + T T  + y*T   - z*T  ), ({T , T }, T T  + y*T   - z*T  ), ({T ,
    │ │ │         3 8    4 9      14      17      3   6    3 6      11      12      5 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  - T T   + z*T   + z*T  )}
    │ │ │ -       7      5 7    4 10      12      20
    │ │ │ +      T }, - T T  - T T   + z*T   + z*T  ), ({T , T }, T T  + T T  - z*T   +
    │ │ │ +       7      5 7    4 10      12      20      3   7    4 6    3 7      11  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      y*T  ), ({T , T }, - T T  + y*T  )}
    │ │ │ +         13      2   9      2 9      16
    │ │ │  
    │ │ │  o15 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : H#(H'_0)
    │ │ │  
    │ │ │ -o16 = 1
    │ │ │ +o16 = -1
    │ │ │  
    │ │ │  o16 : S[T ..T  ]
    │ │ │           1   99
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -118,19 +118,16 @@ │ │ │ │ 37 38 39 40 41 42 43 44 │ │ │ │ i13 : #keys H │ │ │ │ │ │ │ │ o13 = 600 │ │ │ │ i14 : H' = select(keys H, k->H#k != 0); │ │ │ │ i15 : H' │ │ │ │ │ │ │ │ -o15 = {({T , T }, T T + T T - z*T + y*T ), ({T , T }, - T T + y*T ), │ │ │ │ - 3 7 4 6 3 7 11 13 2 9 2 9 16 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - ({T , T }, - T T - T T - z*T + x*T ), ({T , T }, - T T + z*T ), │ │ │ │ - 1 9 5 6 1 9 14 17 4 7 4 7 13 │ │ │ │ +o15 = {({T , T }, - T T - T T - z*T + x*T ), ({T , T }, - T T + z*T ), │ │ │ │ + 1 9 5 6 1 9 14 17 4 7 4 7 13 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ ({T , T }, T T - T T + x*T ), ({T , T }, - T T + z*T ), ({T , │ │ │ │ 1 10 4 6 1 10 20 5 9 5 9 16 3 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ T }, T T - z*T + x*T ), ({T , T }, - T T - T T - z*T + x*T ), │ │ │ │ 7 3 7 11 12 5 6 5 6 1 9 14 17 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ @@ -184,21 +181,24 @@ │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ z*T ), ({T , T }, T T - T T - z*T + z*T ), ({T , T }, T T + │ │ │ │ 17 5 10 4 9 5 10 17 19 3 8 2 6 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ T T + T T + y*T - z*T ), ({T , T }, T T + y*T - z*T ), ({T , │ │ │ │ 3 8 4 9 14 17 3 6 3 6 11 12 5 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - T }, - T T - T T + z*T + z*T )} │ │ │ │ - 7 5 7 4 10 12 20 │ │ │ │ + T }, - T T - T T + z*T + z*T ), ({T , T }, T T + T T - z*T + │ │ │ │ + 7 5 7 4 10 12 20 3 7 4 6 3 7 11 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + y*T ), ({T , T }, - T T + y*T )} │ │ │ │ + 13 2 9 2 9 16 │ │ │ │ │ │ │ │ o15 : List │ │ │ │ i16 : H#(H'_0) │ │ │ │ │ │ │ │ -o16 = 1 │ │ │ │ +o16 = -1 │ │ │ │ │ │ │ │ o16 : S[T ..T ] │ │ │ │ 1 99 │ │ │ │ From this we see that [T_5, T_6] sends T_37 to -1 in kk. │ │ │ │ Another, often simpler view of the pairing is given by _b_r_a_c_k_e_t_M_a_t_r_i_x, where the │ │ │ │ rows and columns correspond to the generators of Pi^d and Pi^e, and the entries │ │ │ │ are the bracket products, interpreted as elements of Pi^{d+e}. Note the anti- │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ @@ -16,15 +16,15 @@ │ │ │ i3 : R = S/f │ │ │ │ │ │ o3 = R │ │ │ │ │ │ o3 : QuotientRing │ │ │ │ │ │ i4 : time R' = integralClosure R │ │ │ - -- used 0.69108s (cpu); 0.387871s (thread); 0s (gc) │ │ │ + -- used 0.842051s (cpu); 0.427627s (thread); 0s (gc) │ │ │ │ │ │ o4 = R' │ │ │ │ │ │ o4 : QuotientRing │ │ │ │ │ │ i5 : netList (ideal R')_* │ │ │ │ │ │ @@ -83,15 +83,15 @@ │ │ │ i9 : R = S/f │ │ │ │ │ │ o9 = R │ │ │ │ │ │ o9 : QuotientRing │ │ │ │ │ │ i10 : time R' = integralClosure(R, Strategy => Radical) │ │ │ - -- used 0.737984s (cpu); 0.391867s (thread); 0s (gc) │ │ │ + -- used 0.897015s (cpu); 0.424299s (thread); 0s (gc) │ │ │ │ │ │ o10 = R' │ │ │ │ │ │ o10 : QuotientRing │ │ │ │ │ │ i11 : netList (ideal R')_* │ │ │ │ │ │ @@ -150,15 +150,15 @@ │ │ │ i15 : R = S/f │ │ │ │ │ │ o15 = R │ │ │ │ │ │ o15 : QuotientRing │ │ │ │ │ │ i16 : time R' = integralClosure(R, Strategy => AllCodimensions) │ │ │ - -- used 0.869327s (cpu); 0.426331s (thread); 0s (gc) │ │ │ + -- used 1.00971s (cpu); 0.459077s (thread); 0s (gc) │ │ │ │ │ │ o16 = R' │ │ │ │ │ │ o16 : QuotientRing │ │ │ │ │ │ i17 : netList (ideal R')_* │ │ │ │ │ │ @@ -208,15 +208,15 @@ │ │ │ i20 : R = S/f │ │ │ │ │ │ o20 = R │ │ │ │ │ │ o20 : QuotientRing │ │ │ │ │ │ i21 : time R' = integralClosure(R, Strategy => SimplifyFractions) │ │ │ - -- used 0.90652s (cpu); 0.508334s (thread); 0s (gc) │ │ │ + -- used 1.01732s (cpu); 0.488336s (thread); 0s (gc) │ │ │ │ │ │ o21 = R' │ │ │ │ │ │ o21 : QuotientRing │ │ │ │ │ │ i22 : netList (ideal R')_* │ │ │ │ │ │ @@ -266,15 +266,15 @@ │ │ │ i25 : R = S/f │ │ │ │ │ │ o25 = R │ │ │ │ │ │ o25 : QuotientRing │ │ │ │ │ │ i26 : time R' = integralClosure (R, Strategy => RadicalCodim1) │ │ │ - -- used 1.56265s (cpu); 0.75218s (thread); 0s (gc) │ │ │ + -- used 1.94304s (cpu); 0.814697s (thread); 0s (gc) │ │ │ │ │ │ o26 = R' │ │ │ │ │ │ o26 : QuotientRing │ │ │ │ │ │ i27 : netList (ideal R')_* │ │ │ │ │ │ @@ -324,15 +324,15 @@ │ │ │ i30 : R = S/f │ │ │ │ │ │ o30 = R │ │ │ │ │ │ o30 : QuotientRing │ │ │ │ │ │ i31 : time R' = integralClosure (R, Strategy => Vasconcelos) │ │ │ - -- used 0.417337s (cpu); 0.309351s (thread); 0s (gc) │ │ │ + -- used 0.520673s (cpu); 0.366235s (thread); 0s (gc) │ │ │ │ │ │ o31 = R' │ │ │ │ │ │ o31 : QuotientRing │ │ │ │ │ │ i32 : netList (ideal R')_* │ │ │ │ │ │ @@ -382,15 +382,15 @@ │ │ │ i35 : R = S/f │ │ │ │ │ │ o35 = R │ │ │ │ │ │ o35 : QuotientRing │ │ │ │ │ │ i36 : time R' = integralClosure R │ │ │ - -- used 0.0423714s (cpu); 0.0423694s (thread); 0s (gc) │ │ │ + -- used 0.0537353s (cpu); 0.053735s (thread); 0s (gc) │ │ │ │ │ │ o36 = R' │ │ │ │ │ │ o36 : QuotientRing │ │ │ │ │ │ i37 : netList (ideal R')_* │ │ │ │ │ │ @@ -432,15 +432,15 @@ │ │ │ i40 : R = S/I │ │ │ │ │ │ o40 = R │ │ │ │ │ │ o40 : QuotientRing │ │ │ │ │ │ i41 : time R' = integralClosure(R, Strategy => Radical) │ │ │ - -- used 0.0422364s (cpu); 0.0422368s (thread); 0s (gc) │ │ │ + -- used 0.0545615s (cpu); 0.0543605s (thread); 0s (gc) │ │ │ │ │ │ o41 = R' │ │ │ │ │ │ o41 : QuotientRing │ │ │ │ │ │ i42 : icFractions R │ │ │ │ │ │ @@ -467,15 +467,15 @@ │ │ │ i45 : R = S/I │ │ │ │ │ │ o45 = R │ │ │ │ │ │ o45 : QuotientRing │ │ │ │ │ │ i46 : time R' = integralClosure(R, Strategy => AllCodimensions) │ │ │ - -- used 0.0595761s (cpu); 0.0595305s (thread); 0s (gc) │ │ │ + -- used 0.073894s (cpu); 0.0738909s (thread); 0s (gc) │ │ │ │ │ │ o46 = R' │ │ │ │ │ │ o46 : QuotientRing │ │ │ │ │ │ i47 : icFractions R │ │ │ │ │ │ @@ -501,15 +501,15 @@ │ │ │ i50 : R = S/I │ │ │ │ │ │ o50 = R │ │ │ │ │ │ o50 : QuotientRing │ │ │ │ │ │ i51 : time R' = integralClosure (R, Strategy => RadicalCodim1) │ │ │ - -- used 0.0433813s (cpu); 0.0433775s (thread); 0s (gc) │ │ │ + -- used 0.0521366s (cpu); 0.0521353s (thread); 0s (gc) │ │ │ │ │ │ o51 = R' │ │ │ │ │ │ o51 : QuotientRing │ │ │ │ │ │ i52 : icFractions R │ │ │ │ │ │ @@ -536,15 +536,15 @@ │ │ │ i55 : R = S/I │ │ │ │ │ │ o55 = R │ │ │ │ │ │ o55 : QuotientRing │ │ │ │ │ │ i56 : time R' = integralClosure (R, Strategy => Vasconcelos) │ │ │ - -- used 0.0586746s (cpu); 0.0586762s (thread); 0s (gc) │ │ │ + -- used 0.0694506s (cpu); 0.0694497s (thread); 0s (gc) │ │ │ │ │ │ o56 = R' │ │ │ │ │ │ o56 : QuotientRing │ │ │ │ │ │ i57 : icFractions R │ │ │ │ │ │ @@ -632,15 +632,15 @@ │ │ │ i66 : R = S/I │ │ │ │ │ │ o66 = R │ │ │ │ │ │ o66 : QuotientRing │ │ │ │ │ │ i67 : time R' = integralClosure(R, Strategy => Radical) │ │ │ - -- used 0.170458s (cpu); 0.0980731s (thread); 0s (gc) │ │ │ + -- used 0.207389s (cpu); 0.122987s (thread); 0s (gc) │ │ │ │ │ │ o67 = R' │ │ │ │ │ │ o67 : QuotientRing │ │ │ │ │ │ i68 : icFractions R │ │ │ │ │ │ @@ -721,15 +721,15 @@ │ │ │ i77 : R = S/I │ │ │ │ │ │ o77 = R │ │ │ │ │ │ o77 : QuotientRing │ │ │ │ │ │ i78 : time R' = integralClosure(R, Strategy => Radical) │ │ │ - -- used 0.356633s (cpu); 0.315307s (thread); 0s (gc) │ │ │ + -- used 0.483923s (cpu); 0.403056s (thread); 0s (gc) │ │ │ │ │ │ o78 = R' │ │ │ │ │ │ o78 : QuotientRing │ │ │ │ │ │ i79 : icFractions R │ │ │ │ │ │ @@ -749,15 +749,15 @@ │ │ │ i81 : R = S/sub(I,S) │ │ │ │ │ │ o81 = R │ │ │ │ │ │ o81 : QuotientRing │ │ │ │ │ │ i82 : time R' = integralClosure(R, Strategy => AllCodimensions) │ │ │ - -- used 0.502559s (cpu); 0.351078s (thread); 0s (gc) │ │ │ + -- used 0.584022s (cpu); 0.406574s (thread); 0s (gc) │ │ │ │ │ │ o82 = R' │ │ │ │ │ │ o82 : QuotientRing │ │ │ │ │ │ i83 : icFractions R │ │ │ │ │ │ @@ -777,20 +777,20 @@ │ │ │ i85 : R = S/sub(I,S) │ │ │ │ │ │ o85 = R │ │ │ │ │ │ o85 : QuotientRing │ │ │ │ │ │ i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1) │ │ │ - [jacobian time .000553749 sec #minors 4] │ │ │ + [jacobian time .000625504 sec #minors 4] │ │ │ integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ - [step 0: time .207126 sec #fractions 6] │ │ │ - [step 1: time .236813 sec #fractions 6] │ │ │ - -- used 0.447945s (cpu); 0.280615s (thread); 0s (gc) │ │ │ + [step 0: time .238884 sec #fractions 6] │ │ │ + [step 1: time .265395 sec #fractions 6] │ │ │ + -- used 0.508769s (cpu); 0.332724s (thread); 0s (gc) │ │ │ │ │ │ o86 = R' │ │ │ │ │ │ o86 : QuotientRing │ │ │ │ │ │ i87 : icFractions R │ │ │ │ │ │ @@ -810,20 +810,20 @@ │ │ │ i89 : R = S/sub(I,S) │ │ │ │ │ │ o89 = R │ │ │ │ │ │ o89 : QuotientRing │ │ │ │ │ │ i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1) │ │ │ - [jacobian time .000531897 sec #minors 4] │ │ │ + [jacobian time .000631929 sec #minors 4] │ │ │ integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ - [step 0: time .0887676 sec #fractions 6] │ │ │ - [step 1: time .423615 sec #fractions 6] │ │ │ - -- used 0.516097s (cpu); 0.354562s (thread); 0s (gc) │ │ │ + [step 0: time .113685 sec #fractions 6] │ │ │ + [step 1: time .489538 sec #fractions 6] │ │ │ + -- used 0.607586s (cpu); 0.413463s (thread); 0s (gc) │ │ │ │ │ │ o90 = R' │ │ │ │ │ │ o90 : QuotientRing │ │ │ │ │ │ i91 : icFractions R │ │ │ │ │ │ @@ -843,20 +843,20 @@ │ │ │ i93 : R = S/sub(I,S) │ │ │ │ │ │ o93 = R │ │ │ │ │ │ o93 : QuotientRing │ │ │ │ │ │ i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, StartWithOneMinor}, Verbosity => 1) │ │ │ - [jacobian time .000678222 sec #minors 1] │ │ │ + [jacobian time .000790239 sec #minors 1] │ │ │ integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ - [step 0: time .111521 sec #fractions 6] │ │ │ - [step 1: time .471115 sec #fractions 6] │ │ │ - -- used 0.586291s (cpu); 0.418106s (thread); 0s (gc) │ │ │ + [step 0: time .144917 sec #fractions 6] │ │ │ + [step 1: time .57374 sec #fractions 6] │ │ │ + -- used 0.723085s (cpu); 0.527565s (thread); 0s (gc) │ │ │ │ │ │ o94 = R' │ │ │ │ │ │ o94 : QuotientRing │ │ │ │ │ │ i95 : icFractions R │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.out │ │ │ @@ -1,50 +1,50 @@ │ │ │ -- -*- M2-comint -*- hash: 13177954069434615273 │ │ │ │ │ │ i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3); │ │ │ │ │ │ i2 : time R' = integralClosure(R, Verbosity => 2) │ │ │ - [jacobian time .000537428 sec #minors 3] │ │ │ + [jacobian time .000524537 sec #minors 3] │ │ │ integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ [step 0: │ │ │ - radical (use minprimes) .00248517 seconds │ │ │ - idlizer1: .00793427 seconds │ │ │ - idlizer2: .00866101 seconds │ │ │ - minpres: .00851812 seconds │ │ │ - time .0388261 sec #fractions 4] │ │ │ + radical (use minprimes) .00280224 seconds │ │ │ + idlizer1: .00954592 seconds │ │ │ + idlizer2: .010791 seconds │ │ │ + minpres: .0106939 seconds │ │ │ + time .0472005 sec #fractions 4] │ │ │ [step 1: │ │ │ - radical (use minprimes) .00220488 seconds │ │ │ - idlizer1: .011116 seconds │ │ │ - idlizer2: .00998087 seconds │ │ │ - minpres: .0112759 seconds │ │ │ - time .0452055 sec #fractions 4] │ │ │ + radical (use minprimes) .00280973 seconds │ │ │ + idlizer1: .0135611 seconds │ │ │ + idlizer2: .012035 seconds │ │ │ + minpres: .013245 seconds │ │ │ + time .0545979 sec #fractions 4] │ │ │ [step 2: │ │ │ - radical (use minprimes) .00224902 seconds │ │ │ - idlizer1: .011153 seconds │ │ │ - idlizer2: .0093342 seconds │ │ │ - minpres: .00877394 seconds │ │ │ - time .0418707 sec #fractions 5] │ │ │ + radical (use minprimes) .00288357 seconds │ │ │ + idlizer1: .0139012 seconds │ │ │ + idlizer2: .0117931 seconds │ │ │ + minpres: .011181 seconds │ │ │ + time .0525073 sec #fractions 5] │ │ │ [step 3: │ │ │ - radical (use minprimes) .00225753 seconds │ │ │ - idlizer1: .117394 seconds │ │ │ - idlizer2: .0133807 seconds │ │ │ - minpres: .0159094 seconds │ │ │ - time .160923 sec #fractions 5] │ │ │ + radical (use minprimes) .00268376 seconds │ │ │ + idlizer1: .127959 seconds │ │ │ + idlizer2: .0156017 seconds │ │ │ + minpres: .0201241 seconds │ │ │ + time .180488 sec #fractions 5] │ │ │ [step 4: │ │ │ - radical (use minprimes) .00245897 seconds │ │ │ - idlizer1: .00891005 seconds │ │ │ - idlizer2: .0164204 seconds │ │ │ - minpres: .0117435 seconds │ │ │ - time .0517134 sec #fractions 5] │ │ │ + radical (use minprimes) .00301995 seconds │ │ │ + idlizer1: .0110934 seconds │ │ │ + idlizer2: .0184602 seconds │ │ │ + minpres: .0141992 seconds │ │ │ + time .0615081 sec #fractions 5] │ │ │ [step 5: │ │ │ - radical (use minprimes) .00239361 seconds │ │ │ - idlizer1: .00820369 seconds │ │ │ - time .0171387 sec #fractions 5] │ │ │ - -- used 0.359626s (cpu); 0.322489s (thread); 0s (gc) │ │ │ + radical (use minprimes) .0030068 seconds │ │ │ + idlizer1: .00965381 seconds │ │ │ + time .0208746 sec #fractions 5] │ │ │ + -- used 0.42167s (cpu); 0.349768s (thread); 0s (gc) │ │ │ │ │ │ o2 = R' │ │ │ │ │ │ o2 : QuotientRing │ │ │ │ │ │ i3 : trim ideal R' │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.out │ │ │ @@ -13,26 +13,26 @@ │ │ │ │ │ │ 2 2 2 2 2 2 2 │ │ │ o3 = ideal (2a*b c + 3a , 2a b*c + 3b , a b + 3c ) │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ i4 : time integralClosure J │ │ │ - -- used 1.00107s (cpu); 0.719147s (thread); 0s (gc) │ │ │ + -- used 1.45937s (cpu); 0.848487s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 2 │ │ │ o4 = ideal (b c - 16000a*c, a c - 16000b*c, a*b c - 16000a , a b*c - │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 2 2 5 │ │ │ 16000b , a c - 16000a*b, a b + 3c , a b + 15997a*c) │ │ │ │ │ │ o4 : Ideal of S │ │ │ │ │ │ i5 : time integralClosure(J, Strategy=>{RadicalCodim1}) │ │ │ - -- used 0.619831s (cpu); 0.485488s (thread); 0s (gc) │ │ │ + -- used 1.14744s (cpu); 0.59595s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 2 │ │ │ o5 = ideal (b c - 16000a*c, a c - 16000b*c, a*b c - 16000a , a b*c - │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 2 2 5 │ │ │ 16000b , a c - 16000a*b, a b + 3c , a b + 15997a*c) │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ @@ -99,15 +99,15 @@ │ │ │ │ │ │ o3 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time R' = integralClosure R
    │ │ │ - -- used 0.69108s (cpu); 0.387871s (thread); 0s (gc)
    │ │ │ + -- used 0.842051s (cpu); 0.427627s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = R'
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -186,15 +186,15 @@ │ │ │ │ │ │ o9 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.737984s (cpu); 0.391867s (thread); 0s (gc)
    │ │ │ + -- used 0.897015s (cpu); 0.424299s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = R'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -273,15 +273,15 @@ │ │ │ │ │ │ o15 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.869327s (cpu); 0.426331s (thread); 0s (gc)
    │ │ │ + -- used 1.00971s (cpu); 0.459077s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = R'
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -348,15 +348,15 @@ │ │ │ │ │ │ o20 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : time R' = integralClosure(R, Strategy => SimplifyFractions)
    │ │ │ - -- used 0.90652s (cpu); 0.508334s (thread); 0s (gc)
    │ │ │ + -- used 1.01732s (cpu); 0.488336s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = R'
    │ │ │  
    │ │ │  o21 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -423,15 +423,15 @@ │ │ │ │ │ │ o25 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i26 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 1.56265s (cpu); 0.75218s (thread); 0s (gc)
    │ │ │ + -- used 1.94304s (cpu); 0.814697s (thread); 0s (gc)
    │ │ │  
    │ │ │  o26 = R'
    │ │ │  
    │ │ │  o26 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -498,15 +498,15 @@ │ │ │ │ │ │ o30 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i31 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.417337s (cpu); 0.309351s (thread); 0s (gc)
    │ │ │ + -- used 0.520673s (cpu); 0.366235s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = R'
    │ │ │  
    │ │ │  o31 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -573,15 +573,15 @@ │ │ │ │ │ │ o35 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i36 : time R' = integralClosure R
    │ │ │ - -- used 0.0423714s (cpu); 0.0423694s (thread); 0s (gc)
    │ │ │ + -- used 0.0537353s (cpu); 0.053735s (thread); 0s (gc)
    │ │ │  
    │ │ │  o36 = R'
    │ │ │  
    │ │ │  o36 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -643,15 +643,15 @@ │ │ │ │ │ │ o40 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i41 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.0422364s (cpu); 0.0422368s (thread); 0s (gc)
    │ │ │ + -- used 0.0545615s (cpu); 0.0543605s (thread); 0s (gc)
    │ │ │  
    │ │ │  o41 = R'
    │ │ │  
    │ │ │  o41 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -695,15 +695,15 @@ │ │ │ │ │ │ o45 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i46 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.0595761s (cpu); 0.0595305s (thread); 0s (gc)
    │ │ │ + -- used 0.073894s (cpu); 0.0738909s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = R'
    │ │ │  
    │ │ │  o46 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -746,15 +746,15 @@ │ │ │ │ │ │ o50 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i51 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 0.0433813s (cpu); 0.0433775s (thread); 0s (gc)
    │ │ │ + -- used 0.0521366s (cpu); 0.0521353s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = R'
    │ │ │  
    │ │ │  o51 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -798,15 +798,15 @@ │ │ │ │ │ │ o55 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i56 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.0586746s (cpu); 0.0586762s (thread); 0s (gc)
    │ │ │ + -- used 0.0694506s (cpu); 0.0694497s (thread); 0s (gc)
    │ │ │  
    │ │ │  o56 = R'
    │ │ │  
    │ │ │  o56 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -932,15 +932,15 @@ │ │ │ │ │ │ o66 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i67 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.170458s (cpu); 0.0980731s (thread); 0s (gc)
    │ │ │ + -- used 0.207389s (cpu); 0.122987s (thread); 0s (gc)
    │ │ │  
    │ │ │  o67 = R'
    │ │ │  
    │ │ │  o67 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1056,15 +1056,15 @@ │ │ │ │ │ │ o77 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i78 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.356633s (cpu); 0.315307s (thread); 0s (gc)
    │ │ │ + -- used 0.483923s (cpu); 0.403056s (thread); 0s (gc)
    │ │ │  
    │ │ │  o78 = R'
    │ │ │  
    │ │ │  o78 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1098,15 +1098,15 @@ │ │ │ │ │ │ o81 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i82 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.502559s (cpu); 0.351078s (thread); 0s (gc)
    │ │ │ + -- used 0.584022s (cpu); 0.406574s (thread); 0s (gc)
    │ │ │  
    │ │ │  o82 = R'
    │ │ │  
    │ │ │  o82 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1140,20 +1140,20 @@ │ │ │ │ │ │ o85 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1)
    │ │ │ - [jacobian time .000553749 sec #minors 4]
    │ │ │ + [jacobian time .000625504 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .207126 sec  #fractions 6]
    │ │ │ - [step 1:   time .236813 sec  #fractions 6]
    │ │ │ - -- used 0.447945s (cpu); 0.280615s (thread); 0s (gc)
    │ │ │ + [step 0:   time .238884 sec  #fractions 6]
    │ │ │ + [step 1:   time .265395 sec  #fractions 6]
    │ │ │ + -- used 0.508769s (cpu); 0.332724s (thread); 0s (gc)
    │ │ │  
    │ │ │  o86 = R'
    │ │ │  
    │ │ │  o86 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1187,20 +1187,20 @@ │ │ │ │ │ │ o89 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1)
    │ │ │ - [jacobian time .000531897 sec #minors 4]
    │ │ │ + [jacobian time .000631929 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .0887676 sec  #fractions 6]
    │ │ │ - [step 1:   time .423615 sec  #fractions 6]
    │ │ │ - -- used 0.516097s (cpu); 0.354562s (thread); 0s (gc)
    │ │ │ + [step 0:   time .113685 sec  #fractions 6]
    │ │ │ + [step 1:   time .489538 sec  #fractions 6]
    │ │ │ + -- used 0.607586s (cpu); 0.413463s (thread); 0s (gc)
    │ │ │  
    │ │ │  o90 = R'
    │ │ │  
    │ │ │  o90 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1237,20 +1237,20 @@ │ │ │ │ │ │ o93 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, StartWithOneMinor}, Verbosity => 1)
    │ │ │ - [jacobian time .000678222 sec #minors 1]
    │ │ │ + [jacobian time .000790239 sec #minors 1]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .111521 sec  #fractions 6]
    │ │ │ - [step 1:   time .471115 sec  #fractions 6]
    │ │ │ - -- used 0.586291s (cpu); 0.418106s (thread); 0s (gc)
    │ │ │ + [step 0:   time .144917 sec  #fractions 6]
    │ │ │ + [step 1:   time .57374 sec  #fractions 6]
    │ │ │ + -- used 0.723085s (cpu); 0.527565s (thread); 0s (gc)
    │ │ │  
    │ │ │  o94 = R'
    │ │ │  
    │ │ │  o94 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -48,15 +48,15 @@ │ │ │ │ o2 : Ideal of S │ │ │ │ i3 : R = S/f │ │ │ │ │ │ │ │ o3 = R │ │ │ │ │ │ │ │ o3 : QuotientRing │ │ │ │ i4 : time R' = integralClosure R │ │ │ │ - -- used 0.69108s (cpu); 0.387871s (thread); 0s (gc) │ │ │ │ + -- used 0.842051s (cpu); 0.427627s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = R' │ │ │ │ │ │ │ │ o4 : QuotientRing │ │ │ │ i5 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------+ │ │ │ │ @@ -109,15 +109,15 @@ │ │ │ │ o8 : Ideal of S │ │ │ │ i9 : R = S/f │ │ │ │ │ │ │ │ o9 = R │ │ │ │ │ │ │ │ o9 : QuotientRing │ │ │ │ i10 : time R' = integralClosure(R, Strategy => Radical) │ │ │ │ - -- used 0.737984s (cpu); 0.391867s (thread); 0s (gc) │ │ │ │ + -- used 0.897015s (cpu); 0.424299s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = R' │ │ │ │ │ │ │ │ o10 : QuotientRing │ │ │ │ i11 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -199,15 +199,15 @@ │ │ │ │ o14 : Ideal of S │ │ │ │ i15 : R = S/f │ │ │ │ │ │ │ │ o15 = R │ │ │ │ │ │ │ │ o15 : QuotientRing │ │ │ │ i16 : time R' = integralClosure(R, Strategy => AllCodimensions) │ │ │ │ - -- used 0.869327s (cpu); 0.426331s (thread); 0s (gc) │ │ │ │ + -- used 1.00971s (cpu); 0.459077s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = R' │ │ │ │ │ │ │ │ o16 : QuotientRing │ │ │ │ i17 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -281,15 +281,15 @@ │ │ │ │ o19 : Ideal of S │ │ │ │ i20 : R = S/f │ │ │ │ │ │ │ │ o20 = R │ │ │ │ │ │ │ │ o20 : QuotientRing │ │ │ │ i21 : time R' = integralClosure(R, Strategy => SimplifyFractions) │ │ │ │ - -- used 0.90652s (cpu); 0.508334s (thread); 0s (gc) │ │ │ │ + -- used 1.01732s (cpu); 0.488336s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = R' │ │ │ │ │ │ │ │ o21 : QuotientRing │ │ │ │ i22 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -363,15 +363,15 @@ │ │ │ │ o24 : Ideal of S │ │ │ │ i25 : R = S/f │ │ │ │ │ │ │ │ o25 = R │ │ │ │ │ │ │ │ o25 : QuotientRing │ │ │ │ i26 : time R' = integralClosure (R, Strategy => RadicalCodim1) │ │ │ │ - -- used 1.56265s (cpu); 0.75218s (thread); 0s (gc) │ │ │ │ + -- used 1.94304s (cpu); 0.814697s (thread); 0s (gc) │ │ │ │ │ │ │ │ o26 = R' │ │ │ │ │ │ │ │ o26 : QuotientRing │ │ │ │ i27 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -445,15 +445,15 @@ │ │ │ │ o29 : Ideal of S │ │ │ │ i30 : R = S/f │ │ │ │ │ │ │ │ o30 = R │ │ │ │ │ │ │ │ o30 : QuotientRing │ │ │ │ i31 : time R' = integralClosure (R, Strategy => Vasconcelos) │ │ │ │ - -- used 0.417337s (cpu); 0.309351s (thread); 0s (gc) │ │ │ │ + -- used 0.520673s (cpu); 0.366235s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = R' │ │ │ │ │ │ │ │ o31 : QuotientRing │ │ │ │ i32 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -527,15 +527,15 @@ │ │ │ │ o34 : Ideal of S │ │ │ │ i35 : R = S/f │ │ │ │ │ │ │ │ o35 = R │ │ │ │ │ │ │ │ o35 : QuotientRing │ │ │ │ i36 : time R' = integralClosure R │ │ │ │ - -- used 0.0423714s (cpu); 0.0423694s (thread); 0s (gc) │ │ │ │ + -- used 0.0537353s (cpu); 0.053735s (thread); 0s (gc) │ │ │ │ │ │ │ │ o36 = R' │ │ │ │ │ │ │ │ o36 : QuotientRing │ │ │ │ i37 : netList (ideal R')_* │ │ │ │ │ │ │ │ +-----------+ │ │ │ │ @@ -573,15 +573,15 @@ │ │ │ │ o39 : Ideal of S │ │ │ │ i40 : R = S/I │ │ │ │ │ │ │ │ o40 = R │ │ │ │ │ │ │ │ o40 : QuotientRing │ │ │ │ i41 : time R' = integralClosure(R, Strategy => Radical) │ │ │ │ - -- used 0.0422364s (cpu); 0.0422368s (thread); 0s (gc) │ │ │ │ + -- used 0.0545615s (cpu); 0.0543605s (thread); 0s (gc) │ │ │ │ │ │ │ │ o41 = R' │ │ │ │ │ │ │ │ o41 : QuotientRing │ │ │ │ i42 : icFractions R │ │ │ │ │ │ │ │ 2 │ │ │ │ @@ -603,15 +603,15 @@ │ │ │ │ o44 : Ideal of S │ │ │ │ i45 : R = S/I │ │ │ │ │ │ │ │ o45 = R │ │ │ │ │ │ │ │ o45 : QuotientRing │ │ │ │ i46 : time R' = integralClosure(R, Strategy => AllCodimensions) │ │ │ │ - -- used 0.0595761s (cpu); 0.0595305s (thread); 0s (gc) │ │ │ │ + -- used 0.073894s (cpu); 0.0738909s (thread); 0s (gc) │ │ │ │ │ │ │ │ o46 = R' │ │ │ │ │ │ │ │ o46 : QuotientRing │ │ │ │ i47 : icFractions R │ │ │ │ │ │ │ │ b*d │ │ │ │ @@ -632,15 +632,15 @@ │ │ │ │ o49 : Ideal of S │ │ │ │ i50 : R = S/I │ │ │ │ │ │ │ │ o50 = R │ │ │ │ │ │ │ │ o50 : QuotientRing │ │ │ │ i51 : time R' = integralClosure (R, Strategy => RadicalCodim1) │ │ │ │ - -- used 0.0433813s (cpu); 0.0433775s (thread); 0s (gc) │ │ │ │ + -- used 0.0521366s (cpu); 0.0521353s (thread); 0s (gc) │ │ │ │ │ │ │ │ o51 = R' │ │ │ │ │ │ │ │ o51 : QuotientRing │ │ │ │ i52 : icFractions R │ │ │ │ │ │ │ │ 2 │ │ │ │ @@ -662,15 +662,15 @@ │ │ │ │ o54 : Ideal of S │ │ │ │ i55 : R = S/I │ │ │ │ │ │ │ │ o55 = R │ │ │ │ │ │ │ │ o55 : QuotientRing │ │ │ │ i56 : time R' = integralClosure (R, Strategy => Vasconcelos) │ │ │ │ - -- used 0.0586746s (cpu); 0.0586762s (thread); 0s (gc) │ │ │ │ + -- used 0.0694506s (cpu); 0.0694497s (thread); 0s (gc) │ │ │ │ │ │ │ │ o56 = R' │ │ │ │ │ │ │ │ o56 : QuotientRing │ │ │ │ i57 : icFractions R │ │ │ │ │ │ │ │ b*d │ │ │ │ @@ -754,15 +754,15 @@ │ │ │ │ o65 : BettiTally │ │ │ │ i66 : R = S/I │ │ │ │ │ │ │ │ o66 = R │ │ │ │ │ │ │ │ o66 : QuotientRing │ │ │ │ i67 : time R' = integralClosure(R, Strategy => Radical) │ │ │ │ - -- used 0.170458s (cpu); 0.0980731s (thread); 0s (gc) │ │ │ │ + -- used 0.207389s (cpu); 0.122987s (thread); 0s (gc) │ │ │ │ │ │ │ │ o67 = R' │ │ │ │ │ │ │ │ o67 : QuotientRing │ │ │ │ i68 : icFractions R │ │ │ │ │ │ │ │ 2 2 │ │ │ │ @@ -838,15 +838,15 @@ │ │ │ │ o76 : BettiTally │ │ │ │ i77 : R = S/I │ │ │ │ │ │ │ │ o77 = R │ │ │ │ │ │ │ │ o77 : QuotientRing │ │ │ │ i78 : time R' = integralClosure(R, Strategy => Radical) │ │ │ │ - -- used 0.356633s (cpu); 0.315307s (thread); 0s (gc) │ │ │ │ + -- used 0.483923s (cpu); 0.403056s (thread); 0s (gc) │ │ │ │ │ │ │ │ o78 = R' │ │ │ │ │ │ │ │ o78 : QuotientRing │ │ │ │ i79 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 3 2 │ │ │ │ @@ -862,15 +862,15 @@ │ │ │ │ o80 : PolynomialRing │ │ │ │ i81 : R = S/sub(I,S) │ │ │ │ │ │ │ │ o81 = R │ │ │ │ │ │ │ │ o81 : QuotientRing │ │ │ │ i82 : time R' = integralClosure(R, Strategy => AllCodimensions) │ │ │ │ - -- used 0.502559s (cpu); 0.351078s (thread); 0s (gc) │ │ │ │ + -- used 0.584022s (cpu); 0.406574s (thread); 0s (gc) │ │ │ │ │ │ │ │ o82 = R' │ │ │ │ │ │ │ │ o82 : QuotientRing │ │ │ │ i83 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 3 2 │ │ │ │ @@ -886,20 +886,20 @@ │ │ │ │ o84 : PolynomialRing │ │ │ │ i85 : R = S/sub(I,S) │ │ │ │ │ │ │ │ o85 = R │ │ │ │ │ │ │ │ o85 : QuotientRing │ │ │ │ i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1) │ │ │ │ - [jacobian time .000553749 sec #minors 4] │ │ │ │ + [jacobian time .000625504 sec #minors 4] │ │ │ │ integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ │ │ - [step 0: time .207126 sec #fractions 6] │ │ │ │ - [step 1: time .236813 sec #fractions 6] │ │ │ │ - -- used 0.447945s (cpu); 0.280615s (thread); 0s (gc) │ │ │ │ + [step 0: time .238884 sec #fractions 6] │ │ │ │ + [step 1: time .265395 sec #fractions 6] │ │ │ │ + -- used 0.508769s (cpu); 0.332724s (thread); 0s (gc) │ │ │ │ │ │ │ │ o86 = R' │ │ │ │ │ │ │ │ o86 : QuotientRing │ │ │ │ i87 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 3 2 │ │ │ │ @@ -915,20 +915,20 @@ │ │ │ │ o88 : PolynomialRing │ │ │ │ i89 : R = S/sub(I,S) │ │ │ │ │ │ │ │ o89 = R │ │ │ │ │ │ │ │ o89 : QuotientRing │ │ │ │ i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1) │ │ │ │ - [jacobian time .000531897 sec #minors 4] │ │ │ │ + [jacobian time .000631929 sec #minors 4] │ │ │ │ integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ │ │ - [step 0: time .0887676 sec #fractions 6] │ │ │ │ - [step 1: time .423615 sec #fractions 6] │ │ │ │ - -- used 0.516097s (cpu); 0.354562s (thread); 0s (gc) │ │ │ │ + [step 0: time .113685 sec #fractions 6] │ │ │ │ + [step 1: time .489538 sec #fractions 6] │ │ │ │ + -- used 0.607586s (cpu); 0.413463s (thread); 0s (gc) │ │ │ │ │ │ │ │ o90 = R' │ │ │ │ │ │ │ │ o90 : QuotientRing │ │ │ │ i91 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 3 2 │ │ │ │ @@ -947,20 +947,20 @@ │ │ │ │ i93 : R = S/sub(I,S) │ │ │ │ │ │ │ │ o93 = R │ │ │ │ │ │ │ │ o93 : QuotientRing │ │ │ │ i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, │ │ │ │ StartWithOneMinor}, Verbosity => 1) │ │ │ │ - [jacobian time .000678222 sec #minors 1] │ │ │ │ + [jacobian time .000790239 sec #minors 1] │ │ │ │ integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ │ │ - [step 0: time .111521 sec #fractions 6] │ │ │ │ - [step 1: time .471115 sec #fractions 6] │ │ │ │ - -- used 0.586291s (cpu); 0.418106s (thread); 0s (gc) │ │ │ │ + [step 0: time .144917 sec #fractions 6] │ │ │ │ + [step 1: time .57374 sec #fractions 6] │ │ │ │ + -- used 0.723085s (cpu); 0.527565s (thread); 0s (gc) │ │ │ │ │ │ │ │ o94 = R' │ │ │ │ │ │ │ │ o94 : QuotientRing │ │ │ │ i95 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 2 3 2 │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ @@ -71,52 +71,52 @@ │ │ │ │ │ │
    i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time R' = integralClosure(R, Verbosity => 2)
    │ │ │ - [jacobian time .000537428 sec #minors 3]
    │ │ │ + [jacobian time .000524537 sec #minors 3]
    │ │ │  integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │   [step 0: 
    │ │ │ -      radical (use minprimes) .00248517 seconds
    │ │ │ -      idlizer1:  .00793427 seconds
    │ │ │ -      idlizer2:  .00866101 seconds
    │ │ │ -      minpres:   .00851812 seconds
    │ │ │ -  time .0388261 sec  #fractions 4]
    │ │ │ +      radical (use minprimes) .00280224 seconds
    │ │ │ +      idlizer1:  .00954592 seconds
    │ │ │ +      idlizer2:  .010791 seconds
    │ │ │ +      minpres:   .0106939 seconds
    │ │ │ +  time .0472005 sec  #fractions 4]
    │ │ │   [step 1: 
    │ │ │ -      radical (use minprimes) .00220488 seconds
    │ │ │ -      idlizer1:  .011116 seconds
    │ │ │ -      idlizer2:  .00998087 seconds
    │ │ │ -      minpres:   .0112759 seconds
    │ │ │ -  time .0452055 sec  #fractions 4]
    │ │ │ +      radical (use minprimes) .00280973 seconds
    │ │ │ +      idlizer1:  .0135611 seconds
    │ │ │ +      idlizer2:  .012035 seconds
    │ │ │ +      minpres:   .013245 seconds
    │ │ │ +  time .0545979 sec  #fractions 4]
    │ │ │   [step 2: 
    │ │ │ -      radical (use minprimes) .00224902 seconds
    │ │ │ -      idlizer1:  .011153 seconds
    │ │ │ -      idlizer2:  .0093342 seconds
    │ │ │ -      minpres:   .00877394 seconds
    │ │ │ -  time .0418707 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00288357 seconds
    │ │ │ +      idlizer1:  .0139012 seconds
    │ │ │ +      idlizer2:  .0117931 seconds
    │ │ │ +      minpres:   .011181 seconds
    │ │ │ +  time .0525073 sec  #fractions 5]
    │ │ │   [step 3: 
    │ │ │ -      radical (use minprimes) .00225753 seconds
    │ │ │ -      idlizer1:  .117394 seconds
    │ │ │ -      idlizer2:  .0133807 seconds
    │ │ │ -      minpres:   .0159094 seconds
    │ │ │ -  time .160923 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00268376 seconds
    │ │ │ +      idlizer1:  .127959 seconds
    │ │ │ +      idlizer2:  .0156017 seconds
    │ │ │ +      minpres:   .0201241 seconds
    │ │ │ +  time .180488 sec  #fractions 5]
    │ │ │   [step 4: 
    │ │ │ -      radical (use minprimes) .00245897 seconds
    │ │ │ -      idlizer1:  .00891005 seconds
    │ │ │ -      idlizer2:  .0164204 seconds
    │ │ │ -      minpres:   .0117435 seconds
    │ │ │ -  time .0517134 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00301995 seconds
    │ │ │ +      idlizer1:  .0110934 seconds
    │ │ │ +      idlizer2:  .0184602 seconds
    │ │ │ +      minpres:   .0141992 seconds
    │ │ │ +  time .0615081 sec  #fractions 5]
    │ │ │   [step 5: 
    │ │ │ -      radical (use minprimes) .00239361 seconds
    │ │ │ -      idlizer1:  .00820369 seconds
    │ │ │ -  time .0171387 sec  #fractions 5]
    │ │ │ - -- used 0.359626s (cpu); 0.322489s (thread); 0s (gc)
    │ │ │ +      radical (use minprimes) .0030068 seconds
    │ │ │ +      idlizer1:  .00965381 seconds
    │ │ │ +  time .0208746 sec  #fractions 5]
    │ │ │ + -- used 0.42167s (cpu); 0.349768s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = R'
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -12,52 +12,52 @@ │ │ │ │ displayed. A value of 0 means: keep quiet. │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ When the computation takes a considerable time, this function can be used to │ │ │ │ decide if it will ever finish, or to get a feel for what is happening during │ │ │ │ the computation. │ │ │ │ i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3); │ │ │ │ i2 : time R' = integralClosure(R, Verbosity => 2) │ │ │ │ - [jacobian time .000537428 sec #minors 3] │ │ │ │ + [jacobian time .000524537 sec #minors 3] │ │ │ │ integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ │ │ [step 0: │ │ │ │ - radical (use minprimes) .00248517 seconds │ │ │ │ - idlizer1: .00793427 seconds │ │ │ │ - idlizer2: .00866101 seconds │ │ │ │ - minpres: .00851812 seconds │ │ │ │ - time .0388261 sec #fractions 4] │ │ │ │ + radical (use minprimes) .00280224 seconds │ │ │ │ + idlizer1: .00954592 seconds │ │ │ │ + idlizer2: .010791 seconds │ │ │ │ + minpres: .0106939 seconds │ │ │ │ + time .0472005 sec #fractions 4] │ │ │ │ [step 1: │ │ │ │ - radical (use minprimes) .00220488 seconds │ │ │ │ - idlizer1: .011116 seconds │ │ │ │ - idlizer2: .00998087 seconds │ │ │ │ - minpres: .0112759 seconds │ │ │ │ - time .0452055 sec #fractions 4] │ │ │ │ + radical (use minprimes) .00280973 seconds │ │ │ │ + idlizer1: .0135611 seconds │ │ │ │ + idlizer2: .012035 seconds │ │ │ │ + minpres: .013245 seconds │ │ │ │ + time .0545979 sec #fractions 4] │ │ │ │ [step 2: │ │ │ │ - radical (use minprimes) .00224902 seconds │ │ │ │ - idlizer1: .011153 seconds │ │ │ │ - idlizer2: .0093342 seconds │ │ │ │ - minpres: .00877394 seconds │ │ │ │ - time .0418707 sec #fractions 5] │ │ │ │ + radical (use minprimes) .00288357 seconds │ │ │ │ + idlizer1: .0139012 seconds │ │ │ │ + idlizer2: .0117931 seconds │ │ │ │ + minpres: .011181 seconds │ │ │ │ + time .0525073 sec #fractions 5] │ │ │ │ [step 3: │ │ │ │ - radical (use minprimes) .00225753 seconds │ │ │ │ - idlizer1: .117394 seconds │ │ │ │ - idlizer2: .0133807 seconds │ │ │ │ - minpres: .0159094 seconds │ │ │ │ - time .160923 sec #fractions 5] │ │ │ │ + radical (use minprimes) .00268376 seconds │ │ │ │ + idlizer1: .127959 seconds │ │ │ │ + idlizer2: .0156017 seconds │ │ │ │ + minpres: .0201241 seconds │ │ │ │ + time .180488 sec #fractions 5] │ │ │ │ [step 4: │ │ │ │ - radical (use minprimes) .00245897 seconds │ │ │ │ - idlizer1: .00891005 seconds │ │ │ │ - idlizer2: .0164204 seconds │ │ │ │ - minpres: .0117435 seconds │ │ │ │ - time .0517134 sec #fractions 5] │ │ │ │ + radical (use minprimes) .00301995 seconds │ │ │ │ + idlizer1: .0110934 seconds │ │ │ │ + idlizer2: .0184602 seconds │ │ │ │ + minpres: .0141992 seconds │ │ │ │ + time .0615081 sec #fractions 5] │ │ │ │ [step 5: │ │ │ │ - radical (use minprimes) .00239361 seconds │ │ │ │ - idlizer1: .00820369 seconds │ │ │ │ - time .0171387 sec #fractions 5] │ │ │ │ - -- used 0.359626s (cpu); 0.322489s (thread); 0s (gc) │ │ │ │ + radical (use minprimes) .0030068 seconds │ │ │ │ + idlizer1: .00965381 seconds │ │ │ │ + time .0208746 sec #fractions 5] │ │ │ │ + -- used 0.42167s (cpu); 0.349768s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = R' │ │ │ │ │ │ │ │ o2 : QuotientRing │ │ │ │ i3 : trim ideal R' │ │ │ │ │ │ │ │ 3 2 2 2 4 4 │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.html │ │ │ @@ -109,29 +109,29 @@ │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time integralClosure J
    │ │ │ - -- used 1.00107s (cpu); 0.719147s (thread); 0s (gc)
    │ │ │ + -- used 1.45937s (cpu); 0.848487s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o4 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time integralClosure(J, Strategy=>{RadicalCodim1})
    │ │ │ - -- used 0.619831s (cpu); 0.485488s (thread); 0s (gc)
    │ │ │ + -- used 1.14744s (cpu); 0.59595s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o5 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,25 +46,25 @@
    │ │ │ │  i3 : J = ideal jacobian ideal F
    │ │ │ │  
    │ │ │ │                  2      2    2        2   2 2     2
    │ │ │ │  o3 = ideal (2a*b c + 3a , 2a b*c + 3b , a b  + 3c )
    │ │ │ │  
    │ │ │ │  o3 : Ideal of S
    │ │ │ │  i4 : time integralClosure J
    │ │ │ │ - -- used 1.00107s (cpu); 0.719147s (thread); 0s (gc)
    │ │ │ │ + -- used 1.45937s (cpu); 0.848487s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               2 2              2 2                2          2   2
    │ │ │ │  o4 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │             2   3               2 2     2   5
    │ │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │ │  
    │ │ │ │  o4 : Ideal of S
    │ │ │ │  i5 : time integralClosure(J, Strategy=>{RadicalCodim1})
    │ │ │ │ - -- used 0.619831s (cpu); 0.485488s (thread); 0s (gc)
    │ │ │ │ + -- used 1.14744s (cpu); 0.59595s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               2 2              2 2                2          2   2
    │ │ │ │  o5 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │             2   3               2 2     2   5
    │ │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_equivariant__Hilbert.out
    │ │ │ @@ -25,15 +25,15 @@
    │ │ │  o3 : DiagonalAction
    │ │ │  
    │ │ │  i4 : T.cache.?equivariantHilbert
    │ │ │  
    │ │ │  o4 = false
    │ │ │  
    │ │ │  i5 : elapsedTime equivariantHilbertSeries(T, Order => 5)
    │ │ │ - -- .00250269s elapsed
    │ │ │ + -- .00286658s elapsed
    │ │ │  
    │ │ │                    -1    -1       2 2              -2    -1 -1    -2  2  
    │ │ │  o5 = 1 + (z z  + z   + z  )T + (z z  + z  + z  + z   + z  z   + z  )T  +
    │ │ │             0 1    1     0        0 1    0    1    1     0  1     0      
    │ │ │       ------------------------------------------------------------------------
    │ │ │         3 3    2        2      -1        -3    -1      -1 -2    -2 -1    -3  3
    │ │ │       (z z  + z z  + z z  + z z   + 1 + z   + z  z  + z  z   + z  z   + z  )T 
    │ │ │ @@ -51,10 +51,10 @@
    │ │ │           0   1
    │ │ │  
    │ │ │  i6 : T.cache.?equivariantHilbert
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : elapsedTime equivariantHilbertSeries(T, Order => 5);
    │ │ │ - -- .000440151s elapsed
    │ │ │ + -- .000550789s elapsed
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hsop_spalgorithms.out
    │ │ │ @@ -23,23 +23,23 @@
    │ │ │  o3 = QQ[x..z] <- {| 0 -1 0  |, | 0 -1 0 |}
    │ │ │                    | 1 0  0  |  | 1 0  0 |
    │ │ │                    | 0 0  -1 |  | 0 0  1 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : time P1=primaryInvariants C4xC2
    │ │ │ - -- used 0.767543s (cpu); 0.538787s (thread); 0s (gc)
    │ │ │ + -- used 0.945463s (cpu); 0.625534s (thread); 0s (gc)
    │ │ │  
    │ │ │ -       2   2    2   2 2
    │ │ │ -o4 = {z , x  + y , x y }
    │ │ │ +       2   2    2   3       3
    │ │ │ +o4 = {z , x  + y , x y - x*y }
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : time P2=primaryInvariants(C4xC2,Dade=>true)
    │ │ │ - -- used 0.729386s (cpu); 0.391831s (thread); 0s (gc)
    │ │ │ + -- used 0.845366s (cpu); 0.440049s (thread); 0s (gc)
    │ │ │  
    │ │ │                     8                 7                   6 2  
    │ │ │  o5 = {656100000000x  - 4738500000000x y + 10209037500000x y  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │                     5 3                  4 4                 3 5  
    │ │ │       1232156250000x y  - 14757374609375x y  + 1232156250000x y  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -90,23 +90,23 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │          2 6    8
    │ │ │       90y z  + z }
    │ │ │  
    │ │ │  o5 : List
    │ │ │  
    │ │ │  i6 : time secondaryInvariants(P1,C4xC2)
    │ │ │ - -- used 0.0301536s (cpu); 0.0301554s (thread); 0s (gc)
    │ │ │ + -- used 0.0302624s (cpu); 0.0302663s (thread); 0s (gc)
    │ │ │  
    │ │ │ -          3       3
    │ │ │ -o6 = {1, x y - x*y }
    │ │ │ +          4    4
    │ │ │ +o6 = {1, x  + y }
    │ │ │  
    │ │ │  o6 : List
    │ │ │  
    │ │ │  i7 : time secondaryInvariants(P2,C4xC2)
    │ │ │ - -- used 2.05836s (cpu); 1.37581s (thread); 0s (gc)
    │ │ │ + -- used 2.40585s (cpu); 1.49593s (thread); 0s (gc)
    │ │ │  
    │ │ │            2   2    2   4   2 2    2 2   2 2   3       3   4    4   6   2 4  
    │ │ │  o7 = {1, z , x  + y , z , x z  + y z , x y , x y - x*y , x  + y , z , x z  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2 4   2 2 2   3   2      3 2   4 2    4 2   4 2    2 4   5       5   6
    │ │ │       y z , x y z , x y*z  - x*y z , x z  + y z , x y  + x y , x y - x*y , x 
    │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.out
    │ │ │ @@ -14,15 +14,15 @@
    │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : elapsedTime invariants S4
    │ │ │ - -- .809145s elapsed
    │ │ │ + -- .640081s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │ @@ -32,15 +32,15 @@
    │ │ │  
    │ │ │  i5 : elapsedTime invariants(S4,DegreeBound=>4)
    │ │ │  
    │ │ │  Warning: stopping condition not met!
    │ │ │  Output may not generate the entire ring of invariants.
    │ │ │  Increase value of DegreeBound.
    │ │ │  
    │ │ │ - -- .614685s elapsed
    │ │ │ + -- .521484s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o5 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.out
    │ │ │ @@ -14,28 +14,28 @@
    │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : elapsedTime invariants S4
    │ │ │ - -- .650806s elapsed
    │ │ │ + -- .606736s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │        4
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime invariants(S4,UseLinearAlgebra=>true)
    │ │ │ - -- .117342s elapsed
    │ │ │ + -- .0723434s elapsed
    │ │ │  
    │ │ │  o5 = {x  + x  + x  + x , x x  + x x  + x x  + x x  + x x  + x x , x x x  +
    │ │ │         1    2    3    4   1 2    1 3    2 3    1 4    2 4    3 4   1 2 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x x x  + x x x  + x x x , x x x x }
    │ │ │        1 2 4    1 3 4    2 3 4   1 2 3 4
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_primary__Invariants.out
    │ │ │ @@ -16,16 +16,16 @@
    │ │ │                    | 0 0 1 |  | 1 0 0 |
    │ │ │                    | 1 0 0 |  | 0 0 1 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : primaryInvariants S3
    │ │ │  
    │ │ │ -                  2    2    2   2       2    2     2       2      2
    │ │ │ -o4 = {x + y + z, x  + y  + z , x y + x*y  + x z + y z + x*z  + y*z }
    │ │ │ +                                   3    3    3
    │ │ │ +o4 = {x + y + z, x*y + x*z + y*z, x  + y  + z }
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : K=GF(101)
    │ │ │  
    │ │ │  o5 = K
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_primary__Invariants_lp..._cm__Degree__Vector_eq_gt..._rp.out
    │ │ │ @@ -16,13 +16,16 @@
    │ │ │                    | 0 0 1 |  | 1 0 0 |
    │ │ │                    | 1 0 0 |  | 0 0 1 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : primaryInvariants(S3,DegreeVector=>{3,3,4})
    │ │ │  
    │ │ │ -       2       2    2     2       2      2          4    4    4
    │ │ │ -o4 = {x y + x*y  + x z + y z + x*z  + y*z , x*y*z, x  + y  + z }
    │ │ │ +       3    3    3   2       2    2     2       2      2   3       3    3   
    │ │ │ +o4 = {x  + y  + z , x y + x*y  + x z + y z + x*z  + y*z , x y + x*y  + x z +
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +      3       3      3
    │ │ │ +     y z + x*z  + y*z }
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_equivariant__Hilbert.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o4 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime equivariantHilbertSeries(T, Order => 5)
    │ │ │ - -- .00250269s elapsed
    │ │ │ + -- .00286658s elapsed
    │ │ │  
    │ │ │                    -1    -1       2 2              -2    -1 -1    -2  2  
    │ │ │  o5 = 1 + (z z  + z   + z  )T + (z z  + z  + z  + z   + z  z   + z  )T  +
    │ │ │             0 1    1     0        0 1    0    1    1     0  1     0      
    │ │ │       ------------------------------------------------------------------------
    │ │ │         3 3    2        2      -1        -3    -1      -1 -2    -2 -1    -3  3
    │ │ │       (z z  + z z  + z z  + z z   + 1 + z   + z  z  + z  z   + z  z   + z  )T 
    │ │ │ @@ -124,15 +124,15 @@
    │ │ │  
    │ │ │  o6 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime equivariantHilbertSeries(T, Order => 5);
    │ │ │ - -- .000440151s elapsed
    │ │ │ + -- .000550789s elapsed │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    For the programmer

    │ │ │ ├── html2text {} │ │ │ │ @@ -30,15 +30,15 @@ │ │ │ │ | 0 -1 1 | │ │ │ │ │ │ │ │ o3 : DiagonalAction │ │ │ │ i4 : T.cache.?equivariantHilbert │ │ │ │ │ │ │ │ o4 = false │ │ │ │ i5 : elapsedTime equivariantHilbertSeries(T, Order => 5) │ │ │ │ - -- .00250269s elapsed │ │ │ │ + -- .00286658s elapsed │ │ │ │ │ │ │ │ -1 -1 2 2 -2 -1 -1 -2 2 │ │ │ │ o5 = 1 + (z z + z + z )T + (z z + z + z + z + z z + z )T + │ │ │ │ 0 1 1 0 0 1 0 1 1 0 1 0 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 3 2 2 -1 -3 -1 -1 -2 -2 -1 -3 3 │ │ │ │ (z z + z z + z z + z z + 1 + z + z z + z z + z z + z )T │ │ │ │ @@ -54,13 +54,13 @@ │ │ │ │ │ │ │ │ o5 : ZZ[z ..z ][T] │ │ │ │ 0 1 │ │ │ │ i6 : T.cache.?equivariantHilbert │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : elapsedTime equivariantHilbertSeries(T, Order => 5); │ │ │ │ - -- .000440151s elapsed │ │ │ │ + -- .000550789s elapsed │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _e_q_u_i_v_a_r_i_a_n_t_H_i_l_b_e_r_t is a _s_y_m_b_o_l. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/InvariantRing/AbelianGroupsDoc.m2:185:0. │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_hsop_spalgorithms.html │ │ │ @@ -92,26 +92,26 @@ │ │ │ │ │ │ │ │ │

    The two algorithms used in primaryInvariants are timed. One sees that the Dade algorithm is faster, however the primary invariants output are all of degree 8 and have ugly coefficients.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : time P1=primaryInvariants C4xC2
    │ │ │ - -- used 0.767543s (cpu); 0.538787s (thread); 0s (gc)
    │ │ │ + -- used 0.945463s (cpu); 0.625534s (thread); 0s (gc)
    │ │ │  
    │ │ │ -       2   2    2   2 2
    │ │ │ -o4 = {z , x  + y , x y }
    │ │ │ +       2   2    2   3       3
    │ │ │ +o4 = {z , x  + y , x y - x*y }
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : time P2=primaryInvariants(C4xC2,Dade=>true)
    │ │ │ - -- used 0.729386s (cpu); 0.391831s (thread); 0s (gc)
    │ │ │ + -- used 0.845366s (cpu); 0.440049s (thread); 0s (gc)
    │ │ │  
    │ │ │                     8                 7                   6 2  
    │ │ │  o5 = {656100000000x  - 4738500000000x y + 10209037500000x y  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │                     5 3                  4 4                 3 5  
    │ │ │       1232156250000x y  - 14757374609375x y  + 1232156250000x y  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -168,26 +168,26 @@
    │ │ │            
    │ │ │

    The extra work done by the default algorithm to ensure an optimal hsop is rewarded by needing to calculate a smaller collection of corresponding secondary invariants. In fact, it has proved quicker overall to calculate the invariant ring based on the optimal algorithm rather than the Dade algorithm.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : time secondaryInvariants(P1,C4xC2)
    │ │ │ - -- used 0.0301536s (cpu); 0.0301554s (thread); 0s (gc)
    │ │ │ + -- used 0.0302624s (cpu); 0.0302663s (thread); 0s (gc)
    │ │ │  
    │ │ │ -          3       3
    │ │ │ -o6 = {1, x y - x*y }
    │ │ │ +          4    4
    │ │ │ +o6 = {1, x  + y }
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : time secondaryInvariants(P2,C4xC2)
    │ │ │ - -- used 2.05836s (cpu); 1.37581s (thread); 0s (gc)
    │ │ │ + -- used 2.40585s (cpu); 1.49593s (thread); 0s (gc)
    │ │ │  
    │ │ │            2   2    2   4   2 2    2 2   2 2   3       3   4    4   6   2 4  
    │ │ │  o7 = {1, z , x  + y , z , x z  + y z , x y , x y - x*y , x  + y , z , x z  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2 4   2 2 2   3   2      3 2   4 2    4 2   4 2    2 4   5       5   6
    │ │ │       y z , x y z , x y*z  - x*y z , x z  + y z , x y  + x y , x y - x*y , x 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -69,22 +69,22 @@
    │ │ │ │                    | 0 0  -1 |  | 0 0  1 |
    │ │ │ │  
    │ │ │ │  o3 : FiniteGroupAction
    │ │ │ │  The two algorithms used in _p_r_i_m_a_r_y_I_n_v_a_r_i_a_n_t_s are timed. One sees that the Dade
    │ │ │ │  algorithm is faster, however the primary invariants output are all of degree 8
    │ │ │ │  and have ugly coefficients.
    │ │ │ │  i4 : time P1=primaryInvariants C4xC2
    │ │ │ │ - -- used 0.767543s (cpu); 0.538787s (thread); 0s (gc)
    │ │ │ │ + -- used 0.945463s (cpu); 0.625534s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │ -       2   2    2   2 2
    │ │ │ │ -o4 = {z , x  + y , x y }
    │ │ │ │ +       2   2    2   3       3
    │ │ │ │ +o4 = {z , x  + y , x y - x*y }
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ │ │  i5 : time P2=primaryInvariants(C4xC2,Dade=>true)
    │ │ │ │ - -- used 0.729386s (cpu); 0.391831s (thread); 0s (gc)
    │ │ │ │ + -- used 0.845366s (cpu); 0.440049s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                     8                 7                   6 2
    │ │ │ │  o5 = {656100000000x  - 4738500000000x y + 10209037500000x y  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                     5 3                  4 4                 3 5
    │ │ │ │       1232156250000x y  - 14757374609375x y  + 1232156250000x y  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -138,22 +138,22 @@
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  The extra work done by the default algorithm to ensure an optimal hsop is
    │ │ │ │  rewarded by needing to calculate a smaller collection of corresponding
    │ │ │ │  secondary invariants. In fact, it has proved quicker overall to calculate the
    │ │ │ │  invariant ring based on the optimal algorithm rather than the Dade algorithm.
    │ │ │ │  i6 : time secondaryInvariants(P1,C4xC2)
    │ │ │ │ - -- used 0.0301536s (cpu); 0.0301554s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0302624s (cpu); 0.0302663s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │ -          3       3
    │ │ │ │ -o6 = {1, x y - x*y }
    │ │ │ │ +          4    4
    │ │ │ │ +o6 = {1, x  + y }
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  i7 : time secondaryInvariants(P2,C4xC2)
    │ │ │ │ - -- used 2.05836s (cpu); 1.37581s (thread); 0s (gc)
    │ │ │ │ + -- used 2.40585s (cpu); 1.49593s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            2   2    2   4   2 2    2 2   2 2   3       3   4    4   6   2 4
    │ │ │ │  o7 = {1, z , x  + y , z , x z  + y z , x y , x y - x*y , x  + y , z , x z  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        2 4   2 2 2   3   2      3 2   4 2    4 2   4 2    2 4   5       5   6
    │ │ │ │       y z , x y z , x y*z  - x*y z , x z  + y z , x y  + x y , x y - x*y , x
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.html
    │ │ │ @@ -96,15 +96,15 @@
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │
    │ │ │
    i4 : elapsedTime invariants S4
    │ │ │ - -- .809145s elapsed
    │ │ │ + -- .640081s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │ @@ -117,15 +117,15 @@
    │ │ │              
    │ │ │
    i5 : elapsedTime invariants(S4,DegreeBound=>4)
    │ │ │  
    │ │ │  Warning: stopping condition not met!
    │ │ │  Output may not generate the entire ring of invariants.
    │ │ │  Increase value of DegreeBound.
    │ │ │  
    │ │ │ - -- .614685s elapsed
    │ │ │ + -- .521484s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o5 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -33,15 +33,15 @@
    │ │ │ │  o3 = R <- {| 0 1 0 0 |, | 0 0 0 1 |}
    │ │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │ │  
    │ │ │ │  o3 : FiniteGroupAction
    │ │ │ │  i4 : elapsedTime invariants S4
    │ │ │ │ - -- .809145s elapsed
    │ │ │ │ + -- .640081s elapsed
    │ │ │ │  
    │ │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        4
    │ │ │ │       x }
    │ │ │ │ @@ -50,15 +50,15 @@
    │ │ │ │  o4 : List
    │ │ │ │  i5 : elapsedTime invariants(S4,DegreeBound=>4)
    │ │ │ │  
    │ │ │ │  Warning: stopping condition not met!
    │ │ │ │  Output may not generate the entire ring of invariants.
    │ │ │ │  Increase value of DegreeBound.
    │ │ │ │  
    │ │ │ │ - -- .614685s elapsed
    │ │ │ │ + -- .521484s elapsed
    │ │ │ │  
    │ │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ │ │  o5 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        4
    │ │ │ │       x }
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.html
    │ │ │ @@ -96,15 +96,15 @@
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │
    │ │ │
    i4 : elapsedTime invariants S4
    │ │ │ - -- .650806s elapsed
    │ │ │ + -- .606736s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : elapsedTime invariants(S4,UseLinearAlgebra=>true)
    │ │ │ - -- .117342s elapsed
    │ │ │ + -- .0723434s elapsed
    │ │ │  
    │ │ │  o5 = {x  + x  + x  + x , x x  + x x  + x x  + x x  + x x  + x x , x x x  +
    │ │ │         1    2    3    4   1 2    1 3    2 3    1 4    2 4    3 4   1 2 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x x x  + x x x  + x x x , x x x x }
    │ │ │        1 2 4    1 3 4    2 3 4   1 2 3 4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,27 +35,27 @@
    │ │ │ │  o3 = R <- {| 0 1 0 0 |, | 0 0 0 1 |}
    │ │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │ │  
    │ │ │ │  o3 : FiniteGroupAction
    │ │ │ │  i4 : elapsedTime invariants S4
    │ │ │ │ - -- .650806s elapsed
    │ │ │ │ + -- .606736s elapsed
    │ │ │ │  
    │ │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        4
    │ │ │ │       x }
    │ │ │ │        4
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ │ │  i5 : elapsedTime invariants(S4,UseLinearAlgebra=>true)
    │ │ │ │ - -- .117342s elapsed
    │ │ │ │ + -- .0723434s elapsed
    │ │ │ │  
    │ │ │ │  o5 = {x  + x  + x  + x , x x  + x x  + x x  + x x  + x x  + x x , x x x  +
    │ │ │ │         1    2    3    4   1 2    1 3    2 3    1 4    2 4    3 4   1 2 3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       x x x  + x x x  + x x x , x x x x }
    │ │ │ │        1 2 4    1 3 4    2 3 4   1 2 3 4
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_primary__Invariants.html
    │ │ │ @@ -101,16 +101,16 @@
    │ │ │  o3 : FiniteGroupAction
    │ │ │
    │ │ │
    i4 : primaryInvariants S3
    │ │ │  
    │ │ │ -                  2    2    2   2       2    2     2       2      2
    │ │ │ -o4 = {x + y + z, x  + y  + z , x y + x*y  + x z + y z + x*z  + y*z }
    │ │ │ +                                   3    3    3
    │ │ │ +o4 = {x + y + z, x*y + x*z + y*z, x  + y  + z }
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │

    Below, the invariant ring QQ[x,y,z]S3 is calculated with K being the field with 101 elements.

    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -38,16 +38,16 @@ │ │ │ │ o3 = QQ[x..z] <- {| 0 1 0 |, | 0 1 0 |} │ │ │ │ | 0 0 1 | | 1 0 0 | │ │ │ │ | 1 0 0 | | 0 0 1 | │ │ │ │ │ │ │ │ o3 : FiniteGroupAction │ │ │ │ i4 : primaryInvariants S3 │ │ │ │ │ │ │ │ - 2 2 2 2 2 2 2 2 2 │ │ │ │ -o4 = {x + y + z, x + y + z , x y + x*y + x z + y z + x*z + y*z } │ │ │ │ + 3 3 3 │ │ │ │ +o4 = {x + y + z, x*y + x*z + y*z, x + y + z } │ │ │ │ │ │ │ │ o4 : List │ │ │ │ Below, the invariant ring QQ[x,y,z]S3 is calculated with K being the field with │ │ │ │ 101 elements. │ │ │ │ i5 : K=GF(101) │ │ │ │ │ │ │ │ o5 = K │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_primary__Invariants_lp..._cm__Degree__Vector_eq_gt..._rp.html │ │ │ @@ -97,16 +97,19 @@ │ │ │ o3 : FiniteGroupAction │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : primaryInvariants(S3,DegreeVector=>{3,3,4})
    │ │ │  
    │ │ │ -       2       2    2     2       2      2          4    4    4
    │ │ │ -o4 = {x y + x*y  + x z + y z + x*z  + y*z , x*y*z, x  + y  + z }
    │ │ │ +       3    3    3   2       2    2     2       2      2   3       3    3   
    │ │ │ +o4 = {x  + y  + z , x y + x*y  + x z + y z + x*z  + y*z , x y + x*y  + x z +
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +      3       3      3
    │ │ │ +     y z + x*z  + y*z }
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -34,16 +34,19 @@ │ │ │ │ o3 = QQ[x..z] <- {| 0 1 0 |, | 0 1 0 |} │ │ │ │ | 0 0 1 | | 1 0 0 | │ │ │ │ | 1 0 0 | | 0 0 1 | │ │ │ │ │ │ │ │ o3 : FiniteGroupAction │ │ │ │ i4 : primaryInvariants(S3,DegreeVector=>{3,3,4}) │ │ │ │ │ │ │ │ - 2 2 2 2 2 2 4 4 4 │ │ │ │ -o4 = {x y + x*y + x z + y z + x*z + y*z , x*y*z, x + y + z } │ │ │ │ + 3 3 3 2 2 2 2 2 2 3 3 3 │ │ │ │ +o4 = {x + y + z , x y + x*y + x z + y z + x*z + y*z , x y + x*y + x z + │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + 3 3 3 │ │ │ │ + y z + x*z + y*z } │ │ │ │ │ │ │ │ o4 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ Currently users can only use _p_r_i_m_a_r_y_I_n_v_a_r_i_a_n_t_s to calculate a hsop for the │ │ │ │ invariant ring over a finite field by using the Dade algorithm. Users should │ │ │ │ enter the finite field as a _G_a_l_o_i_s_F_i_e_l_d or a quotient field of the form _Z_Z/ │ │ │ │ p and are advised to ensure that the ground field has cardinality greater than │ │ ├── ./usr/share/doc/Macaulay2/Isomorphism/example-output/_is__Isomorphic.out │ │ │ @@ -156,20 +156,20 @@ │ │ │ {-1} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_2 x_1 x_0 | {-1} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_2 x_1 x_0^2 | │ │ │ {-1} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | {-1} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_0 -x_2 x_1 -x_3 x_2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_3 x_2 x_1^2 | │ │ │ │ │ │ 40 │ │ │ o22 : S-module, subquotient of S │ │ │ │ │ │ i23 : elapsedTime isIsomorphic(T1, T2) │ │ │ - -- 1.50438s elapsed │ │ │ + -- 1.70691s elapsed │ │ │ │ │ │ o23 = true │ │ │ │ │ │ i24 : elapsedTime isomorphism(T1, T2) │ │ │ - -- .000022302s elapsed │ │ │ + -- .000022108s elapsed │ │ │ │ │ │ o24 = {-1} | 1 -3976 -13490 13495 -2886 2577 14757 -881 7677 │ │ │ {-1} | -2527 -13566 2778 -6934 -14806 4619 -13099 6022 -10907 │ │ │ {-1} | -15420 5642 1489 1354 4591 11881 -5253 7296 -1098 │ │ │ {-1} | 7909 -12428 -2260 -8465 12113 -6893 8411 4186 -9393 │ │ │ {-1} | -9615 2934 10440 5015 8145 -5585 1360 3295 12851 │ │ │ {-1} | -4881 -7984 12700 -10391 -10009 -14538 13207 262 -6500 │ │ ├── ./usr/share/doc/Macaulay2/Isomorphism/html/_is__Isomorphic.html │ │ │ @@ -328,23 +328,23 @@ │ │ │ 40 │ │ │ o22 : S-module, subquotient of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i23 : elapsedTime isIsomorphic(T1, T2)
    │ │ │ - -- 1.50438s elapsed
    │ │ │ + -- 1.70691s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i24 : elapsedTime isomorphism(T1, T2)
    │ │ │ - -- .000022302s elapsed
    │ │ │ + -- .000022108s elapsed
    │ │ │  
    │ │ │  o24 = {-1} | 1      -3976  -13490 13495  -2886  2577   14757  -881   7677  
    │ │ │        {-1} | -2527  -13566 2778   -6934  -14806 4619   -13099 6022   -10907
    │ │ │        {-1} | -15420 5642   1489   1354   4591   11881  -5253  7296   -1098 
    │ │ │        {-1} | 7909   -12428 -2260  -8465  12113  -6893  8411   4186   -9393 
    │ │ │        {-1} | -9615  2934   10440  5015   8145   -5585  1360   3295   12851 
    │ │ │        {-1} | -4881  -7984  12700  -10391 -10009 -14538 13207  262    -6500
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -684,19 +684,19 @@
    │ │ │ │  0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0
    │ │ │ │  0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0
    │ │ │ │  0   0   0     x_3 x_2 x_1^2 |
    │ │ │ │  
    │ │ │ │                                  40
    │ │ │ │  o22 : S-module, subquotient of S
    │ │ │ │  i23 : elapsedTime isIsomorphic(T1, T2)
    │ │ │ │ - -- 1.50438s elapsed
    │ │ │ │ + -- 1.70691s elapsed
    │ │ │ │  
    │ │ │ │  o23 = true
    │ │ │ │  i24 : elapsedTime isomorphism(T1, T2)
    │ │ │ │ - -- .000022302s elapsed
    │ │ │ │ + -- .000022108s elapsed
    │ │ │ │  
    │ │ │ │  o24 = {-1} | 1      -3976  -13490 13495  -2886  2577   14757  -881   7677
    │ │ │ │        {-1} | -2527  -13566 2778   -6934  -14806 4619   -13099 6022   -10907
    │ │ │ │        {-1} | -15420 5642   1489   1354   4591   11881  -5253  7296   -1098
    │ │ │ │        {-1} | 7909   -12428 -2260  -8465  12113  -6893  8411   4186   -9393
    │ │ │ │        {-1} | -9615  2934   10440  5015   8145   -5585  1360   3295   12851
    │ │ │ │        {-1} | -4881  -7984  12700  -10391 -10009 -14538 13207  262    -6500
    │ │ ├── ./usr/share/doc/Macaulay2/JSON/example-output/_from__J__S__O__N.out
    │ │ │ @@ -39,19 +39,19 @@
    │ │ │  
    │ │ │  o8 = {1, 2, 3}
    │ │ │  
    │ │ │  o8 : List
    │ │ │  
    │ │ │  i9 : jsonFile = temporaryFileName() | ".json"
    │ │ │  
    │ │ │ -o9 = /tmp/M2-50412-0/0.json
    │ │ │ +o9 = /tmp/M2-79369-0/0.json
    │ │ │  
    │ │ │  i10 : jsonFile << "[1, 2, 3]" << endl << close
    │ │ │  
    │ │ │ -o10 = /tmp/M2-50412-0/0.json
    │ │ │ +o10 = /tmp/M2-79369-0/0.json
    │ │ │  
    │ │ │  o10 : File
    │ │ │  
    │ │ │  i11 : fromJSON openIn jsonFile
    │ │ │  
    │ │ │  o11 = {1, 2, 3}
    │ │ ├── ./usr/share/doc/Macaulay2/JSON/html/_from__J__S__O__N.html
    │ │ │ @@ -167,22 +167,22 @@
    │ │ │            

    The input may also be a file containing JSON data.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : jsonFile = temporaryFileName() | ".json"
    │ │ │  
    │ │ │ -o9 = /tmp/M2-50412-0/0.json
    │ │ │ +o9 = /tmp/M2-79369-0/0.json │ │ │
    │ │ │
    i10 : jsonFile << "[1, 2, 3]" << endl << close
    │ │ │  
    │ │ │ -o10 = /tmp/M2-50412-0/0.json
    │ │ │ +o10 = /tmp/M2-79369-0/0.json
    │ │ │  
    │ │ │  o10 : File
    │ │ │
    │ │ │
    i11 : fromJSON openIn jsonFile
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -53,18 +53,18 @@
    │ │ │ │  
    │ │ │ │  o8 = {1, 2, 3}
    │ │ │ │  
    │ │ │ │  o8 : List
    │ │ │ │  The input may also be a file containing JSON data.
    │ │ │ │  i9 : jsonFile = temporaryFileName() | ".json"
    │ │ │ │  
    │ │ │ │ -o9 = /tmp/M2-50412-0/0.json
    │ │ │ │ +o9 = /tmp/M2-79369-0/0.json
    │ │ │ │  i10 : jsonFile << "[1, 2, 3]" << endl << close
    │ │ │ │  
    │ │ │ │ -o10 = /tmp/M2-50412-0/0.json
    │ │ │ │ +o10 = /tmp/M2-79369-0/0.json
    │ │ │ │  
    │ │ │ │  o10 : File
    │ │ │ │  i11 : fromJSON openIn jsonFile
    │ │ │ │  
    │ │ │ │  o11 = {1, 2, 3}
    │ │ │ │  
    │ │ │ │  o11 : List
    │ │ ├── ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp1.out
    │ │ │ @@ -17,24 +17,24 @@
    │ │ │  o3 = ideal (y0*z0*x2 + x0*z0*y2 + x0*y0*z2 + z0*x1*y1 + y0*x1*z1 + x0*y1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y0*z0*x1 + x0*z0*y1 + x0*y0*z1, x0*y0*z0)
    │ │ │  
    │ │ │  o3 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │  
    │ │ │  i4 : elapsedTime jetsRadical(2,I)
    │ │ │ - -- .00230799s elapsed
    │ │ │ + -- .00278646s elapsed
    │ │ │  
    │ │ │  o4 = ideal (y0*z0*x2, x0*z0*y2, x0*y0*z2, z0*x1*y1, y0*x1*z1, x0*y1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y0*z0*x1, x0*z0*y1, x0*y0*z1, x0*y0*z0)
    │ │ │  
    │ │ │  o4 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │  
    │ │ │  i5 : elapsedTime radical J2I
    │ │ │ - -- .357303s elapsed
    │ │ │ + -- .266847s elapsed
    │ │ │  
    │ │ │  o5 = ideal (x0*y0*z0, x0*y0*z1, x0*z0*y1, y0*z0*x1, x0*y1*z1, y0*x1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       z0*x1*y1, x0*y0*z2, x0*z0*y2, y0*z0*x2)
    │ │ │  
    │ │ │  o5 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ ├── ./usr/share/doc/Macaulay2/Jets/example-output/___Storing_sp__Computations.out
    │ │ │ @@ -33,15 +33,15 @@
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : I.cache.?jet
    │ │ │  
    │ │ │  o7 = false
    │ │ │  
    │ │ │  i8 : elapsedTime jets(3,I)
    │ │ │ - -- .00965176s elapsed
    │ │ │ + -- .0108347s elapsed
    │ │ │  
    │ │ │                                                    2                 2
    │ │ │  o8 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o8 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │  
    │ │ │  i9 : I.cache.?jet
    │ │ │ @@ -53,23 +53,23 @@
    │ │ │  o10 = CacheTable{jetsMatrix => | 2x0x3-y3+2x1x2 |}
    │ │ │                                 | 2x0x2-y2+x1^2  |
    │ │ │                                 | 2x0x1-y1       |
    │ │ │                                 | x0^2-y0        |
    │ │ │                   jetsMaxOrder => 3
    │ │ │  
    │ │ │  i11 : elapsedTime jets(3,I)
    │ │ │ - -- .00257115s elapsed
    │ │ │ + -- .00302054s elapsed
    │ │ │  
    │ │ │                                                     2                 2
    │ │ │  o11 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o11 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │  
    │ │ │  i12 : elapsedTime jets(2,I)
    │ │ │ - -- .00225703s elapsed
    │ │ │ + -- .00267815s elapsed
    │ │ │  
    │ │ │                               2                 2
    │ │ │  o12 = ideal (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o12 : Ideal of QQ[x0, y0][x1, y1][x2, y2]
    │ │ │  
    │ │ │  i13 : Q = R/I
    │ │ │ @@ -148,15 +148,15 @@
    │ │ │  o22 = true
    │ │ │  
    │ │ │  i23 : f.cache.?jet
    │ │ │  
    │ │ │  o23 = false
    │ │ │  
    │ │ │  i24 : elapsedTime jets(3,f)
    │ │ │ - -- .0121591s elapsed
    │ │ │ + -- .0159775s elapsed
    │ │ │  
    │ │ │                                                QQ[x0, y0][x1, y1][x2, y2][x3, y3]                                                      2                    2
    │ │ │  o24 = map (QQ[t0][t1][t2][t3], ----------------------------------------------------------------, {t3, 2t0*t3 + 2t1*t2, t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                                                        2                 2
    │ │ │                                 (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                                      QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ @@ -173,15 +173,15 @@
    │ │ │  o26 = CacheTable{jetsMatrix => | t3 2t0t3+2t1t2 |}
    │ │ │                                 | t2 2t0t2+t1^2  |
    │ │ │                                 | t1 2t0t1       |
    │ │ │                                 | t0 t0^2        |
    │ │ │                   jetsMaxOrder => 3
    │ │ │  
    │ │ │  i27 : elapsedTime jets(2,f)
    │ │ │ - -- .000624555s elapsed
    │ │ │ + -- .000929181s elapsed
    │ │ │  
    │ │ │                                     QQ[x0, y0][x1, y1][x2, y2]                          2                    2
    │ │ │  o27 = map (QQ[t0][t1][t2], ------------------------------------------, {t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                              2                 2
    │ │ │                             (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                           QQ[x0, y0][x1, y1][x2, y2]
    │ │ ├── ./usr/share/doc/Macaulay2/Jets/html/___Example_sp1.html
    │ │ │ @@ -87,27 +87,27 @@
    │ │ │          
    │ │ │

    However, by [GS06, Theorem 3.1], the radical is always a (squarefree) monomial ideal. In fact, the proof of [GS06, Theorem 3.2] shows that the radical is generated by the individual terms in the generators of the ideal of jets. This observation provides an alternative algorithm for computing radicals of jets of monomial ideals, which can be faster than the default radical computation in Macaulay2.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,23 +27,23 @@ │ │ │ │ However, by [GS06, Theorem 3.1], the radical is always a (squarefree) monomial │ │ │ │ ideal. In fact, the proof of [GS06, Theorem 3.2] shows that the radical is │ │ │ │ generated by the individual terms in the generators of the ideal of jets. This │ │ │ │ observation provides an alternative algorithm for computing radicals of jets of │ │ │ │ monomial ideals, which can be faster than the default radical computation in │ │ │ │ Macaulay2. │ │ │ │ i4 : elapsedTime jetsRadical(2,I) │ │ │ │ - -- .00230799s elapsed │ │ │ │ + -- .00278646s elapsed │ │ │ │ │ │ │ │ o4 = ideal (y0*z0*x2, x0*z0*y2, x0*y0*z2, z0*x1*y1, y0*x1*z1, x0*y1*z1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ y0*z0*x1, x0*z0*y1, x0*y0*z1, x0*y0*z0) │ │ │ │ │ │ │ │ o4 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2] │ │ │ │ i5 : elapsedTime radical J2I │ │ │ │ - -- .357303s elapsed │ │ │ │ + -- .266847s elapsed │ │ │ │ │ │ │ │ o5 = ideal (x0*y0*z0, x0*y0*z1, x0*z0*y1, y0*z0*x1, x0*y1*z1, y0*x1*z1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ z0*x1*y1, x0*y0*z2, x0*z0*y2, y0*z0*x2) │ │ │ │ │ │ │ │ o5 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2] │ │ │ │ For a monomial hypersurface, [GS06, Theorem 3.2] describes the minimal primes │ │ ├── ./usr/share/doc/Macaulay2/Jets/html/___Storing_sp__Computations.html │ │ │ @@ -117,15 +117,15 @@ │ │ │ │ │ │ o7 = false │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -146,26 +146,26 @@ │ │ │ | x0^2-y0 | │ │ │ jetsMaxOrder => 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -290,15 +290,15 @@ │ │ │ │ │ │ o23 = false │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : elapsedTime jetsRadical(2,I)
    │ │ │ - -- .00230799s elapsed
    │ │ │ + -- .00278646s elapsed
    │ │ │  
    │ │ │  o4 = ideal (y0*z0*x2, x0*z0*y2, x0*y0*z2, z0*x1*y1, y0*x1*z1, x0*y1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y0*z0*x1, x0*z0*y1, x0*y0*z1, x0*y0*z0)
    │ │ │  
    │ │ │  o4 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │
    │ │ │
    i5 : elapsedTime radical J2I
    │ │ │ - -- .357303s elapsed
    │ │ │ + -- .266847s elapsed
    │ │ │  
    │ │ │  o5 = ideal (x0*y0*z0, x0*y0*z1, x0*z0*y1, y0*z0*x1, x0*y1*z1, y0*x1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       z0*x1*y1, x0*y0*z2, x0*z0*y2, y0*z0*x2)
    │ │ │  
    │ │ │  o5 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │
    │ │ │
    i8 : elapsedTime jets(3,I)
    │ │ │ - -- .00965176s elapsed
    │ │ │ + -- .0108347s elapsed
    │ │ │  
    │ │ │                                                    2                 2
    │ │ │  o8 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o8 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │
    │ │ │
    i11 : elapsedTime jets(3,I)
    │ │ │ - -- .00257115s elapsed
    │ │ │ + -- .00302054s elapsed
    │ │ │  
    │ │ │                                                     2                 2
    │ │ │  o11 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o11 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │
    │ │ │
    i12 : elapsedTime jets(2,I)
    │ │ │ - -- .00225703s elapsed
    │ │ │ + -- .00267815s elapsed
    │ │ │  
    │ │ │                               2                 2
    │ │ │  o12 = ideal (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o12 : Ideal of QQ[x0, y0][x1, y1][x2, y2]
    │ │ │
    │ │ │
    i24 : elapsedTime jets(3,f)
    │ │ │ - -- .0121591s elapsed
    │ │ │ + -- .0159775s elapsed
    │ │ │  
    │ │ │                                                QQ[x0, y0][x1, y1][x2, y2][x3, y3]                                                      2                    2
    │ │ │  o24 = map (QQ[t0][t1][t2][t3], ----------------------------------------------------------------, {t3, 2t0*t3 + 2t1*t2, t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                                                        2                 2
    │ │ │                                 (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                                      QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ @@ -324,15 +324,15 @@
    │ │ │                                 | t0 t0^2        |
    │ │ │                   jetsMaxOrder => 3
    │ │ │
    │ │ │
    i27 : elapsedTime jets(2,f)
    │ │ │ - -- .000624555s elapsed
    │ │ │ + -- .000929181s elapsed
    │ │ │  
    │ │ │                                     QQ[x0, y0][x1, y1][x2, y2]                          2                    2
    │ │ │  o27 = map (QQ[t0][t1][t2], ------------------------------------------, {t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                              2                 2
    │ │ │                             (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                           QQ[x0, y0][x1, y1][x2, y2]
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -41,15 +41,15 @@
    │ │ │ │  o6 = ideal(x  - y)
    │ │ │ │  
    │ │ │ │  o6 : Ideal of R
    │ │ │ │  i7 : I.cache.?jet
    │ │ │ │  
    │ │ │ │  o7 = false
    │ │ │ │  i8 : elapsedTime jets(3,I)
    │ │ │ │ - -- .00965176s elapsed
    │ │ │ │ + -- .0108347s elapsed
    │ │ │ │  
    │ │ │ │                                                    2                 2
    │ │ │ │  o8 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │ │  
    │ │ │ │  o8 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ │  i9 : I.cache.?jet
    │ │ │ │  
    │ │ │ │ @@ -58,22 +58,22 @@
    │ │ │ │  
    │ │ │ │  o10 = CacheTable{jetsMatrix => | 2x0x3-y3+2x1x2 |}
    │ │ │ │                                 | 2x0x2-y2+x1^2  |
    │ │ │ │                                 | 2x0x1-y1       |
    │ │ │ │                                 | x0^2-y0        |
    │ │ │ │                   jetsMaxOrder => 3
    │ │ │ │  i11 : elapsedTime jets(3,I)
    │ │ │ │ - -- .00257115s elapsed
    │ │ │ │ + -- .00302054s elapsed
    │ │ │ │  
    │ │ │ │                                                     2                 2
    │ │ │ │  o11 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │ │  
    │ │ │ │  o11 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ │  i12 : elapsedTime jets(2,I)
    │ │ │ │ - -- .00225703s elapsed
    │ │ │ │ + -- .00267815s elapsed
    │ │ │ │  
    │ │ │ │                               2                 2
    │ │ │ │  o12 = ideal (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │ │  
    │ │ │ │  o12 : Ideal of QQ[x0, y0][x1, y1][x2, y2]
    │ │ │ │  For quotient rings, data is stored under *.jet. Each jets order gives rise to a
    │ │ │ │  different quotient that is stored separately under *.jet.jetsRing (order zero
    │ │ │ │ @@ -153,15 +153,15 @@
    │ │ │ │  i22 : isWellDefined f
    │ │ │ │  
    │ │ │ │  o22 = true
    │ │ │ │  i23 : f.cache.?jet
    │ │ │ │  
    │ │ │ │  o23 = false
    │ │ │ │  i24 : elapsedTime jets(3,f)
    │ │ │ │ - -- .0121591s elapsed
    │ │ │ │ + -- .0159775s elapsed
    │ │ │ │  
    │ │ │ │                                                QQ[x0, y0][x1, y1][x2, y2][x3,
    │ │ │ │  y3]                                                      2                    2
    │ │ │ │  o24 = map (QQ[t0][t1][t2][t3], ------------------------------------------------
    │ │ │ │  ----------------, {t3, 2t0*t3 + 2t1*t2, t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │ │                                                                        2
    │ │ │ │  2
    │ │ │ │ @@ -183,15 +183,15 @@
    │ │ │ │  
    │ │ │ │  o26 = CacheTable{jetsMatrix => | t3 2t0t3+2t1t2 |}
    │ │ │ │                                 | t2 2t0t2+t1^2  |
    │ │ │ │                                 | t1 2t0t1       |
    │ │ │ │                                 | t0 t0^2        |
    │ │ │ │                   jetsMaxOrder => 3
    │ │ │ │  i27 : elapsedTime jets(2,f)
    │ │ │ │ - -- .000624555s elapsed
    │ │ │ │ + -- .000929181s elapsed
    │ │ │ │  
    │ │ │ │                                     QQ[x0, y0][x1, y1][x2, y2]
    │ │ │ │  2                    2
    │ │ │ │  o27 = map (QQ[t0][t1][t2], ------------------------------------------, {t2,
    │ │ │ │  2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │ │                                              2                 2
    │ │ │ │                             (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_analyze__Strand.out
    │ │ │ @@ -19,15 +19,15 @@
    │ │ │        32003  0   5   0   5         32003  0   5   0   5          32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5          32003  0   5   0   5
    │ │ │                                                                                                                                                                                                                                                                                           
    │ │ │       0                            1                             2                              3                              4                              5                              6                              7                              8                             9
    │ │ │  
    │ │ │  o3 : Complex
    │ │ │  
    │ │ │  i4 : L = analyzeStrand(F,a); #L
    │ │ │ - -- .023996s elapsed
    │ │ │ + -- .0290441s elapsed
    │ │ │  
    │ │ │  o5 = 350
    │ │ │  
    │ │ │  i6 : betti F_a, betti F
    │ │ │  
    │ │ │                 0         0  1   2   3   4   5   6   7  8 9
    │ │ │  o6 = (total: 833, total: 1 36 187 491 793 833 573 250 63 7)
    │ │ │ @@ -46,19 +46,19 @@
    │ │ │  o7 : Expression of class Product
    │ │ │  
    │ │ │  i8 : L3 = select(L,c->c%3==0); #L3
    │ │ │  
    │ │ │  o9 = 14
    │ │ │  
    │ │ │  i10 : carpetBettiTable(a,b,3)
    │ │ │ - -- .00242104s elapsed
    │ │ │ - -- .00673308s elapsed
    │ │ │ - -- .034067s elapsed
    │ │ │ - -- .0999449s elapsed
    │ │ │ - -- .00367219s elapsed
    │ │ │ + -- .00271971s elapsed
    │ │ │ + -- .0075356s elapsed
    │ │ │ + -- .0306154s elapsed
    │ │ │ + -- .118388s elapsed
    │ │ │ + -- .00429132s elapsed
    │ │ │  
    │ │ │               0  1   2   3   4   5   6   7  8 9
    │ │ │  o10 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │            0: 1  .   .   .   .   .   .   .  . .
    │ │ │            1: . 36 160 315 288  14   .   .  . .
    │ │ │            2: .  .   .   .  14 288 315 160 36 .
    │ │ │            3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Table.out
    │ │ │ @@ -3,20 +3,20 @@
    │ │ │  i1 : a=5,b=5
    │ │ │  
    │ │ │  o1 = (5, 5)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : elapsedTime T=carpetBettiTable(a,b,3)
    │ │ │ - -- .00266181s elapsed
    │ │ │ - -- .00676057s elapsed
    │ │ │ - -- .023025s elapsed
    │ │ │ - -- .00985475s elapsed
    │ │ │ - -- .0035774s elapsed
    │ │ │ - -- .425089s elapsed
    │ │ │ + -- .00290033s elapsed
    │ │ │ + -- .0069708s elapsed
    │ │ │ + -- .0272964s elapsed
    │ │ │ + -- .0107566s elapsed
    │ │ │ + -- .00421075s elapsed
    │ │ │ + -- .391323s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -26,15 +26,15 @@
    │ │ │  i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │  
    │ │ │                ZZ
    │ │ │  o3 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │  
    │ │ │  i4 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .22587s elapsed
    │ │ │ + -- .223502s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o4 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -48,22 +48,22 @@
    │ │ │           1: . . . . . . . . . .
    │ │ │           2: . . . . . . . . . .
    │ │ │           3: . . . . . . . . . .
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ │  
    │ │ │  i6 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00455268s elapsed
    │ │ │ - -- .0173468s elapsed
    │ │ │ - -- .126286s elapsed
    │ │ │ - -- 1.19253s elapsed
    │ │ │ - -- .40692s elapsed
    │ │ │ - -- .0843344s elapsed
    │ │ │ - -- .006517s elapsed
    │ │ │ - -- 6.20834s elapsed
    │ │ │ + -- .00509764s elapsed
    │ │ │ + -- .0200534s elapsed
    │ │ │ + -- .114119s elapsed
    │ │ │ + -- 1.1146s elapsed
    │ │ │ + -- .459029s elapsed
    │ │ │ + -- .0437707s elapsed
    │ │ │ + -- .00770559s elapsed
    │ │ │ + -- 6.09965s elapsed
    │ │ │  
    │ │ │  i7 : carpetBettiTable(h,7)
    │ │ │  
    │ │ │              0  1   2   3    4    5    6    7   8   9 10 11
    │ │ │  o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55  1
    │ │ │           0: 1  .   .   .    .    .    .    .   .   .  .  .
    │ │ │           1: . 55 320 891 1408 1155    .    .   .   .  .  .
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Tables.out
    │ │ │ @@ -3,19 +3,19 @@
    │ │ │  i1 : a=5,b=5
    │ │ │  
    │ │ │  o1 = (5, 5)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : h=carpetBettiTables(a,b)
    │ │ │ - -- .00258607s elapsed
    │ │ │ - -- .00645513s elapsed
    │ │ │ - -- .0463112s elapsed
    │ │ │ - -- .011534s elapsed
    │ │ │ - -- .00360799s elapsed
    │ │ │ + -- .00349752s elapsed
    │ │ │ + -- .00727912s elapsed
    │ │ │ + -- .0309634s elapsed
    │ │ │ + -- .0109234s elapsed
    │ │ │ + -- .00414673s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -48,15 +48,15 @@
    │ │ │  i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │  
    │ │ │                ZZ
    │ │ │  o4 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │  
    │ │ │  i5 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .227924s elapsed
    │ │ │ + -- .253218s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -70,22 +70,22 @@
    │ │ │           1: . . . . . . . . . .
    │ │ │           2: . . . . . . . . . .
    │ │ │           3: . . . . . . . . . .
    │ │ │  
    │ │ │  o6 : BettiTally
    │ │ │  
    │ │ │  i7 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .0046955s elapsed
    │ │ │ - -- .0175456s elapsed
    │ │ │ - -- .0976552s elapsed
    │ │ │ - -- 1.36978s elapsed
    │ │ │ - -- .488999s elapsed
    │ │ │ - -- .0396705s elapsed
    │ │ │ - -- .00677344s elapsed
    │ │ │ - -- 7.12863s elapsed
    │ │ │ + -- .00541836s elapsed
    │ │ │ + -- .0191481s elapsed
    │ │ │ + -- .111475s elapsed
    │ │ │ + -- 1.0324s elapsed
    │ │ │ + -- .459404s elapsed
    │ │ │ + -- .0425998s elapsed
    │ │ │ + -- .00780252s elapsed
    │ │ │ + -- 6.13856s elapsed
    │ │ │  
    │ │ │  i8 : keys h
    │ │ │  
    │ │ │  o8 = {0, 2, 3, 5}
    │ │ │  
    │ │ │  o8 : List
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Det.out
    │ │ │ @@ -3,82 +3,82 @@
    │ │ │  i1 : a=4,b=4
    │ │ │  
    │ │ │  o1 = (4, 4)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : d=carpetDet(a,b)
    │ │ │ - -- .0065779s elapsed
    │ │ │ - -- .0185038s elapsed
    │ │ │ + -- .00798052s elapsed
    │ │ │ + -- .018296s elapsed
    │ │ │  (number Of blocks, 26)
    │ │ │ - -- .000299108s elapsed
    │ │ │ + -- .000372364s elapsed
    │ │ │  1
    │ │ │ - -- .000140792s elapsed
    │ │ │ + -- .000213293s elapsed
    │ │ │  1
    │ │ │ - -- .000145011s elapsed
    │ │ │ + -- .000187363s elapsed
    │ │ │  1
    │ │ │ - -- .000132407s elapsed
    │ │ │ + -- .000194498s elapsed
    │ │ │  1
    │ │ │ - -- .000131325s elapsed
    │ │ │ + -- .000167619s elapsed
    │ │ │  2
    │ │ │ - -- .000139931s elapsed
    │ │ │ + -- .000188789s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000154649s elapsed
    │ │ │ + -- .000192983s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .0028279s elapsed
    │ │ │ + -- .000206051s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .00015534s elapsed
    │ │ │ + -- .000191288s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000137435s elapsed
    │ │ │ + -- .000227422s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000132116s elapsed
    │ │ │ + -- .000174803s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000129923s elapsed
    │ │ │ + -- .000247493s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000126245s elapsed
    │ │ │ + -- .000171526s elapsed
    │ │ │  2
    │ │ │ - -- .000126947s elapsed
    │ │ │ + -- .000168617s elapsed
    │ │ │  2
    │ │ │ - -- .000129502s elapsed
    │ │ │ + -- .000162148s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .00012912s elapsed
    │ │ │ + -- .000170159s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000131656s elapsed
    │ │ │ + -- .000206373s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000189794s elapsed
    │ │ │ + -- .000153179s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000149969s elapsed
    │ │ │ + -- .000182735s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000272388s elapsed
    │ │ │ + -- .000187413s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000124412s elapsed
    │ │ │ + -- .000193206s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000124452s elapsed
    │ │ │ + -- .000237083s elapsed
    │ │ │  2
    │ │ │ - -- .000124672s elapsed
    │ │ │ + -- .00023914s elapsed
    │ │ │  1
    │ │ │ - -- .000125894s elapsed
    │ │ │ + -- .000248401s elapsed
    │ │ │  1
    │ │ │ - -- .000125735s elapsed
    │ │ │ + -- .000181475s elapsed
    │ │ │  1
    │ │ │ - -- .000130323s elapsed
    │ │ │ + -- .000238442s elapsed
    │ │ │  1
    │ │ │  
    │ │ │  o2 = 3131031158784
    │ │ │  
    │ │ │  i3 : factor d
    │ │ │  
    │ │ │        32 6
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_compute__Bound.out
    │ │ │ @@ -3,17 +3,17 @@
    │ │ │  i1 : (a,b)=computeBound(6,4,3)
    │ │ │  
    │ │ │  o1 = (9, 7)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : computeBound 3
    │ │ │ - -- .196956s elapsed
    │ │ │ - -- .286293s elapsed
    │ │ │ - -- .219371s elapsed
    │ │ │ - -- .280074s elapsed
    │ │ │ - -- .290248s elapsed
    │ │ │ - -- .27205s elapsed
    │ │ │ + -- .148703s elapsed
    │ │ │ + -- .208588s elapsed
    │ │ │ + -- .212682s elapsed
    │ │ │ + -- .196354s elapsed
    │ │ │ + -- .209941s elapsed
    │ │ │ + -- .192714s elapsed
    │ │ │  
    │ │ │  o2 = 6
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3__Betti__Tables.out
    │ │ │ @@ -9,19 +9,19 @@
    │ │ │  i2 : e=(-1,5)
    │ │ │  
    │ │ │  o2 = (-1, 5)
    │ │ │  
    │ │ │  o2 : Sequence
    │ │ │  
    │ │ │  i3 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .00296643s elapsed
    │ │ │ - -- .00668595s elapsed
    │ │ │ - -- .0246113s elapsed
    │ │ │ - -- .00899396s elapsed
    │ │ │ - -- .00342295s elapsed
    │ │ │ + -- .0357684s elapsed
    │ │ │ + -- .00727389s elapsed
    │ │ │ + -- .0269504s elapsed
    │ │ │ + -- .0101198s elapsed
    │ │ │ + -- .00400945s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o3 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -49,15 +49,15 @@
    │ │ │  i4 : keys h
    │ │ │  
    │ │ │  o4 = {0, 2, 3, 5}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime T= minimalBetti degenerateK3(a,b,e,Characteristic=>5)
    │ │ │ - -- .306947s elapsed
    │ │ │ + -- .259345s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 167 370 476 476 370 167 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 322 336 140  48   7  . .
    │ │ │           2: .  .   7  48 140 336 322 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -77,19 +77,19 @@
    │ │ │  i7 : e=(-1,5^2)
    │ │ │  
    │ │ │  o7 = (-1, 25)
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │  
    │ │ │  i8 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .00447685s elapsed
    │ │ │ - -- .0115156s elapsed
    │ │ │ - -- .0436223s elapsed
    │ │ │ - -- .0170221s elapsed
    │ │ │ - -- .00643044s elapsed
    │ │ │ + -- .00306942s elapsed
    │ │ │ + -- .00744399s elapsed
    │ │ │ + -- .0278042s elapsed
    │ │ │ + -- .0106554s elapsed
    │ │ │ + -- .00415436s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o8 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1     }
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_resonance__Det.out
    │ │ │ @@ -1,172 +1,172 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729182891690704738
    │ │ │  
    │ │ │  i1 : a=4
    │ │ │  
    │ │ │  o1 = 4
    │ │ │  
    │ │ │  i2 : (d1,d2)=resonanceDet(a)
    │ │ │ - -- .0182126s elapsed
    │ │ │ + -- .0290588s elapsed
    │ │ │  (number of blocks= , 18)
    │ │ │  (size of the matrices, Tally{1 => 4})
    │ │ │                               2 => 6
    │ │ │                               3 => 2
    │ │ │                               4 => 6
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │      7: 1 1
    │ │ │ - -- .000053781s elapsed
    │ │ │ + -- .000077289s elapsed
    │ │ │  (e )(-1)
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      7: 2 .
    │ │ │      8: . 2
    │ │ │ - -- .000088806s elapsed
    │ │ │ + -- .000172386s elapsed
    │ │ │      2
    │ │ │  (e ) (e )(-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      7: 2 .
    │ │ │      8: . .
    │ │ │      9: . 2
    │ │ │ - -- .000067035s elapsed
    │ │ │ + -- .000103137s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e )
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 3 3
    │ │ │      7: 2 .
    │ │ │      8: 1 .
    │ │ │      9: . 1
    │ │ │     10: . 2
    │ │ │ - -- .000084928s elapsed
    │ │ │ + -- .00017342s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (-3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      7: 1 .
    │ │ │      8: 1 .
    │ │ │      9: 2 2
    │ │ │     10: . 1
    │ │ │     11: . 1
    │ │ │ - -- .000080921s elapsed
    │ │ │ + -- .000171544s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      8: 1 .
    │ │ │      9: 2 1
    │ │ │     10: 1 2
    │ │ │     11: . 1
    │ │ │ - -- .000090478s elapsed
    │ │ │ + -- .000183206s elapsed
    │ │ │      2    3
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │      9: 1 1
    │ │ │ - -- .000022591s elapsed
    │ │ │ + -- .000056072s elapsed
    │ │ │  (e )(-1)
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      9: 1 1
    │ │ │     10: 1 1
    │ │ │ - -- .000064409s elapsed
    │ │ │ + -- .000148423s elapsed
    │ │ │      2
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 2 1
    │ │ │     10: 1 1
    │ │ │     11: 1 2
    │ │ │ - -- .000081843s elapsed
    │ │ │ + -- .000106931s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e ) (-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 1 .
    │ │ │     10: 2 1
    │ │ │     11: 1 2
    │ │ │     12: . 1
    │ │ │ - -- .000084347s elapsed
    │ │ │ + -- .000180818s elapsed
    │ │ │      2    3
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 1 .
    │ │ │     10: 1 .
    │ │ │     11: 2 2
    │ │ │     12: . 1
    │ │ │     13: . 1
    │ │ │ - -- .000072405s elapsed
    │ │ │ + -- .000118293s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 2 1
    │ │ │     10: 1 1
    │ │ │     11: 1 2
    │ │ │ - -- .000076343s elapsed
    │ │ │ + -- .000155828s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e ) (-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 3 3
    │ │ │     10: 2 .
    │ │ │     11: 1 .
    │ │ │     12: . 1
    │ │ │     13: . 2
    │ │ │ - -- .000070171s elapsed
    │ │ │ + -- .000146349s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     10: 1 1
    │ │ │     11: 1 1
    │ │ │ - -- .00005925s elapsed
    │ │ │ + -- .000126617s elapsed
    │ │ │      2
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     11: 2 .
    │ │ │     12: . .
    │ │ │     13: . 2
    │ │ │ - -- .00006973s elapsed
    │ │ │ + -- .000166428s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e )
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │     11: 1 1
    │ │ │ - -- .000021691s elapsed
    │ │ │ + -- .000054316s elapsed
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     12: 2 .
    │ │ │     13: . 2
    │ │ │ - -- .000068347s elapsed
    │ │ │ + -- .000083679s elapsed
    │ │ │      2
    │ │ │  (e ) (e )(-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │     13: 1 1
    │ │ │ - -- .000024396s elapsed
    │ │ │ + -- .000034125s elapsed
    │ │ │  (e )
    │ │ │    1
    │ │ │  
    │ │ │         6      32    32
    │ │ │  o2 = (3 , (e )  (e )  )
    │ │ │              1     2
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_analyze__Strand.html
    │ │ │ @@ -102,15 +102,15 @@
    │ │ │  
    │ │ │  o3 : Complex
    │ │ │
    │ │ │
    i4 : L = analyzeStrand(F,a); #L
    │ │ │ - -- .023996s elapsed
    │ │ │ + -- .0290441s elapsed
    │ │ │  
    │ │ │  o5 = 350
    │ │ │
    │ │ │
    i6 : betti F_a, betti F
    │ │ │ @@ -141,19 +141,19 @@
    │ │ │  
    │ │ │  o9 = 14
    │ │ │
    │ │ │
    i10 : carpetBettiTable(a,b,3)
    │ │ │ - -- .00242104s elapsed
    │ │ │ - -- .00673308s elapsed
    │ │ │ - -- .034067s elapsed
    │ │ │ - -- .0999449s elapsed
    │ │ │ - -- .00367219s elapsed
    │ │ │ + -- .00271971s elapsed
    │ │ │ + -- .0075356s elapsed
    │ │ │ + -- .0306154s elapsed
    │ │ │ + -- .118388s elapsed
    │ │ │ + -- .00429132s elapsed
    │ │ │  
    │ │ │               0  1   2   3   4   5   6   7  8 9
    │ │ │  o10 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │            0: 1  .   .   .   .   .   .   .  . .
    │ │ │            1: . 36 160 315 288  14   .   .  . .
    │ │ │            2: .  .   .   .  14 288 315 160 36 .
    │ │ │            3: .  .   .   .   .   .   .   .  . 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -49,15 +49,15 @@
    │ │ │ │       0                            1                             2
    │ │ │ │  3                              4                              5
    │ │ │ │  6                              7                              8
    │ │ │ │  9
    │ │ │ │  
    │ │ │ │  o3 : Complex
    │ │ │ │  i4 : L = analyzeStrand(F,a); #L
    │ │ │ │ - -- .023996s elapsed
    │ │ │ │ + -- .0290441s elapsed
    │ │ │ │  
    │ │ │ │  o5 = 350
    │ │ │ │  i6 : betti F_a, betti F
    │ │ │ │  
    │ │ │ │                 0         0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o6 = (total: 833, total: 1 36 187 491 793 833 573 250 63 7)
    │ │ │ │            6: 350      0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │ @@ -72,19 +72,19 @@
    │ │ │ │  o7 = 2   3
    │ │ │ │  
    │ │ │ │  o7 : Expression of class Product
    │ │ │ │  i8 : L3 = select(L,c->c%3==0); #L3
    │ │ │ │  
    │ │ │ │  o9 = 14
    │ │ │ │  i10 : carpetBettiTable(a,b,3)
    │ │ │ │ - -- .00242104s elapsed
    │ │ │ │ - -- .00673308s elapsed
    │ │ │ │ - -- .034067s elapsed
    │ │ │ │ - -- .0999449s elapsed
    │ │ │ │ - -- .00367219s elapsed
    │ │ │ │ + -- .00271971s elapsed
    │ │ │ │ + -- .0075356s elapsed
    │ │ │ │ + -- .0306154s elapsed
    │ │ │ │ + -- .118388s elapsed
    │ │ │ │ + -- .00429132s elapsed
    │ │ │ │  
    │ │ │ │               0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o10 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │            0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │            1: . 36 160 315 288  14   .   .  . .
    │ │ │ │            2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │            3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Table.html
    │ │ │ @@ -83,20 +83,20 @@
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │
    │ │ │
    i2 : elapsedTime T=carpetBettiTable(a,b,3)
    │ │ │ - -- .00266181s elapsed
    │ │ │ - -- .00676057s elapsed
    │ │ │ - -- .023025s elapsed
    │ │ │ - -- .00985475s elapsed
    │ │ │ - -- .0035774s elapsed
    │ │ │ - -- .425089s elapsed
    │ │ │ + -- .00290033s elapsed
    │ │ │ + -- .0069708s elapsed
    │ │ │ + -- .0272964s elapsed
    │ │ │ + -- .0107566s elapsed
    │ │ │ + -- .00421075s elapsed
    │ │ │ + -- .391323s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │  o3 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │
    │ │ │
    i4 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .22587s elapsed
    │ │ │ + -- .223502s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o4 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -140,22 +140,22 @@
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ │
    │ │ │
    i6 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00455268s elapsed
    │ │ │ - -- .0173468s elapsed
    │ │ │ - -- .126286s elapsed
    │ │ │ - -- 1.19253s elapsed
    │ │ │ - -- .40692s elapsed
    │ │ │ - -- .0843344s elapsed
    │ │ │ - -- .006517s elapsed
    │ │ │ - -- 6.20834s elapsed
    │ │ │ + -- .00509764s elapsed │ │ │ + -- .0200534s elapsed │ │ │ + -- .114119s elapsed │ │ │ + -- 1.1146s elapsed │ │ │ + -- .459029s elapsed │ │ │ + -- .0437707s elapsed │ │ │ + -- .00770559s elapsed │ │ │ + -- 6.09965s elapsed │ │ │
    │ │ │
    i7 : carpetBettiTable(h,7)
    │ │ │  
    │ │ │              0  1   2   3    4    5    6    7   8   9 10 11
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -25,20 +25,20 @@
    │ │ │ │  resulting data allow us to compute the Betti tables for arbitrary primes.
    │ │ │ │  i1 : a=5,b=5
    │ │ │ │  
    │ │ │ │  o1 = (5, 5)
    │ │ │ │  
    │ │ │ │  o1 : Sequence
    │ │ │ │  i2 : elapsedTime T=carpetBettiTable(a,b,3)
    │ │ │ │ - -- .00266181s elapsed
    │ │ │ │ - -- .00676057s elapsed
    │ │ │ │ - -- .023025s elapsed
    │ │ │ │ - -- .00985475s elapsed
    │ │ │ │ - -- .0035774s elapsed
    │ │ │ │ - -- .425089s elapsed
    │ │ │ │ + -- .00290033s elapsed
    │ │ │ │ + -- .0069708s elapsed
    │ │ │ │ + -- .0272964s elapsed
    │ │ │ │ + -- .0107566s elapsed
    │ │ │ │ + -- .00421075s elapsed
    │ │ │ │ + -- .391323s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o2 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -46,15 +46,15 @@
    │ │ │ │  o2 : BettiTally
    │ │ │ │  i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │ │  
    │ │ │ │                ZZ
    │ │ │ │  o3 : Ideal of --[x ..x , y ..y ]
    │ │ │ │                 3  0   5   0   5
    │ │ │ │  i4 : elapsedTime T'=minimalBetti J
    │ │ │ │ - -- .22587s elapsed
    │ │ │ │ + -- .223502s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o4 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -66,22 +66,22 @@
    │ │ │ │  o5 = total: . . . . . . . . . .
    │ │ │ │           1: . . . . . . . . . .
    │ │ │ │           2: . . . . . . . . . .
    │ │ │ │           3: . . . . . . . . . .
    │ │ │ │  
    │ │ │ │  o5 : BettiTally
    │ │ │ │  i6 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ │ - -- .00455268s elapsed
    │ │ │ │ - -- .0173468s elapsed
    │ │ │ │ - -- .126286s elapsed
    │ │ │ │ - -- 1.19253s elapsed
    │ │ │ │ - -- .40692s elapsed
    │ │ │ │ - -- .0843344s elapsed
    │ │ │ │ - -- .006517s elapsed
    │ │ │ │ - -- 6.20834s elapsed
    │ │ │ │ + -- .00509764s elapsed
    │ │ │ │ + -- .0200534s elapsed
    │ │ │ │ + -- .114119s elapsed
    │ │ │ │ + -- 1.1146s elapsed
    │ │ │ │ + -- .459029s elapsed
    │ │ │ │ + -- .0437707s elapsed
    │ │ │ │ + -- .00770559s elapsed
    │ │ │ │ + -- 6.09965s elapsed
    │ │ │ │  i7 : carpetBettiTable(h,7)
    │ │ │ │  
    │ │ │ │              0  1   2   3    4    5    6    7   8   9 10 11
    │ │ │ │  o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55  1
    │ │ │ │           0: 1  .   .   .    .    .    .    .   .   .  .  .
    │ │ │ │           1: . 55 320 891 1408 1155    .    .   .   .  .  .
    │ │ │ │           2: .  .   .   .    .    . 1155 1408 891 320 55  .
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Tables.html
    │ │ │ @@ -80,19 +80,19 @@
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │
    │ │ │
    i2 : h=carpetBettiTables(a,b)
    │ │ │ - -- .00258607s elapsed
    │ │ │ - -- .00645513s elapsed
    │ │ │ - -- .0463112s elapsed
    │ │ │ - -- .011534s elapsed
    │ │ │ - -- .00360799s elapsed
    │ │ │ + -- .00349752s elapsed
    │ │ │ + -- .00727912s elapsed
    │ │ │ + -- .0309634s elapsed
    │ │ │ + -- .0109234s elapsed
    │ │ │ + -- .00414673s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -134,15 +134,15 @@
    │ │ │  o4 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │
    │ │ │
    i5 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .227924s elapsed
    │ │ │ + -- .253218s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -162,22 +162,22 @@
    │ │ │  
    │ │ │  o6 : BettiTally
    │ │ │
    │ │ │
    i7 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .0046955s elapsed
    │ │ │ - -- .0175456s elapsed
    │ │ │ - -- .0976552s elapsed
    │ │ │ - -- 1.36978s elapsed
    │ │ │ - -- .488999s elapsed
    │ │ │ - -- .0396705s elapsed
    │ │ │ - -- .00677344s elapsed
    │ │ │ - -- 7.12863s elapsed
    │ │ │ + -- .00541836s elapsed │ │ │ + -- .0191481s elapsed │ │ │ + -- .111475s elapsed │ │ │ + -- 1.0324s elapsed │ │ │ + -- .459404s elapsed │ │ │ + -- .0425998s elapsed │ │ │ + -- .00780252s elapsed │ │ │ + -- 6.13856s elapsed │ │ │
    │ │ │
    i8 : keys h
    │ │ │  
    │ │ │  o8 = {0, 2, 3, 5}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,19 +21,19 @@
    │ │ │ │  resulting data allow us to compute the Betti tables for arbitrary primes.
    │ │ │ │  i1 : a=5,b=5
    │ │ │ │  
    │ │ │ │  o1 = (5, 5)
    │ │ │ │  
    │ │ │ │  o1 : Sequence
    │ │ │ │  i2 : h=carpetBettiTables(a,b)
    │ │ │ │ - -- .00258607s elapsed
    │ │ │ │ - -- .00645513s elapsed
    │ │ │ │ - -- .0463112s elapsed
    │ │ │ │ - -- .011534s elapsed
    │ │ │ │ - -- .00360799s elapsed
    │ │ │ │ + -- .00349752s elapsed
    │ │ │ │ + -- .00727912s elapsed
    │ │ │ │ + -- .0309634s elapsed
    │ │ │ │ + -- .0109234s elapsed
    │ │ │ │ + -- .00414673s elapsed
    │ │ │ │  
    │ │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -63,15 +63,15 @@
    │ │ │ │  o3 : BettiTally
    │ │ │ │  i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │ │  
    │ │ │ │                ZZ
    │ │ │ │  o4 : Ideal of --[x ..x , y ..y ]
    │ │ │ │                 3  0   5   0   5
    │ │ │ │  i5 : elapsedTime T'=minimalBetti J
    │ │ │ │ - -- .227924s elapsed
    │ │ │ │ + -- .253218s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o5 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -83,22 +83,22 @@
    │ │ │ │  o6 = total: . . . . . . . . . .
    │ │ │ │           1: . . . . . . . . . .
    │ │ │ │           2: . . . . . . . . . .
    │ │ │ │           3: . . . . . . . . . .
    │ │ │ │  
    │ │ │ │  o6 : BettiTally
    │ │ │ │  i7 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ │ - -- .0046955s elapsed
    │ │ │ │ - -- .0175456s elapsed
    │ │ │ │ - -- .0976552s elapsed
    │ │ │ │ - -- 1.36978s elapsed
    │ │ │ │ - -- .488999s elapsed
    │ │ │ │ - -- .0396705s elapsed
    │ │ │ │ - -- .00677344s elapsed
    │ │ │ │ - -- 7.12863s elapsed
    │ │ │ │ + -- .00541836s elapsed
    │ │ │ │ + -- .0191481s elapsed
    │ │ │ │ + -- .111475s elapsed
    │ │ │ │ + -- 1.0324s elapsed
    │ │ │ │ + -- .459404s elapsed
    │ │ │ │ + -- .0425998s elapsed
    │ │ │ │ + -- .00780252s elapsed
    │ │ │ │ + -- 6.13856s elapsed
    │ │ │ │  i8 : keys h
    │ │ │ │  
    │ │ │ │  o8 = {0, 2, 3, 5}
    │ │ │ │  
    │ │ │ │  o8 : List
    │ │ │ │  i9 : carpetBettiTable(h,7)
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Det.html
    │ │ │ @@ -80,82 +80,82 @@
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │
    │ │ │
    i2 : d=carpetDet(a,b)
    │ │ │ - -- .0065779s elapsed
    │ │ │ - -- .0185038s elapsed
    │ │ │ + -- .00798052s elapsed
    │ │ │ + -- .018296s elapsed
    │ │ │  (number Of blocks, 26)
    │ │ │ - -- .000299108s elapsed
    │ │ │ + -- .000372364s elapsed
    │ │ │  1
    │ │ │ - -- .000140792s elapsed
    │ │ │ + -- .000213293s elapsed
    │ │ │  1
    │ │ │ - -- .000145011s elapsed
    │ │ │ + -- .000187363s elapsed
    │ │ │  1
    │ │ │ - -- .000132407s elapsed
    │ │ │ + -- .000194498s elapsed
    │ │ │  1
    │ │ │ - -- .000131325s elapsed
    │ │ │ + -- .000167619s elapsed
    │ │ │  2
    │ │ │ - -- .000139931s elapsed
    │ │ │ + -- .000188789s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000154649s elapsed
    │ │ │ + -- .000192983s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .0028279s elapsed
    │ │ │ + -- .000206051s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .00015534s elapsed
    │ │ │ + -- .000191288s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000137435s elapsed
    │ │ │ + -- .000227422s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000132116s elapsed
    │ │ │ + -- .000174803s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000129923s elapsed
    │ │ │ + -- .000247493s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000126245s elapsed
    │ │ │ + -- .000171526s elapsed
    │ │ │  2
    │ │ │ - -- .000126947s elapsed
    │ │ │ + -- .000168617s elapsed
    │ │ │  2
    │ │ │ - -- .000129502s elapsed
    │ │ │ + -- .000162148s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .00012912s elapsed
    │ │ │ + -- .000170159s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000131656s elapsed
    │ │ │ + -- .000206373s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000189794s elapsed
    │ │ │ + -- .000153179s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000149969s elapsed
    │ │ │ + -- .000182735s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000272388s elapsed
    │ │ │ + -- .000187413s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000124412s elapsed
    │ │ │ + -- .000193206s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000124452s elapsed
    │ │ │ + -- .000237083s elapsed
    │ │ │  2
    │ │ │ - -- .000124672s elapsed
    │ │ │ + -- .00023914s elapsed
    │ │ │  1
    │ │ │ - -- .000125894s elapsed
    │ │ │ + -- .000248401s elapsed
    │ │ │  1
    │ │ │ - -- .000125735s elapsed
    │ │ │ + -- .000181475s elapsed
    │ │ │  1
    │ │ │ - -- .000130323s elapsed
    │ │ │ + -- .000238442s elapsed
    │ │ │  1
    │ │ │  
    │ │ │  o2 = 3131031158784
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -19,82 +19,82 @@ │ │ │ │ determinants and return their product. │ │ │ │ i1 : a=4,b=4 │ │ │ │ │ │ │ │ o1 = (4, 4) │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : d=carpetDet(a,b) │ │ │ │ - -- .0065779s elapsed │ │ │ │ - -- .0185038s elapsed │ │ │ │ + -- .00798052s elapsed │ │ │ │ + -- .018296s elapsed │ │ │ │ (number Of blocks, 26) │ │ │ │ - -- .000299108s elapsed │ │ │ │ + -- .000372364s elapsed │ │ │ │ 1 │ │ │ │ - -- .000140792s elapsed │ │ │ │ + -- .000213293s elapsed │ │ │ │ 1 │ │ │ │ - -- .000145011s elapsed │ │ │ │ + -- .000187363s elapsed │ │ │ │ 1 │ │ │ │ - -- .000132407s elapsed │ │ │ │ + -- .000194498s elapsed │ │ │ │ 1 │ │ │ │ - -- .000131325s elapsed │ │ │ │ + -- .000167619s elapsed │ │ │ │ 2 │ │ │ │ - -- .000139931s elapsed │ │ │ │ + -- .000188789s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000154649s elapsed │ │ │ │ + -- .000192983s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .0028279s elapsed │ │ │ │ + -- .000206051s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .00015534s elapsed │ │ │ │ + -- .000191288s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000137435s elapsed │ │ │ │ + -- .000227422s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000132116s elapsed │ │ │ │ + -- .000174803s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000129923s elapsed │ │ │ │ + -- .000247493s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000126245s elapsed │ │ │ │ + -- .000171526s elapsed │ │ │ │ 2 │ │ │ │ - -- .000126947s elapsed │ │ │ │ + -- .000168617s elapsed │ │ │ │ 2 │ │ │ │ - -- .000129502s elapsed │ │ │ │ + -- .000162148s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .00012912s elapsed │ │ │ │ + -- .000170159s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000131656s elapsed │ │ │ │ + -- .000206373s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000189794s elapsed │ │ │ │ + -- .000153179s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000149969s elapsed │ │ │ │ + -- .000182735s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000272388s elapsed │ │ │ │ + -- .000187413s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000124412s elapsed │ │ │ │ + -- .000193206s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000124452s elapsed │ │ │ │ + -- .000237083s elapsed │ │ │ │ 2 │ │ │ │ - -- .000124672s elapsed │ │ │ │ + -- .00023914s elapsed │ │ │ │ 1 │ │ │ │ - -- .000125894s elapsed │ │ │ │ + -- .000248401s elapsed │ │ │ │ 1 │ │ │ │ - -- .000125735s elapsed │ │ │ │ + -- .000181475s elapsed │ │ │ │ 1 │ │ │ │ - -- .000130323s elapsed │ │ │ │ + -- .000238442s elapsed │ │ │ │ 1 │ │ │ │ │ │ │ │ o2 = 3131031158784 │ │ │ │ i3 : factor d │ │ │ │ │ │ │ │ 32 6 │ │ │ │ o3 = 2 3 │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_compute__Bound.html │ │ │ @@ -85,20 +85,20 @@ │ │ │ │ │ │ o1 : Sequence │ │ │
    │ │ │
    i2 : computeBound 3
    │ │ │ - -- .196956s elapsed
    │ │ │ - -- .286293s elapsed
    │ │ │ - -- .219371s elapsed
    │ │ │ - -- .280074s elapsed
    │ │ │ - -- .290248s elapsed
    │ │ │ - -- .27205s elapsed
    │ │ │ + -- .148703s elapsed
    │ │ │ + -- .208588s elapsed
    │ │ │ + -- .212682s elapsed
    │ │ │ + -- .196354s elapsed
    │ │ │ + -- .209941s elapsed
    │ │ │ + -- .192714s elapsed
    │ │ │  
    │ │ │  o2 = 6
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -25,20 +25,20 @@ │ │ │ │ classes mod k. We conjecture that c=k^2-k. │ │ │ │ i1 : (a,b)=computeBound(6,4,3) │ │ │ │ │ │ │ │ o1 = (9, 7) │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : computeBound 3 │ │ │ │ - -- .196956s elapsed │ │ │ │ - -- .286293s elapsed │ │ │ │ - -- .219371s elapsed │ │ │ │ - -- .280074s elapsed │ │ │ │ - -- .290248s elapsed │ │ │ │ - -- .27205s elapsed │ │ │ │ + -- .148703s elapsed │ │ │ │ + -- .208588s elapsed │ │ │ │ + -- .212682s elapsed │ │ │ │ + -- .196354s elapsed │ │ │ │ + -- .209941s elapsed │ │ │ │ + -- .192714s elapsed │ │ │ │ │ │ │ │ o2 = 6 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_l_a_t_i_v_e_E_q_u_a_t_i_o_n_s -- compute the relative quadrics │ │ │ │ ********** WWaayyss ttoo uussee ccoommppuutteeBBoouunndd:: ********** │ │ │ │ * computeBound(ZZ) │ │ │ │ * computeBound(ZZ,ZZ,ZZ) │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3__Betti__Tables.html │ │ │ @@ -90,19 +90,19 @@ │ │ │ │ │ │ o2 : Sequence
    │ │ │
    │ │ │
    i3 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .00296643s elapsed
    │ │ │ - -- .00668595s elapsed
    │ │ │ - -- .0246113s elapsed
    │ │ │ - -- .00899396s elapsed
    │ │ │ - -- .00342295s elapsed
    │ │ │ + -- .0357684s elapsed
    │ │ │ + -- .00727389s elapsed
    │ │ │ + -- .0269504s elapsed
    │ │ │ + -- .0101198s elapsed
    │ │ │ + -- .00400945s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o3 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -136,15 +136,15 @@
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : elapsedTime T= minimalBetti degenerateK3(a,b,e,Characteristic=>5)
    │ │ │ - -- .306947s elapsed
    │ │ │ + -- .259345s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 167 370 476 476 370 167 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 322 336 140  48   7  . .
    │ │ │           2: .  .   7  48 140 336 322 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -178,19 +178,19 @@
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │
    │ │ │
    i8 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .00447685s elapsed
    │ │ │ - -- .0115156s elapsed
    │ │ │ - -- .0436223s elapsed
    │ │ │ - -- .0170221s elapsed
    │ │ │ - -- .00643044s elapsed
    │ │ │ + -- .00306942s elapsed
    │ │ │ + -- .00744399s elapsed
    │ │ │ + -- .0278042s elapsed
    │ │ │ + -- .0106554s elapsed
    │ │ │ + -- .00415436s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o8 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1     }
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -27,19 +27,19 @@
    │ │ │ │  o1 : Sequence
    │ │ │ │  i2 : e=(-1,5)
    │ │ │ │  
    │ │ │ │  o2 = (-1, 5)
    │ │ │ │  
    │ │ │ │  o2 : Sequence
    │ │ │ │  i3 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ │ - -- .00296643s elapsed
    │ │ │ │ - -- .00668595s elapsed
    │ │ │ │ - -- .0246113s elapsed
    │ │ │ │ - -- .00899396s elapsed
    │ │ │ │ - -- .00342295s elapsed
    │ │ │ │ + -- .0357684s elapsed
    │ │ │ │ + -- .00727389s elapsed
    │ │ │ │ + -- .0269504s elapsed
    │ │ │ │ + -- .0101198s elapsed
    │ │ │ │ + -- .00400945s elapsed
    │ │ │ │  
    │ │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o3 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -65,15 +65,15 @@
    │ │ │ │  o3 : HashTable
    │ │ │ │  i4 : keys h
    │ │ │ │  
    │ │ │ │  o4 = {0, 2, 3, 5}
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ │ │  i5 : elapsedTime T= minimalBetti degenerateK3(a,b,e,Characteristic=>5)
    │ │ │ │ - -- .306947s elapsed
    │ │ │ │ + -- .259345s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o5 = total: 1 36 167 370 476 476 370 167 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 322 336 140  48   7  . .
    │ │ │ │           2: .  .   7  48 140 336 322 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -94,19 +94,19 @@
    │ │ │ │  these mistakes.
    │ │ │ │  i7 : e=(-1,5^2)
    │ │ │ │  
    │ │ │ │  o7 = (-1, 25)
    │ │ │ │  
    │ │ │ │  o7 : Sequence
    │ │ │ │  i8 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ │ - -- .00447685s elapsed
    │ │ │ │ - -- .0115156s elapsed
    │ │ │ │ - -- .0436223s elapsed
    │ │ │ │ - -- .0170221s elapsed
    │ │ │ │ - -- .00643044s elapsed
    │ │ │ │ + -- .00306942s elapsed
    │ │ │ │ + -- .00744399s elapsed
    │ │ │ │ + -- .0278042s elapsed
    │ │ │ │ + -- .0106554s elapsed
    │ │ │ │ + -- .00415436s elapsed
    │ │ │ │  
    │ │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o8 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1     }
    │ │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_resonance__Det.html
    │ │ │ @@ -78,172 +78,172 @@
    │ │ │  
    │ │ │  o1 = 4
    │ │ │
    │ │ │
    i2 : (d1,d2)=resonanceDet(a)
    │ │ │ - -- .0182126s elapsed
    │ │ │ + -- .0290588s elapsed
    │ │ │  (number of blocks= , 18)
    │ │ │  (size of the matrices, Tally{1 => 4})
    │ │ │                               2 => 6
    │ │ │                               3 => 2
    │ │ │                               4 => 6
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │      7: 1 1
    │ │ │ - -- .000053781s elapsed
    │ │ │ + -- .000077289s elapsed
    │ │ │  (e )(-1)
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      7: 2 .
    │ │ │      8: . 2
    │ │ │ - -- .000088806s elapsed
    │ │ │ + -- .000172386s elapsed
    │ │ │      2
    │ │ │  (e ) (e )(-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      7: 2 .
    │ │ │      8: . .
    │ │ │      9: . 2
    │ │ │ - -- .000067035s elapsed
    │ │ │ + -- .000103137s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e )
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 3 3
    │ │ │      7: 2 .
    │ │ │      8: 1 .
    │ │ │      9: . 1
    │ │ │     10: . 2
    │ │ │ - -- .000084928s elapsed
    │ │ │ + -- .00017342s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (-3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      7: 1 .
    │ │ │      8: 1 .
    │ │ │      9: 2 2
    │ │ │     10: . 1
    │ │ │     11: . 1
    │ │ │ - -- .000080921s elapsed
    │ │ │ + -- .000171544s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      8: 1 .
    │ │ │      9: 2 1
    │ │ │     10: 1 2
    │ │ │     11: . 1
    │ │ │ - -- .000090478s elapsed
    │ │ │ + -- .000183206s elapsed
    │ │ │      2    3
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │      9: 1 1
    │ │ │ - -- .000022591s elapsed
    │ │ │ + -- .000056072s elapsed
    │ │ │  (e )(-1)
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      9: 1 1
    │ │ │     10: 1 1
    │ │ │ - -- .000064409s elapsed
    │ │ │ + -- .000148423s elapsed
    │ │ │      2
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 2 1
    │ │ │     10: 1 1
    │ │ │     11: 1 2
    │ │ │ - -- .000081843s elapsed
    │ │ │ + -- .000106931s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e ) (-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 1 .
    │ │ │     10: 2 1
    │ │ │     11: 1 2
    │ │ │     12: . 1
    │ │ │ - -- .000084347s elapsed
    │ │ │ + -- .000180818s elapsed
    │ │ │      2    3
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 1 .
    │ │ │     10: 1 .
    │ │ │     11: 2 2
    │ │ │     12: . 1
    │ │ │     13: . 1
    │ │ │ - -- .000072405s elapsed
    │ │ │ + -- .000118293s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 2 1
    │ │ │     10: 1 1
    │ │ │     11: 1 2
    │ │ │ - -- .000076343s elapsed
    │ │ │ + -- .000155828s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e ) (-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 3 3
    │ │ │     10: 2 .
    │ │ │     11: 1 .
    │ │ │     12: . 1
    │ │ │     13: . 2
    │ │ │ - -- .000070171s elapsed
    │ │ │ + -- .000146349s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     10: 1 1
    │ │ │     11: 1 1
    │ │ │ - -- .00005925s elapsed
    │ │ │ + -- .000126617s elapsed
    │ │ │      2
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     11: 2 .
    │ │ │     12: . .
    │ │ │     13: . 2
    │ │ │ - -- .00006973s elapsed
    │ │ │ + -- .000166428s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e )
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │     11: 1 1
    │ │ │ - -- .000021691s elapsed
    │ │ │ + -- .000054316s elapsed
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     12: 2 .
    │ │ │     13: . 2
    │ │ │ - -- .000068347s elapsed
    │ │ │ + -- .000083679s elapsed
    │ │ │      2
    │ │ │  (e ) (e )(-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │     13: 1 1
    │ │ │ - -- .000024396s elapsed
    │ │ │ + -- .000034125s elapsed
    │ │ │  (e )
    │ │ │    1
    │ │ │  
    │ │ │         6      32    32
    │ │ │  o2 = (3 , (e )  (e )  )
    │ │ │              1     2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,172 +19,172 @@
    │ │ │ │  grading. Viewed as a resolution over QQ(e_1,e_2), this resolution is non-
    │ │ │ │  minimal and carries further gradings. We decompose the crucial map of the a-th
    │ │ │ │  strand into blocks, compute their determinants, and factor the product.
    │ │ │ │  i1 : a=4
    │ │ │ │  
    │ │ │ │  o1 = 4
    │ │ │ │  i2 : (d1,d2)=resonanceDet(a)
    │ │ │ │ - -- .0182126s elapsed
    │ │ │ │ + -- .0290588s elapsed
    │ │ │ │  (number of blocks= , 18)
    │ │ │ │  (size of the matrices, Tally{1 => 4})
    │ │ │ │                               2 => 6
    │ │ │ │                               3 => 2
    │ │ │ │                               4 => 6
    │ │ │ │         0 1
    │ │ │ │  total: 1 1
    │ │ │ │      7: 1 1
    │ │ │ │ - -- .000053781s elapsed
    │ │ │ │ + -- .000077289s elapsed
    │ │ │ │  (e )(-1)
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │      7: 2 .
    │ │ │ │      8: . 2
    │ │ │ │ - -- .000088806s elapsed
    │ │ │ │ + -- .000172386s elapsed
    │ │ │ │      2
    │ │ │ │  (e ) (e )(-1)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │      7: 2 .
    │ │ │ │      8: . .
    │ │ │ │      9: . 2
    │ │ │ │ - -- .000067035s elapsed
    │ │ │ │ + -- .000103137s elapsed
    │ │ │ │      2    2
    │ │ │ │  (e ) (e )
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 3 3
    │ │ │ │      7: 2 .
    │ │ │ │      8: 1 .
    │ │ │ │      9: . 1
    │ │ │ │     10: . 2
    │ │ │ │ - -- .000084928s elapsed
    │ │ │ │ + -- .00017342s elapsed
    │ │ │ │      2    4
    │ │ │ │  (e ) (e ) (-3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      7: 1 .
    │ │ │ │      8: 1 .
    │ │ │ │      9: 2 2
    │ │ │ │     10: . 1
    │ │ │ │     11: . 1
    │ │ │ │ - -- .000080921s elapsed
    │ │ │ │ + -- .000171544s elapsed
    │ │ │ │      2    4
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      8: 1 .
    │ │ │ │      9: 2 1
    │ │ │ │     10: 1 2
    │ │ │ │     11: . 1
    │ │ │ │ - -- .000090478s elapsed
    │ │ │ │ + -- .000183206s elapsed
    │ │ │ │      2    3
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 1 1
    │ │ │ │      9: 1 1
    │ │ │ │ - -- .000022591s elapsed
    │ │ │ │ + -- .000056072s elapsed
    │ │ │ │  (e )(-1)
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │      9: 1 1
    │ │ │ │     10: 1 1
    │ │ │ │ - -- .000064409s elapsed
    │ │ │ │ + -- .000148423s elapsed
    │ │ │ │      2
    │ │ │ │  (e )
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      9: 2 1
    │ │ │ │     10: 1 1
    │ │ │ │     11: 1 2
    │ │ │ │ - -- .000081843s elapsed
    │ │ │ │ + -- .000106931s elapsed
    │ │ │ │      2    2
    │ │ │ │  (e ) (e ) (-1)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      9: 1 .
    │ │ │ │     10: 2 1
    │ │ │ │     11: 1 2
    │ │ │ │     12: . 1
    │ │ │ │ - -- .000084347s elapsed
    │ │ │ │ + -- .000180818s elapsed
    │ │ │ │      2    3
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      9: 1 .
    │ │ │ │     10: 1 .
    │ │ │ │     11: 2 2
    │ │ │ │     12: . 1
    │ │ │ │     13: . 1
    │ │ │ │ - -- .000072405s elapsed
    │ │ │ │ + -- .000118293s elapsed
    │ │ │ │      2    4
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      9: 2 1
    │ │ │ │     10: 1 1
    │ │ │ │     11: 1 2
    │ │ │ │ - -- .000076343s elapsed
    │ │ │ │ + -- .000155828s elapsed
    │ │ │ │      2    2
    │ │ │ │  (e ) (e ) (-1)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 3 3
    │ │ │ │     10: 2 .
    │ │ │ │     11: 1 .
    │ │ │ │     12: . 1
    │ │ │ │     13: . 2
    │ │ │ │ - -- .000070171s elapsed
    │ │ │ │ + -- .000146349s elapsed
    │ │ │ │      2    4
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │     10: 1 1
    │ │ │ │     11: 1 1
    │ │ │ │ - -- .00005925s elapsed
    │ │ │ │ + -- .000126617s elapsed
    │ │ │ │      2
    │ │ │ │  (e )
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │     11: 2 .
    │ │ │ │     12: . .
    │ │ │ │     13: . 2
    │ │ │ │ - -- .00006973s elapsed
    │ │ │ │ + -- .000166428s elapsed
    │ │ │ │      2    2
    │ │ │ │  (e ) (e )
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 1 1
    │ │ │ │     11: 1 1
    │ │ │ │ - -- .000021691s elapsed
    │ │ │ │ + -- .000054316s elapsed
    │ │ │ │  (e )
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │     12: 2 .
    │ │ │ │     13: . 2
    │ │ │ │ - -- .000068347s elapsed
    │ │ │ │ + -- .000083679s elapsed
    │ │ │ │      2
    │ │ │ │  (e ) (e )(-1)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 1 1
    │ │ │ │     13: 1 1
    │ │ │ │ - -- .000024396s elapsed
    │ │ │ │ + -- .000034125s elapsed
    │ │ │ │  (e )
    │ │ │ │    1
    │ │ │ │  
    │ │ │ │         6      32    32
    │ │ │ │  o2 = (3 , (e )  (e )  )
    │ │ │ │              1     2
    │ │ ├── ./usr/share/doc/Macaulay2/LLLBases/dump/rawdocumentation.dump
    │ │ │ @@ -1,8 +1,8 @@
    │ │ │ -# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Fri Nov 14 16:08:07 2025
    │ │ │ +# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Fri Nov 14 16:08:08 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │  #:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=6
    │ │ │  UmVhbFhE
    │ │ ├── ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.out
    │ │ │ @@ -7,55 +7,55 @@
    │ │ │  
    │ │ │  i2 : m = syz m1;
    │ │ │  
    │ │ │                50       47
    │ │ │  o2 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i3 : time LLL m;
    │ │ │ - -- used 0.00931681s (cpu); 0.00931233s (thread); 0s (gc)
    │ │ │ + -- used 0.00990206s (cpu); 0.00990068s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o3 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i4 : time LLL(m, Strategy=>CohenEngine);
    │ │ │ - -- used 0.0281993s (cpu); 0.0282009s (thread); 0s (gc)
    │ │ │ + -- used 0.0326522s (cpu); 0.032657s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o4 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i5 : time LLL(m, Strategy=>CohenTopLevel);
    │ │ │ - -- used 0.109453s (cpu); 0.109456s (thread); 0s (gc)
    │ │ │ + -- used 0.11948s (cpu); 0.119488s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o5 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i6 : time LLL(m, Strategy=>{Givens,RealFP});
    │ │ │ - -- used 0.0121699s (cpu); 0.0121735s (thread); 0s (gc)
    │ │ │ + -- used 0.0132721s (cpu); 0.0132798s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o6 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i7 : time LLL(m, Strategy=>{Givens,RealQP});
    │ │ │ - -- used 0.048273s (cpu); 0.0482762s (thread); 0s (gc)
    │ │ │ + -- used 0.0629714s (cpu); 0.0628232s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o7 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i8 : time LLL(m, Strategy=>{Givens,RealXD});
    │ │ │ - -- used 0.0589056s (cpu); 0.058906s (thread); 0s (gc)
    │ │ │ + -- used 0.0658933s (cpu); 0.0658967s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o8 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i9 : time LLL(m, Strategy=>{Givens,RealRR});
    │ │ │ - -- used 0.411173s (cpu); 0.411147s (thread); 0s (gc)
    │ │ │ + -- used 0.345326s (cpu); 0.34533s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o9 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i10 : time LLL(m, Strategy=>{BKZ,Givens,RealQP});
    │ │ │ - -- used 0.156182s (cpu); 0.156183s (thread); 0s (gc)
    │ │ │ + -- used 0.154068s (cpu); 0.154073s (thread); 0s (gc)
    │ │ │  
    │ │ │                 50       47
    │ │ │  o10 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.html
    │ │ │ @@ -139,78 +139,78 @@
    │ │ │                50       47
    │ │ │  o2 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i3 : time LLL m;
    │ │ │ - -- used 0.00931681s (cpu); 0.00931233s (thread); 0s (gc)
    │ │ │ + -- used 0.00990206s (cpu); 0.00990068s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o3 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i4 : time LLL(m, Strategy=>CohenEngine);
    │ │ │ - -- used 0.0281993s (cpu); 0.0282009s (thread); 0s (gc)
    │ │ │ + -- used 0.0326522s (cpu); 0.032657s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o4 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i5 : time LLL(m, Strategy=>CohenTopLevel);
    │ │ │ - -- used 0.109453s (cpu); 0.109456s (thread); 0s (gc)
    │ │ │ + -- used 0.11948s (cpu); 0.119488s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o5 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i6 : time LLL(m, Strategy=>{Givens,RealFP});
    │ │ │ - -- used 0.0121699s (cpu); 0.0121735s (thread); 0s (gc)
    │ │ │ + -- used 0.0132721s (cpu); 0.0132798s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o6 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i7 : time LLL(m, Strategy=>{Givens,RealQP});
    │ │ │ - -- used 0.048273s (cpu); 0.0482762s (thread); 0s (gc)
    │ │ │ + -- used 0.0629714s (cpu); 0.0628232s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o7 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i8 : time LLL(m, Strategy=>{Givens,RealXD});
    │ │ │ - -- used 0.0589056s (cpu); 0.058906s (thread); 0s (gc)
    │ │ │ + -- used 0.0658933s (cpu); 0.0658967s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o8 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i9 : time LLL(m, Strategy=>{Givens,RealRR});
    │ │ │ - -- used 0.411173s (cpu); 0.411147s (thread); 0s (gc)
    │ │ │ + -- used 0.345326s (cpu); 0.34533s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o9 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i10 : time LLL(m, Strategy=>{BKZ,Givens,RealQP});
    │ │ │ - -- used 0.156182s (cpu); 0.156183s (thread); 0s (gc)
    │ │ │ + -- used 0.154068s (cpu); 0.154073s (thread); 0s (gc)
    │ │ │  
    │ │ │                 50       47
    │ │ │  o10 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -115,50 +115,50 @@ │ │ │ │ 50 50 │ │ │ │ o1 : Matrix ZZ <-- ZZ │ │ │ │ i2 : m = syz m1; │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o2 : Matrix ZZ <-- ZZ │ │ │ │ i3 : time LLL m; │ │ │ │ - -- used 0.00931681s (cpu); 0.00931233s (thread); 0s (gc) │ │ │ │ + -- used 0.00990206s (cpu); 0.00990068s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o3 : Matrix ZZ <-- ZZ │ │ │ │ i4 : time LLL(m, Strategy=>CohenEngine); │ │ │ │ - -- used 0.0281993s (cpu); 0.0282009s (thread); 0s (gc) │ │ │ │ + -- used 0.0326522s (cpu); 0.032657s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o4 : Matrix ZZ <-- ZZ │ │ │ │ i5 : time LLL(m, Strategy=>CohenTopLevel); │ │ │ │ - -- used 0.109453s (cpu); 0.109456s (thread); 0s (gc) │ │ │ │ + -- used 0.11948s (cpu); 0.119488s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o5 : Matrix ZZ <-- ZZ │ │ │ │ i6 : time LLL(m, Strategy=>{Givens,RealFP}); │ │ │ │ - -- used 0.0121699s (cpu); 0.0121735s (thread); 0s (gc) │ │ │ │ + -- used 0.0132721s (cpu); 0.0132798s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o6 : Matrix ZZ <-- ZZ │ │ │ │ i7 : time LLL(m, Strategy=>{Givens,RealQP}); │ │ │ │ - -- used 0.048273s (cpu); 0.0482762s (thread); 0s (gc) │ │ │ │ + -- used 0.0629714s (cpu); 0.0628232s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o7 : Matrix ZZ <-- ZZ │ │ │ │ i8 : time LLL(m, Strategy=>{Givens,RealXD}); │ │ │ │ - -- used 0.0589056s (cpu); 0.058906s (thread); 0s (gc) │ │ │ │ + -- used 0.0658933s (cpu); 0.0658967s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o8 : Matrix ZZ <-- ZZ │ │ │ │ i9 : time LLL(m, Strategy=>{Givens,RealRR}); │ │ │ │ - -- used 0.411173s (cpu); 0.411147s (thread); 0s (gc) │ │ │ │ + -- used 0.345326s (cpu); 0.34533s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o9 : Matrix ZZ <-- ZZ │ │ │ │ i10 : time LLL(m, Strategy=>{BKZ,Givens,RealQP}); │ │ │ │ - -- used 0.156182s (cpu); 0.156183s (thread); 0s (gc) │ │ │ │ + -- used 0.154068s (cpu); 0.154073s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o10 : Matrix ZZ <-- ZZ │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ For most of the options, the columns do not need to be linearly independent. │ │ │ │ The strategies CohenEngine and CohenTopLevel currently require the columns to │ │ │ │ be linearly independent. │ │ ├── ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_are__Isomorphic.out │ │ │ @@ -16,14 +16,14 @@ │ │ │ │ │ │ 3 8 │ │ │ o4 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i5 : P = convexHull(M); │ │ │ │ │ │ i6 : time areIsomorphic(P,P); │ │ │ - -- used 0.644317s (cpu); 0.527424s (thread); 0s (gc) │ │ │ + -- used 1.11979s (cpu); 0.556436s (thread); 0s (gc) │ │ │ │ │ │ i7 : time areIsomorphic(P,P,smoothTest=>false); │ │ │ - -- used 0.455289s (cpu); 0.310632s (thread); 0s (gc) │ │ │ + -- used 0.609499s (cpu); 0.334849s (thread); 0s (gc) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/LatticePolytopes/html/_are__Isomorphic.html │ │ │ @@ -120,21 +120,21 @@ │ │ │ │ │ │
    i5 : P = convexHull(M);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time areIsomorphic(P,P);
    │ │ │ - -- used 0.644317s (cpu); 0.527424s (thread); 0s (gc)
    │ │ │ + -- used 1.11979s (cpu); 0.556436s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time areIsomorphic(P,P,smoothTest=>false);
    │ │ │ - -- used 0.455289s (cpu); 0.310632s (thread); 0s (gc)
    │ │ │ + -- used 0.609499s (cpu); 0.334849s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Ways to use areIsomorphic:

    │ │ │ ├── html2text {} │ │ │ │ @@ -35,17 +35,17 @@ │ │ │ │ | 0 0 1 0 1 0 1 1 | │ │ │ │ | 0 0 0 1 0 1 1 1 | │ │ │ │ │ │ │ │ 3 8 │ │ │ │ o4 : Matrix ZZ <-- ZZ │ │ │ │ i5 : P = convexHull(M); │ │ │ │ i6 : time areIsomorphic(P,P); │ │ │ │ - -- used 0.644317s (cpu); 0.527424s (thread); 0s (gc) │ │ │ │ + -- used 1.11979s (cpu); 0.556436s (thread); 0s (gc) │ │ │ │ i7 : time areIsomorphic(P,P,smoothTest=>false); │ │ │ │ - -- used 0.455289s (cpu); 0.310632s (thread); 0s (gc) │ │ │ │ + -- used 0.609499s (cpu); 0.334849s (thread); 0s (gc) │ │ │ │ ********** WWaayyss ttoo uussee aarreeIIssoommoorrpphhiicc:: ********** │ │ │ │ * areIsomorphic(Matrix,Matrix) │ │ │ │ * areIsomorphic(Polyhedron,Polyhedron) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _a_r_e_I_s_o_m_o_r_p_h_i_c is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_find__Region.out │ │ │ @@ -29,21 +29,21 @@ │ │ │ i5 : findRegion({{0,0},{4,4}},M,f) │ │ │ │ │ │ o5 = {{1, 2}, {3, 1}} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime findRegion({{0,0},{4,4}},M,f) │ │ │ - -- .120994s elapsed │ │ │ + -- .126871s elapsed │ │ │ │ │ │ o6 = {{1, 2}, {3, 1}} │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : elapsedTime findRegion({{0,0},{4,4}},M,f,Inner=>{{1,2},{3,1}},Outer=>{{1,1}}) │ │ │ - -- .0122579s elapsed │ │ │ + -- .0161749s elapsed │ │ │ │ │ │ o7 = {{1, 2}, {3, 1}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_linear__Truncations__Bound.out │ │ │ @@ -30,21 +30,21 @@ │ │ │ i5 : apply(L, d -> isLinearComplex res prune truncate(d,M)) │ │ │ │ │ │ o5 = {true, true} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime linearTruncations({{2,2,2},{4,4,4}}, M) │ │ │ - -- 3.5732s elapsed │ │ │ + -- 3.02631s elapsed │ │ │ │ │ │ o6 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : elapsedTime linearTruncationsBound M │ │ │ - -- .0393284s elapsed │ │ │ + -- .028734s elapsed │ │ │ │ │ │ o7 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/html/_find__Region.html │ │ │ @@ -125,25 +125,25 @@ │ │ │
    │ │ │

    If some degrees d are known to satisfy f(d,M), then they can be specified using the option Inner in order to expedite the computation. Similarly, degrees not above those given in Outer will be assumed not to satisfy f(d,M). If f takes options these can also be given to findRegion.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : elapsedTime findRegion({{0,0},{4,4}},M,f)
    │ │ │ - -- .120994s elapsed
    │ │ │ + -- .126871s elapsed
    │ │ │  
    │ │ │  o6 = {{1, 2}, {3, 1}}
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : elapsedTime findRegion({{0,0},{4,4}},M,f,Inner=>{{1,2},{3,1}},Outer=>{{1,1}})
    │ │ │ - -- .0122579s elapsed
    │ │ │ + -- .0161749s elapsed
    │ │ │  
    │ │ │  o7 = {{1, 2}, {3, 1}}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -48,22 +48,22 @@ │ │ │ │ │ │ │ │ o5 : List │ │ │ │ If some degrees d are known to satisfy f(d,M), then they can be specified using │ │ │ │ the option Inner in order to expedite the computation. Similarly, degrees not │ │ │ │ above those given in Outer will be assumed not to satisfy f(d,M). If f takes │ │ │ │ options these can also be given to findRegion. │ │ │ │ i6 : elapsedTime findRegion({{0,0},{4,4}},M,f) │ │ │ │ - -- .120994s elapsed │ │ │ │ + -- .126871s elapsed │ │ │ │ │ │ │ │ o6 = {{1, 2}, {3, 1}} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : elapsedTime findRegion({{0,0},{4,4}},M,f,Inner=>{{1,2},{3,1}},Outer=>{ │ │ │ │ {1,1}}) │ │ │ │ - -- .0122579s elapsed │ │ │ │ + -- .0161749s elapsed │ │ │ │ │ │ │ │ o7 = {{1, 2}, {3, 1}} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** CCoonnttrriibbuuttoorrss ********** │ │ │ │ Mahrud Sayrafi contributed to the code for this function. │ │ │ │ ********** CCaavveeaatt ********** │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/html/_linear__Truncations__Bound.html │ │ │ @@ -123,25 +123,25 @@ │ │ │
    │ │ │

    The output is a list of the minimal multidegrees $d$ such that the sum of the positive coordinates of $b-d$ is at most $i$ for all degrees $b$ appearing in the i-th step of the resolution of $M$.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : elapsedTime linearTruncations({{2,2,2},{4,4,4}}, M)
    │ │ │ - -- 3.5732s elapsed
    │ │ │ + -- 3.02631s elapsed
    │ │ │  
    │ │ │  o6 = {{4, 3, 3}, {4, 4, 2}}
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : elapsedTime linearTruncationsBound M
    │ │ │ - -- .0393284s elapsed
    │ │ │ + -- .028734s elapsed
    │ │ │  
    │ │ │  o7 = {{4, 3, 3}, {4, 4, 2}}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -48,21 +48,21 @@ │ │ │ │ o5 = {true, true} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ The output is a list of the minimal multidegrees $d$ such that the sum of the │ │ │ │ positive coordinates of $b-d$ is at most $i$ for all degrees $b$ appearing in │ │ │ │ the i-th step of the resolution of $M$. │ │ │ │ i6 : elapsedTime linearTruncations({{2,2,2},{4,4,4}}, M) │ │ │ │ - -- 3.5732s elapsed │ │ │ │ + -- 3.02631s elapsed │ │ │ │ │ │ │ │ o6 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : elapsedTime linearTruncationsBound M │ │ │ │ - -- .0393284s elapsed │ │ │ │ + -- .028734s elapsed │ │ │ │ │ │ │ │ o7 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ In general linearTruncationsBound will not find the minimal degrees where $M$ │ │ │ │ has a linear resolution but will be faster than repeatedly truncating $M$. │ │ ├── ./usr/share/doc/Macaulay2/LocalRings/example-output/_hilbert__Samuel__Function.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ │ │ │ o4 = cokernel | x5+y3+z3 y5+x3+z3 z5+x3+y3 | │ │ │ │ │ │ 1 │ │ │ o4 : RP-module, quotient of RP │ │ │ │ │ │ i5 : elapsedTime hilbertSamuelFunction(M, 0, 6) │ │ │ - -- .257637s elapsed │ │ │ + -- .214842s elapsed │ │ │ │ │ │ o5 = {1, 3, 6, 7, 6, 3, 1} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : oo//sum │ │ │ │ │ │ @@ -44,21 +44,21 @@ │ │ │ │ │ │ 2 3 │ │ │ o10 = ideal (x , y ) │ │ │ │ │ │ o10 : Ideal of RP │ │ │ │ │ │ i11 : elapsedTime hilbertSamuelFunction(N, 0, 5) -- n+1 -- 0.02 seconds │ │ │ - -- .0603843s elapsed │ │ │ + -- .0160632s elapsed │ │ │ │ │ │ o11 = {1, 2, 3, 4, 5, 6} │ │ │ │ │ │ o11 : List │ │ │ │ │ │ i12 : elapsedTime hilbertSamuelFunction(q, N, 0, 5) -- 6(n+1) -- 0.32 seconds │ │ │ - -- .271484s elapsed │ │ │ + -- .26757s elapsed │ │ │ │ │ │ o12 = {6, 12, 18, 24, 30, 36} │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/LocalRings/html/_hilbert__Samuel__Function.html │ │ │ @@ -111,15 +111,15 @@ │ │ │ 1 │ │ │ o4 : RP-module, quotient of RP │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime hilbertSamuelFunction(M, 0, 6)
    │ │ │ - -- .257637s elapsed
    │ │ │ + -- .214842s elapsed
    │ │ │  
    │ │ │  o5 = {1, 3, 6, 7, 6, 3, 1}
    │ │ │  
    │ │ │  o5 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -163,25 +163,25 @@ │ │ │ │ │ │ o10 : Ideal of RP │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : elapsedTime hilbertSamuelFunction(N, 0, 5) -- n+1 -- 0.02 seconds
    │ │ │ - -- .0603843s elapsed
    │ │ │ + -- .0160632s elapsed
    │ │ │  
    │ │ │  o11 = {1, 2, 3, 4, 5, 6}
    │ │ │  
    │ │ │  o11 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : elapsedTime hilbertSamuelFunction(q, N, 0, 5) -- 6(n+1) -- 0.32 seconds
    │ │ │ - -- .271484s elapsed
    │ │ │ + -- .26757s elapsed
    │ │ │  
    │ │ │  o12 = {6, 12, 18, 24, 30, 36}
    │ │ │  
    │ │ │  o12 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ i4 : M = RP^1/I │ │ │ │ │ │ │ │ o4 = cokernel | x5+y3+z3 y5+x3+z3 z5+x3+y3 | │ │ │ │ │ │ │ │ 1 │ │ │ │ o4 : RP-module, quotient of RP │ │ │ │ i5 : elapsedTime hilbertSamuelFunction(M, 0, 6) │ │ │ │ - -- .257637s elapsed │ │ │ │ + -- .214842s elapsed │ │ │ │ │ │ │ │ o5 = {1, 3, 6, 7, 6, 3, 1} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : oo//sum │ │ │ │ │ │ │ │ o6 = 27 │ │ │ │ @@ -65,21 +65,21 @@ │ │ │ │ i10 : q = ideal"x2,y3" │ │ │ │ │ │ │ │ 2 3 │ │ │ │ o10 = ideal (x , y ) │ │ │ │ │ │ │ │ o10 : Ideal of RP │ │ │ │ i11 : elapsedTime hilbertSamuelFunction(N, 0, 5) -- n+1 -- 0.02 seconds │ │ │ │ - -- .0603843s elapsed │ │ │ │ + -- .0160632s elapsed │ │ │ │ │ │ │ │ o11 = {1, 2, 3, 4, 5, 6} │ │ │ │ │ │ │ │ o11 : List │ │ │ │ i12 : elapsedTime hilbertSamuelFunction(q, N, 0, 5) -- 6(n+1) -- 0.32 seconds │ │ │ │ - -- .271484s elapsed │ │ │ │ + -- .26757s elapsed │ │ │ │ │ │ │ │ o12 = {6, 12, 18, 24, 30, 36} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ Hilbert-Samuel function with respect to a parameter ideal other than the │ │ │ │ maximal ideal can be slower. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Command.out │ │ │ @@ -5,12 +5,12 @@ │ │ │ i2 : f │ │ │ │ │ │ o2 = 1073741824 │ │ │ │ │ │ i3 : (c = Command "date";) │ │ │ │ │ │ i4 : c │ │ │ -Fri Nov 14 17:26:26 UTC 2025 │ │ │ +Fri Nov 21 10:41:39 UTC 2025 │ │ │ │ │ │ o4 = 0 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Database.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 9579076464446459296 │ │ │ │ │ │ i1 : filename = temporaryFileName () | ".dbm" │ │ │ │ │ │ -o1 = /tmp/M2-11641-0/0.dbm │ │ │ +o1 = /tmp/M2-13231-0/0.dbm │ │ │ │ │ │ i2 : x = openDatabaseOut filename │ │ │ │ │ │ -o2 = /tmp/M2-11641-0/0.dbm │ │ │ +o2 = /tmp/M2-13231-0/0.dbm │ │ │ │ │ │ o2 : Database │ │ │ │ │ │ i3 : x#"first" = "hi there" │ │ │ │ │ │ o3 = hi there │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Cstats.out │ │ │ @@ -1,19 +1,19 @@ │ │ │ -- -*- M2-comint -*- hash: 1731899428494721487 │ │ │ │ │ │ i1 : s = GCstats() │ │ │ │ │ │ -o1 = HashTable{"bytesAlloc" => 42968369946 } │ │ │ +o1 = HashTable{"bytesAlloc" => 43067685002 } │ │ │ "GC_free_space_divisor" => 3 │ │ │ "GC_LARGE_ALLOC_WARN_INTERVAL" => 1 │ │ │ "gcCpuTimeSecs" => 0 │ │ │ - "heapSize" => 206622720 │ │ │ - "numGCs" => 795 │ │ │ - "numGCThreads" => 6 │ │ │ + "heapSize" => 225636352 │ │ │ + "numGCs" => 783 │ │ │ + "numGCThreads" => 16 │ │ │ │ │ │ o1 : HashTable │ │ │ │ │ │ i2 : s#"heapSize" │ │ │ │ │ │ -o2 = 206622720 │ │ │ +o2 = 225636352 │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Minimal__Generators.out │ │ │ @@ -40,20 +40,20 @@ │ │ │ o6 : PolynomialRing │ │ │ │ │ │ i7 : I = monomialCurveIdeal(R, {1,4,5,9}); │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : time J = truncate(8, I, MinimalGenerators => false); │ │ │ - -- used 0.00897861s (cpu); 0.00897229s (thread); 0s (gc) │ │ │ + -- used 0.00637144s (cpu); 0.00636778s (thread); 0s (gc) │ │ │ │ │ │ o8 : Ideal of R │ │ │ │ │ │ i9 : time K = truncate(8, I, MinimalGenerators => true); │ │ │ - -- used 0.0801371s (cpu); 0.080144s (thread); 0s (gc) │ │ │ + -- used 0.0629702s (cpu); 0.0629822s (thread); 0s (gc) │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ │ │ i10 : numgens J │ │ │ │ │ │ o10 = 1067 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.out │ │ │ @@ -3,13 +3,13 @@ │ │ │ i1 : M = random(RR^200, RR^200); │ │ │ │ │ │ 200 200 │ │ │ o1 : Matrix RR <-- RR │ │ │ 53 53 │ │ │ │ │ │ i2 : time SVD(M); │ │ │ - -- used 0.0241449s (cpu); 0.0241435s (thread); 0s (gc) │ │ │ + -- used 0.0481866s (cpu); 0.0481869s (thread); 0s (gc) │ │ │ │ │ │ i3 : time SVD(M, DivideConquer=>true); │ │ │ - -- used 0.0237108s (cpu); 0.0237156s (thread); 0s (gc) │ │ │ + -- used 0.0378645s (cpu); 0.0378765s (thread); 0s (gc) │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_a_spfirst_sp__Macaulay2_spsession.out │ │ │ @@ -351,15 +351,15 @@ │ │ │ | b e h k n q | │ │ │ | c f i l o r | │ │ │ │ │ │ 3 │ │ │ o58 : R-module, quotient of R │ │ │ │ │ │ i59 : time C = resolution M │ │ │ - -- used 0.00188708s (cpu); 0.00187997s (thread); 0s (gc) │ │ │ + -- used 0.00204875s (cpu); 0.00204031s (thread); 0s (gc) │ │ │ │ │ │ 3 6 15 18 6 │ │ │ o59 = R <-- R <-- R <-- R <-- R <-- 0 │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ o59 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_at__End__Of__File_lp__File_rp.out │ │ │ @@ -14,10 +14,10 @@ │ │ │ │ │ │ i4 : peek read f │ │ │ │ │ │ o4 = "hi there" │ │ │ │ │ │ i5 : atEndOfFile f │ │ │ │ │ │ -o5 = false │ │ │ +o5 = true │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_benchmark.out │ │ │ @@ -1,9 +1,9 @@ │ │ │ -- -*- M2-comint -*- hash: 1330379359420 │ │ │ │ │ │ i1 : benchmark "sqrt 2p100000" │ │ │ │ │ │ -o1 = .0002898248142239025 │ │ │ +o1 = .0003608682869690195 │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_caching_spcomputation_spresults.out │ │ │ @@ -4,20 +4,20 @@ │ │ │ │ │ │ i2 : R = QQ[x,y,z]; │ │ │ │ │ │ i3 : M = coker vars R; │ │ │ │ │ │ i4 : elapsedTime pdim' M │ │ │ -- computing pdim' │ │ │ - -- .00646567s elapsed │ │ │ + -- .00430101s elapsed │ │ │ │ │ │ o4 = 3 │ │ │ │ │ │ i5 : elapsedTime pdim' M │ │ │ - -- .000001924s elapsed │ │ │ + -- .000002848s elapsed │ │ │ │ │ │ o5 = 3 │ │ │ │ │ │ i6 : peek M.cache │ │ │ │ │ │ o6 = CacheTable{cache => MutableHashTable{} } │ │ │ isHomogeneous => true │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cancel__Task_lp__Task_rp.out │ │ │ @@ -18,29 +18,29 @@ │ │ │ │ │ │ o4 = <> │ │ │ │ │ │ o4 : Task │ │ │ │ │ │ i5 : n │ │ │ │ │ │ -o5 = 711247 │ │ │ +o5 = 1095541 │ │ │ │ │ │ i6 : sleep 1 │ │ │ │ │ │ o6 = 0 │ │ │ │ │ │ i7 : t │ │ │ │ │ │ o7 = <> │ │ │ │ │ │ o7 : Task │ │ │ │ │ │ i8 : n │ │ │ │ │ │ -o8 = 1453370 │ │ │ +o8 = 2222110 │ │ │ │ │ │ i9 : isReady t │ │ │ │ │ │ o9 = false │ │ │ │ │ │ i10 : cancelTask t │ │ │ │ │ │ @@ -53,22 +53,22 @@ │ │ │ │ │ │ o12 = <> │ │ │ │ │ │ o12 : Task │ │ │ │ │ │ i13 : n │ │ │ │ │ │ -o13 = 1453595 │ │ │ +o13 = 2222296 │ │ │ │ │ │ i14 : sleep 1 │ │ │ │ │ │ o14 = 0 │ │ │ │ │ │ i15 : n │ │ │ │ │ │ -o15 = 1453595 │ │ │ +o15 = 2222296 │ │ │ │ │ │ i16 : isReady t │ │ │ │ │ │ o16 = false │ │ │ │ │ │ i17 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_change__Directory.out │ │ │ @@ -1,19 +1,19 @@ │ │ │ -- -*- M2-comint -*- hash: 8535510246140175278 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10463-0/0 │ │ │ +o1 = /tmp/M2-10833-0/0 │ │ │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ -o2 = /tmp/M2-10463-0/0 │ │ │ +o2 = /tmp/M2-10833-0/0 │ │ │ │ │ │ i3 : changeDirectory dir │ │ │ │ │ │ -o3 = /tmp/M2-10463-0/0/ │ │ │ +o3 = /tmp/M2-10833-0/0/ │ │ │ │ │ │ i4 : currentDirectory() │ │ │ │ │ │ -o4 = /tmp/M2-10463-0/0/ │ │ │ +o4 = /tmp/M2-10833-0/0/ │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_check.out │ │ │ @@ -4,51 +4,51 @@ │ │ │ │ │ │ o1 = FirstPackage │ │ │ │ │ │ o1 : Package │ │ │ │ │ │ i2 : check_1 FirstPackage │ │ │ -- warning: reloading FirstPackage; recreate instances of types from this package │ │ │ - -- capturing check(1, "FirstPackage") -- .157225s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .132892s elapsed │ │ │ │ │ │ i3 : check FirstPackage │ │ │ - -- capturing check(0, "FirstPackage") -- .177874s elapsed │ │ │ - -- capturing check(1, "FirstPackage") -- .230699s elapsed │ │ │ + -- capturing check(0, "FirstPackage") -- .135389s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .129692s elapsed │ │ │ │ │ │ i4 : check_1 "FirstPackage" │ │ │ - -- capturing check(1, "FirstPackage") -- .220889s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .13112s elapsed │ │ │ │ │ │ i5 : check "FirstPackage" │ │ │ - -- capturing check(0, "FirstPackage") -- .21817s elapsed │ │ │ - -- capturing check(1, "FirstPackage") -- .226677s elapsed │ │ │ + -- capturing check(0, "FirstPackage") -- .133323s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .127664s elapsed │ │ │ │ │ │ i6 : tests(1, "FirstPackage") │ │ │ │ │ │ o6 = TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3] │ │ │ │ │ │ o6 : TestInput │ │ │ │ │ │ i7 : check oo │ │ │ - -- capturing check(1, "FirstPackage") -- .220218s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .125052s elapsed │ │ │ │ │ │ i8 : tests "FirstPackage" │ │ │ │ │ │ o8 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]} │ │ │ {1 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3]} │ │ │ │ │ │ o8 : NumberedVerticalList │ │ │ │ │ │ i9 : check oo │ │ │ - -- capturing check(0, "FirstPackage") -- .230323s elapsed │ │ │ - -- capturing check(1, "FirstPackage") -- .223717s elapsed │ │ │ + -- capturing check(0, "FirstPackage") -- .145166s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .120507s elapsed │ │ │ │ │ │ i10 : tests "FirstPackage" │ │ │ │ │ │ o10 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]} │ │ │ {1 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3]} │ │ │ │ │ │ o10 : NumberedVerticalList │ │ │ │ │ │ i11 : check 1 │ │ │ - -- capturing check(1, "FirstPackage") -- .230812s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .121864s elapsed │ │ │ │ │ │ i12 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_communicating_spwith_spprograms.out │ │ │ @@ -1,26 +1,26 @@ │ │ │ -- -*- M2-comint -*- hash: 10365735446967377456 │ │ │ │ │ │ i1 : run "uname -a" │ │ │ -Linux sbuild 6.12.48+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.48-1 (2025-09-20) x86_64 GNU/Linux │ │ │ +Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : "!grep a" << " ba \n bc \n ad \n ef \n" << close │ │ │ ba │ │ │ ad │ │ │ │ │ │ o2 = !grep a │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : peek get "!uname -a" │ │ │ │ │ │ -o3 = "Linux sbuild 6.12.48+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ - 6.12.48-1 (2025-09-20) x86_64 GNU/Linux\n" │ │ │ +o3 = "Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ + 6.12.57-1 (2025-11-05) x86_64 GNU/Linux\n" │ │ │ │ │ │ i4 : f = openInOut "!grep -E '^in'" │ │ │ │ │ │ o4 = !grep -E '^in' │ │ │ │ │ │ o4 : File │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_sp__Groebner_spbases.out │ │ │ @@ -126,15 +126,15 @@ │ │ │ │ │ │ ZZ │ │ │ o23 : Ideal of ----[x..z, w] │ │ │ 1277 │ │ │ │ │ │ i24 : gb I │ │ │ │ │ │ - -- registering gb 5 at 0x7f4e93a66540 │ │ │ + -- registering gb 5 at 0x7f060a7fd540 │ │ │ │ │ │ -- [gb]{2}(2)mm{3}(1)m{4}(2)om{5}(1)onumber of (nonminimal) gb elements = 4 │ │ │ -- number of monomials = 8 │ │ │ -- #reduction steps = 2 │ │ │ -- #spairs done = 6 │ │ │ -- ncalls = 0 │ │ │ -- nloop = 0 │ │ │ @@ -177,15 +177,15 @@ │ │ │ │ │ │ i32 : f = random(R^1,R^{-3,-3,-5,-6}); │ │ │ │ │ │ 1 4 │ │ │ o32 : Matrix R <-- R │ │ │ │ │ │ i33 : time betti gb f │ │ │ - -- used 0.27951s (cpu); 0.279785s (thread); 0s (gc) │ │ │ + -- used 0.211804s (cpu); 0.211893s (thread); 0s (gc) │ │ │ │ │ │ 0 1 │ │ │ o33 = total: 1 53 │ │ │ 0: 1 . │ │ │ 1: . . │ │ │ 2: . 2 │ │ │ 3: . 1 │ │ │ @@ -208,15 +208,15 @@ │ │ │ │ │ │ 3 5 8 9 12 14 17 │ │ │ o35 = 1 - 2T - T + 2T + 2T - T - 2T + T │ │ │ │ │ │ o35 : ZZ[T] │ │ │ │ │ │ i36 : time betti gb f │ │ │ - -- used 0.00392072s (cpu); 0.00469829s (thread); 0s (gc) │ │ │ + -- used 0.000492993s (cpu); 0.00306167s (thread); 0s (gc) │ │ │ │ │ │ 0 1 │ │ │ o36 = total: 1 53 │ │ │ 0: 1 . │ │ │ 1: . . │ │ │ 2: . 2 │ │ │ 3: . 1 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_copy__Directory_lp__String_cm__String_rp.out │ │ │ @@ -1,76 +1,76 @@ │ │ │ -- -*- M2-comint -*- hash: 11422793294564310273 │ │ │ │ │ │ i1 : src = temporaryFileName() | "/" │ │ │ │ │ │ -o1 = /tmp/M2-11185-0/0/ │ │ │ +o1 = /tmp/M2-12295-0/0/ │ │ │ │ │ │ i2 : dst = temporaryFileName() | "/" │ │ │ │ │ │ -o2 = /tmp/M2-11185-0/1/ │ │ │ +o2 = /tmp/M2-12295-0/1/ │ │ │ │ │ │ i3 : makeDirectory (src|"a/") │ │ │ │ │ │ -o3 = /tmp/M2-11185-0/0/a/ │ │ │ +o3 = /tmp/M2-12295-0/0/a/ │ │ │ │ │ │ i4 : makeDirectory (src|"b/") │ │ │ │ │ │ -o4 = /tmp/M2-11185-0/0/b/ │ │ │ +o4 = /tmp/M2-12295-0/0/b/ │ │ │ │ │ │ i5 : makeDirectory (src|"b/c/") │ │ │ │ │ │ -o5 = /tmp/M2-11185-0/0/b/c/ │ │ │ +o5 = /tmp/M2-12295-0/0/b/c/ │ │ │ │ │ │ i6 : src|"a/f" << "hi there" << close │ │ │ │ │ │ -o6 = /tmp/M2-11185-0/0/a/f │ │ │ +o6 = /tmp/M2-12295-0/0/a/f │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : src|"a/g" << "hi there" << close │ │ │ │ │ │ -o7 = /tmp/M2-11185-0/0/a/g │ │ │ +o7 = /tmp/M2-12295-0/0/a/g │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : src|"b/c/g" << "ho there" << close │ │ │ │ │ │ -o8 = /tmp/M2-11185-0/0/b/c/g │ │ │ +o8 = /tmp/M2-12295-0/0/b/c/g │ │ │ │ │ │ o8 : File │ │ │ │ │ │ i9 : stack findFiles src │ │ │ │ │ │ -o9 = /tmp/M2-11185-0/0/ │ │ │ - /tmp/M2-11185-0/0/b/ │ │ │ - /tmp/M2-11185-0/0/b/c/ │ │ │ - /tmp/M2-11185-0/0/b/c/g │ │ │ - /tmp/M2-11185-0/0/a/ │ │ │ - /tmp/M2-11185-0/0/a/g │ │ │ - /tmp/M2-11185-0/0/a/f │ │ │ +o9 = /tmp/M2-12295-0/0/ │ │ │ + /tmp/M2-12295-0/0/a/ │ │ │ + /tmp/M2-12295-0/0/a/g │ │ │ + /tmp/M2-12295-0/0/a/f │ │ │ + /tmp/M2-12295-0/0/b/ │ │ │ + /tmp/M2-12295-0/0/b/c/ │ │ │ + /tmp/M2-12295-0/0/b/c/g │ │ │ │ │ │ i10 : copyDirectory(src,dst,Verbose=>true) │ │ │ - -- copying: /tmp/M2-11185-0/0/b/c/g -> /tmp/M2-11185-0/1/b/c/g │ │ │ - -- copying: /tmp/M2-11185-0/0/a/g -> /tmp/M2-11185-0/1/a/g │ │ │ - -- copying: /tmp/M2-11185-0/0/a/f -> /tmp/M2-11185-0/1/a/f │ │ │ + -- copying: /tmp/M2-12295-0/0/a/g -> /tmp/M2-12295-0/1/a/g │ │ │ + -- copying: /tmp/M2-12295-0/0/a/f -> /tmp/M2-12295-0/1/a/f │ │ │ + -- copying: /tmp/M2-12295-0/0/b/c/g -> /tmp/M2-12295-0/1/b/c/g │ │ │ │ │ │ i11 : copyDirectory(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ - -- skipping: /tmp/M2-11185-0/0/b/c/g not newer than /tmp/M2-11185-0/1/b/c/g │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/g not newer than /tmp/M2-11185-0/1/a/g │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/f not newer than /tmp/M2-11185-0/1/a/f │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/g not newer than /tmp/M2-12295-0/1/a/g │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/f not newer than /tmp/M2-12295-0/1/a/f │ │ │ + -- skipping: /tmp/M2-12295-0/0/b/c/g not newer than /tmp/M2-12295-0/1/b/c/g │ │ │ │ │ │ i12 : stack findFiles dst │ │ │ │ │ │ -o12 = /tmp/M2-11185-0/1/ │ │ │ - /tmp/M2-11185-0/1/a/ │ │ │ - /tmp/M2-11185-0/1/a/f │ │ │ - /tmp/M2-11185-0/1/a/g │ │ │ - /tmp/M2-11185-0/1/b/ │ │ │ - /tmp/M2-11185-0/1/b/c/ │ │ │ - /tmp/M2-11185-0/1/b/c/g │ │ │ +o12 = /tmp/M2-12295-0/1/ │ │ │ + /tmp/M2-12295-0/1/a/ │ │ │ + /tmp/M2-12295-0/1/a/g │ │ │ + /tmp/M2-12295-0/1/a/f │ │ │ + /tmp/M2-12295-0/1/b/ │ │ │ + /tmp/M2-12295-0/1/b/c/ │ │ │ + /tmp/M2-12295-0/1/b/c/g │ │ │ │ │ │ i13 : get (dst|"b/c/g") │ │ │ │ │ │ o13 = ho there │ │ │ │ │ │ i14 : rm = d -> if isDirectory d then removeDirectory d else removeFile d │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_copy__File_lp__String_cm__String_rp.out │ │ │ @@ -1,41 +1,41 @@ │ │ │ -- -*- M2-comint -*- hash: 11539475420155775110 │ │ │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10970-0/0 │ │ │ +o1 = /tmp/M2-11860-0/0 │ │ │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-10970-0/1 │ │ │ +o2 = /tmp/M2-11860-0/1 │ │ │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10970-0/0 │ │ │ +o3 = /tmp/M2-11860-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : copyFile(src,dst,Verbose=>true) │ │ │ - -- copying: /tmp/M2-10970-0/0 -> /tmp/M2-10970-0/1 │ │ │ + -- copying: /tmp/M2-11860-0/0 -> /tmp/M2-11860-0/1 │ │ │ │ │ │ i5 : get dst │ │ │ │ │ │ o5 = hi there │ │ │ │ │ │ i6 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1 │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │ │ │ │ i7 : src << "ho there" << close │ │ │ │ │ │ -o7 = /tmp/M2-10970-0/0 │ │ │ +o7 = /tmp/M2-11860-0/0 │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1 │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │ │ │ │ i9 : get dst │ │ │ │ │ │ o9 = hi there │ │ │ │ │ │ i10 : removeFile src │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cpu__Time.out │ │ │ @@ -1,23 +1,23 @@ │ │ │ -- -*- M2-comint -*- hash: 15508153783232232453 │ │ │ │ │ │ i1 : t1 = cpuTime() │ │ │ │ │ │ -o1 = 363.561188353 │ │ │ +o1 = 336.141712199 │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ │ │ i2 : for i from 0 to 1000000 do 223131321321*324234324324; │ │ │ │ │ │ i3 : t2 = cpuTime() │ │ │ │ │ │ -o3 = 365.292753193 │ │ │ +o3 = 337.193418863 │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ │ │ i4 : t2-t1 │ │ │ │ │ │ -o4 = 1.731564839999976 │ │ │ +o4 = 1.051706663999994 │ │ │ │ │ │ o4 : RR (of precision 53) │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Time.out │ │ │ @@ -1,24 +1,24 @@ │ │ │ -- -*- M2-comint -*- hash: 3660839476107967259 │ │ │ │ │ │ i1 : currentTime() │ │ │ │ │ │ -o1 = 1763141264 │ │ │ +o1 = 1763721754 │ │ │ │ │ │ i2 : currentTime() /( (365 + 97./400) * 24 * 60 * 60 ) │ │ │ │ │ │ -o2 = 55.87172246546498 │ │ │ +o2 = 55.8901174612808 │ │ │ │ │ │ o2 : RR (of precision 53) │ │ │ │ │ │ i3 : 12 * (oo - floor oo) │ │ │ │ │ │ -o3 = 10.46066958557981 │ │ │ +o3 = 10.68140953536962 │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ │ │ i4 : run "date" │ │ │ -Fri Nov 14 17:27:44 UTC 2025 │ │ │ +Fri Nov 21 10:42:34 UTC 2025 │ │ │ │ │ │ o4 = 0 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Time.out │ │ │ @@ -1,8 +1,8 @@ │ │ │ -- -*- M2-comint -*- hash: 1330565958025 │ │ │ │ │ │ i1 : elapsedTime sleep 1 │ │ │ - -- 1.00014s elapsed │ │ │ + -- 1.00013s elapsed │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Timing.out │ │ │ @@ -1,14 +1,14 @@ │ │ │ -- -*- M2-comint -*- hash: 1731106803207298715 │ │ │ │ │ │ i1 : elapsedTiming sleep 1 │ │ │ │ │ │ o1 = 0 │ │ │ - -- 1.00015 seconds │ │ │ + -- 1.00014 seconds │ │ │ │ │ │ o1 : Time │ │ │ │ │ │ i2 : peek oo │ │ │ │ │ │ -o2 = Time{1.00015, 0} │ │ │ +o2 = Time{1.00014, 0} │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elimination_spof_spvariables.out │ │ │ @@ -6,15 +6,15 @@ │ │ │ │ │ │ 3 3 2 3 │ │ │ o2 = ideal (- s - s*t + x - 1, - t - 3t - t + y, - s*t + z) │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : time leadTerm gens gb I │ │ │ - -- used 0.474296s (cpu); 0.280859s (thread); 0s (gc) │ │ │ + -- used 0.135773s (cpu); 0.135774s (thread); 0s (gc) │ │ │ │ │ │ o3 = | x3y9 5148txy3 108729sxy2z2 sy4z 46644741sxy3z 143sy5 6sxy4 │ │ │ ------------------------------------------------------------------------ │ │ │ 563515116021sx2y3 4374txy2z3 612704350498473090tx2yz3 217458ty4z2 │ │ │ ------------------------------------------------------------------------ │ │ │ 267076255345488270sy3z4 5256861933965245618410txyz6 │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -85,15 +85,15 @@ │ │ │ │ │ │ 3 3 2 3 │ │ │ o7 = ideal (- s - s*t + x - 1, - t - 3t + y - t, - s*t + z) │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : time G = eliminate(I,{s,t}) │ │ │ - -- used 0.497187s (cpu); 0.266913s (thread); 0s (gc) │ │ │ + -- used 0.362934s (cpu); 0.185765s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 9 2 8 2 6 3 9 2 7 8 │ │ │ o8 = ideal(x y - 3x y - 6x y z - 3x y z + 3x*y - x y z + 12x*y z + │ │ │ ------------------------------------------------------------------------ │ │ │ 7 2 2 5 3 6 3 7 3 5 4 3 6 9 7 │ │ │ 7x*y z - 324x y z + 6x*y z - y z - 15x*y z + 3x*y z - y + 2x*y z │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -154,15 +154,15 @@ │ │ │ i10 : R1 = QQ[x,y,z,s,t, Degrees=>{3,3,4,1,1}]; │ │ │ │ │ │ i11 : I1 = substitute(I,R1); │ │ │ │ │ │ o11 : Ideal of R1 │ │ │ │ │ │ i12 : time G = eliminate(I1,{s,t}) │ │ │ - -- used 0.340207s (cpu); 0.126135s (thread); 0s (gc) │ │ │ + -- used 0.0321558s (cpu); 0.0321565s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 6 3 3 6 9 2 8 5 4 2 7 │ │ │ o12 = ideal(x y - 3x y z + 3x*y z - z - 6x y z - 15x*y z + 21y z - │ │ │ ----------------------------------------------------------------------- │ │ │ 2 9 2 5 3 6 3 7 3 2 6 3 6 7 2 │ │ │ 3x y - 324x y z + 6x*y z - y z - 405x*y z - 3y z + 7x*y z - │ │ │ ----------------------------------------------------------------------- │ │ │ @@ -228,15 +228,15 @@ │ │ │ │ │ │ 3 3 2 3 │ │ │ o16 = map (A, B, {s + s*t + 1, t + 3t + t, s*t }) │ │ │ │ │ │ o16 : RingMap A <-- B │ │ │ │ │ │ i17 : time G = kernel F │ │ │ - -- used 0.445785s (cpu); 0.239366s (thread); 0s (gc) │ │ │ + -- used 0.112779s (cpu); 0.112785s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 9 2 8 2 6 3 9 2 7 8 │ │ │ o17 = ideal(x y - 3x y - 6x y z - 3x y z + 3x*y - x y z + 12x*y z + │ │ │ ----------------------------------------------------------------------- │ │ │ 7 2 2 5 3 6 3 7 3 5 4 3 6 9 7 │ │ │ 7x*y z - 324x y z + 6x*y z - y z - 15x*y z + 3x*y z - y + 2x*y z │ │ │ ----------------------------------------------------------------------- │ │ │ @@ -297,23 +297,23 @@ │ │ │ i19 : use ring I │ │ │ │ │ │ o19 = R │ │ │ │ │ │ o19 : PolynomialRing │ │ │ │ │ │ i20 : time f1 = resultant(I_0,I_2,s) │ │ │ - -- used 0.0020489s (cpu); 0.00204903s (thread); 0s (gc) │ │ │ + -- used 0.00186132s (cpu); 0.00166853s (thread); 0s (gc) │ │ │ │ │ │ 9 9 7 3 │ │ │ o20 = x*t - t - z*t - z │ │ │ │ │ │ o20 : R │ │ │ │ │ │ i21 : time f2 = resultant(I_1,f1,t) │ │ │ - -- used 0.056264s (cpu); 0.0562726s (thread); 0s (gc) │ │ │ + -- used 0.0387805s (cpu); 0.0387914s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 9 2 8 2 6 3 9 2 7 8 7 2 │ │ │ o21 = - x y + 3x y + 6x y z + 3x y z - 3x*y + x y z - 12x*y z - 7x*y z + │ │ │ ----------------------------------------------------------------------- │ │ │ 2 5 3 6 3 7 3 5 4 3 6 9 7 8 │ │ │ 324x y z - 6x*y z + y z + 15x*y z - 3x*y z + y - 2x*y z + 6y z + │ │ │ ----------------------------------------------------------------------- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_end__Package.out │ │ │ @@ -59,15 +59,15 @@ │ │ │ Version => 0.0 │ │ │ package prefix => /usr/ │ │ │ PackageIsLoaded => true │ │ │ pkgname => Foo │ │ │ private dictionary => Foo#"private dictionary" │ │ │ processed documentation => MutableHashTable{} │ │ │ raw documentation => MutableHashTable{} │ │ │ - source directory => /tmp/M2-10191-0/91-rundir/ │ │ │ + source directory => /tmp/M2-10311-0/91-rundir/ │ │ │ source file => stdio │ │ │ test inputs => MutableList{} │ │ │ │ │ │ i7 : dictionaryPath │ │ │ │ │ │ o7 = {Foo.Dictionary, Varieties.Dictionary, Isomorphism.Dictionary, │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Exists.out │ │ │ @@ -1,20 +1,20 @@ │ │ │ -- -*- M2-comint -*- hash: 7475038936570224899 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10558-0/0 │ │ │ +o1 = /tmp/M2-11028-0/0 │ │ │ │ │ │ i2 : fileExists fn │ │ │ │ │ │ o2 = false │ │ │ │ │ │ i3 : fn << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10558-0/0 │ │ │ +o3 = /tmp/M2-11028-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : fileExists fn │ │ │ │ │ │ o4 = true │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Length.out │ │ │ @@ -1,28 +1,28 @@ │ │ │ -- -*- M2-comint -*- hash: 1216695447195237994 │ │ │ │ │ │ i1 : f = temporaryFileName() << "hi there" │ │ │ │ │ │ -o1 = /tmp/M2-12150-0/0 │ │ │ +o1 = /tmp/M2-14270-0/0 │ │ │ │ │ │ o1 : File │ │ │ │ │ │ i2 : fileLength f │ │ │ │ │ │ o2 = 8 │ │ │ │ │ │ i3 : close f │ │ │ │ │ │ -o3 = /tmp/M2-12150-0/0 │ │ │ +o3 = /tmp/M2-14270-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : filename = toString f │ │ │ │ │ │ -o4 = /tmp/M2-12150-0/0 │ │ │ +o4 = /tmp/M2-14270-0/0 │ │ │ │ │ │ i5 : fileLength filename │ │ │ │ │ │ o5 = 8 │ │ │ │ │ │ i6 : get filename │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__File_rp.out │ │ │ @@ -1,25 +1,25 @@ │ │ │ -- -*- M2-comint -*- hash: 11202140621123993633 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11375-0/0 │ │ │ +o1 = /tmp/M2-12685-0/0 │ │ │ │ │ │ i2 : f = fn << "hi there" │ │ │ │ │ │ -o2 = /tmp/M2-11375-0/0 │ │ │ +o2 = /tmp/M2-12685-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : fileMode f │ │ │ │ │ │ o3 = 420 │ │ │ │ │ │ i4 : close f │ │ │ │ │ │ -o4 = /tmp/M2-11375-0/0 │ │ │ +o4 = /tmp/M2-12685-0/0 │ │ │ │ │ │ o4 : File │ │ │ │ │ │ i5 : removeFile fn │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__String_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 4782570202197464532 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10989-0/0 │ │ │ +o1 = /tmp/M2-11899-0/0 │ │ │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ -o2 = /tmp/M2-10989-0/0 │ │ │ +o2 = /tmp/M2-11899-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : fileMode fn │ │ │ │ │ │ o3 = 420 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__Z__Z_cm__File_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 17473878267845575442 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10854-0/0 │ │ │ +o1 = /tmp/M2-11624-0/0 │ │ │ │ │ │ i2 : f = fn << "hi there" │ │ │ │ │ │ -o2 = /tmp/M2-10854-0/0 │ │ │ +o2 = /tmp/M2-11624-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : m = 7 + 7*8 + 7*64 │ │ │ │ │ │ o3 = 511 │ │ │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ │ │ i5 : fileMode f │ │ │ │ │ │ o5 = 511 │ │ │ │ │ │ i6 : close f │ │ │ │ │ │ -o6 = /tmp/M2-10854-0/0 │ │ │ +o6 = /tmp/M2-11624-0/0 │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : fileMode fn │ │ │ │ │ │ o7 = 511 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__Z__Z_cm__String_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 16772784390799334723 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11977-0/0 │ │ │ +o1 = /tmp/M2-13917-0/0 │ │ │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ -o2 = /tmp/M2-11977-0/0 │ │ │ +o2 = /tmp/M2-13917-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : m = fileMode fn │ │ │ │ │ │ o3 = 420 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Time.out │ │ │ @@ -1,7 +1,7 @@ │ │ │ -- -*- M2-comint -*- hash: 1331310711075 │ │ │ │ │ │ i1 : currentTime() - fileTime "." │ │ │ │ │ │ -o1 = 66 │ │ │ +o1 = 49 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_force__G__B_lp..._cm__Syzygy__Matrix_eq_gt..._rp.out │ │ │ @@ -29,15 +29,15 @@ │ │ │ {4} | 0 x2-3 y3-1 | │ │ │ │ │ │ 3 3 │ │ │ o6 : Matrix R <-- R │ │ │ │ │ │ i7 : syz f │ │ │ │ │ │ - -- registering gb 0 at 0x7f499763be00 │ │ │ + -- registering gb 0 at 0x7f31edc9ce00 │ │ │ │ │ │ -- [gb]{2}(1)m{3}(1)m{4}(1)m{5}(1)z{6}(1)z{7}(1)znumber of (nonminimal) gb elements = 3 │ │ │ -- number of monomials = 9 │ │ │ -- #reduction steps = 6 │ │ │ -- #spairs done = 6 │ │ │ -- ncalls = 0 │ │ │ -- nloop = 0 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_get.out │ │ │ @@ -10,11 +10,11 @@ │ │ │ │ │ │ o2 = hi there │ │ │ │ │ │ i3 : removeFile "test-file" │ │ │ │ │ │ i4 : get "!date" │ │ │ │ │ │ -o4 = Fri Nov 14 17:26:54 UTC 2025 │ │ │ +o4 = Fri Nov 21 10:41:58 UTC 2025 │ │ │ │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_instances.out │ │ │ @@ -11,15 +11,15 @@ │ │ │ defaultPrecision => 53 │ │ │ engineDebugLevel => 0 │ │ │ errorDepth => 0 │ │ │ gbTrace => 0 │ │ │ interpreterDepth => 1 │ │ │ lineNumber => 2 │ │ │ loadDepth => 3 │ │ │ - maxAllowableThreads => 7 │ │ │ + maxAllowableThreads => 17 │ │ │ maxExponent => 1073741823 │ │ │ minExponent => -1073741824 │ │ │ numTBBThreads => 0 │ │ │ o1 => 2432902008176640000 │ │ │ oo => 2432902008176640000 │ │ │ printingAccuracy => -1 │ │ │ printingLeadLimit => 5 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Canceled_lp__Task_rp.out │ │ │ @@ -21,15 +21,15 @@ │ │ │ i5 : sleep 1 │ │ │ │ │ │ o5 = 0 │ │ │ │ │ │ i6 : cancelTask t │ │ │ │ │ │ i7 : sleep 2 │ │ │ -stdio:2:25:(3):[1]: error: interrupted │ │ │ +stdio:2:39:(3):[1]: error: interrupted │ │ │ │ │ │ o7 = 0 │ │ │ │ │ │ i8 : isCanceled t │ │ │ │ │ │ o8 = true │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Directory.out │ │ │ @@ -2,19 +2,19 @@ │ │ │ │ │ │ i1 : isDirectory "." │ │ │ │ │ │ o1 = true │ │ │ │ │ │ i2 : fn = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-10380-0/0 │ │ │ +o2 = /tmp/M2-10670-0/0 │ │ │ │ │ │ i3 : fn << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10380-0/0 │ │ │ +o3 = /tmp/M2-10670-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : isDirectory fn │ │ │ │ │ │ o4 = false │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Pseudoprime_lp__Z__Z_rp.out │ │ │ @@ -75,15 +75,15 @@ │ │ │ o17 = false │ │ │ │ │ │ i18 : isPrime(m*m*m1*m1*m2^6) │ │ │ │ │ │ o18 = false │ │ │ │ │ │ i19 : elapsedTime facs = factor(m*m1) │ │ │ - -- 4.26787s elapsed │ │ │ + -- 5.60722s elapsed │ │ │ │ │ │ o19 = 1000000000000000000000000000057*1000000000000000000010000000083 │ │ │ │ │ │ o19 : Expression of class Product │ │ │ │ │ │ i20 : facs = facs//toList/toList │ │ │ │ │ │ @@ -97,17 +97,17 @@ │ │ │ │ │ │ i22 : m3 = nextPrime (m^3) │ │ │ │ │ │ o22 = 10000000000000000000000000001710000000000000000000000000097470000000000 │ │ │ 00000000000000185613 │ │ │ │ │ │ i23 : elapsedTime isPrime m3 │ │ │ - -- .0564874s elapsed │ │ │ + -- .0603939s elapsed │ │ │ │ │ │ o23 = true │ │ │ │ │ │ i24 : elapsedTime isPseudoprime m3 │ │ │ - -- .000106819s elapsed │ │ │ + -- .000122846s elapsed │ │ │ │ │ │ o24 = true │ │ │ │ │ │ i25 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Regular__File.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 4782205245758053629 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-12188-0/0 │ │ │ +o1 = /tmp/M2-14348-0/0 │ │ │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ -o2 = /tmp/M2-12188-0/0 │ │ │ +o2 = /tmp/M2-14348-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : isRegularFile fn │ │ │ │ │ │ o3 = true │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_make__Directory_lp__String_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 5113372159204571746 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10722-0/0 │ │ │ +o1 = /tmp/M2-11352-0/0 │ │ │ │ │ │ i2 : makeDirectory (dir|"/a/b/c") │ │ │ │ │ │ -o2 = /tmp/M2-10722-0/0/a/b/c │ │ │ +o2 = /tmp/M2-11352-0/0/a/b/c │ │ │ │ │ │ i3 : removeDirectory (dir|"/a/b/c") │ │ │ │ │ │ i4 : removeDirectory (dir|"/a/b") │ │ │ │ │ │ i5 : removeDirectory (dir|"/a") │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Allowable__Threads.out │ │ │ @@ -1,7 +1,7 @@ │ │ │ -- -*- M2-comint -*- hash: 1331887830690 │ │ │ │ │ │ i1 : maxAllowableThreads │ │ │ │ │ │ -o1 = 7 │ │ │ +o1 = 17 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_memoize.out │ │ │ @@ -3,31 +3,31 @@ │ │ │ i1 : fib = n -> if n <= 1 then 1 else fib(n-1) + fib(n-2) │ │ │ │ │ │ o1 = fib │ │ │ │ │ │ o1 : FunctionClosure │ │ │ │ │ │ i2 : time fib 28 │ │ │ - -- used 1.38174s (cpu); 0.797855s (thread); 0s (gc) │ │ │ + -- used 0.851793s (cpu); 0.633078s (thread); 0s (gc) │ │ │ │ │ │ o2 = 514229 │ │ │ │ │ │ i3 : fib = memoize fib │ │ │ │ │ │ o3 = fib │ │ │ │ │ │ o3 : FunctionClosure │ │ │ │ │ │ i4 : time fib 28 │ │ │ - -- used 8.4749e-05s (cpu); 8.4468e-05s (thread); 0s (gc) │ │ │ + -- used 6.947e-05s (cpu); 6.5701e-05s (thread); 0s (gc) │ │ │ │ │ │ o4 = 514229 │ │ │ │ │ │ i5 : time fib 28 │ │ │ - -- used 4.028e-06s (cpu); 3.647e-06s (thread); 0s (gc) │ │ │ + -- used 3.663e-06s (cpu); 3.455e-06s (thread); 0s (gc) │ │ │ │ │ │ o5 = 514229 │ │ │ │ │ │ i6 : fib = memoize( n -> fib(n-1) + fib(n-2) ) │ │ │ │ │ │ o6 = fib │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_methods.out │ │ │ @@ -17,20 +17,20 @@ │ │ │ {12 => (poincare, BettiTally) } │ │ │ {13 => (hilbertPolynomial, ZZ, BettiTally) } │ │ │ {14 => (degree, BettiTally) } │ │ │ {15 => (hilbertSeries, ZZ, BettiTally) } │ │ │ {16 => (pdim, BettiTally) } │ │ │ {17 => (regularity, BettiTally) } │ │ │ {18 => (mathML, BettiTally) } │ │ │ - {19 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ - {20 => (dual, BettiTally) } │ │ │ - {21 => (codim, BettiTally) } │ │ │ - {22 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ - {23 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ - {24 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {19 => (codim, BettiTally) } │ │ │ + {20 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {21 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ + {22 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ + {23 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ + {24 => (dual, BettiTally) } │ │ │ {25 => (^, Ring, BettiTally) } │ │ │ │ │ │ o1 : NumberedVerticalList │ │ │ │ │ │ i2 : methods resolution │ │ │ │ │ │ o2 = {0 => (resolution, Ideal) } │ │ │ @@ -60,20 +60,20 @@ │ │ │ {1 => (++, Module, GradedModule)} │ │ │ {2 => (++, Module, Module) } │ │ │ │ │ │ o4 : NumberedVerticalList │ │ │ │ │ │ i5 : methods( Matrix, Matrix ) │ │ │ │ │ │ -o5 = {0 => (diff', Matrix, Matrix) } │ │ │ - {1 => (-, Matrix, Matrix) } │ │ │ - {2 => (+, Matrix, Matrix) } │ │ │ +o5 = {0 => (+, Matrix, Matrix) } │ │ │ + {1 => (contract', Matrix, Matrix) } │ │ │ + {2 => (-, Matrix, Matrix) } │ │ │ {3 => (diff, Matrix, Matrix) } │ │ │ {4 => (contract, Matrix, Matrix) } │ │ │ - {5 => (contract', Matrix, Matrix) } │ │ │ + {5 => (diff', Matrix, Matrix) } │ │ │ {6 => (markedGB, Matrix, Matrix) } │ │ │ {7 => (Hom, Matrix, Matrix) } │ │ │ {8 => (==, Matrix, Matrix) } │ │ │ {9 => (*, Matrix, Matrix) } │ │ │ {10 => (|, Matrix, Matrix) } │ │ │ {11 => (||, Matrix, Matrix) } │ │ │ {12 => (subquotient, Matrix, Matrix) } │ │ │ @@ -89,17 +89,17 @@ │ │ │ {22 => (quotient', Matrix, Matrix) } │ │ │ {23 => (remainder', Matrix, Matrix) } │ │ │ {24 => (remainder, Matrix, Matrix) } │ │ │ {25 => (%, Matrix, Matrix) } │ │ │ {26 => (pushout, Matrix, Matrix) } │ │ │ {27 => (solve, Matrix, Matrix) } │ │ │ {28 => (intersect, Matrix, Matrix, Matrix, Matrix) } │ │ │ - {29 => (intersect, Matrix, Matrix) } │ │ │ - {30 => (pullback, Matrix, Matrix) } │ │ │ - {31 => (tensor, Matrix, Matrix) } │ │ │ + {29 => (pullback, Matrix, Matrix) } │ │ │ + {30 => (tensor, Matrix, Matrix) } │ │ │ + {31 => (intersect, Matrix, Matrix) } │ │ │ {32 => (substitute, Matrix, Matrix) } │ │ │ {33 => (yonedaProduct, Matrix, Matrix) } │ │ │ {34 => (isShortExactSequence, Matrix, Matrix) } │ │ │ {35 => (horseshoeResolution, Matrix, Matrix) } │ │ │ {36 => (connectingExtMap, Module, Matrix, Matrix) } │ │ │ {37 => (connectingExtMap, Matrix, Matrix, Module) } │ │ │ {38 => (connectingTorMap, Module, Matrix, Matrix) } │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_minimal__Betti.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i2 : S = ring I │ │ │ │ │ │ o2 = S │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ │ │ i3 : elapsedTime C = minimalBetti I │ │ │ - -- 1.919s elapsed │ │ │ + -- 2.38539s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o3 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -26,44 +26,44 @@ │ │ │ o3 : BettiTally │ │ │ │ │ │ i4 : I = ideal I_*; │ │ │ │ │ │ o4 : Ideal of S │ │ │ │ │ │ i5 : elapsedTime C = minimalBetti(I, DegreeLimit=>2) │ │ │ - -- .74946s elapsed │ │ │ + -- .98865s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ o5 = total: 1 35 140 385 819 1080 735 196 │ │ │ 0: 1 . . . . . . . │ │ │ 1: . 35 140 189 84 . . . │ │ │ 2: . . . 196 735 1080 735 196 │ │ │ │ │ │ o5 : BettiTally │ │ │ │ │ │ i6 : I = ideal I_*; │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ i7 : elapsedTime C = minimalBetti(I, DegreeLimit=>1, LengthLimit=>5) │ │ │ - -- .0315312s elapsed │ │ │ + -- .0389582s elapsed │ │ │ │ │ │ 0 1 2 3 4 │ │ │ o7 = total: 1 35 140 189 84 │ │ │ 0: 1 . . . . │ │ │ 1: . 35 140 189 84 │ │ │ │ │ │ o7 : BettiTally │ │ │ │ │ │ i8 : I = ideal I_*; │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ i9 : elapsedTime C = minimalBetti(I, LengthLimit=>5) │ │ │ - -- 1.2026s elapsed │ │ │ + -- 1.62713s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ o9 = total: 1 35 140 385 819 1080 │ │ │ 0: 1 . . . . . │ │ │ 1: . 35 140 189 84 . │ │ │ 2: . . . 196 735 1080 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_mkdir.out │ │ │ @@ -1,22 +1,22 @@ │ │ │ -- -*- M2-comint -*- hash: 15555226809509933135 │ │ │ │ │ │ i1 : p = temporaryFileName() | "/" │ │ │ │ │ │ -o1 = /tmp/M2-10741-0/0/ │ │ │ +o1 = /tmp/M2-11391-0/0/ │ │ │ │ │ │ i2 : mkdir p │ │ │ │ │ │ i3 : isDirectory p │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : (fn = p | "foo") << "hi there" << close │ │ │ │ │ │ -o4 = /tmp/M2-10741-0/0/foo │ │ │ +o4 = /tmp/M2-11391-0/0/foo │ │ │ │ │ │ o4 : File │ │ │ │ │ │ i5 : get fn │ │ │ │ │ │ o5 = hi there │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_move__File_lp__String_cm__String_rp.out │ │ │ @@ -1,31 +1,31 @@ │ │ │ -- -*- M2-comint -*- hash: 4857944042471093218 │ │ │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10615-0/0 │ │ │ +o1 = /tmp/M2-11145-0/0 │ │ │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-10615-0/1 │ │ │ +o2 = /tmp/M2-11145-0/1 │ │ │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10615-0/0 │ │ │ +o3 = /tmp/M2-11145-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : moveFile(src,dst,Verbose=>true) │ │ │ ---moving: /tmp/M2-10615-0/0 -> /tmp/M2-10615-0/1 │ │ │ +--moving: /tmp/M2-11145-0/0 -> /tmp/M2-11145-0/1 │ │ │ │ │ │ i5 : get dst │ │ │ │ │ │ o5 = hi there │ │ │ │ │ │ i6 : bak = moveFile(dst,Verbose=>true) │ │ │ ---backup file created: /tmp/M2-10615-0/1.bak │ │ │ +--backup file created: /tmp/M2-11145-0/1.bak │ │ │ │ │ │ -o6 = /tmp/M2-10615-0/1.bak │ │ │ +o6 = /tmp/M2-11145-0/1.bak │ │ │ │ │ │ i7 : removeFile bak │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_nanosleep.out │ │ │ @@ -1,8 +1,8 @@ │ │ │ -- -*- M2-comint -*- hash: 1331114612441 │ │ │ │ │ │ i1 : elapsedTime nanosleep 500000000 │ │ │ - -- .500135s elapsed │ │ │ + -- .500204s elapsed │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_options_lp__Function_rp.out │ │ │ @@ -21,29 +21,29 @@ │ │ │ │ │ │ o3 = OptionTable{Generic => false} │ │ │ │ │ │ o3 : OptionTable │ │ │ │ │ │ i4 : methods codim │ │ │ │ │ │ -o4 = {0 => (codim, BettiTally) } │ │ │ - {1 => (codim, Module) } │ │ │ - {2 => (codim, QuotientRing) } │ │ │ - {3 => (codim, Ideal) } │ │ │ - {4 => (codim, MonomialIdeal) } │ │ │ - {5 => (codim, PolynomialRing)} │ │ │ - {6 => (codim, CoherentSheaf) } │ │ │ - {7 => (codim, Variety) } │ │ │ +o4 = {0 => (codim, Variety) } │ │ │ + {1 => (codim, BettiTally) } │ │ │ + {2 => (codim, Module) } │ │ │ + {3 => (codim, QuotientRing) } │ │ │ + {4 => (codim, Ideal) } │ │ │ + {5 => (codim, MonomialIdeal) } │ │ │ + {6 => (codim, PolynomialRing)} │ │ │ + {7 => (codim, CoherentSheaf) } │ │ │ │ │ │ o4 : NumberedVerticalList │ │ │ │ │ │ i5 : options oo │ │ │ │ │ │ -o5 = {0 => (OptionTable{}) } │ │ │ - {1 => (OptionTable{Generic => false})} │ │ │ +o5 = {0 => (OptionTable{Generic => false})} │ │ │ + {1 => (OptionTable{}) } │ │ │ {2 => (OptionTable{Generic => false})} │ │ │ {3 => (OptionTable{Generic => false})} │ │ │ {4 => (OptionTable{Generic => false})} │ │ │ {5 => (OptionTable{Generic => false})} │ │ │ {6 => (OptionTable{Generic => false})} │ │ │ {7 => (OptionTable{Generic => false})} │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallel_spprogramming_spwith_spthreads_spand_sptasks.out │ │ │ @@ -5,26 +5,26 @@ │ │ │ o1 = {1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : L = random toList (1..10000); │ │ │ │ │ │ i3 : elapsedTime apply(1..100, n -> sort L); │ │ │ - -- .636785s elapsed │ │ │ + -- .701452s elapsed │ │ │ │ │ │ i4 : elapsedTime parallelApply(1..100, n -> sort L); │ │ │ - -- .302911s elapsed │ │ │ + -- .2289s elapsed │ │ │ │ │ │ i5 : allowableThreads │ │ │ │ │ │ o5 = 5 │ │ │ │ │ │ i6 : allowableThreads = maxAllowableThreads │ │ │ │ │ │ -o6 = 7 │ │ │ +o6 = 17 │ │ │ │ │ │ i7 : R = QQ[x,y,z]; │ │ │ │ │ │ i8 : I = ideal(x^2 + 2*y^2 - y - 2*z, x^2 - 8*y^2 + 10*z - 1, x^2 - 7*y*z) │ │ │ │ │ │ 2 2 2 2 2 │ │ │ o8 = ideal (x + 2y - y - 2z, x - 8y + 10z - 1, x - 7y*z) │ │ │ @@ -74,15 +74,15 @@ │ │ │ │ │ │ o16 : Task │ │ │ │ │ │ i17 : schedule t'; │ │ │ │ │ │ i18 : t' │ │ │ │ │ │ -o18 = <> │ │ │ +o18 = <> │ │ │ │ │ │ o18 : Task │ │ │ │ │ │ i19 : taskResult t' │ │ │ │ │ │ o19 = | 980z2-18y-201z+13 35yz-4y+2z-1 10y2-y-12z+1 5x2-4y+2z-1 | │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallelism_spin_spengine_spcomputations.out │ │ │ @@ -67,15 +67,15 @@ │ │ │ i3 : S = ring I │ │ │ │ │ │ o3 = S │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ │ │ i4 : elapsedTime minimalBetti I │ │ │ - -- 2.04775s elapsed │ │ │ + -- 2.31415s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o4 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -84,15 +84,15 @@ │ │ │ o4 : BettiTally │ │ │ │ │ │ i5 : I = ideal I_*; │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ │ │ i6 : elapsedTime minimalBetti(I, ParallelizeByDegree => true) │ │ │ - -- 1.80304s elapsed │ │ │ + -- 2.38083s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o6 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -105,15 +105,15 @@ │ │ │ o7 : Ideal of S │ │ │ │ │ │ i8 : numTBBThreads = 1 │ │ │ │ │ │ o8 = 1 │ │ │ │ │ │ i9 : elapsedTime minimalBetti(I) │ │ │ - -- 5.57414s elapsed │ │ │ + -- 2.40394s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o9 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -132,15 +132,15 @@ │ │ │ o11 = 0 │ │ │ │ │ │ i12 : I = ideal I_*; │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ │ │ i13 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ - -- 2.03698s elapsed │ │ │ + -- 2.59223s elapsed │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 576 135 14 │ │ │ o13 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ o13 : Complex │ │ │ @@ -150,15 +150,15 @@ │ │ │ o14 = 1 │ │ │ │ │ │ i15 : I = ideal I_*; │ │ │ │ │ │ o15 : Ideal of S │ │ │ │ │ │ i16 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ - -- 1.946s elapsed │ │ │ + -- 2.67072s elapsed │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 576 135 14 │ │ │ o16 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ o16 : Complex │ │ │ @@ -174,43 +174,43 @@ │ │ │ o18 : PolynomialRing │ │ │ │ │ │ i19 : I = ideal random(S^1, S^{4:-5}); │ │ │ │ │ │ o19 : Ideal of S │ │ │ │ │ │ i20 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ - -- 4.82802s elapsed │ │ │ + -- 3.89812s elapsed │ │ │ │ │ │ 1 108 │ │ │ o20 : Matrix S <-- S │ │ │ │ │ │ i21 : numTBBThreads = 1 │ │ │ │ │ │ o21 = 1 │ │ │ │ │ │ i22 : I = ideal I_*; │ │ │ │ │ │ o22 : Ideal of S │ │ │ │ │ │ i23 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ - -- 6.58749s elapsed │ │ │ + -- 8.4512s elapsed │ │ │ │ │ │ 1 108 │ │ │ o23 : Matrix S <-- S │ │ │ │ │ │ i24 : numTBBThreads = 10 │ │ │ │ │ │ o24 = 10 │ │ │ │ │ │ i25 : I = ideal I_*; │ │ │ │ │ │ o25 : Ideal of S │ │ │ │ │ │ i26 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ - -- 4.12035s elapsed │ │ │ + -- 3.51117s elapsed │ │ │ │ │ │ 1 108 │ │ │ o26 : Matrix S <-- S │ │ │ │ │ │ i27 : needsPackage "AssociativeAlgebras" │ │ │ │ │ │ o27 = AssociativeAlgebras │ │ │ @@ -233,15 +233,15 @@ │ │ │ o30 = ideal (5a + 2b*c + 3c*b, 3a*c + 5b + 2c*a, 2a*b + 3b*a + 5c ) │ │ │ │ │ │ ZZ │ │ │ o30 : Ideal of ---<|a, b, c|> │ │ │ 101 │ │ │ │ │ │ i31 : elapsedTime NCGB(I, 22); │ │ │ - -- 1.03876s elapsed │ │ │ + -- .990788s elapsed │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ o31 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ 101 101 │ │ │ │ │ │ i32 : I = ideal I_* │ │ │ │ │ │ @@ -253,14 +253,14 @@ │ │ │ 101 │ │ │ │ │ │ i33 : numTBBThreads = 1 │ │ │ │ │ │ o33 = 1 │ │ │ │ │ │ i34 : elapsedTime NCGB(I, 22); │ │ │ - -- 1.17701s elapsed │ │ │ + -- 1.52681s elapsed │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ o34 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ 101 101 │ │ │ │ │ │ i35 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_poincare.out │ │ │ @@ -146,65 +146,65 @@ │ │ │ o26 : ZZ[T] │ │ │ │ │ │ i27 : gbTrace = 3 │ │ │ │ │ │ o27 = 3 │ │ │ │ │ │ i28 : time poincare I │ │ │ - -- used 0.000521488s (cpu); 2.0348e-05s (thread); 0s (gc) │ │ │ + -- used 0.00116598s (cpu); 1.2559e-05s (thread); 0s (gc) │ │ │ │ │ │ 3 6 9 │ │ │ o28 = 1 - 3T + 3T - T │ │ │ │ │ │ o28 : ZZ[T] │ │ │ │ │ │ i29 : time gens gb I; │ │ │ │ │ │ - -- registering gb 19 at 0x7fe6adf6d380 │ │ │ + -- registering gb 19 at 0x7f816b773380 │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(2,6)mm{7}(1,4)m{8}(0,2)number of (nonminimal) gb elements = 11 │ │ │ -- number of monomials = 4186 │ │ │ -- #reduction steps = 38 │ │ │ -- #spairs done = 11 │ │ │ -- ncalls = 10 │ │ │ -- nloop = 29 │ │ │ -- nsaved = 0 │ │ │ - -- -- used 0.0234308s (cpu); 0.0247955s (thread); 0s (gc) │ │ │ + -- -- used 0.014844s (cpu); 0.0155386s (thread); 0s (gc) │ │ │ │ │ │ 1 11 │ │ │ o29 : Matrix R <-- R │ │ │ │ │ │ i30 : R = QQ[a..d]; │ │ │ │ │ │ i31 : I = ideal random(R^1, R^{3:-3}); │ │ │ │ │ │ - -- registering gb 20 at 0x7fe6adf6d1c0 │ │ │ + -- registering gb 20 at 0x7f816b7731c0 │ │ │ │ │ │ -- [gb]number of (nonminimal) gb elements = 0 │ │ │ -- number of monomials = 0 │ │ │ -- #reduction steps = 0 │ │ │ -- #spairs done = 0 │ │ │ -- ncalls = 0 │ │ │ -- nloop = 0 │ │ │ -- nsaved = 0 │ │ │ -- │ │ │ o31 : Ideal of R │ │ │ │ │ │ i32 : time p = poincare I │ │ │ │ │ │ - -- registering gb 21 at 0x7fe6adf6d000 │ │ │ + -- registering gb 21 at 0x7f816b773000 │ │ │ │ │ │ -- [gb]{3}(3)mmm{4}(2)mm{5}(3)mmm{6}(6)mmoooo{7}(4)mooo{8}(2)oonumber of (nonminimal) gb elements = 11 │ │ │ -- number of monomials = 267 │ │ │ -- #reduction steps = 236 │ │ │ -- #spairs done = 30 │ │ │ -- ncalls = 10 │ │ │ -- nloop = 20 │ │ │ -- nsaved = 0 │ │ │ - -- -- used 0.00793104s (cpu); 0.00887304s (thread); 0s (gc) │ │ │ + -- -- used 0.00714157s (cpu); 0.00580723s (thread); 0s (gc) │ │ │ │ │ │ 3 6 9 │ │ │ o32 = 1 - 3T + 3T - T │ │ │ │ │ │ o32 : ZZ[T] │ │ │ │ │ │ i33 : S = QQ[a..d, MonomialOrder => Eliminate 2] │ │ │ @@ -254,27 +254,27 @@ │ │ │ │ │ │ i36 : gbTrace = 3 │ │ │ │ │ │ o36 = 3 │ │ │ │ │ │ i37 : time gens gb J; │ │ │ │ │ │ - -- registering gb 22 at 0x7fe6ad908e00 │ │ │ + -- registering gb 22 at 0x7f816b20ce00 │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(3,7)mmm{7}(3,8)mmm{8}(3,9)mmm{9}(3,9)m │ │ │ -- mm{10}(2,8)mm{11}(1,5)m{12}(1,3)m{13}(1,3)m{14}(1,3)m{15}(1,3)m{16}(1,3)m │ │ │ -- {17}(1,3)m{18}(1,3)m{19}(1,3)m{20}(1,3)m{21}(1,3)m{22}(1,3)m{23}(1,3)m{24}(1,3)m │ │ │ -- {25}(1,3)m{26}(1,3)m{27}(1,3)m{28}(0,2)number of (nonminimal) gb elements = 39 │ │ │ -- number of monomials = 1051 │ │ │ -- #reduction steps = 284 │ │ │ -- #spairs done = 53 │ │ │ -- ncalls = 46 │ │ │ -- nloop = 54 │ │ │ -- nsaved = 0 │ │ │ - -- -- used 0.0839992s (cpu); 0.083356s (thread); 0s (gc) │ │ │ + -- -- used 0.0560466s (cpu); 0.0546985s (thread); 0s (gc) │ │ │ │ │ │ 1 39 │ │ │ o37 : Matrix S <-- S │ │ │ │ │ │ i38 : selectInSubring(1, gens gb J) │ │ │ │ │ │ o38 = | 188529931266160087758259645374082357642621166724936033369975727480205 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_printing_spto_spa_spfile.out │ │ │ @@ -12,19 +12,19 @@ │ │ │ │ │ │ o2 = stdio │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : fn = temporaryFileName() │ │ │ │ │ │ -o3 = /tmp/M2-10932-0/0 │ │ │ +o3 = /tmp/M2-11782-0/0 │ │ │ │ │ │ i4 : fn << "hi there" << endl << close │ │ │ │ │ │ -o4 = /tmp/M2-10932-0/0 │ │ │ +o4 = /tmp/M2-11782-0/0 │ │ │ │ │ │ o4 : File │ │ │ │ │ │ i5 : get fn │ │ │ │ │ │ o5 = hi there │ │ │ │ │ │ @@ -49,27 +49,27 @@ │ │ │ x + 10x + 45x + 120x + 210x + 252x + 210x + 120x + 45x + 10x + 1 │ │ │ o8 = stdio │ │ │ │ │ │ o8 : File │ │ │ │ │ │ i9 : fn << f << close │ │ │ │ │ │ -o9 = /tmp/M2-10932-0/0 │ │ │ +o9 = /tmp/M2-11782-0/0 │ │ │ │ │ │ o9 : File │ │ │ │ │ │ i10 : get fn │ │ │ │ │ │ o10 = 10 9 8 7 6 5 4 3 2 │ │ │ x + 10x + 45x + 120x + 210x + 252x + 210x + 120x + 45x + 10x │ │ │ + 1 │ │ │ │ │ │ i11 : fn << toExternalString f << close │ │ │ │ │ │ -o11 = /tmp/M2-10932-0/0 │ │ │ +o11 = /tmp/M2-11782-0/0 │ │ │ │ │ │ o11 : File │ │ │ │ │ │ i12 : get fn │ │ │ │ │ │ o12 = x^10+10*x^9+45*x^8+120*x^7+210*x^6+252*x^5+210*x^4+120*x^3+45*x^2+10*x+ │ │ │ 1 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_process__I__D.out │ │ │ @@ -1,7 +1,7 @@ │ │ │ -- -*- M2-comint -*- hash: 1330513630563 │ │ │ │ │ │ i1 : processID() │ │ │ │ │ │ -o1 = 10191 │ │ │ +o1 = 10311 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_profile.out │ │ │ @@ -9,35 +9,35 @@ │ │ │ │ │ │ 4 5 │ │ │ o1 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i2 : profileSummary │ │ │ │ │ │ o2 = #run %time position │ │ │ - 1 94.37 ../../m2/matrix1.m2:279:4-282:58 │ │ │ - 1 91.83 ../../m2/matrix1.m2:281:22-281:43 │ │ │ - 1 44.29 ../../m2/matrix1.m2:193:25-193:52 │ │ │ - 1 30.52 ../../m2/matrix1.m2:114:5-156:72 │ │ │ - 1 29.41 ../../m2/matrix1.m2:140:10-155:16 │ │ │ - 1 22 ../../m2/matrix1.m2:181:4-181:42 │ │ │ - 1 20.71 ../../m2/set.m2:127:5-127:61 │ │ │ - 1 20.64 ../../m2/matrix1.m2:45:10-49:22 │ │ │ - 1 3.36 ../../m2/matrix1.m2:112:5-112:29 │ │ │ - 1 2.46 ../../m2/matrix1.m2:141:13-141:78 │ │ │ - 1 2.17 ../../m2/matrix1.m2:96:5-109:11 │ │ │ - 1 1.50 ../../m2/matrix1.m2:281:7-281:16 │ │ │ - 1 1.46 ../../m2/matrix1.m2:147:20-147:64 │ │ │ - 1 1.28 ../../m2/matrix1.m2:111:5-111:91 │ │ │ - 1 1.21 ../../m2/matrix1.m2:276:4-277:73 │ │ │ - 1 1.18 ../../m2/matrix1.m2:182:4-184:74 │ │ │ - 1 1.09 ../../m2/matrix1.m2:98:10-98:46 │ │ │ - 1 .74 ../../m2/modules.m2:279:4-279:52 │ │ │ - 20 .63 ../../m2/matrix1.m2:191:14-192:67 │ │ │ - 20 .45 ../../m2/matrix1.m2:47:43-47:71 │ │ │ - 1 .0039s elapsed total │ │ │ + 1 93.33 ../../m2/matrix1.m2:279:4-282:58 │ │ │ + 1 90.77 ../../m2/matrix1.m2:281:22-281:43 │ │ │ + 1 44.22 ../../m2/matrix1.m2:193:25-193:52 │ │ │ + 1 30.83 ../../m2/matrix1.m2:114:5-156:72 │ │ │ + 1 29.63 ../../m2/matrix1.m2:140:10-155:16 │ │ │ + 1 22.92 ../../m2/matrix1.m2:181:4-181:42 │ │ │ + 1 21.48 ../../m2/set.m2:127:5-127:61 │ │ │ + 1 20.06 ../../m2/matrix1.m2:45:10-49:22 │ │ │ + 1 3.58 ../../m2/matrix1.m2:112:5-112:29 │ │ │ + 1 2.45 ../../m2/matrix1.m2:96:5-109:11 │ │ │ + 1 2.30 ../../m2/matrix1.m2:141:13-141:78 │ │ │ + 1 1.92 ../../m2/matrix1.m2:147:20-147:64 │ │ │ + 1 1.48 ../../m2/matrix1.m2:281:7-281:16 │ │ │ + 1 1.26 ../../m2/matrix1.m2:276:4-277:73 │ │ │ + 1 1.1 ../../m2/matrix1.m2:111:5-111:91 │ │ │ + 1 1.09 ../../m2/matrix1.m2:182:4-184:74 │ │ │ + 1 1.02 ../../m2/matrix1.m2:98:10-98:46 │ │ │ + 20 .9 ../../m2/matrix1.m2:191:14-192:67 │ │ │ + 19 .77 ../../m2/set.m2:127:36-127:41 │ │ │ + 20 .72 ../../m2/matrix1.m2:47:43-47:71 │ │ │ + 1 .0035s elapsed total │ │ │ │ │ │ i3 : coverageSummary │ │ │ │ │ │ o3 = covered lines: │ │ │ ../../m2/lists.m2:145:24-145:32 │ │ │ ../../m2/lists.m2:145:34-145:58 │ │ │ ../../m2/matrix.m2:12:5-12:35 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__K__Rational__Point.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ i5 : codim I, degree I │ │ │ │ │ │ o5 = (2, 10) │ │ │ │ │ │ o5 : Sequence │ │ │ │ │ │ i6 : time randomKRationalPoint(I) │ │ │ - -- used 0.177655s (cpu); 0.142413s (thread); 0s (gc) │ │ │ + -- used 0.229236s (cpu); 0.0987363s (thread); 0s (gc) │ │ │ │ │ │ o6 = ideal (x - 53x , x + 8x , x - 4x ) │ │ │ 2 3 1 3 0 3 │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ │ │ i7 : R=kk[x_0..x_5]; │ │ │ @@ -33,15 +33,15 @@ │ │ │ i9 : codim I, degree I │ │ │ │ │ │ o9 = (3, 10) │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ i10 : time randomKRationalPoint(I) │ │ │ - -- used 0.710725s (cpu); 0.37679s (thread); 0s (gc) │ │ │ + -- used 0.804036s (cpu); 0.331201s (thread); 0s (gc) │ │ │ │ │ │ o10 = ideal (x - 27x , x - 16x , x - 9x , x + 44x , x - 52x ) │ │ │ 4 5 3 5 2 5 1 5 0 5 │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ i11 : p=10007,kk=ZZ/p,R=kk[x_0..x_2] │ │ │ @@ -58,12 +58,12 @@ │ │ │ │ │ │ i14 : I=ideal random(n,R); │ │ │ │ │ │ o14 : Ideal of R │ │ │ │ │ │ i15 : time (#select(apply(100,i->(degs=apply(decompose(I+ideal random(1,R)),c->degree c); │ │ │ #select(degs,d->d==1))),f->f>0)) │ │ │ - -- used 4.02482s (cpu); 2.02411s (thread); 0s (gc) │ │ │ + -- used 4.60961s (cpu); 2.02692s (thread); 0s (gc) │ │ │ │ │ │ o15 = 58 │ │ │ │ │ │ i16 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_read__Directory.out │ │ │ @@ -1,26 +1,26 @@ │ │ │ -- -*- M2-comint -*- hash: 20910736704070514 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11565-0/0 │ │ │ +o1 = /tmp/M2-13075-0/0 │ │ │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ -o2 = /tmp/M2-11565-0/0 │ │ │ +o2 = /tmp/M2-13075-0/0 │ │ │ │ │ │ i3 : (fn = dir | "/" | "foo") << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-11565-0/0/foo │ │ │ +o3 = /tmp/M2-13075-0/0/foo │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : readDirectory dir │ │ │ │ │ │ -o4 = {., .., foo} │ │ │ +o4 = {.., ., foo} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : removeFile fn │ │ │ │ │ │ i6 : removeDirectory dir │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_reading_spfiles.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 13513555104200944796 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11107-0/0 │ │ │ +o1 = /tmp/M2-12137-0/0 │ │ │ │ │ │ i2 : fn << "z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2+8*y^3" << endl << close │ │ │ │ │ │ -o2 = /tmp/M2-11107-0/0 │ │ │ +o2 = /tmp/M2-12137-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : get fn │ │ │ │ │ │ o3 = z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2 │ │ │ +8*y^3 │ │ │ @@ -38,15 +38,15 @@ │ │ │ │ │ │ o6 : Expression of class Product │ │ │ │ │ │ i7 : fn << "sample = 2^100 │ │ │ print sample │ │ │ " << close │ │ │ │ │ │ -o7 = /tmp/M2-11107-0/0 │ │ │ +o7 = /tmp/M2-12137-0/0 │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : get fn │ │ │ │ │ │ o8 = sample = 2^100 │ │ │ print sample │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_readlink.out │ │ │ @@ -1,12 +1,12 @@ │ │ │ -- -*- M2-comint -*- hash: 4408639611478781130 │ │ │ │ │ │ i1 : p = temporaryFileName () │ │ │ │ │ │ -o1 = /tmp/M2-11806-0/0 │ │ │ +o1 = /tmp/M2-13556-0/0 │ │ │ │ │ │ i2 : symlinkFile ("foo", p) │ │ │ │ │ │ i3 : readlink p │ │ │ │ │ │ o3 = foo │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_realpath.out │ │ │ @@ -1,39 +1,39 @@ │ │ │ -- -*- M2-comint -*- hash: 324072347213224656 │ │ │ │ │ │ i1 : realpath "." │ │ │ │ │ │ -o1 = /tmp/M2-10191-0/86-rundir/ │ │ │ +o1 = /tmp/M2-10311-0/86-rundir/ │ │ │ │ │ │ i2 : p = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-11825-0/0 │ │ │ +o2 = /tmp/M2-13595-0/0 │ │ │ │ │ │ i3 : q = temporaryFileName() │ │ │ │ │ │ -o3 = /tmp/M2-11825-0/1 │ │ │ +o3 = /tmp/M2-13595-0/1 │ │ │ │ │ │ i4 : symlinkFile(p,q) │ │ │ │ │ │ i5 : p << close │ │ │ │ │ │ -o5 = /tmp/M2-11825-0/0 │ │ │ +o5 = /tmp/M2-13595-0/0 │ │ │ │ │ │ o5 : File │ │ │ │ │ │ i6 : readlink q │ │ │ │ │ │ -o6 = /tmp/M2-11825-0/0 │ │ │ +o6 = /tmp/M2-13595-0/0 │ │ │ │ │ │ i7 : realpath q │ │ │ │ │ │ -o7 = /tmp/M2-11825-0/0 │ │ │ +o7 = /tmp/M2-13595-0/0 │ │ │ │ │ │ i8 : removeFile p │ │ │ │ │ │ i9 : removeFile q │ │ │ │ │ │ i10 : realpath "" │ │ │ │ │ │ -o10 = /tmp/M2-10191-0/86-rundir/ │ │ │ +o10 = /tmp/M2-10311-0/86-rundir/ │ │ │ │ │ │ i11 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_register__Finalizer.out │ │ │ @@ -1,15 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 1729384374372662693 │ │ │ │ │ │ i1 : for i from 1 to 9 do (x := 0 .. 10000 ; registerFinalizer(x, "-- finalizing sequence #"|i|" --")) │ │ │ │ │ │ i2 : collectGarbage() │ │ │ ---finalization: (1)[0]: -- finalizing sequence #1 -- │ │ │ ---finalization: (2)[5]: -- finalizing sequence #6 -- │ │ │ ---finalization: (3)[3]: -- finalizing sequence #4 -- │ │ │ ---finalization: (4)[6]: -- finalizing sequence #7 -- │ │ │ ---finalization: (5)[7]: -- finalizing sequence #8 -- │ │ │ ---finalization: (7)[1]: -- finalizing sequence #2 -- │ │ │ ---finalization: (8)[4]: -- finalizing sequence #5 -- │ │ │ ---finalization: (6)[2]: -- finalizing sequence #3 -- │ │ │ +--finalization: (1)[6]: -- finalizing sequence #7 -- │ │ │ +--finalization: (2)[4]: -- finalizing sequence #5 -- │ │ │ +--finalization: (3)[2]: -- finalizing sequence #3 -- │ │ │ +--finalization: (4)[3]: -- finalizing sequence #4 -- │ │ │ +--finalization: (5)[1]: -- finalizing sequence #2 -- │ │ │ +--finalization: (6)[7]: -- finalizing sequence #8 -- │ │ │ +--finalization: (7)[5]: -- finalizing sequence #6 -- │ │ │ +--finalization: (8)[0]: -- finalizing sequence #1 -- │ │ │ +--finalization: (8)[0]: -- finalizing sequence #1 -- │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_remove__Directory.out │ │ │ @@ -1,19 +1,19 @@ │ │ │ -- -*- M2-comint -*- hash: 8532980310097060089 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10779-0/0 │ │ │ +o1 = /tmp/M2-11469-0/0 │ │ │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ -o2 = /tmp/M2-10779-0/0 │ │ │ +o2 = /tmp/M2-11469-0/0 │ │ │ │ │ │ i3 : readDirectory dir │ │ │ │ │ │ -o3 = {., ..} │ │ │ +o3 = {.., .} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : removeDirectory dir │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_root__Path.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1731420232148149387 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10283-0/0 │ │ │ +o1 = /tmp/M2-10473-0/0 │ │ │ │ │ │ i2 : rootPath | fn │ │ │ │ │ │ -o2 = /tmp/M2-10283-0/0 │ │ │ +o2 = /tmp/M2-10473-0/0 │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_root__U__R__I.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1731420231525572968 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11508-0/0 │ │ │ +o1 = /tmp/M2-12958-0/0 │ │ │ │ │ │ i2 : rootURI | fn │ │ │ │ │ │ -o2 = file:///tmp/M2-11508-0/0 │ │ │ +o2 = file:///tmp/M2-12958-0/0 │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_saving_sppolynomials_spand_spmatrices_spin_spfiles.out │ │ │ @@ -25,19 +25,19 @@ │ │ │ o4 = image | x2 x2-y2 xyz7 | │ │ │ │ │ │ 1 │ │ │ o4 : R-module, submodule of R │ │ │ │ │ │ i5 : f = temporaryFileName() │ │ │ │ │ │ -o5 = /tmp/M2-11356-0/0 │ │ │ +o5 = /tmp/M2-12646-0/0 │ │ │ │ │ │ i6 : f << toString (p,m,M) << close │ │ │ │ │ │ -o6 = /tmp/M2-11356-0/0 │ │ │ +o6 = /tmp/M2-12646-0/0 │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : get f │ │ │ │ │ │ o7 = (x^3-3*x^2*y+3*x*y^2-y^3-3*x^2+6*x*y-3*y^2+3*x-3*y-1,matrix {{x^2, │ │ │ x^2-y^2, x*y*z^7}},image matrix {{x^2, x^2-y^2, x*y*z^7}}) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_serial__Number.out │ │ │ @@ -1,15 +1,15 @@ │ │ │ -- -*- M2-comint -*- hash: 5271760183816554957 │ │ │ │ │ │ i1 : serialNumber asdf │ │ │ │ │ │ -o1 = 1426273 │ │ │ +o1 = 1526273 │ │ │ │ │ │ i2 : serialNumber foo │ │ │ │ │ │ -o2 = 1426275 │ │ │ +o2 = 1526275 │ │ │ │ │ │ i3 : serialNumber ZZ │ │ │ │ │ │ o3 = 1000050 │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_solve.out │ │ │ @@ -189,18 +189,18 @@ │ │ │ o25 = 40 │ │ │ │ │ │ i26 : A = mutableMatrix(CC_53, N, N); fillMatrix A; │ │ │ │ │ │ i28 : B = mutableMatrix(CC_53, N, 2); fillMatrix B; │ │ │ │ │ │ i30 : time X = solve(A,B); │ │ │ - -- used 0.000225452s (cpu); 0.000217157s (thread); 0s (gc) │ │ │ + -- used 0.00019474s (cpu); 0.000185165s (thread); 0s (gc) │ │ │ │ │ │ i31 : time X = solve(A,B, MaximalRank=>true); │ │ │ - -- used 0.000165831s (cpu); 0.000165941s (thread); 0s (gc) │ │ │ + -- used 0.000101166s (cpu); 0.000101099s (thread); 0s (gc) │ │ │ │ │ │ i32 : norm(A*X-B) │ │ │ │ │ │ o32 = 5.111850690840453e-15 │ │ │ │ │ │ o32 : RR (of precision 53) │ │ │ │ │ │ @@ -209,18 +209,18 @@ │ │ │ o33 = 100 │ │ │ │ │ │ i34 : A = mutableMatrix(CC_100, N, N); fillMatrix A; │ │ │ │ │ │ i36 : B = mutableMatrix(CC_100, N, 2); fillMatrix B; │ │ │ │ │ │ i38 : time X = solve(A,B); │ │ │ - -- used 0.494046s (cpu); 0.307142s (thread); 0s (gc) │ │ │ + -- used 0.146552s (cpu); 0.14656s (thread); 0s (gc) │ │ │ │ │ │ i39 : time X = solve(A,B, MaximalRank=>true); │ │ │ - -- used 0.241089s (cpu); 0.24109s (thread); 0s (gc) │ │ │ + -- used 0.146195s (cpu); 0.146212s (thread); 0s (gc) │ │ │ │ │ │ i40 : norm(A*X-B) │ │ │ │ │ │ o40 = 1.491578274689709814082355885932e-28 │ │ │ │ │ │ o40 : RR (of precision 100) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_symlink__Directory_lp__String_cm__String_rp.out │ │ │ @@ -1,60 +1,60 @@ │ │ │ -- -*- M2-comint -*- hash: 2989513528213557691 │ │ │ │ │ │ i1 : src = temporaryFileName() | "/" │ │ │ │ │ │ -o1 = /tmp/M2-11147-0/0/ │ │ │ +o1 = /tmp/M2-12217-0/0/ │ │ │ │ │ │ i2 : dst = temporaryFileName() | "/" │ │ │ │ │ │ -o2 = /tmp/M2-11147-0/1/ │ │ │ +o2 = /tmp/M2-12217-0/1/ │ │ │ │ │ │ i3 : makeDirectory (src|"a/") │ │ │ │ │ │ -o3 = /tmp/M2-11147-0/0/a/ │ │ │ +o3 = /tmp/M2-12217-0/0/a/ │ │ │ │ │ │ i4 : makeDirectory (src|"b/") │ │ │ │ │ │ -o4 = /tmp/M2-11147-0/0/b/ │ │ │ +o4 = /tmp/M2-12217-0/0/b/ │ │ │ │ │ │ i5 : makeDirectory (src|"b/c/") │ │ │ │ │ │ -o5 = /tmp/M2-11147-0/0/b/c/ │ │ │ +o5 = /tmp/M2-12217-0/0/b/c/ │ │ │ │ │ │ i6 : src|"a/f" << "hi there" << close │ │ │ │ │ │ -o6 = /tmp/M2-11147-0/0/a/f │ │ │ +o6 = /tmp/M2-12217-0/0/a/f │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : src|"a/g" << "hi there" << close │ │ │ │ │ │ -o7 = /tmp/M2-11147-0/0/a/g │ │ │ +o7 = /tmp/M2-12217-0/0/a/g │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : src|"b/c/g" << "ho there" << close │ │ │ │ │ │ -o8 = /tmp/M2-11147-0/0/b/c/g │ │ │ +o8 = /tmp/M2-12217-0/0/b/c/g │ │ │ │ │ │ o8 : File │ │ │ │ │ │ i9 : symlinkDirectory(src,dst,Verbose=>true) │ │ │ ---symlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g │ │ │ ---symlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g │ │ │ ---symlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f │ │ │ +--symlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g │ │ │ +--symlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f │ │ │ +--symlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g │ │ │ │ │ │ i10 : get (dst|"b/c/g") │ │ │ │ │ │ o10 = ho there │ │ │ │ │ │ i11 : symlinkDirectory(src,dst,Verbose=>true,Undo=>true) │ │ │ ---unsymlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g │ │ │ ---unsymlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g │ │ │ ---unsymlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f │ │ │ +--unsymlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g │ │ │ +--unsymlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f │ │ │ +--unsymlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g │ │ │ │ │ │ i12 : rm = d -> if isDirectory d then removeDirectory d else removeFile d │ │ │ │ │ │ o12 = rm │ │ │ │ │ │ o12 : FunctionClosure │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_symlink__File.out │ │ │ @@ -1,12 +1,12 @@ │ │ │ -- -*- M2-comint -*- hash: 9343844672940306595 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11204-0/0 │ │ │ +o1 = /tmp/M2-12334-0/0 │ │ │ │ │ │ i2 : symlinkFile("qwert", fn) │ │ │ │ │ │ i3 : fileExists fn │ │ │ │ │ │ o3 = false │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_temporary__File__Name.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1731926531291302106 │ │ │ │ │ │ i1 : temporaryFileName () | ".tex" │ │ │ │ │ │ -o1 = /tmp/M2-12169-0/0.tex │ │ │ +o1 = /tmp/M2-14309-0/0.tex │ │ │ │ │ │ i2 : temporaryFileName () | ".html" │ │ │ │ │ │ -o2 = /tmp/M2-12169-0/1.html │ │ │ +o2 = /tmp/M2-14309-0/1.html │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_time.out │ │ │ @@ -1,8 +1,8 @@ │ │ │ -- -*- M2-comint -*- hash: 1332435500723 │ │ │ │ │ │ i1 : time 3^30 │ │ │ - -- used 1.4376e-05s (cpu); 7.053e-06s (thread); 0s (gc) │ │ │ + -- used 2.0306e-05s (cpu); 6.729e-06s (thread); 0s (gc) │ │ │ │ │ │ o1 = 205891132094649 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_timing.out │ │ │ @@ -1,14 +1,14 @@ │ │ │ -- -*- M2-comint -*- hash: 1730988300469098603 │ │ │ │ │ │ i1 : timing 3^30 │ │ │ │ │ │ o1 = 205891132094649 │ │ │ - -- .000015599 seconds │ │ │ + -- .000014524 seconds │ │ │ │ │ │ o1 : Time │ │ │ │ │ │ i2 : peek oo │ │ │ │ │ │ -o2 = Time{.000015599, 205891132094649} │ │ │ +o2 = Time{.000014524, 205891132094649} │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_version.out │ │ │ @@ -34,15 +34,15 @@ │ │ │ "memtailor version" => 1.0 │ │ │ "mpfi version" => 1.5.4 │ │ │ "mpfr version" => 4.2.2 │ │ │ "mpsolve version" => 3.2.2 │ │ │ "mysql version" => not present │ │ │ "normaliz version" => 3.10.5 │ │ │ "ntl version" => 11.5.1 │ │ │ - "operating system release" => 6.12.48+deb13-amd64 │ │ │ + "operating system release" => 6.12.57+deb13-cloud-amd64 │ │ │ "operating system" => Linux │ │ │ "packages" => Style FirstPackage Macaulay2Doc Parsing Classic Browse Benchmark Text SimpleDoc PackageTemplate Saturation PrimaryDecomposition FourierMotzkin Dmodules WeylAlgebras HolonomicSystems BernsteinSato ConnectionMatrices Depth Elimination GenericInitialIdeal IntegralClosure HyperplaneArrangements LexIdeals Markov NoetherNormalization Points ReesAlgebra Regularity SchurRings SymmetricPolynomials SchurFunctors SimplicialComplexes LLLBases TangentCone ChainComplexExtras Varieties Schubert2 PushForward LocalRings PruneComplex BoijSoederberg BGG Bruns InvolutiveBases ConwayPolynomials EdgeIdeals FourTiTwo StatePolytope Polyhedra Truncations Polymake gfanInterface PieriMaps Normaliz Posets XML OpenMath SCSCP RationalPoints MapleInterface ConvexInterface SRdeformations NumericalAlgebraicGeometry BeginningMacaulay2 FormalGroupLaws Graphics WeylGroups HodgeIntegrals Cyclotomic Binomials Kronecker Nauty ToricVectorBundles ModuleDeformations PHCpack SimplicialDecomposability BooleanGB AdjointIdeal Parametrization Serialization NAGtypes NormalToricVarieties DGAlgebras Graphs GraphicalModels BIBasis KustinMiller Units NautyGraphs VersalDeformations CharacteristicClasses RandomIdeals RandomObjects RandomPlaneCurves RandomSpaceCurves RandomGenus14Curves RandomCanonicalCurves RandomCurves TensorComplexes MonomialAlgebras QthPower EliminationMatrices EllipticIntegrals Triplets CompleteIntersectionResolutions EagonResolution MCMApproximations MultiplierIdeals InvariantRing QuillenSuslin EnumerationCurves Book3264Examples WeilDivisors EllipticCurves HighestWeights MinimalPrimes Bertini TorAlgebra Permanents BinomialEdgeIdeals TateOnProducts LatticePolytopes FiniteFittingIdeals HigherCIOperators LieAlgebraRepresentations ConformalBlocks M0nbar AnalyzeSheafOnP1 MultiplierIdealsDim2 RunExternalM2 NumericalSchubertCalculus ToricTopology Cremona Resultants VectorFields SLPexpressions Miura ResidualIntersections Visualize EquivariantGB ExampleSystems RationalMaps FastMinors RandomPoints SwitchingFields SpectralSequences SectionRing OldPolyhedra OldToricVectorBundles K3Carpets ChainComplexOperations NumericalCertification PhylogeneticTrees MonodromySolver ReactionNetworks PackageCitations NumericSolutions GradedLieAlgebras InverseSystems Pullback EngineTests SVDComplexes RandomComplexes CohomCalg Topcom Triangulations ReflexivePolytopesDB AbstractToricVarieties TestIdeals FrobeniusThresholds NonPrincipalTestIdeals Seminormalization AlgebraicSplines TriangularSets Chordal Tropical SymbolicPowers Complexes OldChainComplexes GroebnerWalk RandomMonomialIdeals Matroids NumericalImplicitization NonminimalComplexes CoincidentRootLoci RelativeCanonicalResolution RandomCurvesOverVerySmallFiniteFields StronglyStableIdeals SLnEquivariantMatrices CorrespondenceScrolls NCAlgebra SpaceCurves ExteriorIdeals ToricInvariants SegreClasses SemidefiniteProgramming SumsOfSquares MultiGradedRationalMap AssociativeAlgebras VirtualResolutions Quasidegrees DiffAlg DeterminantalRepresentations FGLM SpechtModule SchurComplexes SimplicialPosets SlackIdeals PositivityToricBundles SparseResultants DecomposableSparseSystems MixedMultiplicity PencilsOfQuadrics ThreadedGB AdjunctionForSurfaces VectorGraphics GKMVarieties MonomialIntegerPrograms NoetherianOperators Hadamard StatGraphs GraphicalModelsMLE EigenSolver MultiplicitySequence ResolutionsOfStanleyReisnerRings NumericalLinearAlgebra ResLengthThree MonomialOrbits MultiprojectiveVarieties SpecialFanoFourfolds RationalPoints2 SuperLinearAlgebra SubalgebraBases AInfinity LinearTruncations ThinSincereQuivers Python BettiCharacters Jets FunctionFieldDesingularization HomotopyLieAlgebra TSpreadIdeals RealRoots ExteriorModules K3Surfaces GroebnerStrata QuaternaryQuartics CotangentSchubert OnlineLookup MergeTeX Probability Isomorphism CodingTheory WhitneyStratifications JSON ForeignFunctions GeometricDecomposability PseudomonomialPrimaryDecomposition PolyominoIdeals MatchingFields CellularResolutions SagbiGbDetection A1BrouwerDegrees QuadraticIdealExamplesByRoos TerraciniLoci MatrixSchubert RInterface OIGroebnerBases PlaneCurveLinearSeries Valuations SchurVeronese VNumber TropicalToric MultigradedBGG AbstractSimplicialComplexes MultigradedImplicitization Msolve Permutations SCMAlgebras NumericalSemigroups ExteriorExtensions Oscillators IncidenceCorrespondenceCohomology ToricHigherDirectImages Brackets IntegerProgramming GameTheory AllMarkovBases Tableaux CpMackeyFunctors JSONRPC MatrixFactorizations PathSignatures │ │ │ "pointer size" => 8 │ │ │ "python version" => 3.13.9 │ │ │ "readline version" => 8.3 │ │ │ "scscp version" => not present │ │ │ "tbb version" => 2022.1 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Command.html │ │ │ @@ -84,15 +84,15 @@ │ │ │ │ │ │
    i3 : (c = Command "date";)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : c
    │ │ │ -Fri Nov 14 17:26:26 UTC 2025
    │ │ │ +Fri Nov 21 10:41:39 UTC 2025
    │ │ │  
    │ │ │  o4 = 0
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ in a file), then it gets executed with empty argument list. │ │ │ │ i1 : (f = Command ( () -> 2^30 );) │ │ │ │ i2 : f │ │ │ │ │ │ │ │ o2 = 1073741824 │ │ │ │ i3 : (c = Command "date";) │ │ │ │ i4 : c │ │ │ │ -Fri Nov 14 17:26:26 UTC 2025 │ │ │ │ +Fri Nov 21 10:41:39 UTC 2025 │ │ │ │ │ │ │ │ o4 = 0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_u_n -- run an external command │ │ │ │ * _A_f_t_e_r_E_v_a_l -- top level method applied after evaluation │ │ │ │ ********** MMeetthhooddss tthhaatt uussee aa ccoommmmaanndd:: ********** │ │ │ │ * code(Command) -- see _c_o_d_e -- display source code │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Database.html │ │ │ @@ -52,22 +52,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ A database file is just like a hash table, except both the keys and values have to be strings. In this example we create a database file, store a few entries, remove an entry with remove, close the file, and then remove the file. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : filename = temporaryFileName () | ".dbm"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11641-0/0.dbm
    │ │ │ +o1 = /tmp/M2-13231-0/0.dbm │ │ │
    │ │ │
    i2 : x = openDatabaseOut filename
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11641-0/0.dbm
    │ │ │ +o2 = /tmp/M2-13231-0/0.dbm
    │ │ │  
    │ │ │  o2 : Database
    │ │ │
    │ │ │
    i3 : x#"first" = "hi there"
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -7,18 +7,18 @@
    │ │ │ │  ************ DDaattaabbaassee ---- tthhee ccllaassss ooff aallll ddaattaabbaassee ffiilleess ************
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  A database file is just like a hash table, except both the keys and values have
    │ │ │ │  to be strings. In this example we create a database file, store a few entries,
    │ │ │ │  remove an entry with _r_e_m_o_v_e, close the file, and then remove the file.
    │ │ │ │  i1 : filename = temporaryFileName () | ".dbm"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-11641-0/0.dbm
    │ │ │ │ +o1 = /tmp/M2-13231-0/0.dbm
    │ │ │ │  i2 : x = openDatabaseOut filename
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-11641-0/0.dbm
    │ │ │ │ +o2 = /tmp/M2-13231-0/0.dbm
    │ │ │ │  
    │ │ │ │  o2 : Database
    │ │ │ │  i3 : x#"first" = "hi there"
    │ │ │ │  
    │ │ │ │  o3 = hi there
    │ │ │ │  i4 : x#"first"
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Cstats.html
    │ │ │ @@ -53,33 +53,33 @@
    │ │ │          

    Description

    │ │ │

    Macaulay2 uses the Hans Boehm garbage collector to reclaim unused memory. The function GCstats provides information about its status, such as the total number of bytes allocated, the current heap size, the number of garbage collections done, the number of threads used in each collection, the total cpu time spent in garbage collection, etc.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : s = GCstats()
    │ │ │  
    │ │ │ -o1 = HashTable{"bytesAlloc" => 42968369946        }
    │ │ │ +o1 = HashTable{"bytesAlloc" => 43067685002        }
    │ │ │                 "GC_free_space_divisor" => 3
    │ │ │                 "GC_LARGE_ALLOC_WARN_INTERVAL" => 1
    │ │ │                 "gcCpuTimeSecs" => 0
    │ │ │ -               "heapSize" => 206622720
    │ │ │ -               "numGCs" => 795
    │ │ │ -               "numGCThreads" => 6
    │ │ │ +               "heapSize" => 225636352
    │ │ │ +               "numGCs" => 783
    │ │ │ +               "numGCThreads" => 16
    │ │ │  
    │ │ │  o1 : HashTable
    │ │ │
    │ │ │

    The value returned is a hash table, from which individual bits of information can be easily extracted, as follows.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : s#"heapSize"
    │ │ │  
    │ │ │ -o2 = 206622720
    │ │ │ +o2 = 225636352 │ │ │
    │ │ │

    Any entries whose keys are all upper case give the values of environment variables affecting the operation of the garbage collector that have been specified by the user.

    │ │ │

    For further information about the individual items in the table, we refer the user to the source code and documentation of the garbage collector.

    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -9,28 +9,28 @@ │ │ │ │ Macaulay2 uses the Hans Boehm _g_a_r_b_a_g_e_ _c_o_l_l_e_c_t_o_r to reclaim unused memory. The │ │ │ │ function GCstats provides information about its status, such as the total │ │ │ │ number of bytes allocated, the current heap size, the number of garbage │ │ │ │ collections done, the number of threads used in each collection, the total cpu │ │ │ │ time spent in garbage collection, etc. │ │ │ │ i1 : s = GCstats() │ │ │ │ │ │ │ │ -o1 = HashTable{"bytesAlloc" => 42968369946 } │ │ │ │ +o1 = HashTable{"bytesAlloc" => 43067685002 } │ │ │ │ "GC_free_space_divisor" => 3 │ │ │ │ "GC_LARGE_ALLOC_WARN_INTERVAL" => 1 │ │ │ │ "gcCpuTimeSecs" => 0 │ │ │ │ - "heapSize" => 206622720 │ │ │ │ - "numGCs" => 795 │ │ │ │ - "numGCThreads" => 6 │ │ │ │ + "heapSize" => 225636352 │ │ │ │ + "numGCs" => 783 │ │ │ │ + "numGCThreads" => 16 │ │ │ │ │ │ │ │ o1 : HashTable │ │ │ │ The value returned is a hash table, from which individual bits of information │ │ │ │ can be easily extracted, as follows. │ │ │ │ i2 : s#"heapSize" │ │ │ │ │ │ │ │ -o2 = 206622720 │ │ │ │ +o2 = 225636352 │ │ │ │ Any entries whose keys are all upper case give the values of environment │ │ │ │ variables affecting the operation of the garbage collector that have been │ │ │ │ specified by the user. │ │ │ │ For further information about the individual items in the table, we refer the │ │ │ │ user to the source code and documentation of the garbage collector. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _G_C_ _g_a_r_b_a_g_e_ _c_o_l_l_e_c_t_o_r │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimal__Generators.html │ │ │ @@ -128,23 +128,23 @@ │ │ │ │ │ │ o7 : Ideal of R
    │ │ │
    │ │ │
    i8 : time J = truncate(8, I, MinimalGenerators => false);
    │ │ │ - -- used 0.00897861s (cpu); 0.00897229s (thread); 0s (gc)
    │ │ │ + -- used 0.00637144s (cpu); 0.00636778s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 : Ideal of R
    │ │ │
    │ │ │
    i9 : time K = truncate(8, I, MinimalGenerators => true);
    │ │ │ - -- used 0.0801371s (cpu); 0.080144s (thread); 0s (gc)
    │ │ │ + -- used 0.0629702s (cpu); 0.0629822s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │
    │ │ │
    i10 : numgens J
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,19 +46,19 @@
    │ │ │ │  o6 = R
    │ │ │ │  
    │ │ │ │  o6 : PolynomialRing
    │ │ │ │  i7 : I = monomialCurveIdeal(R, {1,4,5,9});
    │ │ │ │  
    │ │ │ │  o7 : Ideal of R
    │ │ │ │  i8 : time J = truncate(8, I, MinimalGenerators => false);
    │ │ │ │ - -- used 0.00897861s (cpu); 0.00897229s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00637144s (cpu); 0.00636778s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 : Ideal of R
    │ │ │ │  i9 : time K = truncate(8, I, MinimalGenerators => true);
    │ │ │ │ - -- used 0.0801371s (cpu); 0.080144s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0629702s (cpu); 0.0629822s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 : Ideal of R
    │ │ │ │  i10 : numgens J
    │ │ │ │  
    │ │ │ │  o10 = 1067
    │ │ │ │  i11 : numgens K
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.html
    │ │ │ @@ -68,21 +68,21 @@
    │ │ │  o1 : Matrix RR      <-- RR
    │ │ │                53          53
    │ │ │
    │ │ │
    i2 : time SVD(M);
    │ │ │ - -- used 0.0241449s (cpu); 0.0241435s (thread); 0s (gc)
    │ │ │ + -- used 0.0481866s (cpu); 0.0481869s (thread); 0s (gc) │ │ │
    │ │ │
    i3 : time SVD(M, DivideConquer=>true);
    │ │ │ - -- used 0.0237108s (cpu); 0.0237156s (thread); 0s (gc)
    │ │ │ + -- used 0.0378645s (cpu); 0.0378765s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Functions with optional argument named DivideConquer:

    │ │ │ ├── html2text {} │ │ │ │ @@ -11,17 +11,17 @@ │ │ │ │ For large matrices, this algorithm is often much faster. │ │ │ │ i1 : M = random(RR^200, RR^200); │ │ │ │ │ │ │ │ 200 200 │ │ │ │ o1 : Matrix RR <-- RR │ │ │ │ 53 53 │ │ │ │ i2 : time SVD(M); │ │ │ │ - -- used 0.0241449s (cpu); 0.0241435s (thread); 0s (gc) │ │ │ │ + -- used 0.0481866s (cpu); 0.0481869s (thread); 0s (gc) │ │ │ │ i3 : time SVD(M, DivideConquer=>true); │ │ │ │ - -- used 0.0237108s (cpu); 0.0237156s (thread); 0s (gc) │ │ │ │ + -- used 0.0378645s (cpu); 0.0378765s (thread); 0s (gc) │ │ │ │ ********** FFuunnccttiioonnss wwiitthh ooppttiioonnaall aarrgguummeenntt nnaammeedd DDiivviiddeeCCoonnqquueerr:: ********** │ │ │ │ * _S_V_D_(_._._._,_D_i_v_i_d_e_C_o_n_q_u_e_r_=_>_._._._) -- whether to use the LAPACK divide and │ │ │ │ conquer SVD algorithm │ │ │ │ ********** FFuurrtthheerr iinnffoorrmmaattiioonn ********** │ │ │ │ * Default value: _t_r_u_e │ │ │ │ * Function: _S_V_D -- singular value decomposition of a matrix │ │ │ │ * Option key: _D_i_v_i_d_e_C_o_n_q_u_e_r -- an optional argument │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_a_spfirst_sp__Macaulay2_spsession.html │ │ │ @@ -826,15 +826,15 @@ │ │ │
    │ │ │

    We may use resolution to produce a projective resolution of it, and time to report the time required.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i59 : time C = resolution M
    │ │ │ - -- used 0.00188708s (cpu); 0.00187997s (thread); 0s (gc)
    │ │ │ + -- used 0.00204875s (cpu); 0.00204031s (thread); 0s (gc)
    │ │ │  
    │ │ │         3      6      15      18      6
    │ │ │  o59 = R  <-- R  <-- R   <-- R   <-- R  <-- 0
    │ │ │                                              
    │ │ │        0      1      2       3       4      5
    │ │ │  
    │ │ │  o59 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -390,15 +390,15 @@ │ │ │ │ | c f i l o r | │ │ │ │ │ │ │ │ 3 │ │ │ │ o58 : R-module, quotient of R │ │ │ │ We may use _r_e_s_o_l_u_t_i_o_n to produce a projective resolution of it, and _t_i_m_e to │ │ │ │ report the time required. │ │ │ │ i59 : time C = resolution M │ │ │ │ - -- used 0.00188708s (cpu); 0.00187997s (thread); 0s (gc) │ │ │ │ + -- used 0.00204875s (cpu); 0.00204031s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 6 15 18 6 │ │ │ │ o59 = R <-- R <-- R <-- R <-- R <-- 0 │ │ │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ │ │ o59 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_at__End__Of__File_lp__File_rp.html │ │ │ @@ -97,15 +97,15 @@ │ │ │ o4 = "hi there" │ │ │
    │ │ │
    i5 : atEndOfFile f
    │ │ │  
    │ │ │ -o5 = false
    │ │ │ +o5 = true │ │ │
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -23,13 +23,13 @@ │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : peek read f │ │ │ │ │ │ │ │ o4 = "hi there" │ │ │ │ i5 : atEndOfFile f │ │ │ │ │ │ │ │ -o5 = false │ │ │ │ +o5 = true │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _a_t_E_n_d_O_f_F_i_l_e_(_F_i_l_e_) -- test for end of file │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_files.m2:374:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_benchmark.html │ │ │ @@ -68,15 +68,15 @@ │ │ │
    │ │ │

    Description

    │ │ │ Produces an accurate timing for the code contained in the string s. The value returned is the number of seconds. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : benchmark "sqrt 2p100000"
    │ │ │  
    │ │ │ -o1 = .0002898248142239025
    │ │ │ +o1 = .0003608682869690195
    │ │ │  
    │ │ │  o1 : RR (of precision 53)
    │ │ │
    │ │ │ The snippet of code provided will be run enough times to register meaningfully on the clock, and the garbage collector will be called beforehand.
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -12,15 +12,15 @@ │ │ │ │ o a _r_e_a_l_ _n_u_m_b_e_r, the number of seconds it takes to evaluate the code │ │ │ │ in s │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Produces an accurate timing for the code contained in the string s. The value │ │ │ │ returned is the number of seconds. │ │ │ │ i1 : benchmark "sqrt 2p100000" │ │ │ │ │ │ │ │ -o1 = .0002898248142239025 │ │ │ │ +o1 = .0003608682869690195 │ │ │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ The snippet of code provided will be run enough times to register meaningfully │ │ │ │ on the clock, and the garbage collector will be called beforehand. │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _b_e_n_c_h_m_a_r_k is a _f_u_n_c_t_i_o_n_ _c_l_o_s_u_r_e. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_caching_spcomputation_spresults.html │ │ │ @@ -69,23 +69,23 @@ │ │ │
    i3 : M = coker vars R;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime pdim' M
    │ │ │   -- computing pdim'
    │ │ │ - -- .00646567s elapsed
    │ │ │ + -- .00430101s elapsed
    │ │ │  
    │ │ │  o4 = 3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime pdim' M
    │ │ │ - -- .000001924s elapsed
    │ │ │ + -- .000002848s elapsed
    │ │ │  
    │ │ │  o5 = 3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : peek M.cache
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -8,19 +8,19 @@
    │ │ │ │  Here is a simple example of caching a computation in a _C_a_c_h_e_T_a_b_l_e, using the
    │ │ │ │  augmented null coalescing operator _?_?_=.
    │ │ │ │  i1 : pdim' = M -> M.cache.pdim' ??= ( printerr "computing pdim'"; pdim M );
    │ │ │ │  i2 : R = QQ[x,y,z];
    │ │ │ │  i3 : M = coker vars R;
    │ │ │ │  i4 : elapsedTime pdim' M
    │ │ │ │   -- computing pdim'
    │ │ │ │ - -- .00646567s elapsed
    │ │ │ │ + -- .00430101s elapsed
    │ │ │ │  
    │ │ │ │  o4 = 3
    │ │ │ │  i5 : elapsedTime pdim' M
    │ │ │ │ - -- .000001924s elapsed
    │ │ │ │ + -- .000002848s elapsed
    │ │ │ │  
    │ │ │ │  o5 = 3
    │ │ │ │  i6 : peek M.cache
    │ │ │ │  
    │ │ │ │  o6 = CacheTable{cache => MutableHashTable{}
    │ │ │ │  }
    │ │ │ │                  isHomogeneous => true
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cancel__Task_lp__Task_rp.html
    │ │ │ @@ -104,15 +104,15 @@
    │ │ │  o4 : Task
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : n
    │ │ │  
    │ │ │ -o5 = 711247
    │ │ │ +o5 = 1095541 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : sleep 1
    │ │ │  
    │ │ │  o6 = 0
    │ │ │ @@ -127,15 +127,15 @@ │ │ │ o7 : Task │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : n
    │ │ │  
    │ │ │ -o8 = 1453370
    │ │ │ +o8 = 2222110 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : isReady t
    │ │ │  
    │ │ │  o9 = false
    │ │ │ @@ -163,29 +163,29 @@ │ │ │ o12 : Task │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : n
    │ │ │  
    │ │ │ -o13 = 1453595
    │ │ │ +o13 = 2222296 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : sleep 1
    │ │ │  
    │ │ │  o14 = 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : n
    │ │ │  
    │ │ │ -o15 = 1453595
    │ │ │ +o15 = 2222296 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : isReady t
    │ │ │  
    │ │ │  o16 = false
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,26 +28,26 @@ │ │ │ │ i4 : t │ │ │ │ │ │ │ │ o4 = <> │ │ │ │ │ │ │ │ o4 : Task │ │ │ │ i5 : n │ │ │ │ │ │ │ │ -o5 = 711247 │ │ │ │ +o5 = 1095541 │ │ │ │ i6 : sleep 1 │ │ │ │ │ │ │ │ o6 = 0 │ │ │ │ i7 : t │ │ │ │ │ │ │ │ o7 = <> │ │ │ │ │ │ │ │ o7 : Task │ │ │ │ i8 : n │ │ │ │ │ │ │ │ -o8 = 1453370 │ │ │ │ +o8 = 2222110 │ │ │ │ i9 : isReady t │ │ │ │ │ │ │ │ o9 = false │ │ │ │ i10 : cancelTask t │ │ │ │ i11 : sleep 2 │ │ │ │ stdio:2:25:(3):[1]: error: interrupted │ │ │ │ │ │ │ │ @@ -55,21 +55,21 @@ │ │ │ │ i12 : t │ │ │ │ │ │ │ │ o12 = <> │ │ │ │ │ │ │ │ o12 : Task │ │ │ │ i13 : n │ │ │ │ │ │ │ │ -o13 = 1453595 │ │ │ │ +o13 = 2222296 │ │ │ │ i14 : sleep 1 │ │ │ │ │ │ │ │ o14 = 0 │ │ │ │ i15 : n │ │ │ │ │ │ │ │ -o15 = 1453595 │ │ │ │ +o15 = 2222296 │ │ │ │ i16 : isReady t │ │ │ │ │ │ │ │ o16 = false │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _c_a_n_c_e_l_T_a_s_k_(_T_a_s_k_) -- stop a task │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_change__Directory.html │ │ │ @@ -71,36 +71,36 @@ │ │ │

    Change the current working directory to dir.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10463-0/0
    │ │ │ +o1 = /tmp/M2-10833-0/0 │ │ │
    │ │ │
    i2 : makeDirectory dir
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10463-0/0
    │ │ │ +o2 = /tmp/M2-10833-0/0 │ │ │
    │ │ │
    i3 : changeDirectory dir
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10463-0/0/
    │ │ │ +o3 = /tmp/M2-10833-0/0/ │ │ │
    │ │ │
    i4 : currentDirectory()
    │ │ │  
    │ │ │ -o4 = /tmp/M2-10463-0/0/
    │ │ │ +o4 = /tmp/M2-10833-0/0/ │ │ │
    │ │ │
    │ │ │

    If dir is omitted, then the current working directory is changed to the user's home directory.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,24 +11,24 @@ │ │ │ │ o dir, a _s_t_r_i_n_g, │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, the new working directory; │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Change the current working directory to dir. │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10463-0/0 │ │ │ │ +o1 = /tmp/M2-10833-0/0 │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10463-0/0 │ │ │ │ +o2 = /tmp/M2-10833-0/0 │ │ │ │ i3 : changeDirectory dir │ │ │ │ │ │ │ │ -o3 = /tmp/M2-10463-0/0/ │ │ │ │ +o3 = /tmp/M2-10833-0/0/ │ │ │ │ i4 : currentDirectory() │ │ │ │ │ │ │ │ -o4 = /tmp/M2-10463-0/0/ │ │ │ │ +o4 = /tmp/M2-10833-0/0/ │ │ │ │ If dir is omitted, then the current working directory is changed to the user's │ │ │ │ home directory. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_u_r_r_e_n_t_D_i_r_e_c_t_o_r_y -- current working directory │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_h_a_n_g_e_D_i_r_e_c_t_o_r_y is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_check.html │ │ │ @@ -95,40 +95,40 @@ │ │ │ o1 : Package │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : check_1 FirstPackage
    │ │ │   -- warning: reloading FirstPackage; recreate instances of types from this package
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .157225s elapsed
    │ │ │ + -- capturing check(1, "FirstPackage") -- .132892s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : check FirstPackage
    │ │ │ - -- capturing check(0, "FirstPackage")        -- .177874s elapsed
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .230699s elapsed
    │ │ │ + -- capturing check(0, "FirstPackage") -- .135389s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .129692s elapsed │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Alternatively, if the package is installed somewhere accessible, one can do the following.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : check_1 "FirstPackage"
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .220889s elapsed
    │ │ │ + -- capturing check(1, "FirstPackage") -- .13112s elapsed │ │ │
    │ │ │
    i5 : check "FirstPackage"
    │ │ │ - -- capturing check(0, "FirstPackage")        -- .21817s elapsed
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .226677s elapsed
    │ │ │ + -- capturing check(0, "FirstPackage") -- .133323s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .127664s elapsed │ │ │
    │ │ │
    │ │ │

    A TestInput object (or a list of such objects) can also be run directly.

    │ │ │
    │ │ │ │ │ │ @@ -140,15 +140,15 @@ │ │ │ │ │ │ o6 : TestInput │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : check oo
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .220218s elapsed
    │ │ │ + -- capturing check(1, "FirstPackage") -- .125052s elapsed │ │ │
    │ │ │
    i8 : tests "FirstPackage"
    │ │ │  
    │ │ │  o8 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]}
    │ │ │ @@ -156,16 +156,16 @@
    │ │ │  
    │ │ │  o8 : NumberedVerticalList
    │ │ │
    │ │ │
    i9 : check oo
    │ │ │ - -- capturing check(0, "FirstPackage")        -- .230323s elapsed
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .223717s elapsed
    │ │ │ + -- capturing check(0, "FirstPackage") -- .145166s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .120507s elapsed │ │ │
    │ │ │
    │ │ │

    If only an integer is passed as an argument, then the test with that index from the last call to tests is run.

    │ │ │
    │ │ │ │ │ │ @@ -178,15 +178,15 @@ │ │ │ │ │ │ o10 : NumberedVerticalList │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i11 : check 1
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .230812s elapsed
    │ │ │ + -- capturing check(1, "FirstPackage") -- .121864s elapsed │ │ │
    │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -42,52 +42,52 @@ │ │ │ │ │ │ │ │ o1 = FirstPackage │ │ │ │ │ │ │ │ o1 : Package │ │ │ │ i2 : check_1 FirstPackage │ │ │ │ -- warning: reloading FirstPackage; recreate instances of types from this │ │ │ │ package │ │ │ │ - -- capturing check(1, "FirstPackage") -- .157225s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .132892s elapsed │ │ │ │ i3 : check FirstPackage │ │ │ │ - -- capturing check(0, "FirstPackage") -- .177874s elapsed │ │ │ │ - -- capturing check(1, "FirstPackage") -- .230699s elapsed │ │ │ │ + -- capturing check(0, "FirstPackage") -- .135389s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .129692s elapsed │ │ │ │ Alternatively, if the package is installed somewhere accessible, one can do the │ │ │ │ following. │ │ │ │ i4 : check_1 "FirstPackage" │ │ │ │ - -- capturing check(1, "FirstPackage") -- .220889s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .13112s elapsed │ │ │ │ i5 : check "FirstPackage" │ │ │ │ - -- capturing check(0, "FirstPackage") -- .21817s elapsed │ │ │ │ - -- capturing check(1, "FirstPackage") -- .226677s elapsed │ │ │ │ + -- capturing check(0, "FirstPackage") -- .133323s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .127664s elapsed │ │ │ │ A _T_e_s_t_I_n_p_u_t object (or a list of such objects) can also be run directly. │ │ │ │ i6 : tests(1, "FirstPackage") │ │ │ │ │ │ │ │ o6 = TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3] │ │ │ │ │ │ │ │ o6 : TestInput │ │ │ │ i7 : check oo │ │ │ │ - -- capturing check(1, "FirstPackage") -- .220218s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .125052s elapsed │ │ │ │ i8 : tests "FirstPackage" │ │ │ │ │ │ │ │ o8 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]} │ │ │ │ {1 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3]} │ │ │ │ │ │ │ │ o8 : NumberedVerticalList │ │ │ │ i9 : check oo │ │ │ │ - -- capturing check(0, "FirstPackage") -- .230323s elapsed │ │ │ │ - -- capturing check(1, "FirstPackage") -- .223717s elapsed │ │ │ │ + -- capturing check(0, "FirstPackage") -- .145166s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .120507s elapsed │ │ │ │ If only an integer is passed as an argument, then the test with that index from │ │ │ │ the last call to _t_e_s_t_s is run. │ │ │ │ i10 : tests "FirstPackage" │ │ │ │ │ │ │ │ o10 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]} │ │ │ │ {1 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3]} │ │ │ │ │ │ │ │ o10 : NumberedVerticalList │ │ │ │ i11 : check 1 │ │ │ │ - -- capturing check(1, "FirstPackage") -- .230812s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .121864s elapsed │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ Currently, if the package was only partially loaded because the documentation │ │ │ │ was obtainable from a database (see _b_e_g_i_n_D_o_c_u_m_e_n_t_a_t_i_o_n), then the package will │ │ │ │ be reloaded, this time completely, to ensure that all tests are considered; │ │ │ │ this may affect user objects of types declared by the package, as they may be │ │ │ │ not usable by the new instance of the package. In a future version, either the │ │ │ │ tests and the documentation will both be cached, or neither will. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_communicating_spwith_spprograms.html │ │ │ @@ -50,15 +50,15 @@ │ │ │
    │ │ │

    communicating with programs

    │ │ │
    │ │ │ The most naive way to interact with another program is simply to run it, let it communicate directly with the user, and wait for it to finish. This is done with the run command. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : run "uname -a"
    │ │ │ -Linux sbuild 6.12.48+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.48-1 (2025-09-20) x86_64 GNU/Linux
    │ │ │ +Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
    │ │ │  
    │ │ │  o1 = 0
    │ │ │
    │ │ │ To run a program and provide it with input, one way is use the operator <<, with a file name whose first character is an exclamation point; the rest of the file name will be taken as the command to run, as in the following example. │ │ │ │ │ │ @@ -74,16 +74,16 @@ │ │ │ │ │ │
    │ │ │ More often, one wants to write Macaulay2 code to obtain and manipulate the output from the other program. If the program requires no input data, then we can use get with a file name whose first character is an exclamation point. In the following example, we also peek at the string to see whether it includes a newline character. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : peek get "!uname -a"
    │ │ │  
    │ │ │ -o3 = "Linux sbuild 6.12.48+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian
    │ │ │ -     6.12.48-1 (2025-09-20) x86_64 GNU/Linux\n"
    │ │ │ +o3 = "Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ + 6.12.57-1 (2025-11-05) x86_64 GNU/Linux\n" │ │ │
    │ │ │ Bidirectional communication with a program is also possible. We use openInOut to create a file that serves as a bidirectional connection to a program. That file is called an input output file. In this example we open a connection to the unix utility grep and use it to locate the symbol names in Macaulay2 that begin with in. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : f = openInOut "!grep -E '^in'"
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -5,16 +5,16 @@
    │ │ │ │  _n_e_x_t | _p_r_e_v_i_o_u_s | _f_o_r_w_a_r_d | _b_a_c_k_w_a_r_d | _u_p | _i_n_d_e_x | _t_o_c
    │ │ │ │  ===============================================================================
    │ │ │ │  ************ ccoommmmuunniiccaattiinngg wwiitthh pprrooggrraammss ************
    │ │ │ │  The most naive way to interact with another program is simply to run it, let it
    │ │ │ │  communicate directly with the user, and wait for it to finish. This is done
    │ │ │ │  with the _r_u_n command.
    │ │ │ │  i1 : run "uname -a"
    │ │ │ │ -Linux sbuild 6.12.48+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.48-1 (2025-
    │ │ │ │ -09-20) x86_64 GNU/Linux
    │ │ │ │ +Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1
    │ │ │ │ +(2025-11-05) x86_64 GNU/Linux
    │ │ │ │  
    │ │ │ │  o1 = 0
    │ │ │ │  To run a program and provide it with input, one way is use the operator _<_<,
    │ │ │ │  with a file name whose first character is an exclamation point; the rest of the
    │ │ │ │  file name will be taken as the command to run, as in the following example.
    │ │ │ │  i2 : "!grep a" << " ba \n bc \n ad \n ef \n" << close
    │ │ │ │   ba
    │ │ │ │ @@ -26,16 +26,16 @@
    │ │ │ │  More often, one wants to write Macaulay2 code to obtain and manipulate the
    │ │ │ │  output from the other program. If the program requires no input data, then we
    │ │ │ │  can use _g_e_t with a file name whose first character is an exclamation point. In
    │ │ │ │  the following example, we also peek at the string to see whether it includes a
    │ │ │ │  newline character.
    │ │ │ │  i3 : peek get "!uname -a"
    │ │ │ │  
    │ │ │ │ -o3 = "Linux sbuild 6.12.48+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian
    │ │ │ │ -     6.12.48-1 (2025-09-20) x86_64 GNU/Linux\n"
    │ │ │ │ +o3 = "Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian
    │ │ │ │ +     6.12.57-1 (2025-11-05) x86_64 GNU/Linux\n"
    │ │ │ │  Bidirectional communication with a program is also possible. We use _o_p_e_n_I_n_O_u_t
    │ │ │ │  to create a file that serves as a bidirectional connection to a program. That
    │ │ │ │  file is called an input output file. In this example we open a connection to
    │ │ │ │  the unix utility grep and use it to locate the symbol names in Macaulay2 that
    │ │ │ │  begin with in.
    │ │ │ │  i4 : f = openInOut "!grep -E '^in'"
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_sp__Groebner_spbases.html
    │ │ │ @@ -269,15 +269,15 @@
    │ │ │                 1277
    │ │ │
    │ │ │
    i24 : gb I
    │ │ │  
    │ │ │ -   -- registering gb 5 at 0x7f4e93a66540
    │ │ │ +   -- registering gb 5 at 0x7f060a7fd540
    │ │ │  
    │ │ │     -- [gb]{2}(2)mm{3}(1)m{4}(2)om{5}(1)onumber of (nonminimal) gb elements = 4
    │ │ │     -- number of monomials                = 8
    │ │ │     -- #reduction steps = 2
    │ │ │     -- #spairs done = 6
    │ │ │     -- ncalls = 0
    │ │ │     -- nloop = 0
    │ │ │ @@ -373,15 +373,15 @@
    │ │ │                1      4
    │ │ │  o32 : Matrix R  <-- R
    │ │ │
    │ │ │
    i33 : time betti gb f
    │ │ │ - -- used 0.27951s (cpu); 0.279785s (thread); 0s (gc)
    │ │ │ + -- used 0.211804s (cpu); 0.211893s (thread); 0s (gc)
    │ │ │  
    │ │ │               0  1
    │ │ │  o33 = total: 1 53
    │ │ │            0: 1  .
    │ │ │            1: .  .
    │ │ │            2: .  2
    │ │ │            3: .  1
    │ │ │ @@ -417,15 +417,15 @@
    │ │ │  
    │ │ │  o35 : ZZ[T]
    │ │ │
    │ │ │
    i36 : time betti gb f
    │ │ │ - -- used 0.00392072s (cpu); 0.00469829s (thread); 0s (gc)
    │ │ │ + -- used 0.000492993s (cpu); 0.00306167s (thread); 0s (gc)
    │ │ │  
    │ │ │               0  1
    │ │ │  o36 = total: 1 53
    │ │ │            0: 1  .
    │ │ │            1: .  .
    │ │ │            2: .  2
    │ │ │            3: .  1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -140,15 +140,15 @@
    │ │ │ │  o23 = ideal (x*y - z , y  - w )
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o23 : Ideal of ----[x..z, w]
    │ │ │ │                 1277
    │ │ │ │  i24 : gb I
    │ │ │ │  
    │ │ │ │ -   -- registering gb 5 at 0x7f4e93a66540
    │ │ │ │ +   -- registering gb 5 at 0x7f060a7fd540
    │ │ │ │  
    │ │ │ │     -- [gb]{2}(2)mm{3}(1)m{4}(2)om{5}(1)onumber of (nonminimal) gb elements = 4
    │ │ │ │     -- number of monomials                = 8
    │ │ │ │     -- #reduction steps = 2
    │ │ │ │     -- #spairs done = 6
    │ │ │ │     -- ncalls = 0
    │ │ │ │     -- nloop = 0
    │ │ │ │ @@ -213,15 +213,15 @@
    │ │ │ │  
    │ │ │ │  o31 : ZZ[T]
    │ │ │ │  i32 : f = random(R^1,R^{-3,-3,-5,-6});
    │ │ │ │  
    │ │ │ │                1      4
    │ │ │ │  o32 : Matrix R  <-- R
    │ │ │ │  i33 : time betti gb f
    │ │ │ │ - -- used 0.27951s (cpu); 0.279785s (thread); 0s (gc)
    │ │ │ │ + -- used 0.211804s (cpu); 0.211893s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               0  1
    │ │ │ │  o33 = total: 1 53
    │ │ │ │            0: 1  .
    │ │ │ │            1: .  .
    │ │ │ │            2: .  2
    │ │ │ │            3: .  1
    │ │ │ │ @@ -245,15 +245,15 @@
    │ │ │ │  i35 : poincare cokernel f = (1-T^3)*(1-T^3)*(1-T^5)*(1-T^6) -- cache poincare
    │ │ │ │  
    │ │ │ │              3    5     8     9    12     14    17
    │ │ │ │  o35 = 1 - 2T  - T  + 2T  + 2T  - T   - 2T   + T
    │ │ │ │  
    │ │ │ │  o35 : ZZ[T]
    │ │ │ │  i36 : time betti gb f
    │ │ │ │ - -- used 0.00392072s (cpu); 0.00469829s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000492993s (cpu); 0.00306167s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               0  1
    │ │ │ │  o36 = total: 1 53
    │ │ │ │            0: 1  .
    │ │ │ │            1: .  .
    │ │ │ │            2: .  2
    │ │ │ │            3: .  1
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_copy__Directory_lp__String_cm__String_rp.html
    │ │ │ @@ -80,112 +80,112 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -31,16 +31,16 @@ │ │ │ │ o1 : PolynomialRing │ │ │ │ i2 : I = ideal(x, y, z) │ │ │ │ │ │ │ │ o2 = ideal (x, y, z) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : msolveGB(I, Verbosity => 2, Threads => 6) │ │ │ │ - -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-53603-0/0-in.ms -o /tmp/ │ │ │ │ -M2-53603-0/0-out.ms │ │ │ │ + -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-84647-0/0-in.ms -o /tmp/ │ │ │ │ +M2-84647-0/0-out.ms │ │ │ │ │ │ │ │ --------------- INPUT DATA --------------- │ │ │ │ #variables 3 │ │ │ │ #equations 3 │ │ │ │ #invalid equations 0 │ │ │ │ field characteristic 0 │ │ │ │ homogeneous input? 1 │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ initial hash table size 131072 (2^17) │ │ │ │ max pair selection ALL │ │ │ │ reduce gb 1 │ │ │ │ #threads 6 │ │ │ │ info level 2 │ │ │ │ generate pbm files 0 │ │ │ │ ------------------------------------------ │ │ │ │ -Initial prime = 1235341781 │ │ │ │ +Initial prime = 1074323161 │ │ │ │ │ │ │ │ Legend for f4 information │ │ │ │ -------------------------------------------------------- │ │ │ │ deg current degree of pairs selected in this round │ │ │ │ sel number of pairs selected in this round │ │ │ │ pairs total number of pairs in pair list │ │ │ │ mat matrix dimensions (# rows x # columns) │ │ │ │ @@ -73,26 +73,26 @@ │ │ │ │ deg sel pairs mat density new data │ │ │ │ time(rd) in sec (real|cpu) │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----------------------- │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----------------------- │ │ │ │ reduce final basis 3 x 3 33.33% 3 new 0 zero │ │ │ │ -0.06 | 0.11 │ │ │ │ +0.00 | 0.00 │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----------------------- │ │ │ │ │ │ │ │ ---------------- TIMINGS ---------------- │ │ │ │ -overall(elapsed) 0.11 sec │ │ │ │ -overall(cpu) 0.22 sec │ │ │ │ +overall(elapsed) 0.00 sec │ │ │ │ +overall(cpu) 0.00 sec │ │ │ │ select 0.00 sec 0.0% │ │ │ │ -symbolic prep. 0.00 sec 0.0% │ │ │ │ -update 0.05 sec 43.2% │ │ │ │ -convert 0.06 sec 56.7% │ │ │ │ -linear algebra 0.00 sec 0.0% │ │ │ │ +symbolic prep. 0.00 sec 0.5% │ │ │ │ +update 0.00 sec 72.9% │ │ │ │ +convert 0.00 sec 4.0% │ │ │ │ +linear algebra 0.00 sec 1.4% │ │ │ │ reduce gb 0.00 sec 0.0% │ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ │ size of basis 3 │ │ │ │ #terms in basis 3 │ │ │ │ #pairs reduced 0 │ │ │ │ @@ -106,18 +106,18 @@ │ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ │ [3] │ │ │ │ #polynomials to lift 3 │ │ │ │ ----------------------------------------- │ │ │ │ -New prime = 1138309223 │ │ │ │ +New prime = 1222105613 │ │ │ │ │ │ │ │ ---------------- TIMINGS ---------------- │ │ │ │ -multi-mod overall(elapsed) 0.03 sec │ │ │ │ +multi-mod overall(elapsed) 0.01 sec │ │ │ │ learning phase 0.00 Gops/sec │ │ │ │ application phase 0.00 Gops/sec │ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ multi-modular steps │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----------------------- │ │ │ │ @@ -136,15 +136,15 @@ │ │ │ │ CRT (elapsed) 0.00 sec │ │ │ │ ratrecon(elapsed) 0.00 sec │ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----- │ │ │ │ -msolve overall time 0.26 sec (elapsed) / 0.60 sec (cpu) │ │ │ │ +msolve overall time 0.01 sec (elapsed) / 0.06 sec (cpu) │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----- │ │ │ │ │ │ │ │ o3 = | z y x | │ │ │ │ │ │ │ │ 1 3 │ │ │ │ o3 : Matrix R <-- R │ │ ├── ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_components__Of__Kernel.out │ │ │ @@ -23,19 +23,19 @@ │ │ │ o4 : RingMap S <-- R │ │ │ │ │ │ i5 : peek componentsOfKernel(2, F) │ │ │ warning: computation begun over finite field. resulting polynomials may not lie in the ideal │ │ │ computing total degree: 1 │ │ │ number of monomials = 6 │ │ │ number of distinct multidegrees = 6 │ │ │ - -- .00369113s elapsed │ │ │ + -- .00232235s elapsed │ │ │ computing total degree: 2 │ │ │ number of monomials = 21 │ │ │ number of distinct multidegrees = 18 │ │ │ - -- .0155544s elapsed │ │ │ + -- .0104562s elapsed │ │ │ │ │ │ o5 = MutableHashTable{{0, 1, 0, 0, 1} => {} } │ │ │ {0, 1, 0, 1, 0} => {} │ │ │ {0, 1, 1, 0, 0} => {} │ │ │ {0, 2, 0, 0, 2} => {} │ │ │ {0, 2, 0, 1, 1} => {} │ │ │ {0, 2, 0, 2, 0} => {} │ │ ├── ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_components__Of__Kernel.html │ │ │ @@ -117,19 +117,19 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -20,23 +20,23 @@ │ │ │ │ o1 : PolynomialRing │ │ │ │ i2 : I = ideal"xy,yz,zx" │ │ │ │ │ │ │ │ o2 = ideal (x*y, y*z, x*z) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime jMult I │ │ │ │ - -- .0238525s elapsed │ │ │ │ + -- .0297824s elapsed │ │ │ │ │ │ │ │ o3 = 2 │ │ │ │ i4 : elapsedTime monjMult I │ │ │ │ - -- .114646s elapsed │ │ │ │ + -- .0892441s elapsed │ │ │ │ │ │ │ │ o4 = 2 │ │ │ │ i5 : elapsedTime multiplicitySequence I │ │ │ │ - -- .137039s elapsed │ │ │ │ + -- .15947s elapsed │ │ │ │ │ │ │ │ o5 = HashTable{2 => 3} │ │ │ │ 3 => 2 │ │ │ │ │ │ │ │ o5 : HashTable │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_u_l_t_i_p_l_i_c_i_t_y_S_e_q_u_e_n_c_e -- the multiplicity sequence of an ideal │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Analytic__Spread.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : src = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11185-0/0/
    │ │ │ +o1 = /tmp/M2-12295-0/0/ │ │ │
    │ │ │
    i2 : dst = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11185-0/1/
    │ │ │ +o2 = /tmp/M2-12295-0/1/ │ │ │
    │ │ │
    i3 : makeDirectory (src|"a/")
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11185-0/0/a/
    │ │ │ +o3 = /tmp/M2-12295-0/0/a/ │ │ │
    │ │ │
    i4 : makeDirectory (src|"b/")
    │ │ │  
    │ │ │ -o4 = /tmp/M2-11185-0/0/b/
    │ │ │ +o4 = /tmp/M2-12295-0/0/b/ │ │ │
    │ │ │
    i5 : makeDirectory (src|"b/c/")
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11185-0/0/b/c/
    │ │ │ +o5 = /tmp/M2-12295-0/0/b/c/ │ │ │
    │ │ │
    i6 : src|"a/f" << "hi there" << close
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11185-0/0/a/f
    │ │ │ +o6 = /tmp/M2-12295-0/0/a/f
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    │ │ │
    i7 : src|"a/g" << "hi there" << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11185-0/0/a/g
    │ │ │ +o7 = /tmp/M2-12295-0/0/a/g
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    │ │ │
    i8 : src|"b/c/g" << "ho there" << close
    │ │ │  
    │ │ │ -o8 = /tmp/M2-11185-0/0/b/c/g
    │ │ │ +o8 = /tmp/M2-12295-0/0/b/c/g
    │ │ │  
    │ │ │  o8 : File
    │ │ │
    │ │ │
    i9 : stack findFiles src
    │ │ │  
    │ │ │ -o9 = /tmp/M2-11185-0/0/
    │ │ │ -     /tmp/M2-11185-0/0/b/
    │ │ │ -     /tmp/M2-11185-0/0/b/c/
    │ │ │ -     /tmp/M2-11185-0/0/b/c/g
    │ │ │ -     /tmp/M2-11185-0/0/a/
    │ │ │ -     /tmp/M2-11185-0/0/a/g
    │ │ │ -     /tmp/M2-11185-0/0/a/f
    │ │ │ +o9 = /tmp/M2-12295-0/0/ │ │ │ + /tmp/M2-12295-0/0/a/ │ │ │ + /tmp/M2-12295-0/0/a/g │ │ │ + /tmp/M2-12295-0/0/a/f │ │ │ + /tmp/M2-12295-0/0/b/ │ │ │ + /tmp/M2-12295-0/0/b/c/ │ │ │ + /tmp/M2-12295-0/0/b/c/g │ │ │
    │ │ │
    i10 : copyDirectory(src,dst,Verbose=>true)
    │ │ │ - -- copying: /tmp/M2-11185-0/0/b/c/g -> /tmp/M2-11185-0/1/b/c/g
    │ │ │ - -- copying: /tmp/M2-11185-0/0/a/g -> /tmp/M2-11185-0/1/a/g
    │ │ │ - -- copying: /tmp/M2-11185-0/0/a/f -> /tmp/M2-11185-0/1/a/f
    │ │ │ + -- copying: /tmp/M2-12295-0/0/a/g -> /tmp/M2-12295-0/1/a/g │ │ │ + -- copying: /tmp/M2-12295-0/0/a/f -> /tmp/M2-12295-0/1/a/f │ │ │ + -- copying: /tmp/M2-12295-0/0/b/c/g -> /tmp/M2-12295-0/1/b/c/g │ │ │
    │ │ │
    i11 : copyDirectory(src,dst,Verbose=>true,UpdateOnly => true)
    │ │ │ - -- skipping: /tmp/M2-11185-0/0/b/c/g not newer than /tmp/M2-11185-0/1/b/c/g
    │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/g not newer than /tmp/M2-11185-0/1/a/g
    │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/f not newer than /tmp/M2-11185-0/1/a/f
    │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/g not newer than /tmp/M2-12295-0/1/a/g │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/f not newer than /tmp/M2-12295-0/1/a/f │ │ │ + -- skipping: /tmp/M2-12295-0/0/b/c/g not newer than /tmp/M2-12295-0/1/b/c/g │ │ │
    │ │ │
    i12 : stack findFiles dst
    │ │ │  
    │ │ │ -o12 = /tmp/M2-11185-0/1/
    │ │ │ -      /tmp/M2-11185-0/1/a/
    │ │ │ -      /tmp/M2-11185-0/1/a/f
    │ │ │ -      /tmp/M2-11185-0/1/a/g
    │ │ │ -      /tmp/M2-11185-0/1/b/
    │ │ │ -      /tmp/M2-11185-0/1/b/c/
    │ │ │ -      /tmp/M2-11185-0/1/b/c/g
    │ │ │ +o12 = /tmp/M2-12295-0/1/ │ │ │ + /tmp/M2-12295-0/1/a/ │ │ │ + /tmp/M2-12295-0/1/a/g │ │ │ + /tmp/M2-12295-0/1/a/f │ │ │ + /tmp/M2-12295-0/1/b/ │ │ │ + /tmp/M2-12295-0/1/b/c/ │ │ │ + /tmp/M2-12295-0/1/b/c/g │ │ │
    │ │ │
    i13 : get (dst|"b/c/g")
    │ │ │  
    │ │ │  o13 = ho there
    │ │ │ ├── html2text {} │ │ │ │ @@ -25,68 +25,68 @@ │ │ │ │ individual file operations │ │ │ │ * Consequences: │ │ │ │ o a copy of the directory tree rooted at src is created, rooted at │ │ │ │ dst │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : src = temporaryFileName() | "/" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11185-0/0/ │ │ │ │ +o1 = /tmp/M2-12295-0/0/ │ │ │ │ i2 : dst = temporaryFileName() | "/" │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11185-0/1/ │ │ │ │ +o2 = /tmp/M2-12295-0/1/ │ │ │ │ i3 : makeDirectory (src|"a/") │ │ │ │ │ │ │ │ -o3 = /tmp/M2-11185-0/0/a/ │ │ │ │ +o3 = /tmp/M2-12295-0/0/a/ │ │ │ │ i4 : makeDirectory (src|"b/") │ │ │ │ │ │ │ │ -o4 = /tmp/M2-11185-0/0/b/ │ │ │ │ +o4 = /tmp/M2-12295-0/0/b/ │ │ │ │ i5 : makeDirectory (src|"b/c/") │ │ │ │ │ │ │ │ -o5 = /tmp/M2-11185-0/0/b/c/ │ │ │ │ +o5 = /tmp/M2-12295-0/0/b/c/ │ │ │ │ i6 : src|"a/f" << "hi there" << close │ │ │ │ │ │ │ │ -o6 = /tmp/M2-11185-0/0/a/f │ │ │ │ +o6 = /tmp/M2-12295-0/0/a/f │ │ │ │ │ │ │ │ o6 : File │ │ │ │ i7 : src|"a/g" << "hi there" << close │ │ │ │ │ │ │ │ -o7 = /tmp/M2-11185-0/0/a/g │ │ │ │ +o7 = /tmp/M2-12295-0/0/a/g │ │ │ │ │ │ │ │ o7 : File │ │ │ │ i8 : src|"b/c/g" << "ho there" << close │ │ │ │ │ │ │ │ -o8 = /tmp/M2-11185-0/0/b/c/g │ │ │ │ +o8 = /tmp/M2-12295-0/0/b/c/g │ │ │ │ │ │ │ │ o8 : File │ │ │ │ i9 : stack findFiles src │ │ │ │ │ │ │ │ -o9 = /tmp/M2-11185-0/0/ │ │ │ │ - /tmp/M2-11185-0/0/b/ │ │ │ │ - /tmp/M2-11185-0/0/b/c/ │ │ │ │ - /tmp/M2-11185-0/0/b/c/g │ │ │ │ - /tmp/M2-11185-0/0/a/ │ │ │ │ - /tmp/M2-11185-0/0/a/g │ │ │ │ - /tmp/M2-11185-0/0/a/f │ │ │ │ +o9 = /tmp/M2-12295-0/0/ │ │ │ │ + /tmp/M2-12295-0/0/a/ │ │ │ │ + /tmp/M2-12295-0/0/a/g │ │ │ │ + /tmp/M2-12295-0/0/a/f │ │ │ │ + /tmp/M2-12295-0/0/b/ │ │ │ │ + /tmp/M2-12295-0/0/b/c/ │ │ │ │ + /tmp/M2-12295-0/0/b/c/g │ │ │ │ i10 : copyDirectory(src,dst,Verbose=>true) │ │ │ │ - -- copying: /tmp/M2-11185-0/0/b/c/g -> /tmp/M2-11185-0/1/b/c/g │ │ │ │ - -- copying: /tmp/M2-11185-0/0/a/g -> /tmp/M2-11185-0/1/a/g │ │ │ │ - -- copying: /tmp/M2-11185-0/0/a/f -> /tmp/M2-11185-0/1/a/f │ │ │ │ + -- copying: /tmp/M2-12295-0/0/a/g -> /tmp/M2-12295-0/1/a/g │ │ │ │ + -- copying: /tmp/M2-12295-0/0/a/f -> /tmp/M2-12295-0/1/a/f │ │ │ │ + -- copying: /tmp/M2-12295-0/0/b/c/g -> /tmp/M2-12295-0/1/b/c/g │ │ │ │ i11 : copyDirectory(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ │ - -- skipping: /tmp/M2-11185-0/0/b/c/g not newer than /tmp/M2-11185-0/1/b/c/g │ │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/g not newer than /tmp/M2-11185-0/1/a/g │ │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/f not newer than /tmp/M2-11185-0/1/a/f │ │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/g not newer than /tmp/M2-12295-0/1/a/g │ │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/f not newer than /tmp/M2-12295-0/1/a/f │ │ │ │ + -- skipping: /tmp/M2-12295-0/0/b/c/g not newer than /tmp/M2-12295-0/1/b/c/g │ │ │ │ i12 : stack findFiles dst │ │ │ │ │ │ │ │ -o12 = /tmp/M2-11185-0/1/ │ │ │ │ - /tmp/M2-11185-0/1/a/ │ │ │ │ - /tmp/M2-11185-0/1/a/f │ │ │ │ - /tmp/M2-11185-0/1/a/g │ │ │ │ - /tmp/M2-11185-0/1/b/ │ │ │ │ - /tmp/M2-11185-0/1/b/c/ │ │ │ │ - /tmp/M2-11185-0/1/b/c/g │ │ │ │ +o12 = /tmp/M2-12295-0/1/ │ │ │ │ + /tmp/M2-12295-0/1/a/ │ │ │ │ + /tmp/M2-12295-0/1/a/g │ │ │ │ + /tmp/M2-12295-0/1/a/f │ │ │ │ + /tmp/M2-12295-0/1/b/ │ │ │ │ + /tmp/M2-12295-0/1/b/c/ │ │ │ │ + /tmp/M2-12295-0/1/b/c/g │ │ │ │ i13 : get (dst|"b/c/g") │ │ │ │ │ │ │ │ o13 = ho there │ │ │ │ Now we remove the files and directories we created. │ │ │ │ i14 : rm = d -> if isDirectory d then removeDirectory d else removeFile d │ │ │ │ │ │ │ │ o14 = rm │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_copy__File_lp__String_cm__String_rp.html │ │ │ @@ -78,65 +78,65 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : src = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10970-0/0
    │ │ │ +o1 = /tmp/M2-11860-0/0 │ │ │
    │ │ │
    i2 : dst = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10970-0/1
    │ │ │ +o2 = /tmp/M2-11860-0/1 │ │ │
    │ │ │
    i3 : src << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10970-0/0
    │ │ │ +o3 = /tmp/M2-11860-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : copyFile(src,dst,Verbose=>true)
    │ │ │ - -- copying: /tmp/M2-10970-0/0 -> /tmp/M2-10970-0/1
    │ │ │ + -- copying: /tmp/M2-11860-0/0 -> /tmp/M2-11860-0/1 │ │ │
    │ │ │
    i5 : get dst
    │ │ │  
    │ │ │  o5 = hi there
    │ │ │
    │ │ │
    i6 : copyFile(src,dst,Verbose=>true,UpdateOnly => true)
    │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1
    │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │
    │ │ │
    i7 : src << "ho there" << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-10970-0/0
    │ │ │ +o7 = /tmp/M2-11860-0/0
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    │ │ │
    i8 : copyFile(src,dst,Verbose=>true,UpdateOnly => true)
    │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1
    │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │
    │ │ │
    i9 : get dst
    │ │ │  
    │ │ │  o9 = hi there
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,37 +18,37 @@ │ │ │ │ o Verbose => a _B_o_o_l_e_a_n_ _v_a_l_u_e, default value false, whether to report │ │ │ │ individual file operations │ │ │ │ * Consequences: │ │ │ │ o the file may be copied │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10970-0/0 │ │ │ │ +o1 = /tmp/M2-11860-0/0 │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10970-0/1 │ │ │ │ +o2 = /tmp/M2-11860-0/1 │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ │ │ -o3 = /tmp/M2-10970-0/0 │ │ │ │ +o3 = /tmp/M2-11860-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : copyFile(src,dst,Verbose=>true) │ │ │ │ - -- copying: /tmp/M2-10970-0/0 -> /tmp/M2-10970-0/1 │ │ │ │ + -- copying: /tmp/M2-11860-0/0 -> /tmp/M2-11860-0/1 │ │ │ │ i5 : get dst │ │ │ │ │ │ │ │ o5 = hi there │ │ │ │ i6 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1 │ │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │ │ i7 : src << "ho there" << close │ │ │ │ │ │ │ │ -o7 = /tmp/M2-10970-0/0 │ │ │ │ +o7 = /tmp/M2-11860-0/0 │ │ │ │ │ │ │ │ o7 : File │ │ │ │ i8 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1 │ │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │ │ i9 : get dst │ │ │ │ │ │ │ │ o9 = hi there │ │ │ │ i10 : removeFile src │ │ │ │ i11 : removeFile dst │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_o_p_y_D_i_r_e_c_t_o_r_y │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cpu__Time.html │ │ │ @@ -64,38 +64,38 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : t1 = cpuTime()
    │ │ │  
    │ │ │ -o1 = 363.561188353
    │ │ │ +o1 = 336.141712199
    │ │ │  
    │ │ │  o1 : RR (of precision 53)
    │ │ │
    │ │ │
    i2 : for i from 0 to 1000000 do 223131321321*324234324324;
    │ │ │
    │ │ │
    i3 : t2 = cpuTime()
    │ │ │  
    │ │ │ -o3 = 365.292753193
    │ │ │ +o3 = 337.193418863
    │ │ │  
    │ │ │  o3 : RR (of precision 53)
    │ │ │
    │ │ │
    i4 : t2-t1
    │ │ │  
    │ │ │ -o4 = 1.731564839999976
    │ │ │ +o4 = 1.051706663999994
    │ │ │  
    │ │ │  o4 : RR (of precision 53)
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -9,26 +9,26 @@ │ │ │ │ cpuTime() │ │ │ │ * Outputs: │ │ │ │ o a _r_e_a_l_ _n_u_m_b_e_r, the number of seconds of cpu time used since the │ │ │ │ program was started │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : t1 = cpuTime() │ │ │ │ │ │ │ │ -o1 = 363.561188353 │ │ │ │ +o1 = 336.141712199 │ │ │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ i2 : for i from 0 to 1000000 do 223131321321*324234324324; │ │ │ │ i3 : t2 = cpuTime() │ │ │ │ │ │ │ │ -o3 = 365.292753193 │ │ │ │ +o3 = 337.193418863 │ │ │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ i4 : t2-t1 │ │ │ │ │ │ │ │ -o4 = 1.731564839999976 │ │ │ │ +o4 = 1.051706663999994 │ │ │ │ │ │ │ │ o4 : RR (of precision 53) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_i_m_e -- time a computation │ │ │ │ * _t_i_m_i_n_g -- time a computation │ │ │ │ * _c_u_r_r_e_n_t_T_i_m_e -- get the current time │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Time.html │ │ │ @@ -64,48 +64,48 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : currentTime()
    │ │ │  
    │ │ │ -o1 = 1763141264
    │ │ │ +o1 = 1763721754 │ │ │
    │ │ │

    We can compute, roughly, how many years ago the epoch began as follows.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : currentTime() /( (365 + 97./400) * 24 * 60 * 60 )
    │ │ │  
    │ │ │ -o2 = 55.87172246546498
    │ │ │ +o2 = 55.8901174612808
    │ │ │  
    │ │ │  o2 : RR (of precision 53)
    │ │ │
    │ │ │

    We can also compute how many months account for the fractional part of that number.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : 12 * (oo - floor oo)
    │ │ │  
    │ │ │ -o3 = 10.46066958557981
    │ │ │ +o3 = 10.68140953536962
    │ │ │  
    │ │ │  o3 : RR (of precision 53)
    │ │ │
    │ │ │

    Compare that to the current date, available from a standard Unix command.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : run "date"
    │ │ │ -Fri Nov 14 17:27:44 UTC 2025
    │ │ │ +Fri Nov 21 10:42:34 UTC 2025
    │ │ │  
    │ │ │  o4 = 0
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -9,31 +9,31 @@ │ │ │ │ currentTime() │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the current time, in seconds since 00:00:00 1970-01-01 │ │ │ │ UTC, the beginning of the epoch │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : currentTime() │ │ │ │ │ │ │ │ -o1 = 1763141264 │ │ │ │ +o1 = 1763721754 │ │ │ │ We can compute, roughly, how many years ago the epoch began as follows. │ │ │ │ i2 : currentTime() /( (365 + 97./400) * 24 * 60 * 60 ) │ │ │ │ │ │ │ │ -o2 = 55.87172246546498 │ │ │ │ +o2 = 55.8901174612808 │ │ │ │ │ │ │ │ o2 : RR (of precision 53) │ │ │ │ We can also compute how many months account for the fractional part of that │ │ │ │ number. │ │ │ │ i3 : 12 * (oo - floor oo) │ │ │ │ │ │ │ │ -o3 = 10.46066958557981 │ │ │ │ +o3 = 10.68140953536962 │ │ │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ Compare that to the current date, available from a standard Unix command. │ │ │ │ i4 : run "date" │ │ │ │ -Fri Nov 14 17:27:44 UTC 2025 │ │ │ │ +Fri Nov 21 10:42:34 UTC 2025 │ │ │ │ │ │ │ │ o4 = 0 │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_u_r_r_e_n_t_T_i_m_e is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_system.m2:1849:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Time.html │ │ │ @@ -59,15 +59,15 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │ elapsedTime e evaluates e, prints the amount of time elapsed, and returns the value of e. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : elapsedTime sleep 1
    │ │ │ - -- 1.00014s elapsed
    │ │ │ + -- 1.00013s elapsed
    │ │ │  
    │ │ │  o1 = 0
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -7,15 +7,15 @@ │ │ │ │ ************ eellaappsseeddTTiimmee ---- ttiimmee aa ccoommppuuttaattiioonn iinncclluuddiinngg ttiimmee eellaappsseedd ************ │ │ │ │ * Usage: │ │ │ │ elapsedTime e │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ elapsedTime e evaluates e, prints the amount of time elapsed, and returns the │ │ │ │ value of e. │ │ │ │ i1 : elapsedTime sleep 1 │ │ │ │ - -- 1.00014s elapsed │ │ │ │ + -- 1.00013s elapsed │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_i_n_g -- time a computation using time elapsed │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _G_C_s_t_a_t_s -- information about the status of the garbage collector │ │ │ │ * _p_a_r_a_l_l_e_l_ _p_r_o_g_r_a_m_m_i_n_g_ _w_i_t_h_ _t_h_r_e_a_d_s_ _a_n_d_ _t_a_s_k_s │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Timing.html │ │ │ @@ -54,24 +54,24 @@ │ │ │ elapsedTiming e evaluates e and returns a list of type Time of the form {t,v}, where t is the number of seconds of time elapsed, and v is the value of the expression.

    │ │ │ The default method for printing such timing results is to display the timing separately in a comment below the computed value. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : elapsedTiming sleep 1
    │ │ │  
    │ │ │  o1 = 0
    │ │ │ -     -- 1.00015 seconds
    │ │ │ +     -- 1.00014 seconds
    │ │ │  
    │ │ │  o1 : Time
    │ │ │
    │ │ │
    i2 : peek oo
    │ │ │  
    │ │ │ -o2 = Time{1.00015, 0}
    │ │ │ +o2 = Time{1.00014, 0} │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -10,20 +10,20 @@ │ │ │ │ where t is the number of seconds of time elapsed, and v is the value of the │ │ │ │ expression. │ │ │ │ The default method for printing such timing results is to display the timing │ │ │ │ separately in a comment below the computed value. │ │ │ │ i1 : elapsedTiming sleep 1 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ - -- 1.00015 seconds │ │ │ │ + -- 1.00014 seconds │ │ │ │ │ │ │ │ o1 : Time │ │ │ │ i2 : peek oo │ │ │ │ │ │ │ │ -o2 = Time{1.00015, 0} │ │ │ │ +o2 = Time{1.00014, 0} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _T_i_m_e -- the class of all timing results │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_e -- time a computation including time elapsed │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _t_i_m_i_n_g -- time a computation │ │ │ │ * _t_i_m_e -- time a computation │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elimination_spof_spvariables.html │ │ │ @@ -65,15 +65,15 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │
    │ │ │
    i3 : time leadTerm gens gb I
    │ │ │ - -- used 0.474296s (cpu); 0.280859s (thread); 0s (gc)
    │ │ │ + -- used 0.135773s (cpu); 0.135774s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = | x3y9 5148txy3 108729sxy2z2 sy4z 46644741sxy3z 143sy5 6sxy4
    │ │ │       ------------------------------------------------------------------------
    │ │ │       563515116021sx2y3 4374txy2z3 612704350498473090tx2yz3 217458ty4z2
    │ │ │       ------------------------------------------------------------------------
    │ │ │       267076255345488270sy3z4 5256861933965245618410txyz6
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -162,15 +162,15 @@
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │
    │ │ │
    i8 : time G = eliminate(I,{s,t})
    │ │ │ - -- used 0.497187s (cpu); 0.266913s (thread); 0s (gc)
    │ │ │ + -- used 0.362934s (cpu); 0.185765s (thread); 0s (gc)
    │ │ │  
    │ │ │              3 9     2 9     2 8      2 6 3       9    2 7         8   
    │ │ │  o8 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │       ------------------------------------------------------------------------
    │ │ │           7 2       2 5 3       6 3    7 3        5 4       3 6    9       7 
    │ │ │       7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -245,15 +245,15 @@
    │ │ │  
    │ │ │  o11 : Ideal of R1
    │ │ │
    │ │ │
    i12 : time G = eliminate(I1,{s,t})
    │ │ │ - -- used 0.340207s (cpu); 0.126135s (thread); 0s (gc)
    │ │ │ + -- used 0.0321558s (cpu); 0.0321565s (thread); 0s (gc)
    │ │ │  
    │ │ │               3 9     2 6 3       3 6    9     2 8         5 4      2 7  
    │ │ │  o12 = ideal(x y  - 3x y z  + 3x*y z  - z  - 6x y z - 15x*y z  + 21y z  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │          2 9       2 5 3       6 3    7 3         2 6     3 6       7 2  
    │ │ │        3x y  - 324x y z  + 6x*y z  - y z  - 405x*y z  - 3y z  + 7x*y z  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -337,15 +337,15 @@
    │ │ │  
    │ │ │  o16 : RingMap A <-- B
    │ │ │
    │ │ │
    i17 : time G = kernel F
    │ │ │ - -- used 0.445785s (cpu); 0.239366s (thread); 0s (gc)
    │ │ │ + -- used 0.112779s (cpu); 0.112785s (thread); 0s (gc)
    │ │ │  
    │ │ │               3 9     2 9     2 8      2 6 3       9    2 7         8   
    │ │ │  o17 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │        -----------------------------------------------------------------------
    │ │ │            7 2       2 5 3       6 3    7 3        5 4       3 6    9       7 
    │ │ │        7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -418,26 +418,26 @@
    │ │ │  
    │ │ │  o19 : PolynomialRing
    │ │ │
    │ │ │
    i20 : time f1 = resultant(I_0,I_2,s)
    │ │ │ - -- used 0.0020489s (cpu); 0.00204903s (thread); 0s (gc)
    │ │ │ + -- used 0.00186132s (cpu); 0.00166853s (thread); 0s (gc)
    │ │ │  
    │ │ │           9    9      7    3
    │ │ │  o20 = x*t  - t  - z*t  - z
    │ │ │  
    │ │ │  o20 : R
    │ │ │
    │ │ │
    i21 : time f2 = resultant(I_1,f1,t)
    │ │ │ - -- used 0.056264s (cpu); 0.0562726s (thread); 0s (gc)
    │ │ │ + -- used 0.0387805s (cpu); 0.0387914s (thread); 0s (gc)
    │ │ │  
    │ │ │           3 9     2 9     2 8      2 6 3       9    2 7         8        7 2  
    │ │ │  o21 = - x y  + 3x y  + 6x y z + 3x y z  - 3x*y  + x y z - 12x*y z - 7x*y z  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │            2 5 3       6 3    7 3        5 4       3 6    9       7      8   
    │ │ │        324x y z  - 6x*y z  + y z  + 15x*y z  - 3x*y z  + y  - 2x*y z + 6y z +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,15 +13,15 @@
    │ │ │ │  i2 : I = ideal(x-s^3-s*t-1, y-t^3-3*t^2-t, z-s*t^3)
    │ │ │ │  
    │ │ │ │                 3                   3     2               3
    │ │ │ │  o2 = ideal (- s  - s*t + x - 1, - t  - 3t  - t + y, - s*t  + z)
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time leadTerm gens gb I
    │ │ │ │ - -- used 0.474296s (cpu); 0.280859s (thread); 0s (gc)
    │ │ │ │ + -- used 0.135773s (cpu); 0.135774s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = | x3y9 5148txy3 108729sxy2z2 sy4z 46644741sxy3z 143sy5 6sxy4
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       563515116021sx2y3 4374txy2z3 612704350498473090tx2yz3 217458ty4z2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       267076255345488270sy3z4 5256861933965245618410txyz6
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -89,15 +89,15 @@
    │ │ │ │  i7 : I = ideal(x-s^3-s*t-1, y-t^3-3*t^2-t, z-s*t^3)
    │ │ │ │  
    │ │ │ │                 3                   3     2               3
    │ │ │ │  o7 = ideal (- s  - s*t + x - 1, - t  - 3t  + y - t, - s*t  + z)
    │ │ │ │  
    │ │ │ │  o7 : Ideal of R
    │ │ │ │  i8 : time G = eliminate(I,{s,t})
    │ │ │ │ - -- used 0.497187s (cpu); 0.266913s (thread); 0s (gc)
    │ │ │ │ + -- used 0.362934s (cpu); 0.185765s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              3 9     2 9     2 8      2 6 3       9    2 7         8
    │ │ │ │  o8 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │           7 2       2 5 3       6 3    7 3        5 4       3 6    9       7
    │ │ │ │       7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -156,15 +156,15 @@
    │ │ │ │  Sometimes giving the variables different degrees will speed up the
    │ │ │ │  computations. Here, we set the degrees of x, y, and z to be the total degrees.
    │ │ │ │  i10 : R1 = QQ[x,y,z,s,t, Degrees=>{3,3,4,1,1}];
    │ │ │ │  i11 : I1 = substitute(I,R1);
    │ │ │ │  
    │ │ │ │  o11 : Ideal of R1
    │ │ │ │  i12 : time G = eliminate(I1,{s,t})
    │ │ │ │ - -- used 0.340207s (cpu); 0.126135s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0321558s (cpu); 0.0321565s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               3 9     2 6 3       3 6    9     2 8         5 4      2 7
    │ │ │ │  o12 = ideal(x y  - 3x y z  + 3x*y z  - z  - 6x y z - 15x*y z  + 21y z  -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │          2 9       2 5 3       6 3    7 3         2 6     3 6       7 2
    │ │ │ │        3x y  - 324x y z  + 6x*y z  - y z  - 405x*y z  - 3y z  + 7x*y z  -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ @@ -227,15 +227,15 @@
    │ │ │ │  i16 : F = map(A,B,{s^3+s*t+1, t^3+3*t^2+t, s*t^3})
    │ │ │ │  
    │ │ │ │                     3             3     2         3
    │ │ │ │  o16 = map (A, B, {s  + s*t + 1, t  + 3t  + t, s*t })
    │ │ │ │  
    │ │ │ │  o16 : RingMap A <-- B
    │ │ │ │  i17 : time G = kernel F
    │ │ │ │ - -- used 0.445785s (cpu); 0.239366s (thread); 0s (gc)
    │ │ │ │ + -- used 0.112779s (cpu); 0.112785s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               3 9     2 9     2 8      2 6 3       9    2 7         8
    │ │ │ │  o17 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │            7 2       2 5 3       6 3    7 3        5 4       3 6    9       7
    │ │ │ │        7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ @@ -296,22 +296,22 @@
    │ │ │ │  involve the variables s and t.
    │ │ │ │  i19 : use ring I
    │ │ │ │  
    │ │ │ │  o19 = R
    │ │ │ │  
    │ │ │ │  o19 : PolynomialRing
    │ │ │ │  i20 : time f1 = resultant(I_0,I_2,s)
    │ │ │ │ - -- used 0.0020489s (cpu); 0.00204903s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00186132s (cpu); 0.00166853s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9    9      7    3
    │ │ │ │  o20 = x*t  - t  - z*t  - z
    │ │ │ │  
    │ │ │ │  o20 : R
    │ │ │ │  i21 : time f2 = resultant(I_1,f1,t)
    │ │ │ │ - -- used 0.056264s (cpu); 0.0562726s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0387805s (cpu); 0.0387914s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           3 9     2 9     2 8      2 6 3       9    2 7         8        7 2
    │ │ │ │  o21 = - x y  + 3x y  + 6x y z + 3x y z  - 3x*y  + x y z - 12x*y z - 7x*y z  +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │            2 5 3       6 3    7 3        5 4       3 6    9       7      8
    │ │ │ │        324x y z  - 6x*y z  + y z  + 15x*y z  - 3x*y z  + y  - 2x*y z + 6y z +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_end__Package.html
    │ │ │ @@ -154,15 +154,15 @@
    │ │ │                                      Version => 0.0
    │ │ │               package prefix => /usr/
    │ │ │               PackageIsLoaded => true
    │ │ │               pkgname => Foo
    │ │ │               private dictionary => Foo#"private dictionary"
    │ │ │               processed documentation => MutableHashTable{}
    │ │ │               raw documentation => MutableHashTable{}
    │ │ │ -             source directory => /tmp/M2-10191-0/91-rundir/
    │ │ │ +             source directory => /tmp/M2-10311-0/91-rundir/
    │ │ │               source file => stdio
    │ │ │               test inputs => MutableList{}
    │ │ │
    │ │ │
    i7 : dictionaryPath
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -77,15 +77,15 @@
    │ │ │ │                                      Version => 0.0
    │ │ │ │               package prefix => /usr/
    │ │ │ │               PackageIsLoaded => true
    │ │ │ │               pkgname => Foo
    │ │ │ │               private dictionary => Foo#"private dictionary"
    │ │ │ │               processed documentation => MutableHashTable{}
    │ │ │ │               raw documentation => MutableHashTable{}
    │ │ │ │ -             source directory => /tmp/M2-10191-0/91-rundir/
    │ │ │ │ +             source directory => /tmp/M2-10311-0/91-rundir/
    │ │ │ │               source file => stdio
    │ │ │ │               test inputs => MutableList{}
    │ │ │ │  i7 : dictionaryPath
    │ │ │ │  
    │ │ │ │  o7 = {Foo.Dictionary, Varieties.Dictionary, Isomorphism.Dictionary,
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       Truncations.Dictionary, Polyhedra.Dictionary, Saturation.Dictionary,
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Exists.html
    │ │ │ @@ -68,29 +68,29 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10558-0/0
    │ │ │ +o1 = /tmp/M2-11028-0/0 │ │ │
    │ │ │
    i2 : fileExists fn
    │ │ │  
    │ │ │  o2 = false
    │ │ │
    │ │ │
    i3 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10558-0/0
    │ │ │ +o3 = /tmp/M2-11028-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : fileExists fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -10,21 +10,21 @@
    │ │ │ │      * Inputs:
    │ │ │ │            o fn, a _s_t_r_i_n_g
    │ │ │ │      * Outputs:
    │ │ │ │            o a _B_o_o_l_e_a_n_ _v_a_l_u_e, whether a file with the filename or path fn exists
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10558-0/0
    │ │ │ │ +o1 = /tmp/M2-11028-0/0
    │ │ │ │  i2 : fileExists fn
    │ │ │ │  
    │ │ │ │  o2 = false
    │ │ │ │  i3 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-10558-0/0
    │ │ │ │ +o3 = /tmp/M2-11028-0/0
    │ │ │ │  
    │ │ │ │  o3 : File
    │ │ │ │  i4 : fileExists fn
    │ │ │ │  
    │ │ │ │  o4 = true
    │ │ │ │  i5 : removeFile fn
    │ │ │ │  If fn refers to a symbolic link, then whether the file exists is determined by
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Length.html
    │ │ │ @@ -69,15 +69,15 @@
    │ │ │          

    Description

    │ │ │

    The length of an open output file is determined from the internal count of the number of bytes written so far.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -510,27 +510,27 @@ │ │ │ o36 = 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : f = temporaryFileName() << "hi there"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-12150-0/0
    │ │ │ +o1 = /tmp/M2-14270-0/0
    │ │ │  
    │ │ │  o1 : File
    │ │ │
    │ │ │
    i2 : fileLength f
    │ │ │ @@ -85,24 +85,24 @@
    │ │ │  o2 = 8
    │ │ │
    │ │ │
    i3 : close f
    │ │ │  
    │ │ │ -o3 = /tmp/M2-12150-0/0
    │ │ │ +o3 = /tmp/M2-14270-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : filename = toString f
    │ │ │  
    │ │ │ -o4 = /tmp/M2-12150-0/0
    │ │ │ +o4 = /tmp/M2-14270-0/0 │ │ │
    │ │ │
    i5 : fileLength filename
    │ │ │  
    │ │ │  o5 = 8
    │ │ │ ├── html2text {} │ │ │ │ @@ -12,28 +12,28 @@ │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the length of the file f or the file whose name is f │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ The length of an open output file is determined from the internal count of the │ │ │ │ number of bytes written so far. │ │ │ │ i1 : f = temporaryFileName() << "hi there" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-12150-0/0 │ │ │ │ +o1 = /tmp/M2-14270-0/0 │ │ │ │ │ │ │ │ o1 : File │ │ │ │ i2 : fileLength f │ │ │ │ │ │ │ │ o2 = 8 │ │ │ │ i3 : close f │ │ │ │ │ │ │ │ -o3 = /tmp/M2-12150-0/0 │ │ │ │ +o3 = /tmp/M2-14270-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : filename = toString f │ │ │ │ │ │ │ │ -o4 = /tmp/M2-12150-0/0 │ │ │ │ +o4 = /tmp/M2-14270-0/0 │ │ │ │ i5 : fileLength filename │ │ │ │ │ │ │ │ o5 = 8 │ │ │ │ i6 : get filename │ │ │ │ │ │ │ │ o6 = hi there │ │ │ │ i7 : length oo │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__File_rp.html │ │ │ @@ -69,22 +69,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11375-0/0
    │ │ │ +o1 = /tmp/M2-12685-0/0 │ │ │
    │ │ │
    i2 : f = fn << "hi there"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11375-0/0
    │ │ │ +o2 = /tmp/M2-12685-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : fileMode f
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  o3 = 420
    │ │ │
    │ │ │
    i4 : close f
    │ │ │  
    │ │ │ -o4 = /tmp/M2-11375-0/0
    │ │ │ +o4 = /tmp/M2-12685-0/0
    │ │ │  
    │ │ │  o4 : File
    │ │ │
    │ │ │
    i5 : removeFile fn
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,26 +11,26 @@ │ │ │ │ * Inputs: │ │ │ │ o f, a _f_i_l_e │ │ │ │ * Outputs: │ │ │ │ o the mode of the open file f │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11375-0/0 │ │ │ │ +o1 = /tmp/M2-12685-0/0 │ │ │ │ i2 : f = fn << "hi there" │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11375-0/0 │ │ │ │ +o2 = /tmp/M2-12685-0/0 │ │ │ │ │ │ │ │ o2 : File │ │ │ │ i3 : fileMode f │ │ │ │ │ │ │ │ o3 = 420 │ │ │ │ i4 : close f │ │ │ │ │ │ │ │ -o4 = /tmp/M2-11375-0/0 │ │ │ │ +o4 = /tmp/M2-12685-0/0 │ │ │ │ │ │ │ │ o4 : File │ │ │ │ i5 : removeFile fn │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _f_i_l_e_M_o_d_e_(_F_i_l_e_) -- get file mode │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__String_rp.html │ │ │ @@ -69,22 +69,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -425,15 +425,15 @@ │ │ │ │ │ │ o33 = 1 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10989-0/0
    │ │ │ +o1 = /tmp/M2-11899-0/0 │ │ │
    │ │ │
    i2 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10989-0/0
    │ │ │ +o2 = /tmp/M2-11899-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : fileMode fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -11,18 +11,18 @@
    │ │ │ │      * Inputs:
    │ │ │ │            o fn, a _s_t_r_i_n_g
    │ │ │ │      * Outputs:
    │ │ │ │            o an _i_n_t_e_g_e_r, the mode of the file located at the filename or path fn
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10989-0/0
    │ │ │ │ +o1 = /tmp/M2-11899-0/0
    │ │ │ │  i2 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-10989-0/0
    │ │ │ │ +o2 = /tmp/M2-11899-0/0
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : fileMode fn
    │ │ │ │  
    │ │ │ │  o3 = 420
    │ │ │ │  i4 : removeFile fn
    │ │ │ │  ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: **********
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__Z__Z_cm__File_rp.html
    │ │ │ @@ -73,22 +73,22 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -245,23 +245,23 @@ │ │ │ o22 = 10000000000000000000000000001710000000000000000000000000097470000000000 │ │ │ 00000000000000185613 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10854-0/0
    │ │ │ +o1 = /tmp/M2-11624-0/0 │ │ │
    │ │ │
    i2 : f = fn << "hi there"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10854-0/0
    │ │ │ +o2 = /tmp/M2-11624-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : m = 7 + 7*8 + 7*64
    │ │ │ @@ -108,15 +108,15 @@
    │ │ │  o5 = 511
    │ │ │
    │ │ │
    i6 : close f
    │ │ │  
    │ │ │ -o6 = /tmp/M2-10854-0/0
    │ │ │ +o6 = /tmp/M2-11624-0/0
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    │ │ │
    i7 : fileMode fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -12,30 +12,30 @@
    │ │ │ │            o mo, an _i_n_t_e_g_e_r
    │ │ │ │            o f, a _f_i_l_e
    │ │ │ │      * Consequences:
    │ │ │ │            o the mode of the open file f is set to mo
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10854-0/0
    │ │ │ │ +o1 = /tmp/M2-11624-0/0
    │ │ │ │  i2 : f = fn << "hi there"
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-10854-0/0
    │ │ │ │ +o2 = /tmp/M2-11624-0/0
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : m = 7 + 7*8 + 7*64
    │ │ │ │  
    │ │ │ │  o3 = 511
    │ │ │ │  i4 : fileMode(m,f)
    │ │ │ │  i5 : fileMode f
    │ │ │ │  
    │ │ │ │  o5 = 511
    │ │ │ │  i6 : close f
    │ │ │ │  
    │ │ │ │ -o6 = /tmp/M2-10854-0/0
    │ │ │ │ +o6 = /tmp/M2-11624-0/0
    │ │ │ │  
    │ │ │ │  o6 : File
    │ │ │ │  i7 : fileMode fn
    │ │ │ │  
    │ │ │ │  o7 = 511
    │ │ │ │  i8 : removeFile fn
    │ │ │ │  ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: **********
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__Z__Z_cm__String_rp.html
    │ │ │ @@ -73,22 +73,22 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11977-0/0
    │ │ │ +o1 = /tmp/M2-13917-0/0 │ │ │
    │ │ │
    i2 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11977-0/0
    │ │ │ +o2 = /tmp/M2-13917-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : m = fileMode fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,18 +13,18 @@
    │ │ │ │            o fn, a _s_t_r_i_n_g
    │ │ │ │      * Consequences:
    │ │ │ │            o the mode of the file located at the filename or path fn is set to
    │ │ │ │              mo
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-11977-0/0
    │ │ │ │ +o1 = /tmp/M2-13917-0/0
    │ │ │ │  i2 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-11977-0/0
    │ │ │ │ +o2 = /tmp/M2-13917-0/0
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : m = fileMode fn
    │ │ │ │  
    │ │ │ │  o3 = 420
    │ │ │ │  i4 : fileMode(m|7,fn)
    │ │ │ │  i5 : fileMode fn
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Time.html
    │ │ │ @@ -76,15 +76,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ The value is the number of seconds since 00:00:00 1970-01-01 UTC, the beginning of the epoch, so the number of seconds ago a file or directory was modified may be found by using the following code. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : currentTime() - fileTime "."
    │ │ │  
    │ │ │ -o1 = 66
    │ │ │ +o1 = 49 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ returns null if no error occurs │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ The value is the number of seconds since 00:00:00 1970-01-01 UTC, the beginning │ │ │ │ of the epoch, so the number of seconds ago a file or directory was modified may │ │ │ │ be found by using the following code. │ │ │ │ i1 : currentTime() - fileTime "." │ │ │ │ │ │ │ │ -o1 = 66 │ │ │ │ +o1 = 49 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_u_r_r_e_n_t_T_i_m_e -- get the current time │ │ │ │ * _f_i_l_e_ _m_a_n_i_p_u_l_a_t_i_o_n -- Unix file manipulation functions │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _f_i_l_e_T_i_m_e is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_force__G__B_lp..._cm__Syzygy__Matrix_eq_gt..._rp.html │ │ │ @@ -120,15 +120,15 @@ │ │ │ o6 : Matrix R <-- R
    │ │ │
    │ │ │
    i7 : syz f
    │ │ │  
    │ │ │ -   -- registering gb 0 at 0x7f499763be00
    │ │ │ +   -- registering gb 0 at 0x7f31edc9ce00
    │ │ │  
    │ │ │     -- [gb]{2}(1)m{3}(1)m{4}(1)m{5}(1)z{6}(1)z{7}(1)znumber of (nonminimal) gb elements = 3
    │ │ │     -- number of monomials                = 9
    │ │ │     -- #reduction steps = 6
    │ │ │     -- #spairs done = 6
    │ │ │     -- ncalls = 0
    │ │ │     -- nloop = 0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │       {3} | x2-3  0     -z4+2 |
    │ │ │ │       {4} | 0     x2-3  y3-1  |
    │ │ │ │  
    │ │ │ │               3      3
    │ │ │ │  o6 : Matrix R  <-- R
    │ │ │ │  i7 : syz f
    │ │ │ │  
    │ │ │ │ -   -- registering gb 0 at 0x7f499763be00
    │ │ │ │ +   -- registering gb 0 at 0x7f31edc9ce00
    │ │ │ │  
    │ │ │ │     -- [gb]{2}(1)m{3}(1)m{4}(1)m{5}(1)z{6}(1)z{7}(1)znumber of (nonminimal) gb
    │ │ │ │  elements = 3
    │ │ │ │     -- number of monomials                = 9
    │ │ │ │     -- #reduction steps = 6
    │ │ │ │     -- #spairs done = 6
    │ │ │ │     -- ncalls = 0
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_get.html
    │ │ │ @@ -96,15 +96,15 @@
    │ │ │                
    i3 : removeFile "test-file"
    │ │ │
    │ │ │
    i4 : get "!date"
    │ │ │  
    │ │ │ -o4 = Fri Nov 14 17:26:54 UTC 2025
    │ │ │ +o4 = Fri Nov 21 10:41:58 UTC 2025 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -25,15 +25,15 @@ │ │ │ │ o1 : File │ │ │ │ i2 : get "test-file" │ │ │ │ │ │ │ │ o2 = hi there │ │ │ │ i3 : removeFile "test-file" │ │ │ │ i4 : get "!date" │ │ │ │ │ │ │ │ -o4 = Fri Nov 14 17:26:54 UTC 2025 │ │ │ │ +o4 = Fri Nov 21 10:41:58 UTC 2025 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_a_d -- read from a file │ │ │ │ * _r_e_m_o_v_e_F_i_l_e -- remove a file │ │ │ │ * _c_l_o_s_e -- close a file │ │ │ │ * _F_i_l_e_ _<_<_ _T_h_i_n_g -- print to a file │ │ │ │ ********** WWaayyss ttoo uussee ggeett:: ********** │ │ │ │ * get(File) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instances.html │ │ │ @@ -84,15 +84,15 @@ │ │ │ defaultPrecision => 53 │ │ │ engineDebugLevel => 0 │ │ │ errorDepth => 0 │ │ │ gbTrace => 0 │ │ │ interpreterDepth => 1 │ │ │ lineNumber => 2 │ │ │ loadDepth => 3 │ │ │ - maxAllowableThreads => 7 │ │ │ + maxAllowableThreads => 17 │ │ │ maxExponent => 1073741823 │ │ │ minExponent => -1073741824 │ │ │ numTBBThreads => 0 │ │ │ o1 => 2432902008176640000 │ │ │ oo => 2432902008176640000 │ │ │ printingAccuracy => -1 │ │ │ printingLeadLimit => 5 │ │ │ ├── html2text {} │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ defaultPrecision => 53 │ │ │ │ engineDebugLevel => 0 │ │ │ │ errorDepth => 0 │ │ │ │ gbTrace => 0 │ │ │ │ interpreterDepth => 1 │ │ │ │ lineNumber => 2 │ │ │ │ loadDepth => 3 │ │ │ │ - maxAllowableThreads => 7 │ │ │ │ + maxAllowableThreads => 17 │ │ │ │ maxExponent => 1073741823 │ │ │ │ minExponent => -1073741824 │ │ │ │ numTBBThreads => 0 │ │ │ │ o1 => 2432902008176640000 │ │ │ │ oo => 2432902008176640000 │ │ │ │ printingAccuracy => -1 │ │ │ │ printingLeadLimit => 5 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Canceled_lp__Task_rp.html │ │ │ @@ -110,15 +110,15 @@ │ │ │
    │ │ │
    i6 : cancelTask t
    │ │ │
    │ │ │
    i7 : sleep 2
    │ │ │ -stdio:2:25:(3):[1]: error: interrupted
    │ │ │ +stdio:2:39:(3):[1]: error: interrupted
    │ │ │  
    │ │ │  o7 = 0
    │ │ │
    │ │ │
    i8 : isCanceled t
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,15 +28,15 @@
    │ │ │ │  
    │ │ │ │  o4 = false
    │ │ │ │  i5 : sleep 1
    │ │ │ │  
    │ │ │ │  o5 = 0
    │ │ │ │  i6 : cancelTask t
    │ │ │ │  i7 : sleep 2
    │ │ │ │ -stdio:2:25:(3):[1]: error: interrupted
    │ │ │ │ +stdio:2:39:(3):[1]: error: interrupted
    │ │ │ │  
    │ │ │ │  o7 = 0
    │ │ │ │  i8 : isCanceled t
    │ │ │ │  
    │ │ │ │  o8 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _p_a_r_a_l_l_e_l_ _p_r_o_g_r_a_m_m_i_n_g_ _w_i_t_h_ _t_h_r_e_a_d_s_ _a_n_d_ _t_a_s_k_s
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Directory.html
    │ │ │ @@ -75,22 +75,22 @@
    │ │ │  o1 = true
    │ │ │
    │ │ │
    i2 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10380-0/0
    │ │ │ +o2 = /tmp/M2-10670-0/0 │ │ │
    │ │ │
    i3 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10380-0/0
    │ │ │ +o3 = /tmp/M2-10670-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : isDirectory fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,18 +13,18 @@
    │ │ │ │            o a _B_o_o_l_e_a_n_ _v_a_l_u_e, whether fn is the path to a directory
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : isDirectory "."
    │ │ │ │  
    │ │ │ │  o1 = true
    │ │ │ │  i2 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-10380-0/0
    │ │ │ │ +o2 = /tmp/M2-10670-0/0
    │ │ │ │  i3 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-10380-0/0
    │ │ │ │ +o3 = /tmp/M2-10670-0/0
    │ │ │ │  
    │ │ │ │  o3 : File
    │ │ │ │  i4 : isDirectory fn
    │ │ │ │  
    │ │ │ │  o4 = false
    │ │ │ │  i5 : removeFile fn
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Pseudoprime_lp__Z__Z_rp.html
    │ │ │ @@ -211,15 +211,15 @@
    │ │ │  
    │ │ │  o18 = false
    │ │ │
    │ │ │
    i19 : elapsedTime facs = factor(m*m1)
    │ │ │ - -- 4.26787s elapsed
    │ │ │ + -- 5.60722s elapsed
    │ │ │  
    │ │ │  o19 = 1000000000000000000000000000057*1000000000000000000010000000083
    │ │ │  
    │ │ │  o19 : Expression of class Product
    │ │ │
    │ │ │
    i23 : elapsedTime isPrime m3
    │ │ │ - -- .0564874s elapsed
    │ │ │ + -- .0603939s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │
    │ │ │
    i24 : elapsedTime isPseudoprime m3
    │ │ │ - -- .000106819s elapsed
    │ │ │ + -- .000122846s elapsed
    │ │ │  
    │ │ │  o24 = true
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ i17 : isPrime (m*m1) │ │ │ │ │ │ │ │ o17 = false │ │ │ │ i18 : isPrime(m*m*m1*m1*m2^6) │ │ │ │ │ │ │ │ o18 = false │ │ │ │ i19 : elapsedTime facs = factor(m*m1) │ │ │ │ - -- 4.26787s elapsed │ │ │ │ + -- 5.60722s elapsed │ │ │ │ │ │ │ │ o19 = 1000000000000000000000000000057*1000000000000000000010000000083 │ │ │ │ │ │ │ │ o19 : Expression of class Product │ │ │ │ i20 : facs = facs//toList/toList │ │ │ │ │ │ │ │ o20 = {{1000000000000000000000000000057, 1}, │ │ │ │ @@ -98,19 +98,19 @@ │ │ │ │ o20 : List │ │ │ │ i21 : assert(set facs === set {{m,1}, {m1,1}}) │ │ │ │ i22 : m3 = nextPrime (m^3) │ │ │ │ │ │ │ │ o22 = 10000000000000000000000000001710000000000000000000000000097470000000000 │ │ │ │ 00000000000000185613 │ │ │ │ i23 : elapsedTime isPrime m3 │ │ │ │ - -- .0564874s elapsed │ │ │ │ + -- .0603939s elapsed │ │ │ │ │ │ │ │ o23 = true │ │ │ │ i24 : elapsedTime isPseudoprime m3 │ │ │ │ - -- .000106819s elapsed │ │ │ │ + -- .000122846s elapsed │ │ │ │ │ │ │ │ o24 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_P_r_i_m_e_(_Z_Z_) -- whether a integer or polynomial is prime │ │ │ │ * _f_a_c_t_o_r_(_Z_Z_) -- factor a ring element │ │ │ │ * _n_e_x_t_P_r_i_m_e_(_N_u_m_b_e_r_) -- compute the smallest prime greater than or equal to │ │ │ │ a given number │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Regular__File.html │ │ │ @@ -68,22 +68,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ In UNIX, a regular file is one that is not special in some way. Special files include symbolic links and directories. A regular file is a sequence of bytes stored permanently in a file system. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-12188-0/0
    │ │ │ +o1 = /tmp/M2-14348-0/0 │ │ │
    │ │ │
    i2 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-12188-0/0
    │ │ │ +o2 = /tmp/M2-14348-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : isRegularFile fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,18 +13,18 @@
    │ │ │ │            o a _B_o_o_l_e_a_n_ _v_a_l_u_e, whether fn is the path to a regular file
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  In UNIX, a regular file is one that is not special in some way. Special files
    │ │ │ │  include symbolic links and directories. A regular file is a sequence of bytes
    │ │ │ │  stored permanently in a file system.
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-12188-0/0
    │ │ │ │ +o1 = /tmp/M2-14348-0/0
    │ │ │ │  i2 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-12188-0/0
    │ │ │ │ +o2 = /tmp/M2-14348-0/0
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : isRegularFile fn
    │ │ │ │  
    │ │ │ │  o3 = true
    │ │ │ │  i4 : removeFile fn
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_make__Directory_lp__String_rp.html
    │ │ │ @@ -76,22 +76,22 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -13,18 +13,18 @@ │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, the name of the newly made directory │ │ │ │ * Consequences: │ │ │ │ o the directory is made, with as many new path components as needed │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10722-0/0 │ │ │ │ +o1 = /tmp/M2-11352-0/0 │ │ │ │ i2 : makeDirectory (dir|"/a/b/c") │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10722-0/0/a/b/c │ │ │ │ +o2 = /tmp/M2-11352-0/0/a/b/c │ │ │ │ i3 : removeDirectory (dir|"/a/b/c") │ │ │ │ i4 : removeDirectory (dir|"/a/b") │ │ │ │ i5 : removeDirectory (dir|"/a") │ │ │ │ A filename starting with ~/ will have the tilde replaced by the home directory. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_k_d_i_r │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Allowable__Threads.html │ │ │ @@ -64,15 +64,15 @@ │ │ │
    │ │ │

    Description

    │ │ │
    │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10722-0/0
    │ │ │ +o1 = /tmp/M2-11352-0/0 │ │ │
    │ │ │
    i2 : makeDirectory (dir|"/a/b/c")
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10722-0/0/a/b/c
    │ │ │ +o2 = /tmp/M2-11352-0/0/a/b/c │ │ │
    │ │ │
    i3 : removeDirectory (dir|"/a/b/c")
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : maxAllowableThreads
    │ │ │  
    │ │ │ -o1 = 7
    │ │ │ +o1 = 17 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -9,15 +9,15 @@ │ │ │ │ * Usage: │ │ │ │ maxAllowableThreads │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the maximum number to which _a_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s can be set │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : maxAllowableThreads │ │ │ │ │ │ │ │ -o1 = 7 │ │ │ │ +o1 = 17 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _p_a_r_a_l_l_e_l_ _p_r_o_g_r_a_m_m_i_n_g_ _w_i_t_h_ _t_h_r_e_a_d_s_ _a_n_d_ _t_a_s_k_s │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _m_a_x_A_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s is an _i_n_t_e_g_e_r. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_threads.m2:498:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_memoize.html │ │ │ @@ -61,15 +61,15 @@ │ │ │ │ │ │ o1 : FunctionClosure
    │ │ │
    │ │ │
    i2 : time fib 28
    │ │ │ - -- used 1.38174s (cpu); 0.797855s (thread); 0s (gc)
    │ │ │ + -- used 0.851793s (cpu); 0.633078s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 514229
    │ │ │
    │ │ │
    i3 : fib = memoize fib
    │ │ │ @@ -78,23 +78,23 @@
    │ │ │  
    │ │ │  o3 : FunctionClosure
    │ │ │
    │ │ │
    i4 : time fib 28
    │ │ │ - -- used 8.4749e-05s (cpu); 8.4468e-05s (thread); 0s (gc)
    │ │ │ + -- used 6.947e-05s (cpu); 6.5701e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 514229
    │ │ │
    │ │ │
    i5 : time fib 28
    │ │ │ - -- used 4.028e-06s (cpu); 3.647e-06s (thread); 0s (gc)
    │ │ │ + -- used 3.663e-06s (cpu); 3.455e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 514229
    │ │ │
    │ │ │

    An optional second argument to memoize provides a list of initial values, each of the form x => v, where v is the value to be provided for the argument x.

    │ │ │

    Alternatively, values can be provided after defining the memoized function using the syntax f x = v. A slightly more efficient implementation of the above would be

    │ │ │ ├── html2text {} │ │ │ │ @@ -11,28 +11,28 @@ │ │ │ │ arguments are presented. │ │ │ │ i1 : fib = n -> if n <= 1 then 1 else fib(n-1) + fib(n-2) │ │ │ │ │ │ │ │ o1 = fib │ │ │ │ │ │ │ │ o1 : FunctionClosure │ │ │ │ i2 : time fib 28 │ │ │ │ - -- used 1.38174s (cpu); 0.797855s (thread); 0s (gc) │ │ │ │ + -- used 0.851793s (cpu); 0.633078s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 514229 │ │ │ │ i3 : fib = memoize fib │ │ │ │ │ │ │ │ o3 = fib │ │ │ │ │ │ │ │ o3 : FunctionClosure │ │ │ │ i4 : time fib 28 │ │ │ │ - -- used 8.4749e-05s (cpu); 8.4468e-05s (thread); 0s (gc) │ │ │ │ + -- used 6.947e-05s (cpu); 6.5701e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 514229 │ │ │ │ i5 : time fib 28 │ │ │ │ - -- used 4.028e-06s (cpu); 3.647e-06s (thread); 0s (gc) │ │ │ │ + -- used 3.663e-06s (cpu); 3.455e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 514229 │ │ │ │ An optional second argument to memoize provides a list of initial values, each │ │ │ │ of the form x => v, where v is the value to be provided for the argument x. │ │ │ │ Alternatively, values can be provided after defining the memoized function │ │ │ │ using the syntax f x = v. A slightly more efficient implementation of the above │ │ │ │ would be │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_methods.html │ │ │ @@ -89,20 +89,20 @@ │ │ │ {12 => (poincare, BettiTally) } │ │ │ {13 => (hilbertPolynomial, ZZ, BettiTally) } │ │ │ {14 => (degree, BettiTally) } │ │ │ {15 => (hilbertSeries, ZZ, BettiTally) } │ │ │ {16 => (pdim, BettiTally) } │ │ │ {17 => (regularity, BettiTally) } │ │ │ {18 => (mathML, BettiTally) } │ │ │ - {19 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ - {20 => (dual, BettiTally) } │ │ │ - {21 => (codim, BettiTally) } │ │ │ - {22 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ - {23 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ - {24 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {19 => (codim, BettiTally) } │ │ │ + {20 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {21 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ + {22 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ + {23 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ + {24 => (dual, BettiTally) } │ │ │ {25 => (^, Ring, BettiTally) } │ │ │ │ │ │ o1 : NumberedVerticalList
    │ │ │
    │ │ │ @@ -188,20 +188,20 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : methods( Matrix, Matrix )
    │ │ │  
    │ │ │ -o5 = {0 => (diff', Matrix, Matrix)                               }
    │ │ │ -     {1 => (-, Matrix, Matrix)                                   }
    │ │ │ -     {2 => (+, Matrix, Matrix)                                   }
    │ │ │ +o5 = {0 => (+, Matrix, Matrix)                                   }
    │ │ │ +     {1 => (contract', Matrix, Matrix)                           }
    │ │ │ +     {2 => (-, Matrix, Matrix)                                   }
    │ │ │       {3 => (diff, Matrix, Matrix)                                }
    │ │ │       {4 => (contract, Matrix, Matrix)                            }
    │ │ │ -     {5 => (contract', Matrix, Matrix)                           }
    │ │ │ +     {5 => (diff', Matrix, Matrix)                               }
    │ │ │       {6 => (markedGB, Matrix, Matrix)                            }
    │ │ │       {7 => (Hom, Matrix, Matrix)                                 }
    │ │ │       {8 => (==, Matrix, Matrix)                                  }
    │ │ │       {9 => (*, Matrix, Matrix)                                   }
    │ │ │       {10 => (|, Matrix, Matrix)                                  }
    │ │ │       {11 => (||, Matrix, Matrix)                                 }
    │ │ │       {12 => (subquotient, Matrix, Matrix)                        }
    │ │ │ @@ -217,17 +217,17 @@
    │ │ │       {22 => (quotient', Matrix, Matrix)                          }
    │ │ │       {23 => (remainder', Matrix, Matrix)                         }
    │ │ │       {24 => (remainder, Matrix, Matrix)                          }
    │ │ │       {25 => (%, Matrix, Matrix)                                  }
    │ │ │       {26 => (pushout, Matrix, Matrix)                            }
    │ │ │       {27 => (solve, Matrix, Matrix)                              }
    │ │ │       {28 => (intersect, Matrix, Matrix, Matrix, Matrix)          }
    │ │ │ -     {29 => (intersect, Matrix, Matrix)                          }
    │ │ │ -     {30 => (pullback, Matrix, Matrix)                           }
    │ │ │ -     {31 => (tensor, Matrix, Matrix)                             }
    │ │ │ +     {29 => (pullback, Matrix, Matrix)                           }
    │ │ │ +     {30 => (tensor, Matrix, Matrix)                             }
    │ │ │ +     {31 => (intersect, Matrix, Matrix)                          }
    │ │ │       {32 => (substitute, Matrix, Matrix)                         }
    │ │ │       {33 => (yonedaProduct, Matrix, Matrix)                      }
    │ │ │       {34 => (isShortExactSequence, Matrix, Matrix)               }
    │ │ │       {35 => (horseshoeResolution, Matrix, Matrix)                }
    │ │ │       {36 => (connectingExtMap, Module, Matrix, Matrix)           }
    │ │ │       {37 => (connectingExtMap, Matrix, Matrix, Module)           }
    │ │ │       {38 => (connectingTorMap, Module, Matrix, Matrix)           }
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,20 +29,20 @@
    │ │ │ │       {12 => (poincare, BettiTally)                                }
    │ │ │ │       {13 => (hilbertPolynomial, ZZ, BettiTally)                   }
    │ │ │ │       {14 => (degree, BettiTally)                                  }
    │ │ │ │       {15 => (hilbertSeries, ZZ, BettiTally)                       }
    │ │ │ │       {16 => (pdim, BettiTally)                                    }
    │ │ │ │       {17 => (regularity, BettiTally)                              }
    │ │ │ │       {18 => (mathML, BettiTally)                                  }
    │ │ │ │ -     {19 => (truncate, BettiTally, ZZ, ZZ)                        }
    │ │ │ │ -     {20 => (dual, BettiTally)                                    }
    │ │ │ │ -     {21 => (codim, BettiTally)                                   }
    │ │ │ │ -     {22 => (truncate, BettiTally, InfiniteNumber, ZZ)            }
    │ │ │ │ -     {23 => (truncate, BettiTally, ZZ, InfiniteNumber)            }
    │ │ │ │ -     {24 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)}
    │ │ │ │ +     {19 => (codim, BettiTally)                                   }
    │ │ │ │ +     {20 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)}
    │ │ │ │ +     {21 => (truncate, BettiTally, ZZ, ZZ)                        }
    │ │ │ │ +     {22 => (truncate, BettiTally, ZZ, InfiniteNumber)            }
    │ │ │ │ +     {23 => (truncate, BettiTally, InfiniteNumber, ZZ)            }
    │ │ │ │ +     {24 => (dual, BettiTally)                                    }
    │ │ │ │       {25 => (^, Ring, BettiTally)                                 }
    │ │ │ │  
    │ │ │ │  o1 : NumberedVerticalList
    │ │ │ │  i2 : methods resolution
    │ │ │ │  
    │ │ │ │  o2 = {0 => (resolution, Ideal) }
    │ │ │ │       {1 => (resolution, Module)}
    │ │ │ │ @@ -85,20 +85,20 @@
    │ │ │ │      * Inputs:
    │ │ │ │            o X, a _t_y_p_e
    │ │ │ │            o Y, a _t_y_p_e
    │ │ │ │      * Outputs:
    │ │ │ │            o a _v_e_r_t_i_c_a_l_ _l_i_s_t of those methods associated with
    │ │ │ │  i5 : methods( Matrix, Matrix )
    │ │ │ │  
    │ │ │ │ -o5 = {0 => (diff', Matrix, Matrix)                               }
    │ │ │ │ -     {1 => (-, Matrix, Matrix)                                   }
    │ │ │ │ -     {2 => (+, Matrix, Matrix)                                   }
    │ │ │ │ +o5 = {0 => (+, Matrix, Matrix)                                   }
    │ │ │ │ +     {1 => (contract', Matrix, Matrix)                           }
    │ │ │ │ +     {2 => (-, Matrix, Matrix)                                   }
    │ │ │ │       {3 => (diff, Matrix, Matrix)                                }
    │ │ │ │       {4 => (contract, Matrix, Matrix)                            }
    │ │ │ │ -     {5 => (contract', Matrix, Matrix)                           }
    │ │ │ │ +     {5 => (diff', Matrix, Matrix)                               }
    │ │ │ │       {6 => (markedGB, Matrix, Matrix)                            }
    │ │ │ │       {7 => (Hom, Matrix, Matrix)                                 }
    │ │ │ │       {8 => (==, Matrix, Matrix)                                  }
    │ │ │ │       {9 => (*, Matrix, Matrix)                                   }
    │ │ │ │       {10 => (|, Matrix, Matrix)                                  }
    │ │ │ │       {11 => (||, Matrix, Matrix)                                 }
    │ │ │ │       {12 => (subquotient, Matrix, Matrix)                        }
    │ │ │ │ @@ -114,17 +114,17 @@
    │ │ │ │       {22 => (quotient', Matrix, Matrix)                          }
    │ │ │ │       {23 => (remainder', Matrix, Matrix)                         }
    │ │ │ │       {24 => (remainder, Matrix, Matrix)                          }
    │ │ │ │       {25 => (%, Matrix, Matrix)                                  }
    │ │ │ │       {26 => (pushout, Matrix, Matrix)                            }
    │ │ │ │       {27 => (solve, Matrix, Matrix)                              }
    │ │ │ │       {28 => (intersect, Matrix, Matrix, Matrix, Matrix)          }
    │ │ │ │ -     {29 => (intersect, Matrix, Matrix)                          }
    │ │ │ │ -     {30 => (pullback, Matrix, Matrix)                           }
    │ │ │ │ -     {31 => (tensor, Matrix, Matrix)                             }
    │ │ │ │ +     {29 => (pullback, Matrix, Matrix)                           }
    │ │ │ │ +     {30 => (tensor, Matrix, Matrix)                             }
    │ │ │ │ +     {31 => (intersect, Matrix, Matrix)                          }
    │ │ │ │       {32 => (substitute, Matrix, Matrix)                         }
    │ │ │ │       {33 => (yonedaProduct, Matrix, Matrix)                      }
    │ │ │ │       {34 => (isShortExactSequence, Matrix, Matrix)               }
    │ │ │ │       {35 => (horseshoeResolution, Matrix, Matrix)                }
    │ │ │ │       {36 => (connectingExtMap, Module, Matrix, Matrix)           }
    │ │ │ │       {37 => (connectingExtMap, Matrix, Matrix, Module)           }
    │ │ │ │       {38 => (connectingTorMap, Module, Matrix, Matrix)           }
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_minimal__Betti.html
    │ │ │ @@ -97,15 +97,15 @@
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │
    │ │ │
    i3 : elapsedTime C = minimalBetti I
    │ │ │ - -- 1.919s elapsed
    │ │ │ + -- 2.38539s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o3 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -125,15 +125,15 @@
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │
    │ │ │
    i5 : elapsedTime C = minimalBetti(I, DegreeLimit=>2)
    │ │ │ - -- .74946s elapsed
    │ │ │ + -- .98865s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7
    │ │ │  o5 = total: 1 35 140 385 819 1080 735 196
    │ │ │           0: 1  .   .   .   .    .   .   .
    │ │ │           1: . 35 140 189  84    .   .   .
    │ │ │           2: .  .   . 196 735 1080 735 196
    │ │ │  
    │ │ │ @@ -146,15 +146,15 @@
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │
    │ │ │
    i7 : elapsedTime C = minimalBetti(I, DegreeLimit=>1, LengthLimit=>5)
    │ │ │ - -- .0315312s elapsed
    │ │ │ + -- .0389582s elapsed
    │ │ │  
    │ │ │              0  1   2   3  4
    │ │ │  o7 = total: 1 35 140 189 84
    │ │ │           0: 1  .   .   .  .
    │ │ │           1: . 35 140 189 84
    │ │ │  
    │ │ │  o7 : BettiTally
    │ │ │ @@ -166,15 +166,15 @@ │ │ │ │ │ │ o8 : Ideal of S │ │ │
    │ │ │
    i9 : elapsedTime C = minimalBetti(I, LengthLimit=>5)
    │ │ │ - -- 1.2026s elapsed
    │ │ │ + -- 1.62713s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5
    │ │ │  o9 = total: 1 35 140 385 819 1080
    │ │ │           0: 1  .   .   .   .    .
    │ │ │           1: . 35 140 189  84    .
    │ │ │           2: .  .   . 196 735 1080
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -43,15 +43,15 @@
    │ │ │ │  0,5   1,5   2,5   3,5   4,5   0,6   1,6   2,6   3,6   4,6   5,6
    │ │ │ │  i2 : S = ring I
    │ │ │ │  
    │ │ │ │  o2 = S
    │ │ │ │  
    │ │ │ │  o2 : PolynomialRing
    │ │ │ │  i3 : elapsedTime C = minimalBetti I
    │ │ │ │ - -- 1.919s elapsed
    │ │ │ │ + -- 2.38539s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │ │  o3 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ │ @@ -60,40 +60,40 @@
    │ │ │ │  o3 : BettiTally
    │ │ │ │  One can compute smaller parts of the Betti table, by using _D_e_g_r_e_e_L_i_m_i_t and/or
    │ │ │ │  _L_e_n_g_t_h_L_i_m_i_t.
    │ │ │ │  i4 : I = ideal I_*;
    │ │ │ │  
    │ │ │ │  o4 : Ideal of S
    │ │ │ │  i5 : elapsedTime C = minimalBetti(I, DegreeLimit=>2)
    │ │ │ │ - -- .74946s elapsed
    │ │ │ │ + -- .98865s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4    5   6   7
    │ │ │ │  o5 = total: 1 35 140 385 819 1080 735 196
    │ │ │ │           0: 1  .   .   .   .    .   .   .
    │ │ │ │           1: . 35 140 189  84    .   .   .
    │ │ │ │           2: .  .   . 196 735 1080 735 196
    │ │ │ │  
    │ │ │ │  o5 : BettiTally
    │ │ │ │  i6 : I = ideal I_*;
    │ │ │ │  
    │ │ │ │  o6 : Ideal of S
    │ │ │ │  i7 : elapsedTime C = minimalBetti(I, DegreeLimit=>1, LengthLimit=>5)
    │ │ │ │ - -- .0315312s elapsed
    │ │ │ │ + -- .0389582s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3  4
    │ │ │ │  o7 = total: 1 35 140 189 84
    │ │ │ │           0: 1  .   .   .  .
    │ │ │ │           1: . 35 140 189 84
    │ │ │ │  
    │ │ │ │  o7 : BettiTally
    │ │ │ │  i8 : I = ideal I_*;
    │ │ │ │  
    │ │ │ │  o8 : Ideal of S
    │ │ │ │  i9 : elapsedTime C = minimalBetti(I, LengthLimit=>5)
    │ │ │ │ - -- 1.2026s elapsed
    │ │ │ │ + -- 1.62713s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4    5
    │ │ │ │  o9 = total: 1 35 140 385 819 1080
    │ │ │ │           0: 1  .   .   .   .    .
    │ │ │ │           1: . 35 140 189  84    .
    │ │ │ │           2: .  .   . 196 735 1080
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_mkdir.html
    │ │ │ @@ -72,15 +72,15 @@
    │ │ │          

    Description

    │ │ │

    Only one directory will be made, so the components of the path p other than the last must already exist.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -91,15 +91,15 @@ │ │ │ o3 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : p = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10741-0/0/
    │ │ │ +o1 = /tmp/M2-11391-0/0/ │ │ │
    │ │ │
    i2 : mkdir p
    │ │ │
    │ │ │
    i4 : (fn = p | "foo") << "hi there" << close
    │ │ │  
    │ │ │ -o4 = /tmp/M2-10741-0/0/foo
    │ │ │ +o4 = /tmp/M2-11391-0/0/foo
    │ │ │  
    │ │ │  o4 : File
    │ │ │
    │ │ │
    i5 : get fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -12,22 +12,22 @@
    │ │ │ │      * Consequences:
    │ │ │ │            o a directory will be created at the path p
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Only one directory will be made, so the components of the path p other than the
    │ │ │ │  last must already exist.
    │ │ │ │  i1 : p = temporaryFileName() | "/"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10741-0/0/
    │ │ │ │ +o1 = /tmp/M2-11391-0/0/
    │ │ │ │  i2 : mkdir p
    │ │ │ │  i3 : isDirectory p
    │ │ │ │  
    │ │ │ │  o3 = true
    │ │ │ │  i4 : (fn = p | "foo") << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o4 = /tmp/M2-10741-0/0/foo
    │ │ │ │ +o4 = /tmp/M2-11391-0/0/foo
    │ │ │ │  
    │ │ │ │  o4 : File
    │ │ │ │  i5 : get fn
    │ │ │ │  
    │ │ │ │  o5 = hi there
    │ │ │ │  i6 : removeFile fn
    │ │ │ │  i7 : removeDirectory p
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_move__File_lp__String_cm__String_rp.html
    │ │ │ @@ -81,52 +81,52 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -20,32 +20,32 @@ │ │ │ │ o the name of the backup file if one was created, or _n_u_l_l │ │ │ │ * Consequences: │ │ │ │ o the file will be moved by creating a new link to the file and │ │ │ │ removing the old one │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10615-0/0 │ │ │ │ +o1 = /tmp/M2-11145-0/0 │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10615-0/1 │ │ │ │ +o2 = /tmp/M2-11145-0/1 │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ │ │ -o3 = /tmp/M2-10615-0/0 │ │ │ │ +o3 = /tmp/M2-11145-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : moveFile(src,dst,Verbose=>true) │ │ │ │ ---moving: /tmp/M2-10615-0/0 -> /tmp/M2-10615-0/1 │ │ │ │ +--moving: /tmp/M2-11145-0/0 -> /tmp/M2-11145-0/1 │ │ │ │ i5 : get dst │ │ │ │ │ │ │ │ o5 = hi there │ │ │ │ i6 : bak = moveFile(dst,Verbose=>true) │ │ │ │ ---backup file created: /tmp/M2-10615-0/1.bak │ │ │ │ +--backup file created: /tmp/M2-11145-0/1.bak │ │ │ │ │ │ │ │ -o6 = /tmp/M2-10615-0/1.bak │ │ │ │ +o6 = /tmp/M2-11145-0/1.bak │ │ │ │ i7 : removeFile bak │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_o_p_y_F_i_l_e │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * moveFile(String) │ │ │ │ * _m_o_v_e_F_i_l_e_(_S_t_r_i_n_g_,_S_t_r_i_n_g_) │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_nanosleep.html │ │ │ @@ -51,15 +51,15 @@ │ │ │

    nanosleep -- sleep for a given number of nanoseconds

    │ │ │
    │ │ │

    Description

    │ │ │ nanosleep n -- sleeps for n nanoseconds.
    │ │ │
    i1 : src = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10615-0/0
    │ │ │ +o1 = /tmp/M2-11145-0/0 │ │ │
    │ │ │
    i2 : dst = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10615-0/1
    │ │ │ +o2 = /tmp/M2-11145-0/1 │ │ │
    │ │ │
    i3 : src << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10615-0/0
    │ │ │ +o3 = /tmp/M2-11145-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : moveFile(src,dst,Verbose=>true)
    │ │ │ ---moving: /tmp/M2-10615-0/0 -> /tmp/M2-10615-0/1
    │ │ │ +--moving: /tmp/M2-11145-0/0 -> /tmp/M2-11145-0/1 │ │ │
    │ │ │
    i5 : get dst
    │ │ │  
    │ │ │  o5 = hi there
    │ │ │
    │ │ │
    i6 : bak = moveFile(dst,Verbose=>true)
    │ │ │ ---backup file created: /tmp/M2-10615-0/1.bak
    │ │ │ +--backup file created: /tmp/M2-11145-0/1.bak
    │ │ │  
    │ │ │ -o6 = /tmp/M2-10615-0/1.bak
    │ │ │ +o6 = /tmp/M2-11145-0/1.bak │ │ │
    │ │ │
    i7 : removeFile bak
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : elapsedTime nanosleep 500000000
    │ │ │ - -- .500135s elapsed
    │ │ │ + -- .500204s elapsed
    │ │ │  
    │ │ │  o1 = 0
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -4,15 +4,15 @@ │ │ │ │ [q ] │ │ │ │ _n_e_x_t | _p_r_e_v_i_o_u_s | _f_o_r_w_a_r_d | _b_a_c_k_w_a_r_d | _u_p | _i_n_d_e_x | _t_o_c │ │ │ │ =============================================================================== │ │ │ │ ************ nnaannoosslleeeepp ---- sslleeeepp ffoorr aa ggiivveenn nnuummbbeerr ooff nnaannoosseeccoonnddss ************ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ nanosleep n -- sleeps for n nanoseconds. │ │ │ │ i1 : elapsedTime nanosleep 500000000 │ │ │ │ - -- .500135s elapsed │ │ │ │ + -- .500204s elapsed │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_l_e_e_p -- sleep for a while │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _n_a_n_o_s_l_e_e_p is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_options_lp__Function_rp.html │ │ │ @@ -104,32 +104,32 @@ │ │ │ o3 : OptionTable
    │ │ │
    │ │ │
    i4 : methods codim
    │ │ │  
    │ │ │ -o4 = {0 => (codim, BettiTally)    }
    │ │ │ -     {1 => (codim, Module)        }
    │ │ │ -     {2 => (codim, QuotientRing)  }
    │ │ │ -     {3 => (codim, Ideal)         }
    │ │ │ -     {4 => (codim, MonomialIdeal) }
    │ │ │ -     {5 => (codim, PolynomialRing)}
    │ │ │ -     {6 => (codim, CoherentSheaf) }
    │ │ │ -     {7 => (codim, Variety)       }
    │ │ │ +o4 = {0 => (codim, Variety)       }
    │ │ │ +     {1 => (codim, BettiTally)    }
    │ │ │ +     {2 => (codim, Module)        }
    │ │ │ +     {3 => (codim, QuotientRing)  }
    │ │ │ +     {4 => (codim, Ideal)         }
    │ │ │ +     {5 => (codim, MonomialIdeal) }
    │ │ │ +     {6 => (codim, PolynomialRing)}
    │ │ │ +     {7 => (codim, CoherentSheaf) }
    │ │ │  
    │ │ │  o4 : NumberedVerticalList
    │ │ │
    │ │ │
    i5 : options oo
    │ │ │  
    │ │ │ -o5 = {0 => (OptionTable{})                }
    │ │ │ -     {1 => (OptionTable{Generic => false})}
    │ │ │ +o5 = {0 => (OptionTable{Generic => false})}
    │ │ │ +     {1 => (OptionTable{})                }
    │ │ │       {2 => (OptionTable{Generic => false})}
    │ │ │       {3 => (OptionTable{Generic => false})}
    │ │ │       {4 => (OptionTable{Generic => false})}
    │ │ │       {5 => (OptionTable{Generic => false})}
    │ │ │       {6 => (OptionTable{Generic => false})}
    │ │ │       {7 => (OptionTable{Generic => false})}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,28 +35,28 @@
    │ │ │ │  i3 : options(codim, Ideal)
    │ │ │ │  
    │ │ │ │  o3 = OptionTable{Generic => false}
    │ │ │ │  
    │ │ │ │  o3 : OptionTable
    │ │ │ │  i4 : methods codim
    │ │ │ │  
    │ │ │ │ -o4 = {0 => (codim, BettiTally)    }
    │ │ │ │ -     {1 => (codim, Module)        }
    │ │ │ │ -     {2 => (codim, QuotientRing)  }
    │ │ │ │ -     {3 => (codim, Ideal)         }
    │ │ │ │ -     {4 => (codim, MonomialIdeal) }
    │ │ │ │ -     {5 => (codim, PolynomialRing)}
    │ │ │ │ -     {6 => (codim, CoherentSheaf) }
    │ │ │ │ -     {7 => (codim, Variety)       }
    │ │ │ │ +o4 = {0 => (codim, Variety)       }
    │ │ │ │ +     {1 => (codim, BettiTally)    }
    │ │ │ │ +     {2 => (codim, Module)        }
    │ │ │ │ +     {3 => (codim, QuotientRing)  }
    │ │ │ │ +     {4 => (codim, Ideal)         }
    │ │ │ │ +     {5 => (codim, MonomialIdeal) }
    │ │ │ │ +     {6 => (codim, PolynomialRing)}
    │ │ │ │ +     {7 => (codim, CoherentSheaf) }
    │ │ │ │  
    │ │ │ │  o4 : NumberedVerticalList
    │ │ │ │  i5 : options oo
    │ │ │ │  
    │ │ │ │ -o5 = {0 => (OptionTable{})                }
    │ │ │ │ -     {1 => (OptionTable{Generic => false})}
    │ │ │ │ +o5 = {0 => (OptionTable{Generic => false})}
    │ │ │ │ +     {1 => (OptionTable{})                }
    │ │ │ │       {2 => (OptionTable{Generic => false})}
    │ │ │ │       {3 => (OptionTable{Generic => false})}
    │ │ │ │       {4 => (OptionTable{Generic => false})}
    │ │ │ │       {5 => (OptionTable{Generic => false})}
    │ │ │ │       {6 => (OptionTable{Generic => false})}
    │ │ │ │       {7 => (OptionTable{Generic => false})}
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel_spprogramming_spwith_spthreads_spand_sptasks.html
    │ │ │ @@ -72,21 +72,21 @@
    │ │ │              
    │ │ │
    i2 : L = random toList (1..10000);
    │ │ │
    │ │ │
    i3 : elapsedTime         apply(1..100, n -> sort L);
    │ │ │ - -- .636785s elapsed
    │ │ │ + -- .701452s elapsed │ │ │
    │ │ │
    i4 : elapsedTime parallelApply(1..100, n -> sort L);
    │ │ │ - -- .302911s elapsed
    │ │ │ + -- .2289s elapsed │ │ │
    │ │ │
    │ │ │

    You will have to try it on your examples to see how much they speed up.

    │ │ │

    Warning: Threads computing in parallel can give wrong answers if their code is not "thread safe", meaning they make modifications to memory without ensuring the modifications get safely communicated to other threads. (Thread safety can slow computations some.) Currently, modifications to Macaulay2 variables and mutable hash tables are thread safe, but not changes inside mutable lists. Also, access to external libraries such as singular, etc., may not currently be thread safe.

    │ │ │

    The rest of this document describes how to control parallel tasks more directly.

    │ │ │ @@ -100,15 +100,15 @@ │ │ │ o5 = 5
    │ │ │
    │ │ │
    i6 : allowableThreads = maxAllowableThreads
    │ │ │  
    │ │ │ -o6 = 7
    │ │ │ +o6 = 17 │ │ │
    │ │ │
    │ │ │

    To run a function in another thread use schedule, as in the following example.

    │ │ │
    │ │ │ │ │ │ @@ -224,15 +224,15 @@ │ │ │
    i17 : schedule t';
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i18 : t'
    │ │ │  
    │ │ │ -o18 = <<task, running>>
    │ │ │ +o18 = <<task, created>>
    │ │ │  
    │ │ │  o18 : Task
    │ │ │
    │ │ │
    i19 : taskResult t'
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,17 +17,17 @@
    │ │ │ │  big computation. If the list is long, it will be split into chunks for each
    │ │ │ │  core, reducing the overhead. But the speedup is still limited by the different
    │ │ │ │  threads competing for memory, including cpu caches; it is like running
    │ │ │ │  Macaulay2 on a computer that is running other big programs at the same time. We
    │ │ │ │  can see this using _e_l_a_p_s_e_d_T_i_m_e.
    │ │ │ │  i2 : L = random toList (1..10000);
    │ │ │ │  i3 : elapsedTime         apply(1..100, n -> sort L);
    │ │ │ │ - -- .636785s elapsed
    │ │ │ │ + -- .701452s elapsed
    │ │ │ │  i4 : elapsedTime parallelApply(1..100, n -> sort L);
    │ │ │ │ - -- .302911s elapsed
    │ │ │ │ + -- .2289s elapsed
    │ │ │ │  You will have to try it on your examples to see how much they speed up.
    │ │ │ │  Warning: Threads computing in parallel can give wrong answers if their code is
    │ │ │ │  not "thread safe", meaning they make modifications to memory without ensuring
    │ │ │ │  the modifications get safely communicated to other threads. (Thread safety can
    │ │ │ │  slow computations some.) Currently, modifications to Macaulay2 variables and
    │ │ │ │  mutable hash tables are thread safe, but not changes inside mutable lists.
    │ │ │ │  Also, access to external libraries such as singular, etc., may not currently be
    │ │ │ │ @@ -39,15 +39,15 @@
    │ │ │ │  _a_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s, and may be examined and changed as follows. (_a_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s
    │ │ │ │  is temporarily increased if necessary inside _p_a_r_a_l_l_e_l_A_p_p_l_y.)
    │ │ │ │  i5 : allowableThreads
    │ │ │ │  
    │ │ │ │  o5 = 5
    │ │ │ │  i6 : allowableThreads = maxAllowableThreads
    │ │ │ │  
    │ │ │ │ -o6 = 7
    │ │ │ │ +o6 = 17
    │ │ │ │  To run a function in another thread use _s_c_h_e_d_u_l_e, as in the following example.
    │ │ │ │  i7 : R = QQ[x,y,z];
    │ │ │ │  i8 : I = ideal(x^2 + 2*y^2 - y - 2*z, x^2 - 8*y^2 + 10*z - 1, x^2 - 7*y*z)
    │ │ │ │  
    │ │ │ │               2     2            2     2             2
    │ │ │ │  o8 = ideal (x  + 2y  - y - 2z, x  - 8y  + 10z - 1, x  - 7y*z)
    │ │ │ │  
    │ │ │ │ @@ -92,15 +92,15 @@
    │ │ │ │  o16 = <>
    │ │ │ │  
    │ │ │ │  o16 : Task
    │ │ │ │  Start it running with _s_c_h_e_d_u_l_e.
    │ │ │ │  i17 : schedule t';
    │ │ │ │  i18 : t'
    │ │ │ │  
    │ │ │ │ -o18 = <>
    │ │ │ │ +o18 = <>
    │ │ │ │  
    │ │ │ │  o18 : Task
    │ │ │ │  i19 : taskResult t'
    │ │ │ │  
    │ │ │ │  o19 = | 980z2-18y-201z+13 35yz-4y+2z-1 10y2-y-12z+1 5x2-4y+2z-1 |
    │ │ │ │  
    │ │ │ │                1      4
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallelism_spin_spengine_spcomputations.html
    │ │ │ @@ -137,15 +137,15 @@
    │ │ │  
    │ │ │  o3 : PolynomialRing
    │ │ │
    │ │ │
    i4 : elapsedTime minimalBetti I
    │ │ │ - -- 2.04775s elapsed
    │ │ │ + -- 2.31415s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o4 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -160,15 +160,15 @@
    │ │ │  
    │ │ │  o5 : Ideal of S
    │ │ │
    │ │ │
    i6 : elapsedTime minimalBetti(I, ParallelizeByDegree => true)
    │ │ │ - -- 1.80304s elapsed
    │ │ │ + -- 2.38083s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o6 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -190,15 +190,15 @@
    │ │ │  
    │ │ │  o8 = 1
    │ │ │
    │ │ │
    i9 : elapsedTime minimalBetti(I)
    │ │ │ - -- 5.57414s elapsed
    │ │ │ + -- 2.40394s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o9 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -231,15 +231,15 @@
    │ │ │  
    │ │ │  o12 : Ideal of S
    │ │ │
    │ │ │
    i13 : elapsedTime freeResolution(I, Strategy => Nonminimal)
    │ │ │ - -- 2.03698s elapsed
    │ │ │ + -- 2.59223s elapsed
    │ │ │  
    │ │ │         1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o13 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S
    │ │ │                                                                                                    
    │ │ │        0      1       2        3        4         5         6         7         8        9        10
    │ │ │  
    │ │ │  o13 : Complex
    │ │ │ @@ -258,15 +258,15 @@ │ │ │ │ │ │ o15 : Ideal of S │ │ │
    │ │ │
    i16 : elapsedTime freeResolution(I, Strategy => Nonminimal)
    │ │ │ - -- 1.946s elapsed
    │ │ │ + -- 2.67072s elapsed
    │ │ │  
    │ │ │         1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o16 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S
    │ │ │                                                                                                    
    │ │ │        0      1       2        3        4         5         6         7         8        9        10
    │ │ │  
    │ │ │  o16 : Complex
    │ │ │ @@ -299,15 +299,15 @@ │ │ │ │ │ │ o19 : Ideal of S │ │ │
    │ │ │
    i20 : elapsedTime groebnerBasis(I, Strategy => "F4");
    │ │ │ - -- 4.82802s elapsed
    │ │ │ + -- 3.89812s elapsed
    │ │ │  
    │ │ │                1      108
    │ │ │  o20 : Matrix S  <-- S
    │ │ │
    │ │ │ @@ -322,15 +322,15 @@ │ │ │ │ │ │ o22 : Ideal of S │ │ │
    │ │ │
    i23 : elapsedTime groebnerBasis(I, Strategy => "F4");
    │ │ │ - -- 6.58749s elapsed
    │ │ │ + -- 8.4512s elapsed
    │ │ │  
    │ │ │                1      108
    │ │ │  o23 : Matrix S  <-- S
    │ │ │
    │ │ │ @@ -345,15 +345,15 @@ │ │ │ │ │ │ o25 : Ideal of S │ │ │
    │ │ │
    i26 : elapsedTime groebnerBasis(I, Strategy => "F4");
    │ │ │ - -- 4.12035s elapsed
    │ │ │ + -- 3.51117s elapsed
    │ │ │  
    │ │ │                1      108
    │ │ │  o26 : Matrix S  <-- S
    │ │ │
    │ │ │
    │ │ │ @@ -396,15 +396,15 @@ │ │ │ o30 : Ideal of ---<|a, b, c|> │ │ │ 101 │ │ │
    │ │ │
    i31 : elapsedTime NCGB(I, 22);
    │ │ │ - -- 1.03876s elapsed
    │ │ │ + -- .990788s elapsed
    │ │ │  
    │ │ │                 ZZ            1       ZZ            148
    │ │ │  o31 : Matrix (---<|a, b, c|>)  <-- (---<|a, b, c|>)
    │ │ │                101                   101
    │ │ │
    │ │ │
    i34 : elapsedTime NCGB(I, 22);
    │ │ │ - -- 1.17701s elapsed
    │ │ │ + -- 1.52681s elapsed
    │ │ │  
    │ │ │                 ZZ            1       ZZ            148
    │ │ │  o34 : Matrix (---<|a, b, c|>)  <-- (---<|a, b, c|>)
    │ │ │                101                   101
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -93,30 +93,30 @@ │ │ │ │ 0,5 1,5 2,5 3,5 4,5 0,6 1,6 2,6 3,6 4,6 5,6 │ │ │ │ i3 : S = ring I │ │ │ │ │ │ │ │ o3 = S │ │ │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ i4 : elapsedTime minimalBetti I │ │ │ │ - -- 2.04775s elapsed │ │ │ │ + -- 2.31415s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ o4 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ │ 0: 1 . . . . . . . . . . │ │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ │ 4: . . . . . . . . . . 1 │ │ │ │ │ │ │ │ o4 : BettiTally │ │ │ │ i5 : I = ideal I_*; │ │ │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ i6 : elapsedTime minimalBetti(I, ParallelizeByDegree => true) │ │ │ │ - -- 1.80304s elapsed │ │ │ │ + -- 2.38083s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ o6 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ │ 0: 1 . . . . . . . . . . │ │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ │ @@ -126,15 +126,15 @@ │ │ │ │ i7 : I = ideal I_*; │ │ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ i8 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o8 = 1 │ │ │ │ i9 : elapsedTime minimalBetti(I) │ │ │ │ - -- 5.57414s elapsed │ │ │ │ + -- 2.40394s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ o9 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ │ 0: 1 . . . . . . . . . . │ │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ │ @@ -149,15 +149,15 @@ │ │ │ │ i11 : numTBBThreads = 0 │ │ │ │ │ │ │ │ o11 = 0 │ │ │ │ i12 : I = ideal I_*; │ │ │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ i13 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ │ - -- 2.03698s elapsed │ │ │ │ + -- 2.59223s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o13 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <- │ │ │ │ - S <-- S <-- S │ │ │ │ │ │ │ │ │ │ │ │ @@ -168,15 +168,15 @@ │ │ │ │ i14 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o14 = 1 │ │ │ │ i15 : I = ideal I_*; │ │ │ │ │ │ │ │ o15 : Ideal of S │ │ │ │ i16 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ │ - -- 1.946s elapsed │ │ │ │ + -- 2.67072s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o16 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <- │ │ │ │ - S <-- S <-- S │ │ │ │ │ │ │ │ │ │ │ │ @@ -195,37 +195,37 @@ │ │ │ │ o18 = S │ │ │ │ │ │ │ │ o18 : PolynomialRing │ │ │ │ i19 : I = ideal random(S^1, S^{4:-5}); │ │ │ │ │ │ │ │ o19 : Ideal of S │ │ │ │ i20 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ │ - -- 4.82802s elapsed │ │ │ │ + -- 3.89812s elapsed │ │ │ │ │ │ │ │ 1 108 │ │ │ │ o20 : Matrix S <-- S │ │ │ │ i21 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o21 = 1 │ │ │ │ i22 : I = ideal I_*; │ │ │ │ │ │ │ │ o22 : Ideal of S │ │ │ │ i23 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ │ - -- 6.58749s elapsed │ │ │ │ + -- 8.4512s elapsed │ │ │ │ │ │ │ │ 1 108 │ │ │ │ o23 : Matrix S <-- S │ │ │ │ i24 : numTBBThreads = 10 │ │ │ │ │ │ │ │ o24 = 10 │ │ │ │ i25 : I = ideal I_*; │ │ │ │ │ │ │ │ o25 : Ideal of S │ │ │ │ i26 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ │ - -- 4.12035s elapsed │ │ │ │ + -- 3.51117s elapsed │ │ │ │ │ │ │ │ 1 108 │ │ │ │ o26 : Matrix S <-- S │ │ │ │ For Gröbner basis computation in associative algebras, ParallelizeByDegree is │ │ │ │ not relevant. In this case, use numTBBThreads to control the amount of │ │ │ │ parallelism. │ │ │ │ i27 : needsPackage "AssociativeAlgebras" │ │ │ │ @@ -246,15 +246,15 @@ │ │ │ │ 2 2 2 │ │ │ │ o30 = ideal (5a + 2b*c + 3c*b, 3a*c + 5b + 2c*a, 2a*b + 3b*a + 5c ) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o30 : Ideal of ---<|a, b, c|> │ │ │ │ 101 │ │ │ │ i31 : elapsedTime NCGB(I, 22); │ │ │ │ - -- 1.03876s elapsed │ │ │ │ + -- .990788s elapsed │ │ │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ │ o31 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ │ 101 101 │ │ │ │ i32 : I = ideal I_* │ │ │ │ │ │ │ │ 2 2 2 │ │ │ │ @@ -263,15 +263,15 @@ │ │ │ │ ZZ │ │ │ │ o32 : Ideal of ---<|a, b, c|> │ │ │ │ 101 │ │ │ │ i33 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o33 = 1 │ │ │ │ i34 : elapsedTime NCGB(I, 22); │ │ │ │ - -- 1.17701s elapsed │ │ │ │ + -- 1.52681s elapsed │ │ │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ │ o34 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ │ 101 101 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_i_n_i_m_a_l_B_e_t_t_i -- minimal betti numbers of (the minimal free resolution of) │ │ │ │ a homogeneous ideal or module │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare.html │ │ │ @@ -370,36 +370,36 @@ │ │ │ │ │ │ o27 = 3 │ │ │
    │ │ │
    i28 : time poincare I
    │ │ │ - -- used 0.000521488s (cpu); 2.0348e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.00116598s (cpu); 1.2559e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │              3     6    9
    │ │ │  o28 = 1 - 3T  + 3T  - T
    │ │ │  
    │ │ │  o28 : ZZ[T]
    │ │ │
    │ │ │
    i29 : time gens gb I;
    │ │ │  
    │ │ │ -   -- registering gb 19 at 0x7fe6adf6d380
    │ │ │ +   -- registering gb 19 at 0x7f816b773380
    │ │ │  
    │ │ │     -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(2,6)mm{7}(1,4)m{8}(0,2)number of (nonminimal) gb elements = 11
    │ │ │     -- number of monomials                = 4186
    │ │ │     -- #reduction steps = 38
    │ │ │     -- #spairs done = 11
    │ │ │     -- ncalls = 10
    │ │ │     -- nloop = 29
    │ │ │     -- nsaved = 0
    │ │ │ -   --  -- used 0.0234308s (cpu); 0.0247955s (thread); 0s (gc)
    │ │ │ +   --  -- used 0.014844s (cpu); 0.0155386s (thread); 0s (gc)
    │ │ │  
    │ │ │                1      11
    │ │ │  o29 : Matrix R  <-- R
    │ │ │
    │ │ │
    │ │ │ @@ -411,15 +411,15 @@ │ │ │
    i30 : R = QQ[a..d];
    │ │ │
    │ │ │
    i31 : I = ideal random(R^1, R^{3:-3});
    │ │ │  
    │ │ │ -   -- registering gb 20 at 0x7fe6adf6d1c0
    │ │ │ +   -- registering gb 20 at 0x7f816b7731c0
    │ │ │  
    │ │ │     -- [gb]number of (nonminimal) gb elements = 0
    │ │ │     -- number of monomials                = 0
    │ │ │     -- #reduction steps = 0
    │ │ │     -- #spairs done = 0
    │ │ │     -- ncalls = 0
    │ │ │     -- nloop = 0
    │ │ │ @@ -428,24 +428,24 @@
    │ │ │  o31 : Ideal of R
    │ │ │
    │ │ │
    i32 : time p = poincare I
    │ │ │  
    │ │ │ -   -- registering gb 21 at 0x7fe6adf6d000
    │ │ │ +   -- registering gb 21 at 0x7f816b773000
    │ │ │  
    │ │ │     -- [gb]{3}(3)mmm{4}(2)mm{5}(3)mmm{6}(6)mmoooo{7}(4)mooo{8}(2)oonumber of (nonminimal) gb elements = 11
    │ │ │     -- number of monomials                = 267
    │ │ │     -- #reduction steps = 236
    │ │ │     -- #spairs done = 30
    │ │ │     -- ncalls = 10
    │ │ │     -- nloop = 20
    │ │ │     -- nsaved = 0
    │ │ │ -   --  -- used 0.00793104s (cpu); 0.00887304s (thread); 0s (gc)
    │ │ │ +   --  -- used 0.00714157s (cpu); 0.00580723s (thread); 0s (gc)
    │ │ │  
    │ │ │              3     6    9
    │ │ │  o32 = 1 - 3T  + 3T  - T
    │ │ │  
    │ │ │  o32 : ZZ[T]
    │ │ │
    │ │ │
    i37 : time gens gb J;
    │ │ │  
    │ │ │ -   -- registering gb 22 at 0x7fe6ad908e00
    │ │ │ +   -- registering gb 22 at 0x7f816b20ce00
    │ │ │  
    │ │ │     -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(3,7)mmm{7}(3,8)mmm{8}(3,9)mmm{9}(3,9)m
    │ │ │     -- mm{10}(2,8)mm{11}(1,5)m{12}(1,3)m{13}(1,3)m{14}(1,3)m{15}(1,3)m{16}(1,3)m
    │ │ │     -- {17}(1,3)m{18}(1,3)m{19}(1,3)m{20}(1,3)m{21}(1,3)m{22}(1,3)m{23}(1,3)m{24}(1,3)m
    │ │ │     -- {25}(1,3)m{26}(1,3)m{27}(1,3)m{28}(0,2)number of (nonminimal) gb elements = 39
    │ │ │     -- number of monomials                = 1051
    │ │ │     -- #reduction steps = 284
    │ │ │     -- #spairs done = 53
    │ │ │     -- ncalls = 46
    │ │ │     -- nloop = 54
    │ │ │     -- nsaved = 0
    │ │ │ -   --  -- used 0.0839992s (cpu); 0.083356s (thread); 0s (gc)
    │ │ │ +   --  -- used 0.0560466s (cpu); 0.0546985s (thread); 0s (gc)
    │ │ │  
    │ │ │                1      39
    │ │ │  o37 : Matrix S  <-- S
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -177,66 +177,66 @@ │ │ │ │ o26 = 1 - 3T + 3T - T │ │ │ │ │ │ │ │ o26 : ZZ[T] │ │ │ │ i27 : gbTrace = 3 │ │ │ │ │ │ │ │ o27 = 3 │ │ │ │ i28 : time poincare I │ │ │ │ - -- used 0.000521488s (cpu); 2.0348e-05s (thread); 0s (gc) │ │ │ │ + -- used 0.00116598s (cpu); 1.2559e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 6 9 │ │ │ │ o28 = 1 - 3T + 3T - T │ │ │ │ │ │ │ │ o28 : ZZ[T] │ │ │ │ i29 : time gens gb I; │ │ │ │ │ │ │ │ - -- registering gb 19 at 0x7fe6adf6d380 │ │ │ │ + -- registering gb 19 at 0x7f816b773380 │ │ │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(2,6)mm{7}(1,4)m{8}(0,2)number of │ │ │ │ (nonminimal) gb elements = 11 │ │ │ │ -- number of monomials = 4186 │ │ │ │ -- #reduction steps = 38 │ │ │ │ -- #spairs done = 11 │ │ │ │ -- ncalls = 10 │ │ │ │ -- nloop = 29 │ │ │ │ -- nsaved = 0 │ │ │ │ - -- -- used 0.0234308s (cpu); 0.0247955s (thread); 0s (gc) │ │ │ │ + -- -- used 0.014844s (cpu); 0.0155386s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 11 │ │ │ │ o29 : Matrix R <-- R │ │ │ │ In this case, the savings is minimal, but often it can be dramatic. Another │ │ │ │ important situation is to compute a Gröbner basis using a different monomial │ │ │ │ order. │ │ │ │ i30 : R = QQ[a..d]; │ │ │ │ i31 : I = ideal random(R^1, R^{3:-3}); │ │ │ │ │ │ │ │ - -- registering gb 20 at 0x7fe6adf6d1c0 │ │ │ │ + -- registering gb 20 at 0x7f816b7731c0 │ │ │ │ │ │ │ │ -- [gb]number of (nonminimal) gb elements = 0 │ │ │ │ -- number of monomials = 0 │ │ │ │ -- #reduction steps = 0 │ │ │ │ -- #spairs done = 0 │ │ │ │ -- ncalls = 0 │ │ │ │ -- nloop = 0 │ │ │ │ -- nsaved = 0 │ │ │ │ -- │ │ │ │ o31 : Ideal of R │ │ │ │ i32 : time p = poincare I │ │ │ │ │ │ │ │ - -- registering gb 21 at 0x7fe6adf6d000 │ │ │ │ + -- registering gb 21 at 0x7f816b773000 │ │ │ │ │ │ │ │ -- [gb]{3}(3)mmm{4}(2)mm{5}(3)mmm{6}(6)mmoooo{7}(4)mooo{8}(2)oonumber of │ │ │ │ (nonminimal) gb elements = 11 │ │ │ │ -- number of monomials = 267 │ │ │ │ -- #reduction steps = 236 │ │ │ │ -- #spairs done = 30 │ │ │ │ -- ncalls = 10 │ │ │ │ -- nloop = 20 │ │ │ │ -- nsaved = 0 │ │ │ │ - -- -- used 0.00793104s (cpu); 0.00887304s (thread); 0s (gc) │ │ │ │ + -- -- used 0.00714157s (cpu); 0.00580723s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 6 9 │ │ │ │ o32 = 1 - 3T + 3T - T │ │ │ │ │ │ │ │ o32 : ZZ[T] │ │ │ │ i33 : S = QQ[a..d, MonomialOrder => Eliminate 2] │ │ │ │ │ │ │ │ @@ -281,30 +281,30 @@ │ │ │ │ │ │ │ │ o35 : ZZ[T] │ │ │ │ i36 : gbTrace = 3 │ │ │ │ │ │ │ │ o36 = 3 │ │ │ │ i37 : time gens gb J; │ │ │ │ │ │ │ │ - -- registering gb 22 at 0x7fe6ad908e00 │ │ │ │ + -- registering gb 22 at 0x7f816b20ce00 │ │ │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(3,7)mmm{7}(3,8)mmm{8}(3,9)mmm{9} │ │ │ │ (3,9)m │ │ │ │ -- mm{10}(2,8)mm{11}(1,5)m{12}(1,3)m{13}(1,3)m{14}(1,3)m{15}(1,3)m{16}(1,3)m │ │ │ │ -- {17}(1,3)m{18}(1,3)m{19}(1,3)m{20}(1,3)m{21}(1,3)m{22}(1,3)m{23}(1,3)m │ │ │ │ {24}(1,3)m │ │ │ │ -- {25}(1,3)m{26}(1,3)m{27}(1,3)m{28}(0,2)number of (nonminimal) gb elements │ │ │ │ = 39 │ │ │ │ -- number of monomials = 1051 │ │ │ │ -- #reduction steps = 284 │ │ │ │ -- #spairs done = 53 │ │ │ │ -- ncalls = 46 │ │ │ │ -- nloop = 54 │ │ │ │ -- nsaved = 0 │ │ │ │ - -- -- used 0.0839992s (cpu); 0.083356s (thread); 0s (gc) │ │ │ │ + -- -- used 0.0560466s (cpu); 0.0546985s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 39 │ │ │ │ o37 : Matrix S <-- S │ │ │ │ i38 : selectInSubring(1, gens gb J) │ │ │ │ │ │ │ │ o38 = | 188529931266160087758259645374082357642621166724936033369975727480205 │ │ │ │ ----------------------------------------------------------------------- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_printing_spto_spa_spfile.html │ │ │ @@ -97,22 +97,22 @@ │ │ │ o2 : File │ │ │
    │ │ │
    i3 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10932-0/0
    │ │ │ +o3 = /tmp/M2-11782-0/0 │ │ │
    │ │ │
    i4 : fn << "hi there" << endl << close
    │ │ │  
    │ │ │ -o4 = /tmp/M2-10932-0/0
    │ │ │ +o4 = /tmp/M2-11782-0/0
    │ │ │  
    │ │ │  o4 : File
    │ │ │
    │ │ │
    i5 : get fn
    │ │ │ @@ -151,15 +151,15 @@
    │ │ │  o8 : File
    │ │ │
    │ │ │
    i9 : fn << f << close
    │ │ │  
    │ │ │ -o9 = /tmp/M2-10932-0/0
    │ │ │ +o9 = /tmp/M2-11782-0/0
    │ │ │  
    │ │ │  o9 : File
    │ │ │
    │ │ │
    i10 : get fn
    │ │ │ @@ -169,15 +169,15 @@
    │ │ │        + 1
    │ │ │
    │ │ │
    i11 : fn << toExternalString f << close
    │ │ │  
    │ │ │ -o11 = /tmp/M2-10932-0/0
    │ │ │ +o11 = /tmp/M2-11782-0/0
    │ │ │  
    │ │ │  o11 : File
    │ │ │
    │ │ │
    i12 : get fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -36,18 +36,18 @@
    │ │ │ │  -- ho there --
    │ │ │ │  
    │ │ │ │  o2 = stdio
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-10932-0/0
    │ │ │ │ +o3 = /tmp/M2-11782-0/0
    │ │ │ │  i4 : fn << "hi there" << endl << close
    │ │ │ │  
    │ │ │ │ -o4 = /tmp/M2-10932-0/0
    │ │ │ │ +o4 = /tmp/M2-11782-0/0
    │ │ │ │  
    │ │ │ │  o4 : File
    │ │ │ │  i5 : get fn
    │ │ │ │  
    │ │ │ │  o5 = hi there
    │ │ │ │  i6 : R = QQ[x]
    │ │ │ │  
    │ │ │ │ @@ -66,25 +66,25 @@
    │ │ │ │   10      9      8       7       6       5       4       3      2
    │ │ │ │  x   + 10x  + 45x  + 120x  + 210x  + 252x  + 210x  + 120x  + 45x  + 10x + 1
    │ │ │ │  o8 = stdio
    │ │ │ │  
    │ │ │ │  o8 : File
    │ │ │ │  i9 : fn << f << close
    │ │ │ │  
    │ │ │ │ -o9 = /tmp/M2-10932-0/0
    │ │ │ │ +o9 = /tmp/M2-11782-0/0
    │ │ │ │  
    │ │ │ │  o9 : File
    │ │ │ │  i10 : get fn
    │ │ │ │  
    │ │ │ │  o10 =  10      9      8       7       6       5       4       3      2
    │ │ │ │        x   + 10x  + 45x  + 120x  + 210x  + 252x  + 210x  + 120x  + 45x  + 10x
    │ │ │ │        + 1
    │ │ │ │  i11 : fn << toExternalString f << close
    │ │ │ │  
    │ │ │ │ -o11 = /tmp/M2-10932-0/0
    │ │ │ │ +o11 = /tmp/M2-11782-0/0
    │ │ │ │  
    │ │ │ │  o11 : File
    │ │ │ │  i12 : get fn
    │ │ │ │  
    │ │ │ │  o12 = x^10+10*x^9+45*x^8+120*x^7+210*x^6+252*x^5+210*x^4+120*x^3+45*x^2+10*x+
    │ │ │ │        1
    │ │ │ │  i13 : value get fn
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_process__I__D.html
    │ │ │ @@ -64,15 +64,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : processID()
    │ │ │  
    │ │ │ -o1 = 10191
    │ │ │ +o1 = 10311 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -8,15 +8,15 @@ │ │ │ │ * Usage: │ │ │ │ processID() │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the process identifier of the current Macaulay2 process │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : processID() │ │ │ │ │ │ │ │ -o1 = 10191 │ │ │ │ +o1 = 10311 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_r_o_u_p_I_D -- the process group identifier │ │ │ │ * _s_e_t_G_r_o_u_p_I_D -- set the process group identifier │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _p_r_o_c_e_s_s_I_D is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_profile.html │ │ │ @@ -91,35 +91,35 @@ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -131,15 +131,15 @@ │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -173,15 +173,15 @@ │ │ │ o14 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : profileSummary
    │ │ │  
    │ │ │  o2 = #run  %time   position                         
    │ │ │ -     1     94.37   ../../m2/matrix1.m2:279:4-282:58 
    │ │ │ -     1     91.83   ../../m2/matrix1.m2:281:22-281:43
    │ │ │ -     1     44.29   ../../m2/matrix1.m2:193:25-193:52
    │ │ │ -     1     30.52   ../../m2/matrix1.m2:114:5-156:72 
    │ │ │ -     1     29.41   ../../m2/matrix1.m2:140:10-155:16
    │ │ │ -     1     22      ../../m2/matrix1.m2:181:4-181:42 
    │ │ │ -     1     20.71   ../../m2/set.m2:127:5-127:61     
    │ │ │ -     1     20.64   ../../m2/matrix1.m2:45:10-49:22  
    │ │ │ -     1     3.36    ../../m2/matrix1.m2:112:5-112:29 
    │ │ │ -     1     2.46    ../../m2/matrix1.m2:141:13-141:78
    │ │ │ -     1     2.17    ../../m2/matrix1.m2:96:5-109:11  
    │ │ │ -     1     1.50    ../../m2/matrix1.m2:281:7-281:16 
    │ │ │ -     1     1.46    ../../m2/matrix1.m2:147:20-147:64
    │ │ │ -     1     1.28    ../../m2/matrix1.m2:111:5-111:91 
    │ │ │ -     1     1.21    ../../m2/matrix1.m2:276:4-277:73 
    │ │ │ -     1     1.18    ../../m2/matrix1.m2:182:4-184:74 
    │ │ │ -     1     1.09    ../../m2/matrix1.m2:98:10-98:46  
    │ │ │ -     1     .74     ../../m2/modules.m2:279:4-279:52 
    │ │ │ -     20    .63     ../../m2/matrix1.m2:191:14-192:67
    │ │ │ -     20    .45     ../../m2/matrix1.m2:47:43-47:71  
    │ │ │ -     1     .0039s  elapsed total                    
    │ │ │ + 1 93.33 ../../m2/matrix1.m2:279:4-282:58 │ │ │ + 1 90.77 ../../m2/matrix1.m2:281:22-281:43 │ │ │ + 1 44.22 ../../m2/matrix1.m2:193:25-193:52 │ │ │ + 1 30.83 ../../m2/matrix1.m2:114:5-156:72 │ │ │ + 1 29.63 ../../m2/matrix1.m2:140:10-155:16 │ │ │ + 1 22.92 ../../m2/matrix1.m2:181:4-181:42 │ │ │ + 1 21.48 ../../m2/set.m2:127:5-127:61 │ │ │ + 1 20.06 ../../m2/matrix1.m2:45:10-49:22 │ │ │ + 1 3.58 ../../m2/matrix1.m2:112:5-112:29 │ │ │ + 1 2.45 ../../m2/matrix1.m2:96:5-109:11 │ │ │ + 1 2.30 ../../m2/matrix1.m2:141:13-141:78 │ │ │ + 1 1.92 ../../m2/matrix1.m2:147:20-147:64 │ │ │ + 1 1.48 ../../m2/matrix1.m2:281:7-281:16 │ │ │ + 1 1.26 ../../m2/matrix1.m2:276:4-277:73 │ │ │ + 1 1.1 ../../m2/matrix1.m2:111:5-111:91 │ │ │ + 1 1.09 ../../m2/matrix1.m2:182:4-184:74 │ │ │ + 1 1.02 ../../m2/matrix1.m2:98:10-98:46 │ │ │ + 20 .9 ../../m2/matrix1.m2:191:14-192:67 │ │ │ + 19 .77 ../../m2/set.m2:127:36-127:41 │ │ │ + 20 .72 ../../m2/matrix1.m2:47:43-47:71 │ │ │ + 1 .0035s elapsed total │ │ │
    │ │ │
    i3 : coverageSummary
    │ │ │  
    │ │ │  o3 = covered lines:
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -25,35 +25,35 @@
    │ │ │ │                4       5
    │ │ │ │  o1 : Matrix ZZ  <-- ZZ
    │ │ │ │  Afterwards, running profileSummary and coverageSummary produces easy to read
    │ │ │ │  tables summarizing the accumulated data so far in different ways.
    │ │ │ │  i2 : profileSummary
    │ │ │ │  
    │ │ │ │  o2 = #run  %time   position
    │ │ │ │ -     1     94.37   ../../m2/matrix1.m2:279:4-282:58
    │ │ │ │ -     1     91.83   ../../m2/matrix1.m2:281:22-281:43
    │ │ │ │ -     1     44.29   ../../m2/matrix1.m2:193:25-193:52
    │ │ │ │ -     1     30.52   ../../m2/matrix1.m2:114:5-156:72
    │ │ │ │ -     1     29.41   ../../m2/matrix1.m2:140:10-155:16
    │ │ │ │ -     1     22      ../../m2/matrix1.m2:181:4-181:42
    │ │ │ │ -     1     20.71   ../../m2/set.m2:127:5-127:61
    │ │ │ │ -     1     20.64   ../../m2/matrix1.m2:45:10-49:22
    │ │ │ │ -     1     3.36    ../../m2/matrix1.m2:112:5-112:29
    │ │ │ │ -     1     2.46    ../../m2/matrix1.m2:141:13-141:78
    │ │ │ │ -     1     2.17    ../../m2/matrix1.m2:96:5-109:11
    │ │ │ │ -     1     1.50    ../../m2/matrix1.m2:281:7-281:16
    │ │ │ │ -     1     1.46    ../../m2/matrix1.m2:147:20-147:64
    │ │ │ │ -     1     1.28    ../../m2/matrix1.m2:111:5-111:91
    │ │ │ │ -     1     1.21    ../../m2/matrix1.m2:276:4-277:73
    │ │ │ │ -     1     1.18    ../../m2/matrix1.m2:182:4-184:74
    │ │ │ │ -     1     1.09    ../../m2/matrix1.m2:98:10-98:46
    │ │ │ │ -     1     .74     ../../m2/modules.m2:279:4-279:52
    │ │ │ │ -     20    .63     ../../m2/matrix1.m2:191:14-192:67
    │ │ │ │ -     20    .45     ../../m2/matrix1.m2:47:43-47:71
    │ │ │ │ -     1     .0039s  elapsed total
    │ │ │ │ +     1     93.33   ../../m2/matrix1.m2:279:4-282:58
    │ │ │ │ +     1     90.77   ../../m2/matrix1.m2:281:22-281:43
    │ │ │ │ +     1     44.22   ../../m2/matrix1.m2:193:25-193:52
    │ │ │ │ +     1     30.83   ../../m2/matrix1.m2:114:5-156:72
    │ │ │ │ +     1     29.63   ../../m2/matrix1.m2:140:10-155:16
    │ │ │ │ +     1     22.92   ../../m2/matrix1.m2:181:4-181:42
    │ │ │ │ +     1     21.48   ../../m2/set.m2:127:5-127:61
    │ │ │ │ +     1     20.06   ../../m2/matrix1.m2:45:10-49:22
    │ │ │ │ +     1     3.58    ../../m2/matrix1.m2:112:5-112:29
    │ │ │ │ +     1     2.45    ../../m2/matrix1.m2:96:5-109:11
    │ │ │ │ +     1     2.30    ../../m2/matrix1.m2:141:13-141:78
    │ │ │ │ +     1     1.92    ../../m2/matrix1.m2:147:20-147:64
    │ │ │ │ +     1     1.48    ../../m2/matrix1.m2:281:7-281:16
    │ │ │ │ +     1     1.26    ../../m2/matrix1.m2:276:4-277:73
    │ │ │ │ +     1     1.1     ../../m2/matrix1.m2:111:5-111:91
    │ │ │ │ +     1     1.09    ../../m2/matrix1.m2:182:4-184:74
    │ │ │ │ +     1     1.02    ../../m2/matrix1.m2:98:10-98:46
    │ │ │ │ +     20    .9      ../../m2/matrix1.m2:191:14-192:67
    │ │ │ │ +     19    .77     ../../m2/set.m2:127:36-127:41
    │ │ │ │ +     20    .72     ../../m2/matrix1.m2:47:43-47:71
    │ │ │ │ +     1     .0035s  elapsed total
    │ │ │ │  i3 : coverageSummary
    │ │ │ │  
    │ │ │ │  o3 = covered lines:
    │ │ │ │       ../../m2/lists.m2:145:24-145:32
    │ │ │ │       ../../m2/lists.m2:145:34-145:58
    │ │ │ │       ../../m2/matrix.m2:12:5-12:35
    │ │ │ │       ../../m2/matrix.m2:13:5-13:46
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__K__Rational__Point.html
    │ │ │ @@ -99,15 +99,15 @@
    │ │ │  
    │ │ │  o5 : Sequence
    │ │ │
    │ │ │
    i6 : time randomKRationalPoint(I)
    │ │ │ - -- used 0.177655s (cpu); 0.142413s (thread); 0s (gc)
    │ │ │ + -- used 0.229236s (cpu); 0.0987363s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = ideal (x  - 53x , x  + 8x , x  - 4x )
    │ │ │               2      3   1     3   0     3
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │
    │ │ │
    i10 : time randomKRationalPoint(I)
    │ │ │ - -- used 0.710725s (cpu); 0.37679s (thread); 0s (gc)
    │ │ │ + -- used 0.804036s (cpu); 0.331201s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = ideal (x  - 27x , x  - 16x , x  - 9x , x  + 44x , x  - 52x )
    │ │ │                4      5   3      5   2     5   1      5   0      5
    │ │ │  
    │ │ │  o10 : Ideal of R
    │ │ │
    │ │ │
    i15 : time (#select(apply(100,i->(degs=apply(decompose(I+ideal random(1,R)),c->degree c);
    │ │ │                       #select(degs,d->d==1))),f->f>0))
    │ │ │ - -- used 4.02482s (cpu); 2.02411s (thread); 0s (gc)
    │ │ │ + -- used 4.60961s (cpu); 2.02692s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 58
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : codim I, degree I │ │ │ │ │ │ │ │ o5 = (2, 10) │ │ │ │ │ │ │ │ o5 : Sequence │ │ │ │ i6 : time randomKRationalPoint(I) │ │ │ │ - -- used 0.177655s (cpu); 0.142413s (thread); 0s (gc) │ │ │ │ + -- used 0.229236s (cpu); 0.0987363s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = ideal (x - 53x , x + 8x , x - 4x ) │ │ │ │ 2 3 1 3 0 3 │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : R=kk[x_0..x_5]; │ │ │ │ i8 : I=minors(3,random(R^5,R^{3:-1})); │ │ │ │ @@ -45,15 +45,15 @@ │ │ │ │ o8 : Ideal of R │ │ │ │ i9 : codim I, degree I │ │ │ │ │ │ │ │ o9 = (3, 10) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ i10 : time randomKRationalPoint(I) │ │ │ │ - -- used 0.710725s (cpu); 0.37679s (thread); 0s (gc) │ │ │ │ + -- used 0.804036s (cpu); 0.331201s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = ideal (x - 27x , x - 16x , x - 9x , x + 44x , x - 52x ) │ │ │ │ 4 5 3 5 2 5 1 5 0 5 │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ The claim that $63 \%$ of the intersections contain a K-rational point can be │ │ │ │ experimentally tested: │ │ │ │ @@ -69,15 +69,15 @@ │ │ │ │ o13 : RR (of precision 53) │ │ │ │ i14 : I=ideal random(n,R); │ │ │ │ │ │ │ │ o14 : Ideal of R │ │ │ │ i15 : time (#select(apply(100,i->(degs=apply(decompose(I+ideal random(1,R)),c- │ │ │ │ >degree c); │ │ │ │ #select(degs,d->d==1))),f->f>0)) │ │ │ │ - -- used 4.02482s (cpu); 2.02411s (thread); 0s (gc) │ │ │ │ + -- used 4.60961s (cpu); 2.02692s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = 58 │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommKKRRaattiioonnaallPPooiinntt:: ********** │ │ │ │ * randomKRationalPoint(Ideal) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_a_n_d_o_m_K_R_a_t_i_o_n_a_l_P_o_i_n_t is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_read__Directory.html │ │ │ @@ -68,38 +68,38 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11565-0/0
    │ │ │ +o1 = /tmp/M2-13075-0/0 │ │ │
    │ │ │
    i2 : makeDirectory dir
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11565-0/0
    │ │ │ +o2 = /tmp/M2-13075-0/0 │ │ │
    │ │ │
    i3 : (fn = dir | "/" | "foo") << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11565-0/0/foo
    │ │ │ +o3 = /tmp/M2-13075-0/0/foo
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : readDirectory dir
    │ │ │  
    │ │ │ -o4 = {., .., foo}
    │ │ │ +o4 = {.., ., foo}
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : removeFile fn
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,26 +10,26 @@ │ │ │ │ * Inputs: │ │ │ │ o dir, a _s_t_r_i_n_g, a filename or path to a directory │ │ │ │ * Outputs: │ │ │ │ o a _l_i_s_t, the list of filenames stored in the directory │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11565-0/0 │ │ │ │ +o1 = /tmp/M2-13075-0/0 │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11565-0/0 │ │ │ │ +o2 = /tmp/M2-13075-0/0 │ │ │ │ i3 : (fn = dir | "/" | "foo") << "hi there" << close │ │ │ │ │ │ │ │ -o3 = /tmp/M2-11565-0/0/foo │ │ │ │ +o3 = /tmp/M2-13075-0/0/foo │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : readDirectory dir │ │ │ │ │ │ │ │ -o4 = {., .., foo} │ │ │ │ +o4 = {.., ., foo} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : removeFile fn │ │ │ │ i6 : removeDirectory dir │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_m_o_v_e_D_i_r_e_c_t_o_r_y -- remove a directory │ │ │ │ * _r_e_m_o_v_e_F_i_l_e -- remove a file │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_reading_spfiles.html │ │ │ @@ -52,22 +52,22 @@ │ │ │
    │ │ │ Sometimes a file will contain a single expression whose value you wish to have access to. For example, it might be a polynomial produced by another program. The function get can be used to obtain the entire contents of a file as a single string. We illustrate this here with a file whose name is expression.

    │ │ │ First we create the file by writing the desired text to it. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11107-0/0
    │ │ │ +o1 = /tmp/M2-12137-0/0 │ │ │
    │ │ │
    i2 : fn << "z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2+8*y^3" << endl << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11107-0/0
    │ │ │ +o2 = /tmp/M2-12137-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │ Now we get the contents of the file, as a single string. │ │ │ │ │ │ @@ -116,15 +116,15 @@ │ │ │ Often a file will contain code written in the Macaulay2 language. Let's create such a file.
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : fn << "sample = 2^100
    │ │ │       print sample
    │ │ │       " << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11107-0/0
    │ │ │ +o7 = /tmp/M2-12137-0/0
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    │ │ │ Now verify that it contains the desired text with get. │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -8,20 +8,20 @@ │ │ │ │ Sometimes a file will contain a single expression whose value you wish to have │ │ │ │ access to. For example, it might be a polynomial produced by another program. │ │ │ │ The function _g_e_t can be used to obtain the entire contents of a file as a │ │ │ │ single string. We illustrate this here with a file whose name is expression. │ │ │ │ First we create the file by writing the desired text to it. │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11107-0/0 │ │ │ │ +o1 = /tmp/M2-12137-0/0 │ │ │ │ i2 : fn << │ │ │ │ "z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2+8*y^3" │ │ │ │ << endl << close │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11107-0/0 │ │ │ │ +o2 = /tmp/M2-12137-0/0 │ │ │ │ │ │ │ │ o2 : File │ │ │ │ Now we get the contents of the file, as a single string. │ │ │ │ i3 : get fn │ │ │ │ │ │ │ │ o3 = z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2 │ │ │ │ +8*y^3 │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ o6 : Expression of class Product │ │ │ │ Often a file will contain code written in the Macaulay2 language. Let's create │ │ │ │ such a file. │ │ │ │ i7 : fn << "sample = 2^100 │ │ │ │ print sample │ │ │ │ " << close │ │ │ │ │ │ │ │ -o7 = /tmp/M2-11107-0/0 │ │ │ │ +o7 = /tmp/M2-12137-0/0 │ │ │ │ │ │ │ │ o7 : File │ │ │ │ Now verify that it contains the desired text with _g_e_t. │ │ │ │ i8 : get fn │ │ │ │ │ │ │ │ o8 = sample = 2^100 │ │ │ │ print sample │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_readlink.html │ │ │ @@ -68,15 +68,15 @@ │ │ │
    │ │ │

    Description

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ o fn, a _s_t_r_i_n_g, a filename or path to a file │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, the resolved path to a symbolic link, or null if the file │ │ │ │ was not a symbolic link. │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : p = temporaryFileName () │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11806-0/0 │ │ │ │ +o1 = /tmp/M2-13556-0/0 │ │ │ │ i2 : symlinkFile ("foo", p) │ │ │ │ i3 : readlink p │ │ │ │ │ │ │ │ o3 = foo │ │ │ │ i4 : removeFile p │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_a_l_p_a_t_h -- convert a filename to one passing through no symbolic links │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_realpath.html │ │ │ @@ -68,57 +68,57 @@ │ │ │
    │ │ │

    Description

    │ │ │
    │ │ │
    i1 : p = temporaryFileName ()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11806-0/0
    │ │ │ +o1 = /tmp/M2-13556-0/0 │ │ │
    │ │ │
    i2 : symlinkFile ("foo", p)
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -130,15 +130,15 @@ │ │ │
    │ │ │
    i1 : realpath "."
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10191-0/86-rundir/
    │ │ │ +o1 = /tmp/M2-10311-0/86-rundir/ │ │ │
    │ │ │
    i2 : p = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11825-0/0
    │ │ │ +o2 = /tmp/M2-13595-0/0 │ │ │
    │ │ │
    i3 : q = temporaryFileName()
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11825-0/1
    │ │ │ +o3 = /tmp/M2-13595-0/1 │ │ │
    │ │ │
    i4 : symlinkFile(p,q)
    │ │ │
    │ │ │
    i5 : p << close
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11825-0/0
    │ │ │ +o5 = /tmp/M2-13595-0/0
    │ │ │  
    │ │ │  o5 : File
    │ │ │
    │ │ │
    i6 : readlink q
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11825-0/0
    │ │ │ +o6 = /tmp/M2-13595-0/0 │ │ │
    │ │ │
    i7 : realpath q
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11825-0/0
    │ │ │ +o7 = /tmp/M2-13595-0/0 │ │ │
    │ │ │
    i8 : removeFile p
    │ │ │
    │ │ │

    The empty string is interpreted as a reference to the current directory.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : realpath ""
    │ │ │  
    │ │ │ -o10 = /tmp/M2-10191-0/86-rundir/
    │ │ │ +o10 = /tmp/M2-10311-0/86-rundir/ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │ Every component of the path must exist in the file system and be accessible to the user. Terminal slashes will be dropped. Warning: under most operating systems, the value returned is an absolute path (one starting at the root of the file system), but under Solaris, this system call may, in certain circumstances, return a relative path when given a relative path.
    │ │ │ ├── html2text {} │ │ │ │ @@ -12,39 +12,39 @@ │ │ │ │ o fn, a _s_t_r_i_n_g, a filename, or path to a file │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, a pathname to fn passing through no symbolic links, and │ │ │ │ ending with a slash if fn refers to a directory │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : realpath "." │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10191-0/86-rundir/ │ │ │ │ +o1 = /tmp/M2-10311-0/86-rundir/ │ │ │ │ i2 : p = temporaryFileName() │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11825-0/0 │ │ │ │ +o2 = /tmp/M2-13595-0/0 │ │ │ │ i3 : q = temporaryFileName() │ │ │ │ │ │ │ │ -o3 = /tmp/M2-11825-0/1 │ │ │ │ +o3 = /tmp/M2-13595-0/1 │ │ │ │ i4 : symlinkFile(p,q) │ │ │ │ i5 : p << close │ │ │ │ │ │ │ │ -o5 = /tmp/M2-11825-0/0 │ │ │ │ +o5 = /tmp/M2-13595-0/0 │ │ │ │ │ │ │ │ o5 : File │ │ │ │ i6 : readlink q │ │ │ │ │ │ │ │ -o6 = /tmp/M2-11825-0/0 │ │ │ │ +o6 = /tmp/M2-13595-0/0 │ │ │ │ i7 : realpath q │ │ │ │ │ │ │ │ -o7 = /tmp/M2-11825-0/0 │ │ │ │ +o7 = /tmp/M2-13595-0/0 │ │ │ │ i8 : removeFile p │ │ │ │ i9 : removeFile q │ │ │ │ The empty string is interpreted as a reference to the current directory. │ │ │ │ i10 : realpath "" │ │ │ │ │ │ │ │ -o10 = /tmp/M2-10191-0/86-rundir/ │ │ │ │ +o10 = /tmp/M2-10311-0/86-rundir/ │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ Every component of the path must exist in the file system and be accessible to │ │ │ │ the user. Terminal slashes will be dropped. Warning: under most operating │ │ │ │ systems, the value returned is an absolute path (one starting at the root of │ │ │ │ the file system), but under Solaris, this system call may, in certain │ │ │ │ circumstances, return a relative path when given a relative path. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_register__Finalizer.html │ │ │ @@ -76,22 +76,23 @@ │ │ │
    │ │ │
    i1 : for i from 1 to 9 do (x := 0 .. 10000 ; registerFinalizer(x, "-- finalizing sequence #"|i|" --"))
    │ │ │
    │ │ │
    i2 : collectGarbage() 
    │ │ │ ---finalization: (1)[0]: -- finalizing sequence #1 --
    │ │ │ ---finalization: (2)[5]: -- finalizing sequence #6 --
    │ │ │ ---finalization: (3)[3]: -- finalizing sequence #4 --
    │ │ │ ---finalization: (4)[6]: -- finalizing sequence #7 --
    │ │ │ ---finalization: (5)[7]: -- finalizing sequence #8 --
    │ │ │ ---finalization: (7)[1]: -- finalizing sequence #2 --
    │ │ │ ---finalization: (8)[4]: -- finalizing sequence #5 --
    │ │ │ ---finalization: (6)[2]: -- finalizing sequence #3 --
    │ │ │ +--finalization: (1)[6]: -- finalizing sequence #7 -- │ │ │ +--finalization: (2)[4]: -- finalizing sequence #5 -- │ │ │ +--finalization: (3)[2]: -- finalizing sequence #3 -- │ │ │ +--finalization: (4)[3]: -- finalizing sequence #4 -- │ │ │ +--finalization: (5)[1]: -- finalizing sequence #2 -- │ │ │ +--finalization: (6)[7]: -- finalizing sequence #8 -- │ │ │ +--finalization: (7)[5]: -- finalizing sequence #6 -- │ │ │ +--finalization: (8)[0]: -- finalizing sequence #1 -- │ │ │ +--finalization: (8)[0]: -- finalizing sequence #1 -- │ │ │
    │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │ This function should mainly be used for debugging. Having a large number of finalizers might degrade the performance of the program. Moreover, registering two or more objects that are members of a circular chain of pointers for finalization will result in a memory leak, with none of the objects in the chain being freed, even if nothing else points to any of them.
    │ │ │ ├── html2text {} │ │ │ │ @@ -14,22 +14,23 @@ │ │ │ │ * Consequences: │ │ │ │ o A finalizer is registered with the garbage collector to print a │ │ │ │ string when that object is collected as garbage │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : for i from 1 to 9 do (x := 0 .. 10000 ; registerFinalizer(x, "- │ │ │ │ - finalizing sequence #"|i|" --")) │ │ │ │ i2 : collectGarbage() │ │ │ │ ---finalization: (1)[0]: -- finalizing sequence #1 -- │ │ │ │ ---finalization: (2)[5]: -- finalizing sequence #6 -- │ │ │ │ ---finalization: (3)[3]: -- finalizing sequence #4 -- │ │ │ │ ---finalization: (4)[6]: -- finalizing sequence #7 -- │ │ │ │ ---finalization: (5)[7]: -- finalizing sequence #8 -- │ │ │ │ ---finalization: (7)[1]: -- finalizing sequence #2 -- │ │ │ │ ---finalization: (8)[4]: -- finalizing sequence #5 -- │ │ │ │ ---finalization: (6)[2]: -- finalizing sequence #3 -- │ │ │ │ +--finalization: (1)[6]: -- finalizing sequence #7 -- │ │ │ │ +--finalization: (2)[4]: -- finalizing sequence #5 -- │ │ │ │ +--finalization: (3)[2]: -- finalizing sequence #3 -- │ │ │ │ +--finalization: (4)[3]: -- finalizing sequence #4 -- │ │ │ │ +--finalization: (5)[1]: -- finalizing sequence #2 -- │ │ │ │ +--finalization: (6)[7]: -- finalizing sequence #8 -- │ │ │ │ +--finalization: (7)[5]: -- finalizing sequence #6 -- │ │ │ │ +--finalization: (8)[0]: -- finalizing sequence #1 -- │ │ │ │ +--finalization: (8)[0]: -- finalizing sequence #1 -- │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ This function should mainly be used for debugging. Having a large number of │ │ │ │ finalizers might degrade the performance of the program. Moreover, registering │ │ │ │ two or more objects that are members of a circular chain of pointers for │ │ │ │ finalization will result in a memory leak, with none of the objects in the │ │ │ │ chain being freed, even if nothing else points to any of them. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_remove__Directory.html │ │ │ @@ -71,29 +71,29 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10779-0/0
    │ │ │ +o1 = /tmp/M2-11469-0/0 │ │ │
    │ │ │
    i2 : makeDirectory dir
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10779-0/0
    │ │ │ +o2 = /tmp/M2-11469-0/0 │ │ │
    │ │ │
    i3 : readDirectory dir
    │ │ │  
    │ │ │ -o3 = {., ..}
    │ │ │ +o3 = {.., .}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    i4 : removeDirectory dir
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,21 +10,21 @@ │ │ │ │ * Inputs: │ │ │ │ o dir, a _s_t_r_i_n_g, a filename or path to a directory │ │ │ │ * Consequences: │ │ │ │ o the directory is removed │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10779-0/0 │ │ │ │ +o1 = /tmp/M2-11469-0/0 │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10779-0/0 │ │ │ │ +o2 = /tmp/M2-11469-0/0 │ │ │ │ i3 : readDirectory dir │ │ │ │ │ │ │ │ -o3 = {., ..} │ │ │ │ +o3 = {.., .} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : removeDirectory dir │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_a_d_D_i_r_e_c_t_o_r_y -- read the contents of a directory │ │ │ │ * _m_a_k_e_D_i_r_e_c_t_o_r_y -- make a directory │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_root__Path.html │ │ │ @@ -65,22 +65,22 @@ │ │ │

    Description

    │ │ │

    This string may be concatenated with an absolute path to get one understandable by external programs.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10283-0/0
    │ │ │ +o1 = /tmp/M2-10473-0/0 │ │ │
    │ │ │
    i2 : rootPath | fn
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10283-0/0
    │ │ │ +o2 = /tmp/M2-10473-0/0 │ │ │
    │ │ │ │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -11,18 +11,18 @@ │ │ │ │ o a _s_t_r_i_n_g, the path, as seen by external programs, to the root of │ │ │ │ the file system seen by Macaulay2 │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This string may be concatenated with an absolute path to get one understandable │ │ │ │ by external programs. │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10283-0/0 │ │ │ │ +o1 = /tmp/M2-10473-0/0 │ │ │ │ i2 : rootPath | fn │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10283-0/0 │ │ │ │ +o2 = /tmp/M2-10473-0/0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_o_o_t_U_R_I │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_o_o_t_P_a_t_h is a _s_t_r_i_n_g. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_system.m2:2025:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_root__U__R__I.html │ │ │ @@ -65,22 +65,22 @@ │ │ │

      Description

      │ │ │

      This string may be concatenated with an absolute path to get one understandable by an external browser.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      │ │ │
      i1 : fn = temporaryFileName()
      │ │ │  
      │ │ │ -o1 = /tmp/M2-11508-0/0
      │ │ │ +o1 = /tmp/M2-12958-0/0 │ │ │
      │ │ │
      i2 : rootURI | fn
      │ │ │  
      │ │ │ -o2 = file:///tmp/M2-11508-0/0
      │ │ │ +o2 = file:///tmp/M2-12958-0/0 │ │ │
      │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -11,18 +11,18 @@ │ │ │ │ o a _s_t_r_i_n_g, the path, as seen by an external browser, to the root of │ │ │ │ the file system seen by Macaulay2 │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This string may be concatenated with an absolute path to get one understandable │ │ │ │ by an external browser. │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11508-0/0 │ │ │ │ +o1 = /tmp/M2-12958-0/0 │ │ │ │ i2 : rootURI | fn │ │ │ │ │ │ │ │ -o2 = file:///tmp/M2-11508-0/0 │ │ │ │ +o2 = file:///tmp/M2-12958-0/0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_o_o_t_P_a_t_h │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_o_o_t_U_R_I is a _s_t_r_i_n_g. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_system.m2:2041:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_saving_sppolynomials_spand_spmatrices_spin_spfiles.html │ │ │ @@ -90,22 +90,22 @@ │ │ │ o4 : R-module, submodule of R │ │ │
    │ │ │
    i5 : f = temporaryFileName()
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11356-0/0
    │ │ │ +o5 = /tmp/M2-12646-0/0 │ │ │
    │ │ │
    i6 : f << toString (p,m,M) << close
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11356-0/0
    │ │ │ +o6 = /tmp/M2-12646-0/0
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    │ │ │
    i7 : get f
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,18 +28,18 @@
    │ │ │ │  
    │ │ │ │  o4 = image | x2 x2-y2 xyz7 |
    │ │ │ │  
    │ │ │ │                               1
    │ │ │ │  o4 : R-module, submodule of R
    │ │ │ │  i5 : f = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o5 = /tmp/M2-11356-0/0
    │ │ │ │ +o5 = /tmp/M2-12646-0/0
    │ │ │ │  i6 : f << toString (p,m,M) << close
    │ │ │ │  
    │ │ │ │ -o6 = /tmp/M2-11356-0/0
    │ │ │ │ +o6 = /tmp/M2-12646-0/0
    │ │ │ │  
    │ │ │ │  o6 : File
    │ │ │ │  i7 : get f
    │ │ │ │  
    │ │ │ │  o7 = (x^3-3*x^2*y+3*x*y^2-y^3-3*x^2+6*x*y-3*y^2+3*x-3*y-1,matrix {{x^2,
    │ │ │ │       x^2-y^2, x*y*z^7}},image matrix {{x^2, x^2-y^2, x*y*z^7}})
    │ │ │ │  i8 : (p',m',M') = value get f
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_serial__Number.html
    │ │ │ @@ -68,22 +68,22 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : serialNumber asdf
    │ │ │  
    │ │ │ -o1 = 1426273
    │ │ │ +o1 = 1526273 │ │ │
    │ │ │
    i2 : serialNumber foo
    │ │ │  
    │ │ │ -o2 = 1426275
    │ │ │ +o2 = 1526275 │ │ │
    │ │ │
    i3 : serialNumber ZZ
    │ │ │  
    │ │ │  o3 = 1000050
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,18 +10,18 @@ │ │ │ │ * Inputs: │ │ │ │ o x │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the serial number of x │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : serialNumber asdf │ │ │ │ │ │ │ │ -o1 = 1426273 │ │ │ │ +o1 = 1526273 │ │ │ │ i2 : serialNumber foo │ │ │ │ │ │ │ │ -o2 = 1426275 │ │ │ │ +o2 = 1526275 │ │ │ │ i3 : serialNumber ZZ │ │ │ │ │ │ │ │ o3 = 1000050 │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _s_e_r_i_a_l_N_u_m_b_e_r is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_solve.html │ │ │ @@ -366,21 +366,21 @@ │ │ │
    │ │ │
    i28 : B = mutableMatrix(CC_53, N, 2); fillMatrix B;
    │ │ │
    │ │ │
    i30 : time X = solve(A,B);
    │ │ │ - -- used 0.000225452s (cpu); 0.000217157s (thread); 0s (gc)
    │ │ │ + -- used 0.00019474s (cpu); 0.000185165s (thread); 0s (gc) │ │ │
    │ │ │
    i31 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ - -- used 0.000165831s (cpu); 0.000165941s (thread); 0s (gc)
    │ │ │ + -- used 0.000101166s (cpu); 0.000101099s (thread); 0s (gc) │ │ │
    │ │ │
    i32 : norm(A*X-B)
    │ │ │  
    │ │ │  o32 = 5.111850690840453e-15
    │ │ │ @@ -411,21 +411,21 @@
    │ │ │              
    │ │ │
    i36 : B = mutableMatrix(CC_100, N, 2); fillMatrix B;
    │ │ │
    │ │ │
    i38 : time X = solve(A,B);
    │ │ │ - -- used 0.494046s (cpu); 0.307142s (thread); 0s (gc)
    │ │ │ + -- used 0.146552s (cpu); 0.14656s (thread); 0s (gc) │ │ │
    │ │ │
    i39 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ - -- used 0.241089s (cpu); 0.24109s (thread); 0s (gc)
    │ │ │ + -- used 0.146195s (cpu); 0.146212s (thread); 0s (gc) │ │ │
    │ │ │
    i40 : norm(A*X-B)
    │ │ │  
    │ │ │  o40 = 1.491578274689709814082355885932e-28
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -192,33 +192,33 @@
    │ │ │ │  i24 : printingPrecision = 4;
    │ │ │ │  i25 : N = 40
    │ │ │ │  
    │ │ │ │  o25 = 40
    │ │ │ │  i26 : A = mutableMatrix(CC_53, N, N); fillMatrix A;
    │ │ │ │  i28 : B = mutableMatrix(CC_53, N, 2); fillMatrix B;
    │ │ │ │  i30 : time X = solve(A,B);
    │ │ │ │ - -- used 0.000225452s (cpu); 0.000217157s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00019474s (cpu); 0.000185165s (thread); 0s (gc)
    │ │ │ │  i31 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ │ - -- used 0.000165831s (cpu); 0.000165941s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000101166s (cpu); 0.000101099s (thread); 0s (gc)
    │ │ │ │  i32 : norm(A*X-B)
    │ │ │ │  
    │ │ │ │  o32 = 5.111850690840453e-15
    │ │ │ │  
    │ │ │ │  o32 : RR (of precision 53)
    │ │ │ │  Over higher precision RR or CC, these routines will be much slower than the
    │ │ │ │  lower precision LAPACK routines.
    │ │ │ │  i33 : N = 100
    │ │ │ │  
    │ │ │ │  o33 = 100
    │ │ │ │  i34 : A = mutableMatrix(CC_100, N, N); fillMatrix A;
    │ │ │ │  i36 : B = mutableMatrix(CC_100, N, 2); fillMatrix B;
    │ │ │ │  i38 : time X = solve(A,B);
    │ │ │ │ - -- used 0.494046s (cpu); 0.307142s (thread); 0s (gc)
    │ │ │ │ + -- used 0.146552s (cpu); 0.14656s (thread); 0s (gc)
    │ │ │ │  i39 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ │ - -- used 0.241089s (cpu); 0.24109s (thread); 0s (gc)
    │ │ │ │ + -- used 0.146195s (cpu); 0.146212s (thread); 0s (gc)
    │ │ │ │  i40 : norm(A*X-B)
    │ │ │ │  
    │ │ │ │  o40 = 1.491578274689709814082355885932e-28
    │ │ │ │  
    │ │ │ │  o40 : RR (of precision 100)
    │ │ │ │  Giving the option ClosestFit=>true, in the case when the field is RR or CC,
    │ │ │ │  uses a least squares algorithm to find a best fit solution.
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_symlink__Directory_lp__String_cm__String_rp.html
    │ │ │ @@ -80,93 +80,93 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : src = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11147-0/0/
    │ │ │ +o1 = /tmp/M2-12217-0/0/ │ │ │
    │ │ │
    i2 : dst = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11147-0/1/
    │ │ │ +o2 = /tmp/M2-12217-0/1/ │ │ │
    │ │ │
    i3 : makeDirectory (src|"a/")
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11147-0/0/a/
    │ │ │ +o3 = /tmp/M2-12217-0/0/a/ │ │ │
    │ │ │
    i4 : makeDirectory (src|"b/")
    │ │ │  
    │ │ │ -o4 = /tmp/M2-11147-0/0/b/
    │ │ │ +o4 = /tmp/M2-12217-0/0/b/ │ │ │
    │ │ │
    i5 : makeDirectory (src|"b/c/")
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11147-0/0/b/c/
    │ │ │ +o5 = /tmp/M2-12217-0/0/b/c/ │ │ │
    │ │ │
    i6 : src|"a/f" << "hi there" << close
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11147-0/0/a/f
    │ │ │ +o6 = /tmp/M2-12217-0/0/a/f
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    │ │ │
    i7 : src|"a/g" << "hi there" << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11147-0/0/a/g
    │ │ │ +o7 = /tmp/M2-12217-0/0/a/g
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    │ │ │
    i8 : src|"b/c/g" << "ho there" << close
    │ │ │  
    │ │ │ -o8 = /tmp/M2-11147-0/0/b/c/g
    │ │ │ +o8 = /tmp/M2-12217-0/0/b/c/g
    │ │ │  
    │ │ │  o8 : File
    │ │ │
    │ │ │
    i9 : symlinkDirectory(src,dst,Verbose=>true)
    │ │ │ ---symlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g
    │ │ │ ---symlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g
    │ │ │ ---symlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f
    │ │ │ +--symlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g │ │ │ +--symlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f │ │ │ +--symlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g │ │ │
    │ │ │
    i10 : get (dst|"b/c/g")
    │ │ │  
    │ │ │  o10 = ho there
    │ │ │
    │ │ │
    i11 : symlinkDirectory(src,dst,Verbose=>true,Undo=>true)
    │ │ │ ---unsymlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g
    │ │ │ ---unsymlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g
    │ │ │ ---unsymlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f
    │ │ │ +--unsymlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g │ │ │ +--unsymlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f │ │ │ +--unsymlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g │ │ │
    │ │ │ Now we remove the files and directories we created. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i12 : rm = d -> if isDirectory d then removeDirectory d else removeFile d
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,53 +30,53 @@
    │ │ │ │            o The directory tree rooted at src is duplicated by a directory tree
    │ │ │ │              rooted at dst. The files in the source tree are represented by
    │ │ │ │              relative symbolic links in the destination tree to the original
    │ │ │ │              files in the source tree.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : src = temporaryFileName() | "/"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-11147-0/0/
    │ │ │ │ +o1 = /tmp/M2-12217-0/0/
    │ │ │ │  i2 : dst = temporaryFileName() | "/"
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-11147-0/1/
    │ │ │ │ +o2 = /tmp/M2-12217-0/1/
    │ │ │ │  i3 : makeDirectory (src|"a/")
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-11147-0/0/a/
    │ │ │ │ +o3 = /tmp/M2-12217-0/0/a/
    │ │ │ │  i4 : makeDirectory (src|"b/")
    │ │ │ │  
    │ │ │ │ -o4 = /tmp/M2-11147-0/0/b/
    │ │ │ │ +o4 = /tmp/M2-12217-0/0/b/
    │ │ │ │  i5 : makeDirectory (src|"b/c/")
    │ │ │ │  
    │ │ │ │ -o5 = /tmp/M2-11147-0/0/b/c/
    │ │ │ │ +o5 = /tmp/M2-12217-0/0/b/c/
    │ │ │ │  i6 : src|"a/f" << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o6 = /tmp/M2-11147-0/0/a/f
    │ │ │ │ +o6 = /tmp/M2-12217-0/0/a/f
    │ │ │ │  
    │ │ │ │  o6 : File
    │ │ │ │  i7 : src|"a/g" << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o7 = /tmp/M2-11147-0/0/a/g
    │ │ │ │ +o7 = /tmp/M2-12217-0/0/a/g
    │ │ │ │  
    │ │ │ │  o7 : File
    │ │ │ │  i8 : src|"b/c/g" << "ho there" << close
    │ │ │ │  
    │ │ │ │ -o8 = /tmp/M2-11147-0/0/b/c/g
    │ │ │ │ +o8 = /tmp/M2-12217-0/0/b/c/g
    │ │ │ │  
    │ │ │ │  o8 : File
    │ │ │ │  i9 : symlinkDirectory(src,dst,Verbose=>true)
    │ │ │ │ ---symlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g
    │ │ │ │ ---symlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g
    │ │ │ │ ---symlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f
    │ │ │ │ +--symlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g
    │ │ │ │ +--symlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f
    │ │ │ │ +--symlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g
    │ │ │ │  i10 : get (dst|"b/c/g")
    │ │ │ │  
    │ │ │ │  o10 = ho there
    │ │ │ │  i11 : symlinkDirectory(src,dst,Verbose=>true,Undo=>true)
    │ │ │ │ ---unsymlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g
    │ │ │ │ ---unsymlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g
    │ │ │ │ ---unsymlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f
    │ │ │ │ +--unsymlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g
    │ │ │ │ +--unsymlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f
    │ │ │ │ +--unsymlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g
    │ │ │ │  Now we remove the files and directories we created.
    │ │ │ │  i12 : rm = d -> if isDirectory d then removeDirectory d else removeFile d
    │ │ │ │  
    │ │ │ │  o12 = rm
    │ │ │ │  
    │ │ │ │  o12 : FunctionClosure
    │ │ │ │  i13 : scan(reverse findFiles src, rm)
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_symlink__File.html
    │ │ │ @@ -72,15 +72,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -12,15 +12,15 @@ │ │ │ │ o dst, a _s_t_r_i_n_g │ │ │ │ * Consequences: │ │ │ │ o a symbolic link at the location in the directory tree specified by │ │ │ │ dst is created, pointing to src │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11204-0/0 │ │ │ │ +o1 = /tmp/M2-12334-0/0 │ │ │ │ i2 : symlinkFile("qwert", fn) │ │ │ │ i3 : fileExists fn │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : readlink fn │ │ │ │ │ │ │ │ o4 = qwert │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_temporary__File__Name.html │ │ │ @@ -64,22 +64,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ The file name is so unique that even with various suffixes appended, no collision with existing files will occur. The files will be removed when the program terminates, unless it terminates as the result of an error.
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11204-0/0
    │ │ │ +o1 = /tmp/M2-12334-0/0 │ │ │
    │ │ │
    i2 : symlinkFile("qwert", fn)
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : temporaryFileName () | ".tex"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-12169-0/0.tex
    │ │ │ +o1 = /tmp/M2-14309-0/0.tex │ │ │
    │ │ │
    i2 : temporaryFileName () | ".html"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-12169-0/1.html
    │ │ │ +o2 = /tmp/M2-14309-0/1.html │ │ │
    │ │ │

    This function will work under Unix, and also under Windows if you have a directory on the same drive called /tmp.

    │ │ │

    If the name of the temporary file will be given to an external program, it may be necessary to concatenate it with rootPath or rootURI to enable the external program to find the file.

    │ │ │

    The temporary file name is derived from the value of the environment variable TMPDIR, if it has one.

    │ │ │

    If fork is used, then the parent and child Macaulay2 processes will each remove their own temporary files upon termination, with the parent removing any files created before fork was called.

    │ │ │ ├── html2text {} │ │ │ │ @@ -11,18 +11,18 @@ │ │ │ │ o a unique temporary file name. │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ The file name is so unique that even with various suffixes appended, no │ │ │ │ collision with existing files will occur. The files will be removed when the │ │ │ │ program terminates, unless it terminates as the result of an error. │ │ │ │ i1 : temporaryFileName () | ".tex" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-12169-0/0.tex │ │ │ │ +o1 = /tmp/M2-14309-0/0.tex │ │ │ │ i2 : temporaryFileName () | ".html" │ │ │ │ │ │ │ │ -o2 = /tmp/M2-12169-0/1.html │ │ │ │ +o2 = /tmp/M2-14309-0/1.html │ │ │ │ This function will work under Unix, and also under Windows if you have a │ │ │ │ directory on the same drive called /tmp. │ │ │ │ If the name of the temporary file will be given to an external program, it may │ │ │ │ be necessary to concatenate it with _r_o_o_t_P_a_t_h or _r_o_o_t_U_R_I to enable the external │ │ │ │ program to find the file. │ │ │ │ The temporary file name is derived from the value of the environment variable │ │ │ │ TMPDIR, if it has one. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_time.html │ │ │ @@ -59,15 +59,15 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │ time e evaluates e, prints the amount of cpu time used, and returns the value of e. The time used by the the current thread and garbage collection during the evaluation of e is also shown. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time 3^30
    │ │ │ - -- used 1.4376e-05s (cpu); 7.053e-06s (thread); 0s (gc)
    │ │ │ + -- used 2.0306e-05s (cpu); 6.729e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = 205891132094649
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -7,15 +7,15 @@ │ │ │ │ * Usage: │ │ │ │ time e │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ time e evaluates e, prints the amount of cpu time used, and returns the value │ │ │ │ of e. The time used by the the current thread and garbage collection during the │ │ │ │ evaluation of e is also shown. │ │ │ │ i1 : time 3^30 │ │ │ │ - -- used 1.4376e-05s (cpu); 7.053e-06s (thread); 0s (gc) │ │ │ │ + -- used 2.0306e-05s (cpu); 6.729e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o1 = 205891132094649 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_i_m_i_n_g -- time a computation │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_i_n_g -- time a computation using time elapsed │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_e -- time a computation including time elapsed │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_timing.html │ │ │ @@ -54,24 +54,24 @@ │ │ │ timing e evaluates e and returns a list of type Time of the form {t,v}, where t is the number of seconds of cpu timing used, and v is the value of the expression.

    │ │ │ The default method for printing such timing results is to display the timing separately in a comment below the computed value. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : timing 3^30
    │ │ │  
    │ │ │  o1 = 205891132094649
    │ │ │ -     -- .000015599 seconds
    │ │ │ +     -- .000014524 seconds
    │ │ │  
    │ │ │  o1 : Time
    │ │ │
    │ │ │
    i2 : peek oo
    │ │ │  
    │ │ │ -o2 = Time{.000015599, 205891132094649}
    │ │ │ +o2 = Time{.000014524, 205891132094649} │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -10,20 +10,20 @@ │ │ │ │ is the number of seconds of cpu timing used, and v is the value of the │ │ │ │ expression. │ │ │ │ The default method for printing such timing results is to display the timing │ │ │ │ separately in a comment below the computed value. │ │ │ │ i1 : timing 3^30 │ │ │ │ │ │ │ │ o1 = 205891132094649 │ │ │ │ - -- .000015599 seconds │ │ │ │ + -- .000014524 seconds │ │ │ │ │ │ │ │ o1 : Time │ │ │ │ i2 : peek oo │ │ │ │ │ │ │ │ -o2 = Time{.000015599, 205891132094649} │ │ │ │ +o2 = Time{.000014524, 205891132094649} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _T_i_m_e -- the class of all timing results │ │ │ │ * _t_i_m_e -- time a computation │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_i_n_g -- time a computation using time elapsed │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_e -- time a computation including time elapsed │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_version.html │ │ │ @@ -103,15 +103,15 @@ │ │ │ "memtailor version" => 1.0 │ │ │ "mpfi version" => 1.5.4 │ │ │ "mpfr version" => 4.2.2 │ │ │ "mpsolve version" => 3.2.2 │ │ │ "mysql version" => not present │ │ │ "normaliz version" => 3.10.5 │ │ │ "ntl version" => 11.5.1 │ │ │ - "operating system release" => 6.12.48+deb13-amd64 │ │ │ + "operating system release" => 6.12.57+deb13-cloud-amd64 │ │ │ "operating system" => Linux │ │ │ "packages" => Style FirstPackage Macaulay2Doc Parsing Classic Browse Benchmark Text SimpleDoc PackageTemplate Saturation PrimaryDecomposition FourierMotzkin Dmodules WeylAlgebras HolonomicSystems BernsteinSato ConnectionMatrices Depth Elimination GenericInitialIdeal IntegralClosure HyperplaneArrangements LexIdeals Markov NoetherNormalization Points ReesAlgebra Regularity SchurRings SymmetricPolynomials SchurFunctors SimplicialComplexes LLLBases TangentCone ChainComplexExtras Varieties Schubert2 PushForward LocalRings PruneComplex BoijSoederberg BGG Bruns InvolutiveBases ConwayPolynomials EdgeIdeals FourTiTwo StatePolytope Polyhedra Truncations Polymake gfanInterface PieriMaps Normaliz Posets XML OpenMath SCSCP RationalPoints MapleInterface ConvexInterface SRdeformations NumericalAlgebraicGeometry BeginningMacaulay2 FormalGroupLaws Graphics WeylGroups HodgeIntegrals Cyclotomic Binomials Kronecker Nauty ToricVectorBundles ModuleDeformations PHCpack SimplicialDecomposability BooleanGB AdjointIdeal Parametrization Serialization NAGtypes NormalToricVarieties DGAlgebras Graphs GraphicalModels BIBasis KustinMiller Units NautyGraphs VersalDeformations CharacteristicClasses RandomIdeals RandomObjects RandomPlaneCurves RandomSpaceCurves RandomGenus14Curves RandomCanonicalCurves RandomCurves TensorComplexes MonomialAlgebras QthPower EliminationMatrices EllipticIntegrals Triplets CompleteIntersectionResolutions EagonResolution MCMApproximations MultiplierIdeals InvariantRing QuillenSuslin EnumerationCurves Book3264Examples WeilDivisors EllipticCurves HighestWeights MinimalPrimes Bertini TorAlgebra Permanents BinomialEdgeIdeals TateOnProducts LatticePolytopes FiniteFittingIdeals HigherCIOperators LieAlgebraRepresentations ConformalBlocks M0nbar AnalyzeSheafOnP1 MultiplierIdealsDim2 RunExternalM2 NumericalSchubertCalculus ToricTopology Cremona Resultants VectorFields SLPexpressions Miura ResidualIntersections Visualize EquivariantGB ExampleSystems RationalMaps FastMinors RandomPoints SwitchingFields SpectralSequences SectionRing OldPolyhedra OldToricVectorBundles K3Carpets ChainComplexOperations NumericalCertification PhylogeneticTrees MonodromySolver ReactionNetworks PackageCitations NumericSolutions GradedLieAlgebras InverseSystems Pullback EngineTests SVDComplexes RandomComplexes CohomCalg Topcom Triangulations ReflexivePolytopesDB AbstractToricVarieties TestIdeals FrobeniusThresholds NonPrincipalTestIdeals Seminormalization AlgebraicSplines TriangularSets Chordal Tropical SymbolicPowers Complexes OldChainComplexes GroebnerWalk RandomMonomialIdeals Matroids NumericalImplicitization NonminimalComplexes CoincidentRootLoci RelativeCanonicalResolution RandomCurvesOverVerySmallFiniteFields StronglyStableIdeals SLnEquivariantMatrices CorrespondenceScrolls NCAlgebra SpaceCurves ExteriorIdeals ToricInvariants SegreClasses SemidefiniteProgramming SumsOfSquares MultiGradedRationalMap AssociativeAlgebras VirtualResolutions Quasidegrees DiffAlg DeterminantalRepresentations FGLM SpechtModule SchurComplexes SimplicialPosets SlackIdeals PositivityToricBundles SparseResultants DecomposableSparseSystems MixedMultiplicity PencilsOfQuadrics ThreadedGB AdjunctionForSurfaces VectorGraphics GKMVarieties MonomialIntegerPrograms NoetherianOperators Hadamard StatGraphs GraphicalModelsMLE EigenSolver MultiplicitySequence ResolutionsOfStanleyReisnerRings NumericalLinearAlgebra ResLengthThree MonomialOrbits MultiprojectiveVarieties SpecialFanoFourfolds RationalPoints2 SuperLinearAlgebra SubalgebraBases AInfinity LinearTruncations ThinSincereQuivers Python BettiCharacters Jets FunctionFieldDesingularization HomotopyLieAlgebra TSpreadIdeals RealRoots ExteriorModules K3Surfaces GroebnerStrata QuaternaryQuartics CotangentSchubert OnlineLookup MergeTeX Probability Isomorphism CodingTheory WhitneyStratifications JSON ForeignFunctions GeometricDecomposability PseudomonomialPrimaryDecomposition PolyominoIdeals MatchingFields CellularResolutions SagbiGbDetection A1BrouwerDegrees QuadraticIdealExamplesByRoos TerraciniLoci MatrixSchubert RInterface OIGroebnerBases PlaneCurveLinearSeries Valuations SchurVeronese VNumber TropicalToric MultigradedBGG AbstractSimplicialComplexes MultigradedImplicitization Msolve Permutations SCMAlgebras NumericalSemigroups ExteriorExtensions Oscillators IncidenceCorrespondenceCohomology ToricHigherDirectImages Brackets IntegerProgramming GameTheory AllMarkovBases Tableaux CpMackeyFunctors JSONRPC MatrixFactorizations PathSignatures │ │ │ "pointer size" => 8 │ │ │ "python version" => 3.13.9 │ │ │ "readline version" => 8.3 │ │ │ "scscp version" => not present │ │ │ "tbb version" => 2022.1 │ │ │ ├── html2text {} │ │ │ │ @@ -64,15 +64,15 @@ │ │ │ │ "memtailor version" => 1.0 │ │ │ │ "mpfi version" => 1.5.4 │ │ │ │ "mpfr version" => 4.2.2 │ │ │ │ "mpsolve version" => 3.2.2 │ │ │ │ "mysql version" => not present │ │ │ │ "normaliz version" => 3.10.5 │ │ │ │ "ntl version" => 11.5.1 │ │ │ │ - "operating system release" => 6.12.48+deb13-amd64 │ │ │ │ + "operating system release" => 6.12.57+deb13-cloud-amd64 │ │ │ │ "operating system" => Linux │ │ │ │ "packages" => Style FirstPackage Macaulay2Doc Parsing Classic │ │ │ │ Browse Benchmark Text SimpleDoc PackageTemplate Saturation PrimaryDecomposition │ │ │ │ FourierMotzkin Dmodules WeylAlgebras HolonomicSystems BernsteinSato │ │ │ │ ConnectionMatrices Depth Elimination GenericInitialIdeal IntegralClosure │ │ │ │ HyperplaneArrangements LexIdeals Markov NoetherNormalization Points ReesAlgebra │ │ │ │ Regularity SchurRings SymmetricPolynomials SchurFunctors SimplicialComplexes │ │ ├── ./usr/share/doc/Macaulay2/Markov/example-output/___Markov.out │ │ │ @@ -70,15 +70,15 @@ │ │ │ | 1,2,1,2 2,2,1,1 1,2,1,1 2,2,1,2| 1,2,2,2 2,2,2,1 1,2,2,1 2,2,2,2| │ │ │ +-------------------------------------+-------------------------------------+ │ │ │ |- p p + p p |- p p + p p | │ │ │ | 1,1,2,1 1,2,1,1 1,1,1,1 1,2,2,1| 1,1,2,2 1,2,1,2 1,1,1,2 1,2,2,2| │ │ │ +-------------------------------------+-------------------------------------+ │ │ │ │ │ │ i8 : time netList primaryDecomposition J │ │ │ - -- used 3.41653s (cpu); 1.67417s (thread); 0s (gc) │ │ │ + -- used 3.98063s (cpu); 1.70224s (thread); 0s (gc) │ │ │ │ │ │ +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ o8 = |ideal (p , p , p , p , p p - p p , p p - p p ) | │ │ │ | 1,2,2,2 1,2,2,1 1,2,1,2 1,2,1,1 1,1,2,2 2,1,2,1 1,1,2,1 2,1,2,2 1,1,1,2 2,1,1,1 1,1,1,1 2,1,1,2 | │ │ │ +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ |ideal (p , p , p , p , p p - p p , p p - p p ) | │ │ │ | 1,2,2,2 1,2,2,1 1,1,2,2 1,1,2,1 1,2,1,2 2,2,1,1 1,2,1,1 2,2,1,2 1,1,1,2 2,1,1,1 1,1,1,1 2,1,1,2 | │ │ ├── ./usr/share/doc/Macaulay2/Markov/html/index.html │ │ │ @@ -161,15 +161,15 @@ │ │ │
      │ │ │

      This ideal has 5 primary components. The first is the one that has statistical significance. The significance of the other components is still poorly understood.

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      │ │ │
      i8 : time netList primaryDecomposition J
      │ │ │ - -- used 3.41653s (cpu); 1.67417s (thread); 0s (gc)
      │ │ │ + -- used 3.98063s (cpu); 1.70224s (thread); 0s (gc)
      │ │ │  
      │ │ │       +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
      │ │ │  o8 = |ideal (p       , p       , p       , p       , p       p        - p       p       , p       p        - p       p       )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
      │ │ │       |        1,2,2,2   1,2,2,1   1,2,1,2   1,2,1,1   1,1,2,2 2,1,2,1    1,1,2,1 2,1,2,2   1,1,1,2 2,1,1,1    1,1,1,1 2,1,1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
      │ │ │       +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
      │ │ │       |ideal (p       , p       , p       , p       , p       p        - p       p       , p       p        - p       p       )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
      │ │ │       |        1,2,2,2   1,2,2,1   1,1,2,2   1,1,2,1   1,2,1,2 2,2,1,1    1,2,1,1 2,2,1,2   1,1,1,2 2,1,1,1    1,1,1,1 2,1,1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -102,15 +102,15 @@
      │ │ │ │  1,2,2,2|
      │ │ │ │       +-------------------------------------+-----------------------------------
      │ │ │ │  --+
      │ │ │ │  This ideal has 5 primary components. The first is the one that has statistical
      │ │ │ │  significance. The significance of the other components is still poorly
      │ │ │ │  understood.
      │ │ │ │  i8 : time netList primaryDecomposition J
      │ │ │ │ - -- used 3.41653s (cpu); 1.67417s (thread); 0s (gc)
      │ │ │ │ + -- used 3.98063s (cpu); 1.70224s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │       +-------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_sp__A__S__M_spvarieties.out
      │ │ │ @@ -212,17 +212,17 @@
      │ │ │        | 1 -1 1 |
      │ │ │        | 0 1  0 |
      │ │ │  
      │ │ │                 3       3
      │ │ │  o22 : Matrix ZZ  <-- ZZ
      │ │ │  
      │ │ │  i23 : time schubertRegularity B
      │ │ │ - -- used 0.077181s (cpu); 0.0286174s (thread); 0s (gc)
      │ │ │ + -- used 0.103915s (cpu); 0.0328186s (thread); 0s (gc)
      │ │ │  
      │ │ │  o23 = 1
      │ │ │  
      │ │ │  i24 : time regularity comodule schubertDeterminantalIdeal B
      │ │ │ - -- used 0.0152261s (cpu); 0.0152272s (thread); 0s (gc)
      │ │ │ + -- used 0.0176511s (cpu); 0.0176558s (thread); 0s (gc)
      │ │ │  
      │ │ │  o24 = 1
      │ │ │  
      │ │ │  i25 :
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_spmatrix_sp__Schubert_spvarieties.out
      │ │ │ @@ -178,17 +178,17 @@
      │ │ │        z   z   z   , z   z   z    - z   z   , z   z   z    - z   z   )
      │ │ │         1,2 1,3 2,4   1,2 1,4 2,2    1,2 2,4   1,2 1,3 2,2    1,2 2,3
      │ │ │  
      │ │ │  o15 : Ideal of QQ[z   ..z   ]
      │ │ │                     1,1   5,5
      │ │ │  
      │ │ │  i16 : time schubertRegularity p
      │ │ │ - -- used 0.000280436s (cpu); 0.000276258s (thread); 0s (gc)
      │ │ │ + -- used 0.000374624s (cpu); 0.000368531s (thread); 0s (gc)
      │ │ │  
      │ │ │  o16 = 5
      │ │ │  
      │ │ │  i17 : time regularity comodule I
      │ │ │ - -- used 0.015625s (cpu); 0.0156272s (thread); 0s (gc)
      │ │ │ + -- used 0.0184548s (cpu); 0.0184602s (thread); 0s (gc)
      │ │ │  
      │ │ │  o17 = 5
      │ │ │  
      │ │ │  i18 :
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_grothendieck__Polynomial.out
      │ │ │ @@ -3,25 +3,25 @@
      │ │ │  i1 : w = {2,1,4,3}
      │ │ │  
      │ │ │  o1 = {2, 1, 4, 3}
      │ │ │  
      │ │ │  o1 : List
      │ │ │  
      │ │ │  i2 : time grothendieckPolynomial w
      │ │ │ - -- used 0.00429046s (cpu); 0.00428737s (thread); 0s (gc)
      │ │ │ + -- used 0.0051187s (cpu); 0.00511776s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o2 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o2 : QQ[x ..x ]
      │ │ │           1   4
      │ │ │  
      │ │ │  i3 : time grothendieckPolynomial (w,Algorithm=>"PipeDream")
      │ │ │ - -- used 0.00217528s (cpu); 0.00217604s (thread); 0s (gc)
      │ │ │ + -- used 0.00277237s (cpu); 0.002774s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o3 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o3 : QQ[x ..x ]
      │ │ │           1   4
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_sp__A__S__M_spvarieties.html
      │ │ │ @@ -383,23 +383,23 @@
      │ │ │          
      │ │ │

      Additionally, this package facilitates investigating homological invariants of ASM ideals such as regularity (schubertRegularity) and codimension (schubertCodim). efficiently by computing the associated invariants for their antidiagonal initial ideals, which are known to be squarefree by [Wei17]. Therefore the extremal Betti numbers (which encode regularity, depth, and projective dimension) of ASM ideals coincide with those of their antidiagonal initial ideals by [CV20].

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      │ │ │
      i23 : time schubertRegularity B
      │ │ │ - -- used 0.077181s (cpu); 0.0286174s (thread); 0s (gc)
      │ │ │ + -- used 0.103915s (cpu); 0.0328186s (thread); 0s (gc)
      │ │ │  
      │ │ │  o23 = 1
      │ │ │
      │ │ │
      i24 : time regularity comodule schubertDeterminantalIdeal B
      │ │ │ - -- used 0.0152261s (cpu); 0.0152272s (thread); 0s (gc)
      │ │ │ + -- used 0.0176511s (cpu); 0.0176558s (thread); 0s (gc)
      │ │ │  
      │ │ │  o24 = 1
      │ │ │
      │ │ │
      │ │ │

      Functions for investigating ASM varieties

      │ │ │ ├── html2text {} │ │ │ │ @@ -244,19 +244,19 @@ │ │ │ │ ASM ideals such as regularity (_s_c_h_u_b_e_r_t_R_e_g_u_l_a_r_i_t_y) and codimension │ │ │ │ (_s_c_h_u_b_e_r_t_C_o_d_i_m). efficiently by computing the associated invariants for their │ │ │ │ antidiagonal initial ideals, which are known to be squarefree by [Wei17]. │ │ │ │ Therefore the extremal Betti numbers (which encode regularity, depth, and │ │ │ │ projective dimension) of ASM ideals coincide with those of their antidiagonal │ │ │ │ initial ideals by [CV20]. │ │ │ │ i23 : time schubertRegularity B │ │ │ │ - -- used 0.077181s (cpu); 0.0286174s (thread); 0s (gc) │ │ │ │ + -- used 0.103915s (cpu); 0.0328186s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = 1 │ │ │ │ i24 : time regularity comodule schubertDeterminantalIdeal B │ │ │ │ - -- used 0.0152261s (cpu); 0.0152272s (thread); 0s (gc) │ │ │ │ + -- used 0.0176511s (cpu); 0.0176558s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = 1 │ │ │ │ ********** FFuunnccttiioonnss ffoorr iinnvveessttiiggaattiinngg AASSMM vvaarriieettiieess ********** │ │ │ │ * _i_s_P_a_r_t_i_a_l_A_S_M_(_M_a_t_r_i_x_) -- whether a matrix is a partial alternating sign │ │ │ │ matrix │ │ │ │ * _p_a_r_t_i_a_l_A_S_M_T_o_A_S_M_(_M_a_t_r_i_x_) -- extend a partial alternating sign matrix to an │ │ │ │ alternating sign matrix │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_spmatrix_sp__Schubert_spvarieties.html │ │ │ @@ -315,23 +315,23 @@ │ │ │
      │ │ │

      Finally, this package contains functions for investigating homological invariants of matrix Schubert varieties efficiently through combinatorial algorithms produced in [PSW24] via schubertRegularityschubertCodim.

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      │ │ │
      i16 : time schubertRegularity p
      │ │ │ - -- used 0.000280436s (cpu); 0.000276258s (thread); 0s (gc)
      │ │ │ + -- used 0.000374624s (cpu); 0.000368531s (thread); 0s (gc)
      │ │ │  
      │ │ │  o16 = 5
      │ │ │
      │ │ │
      i17 : time regularity comodule I
      │ │ │ - -- used 0.015625s (cpu); 0.0156272s (thread); 0s (gc)
      │ │ │ + -- used 0.0184548s (cpu); 0.0184602s (thread); 0s (gc)
      │ │ │  
      │ │ │  o17 = 5
      │ │ │
      │ │ │
      │ │ │

      Functions for investigating matrix Schubert varieties

      │ │ │ ├── html2text {} │ │ │ │ @@ -545,19 +545,19 @@ │ │ │ │ │ │ │ │ o15 : Ideal of QQ[z ..z ] │ │ │ │ 1,1 5,5 │ │ │ │ Finally, this package contains functions for investigating homological │ │ │ │ invariants of matrix Schubert varieties efficiently through combinatorial │ │ │ │ algorithms produced in [PSW24] via _s_c_h_u_b_e_r_t_R_e_g_u_l_a_r_i_t_y_s_c_h_u_b_e_r_t_C_o_d_i_m. │ │ │ │ i16 : time schubertRegularity p │ │ │ │ - -- used 0.000280436s (cpu); 0.000276258s (thread); 0s (gc) │ │ │ │ + -- used 0.000374624s (cpu); 0.000368531s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = 5 │ │ │ │ i17 : time regularity comodule I │ │ │ │ - -- used 0.015625s (cpu); 0.0156272s (thread); 0s (gc) │ │ │ │ + -- used 0.0184548s (cpu); 0.0184602s (thread); 0s (gc) │ │ │ │ │ │ │ │ o17 = 5 │ │ │ │ ********** FFuunnccttiioonnss ffoorr iinnvveessttiiggaattiinngg mmaattrriixx SScchhuubbeerrtt vvaarriieettiieess ********** │ │ │ │ * _a_n_t_i_D_i_a_g_I_n_i_t_(_L_i_s_t_) -- compute the (unique) antidiagonal initial ideal of │ │ │ │ an ASM ideal │ │ │ │ * _r_a_n_k_T_a_b_l_e_(_L_i_s_t_) -- compute a table of rank conditions that determines the │ │ │ │ corresponding ASM or matrix Schubert variety │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/html/_grothendieck__Polynomial.html │ │ │ @@ -80,28 +80,28 @@ │ │ │ │ │ │ o1 : List
      │ │ │
      │ │ │
      i2 : time grothendieckPolynomial w
      │ │ │ - -- used 0.00429046s (cpu); 0.00428737s (thread); 0s (gc)
      │ │ │ + -- used 0.0051187s (cpu); 0.00511776s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o2 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o2 : QQ[x ..x ]
      │ │ │           1   4
      │ │ │
      │ │ │
      i3 : time grothendieckPolynomial (w,Algorithm=>"PipeDream")
      │ │ │ - -- used 0.00217528s (cpu); 0.00217604s (thread); 0s (gc)
      │ │ │ + -- used 0.00277237s (cpu); 0.002774s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o3 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o3 : QQ[x ..x ]
      │ │ │           1   4
      │ │ │ ├── html2text {} │ │ │ │ @@ -19,24 +19,24 @@ │ │ │ │ PipeDream. │ │ │ │ i1 : w = {2,1,4,3} │ │ │ │ │ │ │ │ o1 = {2, 1, 4, 3} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : time grothendieckPolynomial w │ │ │ │ - -- used 0.00429046s (cpu); 0.00428737s (thread); 0s (gc) │ │ │ │ + -- used 0.0051187s (cpu); 0.00511776s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o2 = x x x - x x - x x - x x x + x + x x + x x │ │ │ │ 1 2 3 1 2 1 3 1 2 3 1 1 2 1 3 │ │ │ │ │ │ │ │ o2 : QQ[x ..x ] │ │ │ │ 1 4 │ │ │ │ i3 : time grothendieckPolynomial (w,Algorithm=>"PipeDream") │ │ │ │ - -- used 0.00217528s (cpu); 0.00217604s (thread); 0s (gc) │ │ │ │ + -- used 0.00277237s (cpu); 0.002774s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o3 = x x x - x x - x x - x x x + x + x x + x x │ │ │ │ 1 2 3 1 2 1 3 1 2 3 1 1 2 1 3 │ │ │ │ │ │ │ │ o3 : QQ[x ..x ] │ │ │ │ 1 4 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid.out │ │ │ @@ -51,20 +51,20 @@ │ │ │ i9 : keys R10.cache │ │ │ │ │ │ o9 = {groundSet, rankFunction, storedRepresentation} │ │ │ │ │ │ o9 : List │ │ │ │ │ │ i10 : time isWellDefined R10 │ │ │ - -- used 0.077174s (cpu); 0.07565s (thread); 0s (gc) │ │ │ + -- used 0.0599167s (cpu); 0.0593654s (thread); 0s (gc) │ │ │ │ │ │ o10 = true │ │ │ │ │ │ i11 : time fVector R10 │ │ │ - -- used 0.177179s (cpu); 0.083325s (thread); 0s (gc) │ │ │ + -- used 0.231166s (cpu); 0.0824804s (thread); 0s (gc) │ │ │ │ │ │ o11 = HashTable{0 => 1 } │ │ │ 1 => 10 │ │ │ 2 => 45 │ │ │ 3 => 75 │ │ │ 4 => 30 │ │ │ 5 => 1 │ │ │ @@ -76,15 +76,15 @@ │ │ │ o12 = {hyperplanes, flatsRelationsTable, rankFunction, ideal, ranks, flats, │ │ │ ----------------------------------------------------------------------- │ │ │ groundSet, dual, storedRepresentation} │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : time fVector R10 │ │ │ - -- used 0.000406302s (cpu); 0.000208892s (thread); 0s (gc) │ │ │ + -- used 0.000375522s (cpu); 0.000216701s (thread); 0s (gc) │ │ │ │ │ │ o13 = HashTable{0 => 1 } │ │ │ 1 => 10 │ │ │ 2 => 45 │ │ │ 3 => 75 │ │ │ 4 => 30 │ │ │ 5 => 1 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_all__Minors.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i2 : U25 = uniformMatroid(2,5) │ │ │ │ │ │ o2 = a "matroid" of rank 2 on 5 elements │ │ │ │ │ │ o2 : Matroid │ │ │ │ │ │ i3 : elapsedTime L = allMinors(V, U25); │ │ │ - -- .111077s elapsed │ │ │ + -- .0697356s elapsed │ │ │ │ │ │ i4 : #L │ │ │ │ │ │ o4 = 64 │ │ │ │ │ │ i5 : netList L_{0..4} │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Isos.out │ │ │ @@ -33,14 +33,14 @@ │ │ │ i6 : F7 = specificMatroid "fano" │ │ │ │ │ │ o6 = a "matroid" of rank 3 on 7 elements │ │ │ │ │ │ o6 : Matroid │ │ │ │ │ │ i7 : time autF7 = getIsos(F7, F7); │ │ │ - -- used 0.121357s (cpu); 0.0623868s (thread); 0s (gc) │ │ │ + -- used 0.14948s (cpu); 0.0659898s (thread); 0s (gc) │ │ │ │ │ │ i8 : #autF7 │ │ │ │ │ │ o8 = 168 │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_has__Minor.out │ │ │ @@ -9,12 +9,12 @@ │ │ │ o1 : Sequence │ │ │ │ │ │ i2 : hasMinor(M4, uniformMatroid(2,4)) │ │ │ │ │ │ o2 = false │ │ │ │ │ │ i3 : time hasMinor(M6, M5) │ │ │ - -- used 1.76467s (cpu); 1.25038s (thread); 0s (gc) │ │ │ + -- used 1.99389s (cpu); 1.23941s (thread); 0s (gc) │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_isomorphism_lp__Matroid_cm__Matroid_rp.out │ │ │ @@ -19,15 +19,15 @@ │ │ │ i4 : minorM6 = minor(M6, set{8}, set{4,5,6,7}) │ │ │ │ │ │ o4 = a "matroid" of rank 4 on 10 elements │ │ │ │ │ │ o4 : Matroid │ │ │ │ │ │ i5 : time isomorphism(M5, minorM6) │ │ │ - -- used 0.0159915s (cpu); 0.0134391s (thread); 0s (gc) │ │ │ + -- used 0.0159846s (cpu); 0.0142553s (thread); 0s (gc) │ │ │ │ │ │ o5 = HashTable{0 => 1} │ │ │ 1 => 0 │ │ │ 2 => 3 │ │ │ 3 => 2 │ │ │ 4 => 6 │ │ │ 5 => 5 │ │ │ @@ -56,15 +56,15 @@ │ │ │ i7 : N = relabel M6 │ │ │ │ │ │ o7 = a "matroid" of rank 5 on 15 elements │ │ │ │ │ │ o7 : Matroid │ │ │ │ │ │ i8 : time phi = isomorphism(N,M6) │ │ │ - -- used 4.44315s (cpu); 2.84198s (thread); 0s (gc) │ │ │ + -- used 4.79236s (cpu); 2.71733s (thread); 0s (gc) │ │ │ │ │ │ o8 = HashTable{0 => 11 } │ │ │ 1 => 0 │ │ │ 2 => 1 │ │ │ 3 => 6 │ │ │ 4 => 9 │ │ │ 5 => 8 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_quick__Isomorphism__Test.out │ │ │ @@ -37,15 +37,15 @@ │ │ │ o7 : Matroid │ │ │ │ │ │ i8 : R = ZZ[x,y]; tuttePolynomial(M0, R) == tuttePolynomial(M1, R) │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : time quickIsomorphismTest(M0, M1) │ │ │ - -- used 0.000917851s (cpu); 0.000605195s (thread); 0s (gc) │ │ │ + -- used 0.0012998s (cpu); 0.000547039s (thread); 0s (gc) │ │ │ │ │ │ o10 = false │ │ │ │ │ │ i11 : value oo === false │ │ │ │ │ │ o11 = true │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_set__Representation.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ i5 : keys M.cache │ │ │ │ │ │ o5 = {groundSet, rankFunction, storedRepresentation} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime fVector M │ │ │ - -- .0133096s elapsed │ │ │ + -- .013409s elapsed │ │ │ │ │ │ o6 = HashTable{0 => 1 } │ │ │ 1 => 6 │ │ │ 2 => 15 │ │ │ 3 => 20 │ │ │ 4 => 1 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/___Matroid.html │ │ │ @@ -148,23 +148,23 @@ │ │ │ │ │ │ o9 : List │ │ │
      │ │ │
      i10 : time isWellDefined R10
      │ │ │ - -- used 0.077174s (cpu); 0.07565s (thread); 0s (gc)
      │ │ │ + -- used 0.0599167s (cpu); 0.0593654s (thread); 0s (gc)
      │ │ │  
      │ │ │  o10 = true
      │ │ │
      │ │ │
      i11 : time fVector R10
      │ │ │ - -- used 0.177179s (cpu); 0.083325s (thread); 0s (gc)
      │ │ │ + -- used 0.231166s (cpu); 0.0824804s (thread); 0s (gc)
      │ │ │  
      │ │ │  o11 = HashTable{0 => 1 }
      │ │ │                  1 => 10
      │ │ │                  2 => 45
      │ │ │                  3 => 75
      │ │ │                  4 => 30
      │ │ │                  5 => 1
      │ │ │ @@ -182,15 +182,15 @@
      │ │ │  
      │ │ │  o12 : List
      │ │ │
      │ │ │
      i13 : time fVector R10
      │ │ │ - -- used 0.000406302s (cpu); 0.000208892s (thread); 0s (gc)
      │ │ │ + -- used 0.000375522s (cpu); 0.000216701s (thread); 0s (gc)
      │ │ │  
      │ │ │  o13 = HashTable{0 => 1 }
      │ │ │                  1 => 10
      │ │ │                  2 => 45
      │ │ │                  3 => 75
      │ │ │                  4 => 30
      │ │ │                  5 => 1
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -71,19 +71,19 @@
      │ │ │ │  o8 : Matroid
      │ │ │ │  i9 : keys R10.cache
      │ │ │ │  
      │ │ │ │  o9 = {groundSet, rankFunction, storedRepresentation}
      │ │ │ │  
      │ │ │ │  o9 : List
      │ │ │ │  i10 : time isWellDefined R10
      │ │ │ │ - -- used 0.077174s (cpu); 0.07565s (thread); 0s (gc)
      │ │ │ │ + -- used 0.0599167s (cpu); 0.0593654s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │  o10 = true
      │ │ │ │  i11 : time fVector R10
      │ │ │ │ - -- used 0.177179s (cpu); 0.083325s (thread); 0s (gc)
      │ │ │ │ + -- used 0.231166s (cpu); 0.0824804s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │  o11 = HashTable{0 => 1 }
      │ │ │ │                  1 => 10
      │ │ │ │                  2 => 45
      │ │ │ │                  3 => 75
      │ │ │ │                  4 => 30
      │ │ │ │                  5 => 1
      │ │ │ │ @@ -93,15 +93,15 @@
      │ │ │ │  
      │ │ │ │  o12 = {hyperplanes, flatsRelationsTable, rankFunction, ideal, ranks, flats,
      │ │ │ │        -----------------------------------------------------------------------
      │ │ │ │        groundSet, dual, storedRepresentation}
      │ │ │ │  
      │ │ │ │  o12 : List
      │ │ │ │  i13 : time fVector R10
      │ │ │ │ - -- used 0.000406302s (cpu); 0.000208892s (thread); 0s (gc)
      │ │ │ │ + -- used 0.000375522s (cpu); 0.000216701s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │  o13 = HashTable{0 => 1 }
      │ │ │ │                  1 => 10
      │ │ │ │                  2 => 45
      │ │ │ │                  3 => 75
      │ │ │ │                  4 => 30
      │ │ │ │                  5 => 1
      │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_all__Minors.html
      │ │ │ @@ -92,15 +92,15 @@
      │ │ │  
      │ │ │  o2 : Matroid
      │ │ │
      │ │ │
      i3 : elapsedTime L = allMinors(V, U25);
      │ │ │ - -- .111077s elapsed
      │ │ │ + -- .0697356s elapsed │ │ │
      │ │ │
      i4 : #L
      │ │ │  
      │ │ │  o4 = 64
      │ │ │ ├── html2text {} │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ o1 : Matroid │ │ │ │ i2 : U25 = uniformMatroid(2,5) │ │ │ │ │ │ │ │ o2 = a "matroid" of rank 2 on 5 elements │ │ │ │ │ │ │ │ o2 : Matroid │ │ │ │ i3 : elapsedTime L = allMinors(V, U25); │ │ │ │ - -- .111077s elapsed │ │ │ │ + -- .0697356s elapsed │ │ │ │ i4 : #L │ │ │ │ │ │ │ │ o4 = 64 │ │ │ │ i5 : netList L_{0..4} │ │ │ │ │ │ │ │ +----------+-------+ │ │ │ │ o5 = |set {5, 3}|set {2}| │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_get__Isos.html │ │ │ @@ -135,15 +135,15 @@ │ │ │ │ │ │ o6 : Matroid │ │ │
      │ │ │
      i7 : time autF7 = getIsos(F7, F7);
      │ │ │ - -- used 0.121357s (cpu); 0.0623868s (thread); 0s (gc)
      │ │ │ + -- used 0.14948s (cpu); 0.0659898s (thread); 0s (gc) │ │ │
      │ │ │
      i8 : #autF7
      │ │ │  
      │ │ │  o8 = 168
      │ │ │ ├── html2text {} │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ symmetric group S_7: │ │ │ │ i6 : F7 = specificMatroid "fano" │ │ │ │ │ │ │ │ o6 = a "matroid" of rank 3 on 7 elements │ │ │ │ │ │ │ │ o6 : Matroid │ │ │ │ i7 : time autF7 = getIsos(F7, F7); │ │ │ │ - -- used 0.121357s (cpu); 0.0623868s (thread); 0s (gc) │ │ │ │ + -- used 0.14948s (cpu); 0.0659898s (thread); 0s (gc) │ │ │ │ i8 : #autF7 │ │ │ │ │ │ │ │ o8 = 168 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_o_m_o_r_p_h_i_s_m_(_M_a_t_r_o_i_d_,_M_a_t_r_o_i_d_) -- computes an isomorphism between │ │ │ │ isomorphic matroids │ │ │ │ * _q_u_i_c_k_I_s_o_m_o_r_p_h_i_s_m_T_e_s_t -- quick checks for isomorphism between matroids │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_has__Minor.html │ │ │ @@ -96,15 +96,15 @@ │ │ │ │ │ │ o2 = false │ │ │
      │ │ │
      i3 : time hasMinor(M6, M5)
      │ │ │ - -- used 1.76467s (cpu); 1.25038s (thread); 0s (gc)
      │ │ │ + -- used 1.99389s (cpu); 1.23941s (thread); 0s (gc)
      │ │ │  
      │ │ │  o3 = true
      │ │ │
      │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -34,15 +34,15 @@ │ │ │ │ elements, a "matroid" of rank 5 on 15 elements) │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : hasMinor(M4, uniformMatroid(2,4)) │ │ │ │ │ │ │ │ o2 = false │ │ │ │ i3 : time hasMinor(M6, M5) │ │ │ │ - -- used 1.76467s (cpu); 1.25038s (thread); 0s (gc) │ │ │ │ + -- used 1.99389s (cpu); 1.23941s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_i_n_o_r -- minor of matroid │ │ │ │ * _i_s_B_i_n_a_r_y -- whether a matroid is representable over F_2 │ │ │ │ ********** WWaayyss ttoo uussee hhaassMMiinnoorr:: ********** │ │ │ │ * hasMinor(Matroid,Matroid) │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_isomorphism_lp__Matroid_cm__Matroid_rp.html │ │ │ @@ -118,15 +118,15 @@ │ │ │ │ │ │ o4 : Matroid
    │ │ │
    │ │ │
    i5 : time isomorphism(M5, minorM6)
    │ │ │ - -- used 0.0159915s (cpu); 0.0134391s (thread); 0s (gc)
    │ │ │ + -- used 0.0159846s (cpu); 0.0142553s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HashTable{0 => 1}
    │ │ │                 1 => 0
    │ │ │                 2 => 3
    │ │ │                 3 => 2
    │ │ │                 4 => 6
    │ │ │                 5 => 5
    │ │ │ @@ -164,15 +164,15 @@
    │ │ │  
    │ │ │  o7 : Matroid
    │ │ │
    │ │ │
    i8 : time phi = isomorphism(N,M6)
    │ │ │ - -- used 4.44315s (cpu); 2.84198s (thread); 0s (gc)
    │ │ │ + -- used 4.79236s (cpu); 2.71733s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = HashTable{0 => 11 }
    │ │ │                 1 => 0
    │ │ │                 2 => 1
    │ │ │                 3 => 6
    │ │ │                 4 => 9
    │ │ │                 5 => 8
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -40,15 +40,15 @@
    │ │ │ │  o3 : Sequence
    │ │ │ │  i4 : minorM6 = minor(M6, set{8}, set{4,5,6,7})
    │ │ │ │  
    │ │ │ │  o4 = a "matroid" of rank 4 on 10 elements
    │ │ │ │  
    │ │ │ │  o4 : Matroid
    │ │ │ │  i5 : time isomorphism(M5, minorM6)
    │ │ │ │ - -- used 0.0159915s (cpu); 0.0134391s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0159846s (cpu); 0.0142553s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = HashTable{0 => 1}
    │ │ │ │                 1 => 0
    │ │ │ │                 2 => 3
    │ │ │ │                 3 => 2
    │ │ │ │                 4 => 6
    │ │ │ │                 5 => 5
    │ │ │ │ @@ -74,15 +74,15 @@
    │ │ │ │  o6 : HashTable
    │ │ │ │  i7 : N = relabel M6
    │ │ │ │  
    │ │ │ │  o7 = a "matroid" of rank 5 on 15 elements
    │ │ │ │  
    │ │ │ │  o7 : Matroid
    │ │ │ │  i8 : time phi = isomorphism(N,M6)
    │ │ │ │ - -- used 4.44315s (cpu); 2.84198s (thread); 0s (gc)
    │ │ │ │ + -- used 4.79236s (cpu); 2.71733s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = HashTable{0 => 11 }
    │ │ │ │                 1 => 0
    │ │ │ │                 2 => 1
    │ │ │ │                 3 => 6
    │ │ │ │                 4 => 9
    │ │ │ │                 5 => 8
    │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_quick__Isomorphism__Test.html
    │ │ │ @@ -137,15 +137,15 @@
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    │ │ │
    i10 : time quickIsomorphismTest(M0, M1)
    │ │ │ - -- used 0.000917851s (cpu); 0.000605195s (thread); 0s (gc)
    │ │ │ + -- used 0.0012998s (cpu); 0.000547039s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = false
    │ │ │
    │ │ │
    i11 : value oo === false
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -51,15 +51,15 @@
    │ │ │ │  o7 = a "matroid" of rank 7 on 11 elements
    │ │ │ │  
    │ │ │ │  o7 : Matroid
    │ │ │ │  i8 : R = ZZ[x,y]; tuttePolynomial(M0, R) == tuttePolynomial(M1, R)
    │ │ │ │  
    │ │ │ │  o9 = true
    │ │ │ │  i10 : time quickIsomorphismTest(M0, M1)
    │ │ │ │ - -- used 0.000917851s (cpu); 0.000605195s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0012998s (cpu); 0.000547039s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = false
    │ │ │ │  i11 : value oo === false
    │ │ │ │  
    │ │ │ │  o11 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _i_s_o_m_o_r_p_h_i_s_m_(_M_a_t_r_o_i_d_,_M_a_t_r_o_i_d_) -- computes an isomorphism between
    │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_set__Representation.html
    │ │ │ @@ -126,15 +126,15 @@
    │ │ │  
    │ │ │  o5 : List
    │ │ │
    │ │ │
    i6 : elapsedTime fVector M
    │ │ │ - -- .0133096s elapsed
    │ │ │ + -- .013409s elapsed
    │ │ │  
    │ │ │  o6 = HashTable{0 => 1 }
    │ │ │                 1 => 6
    │ │ │                 2 => 15
    │ │ │                 3 => 20
    │ │ │                 4 => 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -48,15 +48,15 @@
    │ │ │ │  o4 : Matrix QQ  <-- QQ
    │ │ │ │  i5 : keys M.cache
    │ │ │ │  
    │ │ │ │  o5 = {groundSet, rankFunction, storedRepresentation}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : elapsedTime fVector M
    │ │ │ │ - -- .0133096s elapsed
    │ │ │ │ + -- .013409s elapsed
    │ │ │ │  
    │ │ │ │  o6 = HashTable{0 => 1 }
    │ │ │ │                 1 => 6
    │ │ │ │                 2 => 15
    │ │ │ │                 3 => 20
    │ │ │ │                 4 => 1
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/___Hybrid.out
    │ │ │ @@ -5,16 +5,16 @@
    │ │ │  i2 : R = ZZ/101[w..z];
    │ │ │  
    │ │ │  i3 : I = ideal(w*x^2-42*y*z, x^6+12*w*y+x^3*z, w^2-47*x^4*z-47*x*z^2);
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : elapsedTime minimalPrimes(ideal I_*, Strategy => Hybrid{Linear,Birational,Factorization,DecomposeMonomials}, Verbosity => 2);
    │ │ │ -  Strategy: Linear            (time .000975029)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Birational        (time .01961)    #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Factorization     (time .000355446)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: DecomposeMonomials(time .000024205)  #primes = 1 #prunedViaCodim = 0
    │ │ │ +  Strategy: Linear            (time .0014486)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Birational        (time .0456538)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Factorization     (time .000384685)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: DecomposeMonomials(time .000020797)  #primes = 1 #prunedViaCodim = 0
    │ │ │   -- Converting annotated ideals to ideals and selecting minimal primes...
    │ │ │ - --  Time taken : .000744596
    │ │ │ - -- .0495058s elapsed
    │ │ │ + --  Time taken : .000781774
    │ │ │ + -- .0306567s elapsed
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical.out
    │ │ │ @@ -30,21 +30,21 @@
    │ │ │  
    │ │ │               2        2   3     2
    │ │ │  o5 = ideal (c , a*c, a , b , a*b )
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │  
    │ │ │  i6 : elapsedTime radical(ideal I_*, Strategy => Monomial)
    │ │ │ - -- .000429381s elapsed
    │ │ │ + -- .000569825s elapsed
    │ │ │  
    │ │ │  o6 = ideal (a, b, c)
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : elapsedTime radical(ideal I_*, Unmixed => true)
    │ │ │ - -- .0174113s elapsed
    │ │ │ + -- .0143654s elapsed
    │ │ │  
    │ │ │  o7 = ideal (c, b, a)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical__Containment.out
    │ │ │ @@ -29,22 +29,22 @@
    │ │ │  o5 = 840
    │ │ │  
    │ │ │  i6 : x_0^(D-1) % I != 0 and x_0^D % I == 0
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : elapsedTime radicalContainment(x_0, I)
    │ │ │ - -- .0676229s elapsed
    │ │ │ + -- .0789684s elapsed
    │ │ │  
    │ │ │  o7 = true
    │ │ │  
    │ │ │  i8 : elapsedTime radicalContainment(x_0, I, Strategy => "Kollar")
    │ │ │ - -- .00169895s elapsed
    │ │ │ + -- .00356173s elapsed
    │ │ │  
    │ │ │  o8 = true
    │ │ │  
    │ │ │  i9 : elapsedTime radicalContainment(x_n, I, Strategy => "Kollar")
    │ │ │ - -- .00237249s elapsed
    │ │ │ + -- .00266693s elapsed
    │ │ │  
    │ │ │  o9 = false
    │ │ │  
    │ │ │  i10 :
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/html/___Hybrid.html
    │ │ │ @@ -72,21 +72,21 @@
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │
    │ │ │
    i4 : elapsedTime minimalPrimes(ideal I_*, Strategy => Hybrid{Linear,Birational,Factorization,DecomposeMonomials}, Verbosity => 2);
    │ │ │ -  Strategy: Linear            (time .000975029)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Birational        (time .01961)    #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Factorization     (time .000355446)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: DecomposeMonomials(time .000024205)  #primes = 1 #prunedViaCodim = 0
    │ │ │ +  Strategy: Linear            (time .0014486)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Birational        (time .0456538)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Factorization     (time .000384685)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: DecomposeMonomials(time .000020797)  #primes = 1 #prunedViaCodim = 0
    │ │ │   -- Converting annotated ideals to ideals and selecting minimal primes...
    │ │ │ - --  Time taken : .000744596
    │ │ │ - -- .0495058s elapsed
    │ │ │ + -- Time taken : .000781774 │ │ │ + -- .0306567s elapsed │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -11,24 +11,23 @@ │ │ │ │ i1 : debug MinimalPrimes │ │ │ │ i2 : R = ZZ/101[w..z]; │ │ │ │ i3 : I = ideal(w*x^2-42*y*z, x^6+12*w*y+x^3*z, w^2-47*x^4*z-47*x*z^2); │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : elapsedTime minimalPrimes(ideal I_*, Strategy => Hybrid │ │ │ │ {Linear,Birational,Factorization,DecomposeMonomials}, Verbosity => 2); │ │ │ │ - Strategy: Linear (time .000975029) #primes = 0 #prunedViaCodim = │ │ │ │ + Strategy: Linear (time .0014486) #primes = 0 #prunedViaCodim = 0 │ │ │ │ + Strategy: Birational (time .0456538) #primes = 0 #prunedViaCodim = 0 │ │ │ │ + Strategy: Factorization (time .000384685) #primes = 0 #prunedViaCodim = │ │ │ │ 0 │ │ │ │ - Strategy: Birational (time .01961) #primes = 0 #prunedViaCodim = 0 │ │ │ │ - Strategy: Factorization (time .000355446) #primes = 0 #prunedViaCodim = │ │ │ │ -0 │ │ │ │ - Strategy: DecomposeMonomials(time .000024205) #primes = 1 #prunedViaCodim = │ │ │ │ + Strategy: DecomposeMonomials(time .000020797) #primes = 1 #prunedViaCodim = │ │ │ │ 0 │ │ │ │ -- Converting annotated ideals to ideals and selecting minimal primes... │ │ │ │ - -- Time taken : .000744596 │ │ │ │ - -- .0495058s elapsed │ │ │ │ + -- Time taken : .000781774 │ │ │ │ + -- .0306567s elapsed │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _p_r_i_m_a_r_y_D_e_c_o_m_p_o_s_i_t_i_o_n_(_._._._,_S_t_r_a_t_e_g_y_=_>_._._._) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _H_y_b_r_i_d is a _s_e_l_f_ _i_n_i_t_i_a_l_i_z_i_n_g_ _t_y_p_e, with ancestor classes _L_i_s_t < │ │ │ │ _V_i_s_i_b_l_e_L_i_s_t < _B_a_s_i_c_L_i_s_t < _T_h_i_n_g. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical.html │ │ │ @@ -131,25 +131,25 @@ │ │ │ │ │ │ o5 : Ideal of R
    │ │ │
    │ │ │
    i6 : elapsedTime radical(ideal I_*, Strategy => Monomial)
    │ │ │ - -- .000429381s elapsed
    │ │ │ + -- .000569825s elapsed
    │ │ │  
    │ │ │  o6 = ideal (a, b, c)
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │
    │ │ │
    i7 : elapsedTime radical(ideal I_*, Unmixed => true)
    │ │ │ - -- .0174113s elapsed
    │ │ │ + -- .0143654s elapsed
    │ │ │  
    │ │ │  o7 = ideal (c, b, a)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -62,21 +62,21 @@ │ │ │ │ i5 : I = intersect(ideal(a^2,b^2,c), ideal(a,b^3,c^2)) │ │ │ │ │ │ │ │ 2 2 3 2 │ │ │ │ o5 = ideal (c , a*c, a , b , a*b ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : elapsedTime radical(ideal I_*, Strategy => Monomial) │ │ │ │ - -- .000429381s elapsed │ │ │ │ + -- .000569825s elapsed │ │ │ │ │ │ │ │ o6 = ideal (a, b, c) │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : elapsedTime radical(ideal I_*, Unmixed => true) │ │ │ │ - -- .0174113s elapsed │ │ │ │ + -- .0143654s elapsed │ │ │ │ │ │ │ │ o7 = ideal (c, b, a) │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ For another example, see _P_r_i_m_a_r_y_D_e_c_o_m_p_o_s_i_t_i_o_n. │ │ │ │ ********** RReeffeerreenncceess ********** │ │ │ │ Eisenbud, Huneke, Vasconcelos, Invent. Math. 110 207-235 (1992). │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical__Containment.html │ │ │ @@ -125,31 +125,31 @@ │ │ │ │ │ │ o6 = true
    │ │ │
    │ │ │
    i7 : elapsedTime radicalContainment(x_0, I)
    │ │ │ - -- .0676229s elapsed
    │ │ │ + -- .0789684s elapsed
    │ │ │  
    │ │ │  o7 = true
    │ │ │
    │ │ │
    i8 : elapsedTime radicalContainment(x_0, I, Strategy => "Kollar")
    │ │ │ - -- .00169895s elapsed
    │ │ │ + -- .00356173s elapsed
    │ │ │  
    │ │ │  o8 = true
    │ │ │
    │ │ │
    i9 : elapsedTime radicalContainment(x_n, I, Strategy => "Kollar")
    │ │ │ - -- .00237249s elapsed
    │ │ │ + -- .00266693s elapsed
    │ │ │  
    │ │ │  o9 = false
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -50,23 +50,23 @@ │ │ │ │ i5 : D = product(I_*/degree/sum) │ │ │ │ │ │ │ │ o5 = 840 │ │ │ │ i6 : x_0^(D-1) % I != 0 and x_0^D % I == 0 │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : elapsedTime radicalContainment(x_0, I) │ │ │ │ - -- .0676229s elapsed │ │ │ │ + -- .0789684s elapsed │ │ │ │ │ │ │ │ o7 = true │ │ │ │ i8 : elapsedTime radicalContainment(x_0, I, Strategy => "Kollar") │ │ │ │ - -- .00169895s elapsed │ │ │ │ + -- .00356173s elapsed │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : elapsedTime radicalContainment(x_n, I, Strategy => "Kollar") │ │ │ │ - -- .00237249s elapsed │ │ │ │ + -- .00266693s elapsed │ │ │ │ │ │ │ │ o9 = false │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_d_i_c_a_l -- the radical of an ideal │ │ │ │ ********** WWaayyss ttoo uussee rraaddiiccaallCCoonnttaaiinnmmeenntt:: ********** │ │ │ │ * radicalContainment(Ideal,Ideal) │ │ │ │ * radicalContainment(RingElement,Ideal) │ │ ├── ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal.out │ │ │ @@ -57,29 +57,29 @@ │ │ │ i9 : J = ideal vars U │ │ │ │ │ │ o9 = ideal (a, b, c) │ │ │ │ │ │ o9 : Ideal of U │ │ │ │ │ │ i10 : time multiReesIdeal J │ │ │ - -- used 0.14126s (cpu); 0.0850548s (thread); 0s (gc) │ │ │ + -- used 0.348128s (cpu); 0.103406s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o10 = ideal (c*X - b*X , b*X - a*X , a*X - c*X , c*X - a*X , b*X - c*X , │ │ │ 1 2 1 2 1 2 0 2 0 2 │ │ │ ----------------------------------------------------------------------- │ │ │ 2 2 2 │ │ │ a*X - b*X , X - X X , X X - X , X - X X ) │ │ │ 0 2 1 0 2 0 1 2 0 1 2 │ │ │ │ │ │ o10 : Ideal of U[X ..X ] │ │ │ 0 2 │ │ │ │ │ │ i11 : time multiReesIdeal (J, a) │ │ │ - -- used 0.0901457s (cpu); 0.0329154s (thread); 0s (gc) │ │ │ + -- used 0.122807s (cpu); 0.0322309s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o11 = ideal (c*X - b*X , b*X - a*X , a*X - c*X , c*X - a*X , b*X - c*X , │ │ │ 1 2 1 2 1 2 0 2 0 2 │ │ │ ----------------------------------------------------------------------- │ │ │ 2 2 2 │ │ │ a*X - b*X , X - X X , X X - X , X - X X ) │ │ ├── ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal.html │ │ │ @@ -173,15 +173,15 @@ │ │ │ │ │ │ o9 : Ideal of U
    │ │ │
    │ │ │
    i10 : time multiReesIdeal J
    │ │ │ - -- used 0.14126s (cpu); 0.0850548s (thread); 0s (gc)
    │ │ │ + -- used 0.348128s (cpu); 0.103406s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                               
    │ │ │  o10 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │                  1      2     1      2     1      2     0      2     0      2 
    │ │ │        -----------------------------------------------------------------------
    │ │ │                      2                 2   2
    │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ │ @@ -190,15 +190,15 @@
    │ │ │  o10 : Ideal of U[X ..X ]
    │ │ │                    0   2
    │ │ │
    │ │ │
    i11 : time multiReesIdeal (J, a)
    │ │ │ - -- used 0.0901457s (cpu); 0.0329154s (thread); 0s (gc)
    │ │ │ + -- used 0.122807s (cpu); 0.0322309s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                               
    │ │ │  o11 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │                  1      2     1      2     1      2     0      2     0      2 
    │ │ │        -----------------------------------------------------------------------
    │ │ │                      2                 2   2
    │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -79,28 +79,28 @@
    │ │ │ │  i8 : U = T/minors(2,m);
    │ │ │ │  i9 : J = ideal vars U
    │ │ │ │  
    │ │ │ │  o9 = ideal (a, b, c)
    │ │ │ │  
    │ │ │ │  o9 : Ideal of U
    │ │ │ │  i10 : time multiReesIdeal J
    │ │ │ │ - -- used 0.14126s (cpu); 0.0850548s (thread); 0s (gc)
    │ │ │ │ + -- used 0.348128s (cpu); 0.103406s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o10 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │ │                  1      2     1      2     1      2     0      2     0      2
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │                      2                 2   2
    │ │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ │ │           0      2   1    0 2   0 1    2   0    1 2
    │ │ │ │  
    │ │ │ │  o10 : Ideal of U[X ..X ]
    │ │ │ │                    0   2
    │ │ │ │  i11 : time multiReesIdeal (J, a)
    │ │ │ │ - -- used 0.0901457s (cpu); 0.0329154s (thread); 0s (gc)
    │ │ │ │ + -- used 0.122807s (cpu); 0.0322309s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o11 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │ │                  1      2     1      2     1      2     0      2     0      2
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │                      2                 2   2
    │ │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ ├── ./usr/share/doc/Macaulay2/ModuleDeformations/example-output/_deform__M__C__M__Module_lp__Module_rp.out
    │ │ │ @@ -40,15 +40,15 @@
    │ │ │  
    │ │ │  o7 = image | x2 y2 |
    │ │ │  
    │ │ │                               1
    │ │ │  o7 : R-module, submodule of R
    │ │ │  
    │ │ │  i8 : (S,N) = time deformMCMModule N0 
    │ │ │ - -- used 0.431533s (cpu); 0.30545s (thread); 0s (gc)
    │ │ │ + -- used 0.55811s (cpu); 0.364492s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = (S, cokernel {6} | x2-xxi_2-xi_1+xi_2^2-yxi_4^2-2xi_3xi_4^2+xi_2xi_4^3
    │ │ │                    {8} | xxi_4-y+xi_3                                       
    │ │ │       ------------------------------------------------------------------------
    │ │ │       xyxi_4+2xxi_3xi_4-xxi_2xi_4^2+y2+yxi_3+xi_3^2-xi_1xi_4^2 |)
    │ │ │       -x2-xxi_2-xi_1                                           |
    │ │ │  
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │  o10 = cokernel | x2 y2  |
    │ │ │                 | -y -x2 |
    │ │ │  
    │ │ │                               2
    │ │ │  o10 : R-module, quotient of R
    │ │ │  
    │ │ │  i11 : (S',N') = time deformMCMModule N0'
    │ │ │ - -- used 0.654654s (cpu); 0.513161s (thread); 0s (gc)
    │ │ │ + -- used 0.772972s (cpu); 0.552642s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = (S', cokernel | x2-xxi_4^3-xxi_2+xi_2xi_4^3-3xi_3xi_4^2+xi_2^2-xi_1
    │ │ │                      | xxi_4-y+xi_3                                       
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x2xi_4^2+xyxi_4+2xxi_3xi_4+y2+yxi_3+xi_3^2 |)
    │ │ │        -x2-xxi_2-xi_1                             |
    │ │ ├── ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module_lp__Module_rp.html
    │ │ │ @@ -145,15 +145,15 @@
    │ │ │                               1
    │ │ │  o7 : R-module, submodule of R
    │ │ │
    │ │ │
    i8 : (S,N) = time deformMCMModule N0 
    │ │ │ - -- used 0.431533s (cpu); 0.30545s (thread); 0s (gc)
    │ │ │ + -- used 0.55811s (cpu); 0.364492s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = (S, cokernel {6} | x2-xxi_2-xi_1+xi_2^2-yxi_4^2-2xi_3xi_4^2+xi_2xi_4^3
    │ │ │                    {8} | xxi_4-y+xi_3                                       
    │ │ │       ------------------------------------------------------------------------
    │ │ │       xyxi_4+2xxi_3xi_4-xxi_2xi_4^2+y2+yxi_3+xi_3^2-xi_1xi_4^2 |)
    │ │ │       -x2-xxi_2-xi_1                                           |
    │ │ │  
    │ │ │ @@ -186,15 +186,15 @@
    │ │ │                               2
    │ │ │  o10 : R-module, quotient of R
    │ │ │
    │ │ │
    i11 : (S',N') = time deformMCMModule N0'
    │ │ │ - -- used 0.654654s (cpu); 0.513161s (thread); 0s (gc)
    │ │ │ + -- used 0.772972s (cpu); 0.552642s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = (S', cokernel | x2-xxi_4^3-xxi_2+xi_2xi_4^3-3xi_3xi_4^2+xi_2^2-xi_1
    │ │ │                      | xxi_4-y+xi_3                                       
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x2xi_4^2+xyxi_4+2xxi_3xi_4+y2+yxi_3+xi_3^2 |)
    │ │ │        -x2-xxi_2-xi_1                             |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -70,15 +70,15 @@
    │ │ │ │  i7 : N0 = module ideal (x^2,y^2)
    │ │ │ │  
    │ │ │ │  o7 = image | x2 y2 |
    │ │ │ │  
    │ │ │ │                               1
    │ │ │ │  o7 : R-module, submodule of R
    │ │ │ │  i8 : (S,N) = time deformMCMModule N0
    │ │ │ │ - -- used 0.431533s (cpu); 0.30545s (thread); 0s (gc)
    │ │ │ │ + -- used 0.55811s (cpu); 0.364492s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = (S, cokernel {6} | x2-xxi_2-xi_1+xi_2^2-yxi_4^2-2xi_3xi_4^2+xi_2xi_4^3
    │ │ │ │                    {8} | xxi_4-y+xi_3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       xyxi_4+2xxi_3xi_4-xxi_2xi_4^2+y2+yxi_3+xi_3^2-xi_1xi_4^2 |)
    │ │ │ │       -x2-xxi_2-xi_1                                           |
    │ │ │ │  
    │ │ │ │ @@ -103,15 +103,15 @@
    │ │ │ │  
    │ │ │ │  o10 = cokernel | x2 y2  |
    │ │ │ │                 | -y -x2 |
    │ │ │ │  
    │ │ │ │                               2
    │ │ │ │  o10 : R-module, quotient of R
    │ │ │ │  i11 : (S',N') = time deformMCMModule N0'
    │ │ │ │ - -- used 0.654654s (cpu); 0.513161s (thread); 0s (gc)
    │ │ │ │ + -- used 0.772972s (cpu); 0.552642s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o11 = (S', cokernel | x2-xxi_4^3-xxi_2+xi_2xi_4^3-3xi_3xi_4^2+xi_2^2-xi_1
    │ │ │ │                      | xxi_4-y+xi_3
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │        x2xi_4^2+xyxi_4+2xxi_3xi_4+y2+yxi_3+xi_3^2 |)
    │ │ │ │        -x2-xxi_2-xi_1                             |
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_dynamic__Flower__Solve.out
    │ │ │ @@ -3,27 +3,27 @@
    │ │ │  i1 : R = CC[a,b,c,d][x,y];
    │ │ │  
    │ │ │  i2 : polys = polySystem {a*x+b*y^2,c*x*y+d};
    │ │ │  
    │ │ │  i3 : (p0, x0) = createSeedPair polys;
    │ │ │  
    │ │ │  i4 : (L, npaths) = dynamicFlowerSolve(polys.PolyMap,p0,{x0})
    │ │ │ - -- .00311573s elapsed
    │ │ │ - -- .00283883s elapsed
    │ │ │ - -- .000324065s elapsed
    │ │ │ - -- .00284892s elapsed
    │ │ │ - -- .00294607s elapsed
    │ │ │ - -- .000298176s elapsed
    │ │ │ - -- .00286122s elapsed
    │ │ │ - -- .00290687s elapsed
    │ │ │ - -- .000226291s elapsed
    │ │ │ - -- .00292072s elapsed
    │ │ │ - -- .00297273s elapsed
    │ │ │ - -- .000231462s elapsed
    │ │ │ ---backup directory created: /tmp/M2-33427-0/1
    │ │ │ + -- .00497731s elapsed
    │ │ │ + -- .00352235s elapsed
    │ │ │ + -- .000396471s elapsed
    │ │ │ + -- .00344924s elapsed
    │ │ │ + -- .00356156s elapsed
    │ │ │ + -- .000314268s elapsed
    │ │ │ + -- .00347427s elapsed
    │ │ │ + -- .00349736s elapsed
    │ │ │ + -- .000288396s elapsed
    │ │ │ + -- .00474868s elapsed
    │ │ │ + -- .00431506s elapsed
    │ │ │ + -- .000426046s elapsed
    │ │ │ +--backup directory created: /tmp/M2-49366-0/1
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 2
    │ │ │  found 1 points in the fiber so far
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 4
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_monodromy__Group.out
    │ │ │ @@ -15,128 +15,128 @@
    │ │ │  
    │ │ │  i7 : dLoss = diff(varMatrix, gateMatrix{{loss}});
    │ │ │  
    │ │ │  i8 : G = gateSystem(paramMatrix,varMatrix,transpose dLoss);
    │ │ │  
    │ │ │  i9 : monodromyGroup(G,"msOptions" => {NumberOfEdges=>10})
    │ │ │  
    │ │ │ -o9 = {{2, 0, 11, 3, 10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19,
    │ │ │ +o9 = {{16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18,
    │ │ │ +     4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 4, 6}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │ +     17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0, 12, 10, 15, 13, 6, 17, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18,
    │ │ │ +     18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 20, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 19, 15, 17, 3}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
    │ │ │ +     18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 0, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 16, 17, 18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8,
    │ │ │ +     3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7, 15, 8, 10, 11, 17, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 15, 12, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12,
    │ │ │ +     14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 14, 15, 16, 17, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10,
    │ │ │ +     2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4, 7, 6, 11, 1, 9, 0, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16,
    │ │ │ +     10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 7, 8, 15, 14, 6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15,
    │ │ │ +     7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6,
    │ │ │ +     11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4, 16, 14, 3, 5, 2, 7, 8, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     2, 13, 11, 9, 8, 10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15,
    │ │ │ +     11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20}, {12, 16, 7, 17, 10, 9, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5,
    │ │ │ +     4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 11, 2, 3, 10, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 7, 10, 4, 13, 11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4,
    │ │ │ +     14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18, 19, 20}, {16, 14, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 11, 14, 5, 2, 1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7,
    │ │ │ +     8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, 4}, {2, 0, 11, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 16, 9, 0, 4, 11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1,
    │ │ │ +     10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 1, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6},
    │ │ │ +     19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {17, 16, 14, 9, 8, 7, 12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18,
    │ │ │ +     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18,
    │ │ │ +     1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 4, 6}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
    │ │ │ +     {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12,
    │ │ │ +     20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 18, 19, 20}, {0, 9, 2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15,
    │ │ │ +     19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12, 13, 14, 15, 16, 17,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 17, 18, 19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0,
    │ │ │ +     18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 19, 13, 20, 6, 9, 4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8,
    │ │ │ +     16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16, 10, 7, 8, 15, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 15, 12, 17, 18, 19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17,
    │ │ │ +     6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 2, 13, 20, 8, 18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10,
    │ │ │ +     14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6, 2, 13, 11, 9, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 5, 13, 14, 3, 16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10,
    │ │ │ +     10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4,
    │ │ │ +     3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5, 9, 7, 10, 4, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5,
    │ │ │ +     11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4, 10, 11, 14, 5, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 6, 10, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1,
    │ │ │ +     1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7, 17, 16, 9, 0, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     4, 10, 2, 6, 11, 14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5,
    │ │ │ +     11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19,
    │ │ │ +     5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {17, 16, 14, 9, 8, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 11, 14, 5, 15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3,
    │ │ │ +     12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18, 19}, {1, 16, 12, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2,
    │ │ │ +     11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {0, 1, 2, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12,
    │ │ │ +     4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {2, 0, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     1, 3, 19, 0, 11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6},
    │ │ │ +     3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4,
    │ │ │ +     2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6}, {4, 1, 2, 3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18,
    │ │ │ +     {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │ +     4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8, 14, 15, 12, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 9, 4, 6}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3,
    │ │ │ +     19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17, 10, 2, 13, 20, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 15, 6, 9, 4}, {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10,
    │ │ │ +     18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 16, 18, 9, 4, 6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16,
    │ │ │ +     16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 12, 17, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17,
    │ │ │ +     18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 14, 20, 16, 18, 9, 4, 6}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5,
    │ │ │ +     13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5, 8, 6, 10, 7, 12,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 0, 10, 19, 13, 20, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11,
    │ │ │ +     13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1, 4, 10, 2, 6, 11,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 13, 14, 18, 16, 19, 15, 17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0,
    │ │ │ +     14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 10, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1,
    │ │ │ +     11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19, 10, 11, 14, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 0, 5, 10, 2, 13, 20, 8, 18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19,
    │ │ │ +     15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3, 10, 5, 14, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 8, 10, 20, 5, 0, 14, 3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7,
    │ │ │ +     8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 5, 6,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 8, 10, 11, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9,
    │ │ │ +     7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 1, 3, 19, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4,
    │ │ │ +     11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6}, {0, 1, 3, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19,
    │ │ │ +     12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {4, 1, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2,
    │ │ │ +     3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18, 19, 20}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4,
    │ │ │ +     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 14, 3, 5, 2, 7, 8, 1, 11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20},
    │ │ │ +     1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, 16, 15, 6, 9, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18,
    │ │ │ +     {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10, 20, 16, 18, 9, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19}, {0, 11, 2, 3, 10, 4, 14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18,
    │ │ │ +     6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13,
    │ │ │ +     18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 6, 9, 4}}
    │ │ │ +     18, 9, 4, 6}}
    │ │ │  
    │ │ │  o9 : List
    │ │ │  
    │ │ │  i10 :
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/html/_dynamic__Flower__Solve.html
    │ │ │ @@ -96,27 +96,27 @@
    │ │ │              
    │ │ │
    i3 : (p0, x0) = createSeedPair polys;
    │ │ │
    │ │ │
    i4 : (L, npaths) = dynamicFlowerSolve(polys.PolyMap,p0,{x0})
    │ │ │ - -- .00311573s elapsed
    │ │ │ - -- .00283883s elapsed
    │ │ │ - -- .000324065s elapsed
    │ │ │ - -- .00284892s elapsed
    │ │ │ - -- .00294607s elapsed
    │ │ │ - -- .000298176s elapsed
    │ │ │ - -- .00286122s elapsed
    │ │ │ - -- .00290687s elapsed
    │ │ │ - -- .000226291s elapsed
    │ │ │ - -- .00292072s elapsed
    │ │ │ - -- .00297273s elapsed
    │ │ │ - -- .000231462s elapsed
    │ │ │ ---backup directory created: /tmp/M2-33427-0/1
    │ │ │ + -- .00497731s elapsed
    │ │ │ + -- .00352235s elapsed
    │ │ │ + -- .000396471s elapsed
    │ │ │ + -- .00344924s elapsed
    │ │ │ + -- .00356156s elapsed
    │ │ │ + -- .000314268s elapsed
    │ │ │ + -- .00347427s elapsed
    │ │ │ + -- .00349736s elapsed
    │ │ │ + -- .000288396s elapsed
    │ │ │ + -- .00474868s elapsed
    │ │ │ + -- .00431506s elapsed
    │ │ │ + -- .000426046s elapsed
    │ │ │ +--backup directory created: /tmp/M2-49366-0/1
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 2
    │ │ │  found 1 points in the fiber so far
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -22,27 +22,27 @@
    │ │ │ │            o npaths, an _i_n_t_e_g_e_r,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Output is verbose. For other dynamic strategies, see _M_o_n_o_d_r_o_m_y_S_o_l_v_e_r_O_p_t_i_o_n_s.
    │ │ │ │  i1 : R = CC[a,b,c,d][x,y];
    │ │ │ │  i2 : polys = polySystem {a*x+b*y^2,c*x*y+d};
    │ │ │ │  i3 : (p0, x0) = createSeedPair polys;
    │ │ │ │  i4 : (L, npaths) = dynamicFlowerSolve(polys.PolyMap,p0,{x0})
    │ │ │ │ - -- .00311573s elapsed
    │ │ │ │ - -- .00283883s elapsed
    │ │ │ │ - -- .000324065s elapsed
    │ │ │ │ - -- .00284892s elapsed
    │ │ │ │ - -- .00294607s elapsed
    │ │ │ │ - -- .000298176s elapsed
    │ │ │ │ - -- .00286122s elapsed
    │ │ │ │ - -- .00290687s elapsed
    │ │ │ │ - -- .000226291s elapsed
    │ │ │ │ - -- .00292072s elapsed
    │ │ │ │ - -- .00297273s elapsed
    │ │ │ │ - -- .000231462s elapsed
    │ │ │ │ ---backup directory created: /tmp/M2-33427-0/1
    │ │ │ │ + -- .00497731s elapsed
    │ │ │ │ + -- .00352235s elapsed
    │ │ │ │ + -- .000396471s elapsed
    │ │ │ │ + -- .00344924s elapsed
    │ │ │ │ + -- .00356156s elapsed
    │ │ │ │ + -- .000314268s elapsed
    │ │ │ │ + -- .00347427s elapsed
    │ │ │ │ + -- .00349736s elapsed
    │ │ │ │ + -- .000288396s elapsed
    │ │ │ │ + -- .00474868s elapsed
    │ │ │ │ + -- .00431506s elapsed
    │ │ │ │ + -- .000426046s elapsed
    │ │ │ │ +--backup directory created: /tmp/M2-49366-0/1
    │ │ │ │    H01: 1
    │ │ │ │    H10: 1
    │ │ │ │  number of paths tracked: 2
    │ │ │ │  found 1 points in the fiber so far
    │ │ │ │    H01: 1
    │ │ │ │    H10: 1
    │ │ │ │  number of paths tracked: 4
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/html/_monodromy__Group.html
    │ │ │ @@ -118,131 +118,131 @@
    │ │ │                
    i8 : G = gateSystem(paramMatrix,varMatrix,transpose dLoss);
    │ │ │
    │ │ │
    i9 : monodromyGroup(G,"msOptions" => {NumberOfEdges=>10})
    │ │ │  
    │ │ │ -o9 = {{2, 0, 11, 3, 10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19,
    │ │ │ +o9 = {{16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18,
    │ │ │ +     4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 4, 6}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │ +     17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0, 12, 10, 15, 13, 6, 17, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18,
    │ │ │ +     18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 20, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 19, 15, 17, 3}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
    │ │ │ +     18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 0, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 16, 17, 18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8,
    │ │ │ +     3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7, 15, 8, 10, 11, 17, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 15, 12, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12,
    │ │ │ +     14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 14, 15, 16, 17, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10,
    │ │ │ +     2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4, 7, 6, 11, 1, 9, 0, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16,
    │ │ │ +     10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 7, 8, 15, 14, 6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15,
    │ │ │ +     7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6,
    │ │ │ +     11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4, 16, 14, 3, 5, 2, 7, 8, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     2, 13, 11, 9, 8, 10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15,
    │ │ │ +     11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20}, {12, 16, 7, 17, 10, 9, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5,
    │ │ │ +     4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 11, 2, 3, 10, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 7, 10, 4, 13, 11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4,
    │ │ │ +     14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18, 19, 20}, {16, 14, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 11, 14, 5, 2, 1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7,
    │ │ │ +     8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, 4}, {2, 0, 11, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 16, 9, 0, 4, 11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1,
    │ │ │ +     10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 1, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6},
    │ │ │ +     19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {17, 16, 14, 9, 8, 7, 12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18,
    │ │ │ +     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18,
    │ │ │ +     1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 4, 6}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
    │ │ │ +     {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12,
    │ │ │ +     20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 18, 19, 20}, {0, 9, 2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15,
    │ │ │ +     19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12, 13, 14, 15, 16, 17,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 17, 18, 19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0,
    │ │ │ +     18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 19, 13, 20, 6, 9, 4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8,
    │ │ │ +     16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16, 10, 7, 8, 15, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 15, 12, 17, 18, 19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17,
    │ │ │ +     6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 2, 13, 20, 8, 18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10,
    │ │ │ +     14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6, 2, 13, 11, 9, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 5, 13, 14, 3, 16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10,
    │ │ │ +     10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4,
    │ │ │ +     3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5, 9, 7, 10, 4, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5,
    │ │ │ +     11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4, 10, 11, 14, 5, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 6, 10, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1,
    │ │ │ +     1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7, 17, 16, 9, 0, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     4, 10, 2, 6, 11, 14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5,
    │ │ │ +     11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19,
    │ │ │ +     5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {17, 16, 14, 9, 8, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 11, 14, 5, 15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3,
    │ │ │ +     12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18, 19}, {1, 16, 12, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2,
    │ │ │ +     11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {0, 1, 2, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12,
    │ │ │ +     4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {2, 0, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     1, 3, 19, 0, 11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6},
    │ │ │ +     3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4,
    │ │ │ +     2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6}, {4, 1, 2, 3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18,
    │ │ │ +     {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │ +     4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8, 14, 15, 12, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 9, 4, 6}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3,
    │ │ │ +     19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17, 10, 2, 13, 20, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 15, 6, 9, 4}, {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10,
    │ │ │ +     18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 16, 18, 9, 4, 6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16,
    │ │ │ +     16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 12, 17, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17,
    │ │ │ +     18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 14, 20, 16, 18, 9, 4, 6}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5,
    │ │ │ +     13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5, 8, 6, 10, 7, 12,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 0, 10, 19, 13, 20, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11,
    │ │ │ +     13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1, 4, 10, 2, 6, 11,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 13, 14, 18, 16, 19, 15, 17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0,
    │ │ │ +     14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 10, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1,
    │ │ │ +     11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19, 10, 11, 14, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 0, 5, 10, 2, 13, 20, 8, 18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19,
    │ │ │ +     15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3, 10, 5, 14, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 8, 10, 20, 5, 0, 14, 3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7,
    │ │ │ +     8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 5, 6,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 8, 10, 11, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9,
    │ │ │ +     7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 1, 3, 19, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4,
    │ │ │ +     11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6}, {0, 1, 3, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19,
    │ │ │ +     12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {4, 1, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2,
    │ │ │ +     3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18, 19, 20}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4,
    │ │ │ +     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 14, 3, 5, 2, 7, 8, 1, 11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20},
    │ │ │ +     1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, 16, 15, 6, 9, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18,
    │ │ │ +     {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10, 20, 16, 18, 9, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19}, {0, 11, 2, 3, 10, 4, 14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18,
    │ │ │ +     6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13,
    │ │ │ +     18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 6, 9, 4}}
    │ │ │ +     18, 9, 4, 6}}
    │ │ │  
    │ │ │  o9 : List
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -32,131 +32,131 @@ │ │ │ │ i4 : varMatrix = gateMatrix{{t_1,t_2}}; │ │ │ │ i5 : phi = transpose gateMatrix{{t_1^3, t_1^2*t_2, t_1*t_2^2, t_2^3}}; │ │ │ │ i6 : loss = sum for i from 0 to 3 list (u_i - phi_(i,0))^2; │ │ │ │ i7 : dLoss = diff(varMatrix, gateMatrix{{loss}}); │ │ │ │ i8 : G = gateSystem(paramMatrix,varMatrix,transpose dLoss); │ │ │ │ i9 : monodromyGroup(G,"msOptions" => {NumberOfEdges=>10}) │ │ │ │ │ │ │ │ -o9 = {{2, 0, 11, 3, 10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19, │ │ │ │ +o9 = {{16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, │ │ │ │ + 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 4, 6}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, │ │ │ │ + 17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0, 12, 10, 15, 13, 6, 17, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, │ │ │ │ + 18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 20, 8, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 19, 15, 17, 3}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, │ │ │ │ + 18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 0, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 16, 17, 18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, │ │ │ │ + 3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7, 15, 8, 10, 11, 17, 13, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 15, 12, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12, │ │ │ │ + 14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 13, 14, 15, 16, 17, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, │ │ │ │ + 2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4, 7, 6, 11, 1, 9, 0, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16, │ │ │ │ + 10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 7, 8, 15, 14, 6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, │ │ │ │ + 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6, │ │ │ │ + 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4, 16, 14, 3, 5, 2, 7, 8, 1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 2, 13, 11, 9, 8, 10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15, │ │ │ │ + 11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20}, {12, 16, 7, 17, 10, 9, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5, │ │ │ │ + 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 11, 2, 3, 10, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 7, 10, 4, 13, 11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4, │ │ │ │ + 14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18, 19, 20}, {16, 14, 17, 18, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 11, 14, 5, 2, 1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7, │ │ │ │ + 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, 4}, {2, 0, 11, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 17, 16, 9, 0, 4, 11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1, │ │ │ │ + 10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 1, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, │ │ │ │ + 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {17, 16, 14, 9, 8, 7, 12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18, │ │ │ │ + 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, │ │ │ │ + 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 4, 6}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, │ │ │ │ + {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, │ │ │ │ + 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 17, 18, 19, 20}, {0, 9, 2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, │ │ │ │ + 19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12, 13, 14, 15, 16, 17, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 17, 18, 19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, │ │ │ │ + 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 19, 13, 20, 6, 9, 4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8, │ │ │ │ + 16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16, 10, 7, 8, 15, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 14, 15, 12, 17, 18, 19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17, │ │ │ │ + 6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 2, 13, 20, 8, 18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, │ │ │ │ + 14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6, 2, 13, 11, 9, 8, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 5, 13, 14, 3, 16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, │ │ │ │ + 10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4, │ │ │ │ + 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5, 9, 7, 10, 4, 13, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5, │ │ │ │ + 11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4, 10, 11, 14, 5, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 8, 6, 10, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1, │ │ │ │ + 1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7, 17, 16, 9, 0, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 4, 10, 2, 6, 11, 14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5, │ │ │ │ + 11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19, │ │ │ │ + 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {17, 16, 14, 9, 8, 7, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 11, 14, 5, 15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3, │ │ │ │ + 12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18, 19}, {1, 16, 12, 19, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2, │ │ │ │ + 11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {0, 1, 2, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, │ │ │ │ + 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {2, 0, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 1, 3, 19, 0, 11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6}, │ │ │ │ + 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, │ │ │ │ + 2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 6}, {4, 1, 2, 3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18, │ │ │ │ + {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, │ │ │ │ + 4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8, 14, 15, 12, 17, 18, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 18, 9, 4, 6}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, │ │ │ │ + 19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17, 10, 2, 13, 20, 8, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 15, 6, 9, 4}, {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10, │ │ │ │ + 18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 16, 18, 9, 4, 6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, │ │ │ │ + 16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 12, 17, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, │ │ │ │ + 18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 13, 14, 20, 16, 18, 9, 4, 6}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, │ │ │ │ + 13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5, 8, 6, 10, 7, 12, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 0, 10, 19, 13, 20, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, │ │ │ │ + 13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1, 4, 10, 2, 6, 11, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 12, 13, 14, 18, 16, 19, 15, 17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0, │ │ │ │ + 14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 12, 10, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1, │ │ │ │ + 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19, 10, 11, 14, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 0, 5, 10, 2, 13, 20, 8, 18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19, │ │ │ │ + 15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3, 10, 5, 14, 7, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 8, 10, 20, 5, 0, 14, 3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7, │ │ │ │ + 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 5, 6, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 8, 10, 11, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9, │ │ │ │ + 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 1, 3, 19, 0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4, │ │ │ │ + 11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6}, {0, 1, 3, 19, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, │ │ │ │ + 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {4, 1, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2, │ │ │ │ + 3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18, 19, 20}, {0, 1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4, │ │ │ │ + 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 14, 3, 5, 2, 7, 8, 1, 11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20}, │ │ │ │ + 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, 16, 15, 6, 9, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, │ │ │ │ + {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10, 20, 16, 18, 9, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19}, {0, 11, 2, 3, 10, 4, 14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18, │ │ │ │ + 6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 20, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, │ │ │ │ + 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 6, 9, 4}} │ │ │ │ + 18, 9, 4, 6}} │ │ │ │ │ │ │ │ o9 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ This is still somewhat experimental. │ │ │ │ ********** WWaayyss ttoo uussee mmoonnooddrroommyyGGrroouupp:: ********** │ │ │ │ * monodromyGroup(System) │ │ │ │ * monodromyGroup(System,AbstractPoint,List) │ │ ├── ./usr/share/doc/Macaulay2/Msolve/example-output/___Msolve.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i2 : I = ideal(x, y, z) │ │ │ │ │ │ o2 = ideal (x, y, z) │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : msolveGB(I, Verbosity => 2, Threads => 6) │ │ │ - -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-53603-0/0-in.ms -o /tmp/M2-53603-0/0-out.ms │ │ │ + -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-84647-0/0-in.ms -o /tmp/M2-84647-0/0-out.ms │ │ │ │ │ │ --------------- INPUT DATA --------------- │ │ │ #variables 3 │ │ │ #equations 3 │ │ │ #invalid equations 0 │ │ │ field characteristic 0 │ │ │ homogeneous input? 1 │ │ │ @@ -28,15 +28,15 @@ │ │ │ initial hash table size 131072 (2^17) │ │ │ max pair selection ALL │ │ │ reduce gb 1 │ │ │ #threads 6 │ │ │ info level 2 │ │ │ generate pbm files 0 │ │ │ ------------------------------------------ │ │ │ -Initial prime = 1235341781 │ │ │ +Initial prime = 1074323161 │ │ │ │ │ │ Legend for f4 information │ │ │ -------------------------------------------------------- │ │ │ deg current degree of pairs selected in this round │ │ │ sel number of pairs selected in this round │ │ │ pairs total number of pairs in pair list │ │ │ mat matrix dimensions (# rows x # columns) │ │ │ @@ -46,25 +46,25 @@ │ │ │ time(rd) time of the current f4 round in seconds given │ │ │ for real and cpu time │ │ │ -------------------------------------------------------- │ │ │ │ │ │ deg sel pairs mat density new data time(rd) in sec (real|cpu) │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ -reduce final basis 3 x 3 33.33% 3 new 0 zero 0.06 | 0.11 │ │ │ +reduce final basis 3 x 3 33.33% 3 new 0 zero 0.00 | 0.00 │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ │ │ │ ---------------- TIMINGS ---------------- │ │ │ -overall(elapsed) 0.11 sec │ │ │ -overall(cpu) 0.22 sec │ │ │ +overall(elapsed) 0.00 sec │ │ │ +overall(cpu) 0.00 sec │ │ │ select 0.00 sec 0.0% │ │ │ -symbolic prep. 0.00 sec 0.0% │ │ │ -update 0.05 sec 43.2% │ │ │ -convert 0.06 sec 56.7% │ │ │ -linear algebra 0.00 sec 0.0% │ │ │ +symbolic prep. 0.00 sec 0.5% │ │ │ +update 0.00 sec 72.9% │ │ │ +convert 0.00 sec 4.0% │ │ │ +linear algebra 0.00 sec 1.4% │ │ │ reduce gb 0.00 sec 0.0% │ │ │ ----------------------------------------- │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ size of basis 3 │ │ │ #terms in basis 3 │ │ │ #pairs reduced 0 │ │ │ @@ -78,18 +78,18 @@ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ [3] │ │ │ #polynomials to lift 3 │ │ │ ----------------------------------------- │ │ │ -New prime = 1138309223 │ │ │ +New prime = 1222105613 │ │ │ │ │ │ ---------------- TIMINGS ---------------- │ │ │ -multi-mod overall(elapsed) 0.03 sec │ │ │ +multi-mod overall(elapsed) 0.01 sec │ │ │ learning phase 0.00 Gops/sec │ │ │ application phase 0.00 Gops/sec │ │ │ ----------------------------------------- │ │ │ │ │ │ multi-modular steps │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ {1}{2}<100.00%> │ │ │ @@ -105,15 +105,15 @@ │ │ │ ---------------- TIMINGS ---------------- │ │ │ CRT (elapsed) 0.00 sec │ │ │ ratrecon(elapsed) 0.00 sec │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ │ ------------------------------------------------------------------------------------ │ │ │ -msolve overall time 0.26 sec (elapsed) / 0.60 sec (cpu) │ │ │ +msolve overall time 0.01 sec (elapsed) / 0.06 sec (cpu) │ │ │ ------------------------------------------------------------------------------------ │ │ │ │ │ │ o3 = | z y x | │ │ │ │ │ │ 1 3 │ │ │ o3 : Matrix R <-- R │ │ ├── ./usr/share/doc/Macaulay2/Msolve/example-output/_msolve__Real__Solutions.out │ │ │ @@ -11,111 +11,111 @@ │ │ │ 2 2 │ │ │ o2 = ideal (x - x, y - 5) │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : rationalIntervalSols = msolveRealSolutions I │ │ │ │ │ │ - 3394316794873318371 │ │ │ -o3 = {{{- ---------------------------------------, │ │ │ - 340282366920938463463374607431768211456 │ │ │ + 18446744073709551613 18446744073709551619 5156021714044493573 │ │ │ +o3 = {{{--------------------, --------------------}, {-------------------, │ │ │ + 18446744073709551616 18446744073709551616 2305843009213693952 │ │ │ + ------------------------------------------------------------------------ │ │ │ + 2578010857022246787 9223372036854775803 9223372036854775813 │ │ │ + -------------------}}, {{-------------------, -------------------}, {- │ │ │ + 1152921504606846976 9223372036854775808 9223372036854775808 │ │ │ + ------------------------------------------------------------------------ │ │ │ + 10312043428088987151 10312043428088987143 │ │ │ + --------------------, - --------------------}}, {{- │ │ │ + 4611686018427387904 4611686018427387904 │ │ │ ------------------------------------------------------------------------ │ │ │ - 9090979498917902541 41248173712355948585 │ │ │ - ---------------------------------------}, {--------------------, │ │ │ - 340282366920938463463374607431768211456 18446744073709551616 │ │ │ - ------------------------------------------------------------------------ │ │ │ - 20624086856177974295 18446744073709551615 18446744073709551617 │ │ │ - --------------------}}, {{--------------------, --------------------}, │ │ │ - 9223372036854775808 18446744073709551616 18446744073709551616 │ │ │ - ------------------------------------------------------------------------ │ │ │ - 41248173712355948587 10312043428088987147 │ │ │ - {--------------------, --------------------}}, {{- │ │ │ - 18446744073709551616 4611686018427387904 │ │ │ - ------------------------------------------------------------------------ │ │ │ - 27943880522800669215 │ │ │ + 359376219515408225 │ │ │ ---------------------------------------, │ │ │ 340282366920938463463374607431768211456 │ │ │ ------------------------------------------------------------------------ │ │ │ - 22702554030152245153 41248173712355948597 │ │ │ + 1058631770776118427 41248173712355948587 │ │ │ + ---------------------------------------}, {--------------------, │ │ │ + 170141183460469231731687303715884105728 18446744073709551616 │ │ │ + ------------------------------------------------------------------------ │ │ │ + 20624086856177974295 1562579853831443577 │ │ │ + --------------------}}, {{- ---------------------------------------, │ │ │ + 9223372036854775808 340282366920938463463374607431768211456 │ │ │ + ------------------------------------------------------------------------ │ │ │ + 117391481452819161 20624086856177974295 │ │ │ ---------------------------------------}, {- --------------------, - │ │ │ - 340282366920938463463374607431768211456 18446744073709551616 │ │ │ + 340282366920938463463374607431768211456 9223372036854775808 │ │ │ ------------------------------------------------------------------------ │ │ │ - 41248173712355948577 9223372036854775807 9223372036854775809 │ │ │ - --------------------}}, {{-------------------, -------------------}, {- │ │ │ - 18446744073709551616 9223372036854775808 9223372036854775808 │ │ │ - ------------------------------------------------------------------------ │ │ │ - 41248173712355948591 41248173712355948585 │ │ │ - --------------------, - --------------------}}} │ │ │ - 18446744073709551616 18446744073709551616 │ │ │ + 41248173712355948587 │ │ │ + --------------------}}} │ │ │ + 18446744073709551616 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : rationalApproxSols = msolveRealSolutions(I, QQ) │ │ │ │ │ │ - 2848331352022292085 82496347424711897175 │ │ │ -o4 = {{---------------------------------------, --------------------}, {1, │ │ │ - 340282366920938463463374607431768211456 36893488147419103232 │ │ │ - ------------------------------------------------------------------------ │ │ │ - 82496347424711897175 2620663246324212031 │ │ │ - --------------------}, {- ---------------------------------------, - │ │ │ - 36893488147419103232 340282366920938463463374607431768211456 │ │ │ - ------------------------------------------------------------------------ │ │ │ - 41248173712355948587 10312043428088987147 │ │ │ - --------------------}, {1, - --------------------}} │ │ │ - 18446744073709551616 4611686018427387904 │ │ │ + 10312043428088987147 10312043428088987147 │ │ │ +o4 = {{1, --------------------}, {1, - --------------------}, │ │ │ + 4611686018427387904 4611686018427387904 │ │ │ + ------------------------------------------------------------------------ │ │ │ + 1757887322036828629 82496347424711897177 │ │ │ + {---------------------------------------, --------------------}, {- │ │ │ + 680564733841876926926749214863536422912 36893488147419103232 │ │ │ + ------------------------------------------------------------------------ │ │ │ + 45162136636832013 82496347424711897177 │ │ │ + --------------------------------------, - --------------------}} │ │ │ + 21267647932558653966460912964485513216 36893488147419103232 │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : floatIntervalSols = msolveRealSolutions(I, RRi) │ │ │ │ │ │ -o5 = {{[1,1], [2.23607,2.23607]}, {[-8.59181e-22,1.1497e-21], │ │ │ +o5 = {{[1,1], [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]}, │ │ │ ------------------------------------------------------------------------ │ │ │ - [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]}, │ │ │ + {[-1.05611e-21,6.22208e-21], [2.23607,2.23607]}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {[-2.79363e-21,6.6574e-21], [-2.23607,-2.23607]}} │ │ │ + {[-4.59201e-21,3.44983e-22], [-2.23607,-2.23607]}} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : floatIntervalSols = msolveRealSolutions(I, RRi_10) │ │ │ │ │ │ -o6 = {{[.999999,1], [2.23607,2.23607]}, {[-2.3434e-7,3.31111e-7], │ │ │ +o6 = {{[.999969,1.00003], [2.23602,2.23612]}, {[.99986,1.00014], │ │ │ ------------------------------------------------------------------------ │ │ │ - [2.23606,2.23607]}, {[.999998,1], [-2.23607,-2.23606]}, │ │ │ + [-2.2363,-2.23583]}, {[-5.93152e-7,.00000145549], [2.23605,2.23609]}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {[-5.92081e-9,4.47108e-9], [-2.23607,-2.23607]}} │ │ │ + {[-.00000104929,3.40354e-7], [-2.23609,-2.23606]}} │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : floatApproxSols = msolveRealSolutions(I, RR) │ │ │ │ │ │ -o7 = {{1, -2.23607}, {1.03407e-19, -2.23607}, {1, 2.23607}, {2.40267e-22, │ │ │ +o7 = {{1, 2.23607}, {1, -2.23607}, {2.58298e-21, 2.23607}, {-2.12351e-21, │ │ │ ------------------------------------------------------------------------ │ │ │ - 2.23607}} │ │ │ + -2.23607}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : floatApproxSols = msolveRealSolutions(I, RR_10) │ │ │ │ │ │ -o8 = {{-1.92693e-9, 2.23607}, {1, 2.23607}, {-2.2555e-8, -2.23607}, {1, │ │ │ +o8 = {{1, 2.23607}, {1, -2.23607}, {4.31169e-7, 2.23607}, {-3.5447e-7, │ │ │ ------------------------------------------------------------------------ │ │ │ -2.23607}} │ │ │ │ │ │ o8 : List │ │ │ │ │ │ i9 : I = ideal {(x-1)*x^3, (y^2-5)^2} │ │ │ │ │ │ 4 3 4 2 │ │ │ o9 = ideal (x - x , y - 10y + 25) │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ │ │ i10 : floatApproxSols = msolveRealSolutions(I, RRi) │ │ │ │ │ │ -o10 = {{[-3.61574e-21,5.06446e-21], [2.23607,2.23607]}, {[1,1], │ │ │ +o10 = {{[1,1], [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]}, │ │ │ ----------------------------------------------------------------------- │ │ │ - [2.23607,2.23607]}, {[-6.42531e-29,4.90632e-29], [-2.23607,-2.23607]}, │ │ │ + {[-1.05611e-21,6.22208e-21], [2.23607,2.23607]}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {[1,1], [-2.23607,-2.23607]}} │ │ │ + {[-4.59201e-21,3.44983e-22], [-2.23607,-2.23607]}} │ │ │ │ │ │ o10 : List │ │ │ │ │ │ i11 : │ │ ├── ./usr/share/doc/Macaulay2/Msolve/html/_msolve__Real__Solutions.html │ │ │ @@ -100,110 +100,110 @@ │ │ │ o2 : Ideal of R
    │ │ │
    │ │ │
    i3 : rationalIntervalSols = msolveRealSolutions I
    │ │ │  
    │ │ │ -                    3394316794873318371           
    │ │ │ -o3 = {{{- ---------------------------------------,
    │ │ │ -          340282366920938463463374607431768211456 
    │ │ │ +        18446744073709551613  18446744073709551619    5156021714044493573 
    │ │ │ +o3 = {{{--------------------, --------------------}, {-------------------,
    │ │ │ +        18446744073709551616  18446744073709551616    2305843009213693952 
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     2578010857022246787      9223372036854775803  9223372036854775813     
    │ │ │ +     -------------------}}, {{-------------------, -------------------}, {-
    │ │ │ +     1152921504606846976      9223372036854775808  9223372036854775808     
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     10312043428088987151    10312043428088987143       
    │ │ │ +     --------------------, - --------------------}}, {{-
    │ │ │ +      4611686018427387904     4611686018427387904       
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -               9090979498917902541              41248173712355948585 
    │ │ │ -     ---------------------------------------}, {--------------------,
    │ │ │ -     340282366920938463463374607431768211456    18446744073709551616 
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     20624086856177974295      18446744073709551615  18446744073709551617  
    │ │ │ -     --------------------}}, {{--------------------, --------------------},
    │ │ │ -      9223372036854775808      18446744073709551616  18446744073709551616  
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -      41248173712355948587  10312043428088987147       
    │ │ │ -     {--------------------, --------------------}}, {{-
    │ │ │ -      18446744073709551616   4611686018427387904       
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -               27943880522800669215          
    │ │ │ +                359376219515408225           
    │ │ │       ---------------------------------------,
    │ │ │       340282366920938463463374607431768211456 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -               22702554030152245153               41248173712355948597   
    │ │ │ +               1058631770776118427              41248173712355948587 
    │ │ │ +     ---------------------------------------}, {--------------------,
    │ │ │ +     170141183460469231731687303715884105728    18446744073709551616 
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     20624086856177974295                  1562579853831443577           
    │ │ │ +     --------------------}}, {{- ---------------------------------------,
    │ │ │ +      9223372036854775808        340282366920938463463374607431768211456 
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +                117391481452819161                20624086856177974295   
    │ │ │       ---------------------------------------}, {- --------------------, -
    │ │ │ -     340282366920938463463374607431768211456      18446744073709551616   
    │ │ │ +     340282366920938463463374607431768211456       9223372036854775808   
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     41248173712355948577      9223372036854775807  9223372036854775809     
    │ │ │ -     --------------------}}, {{-------------------, -------------------}, {-
    │ │ │ -     18446744073709551616      9223372036854775808  9223372036854775808     
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     41248173712355948591    41248173712355948585
    │ │ │ -     --------------------, - --------------------}}}
    │ │ │ -     18446744073709551616    18446744073709551616
    │ │ │ +     41248173712355948587
    │ │ │ +     --------------------}}}
    │ │ │ +     18446744073709551616
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    i4 : rationalApproxSols = msolveRealSolutions(I, QQ)
    │ │ │  
    │ │ │ -                 2848331352022292085            82496347424711897175      
    │ │ │ -o4 = {{---------------------------------------, --------------------}, {1,
    │ │ │ -       340282366920938463463374607431768211456  36893488147419103232      
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     82496347424711897175                2620663246324212031             
    │ │ │ -     --------------------}, {- ---------------------------------------, -
    │ │ │ -     36893488147419103232      340282366920938463463374607431768211456   
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     41248173712355948587         10312043428088987147
    │ │ │ -     --------------------}, {1, - --------------------}}
    │ │ │ -     18446744073709551616          4611686018427387904
    │ │ │ +          10312043428088987147         10312043428088987147  
    │ │ │ +o4 = {{1, --------------------}, {1, - --------------------},
    │ │ │ +           4611686018427387904          4611686018427387904  
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +                1757887322036828629            82496347424711897177     
    │ │ │ +     {---------------------------------------, --------------------}, {-
    │ │ │ +      680564733841876926926749214863536422912  36893488147419103232     
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +                45162136636832013              82496347424711897177
    │ │ │ +     --------------------------------------, - --------------------}}
    │ │ │ +     21267647932558653966460912964485513216    36893488147419103232
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : floatIntervalSols = msolveRealSolutions(I, RRi)
    │ │ │  
    │ │ │ -o5 = {{[1,1], [2.23607,2.23607]}, {[-8.59181e-22,1.1497e-21],
    │ │ │ +o5 = {{[1,1], [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]},
    │ │ │ +     {[-1.05611e-21,6.22208e-21], [2.23607,2.23607]},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {[-2.79363e-21,6.6574e-21], [-2.23607,-2.23607]}}
    │ │ │ +     {[-4.59201e-21,3.44983e-22], [-2.23607,-2.23607]}}
    │ │ │  
    │ │ │  o5 : List
    │ │ │
    │ │ │
    i6 : floatIntervalSols = msolveRealSolutions(I, RRi_10)
    │ │ │  
    │ │ │ -o6 = {{[.999999,1], [2.23607,2.23607]}, {[-2.3434e-7,3.31111e-7],
    │ │ │ +o6 = {{[.999969,1.00003], [2.23602,2.23612]}, {[.99986,1.00014],
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     [2.23606,2.23607]}, {[.999998,1], [-2.23607,-2.23606]},
    │ │ │ +     [-2.2363,-2.23583]}, {[-5.93152e-7,.00000145549], [2.23605,2.23609]},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {[-5.92081e-9,4.47108e-9], [-2.23607,-2.23607]}}
    │ │ │ +     {[-.00000104929,3.40354e-7], [-2.23609,-2.23606]}}
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : floatApproxSols = msolveRealSolutions(I, RR)
    │ │ │  
    │ │ │ -o7 = {{1, -2.23607}, {1.03407e-19, -2.23607}, {1, 2.23607}, {2.40267e-22,
    │ │ │ +o7 = {{1, 2.23607}, {1, -2.23607}, {2.58298e-21, 2.23607}, {-2.12351e-21,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     2.23607}}
    │ │ │ +     -2.23607}}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │
    i8 : floatApproxSols = msolveRealSolutions(I, RR_10)
    │ │ │  
    │ │ │ -o8 = {{-1.92693e-9, 2.23607}, {1, 2.23607}, {-2.2555e-8, -2.23607}, {1,
    │ │ │ +o8 = {{1, 2.23607}, {1, -2.23607}, {4.31169e-7, 2.23607}, {-3.5447e-7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       -2.23607}}
    │ │ │  
    │ │ │  o8 : List
    │ │ │
    │ │ │ @@ -221,19 +221,19 @@ │ │ │ o9 : Ideal of R
    │ │ │
    │ │ │
    i10 : floatApproxSols = msolveRealSolutions(I, RRi)
    │ │ │  
    │ │ │ -o10 = {{[-3.61574e-21,5.06446e-21], [2.23607,2.23607]}, {[1,1],
    │ │ │ +o10 = {{[1,1], [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      [2.23607,2.23607]}, {[-6.42531e-29,4.90632e-29], [-2.23607,-2.23607]},
    │ │ │ +      {[-1.05611e-21,6.22208e-21], [2.23607,2.23607]},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {[1,1], [-2.23607,-2.23607]}}
    │ │ │ +      {[-4.59201e-21,3.44983e-22], [-2.23607,-2.23607]}}
    │ │ │  
    │ │ │  o10 : List
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -43,90 +43,90 @@ │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o2 = ideal (x - x, y - 5) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : rationalIntervalSols = msolveRealSolutions I │ │ │ │ │ │ │ │ - 3394316794873318371 │ │ │ │ -o3 = {{{- ---------------------------------------, │ │ │ │ - 340282366920938463463374607431768211456 │ │ │ │ + 18446744073709551613 18446744073709551619 5156021714044493573 │ │ │ │ +o3 = {{{--------------------, --------------------}, {-------------------, │ │ │ │ + 18446744073709551616 18446744073709551616 2305843009213693952 │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + 2578010857022246787 9223372036854775803 9223372036854775813 │ │ │ │ + -------------------}}, {{-------------------, -------------------}, {- │ │ │ │ + 1152921504606846976 9223372036854775808 9223372036854775808 │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + 10312043428088987151 10312043428088987143 │ │ │ │ + --------------------, - --------------------}}, {{- │ │ │ │ + 4611686018427387904 4611686018427387904 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9090979498917902541 41248173712355948585 │ │ │ │ - ---------------------------------------}, {--------------------, │ │ │ │ - 340282366920938463463374607431768211456 18446744073709551616 │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - 20624086856177974295 18446744073709551615 18446744073709551617 │ │ │ │ - --------------------}}, {{--------------------, --------------------}, │ │ │ │ - 9223372036854775808 18446744073709551616 18446744073709551616 │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - 41248173712355948587 10312043428088987147 │ │ │ │ - {--------------------, --------------------}}, {{- │ │ │ │ - 18446744073709551616 4611686018427387904 │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - 27943880522800669215 │ │ │ │ + 359376219515408225 │ │ │ │ ---------------------------------------, │ │ │ │ 340282366920938463463374607431768211456 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 22702554030152245153 41248173712355948597 │ │ │ │ + 1058631770776118427 41248173712355948587 │ │ │ │ + ---------------------------------------}, {--------------------, │ │ │ │ + 170141183460469231731687303715884105728 18446744073709551616 │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + 20624086856177974295 1562579853831443577 │ │ │ │ + --------------------}}, {{- ---------------------------------------, │ │ │ │ + 9223372036854775808 340282366920938463463374607431768211456 │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + 117391481452819161 20624086856177974295 │ │ │ │ ---------------------------------------}, {- --------------------, - │ │ │ │ - 340282366920938463463374607431768211456 18446744073709551616 │ │ │ │ + 340282366920938463463374607431768211456 9223372036854775808 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 41248173712355948577 9223372036854775807 9223372036854775809 │ │ │ │ - --------------------}}, {{-------------------, -------------------}, {- │ │ │ │ - 18446744073709551616 9223372036854775808 9223372036854775808 │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - 41248173712355948591 41248173712355948585 │ │ │ │ - --------------------, - --------------------}}} │ │ │ │ - 18446744073709551616 18446744073709551616 │ │ │ │ + 41248173712355948587 │ │ │ │ + --------------------}}} │ │ │ │ + 18446744073709551616 │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : rationalApproxSols = msolveRealSolutions(I, QQ) │ │ │ │ │ │ │ │ - 2848331352022292085 82496347424711897175 │ │ │ │ -o4 = {{---------------------------------------, --------------------}, {1, │ │ │ │ - 340282366920938463463374607431768211456 36893488147419103232 │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - 82496347424711897175 2620663246324212031 │ │ │ │ - --------------------}, {- ---------------------------------------, - │ │ │ │ - 36893488147419103232 340282366920938463463374607431768211456 │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - 41248173712355948587 10312043428088987147 │ │ │ │ - --------------------}, {1, - --------------------}} │ │ │ │ - 18446744073709551616 4611686018427387904 │ │ │ │ + 10312043428088987147 10312043428088987147 │ │ │ │ +o4 = {{1, --------------------}, {1, - --------------------}, │ │ │ │ + 4611686018427387904 4611686018427387904 │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + 1757887322036828629 82496347424711897177 │ │ │ │ + {---------------------------------------, --------------------}, {- │ │ │ │ + 680564733841876926926749214863536422912 36893488147419103232 │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + 45162136636832013 82496347424711897177 │ │ │ │ + --------------------------------------, - --------------------}} │ │ │ │ + 21267647932558653966460912964485513216 36893488147419103232 │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : floatIntervalSols = msolveRealSolutions(I, RRi) │ │ │ │ │ │ │ │ -o5 = {{[1,1], [2.23607,2.23607]}, {[-8.59181e-22,1.1497e-21], │ │ │ │ +o5 = {{[1,1], [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]}, │ │ │ │ + {[-1.05611e-21,6.22208e-21], [2.23607,2.23607]}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {[-2.79363e-21,6.6574e-21], [-2.23607,-2.23607]}} │ │ │ │ + {[-4.59201e-21,3.44983e-22], [-2.23607,-2.23607]}} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : floatIntervalSols = msolveRealSolutions(I, RRi_10) │ │ │ │ │ │ │ │ -o6 = {{[.999999,1], [2.23607,2.23607]}, {[-2.3434e-7,3.31111e-7], │ │ │ │ +o6 = {{[.999969,1.00003], [2.23602,2.23612]}, {[.99986,1.00014], │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - [2.23606,2.23607]}, {[.999998,1], [-2.23607,-2.23606]}, │ │ │ │ + [-2.2363,-2.23583]}, {[-5.93152e-7,.00000145549], [2.23605,2.23609]}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {[-5.92081e-9,4.47108e-9], [-2.23607,-2.23607]}} │ │ │ │ + {[-.00000104929,3.40354e-7], [-2.23609,-2.23606]}} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : floatApproxSols = msolveRealSolutions(I, RR) │ │ │ │ │ │ │ │ -o7 = {{1, -2.23607}, {1.03407e-19, -2.23607}, {1, 2.23607}, {2.40267e-22, │ │ │ │ +o7 = {{1, 2.23607}, {1, -2.23607}, {2.58298e-21, 2.23607}, {-2.12351e-21, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 2.23607}} │ │ │ │ + -2.23607}} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : floatApproxSols = msolveRealSolutions(I, RR_10) │ │ │ │ │ │ │ │ -o8 = {{-1.92693e-9, 2.23607}, {1, 2.23607}, {-2.2555e-8, -2.23607}, {1, │ │ │ │ +o8 = {{1, 2.23607}, {1, -2.23607}, {4.31169e-7, 2.23607}, {-3.5447e-7, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ -2.23607}} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ Note in cases where solutions have multiplicity this is not reflected in the │ │ │ │ output. While the solver does not return multiplicities, it reliably outputs │ │ │ │ the verified isolating intervals for multiple solutions. │ │ │ │ @@ -134,19 +134,19 @@ │ │ │ │ │ │ │ │ 4 3 4 2 │ │ │ │ o9 = ideal (x - x , y - 10y + 25) │ │ │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ i10 : floatApproxSols = msolveRealSolutions(I, RRi) │ │ │ │ │ │ │ │ -o10 = {{[-3.61574e-21,5.06446e-21], [2.23607,2.23607]}, {[1,1], │ │ │ │ +o10 = {{[1,1], [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - [2.23607,2.23607]}, {[-6.42531e-29,4.90632e-29], [-2.23607,-2.23607]}, │ │ │ │ + {[-1.05611e-21,6.22208e-21], [2.23607,2.23607]}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {[1,1], [-2.23607,-2.23607]}} │ │ │ │ + {[-4.59201e-21,3.44983e-22], [-2.23607,-2.23607]}} │ │ │ │ │ │ │ │ o10 : List │ │ │ │ ********** WWaayyss ttoo uussee mmssoollvveeRReeaallSSoolluuttiioonnss:: ********** │ │ │ │ * msolveRealSolutions(Ideal) │ │ │ │ * msolveRealSolutions(Ideal,Ring) │ │ │ │ * msolveRealSolutions(Ideal,RingFamily) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Msolve/html/index.html │ │ │ @@ -78,15 +78,15 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │
    │ │ │
    i3 : msolveGB(I, Verbosity => 2, Threads => 6) 
    │ │ │ - -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-53603-0/0-in.ms -o /tmp/M2-53603-0/0-out.ms
    │ │ │ + -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-84647-0/0-in.ms -o /tmp/M2-84647-0/0-out.ms
    │ │ │  
    │ │ │  --------------- INPUT DATA ---------------
    │ │ │  #variables                       3
    │ │ │  #equations                       3
    │ │ │  #invalid equations               0
    │ │ │  field characteristic             0
    │ │ │  homogeneous input?               1
    │ │ │ @@ -97,15 +97,15 @@
    │ │ │  initial hash table size     131072 (2^17)
    │ │ │  max pair selection             ALL
    │ │ │  reduce gb                        1
    │ │ │  #threads                         6
    │ │ │  info level                       2
    │ │ │  generate pbm files               0
    │ │ │  ------------------------------------------
    │ │ │ -Initial prime = 1235341781
    │ │ │ +Initial prime = 1074323161
    │ │ │  
    │ │ │  Legend for f4 information
    │ │ │  --------------------------------------------------------
    │ │ │  deg       current degree of pairs selected in this round
    │ │ │  sel       number of pairs selected in this round
    │ │ │  pairs     total number of pairs in pair list
    │ │ │  mat       matrix dimensions (# rows x # columns)
    │ │ │ @@ -115,25 +115,25 @@
    │ │ │  time(rd)  time of the current f4 round in seconds given
    │ │ │            for real and cpu time
    │ │ │  --------------------------------------------------------
    │ │ │  
    │ │ │  deg     sel   pairs        mat          density            new data         time(rd) in sec (real|cpu)
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │ -reduce final basis        3 x 3          33.33%        3 new       0 zero         0.06 | 0.11         
    │ │ │ +reduce final basis        3 x 3          33.33%        3 new       0 zero         0.00 | 0.00         
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │  
    │ │ │  ---------------- TIMINGS ----------------
    │ │ │ -overall(elapsed)        0.11 sec
    │ │ │ -overall(cpu)            0.22 sec
    │ │ │ +overall(elapsed)        0.00 sec
    │ │ │ +overall(cpu)            0.00 sec
    │ │ │  select                  0.00 sec   0.0%
    │ │ │ -symbolic prep.          0.00 sec   0.0%
    │ │ │ -update                  0.05 sec  43.2%
    │ │ │ -convert                 0.06 sec  56.7%
    │ │ │ -linear algebra          0.00 sec   0.0%
    │ │ │ +symbolic prep.          0.00 sec   0.5%
    │ │ │ +update                  0.00 sec  72.9%
    │ │ │ +convert                 0.00 sec   4.0%
    │ │ │ +linear algebra          0.00 sec   1.4%
    │ │ │  reduce gb               0.00 sec   0.0%
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  ---------- COMPUTATIONAL DATA -----------
    │ │ │  size of basis                     3
    │ │ │  #terms in basis                   3
    │ │ │  #pairs reduced                    0
    │ │ │ @@ -147,18 +147,18 @@
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  
    │ │ │  ---------- COMPUTATIONAL DATA -----------
    │ │ │  [3]
    │ │ │  #polynomials to lift              3
    │ │ │  -----------------------------------------
    │ │ │ -New prime = 1138309223
    │ │ │ +New prime = 1222105613
    │ │ │  
    │ │ │  ---------------- TIMINGS ----------------
    │ │ │ -multi-mod overall(elapsed)      0.03 sec
    │ │ │ +multi-mod overall(elapsed)      0.01 sec
    │ │ │  learning phase                  0.00 Gops/sec
    │ │ │  application phase               0.00 Gops/sec
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  multi-modular steps
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │  {1}{2}<100.00%> 
    │ │ │ @@ -174,15 +174,15 @@
    │ │ │  ---------------- TIMINGS ----------------
    │ │ │  CRT     (elapsed)               0.00 sec
    │ │ │  ratrecon(elapsed)               0.00 sec
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  
    │ │ │  ------------------------------------------------------------------------------------
    │ │ │ -msolve overall time           0.26 sec (elapsed) /  0.60 sec (cpu)
    │ │ │ +msolve overall time           0.01 sec (elapsed) /  0.06 sec (cpu)
    │ │ │  ------------------------------------------------------------------------------------
    │ │ │  
    │ │ │  o3 = | z y x |
    │ │ │  
    │ │ │               1      3
    │ │ │  o3 : Matrix R  <-- R
    │ │ │
    │ │ │
    i5 : peek componentsOfKernel(2, F)
    │ │ │  warning: computation begun over finite field. resulting polynomials may not lie in the ideal
    │ │ │  computing total degree: 1
    │ │ │  number of monomials = 6
    │ │ │  number of distinct multidegrees = 6
    │ │ │ - -- .00369113s elapsed
    │ │ │ + -- .00232235s elapsed
    │ │ │  computing total degree: 2
    │ │ │  number of monomials = 21
    │ │ │  number of distinct multidegrees = 18
    │ │ │ - -- .0155544s elapsed
    │ │ │ + -- .0104562s elapsed
    │ │ │  
    │ │ │  o5 = MutableHashTable{{0, 1, 0, 0, 1} => {}                   }
    │ │ │                        {0, 1, 0, 1, 0} => {}
    │ │ │                        {0, 1, 1, 0, 0} => {}
    │ │ │                        {0, 2, 0, 0, 2} => {}
    │ │ │                        {0, 2, 0, 1, 1} => {}
    │ │ │                        {0, 2, 0, 2, 0} => {}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -51,19 +51,19 @@
    │ │ │ │  o4 : RingMap S <-- R
    │ │ │ │  i5 : peek componentsOfKernel(2, F)
    │ │ │ │  warning: computation begun over finite field. resulting polynomials may not lie
    │ │ │ │  in the ideal
    │ │ │ │  computing total degree: 1
    │ │ │ │  number of monomials = 6
    │ │ │ │  number of distinct multidegrees = 6
    │ │ │ │ - -- .00369113s elapsed
    │ │ │ │ + -- .00232235s elapsed
    │ │ │ │  computing total degree: 2
    │ │ │ │  number of monomials = 21
    │ │ │ │  number of distinct multidegrees = 18
    │ │ │ │ - -- .0155544s elapsed
    │ │ │ │ + -- .0104562s elapsed
    │ │ │ │  
    │ │ │ │  o5 = MutableHashTable{{0, 1, 0, 0, 1} => {}                   }
    │ │ │ │                        {0, 1, 0, 1, 0} => {}
    │ │ │ │                        {0, 1, 1, 0, 0} => {}
    │ │ │ │                        {0, 2, 0, 0, 2} => {}
    │ │ │ │                        {0, 2, 0, 1, 1} => {}
    │ │ │ │                        {0, 2, 0, 2, 0} => {}
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_j__Mult.out
    │ │ │ @@ -9,25 +9,25 @@
    │ │ │  i2 : I = ideal"xy,yz,zx"
    │ │ │  
    │ │ │  o2 = ideal (x*y, y*z, x*z)
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : elapsedTime jMult I
    │ │ │ - -- .0238525s elapsed
    │ │ │ + -- .0297824s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │  
    │ │ │  i4 : elapsedTime monjMult I
    │ │ │ - -- .114646s elapsed
    │ │ │ + -- .0892441s elapsed
    │ │ │  
    │ │ │  o4 = 2
    │ │ │  
    │ │ │  i5 : elapsedTime multiplicitySequence I
    │ │ │ - -- .137039s elapsed
    │ │ │ + -- .15947s elapsed
    │ │ │  
    │ │ │  o5 = HashTable{2 => 3}
    │ │ │                 3 => 2
    │ │ │  
    │ │ │  o5 : HashTable
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Analytic__Spread.out
    │ │ │ @@ -10,12 +10,12 @@
    │ │ │  
    │ │ │               2        3
    │ │ │  o2 = ideal (x , x*y, y )
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : elapsedTime monAnalyticSpread I
    │ │ │ - -- .12587s elapsed
    │ │ │ + -- .0942792s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_monj__Mult.out
    │ │ │ @@ -13,17 +13,17 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │        10 11   8 12   9 11   10 10   11 9   12 8
    │ │ │       x  y  , x y  , x y  , x  y  , x  y , x  y )
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : elapsedTime monjMult I
    │ │ │ - -- .150963s elapsed
    │ │ │ + -- .136694s elapsed
    │ │ │  
    │ │ │  o3 = 192
    │ │ │  
    │ │ │  i4 : elapsedTime jMult I
    │ │ │ - -- 1.50536s elapsed
    │ │ │ + -- 1.45029s elapsed
    │ │ │  
    │ │ │  o4 = 192
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_j__Mult.html
    │ │ │ @@ -88,31 +88,31 @@
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │
    │ │ │
    i3 : elapsedTime jMult I
    │ │ │ - -- .0238525s elapsed
    │ │ │ + -- .0297824s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │
    │ │ │
    i4 : elapsedTime monjMult I
    │ │ │ - -- .114646s elapsed
    │ │ │ + -- .0892441s elapsed
    │ │ │  
    │ │ │  o4 = 2
    │ │ │
    │ │ │
    i5 : elapsedTime multiplicitySequence I
    │ │ │ - -- .137039s elapsed
    │ │ │ + -- .15947s elapsed
    │ │ │  
    │ │ │  o5 = HashTable{2 => 3}
    │ │ │                 3 => 2
    │ │ │  
    │ │ │  o5 : HashTable
    │ │ │
    │ │ │
    i3 : elapsedTime monAnalyticSpread I
    │ │ │ - -- .12587s elapsed
    │ │ │ + -- .0942792s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ i2 : I = ideal"x2,xy,y3" │ │ │ │ │ │ │ │ 2 3 │ │ │ │ o2 = ideal (x , x*y, y ) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime monAnalyticSpread I │ │ │ │ - -- .12587s elapsed │ │ │ │ + -- .0942792s elapsed │ │ │ │ │ │ │ │ o3 = 2 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _N_P -- the Newton polyhedron of a monomial ideal │ │ │ │ ********** WWaayyss ttoo uussee mmoonnAAnnaallyyttiiccSSpprreeaadd:: ********** │ │ │ │ * monAnalyticSpread(Ideal) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_monj__Mult.html │ │ │ @@ -92,23 +92,23 @@ │ │ │ │ │ │ o2 : Ideal of R
    │ │ │
    │ │ │
    i3 : elapsedTime monjMult I
    │ │ │ - -- .150963s elapsed
    │ │ │ + -- .136694s elapsed
    │ │ │  
    │ │ │  o3 = 192
    │ │ │
    │ │ │
    i4 : elapsedTime jMult I
    │ │ │ - -- 1.50536s elapsed
    │ │ │ + -- 1.45029s elapsed
    │ │ │  
    │ │ │  o4 = 192
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -24,19 +24,19 @@ │ │ │ │ o2 = ideal (x y , x y , x y , x y , x y , x y , x y , x y , x y , │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 10 11 8 12 9 11 10 10 11 9 12 8 │ │ │ │ x y , x y , x y , x y , x y , x y ) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime monjMult I │ │ │ │ - -- .150963s elapsed │ │ │ │ + -- .136694s elapsed │ │ │ │ │ │ │ │ o3 = 192 │ │ │ │ i4 : elapsedTime jMult I │ │ │ │ - -- 1.50536s elapsed │ │ │ │ + -- 1.45029s elapsed │ │ │ │ │ │ │ │ o4 = 192 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_u_l_t_i_p_l_i_c_i_t_y_S_e_q_u_e_n_c_e -- the multiplicity sequence of an ideal │ │ │ │ * _j_M_u_l_t -- the j-multiplicity of an ideal │ │ │ │ * _m_o_n_R_e_d_u_c_t_i_o_n -- the minimal monomial reduction of a monomial ideal │ │ │ │ * _N_P -- the Newton polyhedron of a monomial ideal │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ o4 : ProjectiveVariety, curve in PP^8 │ │ │ │ │ │ i5 : ? X │ │ │ │ │ │ o5 = curve in PP^8 cut out by 17 hypersurfaces of degrees 1^2 2^15 │ │ │ │ │ │ i6 : time f = X ===> Y; │ │ │ - -- used 2.8986s (cpu); 1.72302s (thread); 0s (gc) │ │ │ + -- used 3.79233s (cpu); 2.02857s (thread); 0s (gc) │ │ │ │ │ │ o6 : MultirationalMap (automorphism of PP^8) │ │ │ │ │ │ i7 : f X │ │ │ │ │ │ o7 = Y │ │ │ │ │ │ @@ -38,15 +38,15 @@ │ │ │ o9 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ │ │ i10 : W = random({{2},{1}},Y); │ │ │ │ │ │ o10 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ │ │ i11 : time g = V ===> W; │ │ │ - -- used 3.15417s (cpu); 1.94205s (thread); 0s (gc) │ │ │ + -- used 4.41817s (cpu); 2.31119s (thread); 0s (gc) │ │ │ │ │ │ o11 : MultirationalMap (automorphism of PP^8) │ │ │ │ │ │ i12 : g||W │ │ │ │ │ │ o12 = multi-rational map consisting of one single rational map │ │ │ source variety: 6-dimensional subvariety of PP^8 cut out by 2 hypersurfaces of degrees 1^1 2^1 │ │ │ @@ -129,15 +129,15 @@ │ │ │ o15 : ProjectiveVariety, 6-dimensional subvariety of PP^9 │ │ │ │ │ │ i16 : ? Z │ │ │ │ │ │ o16 = 6-dimensional subvariety of PP^9 cut out by 5 hypersurfaces of degree 2 │ │ │ │ │ │ i17 : time h = Z ===> GG_K(1,4) │ │ │ - -- used 7.83915s (cpu); 4.80537s (thread); 0s (gc) │ │ │ + -- used 7.14438s (cpu); 4.87382s (thread); 0s (gc) │ │ │ │ │ │ o17 = h │ │ │ │ │ │ o17 : MultirationalMap (isomorphism from PP^9 to PP^9) │ │ │ │ │ │ i18 : h || GG_K(1,4) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.out │ │ │ @@ -7,15 +7,15 @@ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ i3 : Y = projectiveVariety ideal(random({1,1},ring target Phi), random({1,1},ring target Phi)); │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^2 x PP^4 │ │ │ │ │ │ i4 : time X = Phi^* Y; │ │ │ - -- used 4.99846s (cpu); 3.67423s (thread); 0s (gc) │ │ │ + -- used 4.66349s (cpu); 3.8502s (thread); 0s (gc) │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^3 x PP^2 x PP^4 (subvariety of codimension 2 in threefold in PP^3 x PP^2 x PP^4 cut out by 12 hypersurfaces of multi-degrees (0,0,2)^1 (0,1,1)^2 (1,0,1)^7 (1,1,0)^2 ) │ │ │ │ │ │ i5 : dim X, degree X, degrees X │ │ │ │ │ │ o5 = (1, 31, {({0, 0, 2}, 1), ({0, 0, 3}, 4), ({0, 1, 1}, 4), ({0, 4, 1}, 1), │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp__Multiprojective__Variety.out │ │ │ @@ -11,26 +11,26 @@ │ │ │ o3 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^7 x PP^7) │ │ │ │ │ │ i4 : Z = source Phi; │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^7 │ │ │ │ │ │ i5 : time Phi Z; │ │ │ - -- used 0.0924424s (cpu); 0.0925199s (thread); 0s (gc) │ │ │ + -- used 0.140093s (cpu); 0.126823s (thread); 0s (gc) │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^7 │ │ │ │ │ │ i6 : dim oo, degree oo, degrees oo │ │ │ │ │ │ o6 = (4, 80, {({0, 2}, 5), ({1, 1}, 33), ({2, 0}, 5)}) │ │ │ │ │ │ o6 : Sequence │ │ │ │ │ │ i7 : time Phi (point Z + point Z + point Z) │ │ │ - -- used 1.89973s (cpu); 1.35924s (thread); 0s (gc) │ │ │ + -- used 2.23982s (cpu); 1.46062s (thread); 0s (gc) │ │ │ │ │ │ o7 = 0-dimensional subvariety of PP^7 x PP^7 cut out by 22 hypersurfaces of multi-degrees (0,1)^5 (0,2)^3 (1,0)^5 (1,1)^6 (2,0)^3 │ │ │ │ │ │ o7 : ProjectiveVariety, 0-dimensional subvariety of PP^7 x PP^7 │ │ │ │ │ │ i8 : dim oo, degree oo, degrees oo │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_cm__Option_rp.out │ │ │ @@ -11,22 +11,22 @@ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ source variety: threefold in PP^4 x PP^4 cut out by 13 hypersurfaces of │ │ │ target variety: hypersurface in PP^4 defined by a form of degree 2 │ │ │ ------------------------------------------------------------------------ │ │ │ multi-degrees (0,2)^1 (1,1)^3 (2,1)^8 (4,0)^1 │ │ │ │ │ │ i4 : time degree(Phi,Strategy=>"random point") │ │ │ - -- used 3.56256s (cpu); 2.40057s (thread); 0s (gc) │ │ │ + -- used 5.06218s (cpu); 2.71156s (thread); 0s (gc) │ │ │ │ │ │ o4 = 2 │ │ │ │ │ │ i5 : time degree(Phi,Strategy=>"0-th projective degree") │ │ │ - -- used 0.331353s (cpu); 0.28086s (thread); 0s (gc) │ │ │ + -- used 0.383039s (cpu); 0.297112s (thread); 0s (gc) │ │ │ │ │ │ o5 = 2 │ │ │ │ │ │ i6 : time degree Phi │ │ │ - -- used 0.326329s (cpu); 0.269225s (thread); 0s (gc) │ │ │ + -- used 0.397881s (cpu); 0.305584s (thread); 0s (gc) │ │ │ │ │ │ o6 = 2 │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_rp.out │ │ │ @@ -3,12 +3,12 @@ │ │ │ i1 : ZZ/300007[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, x_3^2}; │ │ │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ i3 : time degree Phi │ │ │ - -- used 0.452916s (cpu); 0.395006s (thread); 0s (gc) │ │ │ + -- used 0.641466s (cpu); 0.456905s (thread); 0s (gc) │ │ │ │ │ │ o3 = 1 │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multirational__Map_rp.out │ │ │ @@ -1,52 +1,52 @@ │ │ │ -- -*- M2-comint -*- hash: 11533721324852072161 │ │ │ │ │ │ i1 : Phi = multirationalMap graph rationalMap PP_(ZZ/65521)^(1,4); │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^4 x PP^5) │ │ │ │ │ │ i2 : time ? Phi │ │ │ - -- used 0.00318912s (cpu); 0.000168737s (thread); 0s (gc) │ │ │ + -- used 0.00216144s (cpu); 0.00018201s (thread); 0s (gc) │ │ │ │ │ │ o2 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 │ │ │ target variety: PP^4 x PP^5 │ │ │ ------------------------------------------------------------------------ │ │ │ hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ │ │ │ i3 : image Phi; │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^5 │ │ │ │ │ │ i4 : time ? Phi │ │ │ - -- used 0.0014133s (cpu); 0.00021309s (thread); 0s (gc) │ │ │ + -- used 0.00327772s (cpu); 0.000369322s (thread); 0s (gc) │ │ │ │ │ │ o4 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ target variety: PP^4 x PP^5 │ │ │ dominance: false │ │ │ image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ │ │ │ i5 : time describe Phi │ │ │ - -- used 1.36042s (cpu); 1.01983s (thread); 0s (gc) │ │ │ + -- used 1.31989s (cpu); 1.06866s (thread); 0s (gc) │ │ │ │ │ │ o5 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ target variety: PP^4 x PP^5 │ │ │ base locus: empty subscheme of PP^4 x PP^5 │ │ │ dominance: false │ │ │ image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ multidegree: {51, 51, 51, 51, 51} │ │ │ degree: 1 │ │ │ degree sequence (map 1/2): [(1,0), (0,2)] │ │ │ degree sequence (map 2/2): [(0,1), (2,0)] │ │ │ coefficient ring: ZZ/65521 │ │ │ │ │ │ i6 : time ? Phi │ │ │ - -- used 0.000156814s (cpu); 0.000370705s (thread); 0s (gc) │ │ │ + -- used 0.000164346s (cpu); 0.000653807s (thread); 0s (gc) │ │ │ │ │ │ o6 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ target variety: PP^4 x PP^5 │ │ │ base locus: empty subscheme of PP^4 x PP^5 │ │ │ dominance: false │ │ │ image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_graph_lp__Multirational__Map_rp.out │ │ │ @@ -3,45 +3,45 @@ │ │ │ i1 : Phi = rationalMap(PP_(ZZ/333331)^(1,4),Dominant=>true) │ │ │ │ │ │ o1 = Phi │ │ │ │ │ │ o1 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ i2 : time (Phi1,Phi2) = graph Phi │ │ │ - -- used 0.111155s (cpu); 0.0496517s (thread); 0s (gc) │ │ │ + -- used 0.0356856s (cpu); 0.0257258s (thread); 0s (gc) │ │ │ │ │ │ o2 = (Phi1, Phi2) │ │ │ │ │ │ o2 : Sequence │ │ │ │ │ │ i3 : Phi1; │ │ │ │ │ │ o3 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^4) │ │ │ │ │ │ i4 : Phi2; │ │ │ │ │ │ o4 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ i5 : time (Phi21,Phi22) = graph Phi2 │ │ │ - -- used 0.0355309s (cpu); 0.0346335s (thread); 0s (gc) │ │ │ + -- used 0.0495139s (cpu); 0.0393238s (thread); 0s (gc) │ │ │ │ │ │ o5 = (Phi21, Phi22) │ │ │ │ │ │ o5 : Sequence │ │ │ │ │ │ i6 : Phi21; │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ │ │ i7 : Phi22; │ │ │ │ │ │ o7 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ i8 : time (Phi211,Phi212) = graph Phi21 │ │ │ - -- used 0.215498s (cpu); 0.148226s (thread); 0s (gc) │ │ │ + -- used 0.308205s (cpu); 0.173857s (thread); 0s (gc) │ │ │ │ │ │ o8 = (Phi211, Phi212) │ │ │ │ │ │ o8 : Sequence │ │ │ │ │ │ i9 : Phi211; │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_image_lp__Multirational__Map_rp.out │ │ │ @@ -11,25 +11,25 @@ │ │ │ o3 : RationalMap (quadratic rational map from PP^4 to PP^4) │ │ │ │ │ │ i4 : Phi = rationalMap {f,g}; │ │ │ │ │ │ o4 : MultirationalMap (rational map from PP^4 to PP^7 x PP^4) │ │ │ │ │ │ i5 : time Z = image Phi; │ │ │ - -- used 0.199139s (cpu); 0.133717s (thread); 0s (gc) │ │ │ + -- used 0.195619s (cpu); 0.13599s (thread); 0s (gc) │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ │ │ i6 : dim Z, degree Z, degrees Z │ │ │ │ │ │ o6 = (4, 151, {({1, 1}, 4), ({1, 2}, 3), ({2, 0}, 5), ({2, 1}, 13)}) │ │ │ │ │ │ o6 : Sequence │ │ │ │ │ │ i7 : time Z' = projectiveVariety (map segre target Phi) image(segre Phi,"F4"); │ │ │ - -- used 5.22579s (cpu); 2.68091s (thread); 0s (gc) │ │ │ + -- used 10.8601s (cpu); 2.72727s (thread); 0s (gc) │ │ │ │ │ │ o7 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ │ │ i8 : assert(Z == Z') │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse2.out │ │ │ @@ -4,25 +4,25 @@ │ │ │ │ │ │ i2 : -- map defined by the cubics through the secant variety to the rational normal curve of degree 6 │ │ │ Phi = multirationalMap rationalMap(ring PP_K^6,ring GG_K(2,4),gens ideal PP_K([6],2)); │ │ │ │ │ │ o2 : MultirationalMap (rational map from PP^6 to GG(2,4)) │ │ │ │ │ │ i3 : time Psi = inverse2 Phi; │ │ │ - -- used 0.373003s (cpu); 0.295065s (thread); 0s (gc) │ │ │ + -- used 0.499518s (cpu); 0.352935s (thread); 0s (gc) │ │ │ │ │ │ o3 : MultirationalMap (birational map from GG(2,4) to PP^6) │ │ │ │ │ │ i4 : assert(Phi * Psi == 1) │ │ │ │ │ │ i5 : Phi' = Phi || Phi; │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^6 x PP^6 to GG(2,4) x GG(2,4)) │ │ │ │ │ │ i6 : time Psi' = inverse2 Phi'; │ │ │ - -- used 1.40947s (cpu); 1.02276s (thread); 0s (gc) │ │ │ + -- used 1.3053s (cpu); 1.14362s (thread); 0s (gc) │ │ │ │ │ │ o6 : MultirationalMap (birational map from GG(2,4) x GG(2,4) to PP^6 x PP^6) │ │ │ │ │ │ i7 : assert(Phi' * Psi' == 1) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse_lp__Multirational__Map_rp.out │ │ │ @@ -7,33 +7,33 @@ │ │ │ │ │ │ i2 : -- we see Phi as a dominant map │ │ │ Phi = rationalMap(Phi,image Phi); │ │ │ │ │ │ o2 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ i3 : time inverse Phi; │ │ │ - -- used 0.140994s (cpu); 0.0876716s (thread); 0s (gc) │ │ │ + -- used 0.111868s (cpu); 0.0663369s (thread); 0s (gc) │ │ │ │ │ │ o3 : MultirationalMap (birational map from hypersurface in PP^5 to PP^4) │ │ │ │ │ │ i4 : Psi = last graph Phi; │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ i5 : time inverse Psi; │ │ │ - -- used 0.160203s (cpu); 0.0924297s (thread); 0s (gc) │ │ │ + -- used 0.230903s (cpu); 0.109277s (thread); 0s (gc) │ │ │ │ │ │ o5 : MultirationalMap (birational map from hypersurface in PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ │ │ i6 : Eta = first graph Psi; │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ │ │ i7 : time inverse Eta; │ │ │ - -- used 0.442904s (cpu); 0.290422s (thread); 0s (gc) │ │ │ + -- used 0.581554s (cpu); 0.338255s (thread); 0s (gc) │ │ │ │ │ │ o7 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5 x PP^5) │ │ │ │ │ │ i8 : assert(Phi * Phi^-1 == 1 and Phi^-1 * Phi == 1) │ │ │ │ │ │ i9 : assert(Psi * Psi^-1 == 1 and Psi^-1 * Psi == 1) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Isomorphism_lp__Multirational__Map_rp.out │ │ │ @@ -6,32 +6,32 @@ │ │ │ o2 : RationalMap (quadratic rational map from PP^3 to PP^2) │ │ │ │ │ │ i3 : Phi = rationalMap {f,f}; │ │ │ │ │ │ o3 : MultirationalMap (rational map from PP^3 to PP^2 x PP^2) │ │ │ │ │ │ i4 : time isIsomorphism Phi │ │ │ - -- used 0.00368849s (cpu); 1.1823e-05s (thread); 0s (gc) │ │ │ + -- used 0.000170347s (cpu); 7.47e-06s (thread); 0s (gc) │ │ │ │ │ │ o4 = false │ │ │ │ │ │ i5 : Psi = first graph Phi; │ │ │ │ │ │ o5 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 to PP^3) │ │ │ │ │ │ i6 : time isIsomorphism Psi │ │ │ - -- used 0.32581s (cpu); 0.169415s (thread); 0s (gc) │ │ │ + -- used 0.398478s (cpu); 0.200434s (thread); 0s (gc) │ │ │ │ │ │ o6 = false │ │ │ │ │ │ i7 : Eta = first graph Psi; │ │ │ │ │ │ o7 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 x PP^3 to threefold in PP^3 x PP^2 x PP^2) │ │ │ │ │ │ i8 : time isIsomorphism Eta │ │ │ - -- used 1.54364s (cpu); 0.844695s (thread); 0s (gc) │ │ │ + -- used 1.84911s (cpu); 0.913006s (thread); 0s (gc) │ │ │ │ │ │ o8 = true │ │ │ │ │ │ i9 : assert(o8 and (not o6) and (not o4)) │ │ │ │ │ │ i10 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Morphism_lp__Multirational__Map_rp.out │ │ │ @@ -3,24 +3,24 @@ │ │ │ i1 : ZZ/300007[a..e], f = first graph rationalMap ideal(c^2-b*d,b*c-a*d,b^2-a*c,e), g = rationalMap submatrix(matrix f,{0..2}); │ │ │ │ │ │ i2 : Phi = rationalMap {f,g}; │ │ │ │ │ │ o2 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^4 x PP^2) │ │ │ │ │ │ i3 : time isMorphism Phi │ │ │ - -- used 0.352309s (cpu); 0.232452s (thread); 0s (gc) │ │ │ + -- used 0.513527s (cpu); 0.273744s (thread); 0s (gc) │ │ │ │ │ │ o3 = false │ │ │ │ │ │ i4 : time Psi = first graph Phi; │ │ │ - -- used 0.161522s (cpu); 0.101427s (thread); 0s (gc) │ │ │ + -- used 0.0855856s (cpu); 0.0658816s (thread); 0s (gc) │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^7 x PP^4 x PP^2 to 4-dimensional subvariety of PP^4 x PP^7) │ │ │ │ │ │ i5 : time isMorphism Psi │ │ │ - -- used 4.17216s (cpu); 3.04184s (thread); 0s (gc) │ │ │ + -- used 3.88426s (cpu); 3.20215s (thread); 0s (gc) │ │ │ │ │ │ o5 = true │ │ │ │ │ │ i6 : assert((not o3) and o5) │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linearly__Normal__Embedding.out │ │ │ @@ -3,24 +3,24 @@ │ │ │ i1 : K = ZZ/333331; │ │ │ │ │ │ i2 : X = PP_K^(1,7); -- rational normal curve of degree 7 │ │ │ │ │ │ o2 : ProjectiveVariety, curve in PP^7 │ │ │ │ │ │ i3 : time f = linearlyNormalEmbedding X; │ │ │ - -- used 0.00800035s (cpu); 0.00921257s (thread); 0s (gc) │ │ │ + -- used 0.111433s (cpu); 0.0348351s (thread); 0s (gc) │ │ │ │ │ │ o3 : MultirationalMap (automorphism of X) │ │ │ │ │ │ i4 : Y = (rationalMap {for i to 3 list random(1,ring ambient X)}) X; -- an isomorphic projection of X in PP^3 │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^3 │ │ │ │ │ │ i5 : time g = linearlyNormalEmbedding Y; │ │ │ - -- used 0.558273s (cpu); 0.439528s (thread); 0s (gc) │ │ │ + -- used 0.521945s (cpu); 0.43899s (thread); 0s (gc) │ │ │ │ │ │ o5 : MultirationalMap (birational map from Y to curve in PP^7) │ │ │ │ │ │ i6 : assert(isIsomorphism g) │ │ │ │ │ │ i7 : describe g │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multirational__Map_rp.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : ZZ/300007[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, x_3^2}; │ │ │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ i3 : time multidegree Phi │ │ │ - -- used 0.510118s (cpu); 0.379256s (thread); 0s (gc) │ │ │ + -- used 0.694669s (cpu); 0.471817s (thread); 0s (gc) │ │ │ │ │ │ o3 = {66, 46, 31, 20} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : (degree source Phi,degree image Phi) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ @@ -1,21 +1,21 @@ │ │ │ -- -*- M2-comint -*- hash: 16199733219210081214 │ │ │ │ │ │ i1 : Phi = last graph rationalMap PP_(ZZ/300007)^(1,4); │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^5) │ │ │ │ │ │ i2 : for i in {4,3,2,1,0} list time multidegree(i,Phi) │ │ │ - -- used 0.00244457s (cpu); 0.0012392s (thread); 0s (gc) │ │ │ - -- used 0.280015s (cpu); 0.154499s (thread); 0s (gc) │ │ │ - -- used 0.221312s (cpu); 0.167638s (thread); 0s (gc) │ │ │ - -- used 0.215238s (cpu); 0.14879s (thread); 0s (gc) │ │ │ - -- used 0.191957s (cpu); 0.116338s (thread); 0s (gc) │ │ │ + -- used 0.000697832s (cpu); 0.00141714s (thread); 0s (gc) │ │ │ + -- used 0.231865s (cpu); 0.146593s (thread); 0s (gc) │ │ │ + -- used 0.260907s (cpu); 0.176057s (thread); 0s (gc) │ │ │ + -- used 0.241734s (cpu); 0.155425s (thread); 0s (gc) │ │ │ + -- used 0.215323s (cpu); 0.128721s (thread); 0s (gc) │ │ │ │ │ │ o2 = {51, 28, 14, 6, 2} │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : time assert(oo == multidegree Phi) │ │ │ - -- used 0.160984s (cpu); 0.101194s (thread); 0s (gc) │ │ │ + -- used 0.223276s (cpu); 0.103559s (thread); 0s (gc) │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_point_lp__Multiprojective__Variety_rp.out │ │ │ @@ -3,26 +3,26 @@ │ │ │ i1 : K = ZZ/1000003; │ │ │ │ │ │ i2 : X = PP_K^({1,1,2},{3,2,3}); │ │ │ │ │ │ o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i3 : time p := point X │ │ │ - -- used 0.0160578s (cpu); 0.0164613s (thread); 0s (gc) │ │ │ + -- used 0.0394789s (cpu); 0.0212327s (thread); 0s (gc) │ │ │ │ │ │ o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1],[3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1]) │ │ │ │ │ │ o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i4 : Y = random({2,1,2},X); │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i5 : time q = point Y │ │ │ - -- used 1.86005s (cpu); 1.10026s (thread); 0s (gc) │ │ │ + -- used 1.63866s (cpu); 1.05478s (thread); 0s (gc) │ │ │ │ │ │ o5 = q │ │ │ │ │ │ o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i6 : assert(isSubset(p,X) and isSubset(q,Y)) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multirational__Map_rp.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ o4 : RationalMap (quadratic rational map from PP^4 to PP^4) │ │ │ │ │ │ i5 : Phi = rationalMap {f,g,h}; │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^4 x PP^4) │ │ │ │ │ │ i6 : time segre Phi; │ │ │ - -- used 0.716809s (cpu); 0.551533s (thread); 0s (gc) │ │ │ + -- used 1.44958s (cpu); 0.652869s (thread); 0s (gc) │ │ │ │ │ │ o6 : RationalMap (rational map from PP^4 to PP^149) │ │ │ │ │ │ i7 : describe segre Phi │ │ │ │ │ │ o7 = rational map defined by forms of degree 6 │ │ │ source variety: PP^4 │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_show_lp__Multirational__Map_rp.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : Phi = inverse first graph last graph rationalMap PP_(ZZ/33331)^(1,3) │ │ │ │ │ │ o1 = Phi │ │ │ │ │ │ o1 : MultirationalMap (birational map from threefold in PP^3 x PP^2 to threefold in PP^3 x PP^2 x PP^2) │ │ │ │ │ │ i2 : time describe Phi │ │ │ - -- used 0.32872s (cpu); 0.173534s (thread); 0s (gc) │ │ │ + -- used 0.24856s (cpu); 0.155046s (thread); 0s (gc) │ │ │ │ │ │ o2 = multi-rational map consisting of 3 rational maps │ │ │ source variety: threefold in PP^3 x PP^2 cut out by 2 hypersurfaces of multi-degree (1,1) │ │ │ target variety: threefold in PP^3 x PP^2 x PP^2 cut out by 7 hypersurfaces of multi-degrees (0,1,1)^3 (1,0,1)^2 (1,1,0)^2 │ │ │ base locus: empty subscheme of PP^3 x PP^2 │ │ │ dominance: true │ │ │ multidegree: {10, 14, 19, 25} │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.html │ │ │ @@ -103,15 +103,15 @@ │ │ │ │ │ │ o5 = curve in PP^8 cut out by 17 hypersurfaces of degrees 1^2 2^15 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time f = X ===> Y;
    │ │ │ - -- used 2.8986s (cpu); 1.72302s (thread); 0s (gc)
    │ │ │ + -- used 3.79233s (cpu); 2.02857s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : MultirationalMap (automorphism of PP^8)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : f X
    │ │ │ @@ -143,15 +143,15 @@
    │ │ │  
    │ │ │  o10 : ProjectiveVariety, 6-dimensional subvariety of PP^8
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : time g = V ===> W;
    │ │ │ - -- used 3.15417s (cpu); 1.94205s (thread); 0s (gc)
    │ │ │ + -- used 4.41817s (cpu); 2.31119s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 : MultirationalMap (automorphism of PP^8)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : g||W
    │ │ │ @@ -252,15 +252,15 @@
    │ │ │  
    │ │ │  o16 = 6-dimensional subvariety of PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : time h = Z ===> GG_K(1,4)
    │ │ │ - -- used 7.83915s (cpu); 4.80537s (thread); 0s (gc)
    │ │ │ + -- used 7.14438s (cpu); 4.87382s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = h
    │ │ │  
    │ │ │  o17 : MultirationalMap (isomorphism from PP^9 to PP^9)
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -33,15 +33,15 @@ │ │ │ │ take(N,-2)); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^8 │ │ │ │ i5 : ? X │ │ │ │ │ │ │ │ o5 = curve in PP^8 cut out by 17 hypersurfaces of degrees 1^2 2^15 │ │ │ │ i6 : time f = X ===> Y; │ │ │ │ - -- used 2.8986s (cpu); 1.72302s (thread); 0s (gc) │ │ │ │ + -- used 3.79233s (cpu); 2.02857s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 : MultirationalMap (automorphism of PP^8) │ │ │ │ i7 : f X │ │ │ │ │ │ │ │ o7 = Y │ │ │ │ │ │ │ │ o7 : ProjectiveVariety, curve in PP^8 │ │ │ │ @@ -53,15 +53,15 @@ │ │ │ │ i9 : V = random({{2},{1}},X); │ │ │ │ │ │ │ │ o9 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ i10 : W = random({{2},{1}},Y); │ │ │ │ │ │ │ │ o10 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ i11 : time g = V ===> W; │ │ │ │ - -- used 3.15417s (cpu); 1.94205s (thread); 0s (gc) │ │ │ │ + -- used 4.41817s (cpu); 2.31119s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 : MultirationalMap (automorphism of PP^8) │ │ │ │ i12 : g||W │ │ │ │ │ │ │ │ o12 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 6-dimensional subvariety of PP^8 cut out by 2 │ │ │ │ hypersurfaces of degrees 1^1 2^1 │ │ │ │ @@ -144,15 +144,15 @@ │ │ │ │ i15 : Z = projectiveVariety pfaffians(4,A); │ │ │ │ │ │ │ │ o15 : ProjectiveVariety, 6-dimensional subvariety of PP^9 │ │ │ │ i16 : ? Z │ │ │ │ │ │ │ │ o16 = 6-dimensional subvariety of PP^9 cut out by 5 hypersurfaces of degree 2 │ │ │ │ i17 : time h = Z ===> GG_K(1,4) │ │ │ │ - -- used 7.83915s (cpu); 4.80537s (thread); 0s (gc) │ │ │ │ + -- used 7.14438s (cpu); 4.87382s (thread); 0s (gc) │ │ │ │ │ │ │ │ o17 = h │ │ │ │ │ │ │ │ o17 : MultirationalMap (isomorphism from PP^9 to PP^9) │ │ │ │ i18 : h || GG_K(1,4) │ │ │ │ │ │ │ │ o18 = multi-rational map consisting of one single rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^2 x PP^4 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time X = Phi^* Y;
    │ │ │ - -- used 4.99846s (cpu); 3.67423s (thread); 0s (gc)
    │ │ │ + -- used 4.66349s (cpu); 3.8502s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, curve in PP^3 x PP^2 x PP^4 (subvariety of codimension 2 in threefold in PP^3 x PP^2 x PP^4 cut out by 12 hypersurfaces of multi-degrees (0,0,2)^1 (0,1,1)^2 (1,0,1)^7 (1,1,0)^2 )
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : dim X, degree X, degrees X
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -26,15 +26,15 @@
    │ │ │ │  o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to
    │ │ │ │  PP^2 x PP^4)
    │ │ │ │  i3 : Y = projectiveVariety ideal(random({1,1},ring target Phi), random(
    │ │ │ │  {1,1},ring target Phi));
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, 4-dimensional subvariety of PP^2 x PP^4
    │ │ │ │  i4 : time X = Phi^* Y;
    │ │ │ │ - -- used 4.99846s (cpu); 3.67423s (thread); 0s (gc)
    │ │ │ │ + -- used 4.66349s (cpu); 3.8502s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : ProjectiveVariety, curve in PP^3 x PP^2 x PP^4 (subvariety of codimension
    │ │ │ │  2 in threefold in PP^3 x PP^2 x PP^4 cut out by 12 hypersurfaces of multi-
    │ │ │ │  degrees (0,0,2)^1 (0,1,1)^2 (1,0,1)^7 (1,1,0)^2 )
    │ │ │ │  i5 : dim X, degree X, degrees X
    │ │ │ │  
    │ │ │ │  o5 = (1, 31, {({0, 0, 2}, 1), ({0, 0, 3}, 4), ({0, 1, 1}, 4), ({0, 4, 1}, 1),
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp__Multiprojective__Variety.html
    │ │ │ @@ -95,15 +95,15 @@
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^7
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time Phi Z;
    │ │ │ - -- used 0.0924424s (cpu); 0.0925199s (thread); 0s (gc)
    │ │ │ + -- used 0.140093s (cpu); 0.126823s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^7
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : dim oo, degree oo, degrees oo
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │  
    │ │ │  o6 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time Phi (point Z + point Z + point Z)
    │ │ │ - -- used 1.89973s (cpu); 1.35924s (thread); 0s (gc)
    │ │ │ + -- used 2.23982s (cpu); 1.46062s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 0-dimensional subvariety of PP^7 x PP^7 cut out by 22 hypersurfaces of multi-degrees (0,1)^5 (0,2)^3 (1,0)^5 (1,1)^6 (2,0)^3 
    │ │ │  
    │ │ │  o7 : ProjectiveVariety, 0-dimensional subvariety of PP^7 x PP^7
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -25,24 +25,24 @@ │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^7 to PP^7 x PP^7) │ │ │ │ i4 : Z = source Phi; │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^7 │ │ │ │ i5 : time Phi Z; │ │ │ │ - -- used 0.0924424s (cpu); 0.0925199s (thread); 0s (gc) │ │ │ │ + -- used 0.140093s (cpu); 0.126823s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^7 │ │ │ │ i6 : dim oo, degree oo, degrees oo │ │ │ │ │ │ │ │ o6 = (4, 80, {({0, 2}, 5), ({1, 1}, 33), ({2, 0}, 5)}) │ │ │ │ │ │ │ │ o6 : Sequence │ │ │ │ i7 : time Phi (point Z + point Z + point Z) │ │ │ │ - -- used 1.89973s (cpu); 1.35924s (thread); 0s (gc) │ │ │ │ + -- used 2.23982s (cpu); 1.46062s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = 0-dimensional subvariety of PP^7 x PP^7 cut out by 22 hypersurfaces of │ │ │ │ multi-degrees (0,1)^5 (0,2)^3 (1,0)^5 (1,1)^6 (2,0)^3 │ │ │ │ │ │ │ │ o7 : ProjectiveVariety, 0-dimensional subvariety of PP^7 x PP^7 │ │ │ │ i8 : dim oo, degree oo, degrees oo │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_cm__Option_rp.html │ │ │ @@ -93,31 +93,31 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ multi-degrees (0,2)^1 (1,1)^3 (2,1)^8 (4,0)^1 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time degree(Phi,Strategy=>"random point")
    │ │ │ - -- used 3.56256s (cpu); 2.40057s (thread); 0s (gc)
    │ │ │ + -- used 5.06218s (cpu); 2.71156s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time degree(Phi,Strategy=>"0-th projective degree")
    │ │ │ - -- used 0.331353s (cpu); 0.28086s (thread); 0s (gc)
    │ │ │ + -- used 0.383039s (cpu); 0.297112s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time degree Phi
    │ │ │ - -- used 0.326329s (cpu); 0.269225s (thread); 0s (gc)
    │ │ │ + -- used 0.397881s (cpu); 0.305584s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = 2
    │ │ │ │ │ │ │ │ │ │ │ │

    Note, as in the example above, that calculation times may vary depending on the strategy used.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -27,23 +27,23 @@ │ │ │ │ │ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ │ source variety: threefold in PP^4 x PP^4 cut out by 13 hypersurfaces of │ │ │ │ target variety: hypersurface in PP^4 defined by a form of degree 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ multi-degrees (0,2)^1 (1,1)^3 (2,1)^8 (4,0)^1 │ │ │ │ i4 : time degree(Phi,Strategy=>"random point") │ │ │ │ - -- used 3.56256s (cpu); 2.40057s (thread); 0s (gc) │ │ │ │ + -- used 5.06218s (cpu); 2.71156s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 2 │ │ │ │ i5 : time degree(Phi,Strategy=>"0-th projective degree") │ │ │ │ - -- used 0.331353s (cpu); 0.28086s (thread); 0s (gc) │ │ │ │ + -- used 0.383039s (cpu); 0.297112s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 2 │ │ │ │ i6 : time degree Phi │ │ │ │ - -- used 0.326329s (cpu); 0.269225s (thread); 0s (gc) │ │ │ │ + -- used 0.397881s (cpu); 0.305584s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = 2 │ │ │ │ Note, as in the example above, that calculation times may vary depending on the │ │ │ │ strategy used. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- degree of a multi-rational map │ │ │ │ * _d_e_g_r_e_e_M_a_p_(_R_a_t_i_o_n_a_l_M_a_p_) -- degree of a rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_rp.html │ │ │ @@ -81,15 +81,15 @@ │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time degree Phi
    │ │ │ - -- used 0.452916s (cpu); 0.395006s (thread); 0s (gc)
    │ │ │ + -- used 0.641466s (cpu); 0.456905s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = 1
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, │ │ │ │ x_3^2}; │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to │ │ │ │ PP^2 x PP^4) │ │ │ │ i3 : time degree Phi │ │ │ │ - -- used 0.452916s (cpu); 0.395006s (thread); 0s (gc) │ │ │ │ + -- used 0.641466s (cpu); 0.456905s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = 1 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_,_O_p_t_i_o_n_) -- degree of a multi-rational map using a │ │ │ │ probabilistic approach │ │ │ │ * _d_e_g_r_e_e_(_R_a_t_i_o_n_a_l_M_a_p_) -- degree of a rational map │ │ │ │ * _m_u_l_t_i_d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- projective degrees of a multi-rational │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multirational__Map_rp.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^4 x PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time ? Phi
    │ │ │ - -- used 0.00318912s (cpu); 0.000168737s (thread); 0s (gc)
    │ │ │ + -- used 0.00216144s (cpu); 0.00018201s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       ------------------------------------------------------------------------
    │ │ │       hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │ │ │ @@ -96,27 +96,27 @@ │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time ? Phi
    │ │ │ - -- used 0.0014133s (cpu); 0.00021309s (thread); 0s (gc)
    │ │ │ + -- used 0.00327772s (cpu); 0.000369322s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       dominance: false
    │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time describe Phi
    │ │ │ - -- used 1.36042s (cpu); 1.01983s (thread); 0s (gc)
    │ │ │ + -- used 1.31989s (cpu); 1.06866s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │       dominance: false
    │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │ @@ -126,15 +126,15 @@
    │ │ │       degree sequence (map 2/2): [(0,1), (2,0)]
    │ │ │       coefficient ring: ZZ/65521
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time ? Phi
    │ │ │ - -- used 0.000156814s (cpu); 0.000370705s (thread); 0s (gc)
    │ │ │ + -- used 0.000164346s (cpu); 0.000653807s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │       dominance: false
    │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,36 +16,36 @@
    │ │ │ │  ? Phi is a lite version of describe Phi. The latter has a different behavior
    │ │ │ │  than _d_e_s_c_r_i_b_e_(_R_a_t_i_o_n_a_l_M_a_p_), since it performs computations.
    │ │ │ │  i1 : Phi = multirationalMap graph rationalMap PP_(ZZ/65521)^(1,4);
    │ │ │ │  
    │ │ │ │  o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x
    │ │ │ │  PP^5 to PP^4 x PP^5)
    │ │ │ │  i2 : time ? Phi
    │ │ │ │ - -- used 0.00318912s (cpu); 0.000168737s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00216144s (cpu); 0.00018201s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │  i3 : image Phi;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^5
    │ │ │ │  i4 : time ? Phi
    │ │ │ │ - -- used 0.0014133s (cpu); 0.00021309s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00327772s (cpu); 0.000369322s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │  hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       dominance: false
    │ │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces
    │ │ │ │  of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │  i5 : time describe Phi
    │ │ │ │ - -- used 1.36042s (cpu); 1.01983s (thread); 0s (gc)
    │ │ │ │ + -- used 1.31989s (cpu); 1.06866s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │  hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │ │       dominance: false
    │ │ │ │ @@ -53,15 +53,15 @@
    │ │ │ │  of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       multidegree: {51, 51, 51, 51, 51}
    │ │ │ │       degree: 1
    │ │ │ │       degree sequence (map 1/2): [(1,0), (0,2)]
    │ │ │ │       degree sequence (map 2/2): [(0,1), (2,0)]
    │ │ │ │       coefficient ring: ZZ/65521
    │ │ │ │  i6 : time ? Phi
    │ │ │ │ - -- used 0.000156814s (cpu); 0.000370705s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000164346s (cpu); 0.000653807s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │  hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │ │       dominance: false
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_graph_lp__Multirational__Map_rp.html
    │ │ │ @@ -83,15 +83,15 @@
    │ │ │  
    │ │ │  o1 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time (Phi1,Phi2) = graph Phi
    │ │ │ - -- used 0.111155s (cpu); 0.0496517s (thread); 0s (gc)
    │ │ │ + -- used 0.0356856s (cpu); 0.0257258s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = (Phi1, Phi2)
    │ │ │  
    │ │ │  o2 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -107,15 +107,15 @@ │ │ │ │ │ │ o4 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time (Phi21,Phi22) = graph Phi2
    │ │ │ - -- used 0.0355309s (cpu); 0.0346335s (thread); 0s (gc)
    │ │ │ + -- used 0.0495139s (cpu); 0.0393238s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = (Phi21, Phi22)
    │ │ │  
    │ │ │  o5 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -131,15 +131,15 @@ │ │ │ │ │ │ o7 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time (Phi211,Phi212) = graph Phi21
    │ │ │ - -- used 0.215498s (cpu); 0.148226s (thread); 0s (gc)
    │ │ │ + -- used 0.308205s (cpu); 0.173857s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = (Phi211, Phi212)
    │ │ │  
    │ │ │  o8 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -19,43 +19,43 @@ │ │ │ │ Phi)^-1 * (last graph Phi) == Phi are always satisfied. │ │ │ │ i1 : Phi = rationalMap(PP_(ZZ/333331)^(1,4),Dominant=>true) │ │ │ │ │ │ │ │ o1 = Phi │ │ │ │ │ │ │ │ o1 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ i2 : time (Phi1,Phi2) = graph Phi │ │ │ │ - -- used 0.111155s (cpu); 0.0496517s (thread); 0s (gc) │ │ │ │ + -- used 0.0356856s (cpu); 0.0257258s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = (Phi1, Phi2) │ │ │ │ │ │ │ │ o2 : Sequence │ │ │ │ i3 : Phi1; │ │ │ │ │ │ │ │ o3 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to PP^4) │ │ │ │ i4 : Phi2; │ │ │ │ │ │ │ │ o4 : MultirationalMap (dominant rational map from 4-dimensional subvariety of │ │ │ │ PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ i5 : time (Phi21,Phi22) = graph Phi2 │ │ │ │ - -- used 0.0355309s (cpu); 0.0346335s (thread); 0s (gc) │ │ │ │ + -- used 0.0495139s (cpu); 0.0393238s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = (Phi21, Phi22) │ │ │ │ │ │ │ │ o5 : Sequence │ │ │ │ i6 : Phi21; │ │ │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ i7 : Phi22; │ │ │ │ │ │ │ │ o7 : MultirationalMap (dominant rational map from 4-dimensional subvariety of │ │ │ │ PP^4 x PP^5 x PP^5 to hypersurface in PP^5) │ │ │ │ i8 : time (Phi211,Phi212) = graph Phi21 │ │ │ │ - -- used 0.215498s (cpu); 0.148226s (thread); 0s (gc) │ │ │ │ + -- used 0.308205s (cpu); 0.173857s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = (Phi211, Phi212) │ │ │ │ │ │ │ │ o8 : Sequence │ │ │ │ i9 : Phi211; │ │ │ │ │ │ │ │ o9 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_image_lp__Multirational__Map_rp.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ │ │ o4 : MultirationalMap (rational map from PP^4 to PP^7 x PP^4) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time Z = image Phi;
    │ │ │ - -- used 0.199139s (cpu); 0.133717s (thread); 0s (gc)
    │ │ │ + -- used 0.195619s (cpu); 0.13599s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : dim Z, degree Z, degrees Z
    │ │ │ @@ -115,15 +115,15 @@
    │ │ │            
    │ │ │          
    │ │ │          

    Alternatively, the calculation can be performed using the Segre embedding as follows:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, │ │ │ │ x_3^2}; │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to │ │ │ │ PP^2 x PP^4) │ │ │ │ i3 : time multidegree Phi │ │ │ │ - -- used 0.510118s (cpu); 0.379256s (thread); 0s (gc) │ │ │ │ + -- used 0.694669s (cpu); 0.471817s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = {66, 46, 31, 20} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : (degree source Phi,degree image Phi) │ │ │ │ │ │ │ │ o4 = (66, 20) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ @@ -77,29 +77,29 @@ │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : time Z' = projectiveVariety (map segre target Phi) image(segre Phi,"F4");
    │ │ │ - -- used 5.22579s (cpu); 2.68091s (thread); 0s (gc)
    │ │ │ + -- used 10.8601s (cpu); 2.72727s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4
    │ │ │
    │ │ │
    i8 : assert(Z == Z')
    │ │ │ ├── html2text {} │ │ │ │ @@ -23,26 +23,26 @@ │ │ │ │ 3*x_2^2+2*x_1*x_3+x_0*x_4, 2*x_1*x_2-2*x_0*x_3, -x_1^2+x_0*x_2}; │ │ │ │ │ │ │ │ o3 : RationalMap (quadratic rational map from PP^4 to PP^4) │ │ │ │ i4 : Phi = rationalMap {f,g}; │ │ │ │ │ │ │ │ o4 : MultirationalMap (rational map from PP^4 to PP^7 x PP^4) │ │ │ │ i5 : time Z = image Phi; │ │ │ │ - -- used 0.199139s (cpu); 0.133717s (thread); 0s (gc) │ │ │ │ + -- used 0.195619s (cpu); 0.13599s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ i6 : dim Z, degree Z, degrees Z │ │ │ │ │ │ │ │ o6 = (4, 151, {({1, 1}, 4), ({1, 2}, 3), ({2, 0}, 5), ({2, 1}, 13)}) │ │ │ │ │ │ │ │ o6 : Sequence │ │ │ │ Alternatively, the calculation can be performed using the Segre embedding as │ │ │ │ follows: │ │ │ │ i7 : time Z' = projectiveVariety (map segre target Phi) image(segre Phi,"F4"); │ │ │ │ - -- used 5.22579s (cpu); 2.68091s (thread); 0s (gc) │ │ │ │ + -- used 10.8601s (cpu); 2.72727s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ i8 : assert(Z == Z') │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_ _M_u_l_t_i_p_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y -- direct image via a multi- │ │ │ │ rational map │ │ │ │ * _i_m_a_g_e_(_R_a_t_i_o_n_a_l_M_a_p_) -- closure of the image of a rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse2.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ │ │ │ o2 : MultirationalMap (rational map from PP^6 to GG(2,4)) │ │ │
    │ │ │
    i3 : time Psi = inverse2 Phi;
    │ │ │ - -- used 0.373003s (cpu); 0.295065s (thread); 0s (gc)
    │ │ │ + -- used 0.499518s (cpu); 0.352935s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : MultirationalMap (birational map from GG(2,4) to PP^6)
    │ │ │
    │ │ │
    i4 : assert(Phi * Psi == 1)
    │ │ │ @@ -103,15 +103,15 @@ │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^6 x PP^6 to GG(2,4) x GG(2,4)) │ │ │
    │ │ │
    i6 : time Psi' = inverse2 Phi';
    │ │ │ - -- used 1.40947s (cpu); 1.02276s (thread); 0s (gc)
    │ │ │ + -- used 1.3053s (cpu); 1.14362s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : MultirationalMap (birational map from GG(2,4) x GG(2,4) to PP^6 x PP^6)
    │ │ │
    │ │ │
    i7 : assert(Phi' * Psi' == 1)
    │ │ │ ├── html2text {} │ │ │ │ @@ -24,23 +24,23 @@ │ │ │ │ i2 : -- map defined by the cubics through the secant variety to the rational │ │ │ │ normal curve of degree 6 │ │ │ │ Phi = multirationalMap rationalMap(ring PP_K^6,ring GG_K(2,4),gens ideal │ │ │ │ PP_K([6],2)); │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from PP^6 to GG(2,4)) │ │ │ │ i3 : time Psi = inverse2 Phi; │ │ │ │ - -- used 0.373003s (cpu); 0.295065s (thread); 0s (gc) │ │ │ │ + -- used 0.499518s (cpu); 0.352935s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : MultirationalMap (birational map from GG(2,4) to PP^6) │ │ │ │ i4 : assert(Phi * Psi == 1) │ │ │ │ i5 : Phi' = Phi || Phi; │ │ │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^6 x PP^6 to GG(2,4) x GG(2,4)) │ │ │ │ i6 : time Psi' = inverse2 Phi'; │ │ │ │ - -- used 1.40947s (cpu); 1.02276s (thread); 0s (gc) │ │ │ │ + -- used 1.3053s (cpu); 1.14362s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 : MultirationalMap (birational map from GG(2,4) x GG(2,4) to PP^6 x PP^6) │ │ │ │ i7 : assert(Phi' * Psi' == 1) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_n_v_e_r_s_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- inverse of a birational map │ │ │ │ * _M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_ _<_=_=_>_ _M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p -- equality of multi-rational maps │ │ │ │ with checks on internal data │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse_lp__Multirational__Map_rp.html │ │ │ @@ -88,45 +88,45 @@ │ │ │ │ │ │ o2 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │
    │ │ │
    i3 : time inverse Phi;
    │ │ │ - -- used 0.140994s (cpu); 0.0876716s (thread); 0s (gc)
    │ │ │ + -- used 0.111868s (cpu); 0.0663369s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : MultirationalMap (birational map from hypersurface in PP^5 to PP^4)
    │ │ │
    │ │ │
    i4 : Psi = last graph Phi;
    │ │ │  
    │ │ │  o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5)
    │ │ │
    │ │ │
    i5 : time inverse Psi;
    │ │ │ - -- used 0.160203s (cpu); 0.0924297s (thread); 0s (gc)
    │ │ │ + -- used 0.230903s (cpu); 0.109277s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : MultirationalMap (birational map from hypersurface in PP^5 to 4-dimensional subvariety of PP^4 x PP^5)
    │ │ │
    │ │ │
    i6 : Eta = first graph Psi;
    │ │ │  
    │ │ │  o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5)
    │ │ │
    │ │ │
    i7 : time inverse Eta;
    │ │ │ - -- used 0.442904s (cpu); 0.290422s (thread); 0s (gc)
    │ │ │ + -- used 0.581554s (cpu); 0.338255s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5 x PP^5)
    │ │ │
    │ │ │
    i8 : assert(Phi * Phi^-1 == 1 and Phi^-1 * Phi == 1)
    │ │ │ ├── html2text {} │ │ │ │ @@ -24,32 +24,32 @@ │ │ │ │ │ │ │ │ o1 : MultirationalMap (rational map from PP^4 to PP^5) │ │ │ │ i2 : -- we see Phi as a dominant map │ │ │ │ Phi = rationalMap(Phi,image Phi); │ │ │ │ │ │ │ │ o2 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ i3 : time inverse Phi; │ │ │ │ - -- used 0.140994s (cpu); 0.0876716s (thread); 0s (gc) │ │ │ │ + -- used 0.111868s (cpu); 0.0663369s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : MultirationalMap (birational map from hypersurface in PP^5 to PP^4) │ │ │ │ i4 : Psi = last graph Phi; │ │ │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to hypersurface in PP^5) │ │ │ │ i5 : time inverse Psi; │ │ │ │ - -- used 0.160203s (cpu); 0.0924297s (thread); 0s (gc) │ │ │ │ + -- used 0.230903s (cpu); 0.109277s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : MultirationalMap (birational map from hypersurface in PP^5 to 4- │ │ │ │ dimensional subvariety of PP^4 x PP^5) │ │ │ │ i6 : Eta = first graph Psi; │ │ │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ i7 : time inverse Eta; │ │ │ │ - -- used 0.442904s (cpu); 0.290422s (thread); 0s (gc) │ │ │ │ + -- used 0.581554s (cpu); 0.338255s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to 4-dimensional subvariety of PP^4 x PP^5 x PP^5) │ │ │ │ i8 : assert(Phi * Phi^-1 == 1 and Phi^-1 * Phi == 1) │ │ │ │ i9 : assert(Psi * Psi^-1 == 1 and Psi^-1 * Psi == 1) │ │ │ │ i10 : assert(Eta * Eta^-1 == 1 and Eta^-1 * Eta == 1) │ │ │ │ ********** RReeffeerreenncceess ********** │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Isomorphism_lp__Multirational__Map_rp.html │ │ │ @@ -83,45 +83,45 @@ │ │ │ │ │ │ o3 : MultirationalMap (rational map from PP^3 to PP^2 x PP^2) │ │ │
    │ │ │
    i4 : time isIsomorphism Phi
    │ │ │ - -- used 0.00368849s (cpu); 1.1823e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.000170347s (cpu); 7.47e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = false
    │ │ │
    │ │ │
    i5 : Psi = first graph Phi;
    │ │ │  
    │ │ │  o5 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 to PP^3)
    │ │ │
    │ │ │
    i6 : time isIsomorphism Psi
    │ │ │ - -- used 0.32581s (cpu); 0.169415s (thread); 0s (gc)
    │ │ │ + -- used 0.398478s (cpu); 0.200434s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = false
    │ │ │
    │ │ │
    i7 : Eta = first graph Psi;
    │ │ │  
    │ │ │  o7 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 x PP^3 to threefold in PP^3 x PP^2 x PP^2)
    │ │ │
    │ │ │
    i8 : time isIsomorphism Eta
    │ │ │ - -- used 1.54364s (cpu); 0.844695s (thread); 0s (gc)
    │ │ │ + -- used 1.84911s (cpu); 0.913006s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │
    │ │ │
    i9 : assert(o8 and (not o6) and (not o4))
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,31 +17,31 @@ │ │ │ │ ZZ/33331[a..d]; f = rationalMap {c^2-b*d,b*c-a*d,b^2-a*c}; │ │ │ │ │ │ │ │ o2 : RationalMap (quadratic rational map from PP^3 to PP^2) │ │ │ │ i3 : Phi = rationalMap {f,f}; │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from PP^3 to PP^2 x PP^2) │ │ │ │ i4 : time isIsomorphism Phi │ │ │ │ - -- used 0.00368849s (cpu); 1.1823e-05s (thread); 0s (gc) │ │ │ │ + -- used 0.000170347s (cpu); 7.47e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = false │ │ │ │ i5 : Psi = first graph Phi; │ │ │ │ │ │ │ │ o5 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 to │ │ │ │ PP^3) │ │ │ │ i6 : time isIsomorphism Psi │ │ │ │ - -- used 0.32581s (cpu); 0.169415s (thread); 0s (gc) │ │ │ │ + -- used 0.398478s (cpu); 0.200434s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = false │ │ │ │ i7 : Eta = first graph Psi; │ │ │ │ │ │ │ │ o7 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 x │ │ │ │ PP^3 to threefold in PP^3 x PP^2 x PP^2) │ │ │ │ i8 : time isIsomorphism Eta │ │ │ │ - -- used 1.54364s (cpu); 0.844695s (thread); 0s (gc) │ │ │ │ + -- used 1.84911s (cpu); 0.913006s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : assert(o8 and (not o6) and (not o4)) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_n_v_e_r_s_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- inverse of a birational map │ │ │ │ * _i_s_M_o_r_p_h_i_s_m_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- whether a multi-rational map is a │ │ │ │ morphism │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Morphism_lp__Multirational__Map_rp.html │ │ │ @@ -80,31 +80,31 @@ │ │ │ │ │ │ o2 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^4 x PP^2) │ │ │
    │ │ │
    i3 : time isMorphism Phi
    │ │ │ - -- used 0.352309s (cpu); 0.232452s (thread); 0s (gc)
    │ │ │ + -- used 0.513527s (cpu); 0.273744s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = false
    │ │ │
    │ │ │
    i4 : time Psi = first graph Phi;
    │ │ │ - -- used 0.161522s (cpu); 0.101427s (thread); 0s (gc)
    │ │ │ + -- used 0.0855856s (cpu); 0.0658816s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^7 x PP^4 x PP^2 to 4-dimensional subvariety of PP^4 x PP^7)
    │ │ │
    │ │ │
    i5 : time isMorphism Psi
    │ │ │ - -- used 4.17216s (cpu); 3.04184s (thread); 0s (gc)
    │ │ │ + -- used 3.88426s (cpu); 3.20215s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = true
    │ │ │
    │ │ │
    i6 : assert((not o3) and o5)
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,24 +17,24 @@ │ │ │ │ i1 : ZZ/300007[a..e], f = first graph rationalMap ideal(c^2-b*d,b*c-a*d,b^2- │ │ │ │ a*c,e), g = rationalMap submatrix(matrix f,{0..2}); │ │ │ │ i2 : Phi = rationalMap {f,g}; │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^7 to PP^4 x PP^2) │ │ │ │ i3 : time isMorphism Phi │ │ │ │ - -- used 0.352309s (cpu); 0.232452s (thread); 0s (gc) │ │ │ │ + -- used 0.513527s (cpu); 0.273744s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : time Psi = first graph Phi; │ │ │ │ - -- used 0.161522s (cpu); 0.101427s (thread); 0s (gc) │ │ │ │ + -- used 0.0855856s (cpu); 0.0658816s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^7 x PP^4 x PP^2 to 4-dimensional subvariety of PP^4 x PP^7) │ │ │ │ i5 : time isMorphism Psi │ │ │ │ - -- used 4.17216s (cpu); 3.04184s (thread); 0s (gc) │ │ │ │ + -- used 3.88426s (cpu); 3.20215s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = true │ │ │ │ i6 : assert((not o3) and o5) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_I_s_o_m_o_r_p_h_i_s_m_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- whether a birational map is an │ │ │ │ isomorphism │ │ │ │ * _i_s_M_o_r_p_h_i_s_m_(_R_a_t_i_o_n_a_l_M_a_p_) -- whether a rational map is a morphism │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linearly__Normal__Embedding.html │ │ │ @@ -79,30 +79,30 @@ │ │ │ │ │ │ o2 : ProjectiveVariety, curve in PP^7 │ │ │
    │ │ │
    i3 : time f = linearlyNormalEmbedding X;
    │ │ │ - -- used 0.00800035s (cpu); 0.00921257s (thread); 0s (gc)
    │ │ │ + -- used 0.111433s (cpu); 0.0348351s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : MultirationalMap (automorphism of X)
    │ │ │
    │ │ │
    i4 : Y = (rationalMap {for i to 3 list random(1,ring ambient X)}) X; -- an isomorphic projection of X in PP^3
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, curve in PP^3
    │ │ │
    │ │ │
    i5 : time g = linearlyNormalEmbedding Y;
    │ │ │ - -- used 0.558273s (cpu); 0.439528s (thread); 0s (gc)
    │ │ │ + -- used 0.521945s (cpu); 0.43899s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : MultirationalMap (birational map from Y to curve in PP^7)
    │ │ │
    │ │ │
    i6 : assert(isIsomorphism g)
    │ │ │ ├── html2text {} │ │ │ │ @@ -13,23 +13,23 @@ │ │ │ │ is a linear projection │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : K = ZZ/333331; │ │ │ │ i2 : X = PP_K^(1,7); -- rational normal curve of degree 7 │ │ │ │ │ │ │ │ o2 : ProjectiveVariety, curve in PP^7 │ │ │ │ i3 : time f = linearlyNormalEmbedding X; │ │ │ │ - -- used 0.00800035s (cpu); 0.00921257s (thread); 0s (gc) │ │ │ │ + -- used 0.111433s (cpu); 0.0348351s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : MultirationalMap (automorphism of X) │ │ │ │ i4 : Y = (rationalMap {for i to 3 list random(1,ring ambient X)}) X; -- an │ │ │ │ isomorphic projection of X in PP^3 │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^3 │ │ │ │ i5 : time g = linearlyNormalEmbedding Y; │ │ │ │ - -- used 0.558273s (cpu); 0.439528s (thread); 0s (gc) │ │ │ │ + -- used 0.521945s (cpu); 0.43899s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : MultirationalMap (birational map from Y to curve in PP^7) │ │ │ │ i6 : assert(isIsomorphism g) │ │ │ │ i7 : describe g │ │ │ │ │ │ │ │ o7 = multi-rational map consisting of one single rational map │ │ │ │ source variety: curve in PP^3 cut out by 6 hypersurfaces of degree 4 │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multirational__Map_rp.html │ │ │ @@ -81,15 +81,15 @@ │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │
    │ │ │
    i3 : time multidegree Phi
    │ │ │ - -- used 0.510118s (cpu); 0.379256s (thread); 0s (gc)
    │ │ │ + -- used 0.694669s (cpu); 0.471817s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = {66, 46, 31, 20}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    i2 : for i in {4,3,2,1,0} list time multidegree(i,Phi)
    │ │ │ - -- used 0.00244457s (cpu); 0.0012392s (thread); 0s (gc)
    │ │ │ - -- used 0.280015s (cpu); 0.154499s (thread); 0s (gc)
    │ │ │ - -- used 0.221312s (cpu); 0.167638s (thread); 0s (gc)
    │ │ │ - -- used 0.215238s (cpu); 0.14879s (thread); 0s (gc)
    │ │ │ - -- used 0.191957s (cpu); 0.116338s (thread); 0s (gc)
    │ │ │ + -- used 0.000697832s (cpu); 0.00141714s (thread); 0s (gc)
    │ │ │ + -- used 0.231865s (cpu); 0.146593s (thread); 0s (gc)
    │ │ │ + -- used 0.260907s (cpu); 0.176057s (thread); 0s (gc)
    │ │ │ + -- used 0.241734s (cpu); 0.155425s (thread); 0s (gc)
    │ │ │ + -- used 0.215323s (cpu); 0.128721s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = {51, 28, 14, 6, 2}
    │ │ │  
    │ │ │  o2 : List
    │ │ │
    │ │ │
    i3 : time assert(oo == multidegree Phi)
    │ │ │ - -- used 0.160984s (cpu); 0.101194s (thread); 0s (gc)
    │ │ │ + -- used 0.223276s (cpu); 0.103559s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │
    │ │ │

    References

    │ │ │ ArXiv preprint: Computations with rational maps between multi-projective varieties.
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,25 +17,25 @@ │ │ │ │ This is calculated by means of the inverse image of an appropriate random │ │ │ │ subvariety of the target. │ │ │ │ i1 : Phi = last graph rationalMap PP_(ZZ/300007)^(1,4); │ │ │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to PP^5) │ │ │ │ i2 : for i in {4,3,2,1,0} list time multidegree(i,Phi) │ │ │ │ - -- used 0.00244457s (cpu); 0.0012392s (thread); 0s (gc) │ │ │ │ - -- used 0.280015s (cpu); 0.154499s (thread); 0s (gc) │ │ │ │ - -- used 0.221312s (cpu); 0.167638s (thread); 0s (gc) │ │ │ │ - -- used 0.215238s (cpu); 0.14879s (thread); 0s (gc) │ │ │ │ - -- used 0.191957s (cpu); 0.116338s (thread); 0s (gc) │ │ │ │ + -- used 0.000697832s (cpu); 0.00141714s (thread); 0s (gc) │ │ │ │ + -- used 0.231865s (cpu); 0.146593s (thread); 0s (gc) │ │ │ │ + -- used 0.260907s (cpu); 0.176057s (thread); 0s (gc) │ │ │ │ + -- used 0.241734s (cpu); 0.155425s (thread); 0s (gc) │ │ │ │ + -- used 0.215323s (cpu); 0.128721s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = {51, 28, 14, 6, 2} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : time assert(oo == multidegree Phi) │ │ │ │ - -- used 0.160984s (cpu); 0.101194s (thread); 0s (gc) │ │ │ │ + -- used 0.223276s (cpu); 0.103559s (thread); 0s (gc) │ │ │ │ ********** RReeffeerreenncceess ********** │ │ │ │ ArXiv preprint: _C_o_m_p_u_t_a_t_i_o_n_s_ _w_i_t_h_ _r_a_t_i_o_n_a_l_ _m_a_p_s_ _b_e_t_w_e_e_n_ _m_u_l_t_i_-_p_r_o_j_e_c_t_i_v_e │ │ │ │ _v_a_r_i_e_t_i_e_s. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_u_l_t_i_d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- projective degrees of a multi-rational │ │ │ │ map │ │ │ │ * _p_r_o_j_e_c_t_i_v_e_D_e_g_r_e_e_s_(_R_a_t_i_o_n_a_l_M_a_p_) -- projective degrees of a rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_point_lp__Multiprojective__Variety_rp.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │ o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time p := point X
    │ │ │ - -- used 0.0160578s (cpu); 0.0164613s (thread); 0s (gc)
    │ │ │ + -- used 0.0394789s (cpu); 0.0212327s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1],[3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1])
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -97,15 +97,15 @@ │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time q = point Y
    │ │ │ - -- used 1.86005s (cpu); 1.10026s (thread); 0s (gc)
    │ │ │ + -- used 1.63866s (cpu); 1.05478s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = q
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -14,25 +14,25 @@ │ │ │ │ o a _m_u_l_t_i_-_p_r_o_j_e_c_t_i_v_e_ _v_a_r_i_e_t_y, a random rational point on $X$ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : K = ZZ/1000003; │ │ │ │ i2 : X = PP_K^({1,1,2},{3,2,3}); │ │ │ │ │ │ │ │ o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9 │ │ │ │ i3 : time p := point X │ │ │ │ - -- used 0.0160578s (cpu); 0.0164613s (thread); 0s (gc) │ │ │ │ + -- used 0.0394789s (cpu); 0.0212327s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1], │ │ │ │ [3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1]) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ i4 : Y = random({2,1,2},X); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9 │ │ │ │ i5 : time q = point Y │ │ │ │ - -- used 1.86005s (cpu); 1.10026s (thread); 0s (gc) │ │ │ │ + -- used 1.63866s (cpu); 1.05478s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = q │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ i6 : assert(isSubset(p,X) and isSubset(q,Y)) │ │ │ │ The list of homogeneous coordinates can be obtained with the operator |-. │ │ │ │ i7 : |- p │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multirational__Map_rp.html │ │ │ @@ -101,15 +101,15 @@ │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^4 x PP^4) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time segre Phi;
    │ │ │ - -- used 0.716809s (cpu); 0.551533s (thread); 0s (gc)
    │ │ │ + -- used 1.44958s (cpu); 0.652869s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : RationalMap (rational map from PP^4 to PP^149)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : describe segre Phi
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,15 +29,15 @@
    │ │ │ │  
    │ │ │ │  o4 : RationalMap (quadratic rational map from PP^4 to PP^4)
    │ │ │ │  i5 : Phi = rationalMap {f,g,h};
    │ │ │ │  
    │ │ │ │  o5 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^4 x
    │ │ │ │  PP^4)
    │ │ │ │  i6 : time segre Phi;
    │ │ │ │ - -- used 0.716809s (cpu); 0.551533s (thread); 0s (gc)
    │ │ │ │ + -- used 1.44958s (cpu); 0.652869s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 : RationalMap (rational map from PP^4 to PP^149)
    │ │ │ │  i7 : describe segre Phi
    │ │ │ │  
    │ │ │ │  o7 = rational map defined by forms of degree 6
    │ │ │ │       source variety: PP^4
    │ │ │ │       target variety: PP^149
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_show_lp__Multirational__Map_rp.html
    │ │ │ @@ -77,15 +77,15 @@
    │ │ │  
    │ │ │  o1 : MultirationalMap (birational map from threefold in PP^3 x PP^2 to threefold in PP^3 x PP^2 x PP^2)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time describe Phi
    │ │ │ - -- used 0.32872s (cpu); 0.173534s (thread); 0s (gc)
    │ │ │ + -- used 0.24856s (cpu); 0.155046s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = multi-rational map consisting of 3 rational maps
    │ │ │       source variety: threefold in PP^3 x PP^2 cut out by 2 hypersurfaces of multi-degree (1,1)
    │ │ │       target variety: threefold in PP^3 x PP^2 x PP^2 cut out by 7 hypersurfaces of multi-degrees (0,1,1)^3 (1,0,1)^2 (1,1,0)^2 
    │ │ │       base locus: empty subscheme of PP^3 x PP^2
    │ │ │       dominance: true
    │ │ │       multidegree: {10, 14, 19, 25}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │  i1 : Phi = inverse first graph last graph rationalMap PP_(ZZ/33331)^(1,3)
    │ │ │ │  
    │ │ │ │  o1 = Phi
    │ │ │ │  
    │ │ │ │  o1 : MultirationalMap (birational map from threefold in PP^3 x PP^2 to
    │ │ │ │  threefold in PP^3 x PP^2 x PP^2)
    │ │ │ │  i2 : time describe Phi
    │ │ │ │ - -- used 0.32872s (cpu); 0.173534s (thread); 0s (gc)
    │ │ │ │ + -- used 0.24856s (cpu); 0.155046s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = multi-rational map consisting of 3 rational maps
    │ │ │ │       source variety: threefold in PP^3 x PP^2 cut out by 2 hypersurfaces of
    │ │ │ │  multi-degree (1,1)
    │ │ │ │       target variety: threefold in PP^3 x PP^2 x PP^2 cut out by 7 hypersurfaces
    │ │ │ │  of multi-degrees (0,1,1)^3 (1,0,1)^2 (1,1,0)^2
    │ │ │ │       base locus: empty subscheme of PP^3 x PP^2
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out
    │ │ │ @@ -26,22 +26,22 @@
    │ │ │  
    │ │ │  i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => true};
    │ │ │  
    │ │ │  i8 : prob = n -> log(n)/n;
    │ │ │  
    │ │ │  i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
    │ │ │  
    │ │ │ -o9 = (73, 77, 92, 92, 92, 93, 97, 95, 96, 96, 97, 98, 97, 94, 98, 100, 99,
    │ │ │ +o9 = (72, 82, 86, 90, 93, 96, 94, 96, 96, 97, 95, 93, 98, 98, 97, 96, 97, 99,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     97, 98, 96, 99, 100, 97, 99, 99, 96, 98, 100, 97)
    │ │ │ +     97, 97, 97, 99, 100, 96, 97, 100, 99, 98, 100)
    │ │ │  
    │ │ │  o9 : Sequence
    │ │ │  
    │ │ │  i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))
    │ │ │  
    │ │ │ -o10 = (15, 8, 5, 2, 3, 2, 2, 2, 2, 5, 1, 1, 2, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0,
    │ │ │ +o10 = (13, 9, 5, 1, 4, 3, 2, 2, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      1, 0, 0, 0, 0, 0)
    │ │ │ +      0, 0, 0, 0, 0, 0)
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Graphs.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │  
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : generateRandomGraphs(5, 5)
    │ │ │  
    │ │ │ -o2 = {DmS, Djk, DpC, DB[, DrS}
    │ │ │ +o2 = {DDW, D[S, D`c, DB?, Dm_}
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │  
    │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Regular__Graphs.out
    │ │ │ @@ -1,21 +1,21 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729831171060067675
    │ │ │  
    │ │ │  i1 : R = QQ[a..e];
    │ │ │  
    │ │ │  i2 : generateRandomRegularGraphs(R, 3, 2)
    │ │ │  
    │ │ │ -o2 = {Graph{"edges" => {{b, c}, {a, d}, {b, d}, {a, e}, {c, e}}},
    │ │ │ +o2 = {Graph{"edges" => {{a, b}, {a, d}, {c, d}, {b, e}, {c, e}}},
    │ │ │              "ring" => R                                          
    │ │ │              "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{a, b}, {a, c}, {c, d}, {b, e}, {d, e}}},
    │ │ │ +     Graph{"edges" => {{a, b}, {b, d}, {c, d}, {a, e}, {c, e}}},
    │ │ │             "ring" => R                                          
    │ │ │             "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{a, b}, {b, d}, {c, d}, {a, e}, {c, e}}}}
    │ │ │ +     Graph{"edges" => {{a, b}, {b, c}, {a, d}, {c, e}, {d, e}}}}
    │ │ │             "ring" => R
    │ │ │             "vertices" => {a, b, c, d, e}
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/_graph__Complement.out
    │ │ │ @@ -13,13 +13,13 @@
    │ │ │  i3 : graphComplement "Dhc"
    │ │ │  
    │ │ │  o3 = DUW
    │ │ │  
    │ │ │  i4 : G = generateBipartiteGraphs 7;
    │ │ │  
    │ │ │  i5 : time graphComplement G;
    │ │ │ - -- used 0.00057649s (cpu); 0.000563907s (thread); 0s (gc)
    │ │ │ + -- used 0.000969435s (cpu); 0.00073489s (thread); 0s (gc)
    │ │ │  
    │ │ │  i6 : time (graphComplement \ G);
    │ │ │ - -- used 0.142673s (cpu); 0.072388s (thread); 0s (gc)
    │ │ │ + -- used 0.170354s (cpu); 0.0841184s (thread); 0s (gc)
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html
    │ │ │ @@ -117,28 +117,28 @@
    │ │ │                
    i8 : prob = n -> log(n)/n;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
    │ │ │  
    │ │ │ -o9 = (73, 77, 92, 92, 92, 93, 97, 95, 96, 96, 97, 98, 97, 94, 98, 100, 99,
    │ │ │ +o9 = (72, 82, 86, 90, 93, 96, 94, 96, 96, 97, 95, 93, 98, 98, 97, 96, 97, 99,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     97, 98, 96, 99, 100, 97, 99, 99, 96, 98, 100, 97)
    │ │ │ +     97, 97, 97, 99, 100, 96, 97, 100, 99, 98, 100)
    │ │ │  
    │ │ │  o9 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))
    │ │ │  
    │ │ │ -o10 = (15, 8, 5, 2, 3, 2, 2, 2, 2, 5, 1, 1, 2, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0,
    │ │ │ +o10 = (13, 9, 5, 1, 4, 3, 2, 2, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      1, 0, 0, 0, 0, 0)
    │ │ │ +      0, 0, 0, 0, 0, 0)
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -38,25 +38,25 @@ │ │ │ │ connected, at least as $n$ tends to infinity. │ │ │ │ i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => │ │ │ │ true}; │ │ │ │ i8 : prob = n -> log(n)/n; │ │ │ │ i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o9 = (73, 77, 92, 92, 92, 93, 97, 95, 96, 96, 97, 98, 97, 94, 98, 100, 99, │ │ │ │ +o9 = (72, 82, 86, 90, 93, 96, 94, 96, 96, 97, 95, 93, 98, 98, 97, 96, 97, 99, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 97, 98, 96, 99, 100, 97, 99, 99, 96, 98, 100, 97) │ │ │ │ + 97, 97, 97, 99, 100, 96, 97, 100, 99, 98, 100) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o10 = (15, 8, 5, 2, 3, 2, 2, 2, 2, 5, 1, 1, 2, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, │ │ │ │ +o10 = (13, 9, 5, 1, 4, 3, 2, 2, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 1, 0, 0, 0, 0, 0) │ │ │ │ + 0, 0, 0, 0, 0, 0) │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _b_u_i_l_d_G_r_a_p_h_F_i_l_t_e_r -- creates the appropriate filter string for use with │ │ │ │ filterGraphs and countGraphs │ │ │ │ * _f_i_l_t_e_r_G_r_a_p_h_s -- filters (i.e., selects) graphs in a list for given │ │ │ │ properties │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Graphs.html │ │ │ @@ -100,15 +100,15 @@ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : generateRandomGraphs(5, 5)
    │ │ │  
    │ │ │ -o2 = {DmS, Djk, DpC, DB[, DrS}
    │ │ │ +o2 = {DDW, D[S, D`c, DB?, Dm_}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │  i1 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o1 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o1 : List
    │ │ │ │  i2 : generateRandomGraphs(5, 5)
    │ │ │ │  
    │ │ │ │ -o2 = {DmS, Djk, DpC, DB[, DrS}
    │ │ │ │ +o2 = {DDW, D[S, D`c, DB?, Dm_}
    │ │ │ │  
    │ │ │ │  o2 : List
    │ │ │ │  i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Regular__Graphs.html
    │ │ │ @@ -87,23 +87,23 @@
    │ │ │                
    i1 : R = QQ[a..e];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : generateRandomRegularGraphs(R, 3, 2)
    │ │ │  
    │ │ │ -o2 = {Graph{"edges" => {{b, c}, {a, d}, {b, d}, {a, e}, {c, e}}},
    │ │ │ +o2 = {Graph{"edges" => {{a, b}, {a, d}, {c, d}, {b, e}, {c, e}}},
    │ │ │              "ring" => R                                          
    │ │ │              "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{a, b}, {a, c}, {c, d}, {b, e}, {d, e}}},
    │ │ │ +     Graph{"edges" => {{a, b}, {b, d}, {c, d}, {a, e}, {c, e}}},
    │ │ │             "ring" => R                                          
    │ │ │             "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{a, b}, {b, d}, {c, d}, {a, e}, {c, e}}}}
    │ │ │ +     Graph{"edges" => {{a, b}, {b, c}, {a, d}, {c, e}, {d, e}}}}
    │ │ │             "ring" => R
    │ │ │             "vertices" => {a, b, c, d, e}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -24,23 +24,23 @@ │ │ │ │ vertices with a given regularity. Note that some graphs may be isomorphic. │ │ │ │ If a _P_o_l_y_n_o_m_i_a_l_R_i_n_g $R$ is supplied instead, then the number of vertices is the │ │ │ │ number of generators. Moreover, the nauty-based strings are automatically │ │ │ │ converted to instances of the class _G_r_a_p_h in $R$. │ │ │ │ i1 : R = QQ[a..e]; │ │ │ │ i2 : generateRandomRegularGraphs(R, 3, 2) │ │ │ │ │ │ │ │ -o2 = {Graph{"edges" => {{b, c}, {a, d}, {b, d}, {a, e}, {c, e}}}, │ │ │ │ +o2 = {Graph{"edges" => {{a, b}, {a, d}, {c, d}, {b, e}, {c, e}}}, │ │ │ │ "ring" => R │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - Graph{"edges" => {{a, b}, {a, c}, {c, d}, {b, e}, {d, e}}}, │ │ │ │ + Graph{"edges" => {{a, b}, {b, d}, {c, d}, {a, e}, {c, e}}}, │ │ │ │ "ring" => R │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - Graph{"edges" => {{a, b}, {b, d}, {c, d}, {a, e}, {c, e}}}} │ │ │ │ + Graph{"edges" => {{a, b}, {b, c}, {a, d}, {c, e}, {d, e}}}} │ │ │ │ "ring" => R │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The number of vertices $n$ must be positive as nauty cannot handle graphs with │ │ │ │ zero vertices. │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/_graph__Complement.html │ │ │ @@ -116,21 +116,21 @@ │ │ │ │ │ │
    i4 : G = generateBipartiteGraphs 7;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time graphComplement G;
    │ │ │ - -- used 0.00057649s (cpu); 0.000563907s (thread); 0s (gc)
    │ │ │ + -- used 0.000969435s (cpu); 0.00073489s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time (graphComplement \ G);
    │ │ │ - -- used 0.142673s (cpu); 0.072388s (thread); 0s (gc)
    │ │ │ + -- used 0.170354s (cpu); 0.0841184s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -41,17 +41,17 @@ │ │ │ │ │ │ │ │ o3 = DUW │ │ │ │ Batch calls can be performed considerably faster when using the List input │ │ │ │ format. However, care should be taken as the returned list is entirely in │ │ │ │ Graph6 or Sparse6 format. │ │ │ │ i4 : G = generateBipartiteGraphs 7; │ │ │ │ i5 : time graphComplement G; │ │ │ │ - -- used 0.00057649s (cpu); 0.000563907s (thread); 0s (gc) │ │ │ │ + -- used 0.000969435s (cpu); 0.00073489s (thread); 0s (gc) │ │ │ │ i6 : time (graphComplement \ G); │ │ │ │ - -- used 0.142673s (cpu); 0.072388s (thread); 0s (gc) │ │ │ │ + -- used 0.170354s (cpu); 0.0841184s (thread); 0s (gc) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_o_m_p_l_e_m_e_n_t_G_r_a_p_h -- returns the complement of a graph or hypergraph │ │ │ │ ********** WWaayyss ttoo uussee ggrraapphhCCoommpplleemmeenntt:: ********** │ │ │ │ * graphComplement(Graph) │ │ │ │ * graphComplement(List) │ │ │ │ * graphComplement(String) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out │ │ │ @@ -26,22 +26,22 @@ │ │ │ │ │ │ i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => true}; │ │ │ │ │ │ i8 : prob = n -> log(n)/n; │ │ │ │ │ │ i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected)) │ │ │ │ │ │ -o9 = (76, 79, 91, 92, 91, 96, 96, 89, 96, 94, 96, 99, 98, 96, 98, 99, 100, │ │ │ +o9 = (71, 82, 83, 89, 94, 96, 95, 95, 97, 94, 96, 98, 97, 94, 97, 99, 98, 98, │ │ │ ------------------------------------------------------------------------ │ │ │ - 97, 99, 95, 97, 99, 100, 96, 99, 99, 97, 98, 100) │ │ │ + 97, 99, 100, 98, 98, 98, 97, 100, 97, 99, 100) │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected)) │ │ │ │ │ │ -o10 = (19, 7, 3, 6, 5, 4, 2, 1, 4, 0, 0, 2, 0, 0, 0, 0, 2, 1, 2, 0, 0, 1, 0, │ │ │ +o10 = (23, 6, 6, 3, 2, 2, 2, 0, 1, 0, 0, 2, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 1, │ │ │ ----------------------------------------------------------------------- │ │ │ - 0, 0, 0, 0, 0, 1) │ │ │ + 0, 0, 0, 1, 0, 0) │ │ │ │ │ │ o10 : Sequence │ │ │ │ │ │ i11 : │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Graphs.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ │ │ │ o1 = {DDO, Dx_, Dlw, Dx{, D_K} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : generateRandomGraphs(5, 5) │ │ │ │ │ │ -o2 = {Dd?, D?_, DXk, DIS, DVc} │ │ │ +o2 = {DjC, Ddk, DzS, D|k, DJc} │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : generateRandomGraphs(5, 5, RandomSeed => 314159) │ │ │ │ │ │ o3 = {DDO, Dx_, Dlw, Dx{, D_K} │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Regular__Graphs.out │ │ │ @@ -1,9 +1,9 @@ │ │ │ -- -*- M2-comint -*- hash: 1331287392268 │ │ │ │ │ │ i1 : generateRandomRegularGraphs(5, 3, 2) │ │ │ │ │ │ -o1 = {DLo, DqK, D[S} │ │ │ +o1 = {D[S, DdW, D[S} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_graph__Complement.out │ │ │ @@ -13,13 +13,13 @@ │ │ │ 4 => {2, 1} │ │ │ │ │ │ o2 : Graph │ │ │ │ │ │ i3 : G = generateBipartiteGraphs 7; │ │ │ │ │ │ i4 : time graphComplement G; │ │ │ - -- used 0.000660357s (cpu); 0.000530855s (thread); 0s (gc) │ │ │ + -- used 0.000686733s (cpu); 0.000559555s (thread); 0s (gc) │ │ │ │ │ │ i5 : time (graphComplement \ G); │ │ │ - -- used 0.144771s (cpu); 0.0960107s (thread); 0s (gc) │ │ │ + -- used 0.166412s (cpu); 0.0751072s (thread); 0s (gc) │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html │ │ │ @@ -117,28 +117,28 @@ │ │ │
      i8 : prob = n -> log(n)/n;
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
      │ │ │  
      │ │ │ -o9 = (76, 79, 91, 92, 91, 96, 96, 89, 96, 94, 96, 99, 98, 96, 98, 99, 100,
      │ │ │ +o9 = (71, 82, 83, 89, 94, 96, 95, 95, 97, 94, 96, 98, 97, 94, 97, 99, 98, 98,
      │ │ │       ------------------------------------------------------------------------
      │ │ │ -     97, 99, 95, 97, 99, 100, 96, 99, 99, 97, 98, 100)
      │ │ │ +     97, 99, 100, 98, 98, 98, 97, 100, 97, 99, 100)
      │ │ │  
      │ │ │  o9 : Sequence
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))
      │ │ │  
      │ │ │ -o10 = (19, 7, 3, 6, 5, 4, 2, 1, 4, 0, 0, 2, 0, 0, 0, 0, 2, 1, 2, 0, 0, 1, 0,
      │ │ │ +o10 = (23, 6, 6, 3, 2, 2, 2, 0, 1, 0, 0, 2, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 1,
      │ │ │        -----------------------------------------------------------------------
      │ │ │ -      0, 0, 0, 0, 0, 1)
      │ │ │ +      0, 0, 0, 1, 0, 0)
      │ │ │  
      │ │ │  o10 : Sequence
      │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -38,25 +38,25 @@ │ │ │ │ connected, at least as $n$ tends to infinity. │ │ │ │ i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => │ │ │ │ true}; │ │ │ │ i8 : prob = n -> log(n)/n; │ │ │ │ i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o9 = (76, 79, 91, 92, 91, 96, 96, 89, 96, 94, 96, 99, 98, 96, 98, 99, 100, │ │ │ │ +o9 = (71, 82, 83, 89, 94, 96, 95, 95, 97, 94, 96, 98, 97, 94, 97, 99, 98, 98, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 97, 99, 95, 97, 99, 100, 96, 99, 99, 97, 98, 100) │ │ │ │ + 97, 99, 100, 98, 98, 98, 97, 100, 97, 99, 100) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o10 = (19, 7, 3, 6, 5, 4, 2, 1, 4, 0, 0, 2, 0, 0, 0, 0, 2, 1, 2, 0, 0, 1, 0, │ │ │ │ +o10 = (23, 6, 6, 3, 2, 2, 2, 0, 1, 0, 0, 2, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 1, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 0, 0, 0, 0, 0, 1) │ │ │ │ + 0, 0, 0, 1, 0, 0) │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _b_u_i_l_d_G_r_a_p_h_F_i_l_t_e_r -- creates the appropriate filter string for use with │ │ │ │ filterGraphs and countGraphs │ │ │ │ * _f_i_l_t_e_r_G_r_a_p_h_s -- filters (i.e., selects) graphs in a list for given │ │ │ │ properties │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Graphs.html │ │ │ @@ -93,15 +93,15 @@ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : generateRandomGraphs(5, 5)
    │ │ │  
    │ │ │ -o2 = {Dd?, D?_, DXk, DIS, DVc}
    │ │ │ +o2 = {DjC, Ddk, DzS, D|k, DJc}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,15 +30,15 @@
    │ │ │ │  i1 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o1 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o1 : List
    │ │ │ │  i2 : generateRandomGraphs(5, 5)
    │ │ │ │  
    │ │ │ │ -o2 = {Dd?, D?_, DXk, DIS, DVc}
    │ │ │ │ +o2 = {DjC, Ddk, DzS, D|k, DJc}
    │ │ │ │  
    │ │ │ │  o2 : List
    │ │ │ │  i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Regular__Graphs.html
    │ │ │ @@ -77,15 +77,15 @@
    │ │ │            

    This method generates a specified number of random graphs on a given number of vertices with a given regularity. Note that some graphs may be isomorphic.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : generateRandomRegularGraphs(5, 3, 2)
    │ │ │  
    │ │ │ -o1 = {DLo, DqK, D[S}
    │ │ │ +o1 = {D[S, DdW, D[S}
    │ │ │  
    │ │ │  o1 : List
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ * Outputs: │ │ │ │ o G, a _l_i_s_t, the randomly generated regular graphs │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This method generates a specified number of random graphs on a given number of │ │ │ │ vertices with a given regularity. Note that some graphs may be isomorphic. │ │ │ │ i1 : generateRandomRegularGraphs(5, 3, 2) │ │ │ │ │ │ │ │ -o1 = {DLo, DqK, D[S} │ │ │ │ +o1 = {D[S, DdW, D[S} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The number of vertices $n$ must be positive as nauty cannot handle graphs with │ │ │ │ zero vertices. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_e_n_e_r_a_t_e_R_a_n_d_o_m_G_r_a_p_h_s -- generates random graphs on a given number of │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph__Complement.html │ │ │ @@ -110,21 +110,21 @@ │ │ │ │ │ │
    i3 : G = generateBipartiteGraphs 7;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time graphComplement G;
    │ │ │ - -- used 0.000660357s (cpu); 0.000530855s (thread); 0s (gc)
    │ │ │ + -- used 0.000686733s (cpu); 0.000559555s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time (graphComplement \ G);
    │ │ │ - -- used 0.144771s (cpu); 0.0960107s (thread); 0s (gc)
    │ │ │ + -- used 0.166412s (cpu); 0.0751072s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use graphComplement:

    │ │ │ ├── html2text {} │ │ │ │ @@ -38,17 +38,17 @@ │ │ │ │ │ │ │ │ o2 : Graph │ │ │ │ Batch calls can be performed considerably faster when using the List input │ │ │ │ format. However, care should be taken as the returned list is entirely in │ │ │ │ Graph6 or Sparse6 format. │ │ │ │ i3 : G = generateBipartiteGraphs 7; │ │ │ │ i4 : time graphComplement G; │ │ │ │ - -- used 0.000660357s (cpu); 0.000530855s (thread); 0s (gc) │ │ │ │ + -- used 0.000686733s (cpu); 0.000559555s (thread); 0s (gc) │ │ │ │ i5 : time (graphComplement \ G); │ │ │ │ - -- used 0.144771s (cpu); 0.0960107s (thread); 0s (gc) │ │ │ │ + -- used 0.166412s (cpu); 0.0751072s (thread); 0s (gc) │ │ │ │ ********** WWaayyss ttoo uussee ggrraapphhCCoommpplleemmeenntt:: ********** │ │ │ │ * graphComplement(Graph) │ │ │ │ * graphComplement(List) │ │ │ │ * graphComplement(String) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _g_r_a_p_h_C_o_m_p_l_e_m_e_n_t is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.out │ │ │ @@ -47,15 +47,15 @@ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : isPrimary Q │ │ │ │ │ │ o5 = true │ │ │ │ │ │ i6 : elapsedTime noetherianOperators(Q, Strategy => "PunctualQuot") │ │ │ - -- .171815s elapsed │ │ │ + -- .0944103s elapsed │ │ │ │ │ │ o6 = {| 1 |, | dx_1 |, | dx_2 |, | dx_1^2 |, | dx_1dx_2 |, | dx_2^2 |, | │ │ │ ------------------------------------------------------------------------ │ │ │ 2x_1x_3dx_1^3+3x_2x_3dx_1^2dx_2-3x_3x_4dx_1dx_2^2-2x_1x_4dx_2^3 |} │ │ │ │ │ │ o6 : List │ │ ├── ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.html │ │ │ @@ -120,15 +120,15 @@ │ │ │ │ │ │ o5 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime noetherianOperators(Q, Strategy => "PunctualQuot")
    │ │ │ - -- .171815s elapsed
    │ │ │ + -- .0944103s elapsed
    │ │ │  
    │ │ │  o6 = {| 1 |, | dx_1 |, | dx_2 |, | dx_1^2 |, | dx_1dx_2 |, | dx_2^2 |, |
    │ │ │       ------------------------------------------------------------------------
    │ │ │       2x_1x_3dx_1^3+3x_2x_3dx_1^2dx_2-3x_3x_4dx_1dx_2^2-2x_1x_4dx_2^3 |}
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ 1 2 3 2 3 │ │ │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : isPrimary Q │ │ │ │ │ │ │ │ o5 = true │ │ │ │ i6 : elapsedTime noetherianOperators(Q, Strategy => "PunctualQuot") │ │ │ │ - -- .171815s elapsed │ │ │ │ + -- .0944103s elapsed │ │ │ │ │ │ │ │ o6 = {| 1 |, | dx_1 |, | dx_2 |, | dx_1^2 |, | dx_1dx_2 |, | dx_2^2 |, | │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2x_1x_3dx_1^3+3x_2x_3dx_1^2dx_2-3x_3x_4dx_1dx_2^2-2x_1x_4dx_2^3 |} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Chow_spring.out │ │ │ @@ -78,15 +78,15 @@ │ │ │ i13 : for i to dim X list hilbertFunction (i, A1) │ │ │ │ │ │ o13 = {1, 2, 3, 3, 2, 1} │ │ │ │ │ │ o13 : List │ │ │ │ │ │ i14 : Y = time smoothFanoToricVariety(5,100); │ │ │ - -- used 0.197856s (cpu); 0.199371s (thread); 0s (gc) │ │ │ + -- used 0.286433s (cpu); 0.283598s (thread); 0s (gc) │ │ │ │ │ │ i15 : A2 = intersectionRing Y; │ │ │ │ │ │ i16 : assert (# rays Y === numgens A2) │ │ │ │ │ │ i17 : ideal A2 │ │ │ │ │ │ @@ -110,19 +110,19 @@ │ │ │ 2 2 2 2 2 2 2 2 3 2 │ │ │ (t + t t , t t + t , t + t t , t t , t t + t , t - t t - 3t t + t t + 2t , - t t + t + 2t t , t t , - t t + t , t t ) │ │ │ 3 3 5 3 5 5 5 5 6 3 6 5 6 6 8 8 9 8 10 9 10 10 8 9 9 9 10 8 9 8 10 10 8 10 │ │ │ │ │ │ o18 : QuotientRing │ │ │ │ │ │ i19 : for i to dim Y list time hilbertFunction (i, A2) │ │ │ - -- used 0.00244851s (cpu); 0.00123145s (thread); 0s (gc) │ │ │ - -- used 2.3725e-05s (cpu); 8.1352e-05s (thread); 0s (gc) │ │ │ - -- used 9.157e-06s (cpu); 7.0322e-05s (thread); 0s (gc) │ │ │ - -- used 8.777e-06s (cpu); 7.5351e-05s (thread); 0s (gc) │ │ │ - -- used 5.0966e-05s (cpu); 8.8336e-05s (thread); 0s (gc) │ │ │ - -- used 1.0339e-05s (cpu); 7.1384e-05s (thread); 0s (gc) │ │ │ + -- used 0.0026735s (cpu); 0.0013097s (thread); 0s (gc) │ │ │ + -- used 2.87e-05s (cpu); 0.000117459s (thread); 0s (gc) │ │ │ + -- used 1.4118e-05s (cpu); 8.3147e-05s (thread); 0s (gc) │ │ │ + -- used 1.0543e-05s (cpu); 8.1143e-05s (thread); 0s (gc) │ │ │ + -- used 1.0758e-05s (cpu); 8.5435e-05s (thread); 0s (gc) │ │ │ + -- used 1.0434e-05s (cpu); 8.2426e-05s (thread); 0s (gc) │ │ │ │ │ │ o19 = {1, 6, 13, 13, 6, 1} │ │ │ │ │ │ o19 : List │ │ │ │ │ │ i20 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_is__Well__Defined_lp__Normal__Toric__Variety_rp.out │ │ │ @@ -1,29 +1,29 @@ │ │ │ -- -*- M2-comint -*- hash: 16408385764843695632 │ │ │ │ │ │ i1 : assert all (5, d -> isWellDefined toricProjectiveSpace (d+1)) │ │ │ │ │ │ i2 : setRandomSeed (currentTime ()); │ │ │ - -- setting random seed to 1763141963 │ │ │ + -- setting random seed to 1763722355 │ │ │ │ │ │ i3 : a = sort apply (3, i -> random (7)) │ │ │ │ │ │ -o3 = {0, 3, 4} │ │ │ +o3 = {0, 0, 5} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : assert isWellDefined kleinschmidt (4,a) │ │ │ │ │ │ i5 : q = sort apply (5, j -> random (1,9)); │ │ │ │ │ │ i6 : while not all (subsets (q,#q-1), s -> gcd s === 1) do q = sort apply (5, j -> random (1,9)); │ │ │ │ │ │ i7 : q │ │ │ │ │ │ -o7 = {1, 1, 1, 6, 7} │ │ │ +o7 = {2, 3, 3, 5, 7} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : assert isWellDefined weightedProjectiveSpace q │ │ │ │ │ │ i9 : X = new MutableHashTable; │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_monomials_lp__Toric__Divisor_rp.out │ │ │ @@ -6,61 +6,61 @@ │ │ │ │ │ │ o2 = 5*PP2 │ │ │ 0 │ │ │ │ │ │ o2 : ToricDivisor on PP2 │ │ │ │ │ │ i3 : M1 = elapsedTime monomials D1 │ │ │ - -- .0576176s elapsed │ │ │ + -- .0346455s elapsed │ │ │ │ │ │ 5 4 4 2 3 3 2 3 3 2 2 2 2 2 3 2 4 │ │ │ o3 = {x , x x , x x , x x , x x x , x x , x x , x x x , x x x , x x , x x , │ │ │ 2 1 2 0 2 1 2 0 1 2 0 2 1 2 0 1 2 0 1 2 0 2 1 2 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 2 2 3 4 5 4 2 3 3 2 4 5 │ │ │ x x x , x x x , x x x , x x , x , x x , x x , x x , x x , x } │ │ │ 0 1 2 0 1 2 0 1 2 0 2 1 0 1 0 1 0 1 0 1 0 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : elapsedTime assert (set M1 === set first entries basis(degree D1, ring variety D1)) │ │ │ - -- .00125706s elapsed │ │ │ + -- .00130194s elapsed │ │ │ │ │ │ i5 : FF2 = hirzebruchSurface 2; │ │ │ │ │ │ i6 : D2 = 2*FF2_0 + 3 * FF2_1 │ │ │ │ │ │ o6 = 2*FF2 + 3*FF2 │ │ │ 0 1 │ │ │ │ │ │ o6 : ToricDivisor on FF2 │ │ │ │ │ │ i7 : M2 = elapsedTime monomials D2 │ │ │ - -- .0350012s elapsed │ │ │ + -- .0556399s elapsed │ │ │ │ │ │ 2 3 2 3 2 3 │ │ │ o7 = {x x , x x , x x x , x x } │ │ │ 1 3 1 2 0 1 2 0 1 │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : elapsedTime assert (set M2 === set first entries basis (degree D2, ring variety D2)) │ │ │ - -- .000940674s elapsed │ │ │ + -- .00123155s elapsed │ │ │ │ │ │ i9 : X = kleinschmidt (5, {1,2,3}); │ │ │ │ │ │ i10 : D3 = 3*X_0 + 5*X_1 │ │ │ │ │ │ o10 = 3*X + 5*X │ │ │ 0 1 │ │ │ │ │ │ o10 : ToricDivisor on X │ │ │ │ │ │ i11 : m3 = elapsedTime # monomials D3 │ │ │ - -- 40.9805s elapsed │ │ │ + -- 30.113s elapsed │ │ │ │ │ │ o11 = 7909 │ │ │ │ │ │ i12 : elapsedTime assert (m3 === #first entries basis (degree D3, ring variety D3)) │ │ │ - -- .0316693s elapsed │ │ │ + -- .0317015s elapsed │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Fan_rp.out │ │ │ @@ -24,19 +24,19 @@ │ │ │ o3 : List │ │ │ │ │ │ i4 : X = normalToricVariety F; │ │ │ │ │ │ i5 : assert (transpose matrix rays X == rays F and max X == sort maxCones F) │ │ │ │ │ │ i6 : X1 = time normalToricVariety ({{-1,-1},{1,0},{0,1}}, {{0,1},{1,2},{0,2}}) │ │ │ - -- used 2.6249e-05s (cpu); 2.0469e-05s (thread); 0s (gc) │ │ │ + -- used 3.3225e-05s (cpu); 2.5053e-05s (thread); 0s (gc) │ │ │ │ │ │ o6 = X1 │ │ │ │ │ │ o6 : NormalToricVariety │ │ │ │ │ │ i7 : X2 = time normalToricVariety fan {posHull matrix {{-1,1},{-1,0}}, posHull matrix {{1,0},{0,1}}, posHull matrix{{-1,0},{-1,1}}}; │ │ │ - -- used 0.043392s (cpu); 0.0433981s (thread); 0s (gc) │ │ │ + -- used 0.0533677s (cpu); 0.0533758s (thread); 0s (gc) │ │ │ │ │ │ i8 : assert (sort rays X1 == sort rays X2 and max X1 == max X2) │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Polyhedron_rp.out │ │ │ @@ -88,15 +88,15 @@ │ │ │ o18 = | 0 1 0 | │ │ │ | 0 0 1 | │ │ │ │ │ │ 2 3 │ │ │ o18 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i19 : X1 = time normalToricVariety convexHull (vertMatrix); │ │ │ - -- used 0.0223801s (cpu); 0.0223778s (thread); 0s (gc) │ │ │ + -- used 0.0289769s (cpu); 0.0289755s (thread); 0s (gc) │ │ │ │ │ │ i20 : X2 = time normalToricVariety vertMatrix; │ │ │ - -- used 0.00239766s (cpu); 0.00239836s (thread); 0s (gc) │ │ │ + -- used 0.00288793s (cpu); 0.00289293s (thread); 0s (gc) │ │ │ │ │ │ i21 : assert (set rays X2 === set rays X1 and max X1 === max X2) │ │ │ │ │ │ i22 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Chow_spring.html │ │ │ @@ -207,15 +207,15 @@ │ │ │
    │ │ │

    We end with a slightly larger example.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -254,20 +254,20 @@ │ │ │ │ │ │ o18 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i14 : Y = time smoothFanoToricVariety(5,100);
    │ │ │ - -- used 0.197856s (cpu); 0.199371s (thread); 0s (gc)
    │ │ │ + -- used 0.286433s (cpu); 0.283598s (thread); 0s (gc) │ │ │
    │ │ │
    i15 : A2 = intersectionRing Y;
    │ │ │
    │ │ │
    i19 : for i to dim Y list time hilbertFunction (i, A2)
    │ │ │ - -- used 0.00244851s (cpu); 0.00123145s (thread); 0s (gc)
    │ │ │ - -- used 2.3725e-05s (cpu); 8.1352e-05s (thread); 0s (gc)
    │ │ │ - -- used 9.157e-06s (cpu); 7.0322e-05s (thread); 0s (gc)
    │ │ │ - -- used 8.777e-06s (cpu); 7.5351e-05s (thread); 0s (gc)
    │ │ │ - -- used 5.0966e-05s (cpu); 8.8336e-05s (thread); 0s (gc)
    │ │ │ - -- used 1.0339e-05s (cpu); 7.1384e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.0026735s (cpu); 0.0013097s (thread); 0s (gc)
    │ │ │ + -- used 2.87e-05s (cpu); 0.000117459s (thread); 0s (gc)
    │ │ │ + -- used 1.4118e-05s (cpu); 8.3147e-05s (thread); 0s (gc)
    │ │ │ + -- used 1.0543e-05s (cpu); 8.1143e-05s (thread); 0s (gc)
    │ │ │ + -- used 1.0758e-05s (cpu); 8.5435e-05s (thread); 0s (gc)
    │ │ │ + -- used 1.0434e-05s (cpu); 8.2426e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o19 = {1, 6, 13, 13, 6, 1}
    │ │ │  
    │ │ │  o19 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -96,15 +96,15 @@ │ │ │ │ i13 : for i to dim X list hilbertFunction (i, A1) │ │ │ │ │ │ │ │ o13 = {1, 2, 3, 3, 2, 1} │ │ │ │ │ │ │ │ o13 : List │ │ │ │ We end with a slightly larger example. │ │ │ │ i14 : Y = time smoothFanoToricVariety(5,100); │ │ │ │ - -- used 0.197856s (cpu); 0.199371s (thread); 0s (gc) │ │ │ │ + -- used 0.286433s (cpu); 0.283598s (thread); 0s (gc) │ │ │ │ i15 : A2 = intersectionRing Y; │ │ │ │ i16 : assert (# rays Y === numgens A2) │ │ │ │ i17 : ideal A2 │ │ │ │ │ │ │ │ o17 = ideal (t t , t t , t t , t t , t t , t t , t t , t t , t t t , │ │ │ │ 2 3 2 5 4 5 3 6 4 6 1 7 7 9 8 9 0 1 10 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ @@ -129,20 +129,20 @@ │ │ │ │ (t + t t , t t + t , t + t t , t t , t t + t , t - t t - 3t t + t │ │ │ │ t + 2t , - t t + t + 2t t , t t , - t t + t , t t ) │ │ │ │ 3 3 5 3 5 5 5 5 6 3 6 5 6 6 8 8 9 8 10 │ │ │ │ 9 10 10 8 9 9 9 10 8 9 8 10 10 8 10 │ │ │ │ │ │ │ │ o18 : QuotientRing │ │ │ │ i19 : for i to dim Y list time hilbertFunction (i, A2) │ │ │ │ - -- used 0.00244851s (cpu); 0.00123145s (thread); 0s (gc) │ │ │ │ - -- used 2.3725e-05s (cpu); 8.1352e-05s (thread); 0s (gc) │ │ │ │ - -- used 9.157e-06s (cpu); 7.0322e-05s (thread); 0s (gc) │ │ │ │ - -- used 8.777e-06s (cpu); 7.5351e-05s (thread); 0s (gc) │ │ │ │ - -- used 5.0966e-05s (cpu); 8.8336e-05s (thread); 0s (gc) │ │ │ │ - -- used 1.0339e-05s (cpu); 7.1384e-05s (thread); 0s (gc) │ │ │ │ + -- used 0.0026735s (cpu); 0.0013097s (thread); 0s (gc) │ │ │ │ + -- used 2.87e-05s (cpu); 0.000117459s (thread); 0s (gc) │ │ │ │ + -- used 1.4118e-05s (cpu); 8.3147e-05s (thread); 0s (gc) │ │ │ │ + -- used 1.0543e-05s (cpu); 8.1143e-05s (thread); 0s (gc) │ │ │ │ + -- used 1.0758e-05s (cpu); 8.5435e-05s (thread); 0s (gc) │ │ │ │ + -- used 1.0434e-05s (cpu); 8.2426e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o19 = {1, 6, 13, 13, 6, 1} │ │ │ │ │ │ │ │ o19 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _w_o_r_k_i_n_g_ _w_i_t_h_ _s_h_e_a_v_e_s -- information about coherent sheaves and total │ │ │ │ coordinate rings (a.k.a. Cox rings) │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_is__Well__Defined_lp__Normal__Toric__Variety_rp.html │ │ │ @@ -93,22 +93,22 @@ │ │ │
    │ │ │

    The second examples show that a randomly selected Kleinschmidt toric variety and a weighted projective space are also well-defined.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : setRandomSeed (currentTime ());
    │ │ │ - -- setting random seed to 1763141963
    │ │ │ + -- setting random seed to 1763722355 │ │ │
    │ │ │
    i3 : a = sort apply (3, i -> random (7))
    │ │ │  
    │ │ │ -o3 = {0, 3, 4}
    │ │ │ +o3 = {0, 0, 5}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    i4 : assert isWellDefined kleinschmidt (4,a)
    │ │ │ @@ -126,15 +126,15 @@ │ │ │
    i6 : while not all (subsets (q,#q-1), s -> gcd s === 1) do q = sort apply (5, j -> random (1,9));
    │ │ │
    │ │ │
    i7 : q
    │ │ │  
    │ │ │ -o7 = {1, 1, 1, 6, 7}
    │ │ │ +o7 = {2, 3, 3, 5, 7}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │
    i8 : assert isWellDefined weightedProjectiveSpace q
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,27 +28,27 @@ │ │ │ │ * the intersection of the cones associated to two elements of coneList is a │ │ │ │ face of each cone. │ │ │ │ The first examples illustrate that small projective spaces are well-defined. │ │ │ │ i1 : assert all (5, d -> isWellDefined toricProjectiveSpace (d+1)) │ │ │ │ The second examples show that a randomly selected Kleinschmidt toric variety │ │ │ │ and a weighted projective space are also well-defined. │ │ │ │ i2 : setRandomSeed (currentTime ()); │ │ │ │ - -- setting random seed to 1763141963 │ │ │ │ + -- setting random seed to 1763722355 │ │ │ │ i3 : a = sort apply (3, i -> random (7)) │ │ │ │ │ │ │ │ -o3 = {0, 3, 4} │ │ │ │ +o3 = {0, 0, 5} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : assert isWellDefined kleinschmidt (4,a) │ │ │ │ i5 : q = sort apply (5, j -> random (1,9)); │ │ │ │ i6 : while not all (subsets (q,#q-1), s -> gcd s === 1) do q = sort apply (5, j │ │ │ │ -> random (1,9)); │ │ │ │ i7 : q │ │ │ │ │ │ │ │ -o7 = {1, 1, 1, 6, 7} │ │ │ │ +o7 = {2, 3, 3, 5, 7} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : assert isWellDefined weightedProjectiveSpace q │ │ │ │ The next ten examples illustrate various ways that two lists can fail to define │ │ │ │ a normal toric variety. By making the current debugging level greater than one, │ │ │ │ one gets some addition information about the nature of the failure. │ │ │ │ i9 : X = new MutableHashTable; │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_monomials_lp__Toric__Divisor_rp.html │ │ │ @@ -96,15 +96,15 @@ │ │ │ │ │ │ o2 : ToricDivisor on PP2 │ │ │
    │ │ │
    i3 : M1 = elapsedTime monomials D1
    │ │ │ - -- .0576176s elapsed
    │ │ │ + -- .0346455s elapsed
    │ │ │  
    │ │ │         5     4     4   2 3       3   2 3   3 2     2 2   2   2   3 2   4   
    │ │ │  o3 = {x , x x , x x , x x , x x x , x x , x x , x x x , x x x , x x , x x ,
    │ │ │         2   1 2   0 2   1 2   0 1 2   0 2   1 2   0 1 2   0 1 2   0 2   1 2 
    │ │ │       ------------------------------------------------------------------------
    │ │ │          3     2 2     3       4     5     4   2 3   3 2   4     5
    │ │ │       x x x , x x x , x x x , x x , x , x x , x x , x x , x x , x }
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    i4 : elapsedTime assert (set M1 === set first entries basis(degree D1, ring variety D1))
    │ │ │ - -- .00125706s elapsed
    │ │ │ + -- .00130194s elapsed │ │ │
    │ │ │
    │ │ │

    Toric varieties of Picard-rank 2 are slightly more interesting.

    │ │ │
    │ │ │ │ │ │ @@ -138,27 +138,27 @@ │ │ │ │ │ │ o6 : ToricDivisor on FF2 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -171,23 +171,23 @@ │ │ │ │ │ │ o10 : ToricDivisor on X │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : M2 = elapsedTime monomials D2
    │ │ │ - -- .0350012s elapsed
    │ │ │ + -- .0556399s elapsed
    │ │ │  
    │ │ │         2     3 2     3     2 3
    │ │ │  o7 = {x x , x x , x x x , x x }
    │ │ │         1 3   1 2   0 1 2   0 1
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │
    i8 : elapsedTime assert (set M2 === set first entries basis (degree D2, ring variety D2))
    │ │ │ - -- .000940674s elapsed
    │ │ │ + -- .00123155s elapsed │ │ │
    │ │ │
    i9 : X = kleinschmidt (5, {1,2,3});
    │ │ │
    │ │ │
    i11 : m3 = elapsedTime # monomials D3
    │ │ │ - -- 40.9805s elapsed
    │ │ │ + -- 30.113s elapsed
    │ │ │  
    │ │ │  o11 = 7909
    │ │ │
    │ │ │
    i12 : elapsedTime assert (m3 === #first entries basis (degree D3, ring variety D3))
    │ │ │ - -- .0316693s elapsed
    │ │ │ + -- .0317015s elapsed │ │ │
    │ │ │
    │ │ │

    By exploiting latticePoints, this method function avoids using the basis function.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -27,61 +27,61 @@ │ │ │ │ i2 : D1 = 5*PP2_0 │ │ │ │ │ │ │ │ o2 = 5*PP2 │ │ │ │ 0 │ │ │ │ │ │ │ │ o2 : ToricDivisor on PP2 │ │ │ │ i3 : M1 = elapsedTime monomials D1 │ │ │ │ - -- .0576176s elapsed │ │ │ │ + -- .0346455s elapsed │ │ │ │ │ │ │ │ 5 4 4 2 3 3 2 3 3 2 2 2 2 2 3 2 4 │ │ │ │ o3 = {x , x x , x x , x x , x x x , x x , x x , x x x , x x x , x x , x x , │ │ │ │ 2 1 2 0 2 1 2 0 1 2 0 2 1 2 0 1 2 0 1 2 0 2 1 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 2 3 4 5 4 2 3 3 2 4 5 │ │ │ │ x x x , x x x , x x x , x x , x , x x , x x , x x , x x , x } │ │ │ │ 0 1 2 0 1 2 0 1 2 0 2 1 0 1 0 1 0 1 0 1 0 │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : elapsedTime assert (set M1 === set first entries basis(degree D1, ring │ │ │ │ variety D1)) │ │ │ │ - -- .00125706s elapsed │ │ │ │ + -- .00130194s elapsed │ │ │ │ Toric varieties of Picard-rank 2 are slightly more interesting. │ │ │ │ i5 : FF2 = hirzebruchSurface 2; │ │ │ │ i6 : D2 = 2*FF2_0 + 3 * FF2_1 │ │ │ │ │ │ │ │ o6 = 2*FF2 + 3*FF2 │ │ │ │ 0 1 │ │ │ │ │ │ │ │ o6 : ToricDivisor on FF2 │ │ │ │ i7 : M2 = elapsedTime monomials D2 │ │ │ │ - -- .0350012s elapsed │ │ │ │ + -- .0556399s elapsed │ │ │ │ │ │ │ │ 2 3 2 3 2 3 │ │ │ │ o7 = {x x , x x , x x x , x x } │ │ │ │ 1 3 1 2 0 1 2 0 1 │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : elapsedTime assert (set M2 === set first entries basis (degree D2, ring │ │ │ │ variety D2)) │ │ │ │ - -- .000940674s elapsed │ │ │ │ + -- .00123155s elapsed │ │ │ │ i9 : X = kleinschmidt (5, {1,2,3}); │ │ │ │ i10 : D3 = 3*X_0 + 5*X_1 │ │ │ │ │ │ │ │ o10 = 3*X + 5*X │ │ │ │ 0 1 │ │ │ │ │ │ │ │ o10 : ToricDivisor on X │ │ │ │ i11 : m3 = elapsedTime # monomials D3 │ │ │ │ - -- 40.9805s elapsed │ │ │ │ + -- 30.113s elapsed │ │ │ │ │ │ │ │ o11 = 7909 │ │ │ │ i12 : elapsedTime assert (m3 === #first entries basis (degree D3, ring variety │ │ │ │ D3)) │ │ │ │ - -- .0316693s elapsed │ │ │ │ + -- .0317015s elapsed │ │ │ │ By exploiting _l_a_t_t_i_c_e_P_o_i_n_t_s, this method function avoids using the _b_a_s_i_s │ │ │ │ function. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _w_o_r_k_i_n_g_ _w_i_t_h_ _d_i_v_i_s_o_r_s -- information about toric divisors and their │ │ │ │ related groups │ │ │ │ * _r_i_n_g_(_N_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_) -- make the total coordinate ring (a.k.a. Cox │ │ │ │ ring) │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Fan_rp.html │ │ │ @@ -125,25 +125,25 @@ │ │ │
    │ │ │

    The recommended method for creating a NormalToricVariety from a fan is normalToricVariety(List,List). In fact, this package avoids using objects from the Polyhedra package whenever possible. Here is a trivial example, namely projective 2-space, illustrating the substantial increase in time resulting from the use of a Polyhedra fan.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -48,22 +48,22 @@ │ │ │ │ i5 : assert (transpose matrix rays X == rays F and max X == sort maxCones F) │ │ │ │ The recommended method for creating a _N_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y from a fan is │ │ │ │ _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_L_i_s_t_,_L_i_s_t_). In fact, this package avoids using objects from │ │ │ │ the _P_o_l_y_h_e_d_r_a package whenever possible. Here is a trivial example, namely │ │ │ │ projective 2-space, illustrating the substantial increase in time resulting │ │ │ │ from the use of a _P_o_l_y_h_e_d_r_a fan. │ │ │ │ i6 : X1 = time normalToricVariety ({{-1,-1},{1,0},{0,1}}, {{0,1},{1,2},{0,2}}) │ │ │ │ - -- used 2.6249e-05s (cpu); 2.0469e-05s (thread); 0s (gc) │ │ │ │ + -- used 3.3225e-05s (cpu); 2.5053e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = X1 │ │ │ │ │ │ │ │ o6 : NormalToricVariety │ │ │ │ i7 : X2 = time normalToricVariety fan {posHull matrix {{-1,1},{-1,0}}, posHull │ │ │ │ matrix {{1,0},{0,1}}, posHull matrix{{-1,0},{-1,1}}}; │ │ │ │ - -- used 0.043392s (cpu); 0.0433981s (thread); 0s (gc) │ │ │ │ + -- used 0.0533677s (cpu); 0.0533758s (thread); 0s (gc) │ │ │ │ i8 : assert (sort rays X1 == sort rays X2 and max X1 == max X2) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_i_n_g_ _n_o_r_m_a_l_ _t_o_r_i_c_ _v_a_r_i_e_t_i_e_s -- information about the basic constructors │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y -- make a normal toric variety │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_F_a_n_) -- make a normal toric variety from a 'Polyhedra' │ │ │ │ fan │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Polyhedron_rp.html │ │ │ @@ -233,21 +233,21 @@ │ │ │ 2 3 │ │ │ o18 : Matrix ZZ <-- ZZ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -102,17 +102,17 @@ │ │ │ │ │ │ │ │ o18 = | 0 1 0 | │ │ │ │ | 0 0 1 | │ │ │ │ │ │ │ │ 2 3 │ │ │ │ o18 : Matrix ZZ <-- ZZ │ │ │ │ i19 : X1 = time normalToricVariety convexHull (vertMatrix); │ │ │ │ - -- used 0.0223801s (cpu); 0.0223778s (thread); 0s (gc) │ │ │ │ + -- used 0.0289769s (cpu); 0.0289755s (thread); 0s (gc) │ │ │ │ i20 : X2 = time normalToricVariety vertMatrix; │ │ │ │ - -- used 0.00239766s (cpu); 0.00239836s (thread); 0s (gc) │ │ │ │ + -- used 0.00288793s (cpu); 0.00289293s (thread); 0s (gc) │ │ │ │ i21 : assert (set rays X2 === set rays X1 and max X1 === max X2) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_i_n_g_ _n_o_r_m_a_l_ _t_o_r_i_c_ _v_a_r_i_e_t_i_e_s -- information about the basic constructors │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_M_a_t_r_i_x_) -- make a normal toric variety from a polytope │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_P_o_l_y_h_e_d_r_o_n_) -- make a normal toric variety from a │ │ │ │ 'Polyhedra' polyhedron │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Convert__To__Cone.out │ │ │ @@ -21,21 +21,21 @@ │ │ │ │ │ │ i4 : (numericalHilbertFunction(F, I, 3, Verbose => false)).hilbertFunctionValue == 0 │ │ │ │ │ │ o4 = true │ │ │ │ │ │ i5 : T = numericalHilbertFunction(F, I, 3, ConvertToCone => true) │ │ │ Sampling image points ... │ │ │ - -- used .0790187 seconds │ │ │ + -- used .0884535 seconds │ │ │ Creating interpolation matrix ... │ │ │ - -- used .00605006 seconds │ │ │ + -- used .00730062 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00292018 seconds │ │ │ + -- used .00376254 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .000456115 seconds │ │ │ + -- used .000461573 seconds │ │ │ │ │ │ o5 = a "numerical interpolation table", indicating │ │ │ the space of degree 3 forms in the ideal of the image has dimension 3 │ │ │ │ │ │ o5 : NumericalInterpolationTable │ │ │ │ │ │ i6 : extractImageEquations(T, AttemptZZ => true) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_extract__Image__Equations.out │ │ │ @@ -11,21 +11,21 @@ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ 1 4 │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ i3 : extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true) │ │ │ Sampling image points ... │ │ │ - -- used .00365705 seconds │ │ │ + -- used .00612996 seconds │ │ │ Creating interpolation matrix ... │ │ │ - -- used .00270941 seconds │ │ │ + -- used .00482115 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00107503 seconds │ │ │ + -- used .00126326 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .000286057 seconds │ │ │ + -- used .000310817 seconds │ │ │ │ │ │ o3 = | y_1^2-y_0y_2 y_1y_2-y_0y_3 y_2^2-y_1y_3 | │ │ │ │ │ │ 1 3 │ │ │ o3 : Matrix (CC [y ..y ]) <-- (CC [y ..y ]) │ │ │ 53 0 3 53 0 3 │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Hilbert__Function.out │ │ │ @@ -11,40 +11,40 @@ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ 1 4 │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ i3 : numericalHilbertFunction(F, ideal 0_R, 4) │ │ │ Sampling image points ... │ │ │ - -- used .012393 seconds │ │ │ + -- used .0142553 seconds │ │ │ Creating interpolation matrix ... │ │ │ - -- used .0114083 seconds │ │ │ + -- used .0187852 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00726179 seconds │ │ │ + -- used .00889232 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .000761889 seconds │ │ │ + -- used .00122652 seconds │ │ │ │ │ │ o3 = a "numerical interpolation table", indicating │ │ │ the space of degree 4 forms in the ideal of the image has dimension 22 │ │ │ │ │ │ o3 : NumericalInterpolationTable │ │ │ │ │ │ i4 : R = CC[x_(1,1)..x_(2,4)]; │ │ │ │ │ │ i5 : F = (minors(2, genericMatrix(R, 2, 4)))_*; │ │ │ │ │ │ i6 : S = numericalImageSample(F, ideal 0_R, 60); │ │ │ │ │ │ i7 : numericalHilbertFunction(F, ideal 0_R, S, 2, UseSLP => true) │ │ │ Creating interpolation matrix ... │ │ │ - -- used .00312588 seconds │ │ │ + -- used .00323097 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00846492 seconds │ │ │ + -- used .00924 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .000905679 seconds │ │ │ + -- used .00105195 seconds │ │ │ │ │ │ o7 = a "numerical interpolation table", indicating │ │ │ the space of degree 2 forms in the ideal of the image has dimension 1 │ │ │ │ │ │ o7 : NumericalInterpolationTable │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Dim.out │ │ │ @@ -20,12 +20,12 @@ │ │ │ │ │ │ i8 : F = sum(1..14, i -> basis(4, R, Variables=>toList(a_(i,1)..a_(i,5)))); │ │ │ │ │ │ 1 70 │ │ │ o8 : Matrix R <-- R │ │ │ │ │ │ i9 : time numericalImageDim(F, ideal 0_R) │ │ │ - -- used 0.066304s (cpu); 0.0663008s (thread); 0s (gc) │ │ │ + -- used 0.0735827s (cpu); 0.073577s (thread); 0s (gc) │ │ │ │ │ │ o9 = 69 │ │ │ │ │ │ i10 : │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_real__Point.out │ │ │ @@ -31,15 +31,15 @@ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : I = I1 + I2; │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ │ │ i7 : elapsedTime p = realPoint(I, Iterations => 100) │ │ │ - -- .619309s elapsed │ │ │ + -- .513287s elapsed │ │ │ │ │ │ o7 = p │ │ │ │ │ │ o7 : Point │ │ │ │ │ │ i8 : matrix pack(5, p#Coordinates) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Convert__To__Cone.html │ │ │ @@ -100,21 +100,21 @@ │ │ │ o4 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -33,21 +33,21 @@ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : (numericalHilbertFunction(F, I, 3, Verbose => false)).hilbertFunctionValue │ │ │ │ == 0 │ │ │ │ │ │ │ │ o4 = true │ │ │ │ i5 : T = numericalHilbertFunction(F, I, 3, ConvertToCone => true) │ │ │ │ Sampling image points ... │ │ │ │ - -- used .0790187 seconds │ │ │ │ + -- used .0884535 seconds │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .00605006 seconds │ │ │ │ + -- used .00730062 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00292018 seconds │ │ │ │ + -- used .00376254 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .000456115 seconds │ │ │ │ + -- used .000461573 seconds │ │ │ │ │ │ │ │ o5 = a "numerical interpolation table", indicating │ │ │ │ the space of degree 3 forms in the ideal of the image has dimension 3 │ │ │ │ │ │ │ │ o5 : NumericalInterpolationTable │ │ │ │ i6 : extractImageEquations(T, AttemptZZ => true) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_extract__Image__Equations.html │ │ │ @@ -102,21 +102,21 @@ │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -38,21 +38,21 @@ │ │ │ │ │ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ │ │ 1 4 │ │ │ │ o2 : Matrix R <-- R │ │ │ │ i3 : extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true) │ │ │ │ Sampling image points ... │ │ │ │ - -- used .00365705 seconds │ │ │ │ + -- used .00612996 seconds │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .00270941 seconds │ │ │ │ + -- used .00482115 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00107503 seconds │ │ │ │ + -- used .00126326 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .000286057 seconds │ │ │ │ + -- used .000310817 seconds │ │ │ │ │ │ │ │ o3 = | y_1^2-y_0y_2 y_1y_2-y_0y_3 y_2^2-y_1y_3 | │ │ │ │ │ │ │ │ 1 3 │ │ │ │ o3 : Matrix (CC [y ..y ]) <-- (CC [y ..y ]) │ │ │ │ 53 0 3 53 0 3 │ │ │ │ Here is how to do the same computation symbolically. │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Hilbert__Function.html │ │ │ @@ -107,21 +107,21 @@ │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -147,19 +147,19 @@ │ │ │
    i6 : S = numericalImageSample(F, ideal 0_R, 60);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -57,39 +57,39 @@ │ │ │ │ │ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ │ │ 1 4 │ │ │ │ o2 : Matrix R <-- R │ │ │ │ i3 : numericalHilbertFunction(F, ideal 0_R, 4) │ │ │ │ Sampling image points ... │ │ │ │ - -- used .012393 seconds │ │ │ │ + -- used .0142553 seconds │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .0114083 seconds │ │ │ │ + -- used .0187852 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00726179 seconds │ │ │ │ + -- used .00889232 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .000761889 seconds │ │ │ │ + -- used .00122652 seconds │ │ │ │ │ │ │ │ o3 = a "numerical interpolation table", indicating │ │ │ │ the space of degree 4 forms in the ideal of the image has dimension 22 │ │ │ │ │ │ │ │ o3 : NumericalInterpolationTable │ │ │ │ The following example computes the dimension of Plücker quadrics in the │ │ │ │ defining ideal of the Grassmannian $Gr(2,4)$ of $P^1$'s in $P^3$, in the │ │ │ │ ambient space $P^5$. │ │ │ │ i4 : R = CC[x_(1,1)..x_(2,4)]; │ │ │ │ i5 : F = (minors(2, genericMatrix(R, 2, 4)))_*; │ │ │ │ i6 : S = numericalImageSample(F, ideal 0_R, 60); │ │ │ │ i7 : numericalHilbertFunction(F, ideal 0_R, S, 2, UseSLP => true) │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .00312588 seconds │ │ │ │ + -- used .00323097 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00846492 seconds │ │ │ │ + -- used .00924 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .000905679 seconds │ │ │ │ + -- used .00105195 seconds │ │ │ │ │ │ │ │ o7 = a "numerical interpolation table", indicating │ │ │ │ the space of degree 2 forms in the ideal of the image has dimension 1 │ │ │ │ │ │ │ │ o7 : NumericalInterpolationTable │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _N_u_m_e_r_i_c_a_l_I_n_t_e_r_p_o_l_a_t_i_o_n_T_a_b_l_e -- the class of all │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Dim.html │ │ │ @@ -140,15 +140,15 @@ │ │ │ 1 70 │ │ │ o8 : Matrix R <-- R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : X1 = time normalToricVariety ({{-1,-1},{1,0},{0,1}}, {{0,1},{1,2},{0,2}})
    │ │ │ - -- used 2.6249e-05s (cpu); 2.0469e-05s (thread); 0s (gc)
    │ │ │ + -- used 3.3225e-05s (cpu); 2.5053e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = X1
    │ │ │  
    │ │ │  o6 : NormalToricVariety
    │ │ │
    │ │ │
    i7 : X2 = time normalToricVariety fan {posHull matrix {{-1,1},{-1,0}}, posHull matrix {{1,0},{0,1}}, posHull matrix{{-1,0},{-1,1}}};
    │ │ │ - -- used 0.043392s (cpu); 0.0433981s (thread); 0s (gc)
    │ │ │ + -- used 0.0533677s (cpu); 0.0533758s (thread); 0s (gc) │ │ │
    │ │ │
    i8 : assert (sort rays X1 == sort rays X2 and max X1 == max X2)
    │ │ │
    │ │ │
    i19 : X1 = time normalToricVariety convexHull (vertMatrix);
    │ │ │ - -- used 0.0223801s (cpu); 0.0223778s (thread); 0s (gc)
    │ │ │ + -- used 0.0289769s (cpu); 0.0289755s (thread); 0s (gc) │ │ │
    │ │ │
    i20 : X2 = time normalToricVariety vertMatrix;
    │ │ │ - -- used 0.00239766s (cpu); 0.00239836s (thread); 0s (gc)
    │ │ │ + -- used 0.00288793s (cpu); 0.00289293s (thread); 0s (gc) │ │ │
    │ │ │
    i21 : assert (set rays X2 === set rays X1 and max X1 === max X2)
    │ │ │
    │ │ │
    i5 : T = numericalHilbertFunction(F, I, 3, ConvertToCone => true)
    │ │ │  Sampling image points ...
    │ │ │ -     -- used .0790187 seconds
    │ │ │ +     -- used .0884535 seconds
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .00605006 seconds
    │ │ │ +     -- used .00730062 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00292018 seconds
    │ │ │ +     -- used .00376254 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .000456115 seconds
    │ │ │ +     -- used .000461573 seconds
    │ │ │  
    │ │ │  o5 = a "numerical interpolation table", indicating
    │ │ │       the space of degree 3 forms in the ideal of the image has dimension 3
    │ │ │  
    │ │ │  o5 : NumericalInterpolationTable
    │ │ │
    │ │ │
    i3 : extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true)
    │ │ │  Sampling image points ...
    │ │ │ -     -- used .00365705 seconds
    │ │ │ +     -- used .00612996 seconds
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .00270941 seconds
    │ │ │ +     -- used .00482115 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00107503 seconds
    │ │ │ +     -- used .00126326 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .000286057 seconds
    │ │ │ +     -- used .000310817 seconds
    │ │ │  
    │ │ │  o3 = | y_1^2-y_0y_2 y_1y_2-y_0y_3 y_2^2-y_1y_3 |
    │ │ │  
    │ │ │                            1                   3
    │ │ │  o3 : Matrix (CC  [y ..y ])  <-- (CC  [y ..y ])
    │ │ │                 53  0   3           53  0   3
    │ │ │
    │ │ │
    i3 : numericalHilbertFunction(F, ideal 0_R, 4)
    │ │ │  Sampling image points ...
    │ │ │ -     -- used .012393 seconds
    │ │ │ +     -- used .0142553 seconds
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .0114083 seconds
    │ │ │ +     -- used .0187852 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00726179 seconds
    │ │ │ +     -- used .00889232 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .000761889 seconds
    │ │ │ +     -- used .00122652 seconds
    │ │ │  
    │ │ │  o3 = a "numerical interpolation table", indicating
    │ │ │       the space of degree 4 forms in the ideal of the image has dimension 22
    │ │ │  
    │ │ │  o3 : NumericalInterpolationTable
    │ │ │
    │ │ │
    i7 : numericalHilbertFunction(F, ideal 0_R, S, 2, UseSLP => true)
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .00312588 seconds
    │ │ │ +     -- used .00323097 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00846492 seconds
    │ │ │ +     -- used .00924 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .000905679 seconds
    │ │ │ +     -- used .00105195 seconds
    │ │ │  
    │ │ │  o7 = a "numerical interpolation table", indicating
    │ │ │       the space of degree 2 forms in the ideal of the image has dimension 1
    │ │ │  
    │ │ │  o7 : NumericalInterpolationTable
    │ │ │
    │ │ │
    i9 : time numericalImageDim(F, ideal 0_R)
    │ │ │ - -- used 0.066304s (cpu); 0.0663008s (thread); 0s (gc)
    │ │ │ + -- used 0.0735827s (cpu); 0.073577s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = 69
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -43,15 +43,15 @@ │ │ │ │ 201-222. We numerically verify this below. │ │ │ │ i7 : R = CC[a_(1,1)..a_(14,5)]; │ │ │ │ i8 : F = sum(1..14, i -> basis(4, R, Variables=>toList(a_(i,1)..a_(i,5)))); │ │ │ │ │ │ │ │ 1 70 │ │ │ │ o8 : Matrix R <-- R │ │ │ │ i9 : time numericalImageDim(F, ideal 0_R) │ │ │ │ - -- used 0.066304s (cpu); 0.0663008s (thread); 0s (gc) │ │ │ │ + -- used 0.0735827s (cpu); 0.073577s (thread); 0s (gc) │ │ │ │ │ │ │ │ o9 = 69 │ │ │ │ ********** WWaayyss ttoo uussee nnuummeerriiccaallIImmaaggeeDDiimm:: ********** │ │ │ │ * numericalImageDim(List,Ideal) │ │ │ │ * numericalImageDim(List,Ideal,Point) │ │ │ │ * numericalImageDim(Matrix,Ideal) │ │ │ │ * numericalImageDim(Matrix,Ideal,Point) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_real__Point.html │ │ │ @@ -132,15 +132,15 @@ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime p = realPoint(I, Iterations => 100)
    │ │ │ - -- .619309s elapsed
    │ │ │ + -- .513287s elapsed
    │ │ │  
    │ │ │  o7 = p
    │ │ │  
    │ │ │  o7 : Point
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -49,15 +49,15 @@ │ │ │ │ i5 : I2 = ideal apply(entries transpose A, row -> sum(row, v -> v^2) - 1); │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : I = I1 + I2; │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : elapsedTime p = realPoint(I, Iterations => 100) │ │ │ │ - -- .619309s elapsed │ │ │ │ + -- .513287s elapsed │ │ │ │ │ │ │ │ o7 = p │ │ │ │ │ │ │ │ o7 : Point │ │ │ │ i8 : matrix pack(5, p#Coordinates) │ │ │ │ │ │ │ │ o8 = | .722359 .289465 -.295808 .591752 -.454678 | │ │ ├── ./usr/share/doc/Macaulay2/NumericalLinearAlgebra/dump/rawdocumentation.dump │ │ │ @@ -1,8 +1,8 @@ │ │ │ -# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Fri Nov 14 16:08:08 2025 │ │ │ +# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Fri Nov 14 16:08:07 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ #:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=35 │ │ │ bnVtZXJpY2FsS2VybmVsKC4uLixUb2xlcmFuY2U9Pi4uLik= │ │ ├── ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_set__Verbose__Level.out │ │ │ @@ -52,92 +52,92 @@ │ │ │ │ │ │ i4 : assert all(S,s->checkIncidenceSolution(s,SchPblm)) │ │ │ │ │ │ i5 : setVerboseLevel 1; │ │ │ │ │ │ i6 : S = solveSchubertProblem(SchPblm,2,4) │ │ │ -- playCheckers │ │ │ --- cpu time = .00707217 │ │ │ +-- cpu time = .0119975 │ │ │ -- making a recursive call to resolveNode │ │ │ -- playCheckers │ │ │ --- cpu time = .00399967 │ │ │ +-- cpu time = .00807886 │ │ │ -- making a recursive call to resolveNode │ │ │ -- playCheckers │ │ │ -- cpu time = 0 │ │ │ resolveNode reached node of no remaining conditions │ │ │ --- time to make equations: .00399831 │ │ │ +-- time to make equations: .00801454 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .00653127 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}] │ │ │ --- time of performing one checker move: .0159992 │ │ │ --- time of performing one checker move: 0 │ │ │ --- time of performing one checker move: 0 │ │ │ --- time to make equations: .00799998 │ │ │ + -- trackHomotopy time = .00792352 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}] │ │ │ +-- time of performing one checker move: .0228574 │ │ │ +-- time of performing one checker move: .00398274 │ │ │ +-- time of performing one checker move: .00401748 │ │ │ +-- time to make equations: .00792009 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .00612084 sec. for [{1, 2, 3, 0}, {1, infinity, infinity, 2}] │ │ │ --- time of performing one checker move: .0160045 │ │ │ --- time to make equations: .00515796 │ │ │ -Setup time: 1 │ │ │ + -- trackHomotopy time = .0102009 sec. for [{1, 2, 3, 0}, {1, infinity, infinity, 2}] │ │ │ +-- time of performing one checker move: .0216878 │ │ │ +-- time to make equations: .0105591 │ │ │ +Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0870607 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 2}] │ │ │ --- time of performing one checker move: .111595 │ │ │ --- time to make equations: .00399871 │ │ │ + -- trackHomotopy time = .0260445 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 2}] │ │ │ +-- time of performing one checker move: .126937 │ │ │ +-- time to make equations: .00807903 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .00592173 sec. for [{2, 3, 1, 0}, {2, infinity, infinity, 1}] │ │ │ --- time of performing one checker move: .015998 │ │ │ --- time to make equations: .0854627 │ │ │ + -- trackHomotopy time = .00745903 sec. for [{2, 3, 1, 0}, {2, infinity, infinity, 1}] │ │ │ +-- time of performing one checker move: .0200638 │ │ │ +-- time to make equations: .115221 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0112502 sec. for [{0, 1, 2, 3}, {infinity, 1, 2, infinity}] │ │ │ --- time of performing one checker move: .0974532 │ │ │ --- time to make equations: .012 │ │ │ + -- trackHomotopy time = .00826281 sec. for [{0, 1, 2, 3}, {infinity, 1, 2, infinity}] │ │ │ +-- time of performing one checker move: .131162 │ │ │ +-- time to make equations: .0159734 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0691376 sec. for [{0, 1, 3, 2}, {infinity, 1, infinity, 2}] │ │ │ --- time of performing one checker move: .109427 │ │ │ + -- trackHomotopy time = .0266004 sec. for [{0, 1, 3, 2}, {infinity, 1, infinity, 2}] │ │ │ +-- time of performing one checker move: .138031 │ │ │ -- time of performing one checker move: 0 │ │ │ --- time of performing one checker move: .0039993 │ │ │ --- time to make equations: .012002 │ │ │ +-- time of performing one checker move: .00407546 │ │ │ +-- time to make equations: .012001 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0829076 sec. for [{1, 3, 2, 0}, {infinity, 3, infinity, 1}] │ │ │ --- time of performing one checker move: .111029 │ │ │ + -- trackHomotopy time = .0275738 sec. for [{1, 3, 2, 0}, {infinity, 3, infinity, 1}] │ │ │ +-- time of performing one checker move: .139343 │ │ │ -- making a recursive call to resolveNode │ │ │ -- playCheckers │ │ │ --- cpu time = .00799904 │ │ │ +-- cpu time = .00801421 │ │ │ -- making a recursive call to resolveNode │ │ │ -- playCheckers │ │ │ -- cpu time = 0 │ │ │ resolveNode reached node of no remaining conditions │ │ │ --- time to make equations: .00399999 │ │ │ +-- time to make equations: .00801043 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .00633084 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}] │ │ │ --- time of performing one checker move: .0989545 │ │ │ + -- trackHomotopy time = .00734523 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}] │ │ │ +-- time of performing one checker move: .12609 │ │ │ -- time of performing one checker move: 0 │ │ │ --- time to make equations: .00399939 │ │ │ +-- time to make equations: .00399798 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .00612709 sec. for [{0, 2, 3, 1}, {0, infinity, infinity, 2}] │ │ │ --- time of performing one checker move: .0199873 │ │ │ --- time of performing one checker move: .0917858 │ │ │ --- time of performing one checker move: .00398251 │ │ │ + -- trackHomotopy time = .00757619 sec. for [{0, 2, 3, 1}, {0, infinity, infinity, 2}] │ │ │ +-- time of performing one checker move: .0200196 │ │ │ +-- time of performing one checker move: .113738 │ │ │ +-- time of performing one checker move: .00397424 │ │ │ -- time of performing one checker move: 0 │ │ │ --- time of performing one checker move: .00400001 │ │ │ +-- time of performing one checker move: .0040081 │ │ │ -- time of performing one checker move: 0 │ │ │ --- time of performing one checker move: .00399726 │ │ │ -- time of performing one checker move: 0 │ │ │ --- time to make equations: .0119992 │ │ │ +-- time of performing one checker move: .0039724 │ │ │ +-- time to make equations: .0161151 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0924931 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 3}] │ │ │ --- time of performing one checker move: .111872 │ │ │ --- time of performing one checker move: .00399915 │ │ │ + -- trackHomotopy time = .0297464 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 3}] │ │ │ +-- time of performing one checker move: .135161 │ │ │ +-- time of performing one checker move: 0 │ │ │ │ │ │ o6 = {| -1.65573-.600637ii .0201935+.0437095ii |, | -.154703+.175591ii │ │ │ | -1.23037-1.66989ii -.0308057-.00120618ii | | -.801221-.0354303ii │ │ │ | 1.35971-.743988ii -.0713133-.049047ii | | .325581-2.08048ii │ │ │ | -.397038-1.8974ii .0102261-.024397ii | | -.475895-.209388ii │ │ │ ------------------------------------------------------------------------ │ │ │ .0376857+.0683239ii |} │ │ ├── ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_set__Verbose__Level.html │ │ │ @@ -147,92 +147,92 @@ │ │ │
    i5 : setVerboseLevel 1; 
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : S = solveSchubertProblem(SchPblm,2,4)
    │ │ │  -- playCheckers
    │ │ │ --- cpu time = .00707217
    │ │ │ +-- cpu time = .0119975
    │ │ │  -- making a recursive call to resolveNode
    │ │ │  -- playCheckers
    │ │ │ --- cpu time = .00399967
    │ │ │ +-- cpu time = .00807886
    │ │ │  -- making a recursive call to resolveNode
    │ │ │  -- playCheckers
    │ │ │  -- cpu time = 0
    │ │ │  resolveNode reached node of no remaining conditions
    │ │ │ --- time to make equations: .00399831
    │ │ │ +-- time to make equations: .00801454
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .00653127 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}]
    │ │ │ --- time of performing one checker move: .0159992
    │ │ │ --- time of performing one checker move: 0
    │ │ │ --- time of performing one checker move: 0
    │ │ │ --- time to make equations: .00799998
    │ │ │ + -- trackHomotopy time = .00792352 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}]
    │ │ │ +-- time of performing one checker move: .0228574
    │ │ │ +-- time of performing one checker move: .00398274
    │ │ │ +-- time of performing one checker move: .00401748
    │ │ │ +-- time to make equations: .00792009
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .00612084 sec. for [{1, 2, 3, 0}, {1, infinity, infinity, 2}]
    │ │ │ --- time of performing one checker move: .0160045
    │ │ │ --- time to make equations: .00515796
    │ │ │ -Setup time: 1
    │ │ │ + -- trackHomotopy time = .0102009 sec. for [{1, 2, 3, 0}, {1, infinity, infinity, 2}]
    │ │ │ +-- time of performing one checker move: .0216878
    │ │ │ +-- time to make equations: .0105591
    │ │ │ +Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0870607 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 2}]
    │ │ │ --- time of performing one checker move: .111595
    │ │ │ --- time to make equations: .00399871
    │ │ │ + -- trackHomotopy time = .0260445 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 2}]
    │ │ │ +-- time of performing one checker move: .126937
    │ │ │ +-- time to make equations: .00807903
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .00592173 sec. for [{2, 3, 1, 0}, {2, infinity, infinity, 1}]
    │ │ │ --- time of performing one checker move: .015998
    │ │ │ --- time to make equations: .0854627
    │ │ │ + -- trackHomotopy time = .00745903 sec. for [{2, 3, 1, 0}, {2, infinity, infinity, 1}]
    │ │ │ +-- time of performing one checker move: .0200638
    │ │ │ +-- time to make equations: .115221
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0112502 sec. for [{0, 1, 2, 3}, {infinity, 1, 2, infinity}]
    │ │ │ --- time of performing one checker move: .0974532
    │ │ │ --- time to make equations: .012
    │ │ │ + -- trackHomotopy time = .00826281 sec. for [{0, 1, 2, 3}, {infinity, 1, 2, infinity}]
    │ │ │ +-- time of performing one checker move: .131162
    │ │ │ +-- time to make equations: .0159734
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0691376 sec. for [{0, 1, 3, 2}, {infinity, 1, infinity, 2}]
    │ │ │ --- time of performing one checker move: .109427
    │ │ │ + -- trackHomotopy time = .0266004 sec. for [{0, 1, 3, 2}, {infinity, 1, infinity, 2}]
    │ │ │ +-- time of performing one checker move: .138031
    │ │ │  -- time of performing one checker move: 0
    │ │ │ --- time of performing one checker move: .0039993
    │ │ │ --- time to make equations: .012002
    │ │ │ +-- time of performing one checker move: .00407546
    │ │ │ +-- time to make equations: .012001
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0829076 sec. for [{1, 3, 2, 0}, {infinity, 3, infinity, 1}]
    │ │ │ --- time of performing one checker move: .111029
    │ │ │ + -- trackHomotopy time = .0275738 sec. for [{1, 3, 2, 0}, {infinity, 3, infinity, 1}]
    │ │ │ +-- time of performing one checker move: .139343
    │ │ │  -- making a recursive call to resolveNode
    │ │ │  -- playCheckers
    │ │ │ --- cpu time = .00799904
    │ │ │ +-- cpu time = .00801421
    │ │ │  -- making a recursive call to resolveNode
    │ │ │  -- playCheckers
    │ │ │  -- cpu time = 0
    │ │ │  resolveNode reached node of no remaining conditions
    │ │ │ --- time to make equations: .00399999
    │ │ │ +-- time to make equations: .00801043
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .00633084 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}]
    │ │ │ --- time of performing one checker move: .0989545
    │ │ │ + -- trackHomotopy time = .00734523 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}]
    │ │ │ +-- time of performing one checker move: .12609
    │ │ │  -- time of performing one checker move: 0
    │ │ │ --- time to make equations: .00399939
    │ │ │ +-- time to make equations: .00399798
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .00612709 sec. for [{0, 2, 3, 1}, {0, infinity, infinity, 2}]
    │ │ │ --- time of performing one checker move: .0199873
    │ │ │ --- time of performing one checker move: .0917858
    │ │ │ --- time of performing one checker move: .00398251
    │ │ │ + -- trackHomotopy time = .00757619 sec. for [{0, 2, 3, 1}, {0, infinity, infinity, 2}]
    │ │ │ +-- time of performing one checker move: .0200196
    │ │ │ +-- time of performing one checker move: .113738
    │ │ │ +-- time of performing one checker move: .00397424
    │ │ │  -- time of performing one checker move: 0
    │ │ │ --- time of performing one checker move: .00400001
    │ │ │ +-- time of performing one checker move: .0040081
    │ │ │  -- time of performing one checker move: 0
    │ │ │ --- time of performing one checker move: .00399726
    │ │ │  -- time of performing one checker move: 0
    │ │ │ --- time to make equations: .0119992
    │ │ │ +-- time of performing one checker move: .0039724
    │ │ │ +-- time to make equations: .0161151
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0924931 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 3}]
    │ │ │ --- time of performing one checker move: .111872
    │ │ │ --- time of performing one checker move: .00399915
    │ │ │ + -- trackHomotopy time = .0297464 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 3}]
    │ │ │ +-- time of performing one checker move: .135161
    │ │ │ +-- time of performing one checker move: 0
    │ │ │  
    │ │ │  o6 = {| -1.65573-.600637ii .0201935+.0437095ii   |, | -.154703+.175591ii 
    │ │ │        | -1.23037-1.66989ii -.0308057-.00120618ii |  | -.801221-.0354303ii
    │ │ │        | 1.35971-.743988ii  -.0713133-.049047ii   |  | .325581-2.08048ii  
    │ │ │        | -.397038-1.8974ii  .0102261-.024397ii    |  | -.475895-.209388ii 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       .0376857+.0683239ii   |}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -65,102 +65,102 @@
    │ │ │ │       -.0336427+.0141017ii  |
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : assert all(S,s->checkIncidenceSolution(s,SchPblm))
    │ │ │ │  i5 : setVerboseLevel 1;
    │ │ │ │  i6 : S = solveSchubertProblem(SchPblm,2,4)
    │ │ │ │  -- playCheckers
    │ │ │ │ --- cpu time = .00707217
    │ │ │ │ +-- cpu time = .0119975
    │ │ │ │  -- making a recursive call to resolveNode
    │ │ │ │  -- playCheckers
    │ │ │ │ --- cpu time = .00399967
    │ │ │ │ +-- cpu time = .00807886
    │ │ │ │  -- making a recursive call to resolveNode
    │ │ │ │  -- playCheckers
    │ │ │ │  -- cpu time = 0
    │ │ │ │  resolveNode reached node of no remaining conditions
    │ │ │ │ --- time to make equations: .00399831
    │ │ │ │ +-- time to make equations: .00801454
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .00653127 sec. for [{0, 1, 2, 3}, {0, infinity, 2,
    │ │ │ │ + -- trackHomotopy time = .00792352 sec. for [{0, 1, 2, 3}, {0, infinity, 2,
    │ │ │ │  infinity}]
    │ │ │ │ --- time of performing one checker move: .0159992
    │ │ │ │ --- time of performing one checker move: 0
    │ │ │ │ --- time of performing one checker move: 0
    │ │ │ │ --- time to make equations: .00799998
    │ │ │ │ +-- time of performing one checker move: .0228574
    │ │ │ │ +-- time of performing one checker move: .00398274
    │ │ │ │ +-- time of performing one checker move: .00401748
    │ │ │ │ +-- time to make equations: .00792009
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .00612084 sec. for [{1, 2, 3, 0}, {1, infinity,
    │ │ │ │ + -- trackHomotopy time = .0102009 sec. for [{1, 2, 3, 0}, {1, infinity,
    │ │ │ │  infinity, 2}]
    │ │ │ │ --- time of performing one checker move: .0160045
    │ │ │ │ --- time to make equations: .00515796
    │ │ │ │ -Setup time: 1
    │ │ │ │ +-- time of performing one checker move: .0216878
    │ │ │ │ +-- time to make equations: .0105591
    │ │ │ │ +Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0870607 sec. for [{1, 3, 2, 0}, {1, infinity,
    │ │ │ │ + -- trackHomotopy time = .0260445 sec. for [{1, 3, 2, 0}, {1, infinity,
    │ │ │ │  infinity, 2}]
    │ │ │ │ --- time of performing one checker move: .111595
    │ │ │ │ --- time to make equations: .00399871
    │ │ │ │ +-- time of performing one checker move: .126937
    │ │ │ │ +-- time to make equations: .00807903
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .00592173 sec. for [{2, 3, 1, 0}, {2, infinity,
    │ │ │ │ + -- trackHomotopy time = .00745903 sec. for [{2, 3, 1, 0}, {2, infinity,
    │ │ │ │  infinity, 1}]
    │ │ │ │ --- time of performing one checker move: .015998
    │ │ │ │ --- time to make equations: .0854627
    │ │ │ │ +-- time of performing one checker move: .0200638
    │ │ │ │ +-- time to make equations: .115221
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0112502 sec. for [{0, 1, 2, 3}, {infinity, 1, 2,
    │ │ │ │ + -- trackHomotopy time = .00826281 sec. for [{0, 1, 2, 3}, {infinity, 1, 2,
    │ │ │ │  infinity}]
    │ │ │ │ --- time of performing one checker move: .0974532
    │ │ │ │ --- time to make equations: .012
    │ │ │ │ +-- time of performing one checker move: .131162
    │ │ │ │ +-- time to make equations: .0159734
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0691376 sec. for [{0, 1, 3, 2}, {infinity, 1,
    │ │ │ │ + -- trackHomotopy time = .0266004 sec. for [{0, 1, 3, 2}, {infinity, 1,
    │ │ │ │  infinity, 2}]
    │ │ │ │ --- time of performing one checker move: .109427
    │ │ │ │ +-- time of performing one checker move: .138031
    │ │ │ │  -- time of performing one checker move: 0
    │ │ │ │ --- time of performing one checker move: .0039993
    │ │ │ │ --- time to make equations: .012002
    │ │ │ │ +-- time of performing one checker move: .00407546
    │ │ │ │ +-- time to make equations: .012001
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0829076 sec. for [{1, 3, 2, 0}, {infinity, 3,
    │ │ │ │ + -- trackHomotopy time = .0275738 sec. for [{1, 3, 2, 0}, {infinity, 3,
    │ │ │ │  infinity, 1}]
    │ │ │ │ --- time of performing one checker move: .111029
    │ │ │ │ +-- time of performing one checker move: .139343
    │ │ │ │  -- making a recursive call to resolveNode
    │ │ │ │  -- playCheckers
    │ │ │ │ --- cpu time = .00799904
    │ │ │ │ +-- cpu time = .00801421
    │ │ │ │  -- making a recursive call to resolveNode
    │ │ │ │  -- playCheckers
    │ │ │ │  -- cpu time = 0
    │ │ │ │  resolveNode reached node of no remaining conditions
    │ │ │ │ --- time to make equations: .00399999
    │ │ │ │ +-- time to make equations: .00801043
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .00633084 sec. for [{0, 1, 2, 3}, {0, infinity, 2,
    │ │ │ │ + -- trackHomotopy time = .00734523 sec. for [{0, 1, 2, 3}, {0, infinity, 2,
    │ │ │ │  infinity}]
    │ │ │ │ --- time of performing one checker move: .0989545
    │ │ │ │ +-- time of performing one checker move: .12609
    │ │ │ │  -- time of performing one checker move: 0
    │ │ │ │ --- time to make equations: .00399939
    │ │ │ │ +-- time to make equations: .00399798
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .00612709 sec. for [{0, 2, 3, 1}, {0, infinity,
    │ │ │ │ + -- trackHomotopy time = .00757619 sec. for [{0, 2, 3, 1}, {0, infinity,
    │ │ │ │  infinity, 2}]
    │ │ │ │ --- time of performing one checker move: .0199873
    │ │ │ │ --- time of performing one checker move: .0917858
    │ │ │ │ --- time of performing one checker move: .00398251
    │ │ │ │ +-- time of performing one checker move: .0200196
    │ │ │ │ +-- time of performing one checker move: .113738
    │ │ │ │ +-- time of performing one checker move: .00397424
    │ │ │ │  -- time of performing one checker move: 0
    │ │ │ │ --- time of performing one checker move: .00400001
    │ │ │ │ +-- time of performing one checker move: .0040081
    │ │ │ │  -- time of performing one checker move: 0
    │ │ │ │ --- time of performing one checker move: .00399726
    │ │ │ │  -- time of performing one checker move: 0
    │ │ │ │ --- time to make equations: .0119992
    │ │ │ │ +-- time of performing one checker move: .0039724
    │ │ │ │ +-- time to make equations: .0161151
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0924931 sec. for [{1, 3, 2, 0}, {1, infinity,
    │ │ │ │ + -- trackHomotopy time = .0297464 sec. for [{1, 3, 2, 0}, {1, infinity,
    │ │ │ │  infinity, 3}]
    │ │ │ │ --- time of performing one checker move: .111872
    │ │ │ │ --- time of performing one checker move: .00399915
    │ │ │ │ +-- time of performing one checker move: .135161
    │ │ │ │ +-- time of performing one checker move: 0
    │ │ │ │  
    │ │ │ │  o6 = {| -1.65573-.600637ii .0201935+.0437095ii   |, | -.154703+.175591ii
    │ │ │ │        | -1.23037-1.66989ii -.0308057-.00120618ii |  | -.801221-.0354303ii
    │ │ │ │        | 1.35971-.743988ii  -.0713133-.049047ii   |  | .325581-2.08048ii
    │ │ │ │        | -.397038-1.8974ii  .0102261-.024397ii    |  | -.475895-.209388ii
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       .0376857+.0683239ii   |}
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/___Lab__Book__Protocol.out
    │ │ │ @@ -14,35 +14,35 @@
    │ │ │  
    │ │ │  i4 : LL7a=select(LL7,L->not knownExample L);#LL7a
    │ │ │  
    │ │ │  o5 = 2
    │ │ │  
    │ │ │  i6 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0,Verbose=>true))
    │ │ │  unfolding
    │ │ │ - -- .159171s elapsed
    │ │ │ + -- .125738s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .160219s elapsed
    │ │ │ + -- .111462s elapsed
    │ │ │  next gb
    │ │ │ - -- .000771299s elapsed
    │ │ │ + -- .000809988s elapsed
    │ │ │  true
    │ │ │  unfolding
    │ │ │ - -- .16329s elapsed
    │ │ │ + -- .0991121s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .137067s elapsed
    │ │ │ + -- .0955736s elapsed
    │ │ │  next gb
    │ │ │ - -- .000599818s elapsed
    │ │ │ + -- .000623182s elapsed
    │ │ │  true
    │ │ │ - -- 1.59938s elapsed
    │ │ │ + -- 1.25115s elapsed
    │ │ │  
    │ │ │  o6 = {}
    │ │ │  
    │ │ │  o6 : List
    │ │ │  
    │ │ │  i7 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0))
    │ │ │ - -- 1.37691s elapsed
    │ │ │ + -- 1.28289s elapsed
    │ │ │  
    │ │ │  o7 = {}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : LL7b=={}
    │ │ │  
    │ │ │ @@ -75,23 +75,23 @@
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │  
    │ │ │  i11 : elapsedTime nonWeierstrassSemigroups(m,g,Verbose=>true)
    │ │ │  (13, 1)
    │ │ │  {5, 8, 11, 12}
    │ │ │  unfolding
    │ │ │ - -- .200467s elapsed
    │ │ │ + -- .203276s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .173649s elapsed
    │ │ │ + -- .124889s elapsed
    │ │ │  next gb
    │ │ │ - -- .000926207s elapsed
    │ │ │ + -- .000937243s elapsed
    │ │ │  true
    │ │ │ - -- .618832s elapsed
    │ │ │ + -- .583271s elapsed
    │ │ │  (5, 8,  all semigroups are smoothable)
    │ │ │ - -- .647468s elapsed
    │ │ │ + -- .622865s elapsed
    │ │ │  
    │ │ │  o11 = {}
    │ │ │  
    │ │ │  o11 : List
    │ │ │  
    │ │ │  i12 : L={6,8,9,11}
    │ │ │  
    │ │ │ @@ -100,22 +100,22 @@
    │ │ │  o12 : List
    │ │ │  
    │ │ │  i13 : genus L
    │ │ │  
    │ │ │  o13 = 8
    │ │ │  
    │ │ │  i14 : isWeierstrassSemigroup(L,0.2,Verbose=>true)
    │ │ │ - -- .107024s elapsed
    │ │ │ + -- .0906025s elapsed
    │ │ │  6
    │ │ │  false
    │ │ │  5
    │ │ │  false
    │ │ │  4
    │ │ │  decompose
    │ │ │ - -- .304981s elapsed
    │ │ │ + -- .282616s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(1, 1), (16, 3)}
    │ │ │  {0, -1}
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_heuristic__Smoothness.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │   -- setting random seed to 1644814534404491274313411285186041988099567563905780374824086062516559438
    │ │ │  
    │ │ │  i4 : elapsedTime tally apply(10,i-> (
    │ │ │               c=minors(2,random(S^2,S^{3:-2}));
    │ │ │               c=sub(c,x_0=>1);
    │ │ │               R=kk[support c];c=sub(c,R);
    │ │ │               heuristicSmoothness c))
    │ │ │ - -- 3.77995s elapsed
    │ │ │ + -- 3.27696s elapsed
    │ │ │  
    │ │ │  o4 = Tally{false => 6}
    │ │ │             true => 4
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Smoothable__Semigroup.out
    │ │ │ @@ -7,17 +7,17 @@
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : genus L
    │ │ │  
    │ │ │  o2 = 8
    │ │ │  
    │ │ │  i3 : elapsedTime isSmoothableSemigroup(L,0.30,0)
    │ │ │ - -- 1.10208s elapsed
    │ │ │ + -- .831378s elapsed
    │ │ │  
    │ │ │  o3 = false
    │ │ │  
    │ │ │  i4 : elapsedTime isSmoothableSemigroup(L,0.14,0)
    │ │ │ - -- 3.98405s elapsed
    │ │ │ + -- 3.52928s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Weierstrass__Semigroup.out
    │ │ │ @@ -7,12 +7,12 @@
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : genus L
    │ │ │  
    │ │ │  o2 = 8
    │ │ │  
    │ │ │  i3 : elapsedTime isWeierstrassSemigroup(L,0.15)
    │ │ │ - -- 4.09713s elapsed
    │ │ │ + -- 3.27591s elapsed
    │ │ │  
    │ │ │  o3 = true
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_non__Weierstrass__Semigroups.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 6860996532851631556
    │ │ │  
    │ │ │  i1 : elapsedTime nonWeierstrassSemigroups(6,7)
    │ │ │  (6, 7,  all semigroups are smoothable)
    │ │ │ - -- 1.62513s elapsed
    │ │ │ + -- 1.2476s elapsed
    │ │ │  
    │ │ │  o1 = {}
    │ │ │  
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : LLdifficult={{6, 8, 9, 11}}
    │ │ │  
    │ │ │ @@ -14,61 +14,61 @@
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : elapsedTime nonWeierstrassSemigroups(6,8,LLdifficult,Verbose=>true)
    │ │ │  (17, 5)
    │ │ │  {6, 7, 8, 17}
    │ │ │  unfolding
    │ │ │ - -- .396426s elapsed
    │ │ │ + -- .354838s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .149345s elapsed
    │ │ │ + -- .133532s elapsed
    │ │ │  next gb
    │ │ │ - -- .00186426s elapsed
    │ │ │ + -- .00191771s elapsed
    │ │ │  true
    │ │ │ - -- .934436s elapsed
    │ │ │ + -- .829345s elapsed
    │ │ │  {6, 7, 9, 17}
    │ │ │  unfolding
    │ │ │ - -- .34282s elapsed
    │ │ │ + -- .367164s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .263338s elapsed
    │ │ │ + -- .153578s elapsed
    │ │ │  next gb
    │ │ │ - -- .00267103s elapsed
    │ │ │ + -- .0027564s elapsed
    │ │ │  decompose
    │ │ │ - -- .122971s elapsed
    │ │ │ + -- .165868s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(2, 2), (5, 2)}
    │ │ │  {0, -1}
    │ │ │ - -- 2.82135s elapsed
    │ │ │ + -- 2.50767s elapsed
    │ │ │  {6, 8, 9, 10}
    │ │ │  unfolding
    │ │ │ - -- .173434s elapsed
    │ │ │ + -- .117037s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .133545s elapsed
    │ │ │ + -- .100479s elapsed
    │ │ │  next gb
    │ │ │ - -- .000440471s elapsed
    │ │ │ + -- .00044969s elapsed
    │ │ │  true
    │ │ │ - -- .746963s elapsed
    │ │ │ + -- .62373s elapsed
    │ │ │  {6, 8, 10, 11, 13}
    │ │ │  unfolding
    │ │ │ - -- .532889s elapsed
    │ │ │ + -- .486108s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .194284s elapsed
    │ │ │ + -- .194707s elapsed
    │ │ │  next gb
    │ │ │ - -- .00451218s elapsed
    │ │ │ + -- .00599842s elapsed
    │ │ │  decompose
    │ │ │ - -- 1.02026s elapsed
    │ │ │ + -- .8188s elapsed
    │ │ │  number of components: 1
    │ │ │  support c, codim c: {(5, 1)}
    │ │ │  {-1}
    │ │ │ - -- 2.95467s elapsed
    │ │ │ - -- 7.45755s elapsed
    │ │ │ + -- 2.40061s elapsed
    │ │ │ + -- 6.3615s elapsed
    │ │ │  0
    │ │ │  
    │ │ │  {}
    │ │ │ - -- .000003637s elapsed
    │ │ │ - -- 7.49256s elapsed
    │ │ │ + -- .000004791s elapsed
    │ │ │ + -- 6.42039s elapsed
    │ │ │  
    │ │ │  o3 = {{6, 8, 9, 11}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/___Lab__Book__Protocol.html
    │ │ │ @@ -96,38 +96,38 @@
    │ │ │  o5 = 2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0,Verbose=>true))
    │ │ │  unfolding
    │ │ │ - -- .159171s elapsed
    │ │ │ + -- .125738s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .160219s elapsed
    │ │ │ + -- .111462s elapsed
    │ │ │  next gb
    │ │ │ - -- .000771299s elapsed
    │ │ │ + -- .000809988s elapsed
    │ │ │  true
    │ │ │  unfolding
    │ │ │ - -- .16329s elapsed
    │ │ │ + -- .0991121s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .137067s elapsed
    │ │ │ + -- .0955736s elapsed
    │ │ │  next gb
    │ │ │ - -- .000599818s elapsed
    │ │ │ + -- .000623182s elapsed
    │ │ │  true
    │ │ │ - -- 1.59938s elapsed
    │ │ │ + -- 1.25115s elapsed
    │ │ │  
    │ │ │  o6 = {}
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0))
    │ │ │ - -- 1.37691s elapsed
    │ │ │ + -- 1.28289s elapsed
    │ │ │  
    │ │ │  o7 = {}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -184,23 +184,23 @@ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : elapsedTime nonWeierstrassSemigroups(m,g,Verbose=>true)
    │ │ │  (13, 1)
    │ │ │  {5, 8, 11, 12}
    │ │ │  unfolding
    │ │ │ - -- .200467s elapsed
    │ │ │ + -- .203276s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .173649s elapsed
    │ │ │ + -- .124889s elapsed
    │ │ │  next gb
    │ │ │ - -- .000926207s elapsed
    │ │ │ + -- .000937243s elapsed
    │ │ │  true
    │ │ │ - -- .618832s elapsed
    │ │ │ + -- .583271s elapsed
    │ │ │  (5, 8,  all semigroups are smoothable)
    │ │ │ - -- .647468s elapsed
    │ │ │ + -- .622865s elapsed
    │ │ │  
    │ │ │  o11 = {}
    │ │ │  
    │ │ │  o11 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -223,22 +223,22 @@ │ │ │ │ │ │ o13 = 8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : isWeierstrassSemigroup(L,0.2,Verbose=>true)
    │ │ │ - -- .107024s elapsed
    │ │ │ + -- .0906025s elapsed
    │ │ │  6
    │ │ │  false
    │ │ │  5
    │ │ │  false
    │ │ │  4
    │ │ │  decompose
    │ │ │ - -- .304981s elapsed
    │ │ │ + -- .282616s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(1, 1), (16, 3)}
    │ │ │  {0, -1}
    │ │ │  
    │ │ │  o14 = true
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -26,34 +26,34 @@ │ │ │ │ o3 = 39 │ │ │ │ i4 : LL7a=select(LL7,L->not knownExample L);#LL7a │ │ │ │ │ │ │ │ o5 = 2 │ │ │ │ i6 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup │ │ │ │ (L,0.25,0,Verbose=>true)) │ │ │ │ unfolding │ │ │ │ - -- .159171s elapsed │ │ │ │ + -- .125738s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .160219s elapsed │ │ │ │ + -- .111462s elapsed │ │ │ │ next gb │ │ │ │ - -- .000771299s elapsed │ │ │ │ + -- .000809988s elapsed │ │ │ │ true │ │ │ │ unfolding │ │ │ │ - -- .16329s elapsed │ │ │ │ + -- .0991121s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .137067s elapsed │ │ │ │ + -- .0955736s elapsed │ │ │ │ next gb │ │ │ │ - -- .000599818s elapsed │ │ │ │ + -- .000623182s elapsed │ │ │ │ true │ │ │ │ - -- 1.59938s elapsed │ │ │ │ + -- 1.25115s elapsed │ │ │ │ │ │ │ │ o6 = {} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0)) │ │ │ │ - -- 1.37691s elapsed │ │ │ │ + -- 1.28289s elapsed │ │ │ │ │ │ │ │ o7 = {} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : LL7b=={} │ │ │ │ │ │ │ │ o8 = true │ │ │ │ @@ -92,23 +92,23 @@ │ │ │ │ o10 = (5, 8) │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ i11 : elapsedTime nonWeierstrassSemigroups(m,g,Verbose=>true) │ │ │ │ (13, 1) │ │ │ │ {5, 8, 11, 12} │ │ │ │ unfolding │ │ │ │ - -- .200467s elapsed │ │ │ │ + -- .203276s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .173649s elapsed │ │ │ │ + -- .124889s elapsed │ │ │ │ next gb │ │ │ │ - -- .000926207s elapsed │ │ │ │ + -- .000937243s elapsed │ │ │ │ true │ │ │ │ - -- .618832s elapsed │ │ │ │ + -- .583271s elapsed │ │ │ │ (5, 8, all semigroups are smoothable) │ │ │ │ - -- .647468s elapsed │ │ │ │ + -- .622865s elapsed │ │ │ │ │ │ │ │ o11 = {} │ │ │ │ │ │ │ │ o11 : List │ │ │ │ In the verbose mode we get timings of various computation steps and further │ │ │ │ information. The first line, (13,1), indicates that there 13 semigroups of │ │ │ │ multiplicity 5 and genus 8 of which only 1 is not flagged as smoothable by the │ │ │ │ @@ -120,22 +120,22 @@ │ │ │ │ o12 = {6, 8, 9, 11} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ i13 : genus L │ │ │ │ │ │ │ │ o13 = 8 │ │ │ │ i14 : isWeierstrassSemigroup(L,0.2,Verbose=>true) │ │ │ │ - -- .107024s elapsed │ │ │ │ + -- .0906025s elapsed │ │ │ │ 6 │ │ │ │ false │ │ │ │ 5 │ │ │ │ false │ │ │ │ 4 │ │ │ │ decompose │ │ │ │ - -- .304981s elapsed │ │ │ │ + -- .282616s elapsed │ │ │ │ number of components: 2 │ │ │ │ support c, codim c: {(1, 1), (16, 3)} │ │ │ │ {0, -1} │ │ │ │ │ │ │ │ o14 = true │ │ │ │ The first integer, 6, tells that in this attempt deformation parameters of │ │ │ │ degree >= 6 were used and no smooth fiber was found. Finally with all │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_heuristic__Smoothness.html │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime tally apply(10,i-> (
    │ │ │               c=minors(2,random(S^2,S^{3:-2}));
    │ │ │               c=sub(c,x_0=>1);
    │ │ │               R=kk[support c];c=sub(c,R);
    │ │ │               heuristicSmoothness c))
    │ │ │ - -- 3.77995s elapsed
    │ │ │ + -- 3.27696s elapsed
    │ │ │  
    │ │ │  o4 = Tally{false => 6}
    │ │ │             true => 4
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ -- setting random seed to │ │ │ │ 1644814534404491274313411285186041988099567563905780374824086062516559438 │ │ │ │ i4 : elapsedTime tally apply(10,i-> ( │ │ │ │ c=minors(2,random(S^2,S^{3:-2})); │ │ │ │ c=sub(c,x_0=>1); │ │ │ │ R=kk[support c];c=sub(c,R); │ │ │ │ heuristicSmoothness c)) │ │ │ │ - -- 3.77995s elapsed │ │ │ │ + -- 3.27696s elapsed │ │ │ │ │ │ │ │ o4 = Tally{false => 6} │ │ │ │ true => 4 │ │ │ │ │ │ │ │ o4 : Tally │ │ │ │ ********** WWaayyss ttoo uussee hheeuurriissttiiccSSmmooootthhnneessss:: ********** │ │ │ │ * heuristicSmoothness(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Smoothable__Semigroup.html │ │ │ @@ -95,23 +95,23 @@ │ │ │ │ │ │ o2 = 8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime isSmoothableSemigroup(L,0.30,0)
    │ │ │ - -- 1.10208s elapsed
    │ │ │ + -- .831378s elapsed
    │ │ │  
    │ │ │  o3 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime isSmoothableSemigroup(L,0.14,0)
    │ │ │ - -- 3.98405s elapsed
    │ │ │ + -- 3.52928s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,19 +29,19 @@ │ │ │ │ o1 = {6, 8, 9, 11} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : genus L │ │ │ │ │ │ │ │ o2 = 8 │ │ │ │ i3 : elapsedTime isSmoothableSemigroup(L,0.30,0) │ │ │ │ - -- 1.10208s elapsed │ │ │ │ + -- .831378s elapsed │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : elapsedTime isSmoothableSemigroup(L,0.14,0) │ │ │ │ - -- 3.98405s elapsed │ │ │ │ + -- 3.52928s elapsed │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_e_U_n_f_o_l_d_i_n_g -- Makes the universal homogeneous unfolding of an ideal │ │ │ │ with positive degree parameters │ │ │ │ * _f_l_a_t_t_e_n_i_n_g_R_e_l_a_t_i_o_n_s -- Compute the flattening relations of an unfolding │ │ │ │ * _g_e_t_F_l_a_t_F_a_m_i_l_y -- Compute the flat family depending on a subset of │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Weierstrass__Semigroup.html │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ │ │ o2 = 8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime isWeierstrassSemigroup(L,0.15)
    │ │ │ - -- 4.09713s elapsed
    │ │ │ + -- 3.27591s elapsed
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o1 = {6, 8, 9, 11} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : genus L │ │ │ │ │ │ │ │ o2 = 8 │ │ │ │ i3 : elapsedTime isWeierstrassSemigroup(L,0.15) │ │ │ │ - -- 4.09713s elapsed │ │ │ │ + -- 3.27591s elapsed │ │ │ │ │ │ │ │ o3 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_e_U_n_f_o_l_d_i_n_g -- Makes the universal homogeneous unfolding of an ideal │ │ │ │ with positive degree parameters │ │ │ │ * _f_l_a_t_t_e_n_i_n_g_R_e_l_a_t_i_o_n_s -- Compute the flattening relations of an unfolding │ │ │ │ * _g_e_t_F_l_a_t_F_a_m_i_l_y -- Compute the flat family depending on a subset of │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_non__Weierstrass__Semigroups.html │ │ │ @@ -79,15 +79,15 @@ │ │ │

    We test which semigroups of multiplicity m and genus g are smoothable. If no smoothing was found then L is a candidate for a non Weierstrass semigroup. In this search certain semigroups L in LLdifficult, where the computation is particular heavy are excluded.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -101,62 +101,62 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : elapsedTime nonWeierstrassSemigroups(6,7)
    │ │ │  (6, 7,  all semigroups are smoothable)
    │ │ │ - -- 1.62513s elapsed
    │ │ │ + -- 1.2476s elapsed
    │ │ │  
    │ │ │  o1 = {}
    │ │ │  
    │ │ │  o1 : List
    │ │ │
    │ │ │
    i3 : elapsedTime nonWeierstrassSemigroups(6,8,LLdifficult,Verbose=>true)
    │ │ │  (17, 5)
    │ │ │  {6, 7, 8, 17}
    │ │ │  unfolding
    │ │ │ - -- .396426s elapsed
    │ │ │ + -- .354838s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .149345s elapsed
    │ │ │ + -- .133532s elapsed
    │ │ │  next gb
    │ │ │ - -- .00186426s elapsed
    │ │ │ + -- .00191771s elapsed
    │ │ │  true
    │ │ │ - -- .934436s elapsed
    │ │ │ + -- .829345s elapsed
    │ │ │  {6, 7, 9, 17}
    │ │ │  unfolding
    │ │ │ - -- .34282s elapsed
    │ │ │ + -- .367164s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .263338s elapsed
    │ │ │ + -- .153578s elapsed
    │ │ │  next gb
    │ │ │ - -- .00267103s elapsed
    │ │ │ + -- .0027564s elapsed
    │ │ │  decompose
    │ │ │ - -- .122971s elapsed
    │ │ │ + -- .165868s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(2, 2), (5, 2)}
    │ │ │  {0, -1}
    │ │ │ - -- 2.82135s elapsed
    │ │ │ + -- 2.50767s elapsed
    │ │ │  {6, 8, 9, 10}
    │ │ │  unfolding
    │ │ │ - -- .173434s elapsed
    │ │ │ + -- .117037s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .133545s elapsed
    │ │ │ + -- .100479s elapsed
    │ │ │  next gb
    │ │ │ - -- .000440471s elapsed
    │ │ │ + -- .00044969s elapsed
    │ │ │  true
    │ │ │ - -- .746963s elapsed
    │ │ │ + -- .62373s elapsed
    │ │ │  {6, 8, 10, 11, 13}
    │ │ │  unfolding
    │ │ │ - -- .532889s elapsed
    │ │ │ + -- .486108s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .194284s elapsed
    │ │ │ + -- .194707s elapsed
    │ │ │  next gb
    │ │ │ - -- .00451218s elapsed
    │ │ │ + -- .00599842s elapsed
    │ │ │  decompose
    │ │ │ - -- 1.02026s elapsed
    │ │ │ + -- .8188s elapsed
    │ │ │  number of components: 1
    │ │ │  support c, codim c: {(5, 1)}
    │ │ │  {-1}
    │ │ │ - -- 2.95467s elapsed
    │ │ │ - -- 7.45755s elapsed
    │ │ │ + -- 2.40061s elapsed
    │ │ │ + -- 6.3615s elapsed
    │ │ │  0
    │ │ │  
    │ │ │  {}
    │ │ │ - -- .000003637s elapsed
    │ │ │ - -- 7.49256s elapsed
    │ │ │ + -- .000004791s elapsed
    │ │ │ + -- 6.42039s elapsed
    │ │ │  
    │ │ │  o3 = {{6, 8, 9, 11}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,76 +22,76 @@ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ We test which semigroups of multiplicity m and genus g are smoothable. If no │ │ │ │ smoothing was found then L is a candidate for a non Weierstrass semigroup. In │ │ │ │ this search certain semigroups L in LLdifficult, where the computation is │ │ │ │ particular heavy are excluded. │ │ │ │ i1 : elapsedTime nonWeierstrassSemigroups(6,7) │ │ │ │ (6, 7, all semigroups are smoothable) │ │ │ │ - -- 1.62513s elapsed │ │ │ │ + -- 1.2476s elapsed │ │ │ │ │ │ │ │ o1 = {} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : LLdifficult={{6, 8, 9, 11}} │ │ │ │ │ │ │ │ o2 = {{6, 8, 9, 11}} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : elapsedTime nonWeierstrassSemigroups(6,8,LLdifficult,Verbose=>true) │ │ │ │ (17, 5) │ │ │ │ {6, 7, 8, 17} │ │ │ │ unfolding │ │ │ │ - -- .396426s elapsed │ │ │ │ + -- .354838s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .149345s elapsed │ │ │ │ + -- .133532s elapsed │ │ │ │ next gb │ │ │ │ - -- .00186426s elapsed │ │ │ │ + -- .00191771s elapsed │ │ │ │ true │ │ │ │ - -- .934436s elapsed │ │ │ │ + -- .829345s elapsed │ │ │ │ {6, 7, 9, 17} │ │ │ │ unfolding │ │ │ │ - -- .34282s elapsed │ │ │ │ + -- .367164s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .263338s elapsed │ │ │ │ + -- .153578s elapsed │ │ │ │ next gb │ │ │ │ - -- .00267103s elapsed │ │ │ │ + -- .0027564s elapsed │ │ │ │ decompose │ │ │ │ - -- .122971s elapsed │ │ │ │ + -- .165868s elapsed │ │ │ │ number of components: 2 │ │ │ │ support c, codim c: {(2, 2), (5, 2)} │ │ │ │ {0, -1} │ │ │ │ - -- 2.82135s elapsed │ │ │ │ + -- 2.50767s elapsed │ │ │ │ {6, 8, 9, 10} │ │ │ │ unfolding │ │ │ │ - -- .173434s elapsed │ │ │ │ + -- .117037s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .133545s elapsed │ │ │ │ + -- .100479s elapsed │ │ │ │ next gb │ │ │ │ - -- .000440471s elapsed │ │ │ │ + -- .00044969s elapsed │ │ │ │ true │ │ │ │ - -- .746963s elapsed │ │ │ │ + -- .62373s elapsed │ │ │ │ {6, 8, 10, 11, 13} │ │ │ │ unfolding │ │ │ │ - -- .532889s elapsed │ │ │ │ + -- .486108s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .194284s elapsed │ │ │ │ + -- .194707s elapsed │ │ │ │ next gb │ │ │ │ - -- .00451218s elapsed │ │ │ │ + -- .00599842s elapsed │ │ │ │ decompose │ │ │ │ - -- 1.02026s elapsed │ │ │ │ + -- .8188s elapsed │ │ │ │ number of components: 1 │ │ │ │ support c, codim c: {(5, 1)} │ │ │ │ {-1} │ │ │ │ - -- 2.95467s elapsed │ │ │ │ - -- 7.45755s elapsed │ │ │ │ + -- 2.40061s elapsed │ │ │ │ + -- 6.3615s elapsed │ │ │ │ 0 │ │ │ │ │ │ │ │ {} │ │ │ │ - -- .000003637s elapsed │ │ │ │ - -- 7.49256s elapsed │ │ │ │ + -- .000004791s elapsed │ │ │ │ + -- 6.42039s elapsed │ │ │ │ │ │ │ │ o3 = {{6, 8, 9, 11}} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ In the verbose mode we get timings of various computation steps and further │ │ │ │ information. The first line, (17,5), indicates that there 17 semigroups of │ │ │ │ multiplicity 6 and genus 8 of which only 5 is not flagged as smoothable by the │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map.out │ │ │ @@ -8,15 +8,15 @@ │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ │ │ i5 : C = oiRes({b}, 2) │ │ │ │ │ │ o5 = 0: (e0, {3}, {-2}) │ │ │ 1: (e1, {5, 5}, {-3, -4}) │ │ │ - 2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-5, -5, -5, -2, -4, -4, -3, -3, -4}) │ │ │ + 2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-2, -5, -4, -3, -5, -4, -5, -3, -4}) │ │ │ │ │ │ o5 : OIResolution │ │ │ │ │ │ i6 : phi = C.dd_1 │ │ │ │ │ │ o6 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map_sp__Vector__In__Width.out │ │ │ @@ -8,15 +8,15 @@ │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ │ │ i5 : C = oiRes({b}, 2) │ │ │ │ │ │ o5 = 0: (e0, {3}, {-2}) │ │ │ 1: (e1, {5, 5}, {-4, -3}) │ │ │ - 2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -4, -5, -4, -5, -5, -3, -2}) │ │ │ + 2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -5, -4, -3, -2, -4, -5, -5}) │ │ │ │ │ │ o5 : OIResolution │ │ │ │ │ │ i6 : phi = C.dd_1 │ │ │ │ │ │ o6 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1) │ │ │ - -- used 0.0808093s (cpu); 0.080808s (thread); 0s (gc) │ │ │ + -- used 0.103978s (cpu); 0.103978s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4, 4}, {-4, -4}) │ │ │ │ │ │ o5 : OIResolution │ │ │ │ │ │ i6 : C.dd_0 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution_sp_us_sp__Z__Z.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.177563s (cpu); 0.116485s (thread); 0s (gc) │ │ │ + -- used 0.259392s (cpu); 0.135628s (thread); 0s (gc) │ │ │ │ │ │ i6 : C_0 │ │ │ │ │ │ o6 = Basis symbol: e0 │ │ │ Basis element widths: {2} │ │ │ Degree shifts: {-2} │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Top__Nonminimal.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ - -- used 0.469171s (cpu); 0.295248s (thread); 0s (gc) │ │ │ + -- used 0.544765s (cpu); 0.318538s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4}, {-4}) │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ o5 : OIResolution │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe__Full.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.217854s (cpu); 0.121538s (thread); 0s (gc) │ │ │ + -- used 0.130406s (cpu); 0.130212s (thread); 0s (gc) │ │ │ │ │ │ i6 : describeFull C │ │ │ │ │ │ o6 = 0: Module: Basis symbol: e0 │ │ │ Basis element widths: {2} │ │ │ Degree shifts: {-2} │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__Free__O__I__Module__Map_rp.out │ │ │ @@ -10,18 +10,21 @@ │ │ │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ │ │ i7 : describe phi │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ - Basis element images: {x x e0 - x x e0 │ │ │ - 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ +o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ + Basis element images: {-x e0 + x e0 + │ │ │ + 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 │ │ │ ------------------------------------------------------------------------ │ │ │ - - x x e0 + x x e0 , -x e0 │ │ │ - 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ + x e0 - x e0 , x x e0 - │ │ │ + 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 │ │ │ ------------------------------------------------------------------------ │ │ │ - + x e0 + x e0 - x e0 } │ │ │ - 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ + x x e0 - x x e0 + x x e0 │ │ │ + 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, │ │ │ + ------------------------------------------------------------------------ │ │ │ + } │ │ │ + 5},1 │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__O__I__Resolution_rp.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.0817194s (cpu); 0.0817214s (thread); 0s (gc) │ │ │ + -- used 0.110703s (cpu); 0.110702s (thread); 0s (gc) │ │ │ │ │ │ i6 : describe C │ │ │ │ │ │ o6 = 0: Module: Basis symbol: e0 │ │ │ Basis element widths: {2} │ │ │ Degree shifts: {-2} │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Schreyer__Map.out │ │ │ @@ -17,21 +17,21 @@ │ │ │ 2,3 2,1 1,2 3,{1},2 │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : G' = oiSyz(G, d) │ │ │ │ │ │ o6 = {x d - x d + 1d , x d │ │ │ - 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 1,2 4,{1, 3, 4},2 │ │ │ + 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 2,4 4,{1, 2, 3},2 │ │ │ ------------------------------------------------------------------------ │ │ │ - - x d - x d , x d - │ │ │ - 1,1 4,{2, 3, 4},2 1,3 4,{1, 2, 4},2 2,4 4,{1, 2, 3},2 │ │ │ + - x d , x d - x d - │ │ │ + 2,3 4,{1, 2, 4},2 1,2 4,{1, 3, 4},2 1,1 4,{2, 3, 4},2 │ │ │ ------------------------------------------------------------------------ │ │ │ x d } │ │ │ - 2,3 4,{1, 2, 4},2 │ │ │ + 1,3 4,{1, 2, 4},2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : H = getFreeOIModule G'#0 │ │ │ │ │ │ o7 = Basis symbol: d │ │ │ Basis element widths: {2, 3} │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_image_lp__Free__O__I__Module__Map_rp.out │ │ │ @@ -10,19 +10,19 @@ │ │ │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ │ │ i7 : image phi │ │ │ │ │ │ -o7 = {-x e0 + x e0 + x e0 - │ │ │ - 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 │ │ │ +o7 = {x x e0 - x x e0 - x x e0 │ │ │ + 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, │ │ │ ------------------------------------------------------------------------ │ │ │ - x e0 , x x e0 - x x e0 - │ │ │ - 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ + + x x e0 , -x e0 + x e0 │ │ │ + 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ ------------------------------------------------------------------------ │ │ │ - x x e0 + x x e0 } │ │ │ - 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 │ │ │ + + x e0 - x e0 } │ │ │ + 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Complex.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 2, TopNonminimal => true) │ │ │ - -- used 0.307575s (cpu); 0.249063s (thread); 0s (gc) │ │ │ + -- used 0.391865s (cpu); 0.293105s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4}, {-4}) │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ o5 : OIResolution │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__O__I__G__B.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ │ │ i10 : isOIGB {b1, b2} │ │ │ │ │ │ o10 = false │ │ │ │ │ │ i11 : time B = oiGB {b1, b2} │ │ │ - -- used 0.0245101s (cpu); 0.0245105s (thread); 0s (gc) │ │ │ + -- used 0.0298393s (cpu); 0.0298408s (thread); 0s (gc) │ │ │ │ │ │ o11 = {x e + x e , x x e + x x e , │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ ----------------------------------------------------------------------- │ │ │ x x x e - x x x e } │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_minimize__O__I__G__B.out │ │ │ @@ -11,15 +11,15 @@ │ │ │ i5 : installGeneratorsInWidth(F, 3); │ │ │ │ │ │ i6 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2); │ │ │ │ │ │ i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ │ │ i10 : time B = oiGB {b1, b2} │ │ │ - -- used 0.0271838s (cpu); 0.0271842s (thread); 0s (gc) │ │ │ + -- used 0.0349422s (cpu); 0.034944s (thread); 0s (gc) │ │ │ │ │ │ o10 = {x e + x e , x x e + x x e , │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ ----------------------------------------------------------------------- │ │ │ x x x e - x x x e } │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ @@ -41,17 +41,18 @@ │ │ │ - x x e } │ │ │ 3},3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ o13 : List │ │ │ │ │ │ i14 : minimizeOIGB C -- an element gets removed │ │ │ │ │ │ - 2 │ │ │ -o14 = {x e + x e , x x x e - x x e │ │ │ - 1,1 1,{1},1 2,1 1,{1},2 2,3 2,2 1,1 3,{2, 3},3 2,1 1,2 3,{1, │ │ │ + │ │ │ +o14 = {x x e + x x e , x x x e - │ │ │ + 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 2,3 2,2 1,1 3,{2, 3},3 │ │ │ ----------------------------------------------------------------------- │ │ │ - , x x e + x x e } │ │ │ - 3},3 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ + 2 │ │ │ + x x e , x e + x e } │ │ │ + 2,1 1,2 3,{1, 3},3 1,1 1,{1},1 2,1 1,{1},2 │ │ │ │ │ │ o14 : List │ │ │ │ │ │ i15 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Free__O__I__Module__Map_rp.out │ │ │ @@ -10,10 +10,10 @@ │ │ │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ │ │ i7 : net phi │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ +o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__O__I__Resolution_rp.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.22637s (cpu); 0.115683s (thread); 0s (gc) │ │ │ + -- used 0.263109s (cpu); 0.130888s (thread); 0s (gc) │ │ │ │ │ │ i6 : net C │ │ │ │ │ │ o6 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4, 4}, {-4, -4}) │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__G__B.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i4 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i5 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2); │ │ │ │ │ │ i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ │ │ i9 : time oiGB {b1, b2} │ │ │ - -- used 0.0274721s (cpu); 0.0274727s (thread); 0s (gc) │ │ │ + -- used 0.0320687s (cpu); 0.0320682s (thread); 0s (gc) │ │ │ │ │ │ o9 = {x e + x e , x x e + x x e , │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ ------------------------------------------------------------------------ │ │ │ x x x e - x x x e } │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Res.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ - -- used 0.470899s (cpu); 0.28403s (thread); 0s (gc) │ │ │ + -- used 0.554556s (cpu); 0.321977s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4}, {-4}) │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ o5 : OIResolution │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Syz.out │ │ │ @@ -17,18 +17,18 @@ │ │ │ 2,3 2,1 1,2 3,{1},2 │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : oiSyz(G, d) │ │ │ │ │ │ o6 = {x d - x d + 1d , x d │ │ │ - 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 1,2 4,{1, 3, 4},2 │ │ │ + 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 2,4 4,{1, 2, 3},2 │ │ │ ------------------------------------------------------------------------ │ │ │ - - x d - x d , x d - │ │ │ - 1,1 4,{2, 3, 4},2 1,3 4,{1, 2, 4},2 2,4 4,{1, 2, 3},2 │ │ │ + - x d , x d - x d - │ │ │ + 2,3 4,{1, 2, 4},2 1,2 4,{1, 3, 4},2 1,1 4,{2, 3, 4},2 │ │ │ ------------------------------------------------------------------------ │ │ │ x d } │ │ │ - 2,3 4,{1, 2, 4},2 │ │ │ + 1,3 4,{1, 2, 4},2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_reduce__O__I__G__B.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i4 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i5 : use F_1; b1 = x_(2,1)*e_(1,{1},2)+x_(1,1)*e_(1,{1},2); │ │ │ │ │ │ i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(1,2)*e_(2,{2},2); │ │ │ │ │ │ i9 : time B = oiGB({b1, b2}, Strategy => FastNonminimal) │ │ │ - -- used 0.143893s (cpu); 0.112508s (thread); 0s (gc) │ │ │ + -- used 0.145459s (cpu); 0.145457s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o9 = {x e + x e , x x e + x x e , │ │ │ 2,1 1,{1},2 1,1 1,{1},2 1,2 1,1 2,{2},1 2,2 1,2 2,{2},2 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 │ │ │ x x e - x x e } │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map.html │ │ │ @@ -79,15 +79,15 @@ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : C = oiRes({b}, 2)
    │ │ │  
    │ │ │  o5 = 0: (e0, {3}, {-2})
    │ │ │       1: (e1, {5, 5}, {-3, -4})
    │ │ │ -     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-5, -5, -5, -2, -4, -4, -3, -3, -4})
    │ │ │ +     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-2, -5, -4, -3, -5, -4, -5, -3, -4})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : phi = C.dd_1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,15 +17,15 @@
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 3);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2);
    │ │ │ │  i5 : C = oiRes({b}, 2)
    │ │ │ │  
    │ │ │ │  o5 = 0: (e0, {3}, {-2})
    │ │ │ │       1: (e1, {5, 5}, {-3, -4})
    │ │ │ │ -     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-5, -5, -5, -2, -4, -4, -3, -3, -4})
    │ │ │ │ +     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-2, -5, -4, -3, -5, -4, -5, -3, -4})
    │ │ │ │  
    │ │ │ │  o5 : OIResolution
    │ │ │ │  i6 : phi = C.dd_1
    │ │ │ │  
    │ │ │ │  o6 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2})
    │ │ │ │  
    │ │ │ │  o6 : FreeOIModuleMap
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map_sp__Vector__In__Width.html
    │ │ │ @@ -95,15 +95,15 @@
    │ │ │            
    │ │ │            
    │ │ │              
    │ │ │                
    i5 : C = oiRes({b}, 2)
    │ │ │  
    │ │ │  o5 = 0: (e0, {3}, {-2})
    │ │ │       1: (e1, {5, 5}, {-4, -3})
    │ │ │ -     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -4, -5, -4, -5, -5, -3, -2})
    │ │ │ +     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -5, -4, -3, -2, -4, -5, -5})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : phi = C.dd_1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,15 +19,15 @@
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 3);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2);
    │ │ │ │  i5 : C = oiRes({b}, 2)
    │ │ │ │  
    │ │ │ │  o5 = 0: (e0, {3}, {-2})
    │ │ │ │       1: (e1, {5, 5}, {-4, -3})
    │ │ │ │ -     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -4, -5, -4, -5, -5, -3, -2})
    │ │ │ │ +     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -5, -4, -3, -2, -4, -5, -5})
    │ │ │ │  
    │ │ │ │  o5 : OIResolution
    │ │ │ │  i6 : phi = C.dd_1
    │ │ │ │  
    │ │ │ │  o6 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2})
    │ │ │ │  
    │ │ │ │  o6 : FreeOIModuleMap
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution.html
    │ │ │ @@ -74,15 +74,15 @@
    │ │ │              
    │ │ │                
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1)
    │ │ │ - -- used 0.0808093s (cpu); 0.080808s (thread); 0s (gc)
    │ │ │ + -- used 0.103978s (cpu); 0.103978s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4, 4}, {-4, -4})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ complex, use _i_s_C_o_m_p_l_e_x. To get the $n$th differential in an OI-resolution C, │ │ │ │ use C.dd_n. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time C = oiRes({b}, 1) │ │ │ │ - -- used 0.0808093s (cpu); 0.080808s (thread); 0s (gc) │ │ │ │ + -- used 0.103978s (cpu); 0.103978s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4, 4}, {-4, -4}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ i6 : C.dd_0 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution_sp_us_sp__Z__Z.html │ │ │ @@ -92,15 +92,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.177563s (cpu); 0.116485s (thread); 0s (gc)
    │ │ │ + -- used 0.259392s (cpu); 0.135628s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : C_0
    │ │ │  
    │ │ │  o6 = Basis symbol: e0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,15 +16,15 @@
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Returns the free OI-module of $C$ in homological degree $n$.
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │  i5 : time C = oiRes({b}, 1);
    │ │ │ │ - -- used 0.177563s (cpu); 0.116485s (thread); 0s (gc)
    │ │ │ │ + -- used 0.259392s (cpu); 0.135628s (thread); 0s (gc)
    │ │ │ │  i6 : C_0
    │ │ │ │  
    │ │ │ │  o6 = Basis symbol: e0
    │ │ │ │       Basis element widths: {2}
    │ │ │ │       Degree shifts: {-2}
    │ │ │ │       Polynomial OI-algebra: (2, x, QQ, RowUpColUp)
    │ │ │ │       Monomial order: Lex
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Top__Nonminimal.html
    │ │ │ @@ -74,15 +74,15 @@
    │ │ │              
    │ │ │                
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time oiRes({b}, 2, TopNonminimal => true)
    │ │ │ - -- used 0.469171s (cpu); 0.295248s (thread); 0s (gc)
    │ │ │ + -- used 0.544765s (cpu); 0.318538s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4}, {-4})
    │ │ │       2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ homological degree $n-1$ to be minimized. Therefore, use TopNonminimal => true │ │ │ │ for no minimization of the basis in degree $n-1$. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ │ - -- used 0.469171s (cpu); 0.295248s (thread); 0s (gc) │ │ │ │ + -- used 0.544765s (cpu); 0.318538s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4}, {-4}) │ │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ ********** FFuunnccttiioonnss wwiitthh ooppttiioonnaall aarrgguummeenntt nnaammeedd TTooppNNoonnmmiinniimmaall:: ********** │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe__Full.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.217854s (cpu); 0.121538s (thread); 0s (gc)
    │ │ │ + -- used 0.130406s (cpu); 0.130212s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : describeFull C
    │ │ │  
    │ │ │  o6 = 0: Module: Basis symbol: e0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -14,15 +14,15 @@
    │ │ │ │  Displays the free OI-modules and describes the differentials of an OI-
    │ │ │ │  resolution.
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │  i5 : time C = oiRes({b}, 1);
    │ │ │ │ - -- used 0.217854s (cpu); 0.121538s (thread); 0s (gc)
    │ │ │ │ + -- used 0.130406s (cpu); 0.130212s (thread); 0s (gc)
    │ │ │ │  i6 : describeFull C
    │ │ │ │  
    │ │ │ │  o6 = 0: Module: Basis symbol: e0
    │ │ │ │                  Basis element widths: {2}
    │ │ │ │                  Degree shifts: {-2}
    │ │ │ │                  Polynomial OI-algebra: (2, x, QQ, RowUpColUp)
    │ │ │ │                  Monomial order: Lex
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__Free__O__I__Module__Map_rp.html
    │ │ │ @@ -102,23 +102,26 @@
    │ │ │                
    i6 : phi = C.dd_1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : describe phi
    │ │ │  
    │ │ │ -o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2})
    │ │ │ -     Basis element images: {x   x   e0              - x   x   e0             
    │ │ │ -                             2,3 1,1  5,{2, 4, 5},1    2,4 1,1  5,{2, 3, 5},1
    │ │ │ +o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2})
    │ │ │ +     Basis element images: {-x   e0              + x   e0              +
    │ │ │ +                              2,2  5,{1, 3, 5},1    2,2  5,{1, 3, 4},1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     - x   x   e0              + x   x   e0             , -x   e0        
    │ │ │ -        2,3 1,2  5,{1, 4, 5},1    2,4 1,2  5,{1, 3, 5},1    2,2  5,{1, 3,
    │ │ │ +     x   e0              - x   e0             , x   x   e0              -
    │ │ │ +      2,3  5,{1, 2, 5},1    2,3  5,{1, 2, 4},1   2,3 1,1  5,{2, 4, 5},1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -          + x   e0              + x   e0              - x   e0             }
    │ │ │ -     5},1    2,2  5,{1, 3, 4},1    2,3  5,{1, 2, 5},1    2,3  5,{1, 2, 4},1
    │ │ │ + x x e0 - x x e0 + x x e0 │ │ │ + 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, │ │ │ + ------------------------------------------------------------------------ │ │ │ + } │ │ │ + 5},1
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -18,21 +18,24 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 3); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ i7 : describe phi │ │ │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ │ - Basis element images: {x x e0 - x x e0 │ │ │ │ - 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ │ +o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ │ + Basis element images: {-x e0 + x e0 + │ │ │ │ + 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - - x x e0 + x x e0 , -x e0 │ │ │ │ - 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ │ + x e0 - x e0 , x x e0 - │ │ │ │ + 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - + x e0 + x e0 - x e0 } │ │ │ │ - 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ │ + x x e0 - x x e0 + x x e0 │ │ │ │ + 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + } │ │ │ │ + 5},1 │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _d_e_s_c_r_i_b_e_(_F_r_e_e_O_I_M_o_d_u_l_e_M_a_p_) -- display a free OI-module map │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/OIGroebnerBases.m2:1979:0. │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__O__I__Resolution_rp.html │ │ │ @@ -91,15 +91,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.0817194s (cpu); 0.0817214s (thread); 0s (gc)
    │ │ │ + -- used 0.110703s (cpu); 0.110702s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : describe C
    │ │ │  
    │ │ │  o6 = 0: Module: Basis symbol: e0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -14,15 +14,15 @@
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Displays the free OI-modules and differentials of an OI-resolution.
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │  i5 : time C = oiRes({b}, 1);
    │ │ │ │ - -- used 0.0817194s (cpu); 0.0817214s (thread); 0s (gc)
    │ │ │ │ + -- used 0.110703s (cpu); 0.110702s (thread); 0s (gc)
    │ │ │ │  i6 : describe C
    │ │ │ │  
    │ │ │ │  o6 = 0: Module: Basis symbol: e0
    │ │ │ │                  Basis element widths: {2}
    │ │ │ │                  Degree shifts: {-2}
    │ │ │ │                  Polynomial OI-algebra: (2, x, QQ, RowUpColUp)
    │ │ │ │                  Monomial order: Lex
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Schreyer__Map.html
    │ │ │ @@ -105,21 +105,21 @@
    │ │ │              
    │ │ │            
    │ │ │            
    │ │ │              
    │ │ │                
    i6 : G' = oiSyz(G, d)
    │ │ │  
    │ │ │  o6 = {x   d           - x   d           + 1d             , x   d             
    │ │ │ -       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   1,2 4,{1, 3, 4},2
    │ │ │ +       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   2,4 4,{1, 2, 3},2
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     - x   d              - x   d             , x   d              -
    │ │ │ -        1,1 4,{2, 3, 4},2    1,3 4,{1, 2, 4},2   2,4 4,{1, 2, 3},2  
    │ │ │ +     - x   d             , x   d              - x   d              -
    │ │ │ +        2,3 4,{1, 2, 4},2   1,2 4,{1, 3, 4},2    1,1 4,{2, 3, 4},2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   d             }
    │ │ │ -      2,3 4,{1, 2, 4},2
    │ │ │ +      1,3 4,{1, 2, 4},2
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : H = getFreeOIModule G'#0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,21 +29,21 @@
    │ │ │ │       x   x   x   e       }
    │ │ │ │        2,3 2,1 1,2 3,{1},2
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : G' = oiSyz(G, d)
    │ │ │ │  
    │ │ │ │  o6 = {x   d           - x   d           + 1d             , x   d
    │ │ │ │ -       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   1,2 4,{1, 3, 4},2
    │ │ │ │ +       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   2,4 4,{1, 2, 3},2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     - x   d              - x   d             , x   d              -
    │ │ │ │ -        1,1 4,{2, 3, 4},2    1,3 4,{1, 2, 4},2   2,4 4,{1, 2, 3},2
    │ │ │ │ +     - x   d             , x   d              - x   d              -
    │ │ │ │ +        2,3 4,{1, 2, 4},2   1,2 4,{1, 3, 4},2    1,1 4,{2, 3, 4},2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       x   d             }
    │ │ │ │ -      2,3 4,{1, 2, 4},2
    │ │ │ │ +      1,3 4,{1, 2, 4},2
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  i7 : H = getFreeOIModule G'#0
    │ │ │ │  
    │ │ │ │  o7 = Basis symbol: d
    │ │ │ │       Basis element widths: {2, 3}
    │ │ │ │       Degree shifts: {-2, -3}
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_image_lp__Free__O__I__Module__Map_rp.html
    │ │ │ @@ -102,22 +102,22 @@
    │ │ │                
    i6 : phi = C.dd_1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : image phi
    │ │ │  
    │ │ │ -o7 = {-x   e0              + x   e0              + x   e0              -
    │ │ │ -        2,2  5,{1, 3, 5},1    2,2  5,{1, 3, 4},1    2,3  5,{1, 2, 5},1  
    │ │ │ +o7 = {x   x   e0              - x   x   e0              - x   x   e0        
    │ │ │ +       2,3 1,1  5,{2, 4, 5},1    2,4 1,1  5,{2, 3, 5},1    2,3 1,2  5,{1, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     x   e0             , x   x   e0              - x   x   e0              -
    │ │ │ -      2,3  5,{1, 2, 4},1   2,3 1,1  5,{2, 4, 5},1    2,4 1,1  5,{2, 3, 5},1  
    │ │ │ +          + x   x   e0             , -x   e0              + x   e0        
    │ │ │ +     5},1    2,4 1,2  5,{1, 3, 5},1    2,2  5,{1, 3, 5},1    2,2  5,{1, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     x   x   e0              + x   x   e0             }
    │ │ │ -      2,3 1,2  5,{1, 4, 5},1    2,4 1,2  5,{1, 3, 5},1
    │ │ │ +          + x   e0              - x   e0             }
    │ │ │ +     4},1    2,3  5,{1, 2, 5},1    2,3  5,{1, 2, 4},1
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,22 +18,22 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 3); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ i7 : image phi │ │ │ │ │ │ │ │ -o7 = {-x e0 + x e0 + x e0 - │ │ │ │ - 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 │ │ │ │ +o7 = {x x e0 - x x e0 - x x e0 │ │ │ │ + 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - x e0 , x x e0 - x x e0 - │ │ │ │ - 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ │ + + x x e0 , -x e0 + x e0 │ │ │ │ + 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - x x e0 + x x e0 } │ │ │ │ - 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 │ │ │ │ + + x e0 - x e0 } │ │ │ │ + 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _i_m_a_g_e_(_F_r_e_e_O_I_M_o_d_u_l_e_M_a_p_) -- get the basis element images of a free OI- │ │ │ │ module map │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Complex.html │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 2, TopNonminimal => true)
    │ │ │ - -- used 0.307575s (cpu); 0.249063s (thread); 0s (gc)
    │ │ │ + -- used 0.391865s (cpu); 0.293105s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4}, {-4})
    │ │ │       2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ option must be either true or false, depending on whether one wants debug │ │ │ │ information printed. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time C = oiRes({b}, 2, TopNonminimal => true) │ │ │ │ - -- used 0.307575s (cpu); 0.249063s (thread); 0s (gc) │ │ │ │ + -- used 0.391865s (cpu); 0.293105s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4}, {-4}) │ │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ i6 : isComplex C │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__O__I__G__B.html │ │ │ @@ -116,15 +116,15 @@ │ │ │ │ │ │ o10 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : time B = oiGB {b1, b2}
    │ │ │ - -- used 0.0245101s (cpu); 0.0245105s (thread); 0s (gc)
    │ │ │ + -- used 0.0298393s (cpu); 0.0298408s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │          1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x   x   x   e           - x   x   x   e          }
    │ │ │         2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -24,15 +24,15 @@
    │ │ │ │  i5 : installGeneratorsInWidth(F, 3);
    │ │ │ │  i6 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2);
    │ │ │ │  i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │  i10 : isOIGB {b1, b2}
    │ │ │ │  
    │ │ │ │  o10 = false
    │ │ │ │  i11 : time B = oiGB {b1, b2}
    │ │ │ │ - -- used 0.0245101s (cpu); 0.0245105s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0298393s (cpu); 0.0298408s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o11 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │ │          1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │        x   x   x   e           - x   x   x   e          }
    │ │ │ │         2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_minimize__O__I__G__B.html
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │              
    │ │ │                
    i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time B = oiGB {b1, b2}
    │ │ │ - -- used 0.0271838s (cpu); 0.0271842s (thread); 0s (gc)
    │ │ │ + -- used 0.0349422s (cpu); 0.034944s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │          1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x   x   x   e           - x   x   x   e          }
    │ │ │         2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ │  
    │ │ │ @@ -148,20 +148,21 @@
    │ │ │  o13 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : minimizeOIGB C -- an element gets removed
    │ │ │  
    │ │ │ -                                                                   2
    │ │ │ -o14 = {x   e        + x   e       , x   x   x   e           - x   x   e     
    │ │ │ -        1,1 1,{1},1    2,1 1,{1},2   2,3 2,2 1,1 3,{2, 3},3    2,1 1,2 3,{1,
    │ │ │ +                                                                        
    │ │ │ +o14 = {x   x   e        + x   x   e          , x   x   x   e           -
    │ │ │ +        1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3   2,3 2,2 1,1 3,{2, 3},3  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -          , x   x   e        + x   x   e          }
    │ │ │ -      3},3   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3
    │ │ │ +           2
    │ │ │ +      x   x   e          , x   e        + x   e       }
    │ │ │ +       2,1 1,2 3,{1, 3},3   1,1 1,{1},1    2,1 1,{1},2
    │ │ │  
    │ │ │  o14 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -21,15 +21,15 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 1); │ │ │ │ i4 : installGeneratorsInWidth(F, 2); │ │ │ │ i5 : installGeneratorsInWidth(F, 3); │ │ │ │ i6 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2); │ │ │ │ i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ i10 : time B = oiGB {b1, b2} │ │ │ │ - -- used 0.0271838s (cpu); 0.0271842s (thread); 0s (gc) │ │ │ │ + -- used 0.0349422s (cpu); 0.034944s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = {x e + x e , x x e + x x e , │ │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ x x x e - x x x e } │ │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ │ │ @@ -49,20 +49,21 @@ │ │ │ │ 2 │ │ │ │ - x x e } │ │ │ │ 3},3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ │ │ o13 : List │ │ │ │ i14 : minimizeOIGB C -- an element gets removed │ │ │ │ │ │ │ │ - 2 │ │ │ │ -o14 = {x e + x e , x x x e - x x e │ │ │ │ - 1,1 1,{1},1 2,1 1,{1},2 2,3 2,2 1,1 3,{2, 3},3 2,1 1,2 3,{1, │ │ │ │ + │ │ │ │ +o14 = {x x e + x x e , x x x e - │ │ │ │ + 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 2,3 2,2 1,1 3,{2, 3},3 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - , x x e + x x e } │ │ │ │ - 3},3 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ │ + 2 │ │ │ │ + x x e , x e + x e } │ │ │ │ + 2,1 1,2 3,{1, 3},3 1,1 1,{1},1 2,1 1,{1},2 │ │ │ │ │ │ │ │ o14 : List │ │ │ │ ********** WWaayyss ttoo uussee mmiinniimmiizzeeOOIIGGBB:: ********** │ │ │ │ * minimizeOIGB(List) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _m_i_n_i_m_i_z_e_O_I_G_B is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Free__O__I__Module__Map_rp.html │ │ │ @@ -102,15 +102,15 @@ │ │ │
    i6 : phi = C.dd_1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : net phi
    │ │ │  
    │ │ │ -o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2})
    │ │ │ +o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2})
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -18,13 +18,13 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 3); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ i7 : net phi │ │ │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ │ +o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _n_e_t_(_F_r_e_e_O_I_M_o_d_u_l_e_M_a_p_) -- display a free OI-module map source and target │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/OIGroebnerBases.m2:1931:0. │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__O__I__Resolution_rp.html │ │ │ @@ -91,15 +91,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.22637s (cpu); 0.115683s (thread); 0s (gc)
    │ │ │ + -- used 0.263109s (cpu); 0.130888s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : net C
    │ │ │  
    │ │ │  o6 = 0: (e0, {2}, {-2})
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │  Displays the basis element widths and degree shifts of the free OI-modules in
    │ │ │ │  an OI-resolution.
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │  i5 : time C = oiRes({b}, 1);
    │ │ │ │ - -- used 0.22637s (cpu); 0.115683s (thread); 0s (gc)
    │ │ │ │ + -- used 0.263109s (cpu); 0.130888s (thread); 0s (gc)
    │ │ │ │  i6 : net C
    │ │ │ │  
    │ │ │ │  o6 = 0: (e0, {2}, {-2})
    │ │ │ │       1: (e1, {4, 4}, {-4, -4})
    │ │ │ │  ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: **********
    │ │ │ │      * _n_e_t_(_O_I_R_e_s_o_l_u_t_i_o_n_) -- display an OI-resolution
    │ │ │ │  ===============================================================================
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__G__B.html
    │ │ │ @@ -111,15 +111,15 @@
    │ │ │              
    │ │ │                
    i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time oiGB {b1, b2}
    │ │ │ - -- used 0.0274721s (cpu); 0.0274727s (thread); 0s (gc)
    │ │ │ + -- used 0.0320687s (cpu); 0.0320682s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │         1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   x   x   e           - x   x   x   e          }
    │ │ │        2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,15 +28,15 @@
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 1);
    │ │ │ │  i4 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i5 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2);
    │ │ │ │  i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │  i9 : time oiGB {b1, b2}
    │ │ │ │ - -- used 0.0274721s (cpu); 0.0274727s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0320687s (cpu); 0.0320682s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │ │         1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       x   x   x   e           - x   x   x   e          }
    │ │ │ │        2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Res.html
    │ │ │ @@ -106,15 +106,15 @@
    │ │ │              
    │ │ │                
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time oiRes({b}, 2, TopNonminimal => true)
    │ │ │ - -- used 0.470899s (cpu); 0.28403s (thread); 0s (gc)
    │ │ │ + -- used 0.554556s (cpu); 0.321977s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4}, {-4})
    │ │ │       2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -33,15 +33,15 @@ │ │ │ │ Therefore, use TopNonminimal => true for no minimization of the basis in degree │ │ │ │ $n-1$. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ │ - -- used 0.470899s (cpu); 0.28403s (thread); 0s (gc) │ │ │ │ + -- used 0.554556s (cpu); 0.321977s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4}, {-4}) │ │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ ********** WWaayyss ttoo uussee ooiiRReess:: ********** │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Syz.html │ │ │ @@ -119,21 +119,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : oiSyz(G, d)
    │ │ │  
    │ │ │  o6 = {x   d           - x   d           + 1d             , x   d             
    │ │ │ -       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   1,2 4,{1, 3, 4},2
    │ │ │ +       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   2,4 4,{1, 2, 3},2
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     - x   d              - x   d             , x   d              -
    │ │ │ -        1,1 4,{2, 3, 4},2    1,3 4,{1, 2, 4},2   2,4 4,{1, 2, 3},2  
    │ │ │ +     - x   d             , x   d              - x   d              -
    │ │ │ +        2,3 4,{1, 2, 4},2   1,2 4,{1, 3, 4},2    1,1 4,{2, 3, 4},2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   d             }
    │ │ │ -      2,3 4,{1, 2, 4},2
    │ │ │ +      1,3 4,{1, 2, 4},2
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    References:

    │ │ │ ├── html2text {} │ │ │ │ @@ -48,21 +48,21 @@ │ │ │ │ x x x e } │ │ │ │ 2,3 2,1 1,2 3,{1},2 │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : oiSyz(G, d) │ │ │ │ │ │ │ │ o6 = {x d - x d + 1d , x d │ │ │ │ - 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 1,2 4,{1, 3, 4},2 │ │ │ │ + 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 2,4 4,{1, 2, 3},2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - - x d - x d , x d - │ │ │ │ - 1,1 4,{2, 3, 4},2 1,3 4,{1, 2, 4},2 2,4 4,{1, 2, 3},2 │ │ │ │ + - x d , x d - x d - │ │ │ │ + 2,3 4,{1, 2, 4},2 1,2 4,{1, 3, 4},2 1,1 4,{2, 3, 4},2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x d } │ │ │ │ - 2,3 4,{1, 2, 4},2 │ │ │ │ + 1,3 4,{1, 2, 4},2 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ RReeffeerreenncceess:: │ │ │ │ [1] M. Morrow and U. Nagel, Computing Gröbner Bases and Free Resolutions of │ │ │ │ OI-Modules, Preprint, arXiv:2303.06725, 2023. │ │ │ │ ********** WWaayyss ttoo uussee ooiiSSyyzz:: ********** │ │ │ │ * oiSyz(List,Symbol) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_reduce__O__I__G__B.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │
    i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(1,2)*e_(2,{2},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time B = oiGB({b1, b2}, Strategy => FastNonminimal)
    │ │ │ - -- used 0.143893s (cpu); 0.112508s (thread); 0s (gc)
    │ │ │ + -- used 0.145459s (cpu); 0.145457s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                         
    │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e       ,
    │ │ │         2,1 1,{1},2    1,1 1,{1},2   1,2 1,1 2,{2},1    2,2 1,2 2,{2},2 
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2                  2
    │ │ │       x   x   e        - x   x   e       }
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,15 +20,15 @@
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 1);
    │ │ │ │  i4 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i5 : use F_1; b1 = x_(2,1)*e_(1,{1},2)+x_(1,1)*e_(1,{1},2);
    │ │ │ │  i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(1,2)*e_(2,{2},2);
    │ │ │ │  i9 : time B = oiGB({b1, b2}, Strategy => FastNonminimal)
    │ │ │ │ - -- used 0.143893s (cpu); 0.112508s (thread); 0s (gc)
    │ │ │ │ + -- used 0.145459s (cpu); 0.145457s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e       ,
    │ │ │ │         2,1 1,{1},2    1,1 1,{1},2   1,2 1,1 2,{2},1    2,2 1,2 2,{2},2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        2                  2
    │ │ │ │       x   x   e        - x   x   e       }
    │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Fast__Nonminimal.out
    │ │ │ @@ -9,25 +9,25 @@
    │ │ │  i2 : S = ring I
    │ │ │  
    │ │ │  o2 = S
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │  
    │ │ │  i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 2.18598s elapsed
    │ │ │ + -- 2.53745s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ │  
    │ │ │  i4 : elapsedTime C1 = res ideal(I_*)
    │ │ │ - -- 1.44714s elapsed
    │ │ │ + -- 1.4776s elapsed
    │ │ │  
    │ │ │        1      35      140      385      819      1080      819      385      140      35      1
    │ │ │  o4 = S  <-- S   <-- S    <-- S    <-- S    <-- S     <-- S    <-- S    <-- S    <-- S   <-- S  <-- 0
    │ │ │                                                                                                      
    │ │ │       0      1       2        3        4        5         6        7        8        9       10     11
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_betti_lp..._cm__Minimize_eq_gt..._rp.out
    │ │ │ @@ -9,15 +9,15 @@
    │ │ │  i2 : S = ring I
    │ │ │  
    │ │ │  o2 = S
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │  
    │ │ │  i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 2.33951s elapsed
    │ │ │ + -- 2.51014s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_computing_spresolutions.out
    │ │ │ @@ -36,16 +36,16 @@
    │ │ │            << res M << endl << endl;
    │ │ │            break;
    │ │ │            ) else (
    │ │ │            << "-- computation interrupted" << endl;
    │ │ │            status M.cache.resolution;
    │ │ │            << "-- continuing the computation" << endl;
    │ │ │            ))
    │ │ │ - -- used 1.04017s (cpu); 0.888714s (thread); 0s (gc)
    │ │ │ - -- used 0.565405s (cpu); 0.491861s (thread); 0s (gc)
    │ │ │ + -- used 1.13357s (cpu); 0.984051s (thread); 0s (gc)
    │ │ │ + -- used 0.761452s (cpu); 0.669737s (thread); 0s (gc)
    │ │ │  -- computation started: 
    │ │ │  -- computation interrupted
    │ │ │  -- continuing the computation
    │ │ │  -- computation complete
    │ │ │   4      11      89      122      40
    │ │ │  R  <-- R   <-- R   <-- R    <-- R   <-- 0
    │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Fast__Nonminimal.html
    │ │ │ @@ -89,28 +89,28 @@
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 2.18598s elapsed
    │ │ │ + -- 2.53745s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime C1 = res ideal(I_*)
    │ │ │ - -- 1.44714s elapsed
    │ │ │ + -- 1.4776s elapsed
    │ │ │  
    │ │ │        1      35      140      385      819      1080      819      385      140      35      1
    │ │ │  o4 = S  <-- S   <-- S    <-- S    <-- S    <-- S     <-- S    <-- S    <-- S    <-- S   <-- S  <-- 0
    │ │ │                                                                                                      
    │ │ │       0      1       2        3        4        5         6        7        8        9       10     11
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,28 +29,28 @@ │ │ │ │ 0,5 1,5 2,5 3,5 4,5 0,6 1,6 2,6 3,6 4,6 5,6 │ │ │ │ i2 : S = ring I │ │ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ i3 : elapsedTime C = res(I, FastNonminimal => true) │ │ │ │ - -- 2.18598s elapsed │ │ │ │ + -- 2.53745s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o3 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ <-- S <-- S <-- 0 │ │ │ │ │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 │ │ │ │ 9 10 11 │ │ │ │ │ │ │ │ o3 : ChainComplex │ │ │ │ i4 : elapsedTime C1 = res ideal(I_*) │ │ │ │ - -- 1.44714s elapsed │ │ │ │ + -- 1.4776s elapsed │ │ │ │ │ │ │ │ 1 35 140 385 819 1080 819 385 140 │ │ │ │ 35 1 │ │ │ │ o4 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ <-- S <-- S <-- 0 │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/html/_betti_lp..._cm__Minimize_eq_gt..._rp.html │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ │ │ o2 : PolynomialRing
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 2.33951s elapsed
    │ │ │ + -- 2.51014s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ 0,5 1,5 2,5 3,5 4,5 0,6 1,6 2,6 3,6 4,6 5,6 │ │ │ │ i2 : S = ring I │ │ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ i3 : elapsedTime C = res(I, FastNonminimal => true) │ │ │ │ - -- 2.33951s elapsed │ │ │ │ + -- 2.51014s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o3 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ <-- S <-- S <-- 0 │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/html/_computing_spresolutions.html │ │ │ @@ -112,16 +112,16 @@ │ │ │ << res M << endl << endl; │ │ │ break; │ │ │ ) else ( │ │ │ << "-- computation interrupted" << endl; │ │ │ status M.cache.resolution; │ │ │ << "-- continuing the computation" << endl; │ │ │ )) │ │ │ - -- used 1.04017s (cpu); 0.888714s (thread); 0s (gc) │ │ │ - -- used 0.565405s (cpu); 0.491861s (thread); 0s (gc) │ │ │ + -- used 1.13357s (cpu); 0.984051s (thread); 0s (gc) │ │ │ + -- used 0.761452s (cpu); 0.669737s (thread); 0s (gc) │ │ │ -- computation started: │ │ │ -- computation interrupted │ │ │ -- continuing the computation │ │ │ -- computation complete │ │ │ 4 11 89 122 40 │ │ │ R <-- R <-- R <-- R <-- R <-- 0 │ │ │ ├── html2text {} │ │ │ │ @@ -50,16 +50,16 @@ │ │ │ │ << res M << endl << endl; │ │ │ │ break; │ │ │ │ ) else ( │ │ │ │ << "-- computation interrupted" << endl; │ │ │ │ status M.cache.resolution; │ │ │ │ << "-- continuing the computation" << endl; │ │ │ │ )) │ │ │ │ - -- used 1.04017s (cpu); 0.888714s (thread); 0s (gc) │ │ │ │ - -- used 0.565405s (cpu); 0.491861s (thread); 0s (gc) │ │ │ │ + -- used 1.13357s (cpu); 0.984051s (thread); 0s (gc) │ │ │ │ + -- used 0.761452s (cpu); 0.669737s (thread); 0s (gc) │ │ │ │ -- computation started: │ │ │ │ -- computation interrupted │ │ │ │ -- continuing the computation │ │ │ │ -- computation complete │ │ │ │ 4 11 89 122 40 │ │ │ │ R <-- R <-- R <-- R <-- R <-- 0 │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.out │ │ │ @@ -182,25 +182,25 @@ │ │ │ o15 = 4 │ │ │ │ │ │ i16 : for G in Gs list ( │ │ │ IG = oscQuadrics(G, R); │ │ │ elapsedTime comps := decompose IG; │ │ │ {comps/codim, comps/degree} │ │ │ ); │ │ │ - -- .297177s elapsed │ │ │ - -- .37676s elapsed │ │ │ - -- .596031s elapsed │ │ │ - -- .268268s elapsed │ │ │ - -- .292728s elapsed │ │ │ - -- .331552s elapsed │ │ │ - -- .579031s elapsed │ │ │ - -- .465787s elapsed │ │ │ - -- .494728s elapsed │ │ │ - -- .310933s elapsed │ │ │ - -- .17989s elapsed │ │ │ + -- .254166s elapsed │ │ │ + -- .288779s elapsed │ │ │ + -- .470164s elapsed │ │ │ + -- .264619s elapsed │ │ │ + -- .263615s elapsed │ │ │ + -- .312834s elapsed │ │ │ + -- .53248s elapsed │ │ │ + -- .445328s elapsed │ │ │ + -- .471456s elapsed │ │ │ + -- .309536s elapsed │ │ │ + -- .24289s elapsed │ │ │ │ │ │ i17 : netList oo │ │ │ │ │ │ +---------------+---------------+ │ │ │ o17 = |{3, 4, 4} |{2, 3, 5} | │ │ │ +---------------+---------------+ │ │ │ |{3, 4, 4} |{2, 3, 5} | │ │ │ @@ -242,75 +242,75 @@ │ │ │ o22 = 15 │ │ │ │ │ │ i23 : allcomps = for G in Gs list ( │ │ │ IG = oscQuadrics(G, R); │ │ │ elapsedTime comps := decompose IG; │ │ │ {comps/codim, comps/degree} │ │ │ ); │ │ │ - -- .476223s elapsed │ │ │ - -- .491179s elapsed │ │ │ - -- .899896s elapsed │ │ │ - -- 1.24686s elapsed │ │ │ - -- .681713s elapsed │ │ │ - -- .854075s elapsed │ │ │ - -- .972388s elapsed │ │ │ - -- 1.05083s elapsed │ │ │ - -- .827284s elapsed │ │ │ - -- .660979s elapsed │ │ │ - -- .342135s elapsed │ │ │ - -- .455566s elapsed │ │ │ - -- .514713s elapsed │ │ │ - -- .835284s elapsed │ │ │ - -- 1.08006s elapsed │ │ │ - -- 1.31144s elapsed │ │ │ - -- 1.02818s elapsed │ │ │ - -- .894288s elapsed │ │ │ - -- 1.29053s elapsed │ │ │ - -- 1.03534s elapsed │ │ │ - -- .731355s elapsed │ │ │ - -- .912171s elapsed │ │ │ - -- 1.40395s elapsed │ │ │ - -- 1.25725s elapsed │ │ │ - -- .532629s elapsed │ │ │ - -- .656184s elapsed │ │ │ - -- 1.26939s elapsed │ │ │ - -- .684363s elapsed │ │ │ - -- .643036s elapsed │ │ │ - -- .897991s elapsed │ │ │ - -- 1.03754s elapsed │ │ │ - -- .918405s elapsed │ │ │ - -- .635213s elapsed │ │ │ - -- 1.02454s elapsed │ │ │ - -- .803326s elapsed │ │ │ - -- 1.1079s elapsed │ │ │ - -- 1.0033s elapsed │ │ │ - -- 1.07175s elapsed │ │ │ - -- 1.36626s elapsed │ │ │ - -- .806481s elapsed │ │ │ - -- .632335s elapsed │ │ │ - -- 1.04315s elapsed │ │ │ - -- 1.52989s elapsed │ │ │ - -- 1.87148s elapsed │ │ │ - -- 1.37285s elapsed │ │ │ - -- 1.02596s elapsed │ │ │ - -- 1.43312s elapsed │ │ │ - -- 1.20975s elapsed │ │ │ - -- 1.03285s elapsed │ │ │ - -- 1.0795s elapsed │ │ │ - -- 1.13227s elapsed │ │ │ - -- .852037s elapsed │ │ │ - -- .700127s elapsed │ │ │ - -- .943143s elapsed │ │ │ - -- .960376s elapsed │ │ │ - -- 1.59259s elapsed │ │ │ - -- 1.31491s elapsed │ │ │ - -- 1.24035s elapsed │ │ │ - -- .704216s elapsed │ │ │ - -- .519728s elapsed │ │ │ - -- .42436s elapsed │ │ │ + -- .412427s elapsed │ │ │ + -- .428083s elapsed │ │ │ + -- .864947s elapsed │ │ │ + -- 1.08917s elapsed │ │ │ + -- .664851s elapsed │ │ │ + -- .839661s elapsed │ │ │ + -- .928299s elapsed │ │ │ + -- 1.0392s elapsed │ │ │ + -- .708022s elapsed │ │ │ + -- .664328s elapsed │ │ │ + -- .354859s elapsed │ │ │ + -- .404449s elapsed │ │ │ + -- .459421s elapsed │ │ │ + -- .623196s elapsed │ │ │ + -- .877787s elapsed │ │ │ + -- 1.2526s elapsed │ │ │ + -- .996944s elapsed │ │ │ + -- .897595s elapsed │ │ │ + -- 1.25924s elapsed │ │ │ + -- 1.00646s elapsed │ │ │ + -- .724105s elapsed │ │ │ + -- .916237s elapsed │ │ │ + -- 1.25468s elapsed │ │ │ + -- 1.23177s elapsed │ │ │ + -- .507805s elapsed │ │ │ + -- .637776s elapsed │ │ │ + -- 1.21952s elapsed │ │ │ + -- .683687s elapsed │ │ │ + -- .55926s elapsed │ │ │ + -- .811556s elapsed │ │ │ + -- .98435s elapsed │ │ │ + -- .767735s elapsed │ │ │ + -- .573501s elapsed │ │ │ + -- 1.05889s elapsed │ │ │ + -- .791128s elapsed │ │ │ + -- .99102s elapsed │ │ │ + -- .881994s elapsed │ │ │ + -- 1.16823s elapsed │ │ │ + -- 1.23201s elapsed │ │ │ + -- .742113s elapsed │ │ │ + -- .625336s elapsed │ │ │ + -- 1.07993s elapsed │ │ │ + -- 1.35863s elapsed │ │ │ + -- 1.69058s elapsed │ │ │ + -- 1.09566s elapsed │ │ │ + -- 1.09835s elapsed │ │ │ + -- 1.36522s elapsed │ │ │ + -- 1.14621s elapsed │ │ │ + -- .94009s elapsed │ │ │ + -- 1.06159s elapsed │ │ │ + -- 1.11767s elapsed │ │ │ + -- .793571s elapsed │ │ │ + -- .7723s elapsed │ │ │ + -- .96953s elapsed │ │ │ + -- .591809s elapsed │ │ │ + -- 1.06273s elapsed │ │ │ + -- 1.14128s elapsed │ │ │ + -- 1.33669s elapsed │ │ │ + -- .701983s elapsed │ │ │ + -- .454833s elapsed │ │ │ + -- .369305s elapsed │ │ │ │ │ │ i24 : netList ({{"codimensions", "degrees"}} | allcomps) │ │ │ │ │ │ +------------------------+------------------------+ │ │ │ o24 = |codimensions |degrees | │ │ │ +------------------------+------------------------+ │ │ │ |{3, 5, 5} |{2, 4, 6} | │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.out │ │ │ @@ -39,15 +39,15 @@ │ │ │ .98, .98, .101, -.98, -.298, .393, .201, .201, .201, -.995, -.201, │ │ │ ------------------------------------------------------------------------ │ │ │ .954}} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime stablesolsPent = showExoticSolutions Pent │ │ │ - -- .778s elapsed │ │ │ + -- .999s elapsed │ │ │ -- found extra exotic solutions for graph Graph{0 => {1, 4}} -- │ │ │ 1 => {0, 2} │ │ │ 2 => {1, 3} │ │ │ 3 => {2, 4} │ │ │ 4 => {0, 3} │ │ │ +----+-----+-----+----+-----+-----+-----+-----+ │ │ │ |.309|-.809|-.809|.309|.951 |.588 |-.588|-.951| │ │ │ @@ -60,15 +60,15 @@ │ │ │ +---+---+---+---+ │ │ │ |72 |144|216|288| │ │ │ +---+---+---+---+ │ │ │ |288|216|144|72 | │ │ │ +---+---+---+---+ │ │ │ |0 |0 |0 |0 | │ │ │ +---+---+---+---+ │ │ │ - -- .84s elapsed │ │ │ + -- 1.06s elapsed │ │ │ │ │ │ o6 = {{.309, -.809, -.809, .309, .951, .588, -.588, -.951}, {.309, -.809, │ │ │ ------------------------------------------------------------------------ │ │ │ -.809, .309, -.951, -.588, .588, .951}, {1, 1, 1, 1, 0, 0, 0, 0}} │ │ │ │ │ │ o6 : List │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/___S__C__T_spgraphs_spwith_spexotic_spsolutions.out │ │ │ @@ -44,19 +44,19 @@ │ │ │ │ │ │ i5 : printingPrecision = 3 │ │ │ │ │ │ o5 = 3 │ │ │ │ │ │ i6 : for G in Gs list showExoticSolutions G; │ │ │ warning: some solutions are not regular: {37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 50, 52, 53, 54, 55, 59, 60, 64, 65, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 81, 83, 85, 86, 87, 88, 89} │ │ │ - -- .707s elapsed │ │ │ + -- .759s elapsed │ │ │ warning: some solutions are not regular: {43, 44, 47, 49, 50, 51, 52, 53, 55, 57, 59, 61, 62, 63, 64, 65, 66, 68, 72, 74, 76, 77, 78, 79, 80, 84, 85, 87, 88, 89, 90, 91, 97} │ │ │ - -- .738s elapsed │ │ │ - -- .909s elapsed │ │ │ - -- .956s elapsed │ │ │ + -- .726s elapsed │ │ │ + -- .949s elapsed │ │ │ + -- 1.16s elapsed │ │ │ -- found extra exotic solutions for graph Graph{0 => {2, 3}} -- │ │ │ 1 => {3, 4} │ │ │ 2 => {0, 4} │ │ │ 3 => {0, 1} │ │ │ 4 => {2, 1} │ │ │ +-----+----+----+-----+-----+-----+-----+-----+ │ │ │ |-.809|.309|.309|-.809|.588 |-.951|.951 |-.588| │ │ │ @@ -69,20 +69,20 @@ │ │ │ +---+---+---+---+ │ │ │ |144|288|72 |216| │ │ │ +---+---+---+---+ │ │ │ |0 |0 |0 |0 | │ │ │ +---+---+---+---+ │ │ │ |216|72 |288|144| │ │ │ +---+---+---+---+ │ │ │ - -- 1.19s elapsed │ │ │ - -- 1.4s elapsed │ │ │ + -- 1.44s elapsed │ │ │ + -- 1.42s elapsed │ │ │ warning: some solutions are not regular: {27, 31, 32, 34, 37, 38, 44, 46, 47, 53, 54, 56, 57, 59, 60} │ │ │ - -- 1.6s elapsed │ │ │ + -- 1.72s elapsed │ │ │ warning: some solutions are not regular: {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 34} │ │ │ - -- 1.46s elapsed │ │ │ - -- 1.4s elapsed │ │ │ + -- 1.42s elapsed │ │ │ + -- 1.55s elapsed │ │ │ warning: some solutions are not regular: {26, 29, 30, 32, 33} │ │ │ - -- 1.56s elapsed │ │ │ + -- 1.76s elapsed │ │ │ warning: some solutions are not regular: {38, 40, 42, 53, 54, 55, 62, 63, 67, 72, 77, 78} │ │ │ - -- 1.33s elapsed │ │ │ + -- 1.54s elapsed │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/_get__Linearly__Stable__Solutions.out │ │ │ @@ -1,15 +1,15 @@ │ │ │ -- -*- M2-comint -*- hash: 1729328129346969841 │ │ │ │ │ │ i1 : G = graph({0,1,2,3}, {{0,1},{1,2},{2,3},{0,3}}); │ │ │ │ │ │ i2 : getLinearlyStableSolutions(G) │ │ │ -- warning: experimental computation over inexact field begun │ │ │ -- results not reliable (one warning given per session) │ │ │ - -- .377588s elapsed │ │ │ + -- .248693s elapsed │ │ │ warning: some solutions are not regular: {4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21} │ │ │ │ │ │ o2 = {{1, 1, 1, 0, 0, 0}} │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/_show__Exotic__Solutions.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ 4 => {0, 3} │ │ │ │ │ │ o1 : Graph │ │ │ │ │ │ i2 : showExoticSolutions G │ │ │ -- warning: experimental computation over inexact field begun │ │ │ -- results not reliable (one warning given per session) │ │ │ - -- .916628s elapsed │ │ │ + -- 1.1226s elapsed │ │ │ -- found extra exotic solutions for graph Graph{0 => {1, 4}} -- │ │ │ 1 => {0, 2} │ │ │ 2 => {1, 3} │ │ │ 3 => {2, 4} │ │ │ 4 => {0, 3} │ │ │ +-------+--------+--------+-------+--------+--------+--------+--------+ │ │ │ |.309017|-.809017|-.809017|.309017|.951057 |.587785 |-.587785|-.951057| │ │ │ @@ -50,14 +50,14 @@ │ │ │ 2 => {1, 3, 4} │ │ │ 3 => {2, 4} │ │ │ 4 => {0, 2, 3} │ │ │ │ │ │ o3 : Graph │ │ │ │ │ │ i4 : showExoticSolutions G │ │ │ - -- 1.20627s elapsed │ │ │ + -- 1.33883s elapsed │ │ │ │ │ │ o4 = {{1, 1, 1, 1, 0, 0, 0, 0}} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.html │ │ │ @@ -295,25 +295,25 @@ │ │ │ │ │ │ │ │ │
    i16 : for G in Gs list (
    │ │ │            IG = oscQuadrics(G, R);
    │ │ │            elapsedTime comps := decompose IG;
    │ │ │            {comps/codim, comps/degree}
    │ │ │            );
    │ │ │ - -- .297177s elapsed
    │ │ │ - -- .37676s elapsed
    │ │ │ - -- .596031s elapsed
    │ │ │ - -- .268268s elapsed
    │ │ │ - -- .292728s elapsed
    │ │ │ - -- .331552s elapsed
    │ │ │ - -- .579031s elapsed
    │ │ │ - -- .465787s elapsed
    │ │ │ - -- .494728s elapsed
    │ │ │ - -- .310933s elapsed
    │ │ │ - -- .17989s elapsed
    │ │ │ + -- .254166s elapsed │ │ │ + -- .288779s elapsed │ │ │ + -- .470164s elapsed │ │ │ + -- .264619s elapsed │ │ │ + -- .263615s elapsed │ │ │ + -- .312834s elapsed │ │ │ + -- .53248s elapsed │ │ │ + -- .445328s elapsed │ │ │ + -- .471456s elapsed │ │ │ + -- .309536s elapsed │ │ │ + -- .24289s elapsed
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : netList oo
    │ │ │  
    │ │ │        +---------------+---------------+
    │ │ │ @@ -380,75 +380,75 @@
    │ │ │            
    │ │ │              
    │ │ │                
    i23 : allcomps = for G in Gs list (
    │ │ │            IG = oscQuadrics(G, R);
    │ │ │            elapsedTime comps := decompose IG;
    │ │ │            {comps/codim, comps/degree}
    │ │ │            );
    │ │ │ - -- .476223s elapsed
    │ │ │ - -- .491179s elapsed
    │ │ │ - -- .899896s elapsed
    │ │ │ - -- 1.24686s elapsed
    │ │ │ - -- .681713s elapsed
    │ │ │ - -- .854075s elapsed
    │ │ │ - -- .972388s elapsed
    │ │ │ - -- 1.05083s elapsed
    │ │ │ - -- .827284s elapsed
    │ │ │ - -- .660979s elapsed
    │ │ │ - -- .342135s elapsed
    │ │ │ - -- .455566s elapsed
    │ │ │ - -- .514713s elapsed
    │ │ │ - -- .835284s elapsed
    │ │ │ - -- 1.08006s elapsed
    │ │ │ - -- 1.31144s elapsed
    │ │ │ - -- 1.02818s elapsed
    │ │ │ - -- .894288s elapsed
    │ │ │ - -- 1.29053s elapsed
    │ │ │ - -- 1.03534s elapsed
    │ │ │ - -- .731355s elapsed
    │ │ │ - -- .912171s elapsed
    │ │ │ - -- 1.40395s elapsed
    │ │ │ - -- 1.25725s elapsed
    │ │ │ - -- .532629s elapsed
    │ │ │ - -- .656184s elapsed
    │ │ │ - -- 1.26939s elapsed
    │ │ │ - -- .684363s elapsed
    │ │ │ - -- .643036s elapsed
    │ │ │ - -- .897991s elapsed
    │ │ │ - -- 1.03754s elapsed
    │ │ │ - -- .918405s elapsed
    │ │ │ - -- .635213s elapsed
    │ │ │ - -- 1.02454s elapsed
    │ │ │ - -- .803326s elapsed
    │ │ │ - -- 1.1079s elapsed
    │ │ │ - -- 1.0033s elapsed
    │ │ │ - -- 1.07175s elapsed
    │ │ │ - -- 1.36626s elapsed
    │ │ │ - -- .806481s elapsed
    │ │ │ - -- .632335s elapsed
    │ │ │ - -- 1.04315s elapsed
    │ │ │ - -- 1.52989s elapsed
    │ │ │ - -- 1.87148s elapsed
    │ │ │ - -- 1.37285s elapsed
    │ │ │ - -- 1.02596s elapsed
    │ │ │ - -- 1.43312s elapsed
    │ │ │ - -- 1.20975s elapsed
    │ │ │ - -- 1.03285s elapsed
    │ │ │ - -- 1.0795s elapsed
    │ │ │ - -- 1.13227s elapsed
    │ │ │ - -- .852037s elapsed
    │ │ │ - -- .700127s elapsed
    │ │ │ - -- .943143s elapsed
    │ │ │ - -- .960376s elapsed
    │ │ │ - -- 1.59259s elapsed
    │ │ │ - -- 1.31491s elapsed
    │ │ │ - -- 1.24035s elapsed
    │ │ │ - -- .704216s elapsed
    │ │ │ - -- .519728s elapsed
    │ │ │ - -- .42436s elapsed
    │ │ │ + -- .412427s elapsed │ │ │ + -- .428083s elapsed │ │ │ + -- .864947s elapsed │ │ │ + -- 1.08917s elapsed │ │ │ + -- .664851s elapsed │ │ │ + -- .839661s elapsed │ │ │ + -- .928299s elapsed │ │ │ + -- 1.0392s elapsed │ │ │ + -- .708022s elapsed │ │ │ + -- .664328s elapsed │ │ │ + -- .354859s elapsed │ │ │ + -- .404449s elapsed │ │ │ + -- .459421s elapsed │ │ │ + -- .623196s elapsed │ │ │ + -- .877787s elapsed │ │ │ + -- 1.2526s elapsed │ │ │ + -- .996944s elapsed │ │ │ + -- .897595s elapsed │ │ │ + -- 1.25924s elapsed │ │ │ + -- 1.00646s elapsed │ │ │ + -- .724105s elapsed │ │ │ + -- .916237s elapsed │ │ │ + -- 1.25468s elapsed │ │ │ + -- 1.23177s elapsed │ │ │ + -- .507805s elapsed │ │ │ + -- .637776s elapsed │ │ │ + -- 1.21952s elapsed │ │ │ + -- .683687s elapsed │ │ │ + -- .55926s elapsed │ │ │ + -- .811556s elapsed │ │ │ + -- .98435s elapsed │ │ │ + -- .767735s elapsed │ │ │ + -- .573501s elapsed │ │ │ + -- 1.05889s elapsed │ │ │ + -- .791128s elapsed │ │ │ + -- .99102s elapsed │ │ │ + -- .881994s elapsed │ │ │ + -- 1.16823s elapsed │ │ │ + -- 1.23201s elapsed │ │ │ + -- .742113s elapsed │ │ │ + -- .625336s elapsed │ │ │ + -- 1.07993s elapsed │ │ │ + -- 1.35863s elapsed │ │ │ + -- 1.69058s elapsed │ │ │ + -- 1.09566s elapsed │ │ │ + -- 1.09835s elapsed │ │ │ + -- 1.36522s elapsed │ │ │ + -- 1.14621s elapsed │ │ │ + -- .94009s elapsed │ │ │ + -- 1.06159s elapsed │ │ │ + -- 1.11767s elapsed │ │ │ + -- .793571s elapsed │ │ │ + -- .7723s elapsed │ │ │ + -- .96953s elapsed │ │ │ + -- .591809s elapsed │ │ │ + -- 1.06273s elapsed │ │ │ + -- 1.14128s elapsed │ │ │ + -- 1.33669s elapsed │ │ │ + -- .701983s elapsed │ │ │ + -- .454833s elapsed │ │ │ + -- .369305s elapsed
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i24 : netList ({{"codimensions", "degrees"}} | allcomps)
    │ │ │  
    │ │ │        +------------------------+------------------------+
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -180,25 +180,25 @@
    │ │ │ │  
    │ │ │ │  o15 = 4
    │ │ │ │  i16 : for G in Gs list (
    │ │ │ │            IG = oscQuadrics(G, R);
    │ │ │ │            elapsedTime comps := decompose IG;
    │ │ │ │            {comps/codim, comps/degree}
    │ │ │ │            );
    │ │ │ │ - -- .297177s elapsed
    │ │ │ │ - -- .37676s elapsed
    │ │ │ │ - -- .596031s elapsed
    │ │ │ │ - -- .268268s elapsed
    │ │ │ │ - -- .292728s elapsed
    │ │ │ │ - -- .331552s elapsed
    │ │ │ │ - -- .579031s elapsed
    │ │ │ │ - -- .465787s elapsed
    │ │ │ │ - -- .494728s elapsed
    │ │ │ │ - -- .310933s elapsed
    │ │ │ │ - -- .17989s elapsed
    │ │ │ │ + -- .254166s elapsed
    │ │ │ │ + -- .288779s elapsed
    │ │ │ │ + -- .470164s elapsed
    │ │ │ │ + -- .264619s elapsed
    │ │ │ │ + -- .263615s elapsed
    │ │ │ │ + -- .312834s elapsed
    │ │ │ │ + -- .53248s elapsed
    │ │ │ │ + -- .445328s elapsed
    │ │ │ │ + -- .471456s elapsed
    │ │ │ │ + -- .309536s elapsed
    │ │ │ │ + -- .24289s elapsed
    │ │ │ │  i17 : netList oo
    │ │ │ │  
    │ │ │ │        +---------------+---------------+
    │ │ │ │  o17 = |{3, 4, 4}      |{2, 3, 5}      |
    │ │ │ │        +---------------+---------------+
    │ │ │ │        |{3, 4, 4}      |{2, 3, 5}      |
    │ │ │ │        +---------------+---------------+
    │ │ │ │ @@ -233,75 +233,75 @@
    │ │ │ │  
    │ │ │ │  o22 = 15
    │ │ │ │  i23 : allcomps = for G in Gs list (
    │ │ │ │            IG = oscQuadrics(G, R);
    │ │ │ │            elapsedTime comps := decompose IG;
    │ │ │ │            {comps/codim, comps/degree}
    │ │ │ │            );
    │ │ │ │ - -- .476223s elapsed
    │ │ │ │ - -- .491179s elapsed
    │ │ │ │ - -- .899896s elapsed
    │ │ │ │ - -- 1.24686s elapsed
    │ │ │ │ - -- .681713s elapsed
    │ │ │ │ - -- .854075s elapsed
    │ │ │ │ - -- .972388s elapsed
    │ │ │ │ - -- 1.05083s elapsed
    │ │ │ │ - -- .827284s elapsed
    │ │ │ │ - -- .660979s elapsed
    │ │ │ │ - -- .342135s elapsed
    │ │ │ │ - -- .455566s elapsed
    │ │ │ │ - -- .514713s elapsed
    │ │ │ │ - -- .835284s elapsed
    │ │ │ │ - -- 1.08006s elapsed
    │ │ │ │ - -- 1.31144s elapsed
    │ │ │ │ - -- 1.02818s elapsed
    │ │ │ │ - -- .894288s elapsed
    │ │ │ │ - -- 1.29053s elapsed
    │ │ │ │ - -- 1.03534s elapsed
    │ │ │ │ - -- .731355s elapsed
    │ │ │ │ - -- .912171s elapsed
    │ │ │ │ - -- 1.40395s elapsed
    │ │ │ │ - -- 1.25725s elapsed
    │ │ │ │ - -- .532629s elapsed
    │ │ │ │ - -- .656184s elapsed
    │ │ │ │ - -- 1.26939s elapsed
    │ │ │ │ - -- .684363s elapsed
    │ │ │ │ - -- .643036s elapsed
    │ │ │ │ - -- .897991s elapsed
    │ │ │ │ - -- 1.03754s elapsed
    │ │ │ │ - -- .918405s elapsed
    │ │ │ │ - -- .635213s elapsed
    │ │ │ │ - -- 1.02454s elapsed
    │ │ │ │ - -- .803326s elapsed
    │ │ │ │ - -- 1.1079s elapsed
    │ │ │ │ - -- 1.0033s elapsed
    │ │ │ │ - -- 1.07175s elapsed
    │ │ │ │ - -- 1.36626s elapsed
    │ │ │ │ - -- .806481s elapsed
    │ │ │ │ - -- .632335s elapsed
    │ │ │ │ - -- 1.04315s elapsed
    │ │ │ │ - -- 1.52989s elapsed
    │ │ │ │ - -- 1.87148s elapsed
    │ │ │ │ - -- 1.37285s elapsed
    │ │ │ │ - -- 1.02596s elapsed
    │ │ │ │ - -- 1.43312s elapsed
    │ │ │ │ - -- 1.20975s elapsed
    │ │ │ │ - -- 1.03285s elapsed
    │ │ │ │ - -- 1.0795s elapsed
    │ │ │ │ - -- 1.13227s elapsed
    │ │ │ │ - -- .852037s elapsed
    │ │ │ │ - -- .700127s elapsed
    │ │ │ │ - -- .943143s elapsed
    │ │ │ │ - -- .960376s elapsed
    │ │ │ │ - -- 1.59259s elapsed
    │ │ │ │ - -- 1.31491s elapsed
    │ │ │ │ - -- 1.24035s elapsed
    │ │ │ │ - -- .704216s elapsed
    │ │ │ │ - -- .519728s elapsed
    │ │ │ │ - -- .42436s elapsed
    │ │ │ │ + -- .412427s elapsed
    │ │ │ │ + -- .428083s elapsed
    │ │ │ │ + -- .864947s elapsed
    │ │ │ │ + -- 1.08917s elapsed
    │ │ │ │ + -- .664851s elapsed
    │ │ │ │ + -- .839661s elapsed
    │ │ │ │ + -- .928299s elapsed
    │ │ │ │ + -- 1.0392s elapsed
    │ │ │ │ + -- .708022s elapsed
    │ │ │ │ + -- .664328s elapsed
    │ │ │ │ + -- .354859s elapsed
    │ │ │ │ + -- .404449s elapsed
    │ │ │ │ + -- .459421s elapsed
    │ │ │ │ + -- .623196s elapsed
    │ │ │ │ + -- .877787s elapsed
    │ │ │ │ + -- 1.2526s elapsed
    │ │ │ │ + -- .996944s elapsed
    │ │ │ │ + -- .897595s elapsed
    │ │ │ │ + -- 1.25924s elapsed
    │ │ │ │ + -- 1.00646s elapsed
    │ │ │ │ + -- .724105s elapsed
    │ │ │ │ + -- .916237s elapsed
    │ │ │ │ + -- 1.25468s elapsed
    │ │ │ │ + -- 1.23177s elapsed
    │ │ │ │ + -- .507805s elapsed
    │ │ │ │ + -- .637776s elapsed
    │ │ │ │ + -- 1.21952s elapsed
    │ │ │ │ + -- .683687s elapsed
    │ │ │ │ + -- .55926s elapsed
    │ │ │ │ + -- .811556s elapsed
    │ │ │ │ + -- .98435s elapsed
    │ │ │ │ + -- .767735s elapsed
    │ │ │ │ + -- .573501s elapsed
    │ │ │ │ + -- 1.05889s elapsed
    │ │ │ │ + -- .791128s elapsed
    │ │ │ │ + -- .99102s elapsed
    │ │ │ │ + -- .881994s elapsed
    │ │ │ │ + -- 1.16823s elapsed
    │ │ │ │ + -- 1.23201s elapsed
    │ │ │ │ + -- .742113s elapsed
    │ │ │ │ + -- .625336s elapsed
    │ │ │ │ + -- 1.07993s elapsed
    │ │ │ │ + -- 1.35863s elapsed
    │ │ │ │ + -- 1.69058s elapsed
    │ │ │ │ + -- 1.09566s elapsed
    │ │ │ │ + -- 1.09835s elapsed
    │ │ │ │ + -- 1.36522s elapsed
    │ │ │ │ + -- 1.14621s elapsed
    │ │ │ │ + -- .94009s elapsed
    │ │ │ │ + -- 1.06159s elapsed
    │ │ │ │ + -- 1.11767s elapsed
    │ │ │ │ + -- .793571s elapsed
    │ │ │ │ + -- .7723s elapsed
    │ │ │ │ + -- .96953s elapsed
    │ │ │ │ + -- .591809s elapsed
    │ │ │ │ + -- 1.06273s elapsed
    │ │ │ │ + -- 1.14128s elapsed
    │ │ │ │ + -- 1.33669s elapsed
    │ │ │ │ + -- .701983s elapsed
    │ │ │ │ + -- .454833s elapsed
    │ │ │ │ + -- .369305s elapsed
    │ │ │ │  i24 : netList ({{"codimensions", "degrees"}} | allcomps)
    │ │ │ │  
    │ │ │ │        +------------------------+------------------------+
    │ │ │ │  o24 = |codimensions            |degrees                 |
    │ │ │ │        +------------------------+------------------------+
    │ │ │ │        |{3, 5, 5}               |{2, 4, 6}               |
    │ │ │ │        +------------------------+------------------------+
    │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.html
    │ │ │ @@ -110,15 +110,15 @@
    │ │ │  
    │ │ │  o5 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime stablesolsPent = showExoticSolutions Pent
    │ │ │ - -- .778s elapsed
    │ │ │ + -- .999s elapsed
    │ │ │  -- found extra exotic solutions for graph Graph{0 => {1, 4}} --
    │ │ │                                                  1 => {0, 2}
    │ │ │                                                  2 => {1, 3}
    │ │ │                                                  3 => {2, 4}
    │ │ │                                                  4 => {0, 3}
    │ │ │  +----+-----+-----+----+-----+-----+-----+-----+
    │ │ │  |.309|-.809|-.809|.309|.951 |.588 |-.588|-.951|
    │ │ │ @@ -131,15 +131,15 @@
    │ │ │  +---+---+---+---+
    │ │ │  |72 |144|216|288|
    │ │ │  +---+---+---+---+
    │ │ │  |288|216|144|72 |
    │ │ │  +---+---+---+---+
    │ │ │  |0  |0  |0  |0  |
    │ │ │  +---+---+---+---+
    │ │ │ - -- .84s elapsed
    │ │ │ + -- 1.06s elapsed
    │ │ │  
    │ │ │  o6 = {{.309, -.809, -.809, .309, .951, .588, -.588, -.951}, {.309, -.809,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       -.809, .309, -.951, -.588, .588, .951}, {1, 1, 1, 1, 0, 0, 0, 0}}
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -43,15 +43,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ .98, .98, .101, -.98, -.298, .393, .201, .201, .201, -.995, -.201, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ .954}} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : elapsedTime stablesolsPent = showExoticSolutions Pent │ │ │ │ - -- .778s elapsed │ │ │ │ + -- .999s elapsed │ │ │ │ -- found extra exotic solutions for graph Graph{0 => {1, 4}} -- │ │ │ │ 1 => {0, 2} │ │ │ │ 2 => {1, 3} │ │ │ │ 3 => {2, 4} │ │ │ │ 4 => {0, 3} │ │ │ │ +----+-----+-----+----+-----+-----+-----+-----+ │ │ │ │ |.309|-.809|-.809|.309|.951 |.588 |-.588|-.951| │ │ │ │ @@ -64,15 +64,15 @@ │ │ │ │ +---+---+---+---+ │ │ │ │ |72 |144|216|288| │ │ │ │ +---+---+---+---+ │ │ │ │ |288|216|144|72 | │ │ │ │ +---+---+---+---+ │ │ │ │ |0 |0 |0 |0 | │ │ │ │ +---+---+---+---+ │ │ │ │ - -- .84s elapsed │ │ │ │ + -- 1.06s elapsed │ │ │ │ │ │ │ │ o6 = {{.309, -.809, -.809, .309, .951, .588, -.588, -.951}, {.309, -.809, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ -.809, .309, -.951, -.588, .588, .951}, {1, 1, 1, 1, 0, 0, 0, 0}} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ Computing the (linearly) stable solutions for K5C5 takes a minute or two: │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/___S__C__T_spgraphs_spwith_spexotic_spsolutions.html │ │ │ @@ -115,19 +115,19 @@ │ │ │ o5 = 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : for G in Gs list showExoticSolutions G;
    │ │ │  warning: some solutions are not regular: {37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 50, 52, 53, 54, 55, 59, 60, 64, 65, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 81, 83, 85, 86, 87, 88, 89}
    │ │ │ - -- .707s elapsed
    │ │ │ + -- .759s elapsed
    │ │ │  warning: some solutions are not regular: {43, 44, 47, 49, 50, 51, 52, 53, 55, 57, 59, 61, 62, 63, 64, 65, 66, 68, 72, 74, 76, 77, 78, 79, 80, 84, 85, 87, 88, 89, 90, 91, 97}
    │ │ │ - -- .738s elapsed
    │ │ │ - -- .909s elapsed
    │ │ │ - -- .956s elapsed
    │ │ │ + -- .726s elapsed
    │ │ │ + -- .949s elapsed
    │ │ │ + -- 1.16s elapsed
    │ │ │  -- found extra exotic solutions for graph Graph{0 => {2, 3}} --
    │ │ │                                                  1 => {3, 4}
    │ │ │                                                  2 => {0, 4}
    │ │ │                                                  3 => {0, 1}
    │ │ │                                                  4 => {2, 1}
    │ │ │  +-----+----+----+-----+-----+-----+-----+-----+
    │ │ │  |-.809|.309|.309|-.809|.588 |-.951|.951 |-.588|
    │ │ │ @@ -140,25 +140,25 @@
    │ │ │  +---+---+---+---+
    │ │ │  |144|288|72 |216|
    │ │ │  +---+---+---+---+
    │ │ │  |0  |0  |0  |0  |
    │ │ │  +---+---+---+---+
    │ │ │  |216|72 |288|144|
    │ │ │  +---+---+---+---+
    │ │ │ - -- 1.19s elapsed
    │ │ │ - -- 1.4s elapsed
    │ │ │ + -- 1.44s elapsed
    │ │ │ + -- 1.42s elapsed
    │ │ │  warning: some solutions are not regular: {27, 31, 32, 34, 37, 38, 44, 46, 47, 53, 54, 56, 57, 59, 60}
    │ │ │ - -- 1.6s elapsed
    │ │ │ + -- 1.72s elapsed
    │ │ │  warning: some solutions are not regular: {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 34}
    │ │ │ - -- 1.46s elapsed
    │ │ │ - -- 1.4s elapsed
    │ │ │ + -- 1.42s elapsed
    │ │ │ + -- 1.55s elapsed
    │ │ │  warning: some solutions are not regular: {26, 29, 30, 32, 33}
    │ │ │ - -- 1.56s elapsed
    │ │ │ + -- 1.76s elapsed
    │ │ │  warning: some solutions are not regular: {38, 40, 42, 53, 54, 55, 62, 63, 67, 72, 77, 78}
    │ │ │ - -- 1.33s elapsed
    │ │ │ + -- 1.54s elapsed │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -48,21 +48,21 @@ │ │ │ │ i5 : printingPrecision = 3 │ │ │ │ │ │ │ │ o5 = 3 │ │ │ │ i6 : for G in Gs list showExoticSolutions G; │ │ │ │ warning: some solutions are not regular: {37, 38, 40, 41, 42, 43, 44, 45, 46, │ │ │ │ 48, 50, 52, 53, 54, 55, 59, 60, 64, 65, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, │ │ │ │ 79, 81, 83, 85, 86, 87, 88, 89} │ │ │ │ - -- .707s elapsed │ │ │ │ + -- .759s elapsed │ │ │ │ warning: some solutions are not regular: {43, 44, 47, 49, 50, 51, 52, 53, 55, │ │ │ │ 57, 59, 61, 62, 63, 64, 65, 66, 68, 72, 74, 76, 77, 78, 79, 80, 84, 85, 87, 88, │ │ │ │ 89, 90, 91, 97} │ │ │ │ - -- .738s elapsed │ │ │ │ - -- .909s elapsed │ │ │ │ - -- .956s elapsed │ │ │ │ + -- .726s elapsed │ │ │ │ + -- .949s elapsed │ │ │ │ + -- 1.16s elapsed │ │ │ │ -- found extra exotic solutions for graph Graph{0 => {2, 3}} -- │ │ │ │ 1 => {3, 4} │ │ │ │ 2 => {0, 4} │ │ │ │ 3 => {0, 1} │ │ │ │ 4 => {2, 1} │ │ │ │ +-----+----+----+-----+-----+-----+-----+-----+ │ │ │ │ |-.809|.309|.309|-.809|.588 |-.951|.951 |-.588| │ │ │ │ @@ -75,24 +75,24 @@ │ │ │ │ +---+---+---+---+ │ │ │ │ |144|288|72 |216| │ │ │ │ +---+---+---+---+ │ │ │ │ |0 |0 |0 |0 | │ │ │ │ +---+---+---+---+ │ │ │ │ |216|72 |288|144| │ │ │ │ +---+---+---+---+ │ │ │ │ - -- 1.19s elapsed │ │ │ │ - -- 1.4s elapsed │ │ │ │ + -- 1.44s elapsed │ │ │ │ + -- 1.42s elapsed │ │ │ │ warning: some solutions are not regular: {27, 31, 32, 34, 37, 38, 44, 46, 47, │ │ │ │ 53, 54, 56, 57, 59, 60} │ │ │ │ - -- 1.6s elapsed │ │ │ │ + -- 1.72s elapsed │ │ │ │ warning: some solutions are not regular: {16, 17, 18, 19, 20, 21, 22, 23, 24, │ │ │ │ 25, 26, 27, 28, 29, 31, 34} │ │ │ │ - -- 1.46s elapsed │ │ │ │ - -- 1.4s elapsed │ │ │ │ + -- 1.42s elapsed │ │ │ │ + -- 1.55s elapsed │ │ │ │ warning: some solutions are not regular: {26, 29, 30, 32, 33} │ │ │ │ - -- 1.56s elapsed │ │ │ │ + -- 1.76s elapsed │ │ │ │ warning: some solutions are not regular: {38, 40, 42, 53, 54, 55, 62, 63, 67, │ │ │ │ 72, 77, 78} │ │ │ │ - -- 1.33s elapsed │ │ │ │ + -- 1.54s elapsed │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Oscillators/Documentation.m2:812:0. │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/_get__Linearly__Stable__Solutions.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : getLinearlyStableSolutions(G)
    │ │ │  -- warning: experimental computation over inexact field begun
    │ │ │  --          results not reliable (one warning given per session)
    │ │ │ - -- .377588s elapsed
    │ │ │ + -- .248693s elapsed
    │ │ │  warning: some solutions are not regular: {4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
    │ │ │  
    │ │ │  o2 = {{1, 1, 1, 0, 0, 0}}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ of each oscillator is given by the Kuramoto model. The linear stability of a │ │ │ │ solution is determined by the eigenvalues of the Jacobian matrix of the system │ │ │ │ evaluated at the solution. │ │ │ │ i1 : G = graph({0,1,2,3}, {{0,1},{1,2},{2,3},{0,3}}); │ │ │ │ i2 : getLinearlyStableSolutions(G) │ │ │ │ -- warning: experimental computation over inexact field begun │ │ │ │ -- results not reliable (one warning given per session) │ │ │ │ - -- .377588s elapsed │ │ │ │ + -- .248693s elapsed │ │ │ │ warning: some solutions are not regular: {4, 5, 7, 9, 10, 12, 13, 14, 15, 16, │ │ │ │ 17, 18, 19, 20, 21} │ │ │ │ │ │ │ │ o2 = {{1, 1, 1, 0, 0, 0}} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/_show__Exotic__Solutions.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : showExoticSolutions G
    │ │ │  -- warning: experimental computation over inexact field begun
    │ │ │  --          results not reliable (one warning given per session)
    │ │ │ - -- .916628s elapsed
    │ │ │ + -- 1.1226s elapsed
    │ │ │  -- found extra exotic solutions for graph Graph{0 => {1, 4}} --
    │ │ │                                                  1 => {0, 2}
    │ │ │                                                  2 => {1, 3}
    │ │ │                                                  3 => {2, 4}
    │ │ │                                                  4 => {0, 3}
    │ │ │  +-------+--------+--------+-------+--------+--------+--------+--------+
    │ │ │  |.309017|-.809017|-.809017|.309017|.951057 |.587785 |-.587785|-.951057|
    │ │ │ @@ -147,15 +147,15 @@
    │ │ │  
    │ │ │  o3 : Graph
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : showExoticSolutions G
    │ │ │ - -- 1.20627s elapsed
    │ │ │ + -- 1.33883s elapsed
    │ │ │  
    │ │ │  o4 = {{1, 1, 1, 1, 0, 0, 0, 0}}
    │ │ │  
    │ │ │  o4 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -36,15 +36,15 @@ │ │ │ │ 3 => {2, 4} │ │ │ │ 4 => {0, 3} │ │ │ │ │ │ │ │ o1 : Graph │ │ │ │ i2 : showExoticSolutions G │ │ │ │ -- warning: experimental computation over inexact field begun │ │ │ │ -- results not reliable (one warning given per session) │ │ │ │ - -- .916628s elapsed │ │ │ │ + -- 1.1226s elapsed │ │ │ │ -- found extra exotic solutions for graph Graph{0 => {1, 4}} -- │ │ │ │ 1 => {0, 2} │ │ │ │ 2 => {1, 3} │ │ │ │ 3 => {2, 4} │ │ │ │ 4 => {0, 3} │ │ │ │ +-------+--------+--------+-------+--------+--------+--------+--------+ │ │ │ │ |.309017|-.809017|-.809017|.309017|.951057 |.587785 |-.587785|-.951057| │ │ │ │ @@ -78,15 +78,15 @@ │ │ │ │ 1 => {0, 2} │ │ │ │ 2 => {1, 3, 4} │ │ │ │ 3 => {2, 4} │ │ │ │ 4 => {0, 2, 3} │ │ │ │ │ │ │ │ o3 : Graph │ │ │ │ i4 : showExoticSolutions G │ │ │ │ - -- 1.20627s elapsed │ │ │ │ + -- 1.33883s elapsed │ │ │ │ │ │ │ │ o4 = {{1, 1, 1, 1, 0, 0, 0, 0}} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_e_t_L_i_n_e_a_r_l_y_S_t_a_b_l_e_S_o_l_u_t_i_o_n_s -- Compute linearly stable solutions for the │ │ │ │ Kuramoto oscillator system associated to a graph │ │ ├── ./usr/share/doc/Macaulay2/PathSignatures/example-output/___A_spfamily_spof_sppaths_spon_spa_spcone.out │ │ │ @@ -80,20 +80,20 @@ │ │ │ i19 : needsPackage "MultigradedImplicitization"; │ │ │ │ │ │ i20 : I = sub(ideal flatten values componentsOfKernel(2, m, Grading => matrix {toList(9:1)}), S); │ │ │ warning: computation begun over finite field. resulting polynomials may not lie in the ideal │ │ │ computing total degree: 1 │ │ │ number of monomials = 9 │ │ │ number of distinct multidegrees = 1 │ │ │ - -- .00921305s elapsed │ │ │ + -- .0110264s elapsed │ │ │ WARNING: There are linear relations. You may want to reduce the number of variables to speed up the computation. │ │ │ computing total degree: 2 │ │ │ number of monomials = 45 │ │ │ number of distinct multidegrees = 1 │ │ │ - -- .602557s elapsed │ │ │ + -- .581508s elapsed │ │ │ │ │ │ o20 : Ideal of S │ │ │ │ │ │ i21 : dim I │ │ │ │ │ │ o21 = 5 │ │ ├── ./usr/share/doc/Macaulay2/PathSignatures/html/___A_spfamily_spof_sppaths_spon_spa_spcone.html │ │ │ @@ -208,20 +208,20 @@ │ │ │ │ │ │ │ │ │
    i20 : I = sub(ideal flatten values componentsOfKernel(2, m, Grading => matrix {toList(9:1)}), S);
    │ │ │  warning: computation begun over finite field. resulting polynomials may not lie in the ideal
    │ │ │  computing total degree: 1
    │ │ │  number of monomials = 9
    │ │ │  number of distinct multidegrees = 1
    │ │ │ - -- .00921305s elapsed
    │ │ │ + -- .0110264s elapsed
    │ │ │  WARNING: There are linear relations. You may want to reduce the number of variables to speed up the computation.
    │ │ │  computing total degree: 2
    │ │ │  number of monomials = 45
    │ │ │  number of distinct multidegrees = 1
    │ │ │ - -- .602557s elapsed
    │ │ │ + -- .581508s elapsed
    │ │ │  
    │ │ │  o20 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : dim I
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -77,21 +77,21 @@
    │ │ │ │  i20 : I = sub(ideal flatten values componentsOfKernel(2, m, Grading => matrix
    │ │ │ │  {toList(9:1)}), S);
    │ │ │ │  warning: computation begun over finite field. resulting polynomials may not lie
    │ │ │ │  in the ideal
    │ │ │ │  computing total degree: 1
    │ │ │ │  number of monomials = 9
    │ │ │ │  number of distinct multidegrees = 1
    │ │ │ │ - -- .00921305s elapsed
    │ │ │ │ + -- .0110264s elapsed
    │ │ │ │  WARNING: There are linear relations. You may want to reduce the number of
    │ │ │ │  variables to speed up the computation.
    │ │ │ │  computing total degree: 2
    │ │ │ │  number of monomials = 45
    │ │ │ │  number of distinct multidegrees = 1
    │ │ │ │ - -- .602557s elapsed
    │ │ │ │ + -- .581508s elapsed
    │ │ │ │  
    │ │ │ │  o20 : Ideal of S
    │ │ │ │  i21 : dim I
    │ │ │ │  
    │ │ │ │  o21 = 5
    │ │ │ │  i22 : isPrime I
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/___Lab__Book__Protocol.out
    │ │ │ @@ -41,15 +41,15 @@
    │ │ │  i3 : g=3
    │ │ │  
    │ │ │  o3 = 3
    │ │ │  
    │ │ │  i4 : kk= ZZ/101;
    │ │ │  
    │ │ │  i5 : elapsedTime (S,qq,R,u, M1,M2, Mu1, Mu2)=randomNicePencil(kk,g);
    │ │ │ - -- 1.1868s elapsed
    │ │ │ + -- 1.09575s elapsed
    │ │ │  
    │ │ │  i6 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │  
    │ │ │  o6 = CliffordModule{...6...}
    │ │ │  
    │ │ │  o6 : CliffordModule
    │ │ │  
    │ │ │ @@ -67,30 +67,30 @@
    │ │ │            m12=randomExtension(m1.yAction,m2.yAction);
    │ │ │            V = vectorBundleOnE m12;
    │ │ │            Ul=tensorProduct(Mor,V);
    │ │ │            Ul1=tensorProduct(Mor1,V);
    │ │ │            d0=unique degrees target Ul.yAction;
    │ │ │            d1=unique degrees target Ul1.yAction;
    │ │ │            #d1 >=3 or #d0 >=3) do ();
    │ │ │ - -- .454724s elapsed
    │ │ │ + -- .37577s elapsed
    │ │ │  
    │ │ │  i12 : betti Ul.yAction, betti Ul1.yAction
    │ │ │  
    │ │ │                 0  1          0  1
    │ │ │  o12 = (total: 32 32, total: 32 32)
    │ │ │            -4: 16  .     -2: 32  .
    │ │ │            -3: 16  .     -1:  .  .
    │ │ │            -2:  .  .      0:  .  .
    │ │ │            -1:  . 16      1:  . 32
    │ │ │             0:  . 16
    │ │ │  
    │ │ │  o12 : Sequence
    │ │ │  
    │ │ │  i13 : elapsedTime Ul = tensorProduct(M,V); -- the heaviest part computing the actions of generators
    │ │ │ - -- 21.1759s elapsed
    │ │ │ + -- 13.7857s elapsed
    │ │ │  
    │ │ │  i14 : M1Ul=sum(#Ul.oddOperators,i->S_i*sub(Ul.oddOperators_i,S));
    │ │ │  
    │ │ │                32      32
    │ │ │  o14 : Matrix S   <-- S
    │ │ │  
    │ │ │  i15 : r=2
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_search__Ulrich.out
    │ │ │ @@ -46,30 +46,30 @@
    │ │ │  i11 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │  
    │ │ │  o11 = CliffordModule{...6...}
    │ │ │  
    │ │ │  o11 : CliffordModule
    │ │ │  
    │ │ │  i12 : elapsedTime Ulr = searchUlrich(M,S);
    │ │ │ - -- .686347s elapsed
    │ │ │ + -- .581993s elapsed
    │ │ │  
    │ │ │  i13 : betti freeResolution Ulr
    │ │ │  
    │ │ │               0  1 2
    │ │ │  o13 = total: 8 16 8
    │ │ │            0: 8 16 8
    │ │ │  
    │ │ │  o13 : BettiTally
    │ │ │  
    │ │ │  i14 : ann Ulr == ideal qs
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 : elapsedTime Ulr3 = searchUlrich(M,S,3);
    │ │ │ - -- 2.46859s elapsed
    │ │ │ + -- 1.76338s elapsed
    │ │ │  
    │ │ │  i16 : betti freeResolution Ulr3
    │ │ │  
    │ │ │                0  1  2
    │ │ │  o16 = total: 12 24 12
    │ │ │            0: 12 24 12
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/___Lab__Book__Protocol.html
    │ │ │ @@ -128,15 +128,15 @@
    │ │ │              
    │ │ │                
    i4 : kk= ZZ/101;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime (S,qq,R,u, M1,M2, Mu1, Mu2)=randomNicePencil(kk,g);
    │ │ │ - -- 1.1868s elapsed
    │ │ │ + -- 1.09575s elapsed
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │  
    │ │ │  o6 = CliffordModule{...6...}
    │ │ │ @@ -172,15 +172,15 @@
    │ │ │            m12=randomExtension(m1.yAction,m2.yAction);
    │ │ │            V = vectorBundleOnE m12;
    │ │ │            Ul=tensorProduct(Mor,V);
    │ │ │            Ul1=tensorProduct(Mor1,V);
    │ │ │            d0=unique degrees target Ul.yAction;
    │ │ │            d1=unique degrees target Ul1.yAction;
    │ │ │            #d1 >=3 or #d0 >=3) do ();
    │ │ │ - -- .454724s elapsed
    │ │ │ + -- .37577s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : betti Ul.yAction, betti Ul1.yAction
    │ │ │  
    │ │ │                 0  1          0  1
    │ │ │ @@ -193,15 +193,15 @@
    │ │ │  
    │ │ │  o12 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : elapsedTime Ul = tensorProduct(M,V); -- the heaviest part computing the actions of generators
    │ │ │ - -- 21.1759s elapsed
    │ │ │ + -- 13.7857s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : M1Ul=sum(#Ul.oddOperators,i->S_i*sub(Ul.oddOperators_i,S));
    │ │ │  
    │ │ │                32      32
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -55,15 +55,15 @@
    │ │ │ │              -- will give an Ulrich bundle, with betti table
    │ │ │ │              -- 16 32 16
    │ │ │ │  i3 : g=3
    │ │ │ │  
    │ │ │ │  o3 = 3
    │ │ │ │  i4 : kk= ZZ/101;
    │ │ │ │  i5 : elapsedTime (S,qq,R,u, M1,M2, Mu1, Mu2)=randomNicePencil(kk,g);
    │ │ │ │ - -- 1.1868s elapsed
    │ │ │ │ + -- 1.09575s elapsed
    │ │ │ │  i6 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │ │  
    │ │ │ │  o6 = CliffordModule{...6...}
    │ │ │ │  
    │ │ │ │  o6 : CliffordModule
    │ │ │ │  i7 : Mor = vectorBundleOnE M.evenCenter;
    │ │ │ │  i8 : Mor1= vectorBundleOnE M.oddCenter;
    │ │ │ │ @@ -75,29 +75,29 @@
    │ │ │ │            m12=randomExtension(m1.yAction,m2.yAction);
    │ │ │ │            V = vectorBundleOnE m12;
    │ │ │ │            Ul=tensorProduct(Mor,V);
    │ │ │ │            Ul1=tensorProduct(Mor1,V);
    │ │ │ │            d0=unique degrees target Ul.yAction;
    │ │ │ │            d1=unique degrees target Ul1.yAction;
    │ │ │ │            #d1 >=3 or #d0 >=3) do ();
    │ │ │ │ - -- .454724s elapsed
    │ │ │ │ + -- .37577s elapsed
    │ │ │ │  i12 : betti Ul.yAction, betti Ul1.yAction
    │ │ │ │  
    │ │ │ │                 0  1          0  1
    │ │ │ │  o12 = (total: 32 32, total: 32 32)
    │ │ │ │            -4: 16  .     -2: 32  .
    │ │ │ │            -3: 16  .     -1:  .  .
    │ │ │ │            -2:  .  .      0:  .  .
    │ │ │ │            -1:  . 16      1:  . 32
    │ │ │ │             0:  . 16
    │ │ │ │  
    │ │ │ │  o12 : Sequence
    │ │ │ │  i13 : elapsedTime Ul = tensorProduct(M,V); -- the heaviest part computing the
    │ │ │ │  actions of generators
    │ │ │ │ - -- 21.1759s elapsed
    │ │ │ │ + -- 13.7857s elapsed
    │ │ │ │  i14 : M1Ul=sum(#Ul.oddOperators,i->S_i*sub(Ul.oddOperators_i,S));
    │ │ │ │  
    │ │ │ │                32      32
    │ │ │ │  o14 : Matrix S   <-- S
    │ │ │ │  i15 : r=2
    │ │ │ │  
    │ │ │ │  o15 = 2
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_search__Ulrich.html
    │ │ │ @@ -161,15 +161,15 @@
    │ │ │  
    │ │ │  o11 : CliffordModule
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : elapsedTime Ulr = searchUlrich(M,S);
    │ │ │ - -- .686347s elapsed
    │ │ │ + -- .581993s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : betti freeResolution Ulr
    │ │ │  
    │ │ │               0  1 2
    │ │ │ @@ -185,15 +185,15 @@
    │ │ │  
    │ │ │  o14 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : elapsedTime Ulr3 = searchUlrich(M,S,3);
    │ │ │ - -- 2.46859s elapsed
    │ │ │ + -- 1.76338s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : betti freeResolution Ulr3
    │ │ │  
    │ │ │                0  1  2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -64,27 +64,27 @@
    │ │ │ │  o10 : Matrix S  <-- S
    │ │ │ │  i11 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │ │  
    │ │ │ │  o11 = CliffordModule{...6...}
    │ │ │ │  
    │ │ │ │  o11 : CliffordModule
    │ │ │ │  i12 : elapsedTime Ulr = searchUlrich(M,S);
    │ │ │ │ - -- .686347s elapsed
    │ │ │ │ + -- .581993s elapsed
    │ │ │ │  i13 : betti freeResolution Ulr
    │ │ │ │  
    │ │ │ │               0  1 2
    │ │ │ │  o13 = total: 8 16 8
    │ │ │ │            0: 8 16 8
    │ │ │ │  
    │ │ │ │  o13 : BettiTally
    │ │ │ │  i14 : ann Ulr == ideal qs
    │ │ │ │  
    │ │ │ │  o14 = true
    │ │ │ │  i15 : elapsedTime Ulr3 = searchUlrich(M,S,3);
    │ │ │ │ - -- 2.46859s elapsed
    │ │ │ │ + -- 1.76338s elapsed
    │ │ │ │  i16 : betti freeResolution Ulr3
    │ │ │ │  
    │ │ │ │                0  1  2
    │ │ │ │  o16 = total: 12 24 12
    │ │ │ │            0: 12 24 12
    │ │ │ │  
    │ │ │ │  o16 : BettiTally
    │ │ ├── ./usr/share/doc/Macaulay2/Points/example-output/_affine__Fat__Points.out
    │ │ │ @@ -66,17 +66,17 @@
    │ │ │  i9 : mults = {1,2,3,1,2,3,1,2,3,1,2,3}
    │ │ │  
    │ │ │  o9 = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}
    │ │ │  
    │ │ │  o9 : List
    │ │ │  
    │ │ │  i10 : elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R);
    │ │ │ - -- 2.66266s elapsed
    │ │ │ + -- 1.87425s elapsed
    │ │ │  
    │ │ │  i11 : elapsedTime H = affineFatPointsByIntersection(M,mults,R);
    │ │ │ - -- 4.51474s elapsed
    │ │ │ + -- 4.2002s elapsed
    │ │ │  
    │ │ │  i12 : G==H
    │ │ │  
    │ │ │  o12 = true
    │ │ │  
    │ │ │  i13 :
    │ │ ├── ./usr/share/doc/Macaulay2/Points/html/_affine__Fat__Points.html
    │ │ │ @@ -177,21 +177,21 @@
    │ │ │  
    │ │ │  o9 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R);
    │ │ │ - -- 2.66266s elapsed
    │ │ │ + -- 1.87425s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : elapsedTime H = affineFatPointsByIntersection(M,mults,R);
    │ │ │ - -- 4.51474s elapsed
    │ │ │ + -- 4.2002s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : G==H
    │ │ │  
    │ │ │  o12 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -81,17 +81,17 @@ │ │ │ │ o8 : Matrix K <-- K │ │ │ │ i9 : mults = {1,2,3,1,2,3,1,2,3,1,2,3} │ │ │ │ │ │ │ │ o9 = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3} │ │ │ │ │ │ │ │ o9 : List │ │ │ │ i10 : elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R); │ │ │ │ - -- 2.66266s elapsed │ │ │ │ + -- 1.87425s elapsed │ │ │ │ i11 : elapsedTime H = affineFatPointsByIntersection(M,mults,R); │ │ │ │ - -- 4.51474s elapsed │ │ │ │ + -- 4.2002s elapsed │ │ │ │ i12 : G==H │ │ │ │ │ │ │ │ o12 = true │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ For reduced points, this function may be a bit slower than _a_f_f_i_n_e_P_o_i_n_t_s. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _a_f_f_i_n_e_F_a_t_P_o_i_n_t_s_B_y_I_n_t_e_r_s_e_c_t_i_o_n_(_M_a_t_r_i_x_,_L_i_s_t_,_R_i_n_g_) -- computes ideal of fat │ │ ├── ./usr/share/doc/Macaulay2/Posets/example-output/___Precompute.out │ │ │ @@ -31,27 +31,27 @@ │ │ │ o5 = CacheTable{name => P} │ │ │ │ │ │ i6 : C == P │ │ │ │ │ │ o6 = true │ │ │ │ │ │ i7 : time isDistributive C │ │ │ - -- used 1.2633e-05s (cpu); 8.386e-06s (thread); 0s (gc) │ │ │ + -- used 1.4428e-05s (cpu); 6.948e-06s (thread); 0s (gc) │ │ │ │ │ │ o7 = true │ │ │ │ │ │ i8 : time isDistributive P │ │ │ - -- used 6.21358s (cpu); 4.20688s (thread); 0s (gc) │ │ │ + -- used 7.50337s (cpu); 4.64905s (thread); 0s (gc) │ │ │ │ │ │ o8 = true │ │ │ │ │ │ i9 : C' = dual C; │ │ │ │ │ │ i10 : time isDistributive C' │ │ │ - -- used 7.304e-06s (cpu); 6.462e-06s (thread); 0s (gc) │ │ │ + -- used 6.987e-06s (cpu); 5.608e-06s (thread); 0s (gc) │ │ │ │ │ │ o10 = true │ │ │ │ │ │ i11 : peek C'.cache │ │ │ │ │ │ o11 = CacheTable{connectedComponents => {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}} } │ │ │ coveringRelations => {{1, 0}, {2, 1}, {3, 2}, {4, 3}, {5, 4}, {6, 5}, {7, 6}, {8, 7}, {9, 8}} │ │ ├── ./usr/share/doc/Macaulay2/Posets/example-output/_greene__Kleitman__Partition.out │ │ │ @@ -7,22 +7,22 @@ │ │ │ o2 = Partition{4, 2} │ │ │ │ │ │ o2 : Partition │ │ │ │ │ │ i3 : D = dominanceLattice 6; │ │ │ │ │ │ i4 : time greeneKleitmanPartition(D, Strategy => "antichains") │ │ │ - -- used 0.414882s (cpu); 0.246902s (thread); 0s (gc) │ │ │ + -- used 0.427032s (cpu); 0.24243s (thread); 0s (gc) │ │ │ │ │ │ o4 = Partition{9, 2} │ │ │ │ │ │ o4 : Partition │ │ │ │ │ │ i5 : time greeneKleitmanPartition(D, Strategy => "chains") │ │ │ - -- used 1.2734e-05s (cpu); 1.2373e-05s (thread); 0s (gc) │ │ │ + -- used 9.904e-06s (cpu); 9.4e-06s (thread); 0s (gc) │ │ │ │ │ │ o5 = Partition{9, 2} │ │ │ │ │ │ o5 : Partition │ │ │ │ │ │ i6 : greeneKleitmanPartition chain 10 │ │ ├── ./usr/share/doc/Macaulay2/Posets/html/___Precompute.html │ │ │ @@ -107,23 +107,23 @@ │ │ │ │ │ │ o6 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time isDistributive C
    │ │ │ - -- used 1.2633e-05s (cpu); 8.386e-06s (thread); 0s (gc)
    │ │ │ + -- used 1.4428e-05s (cpu); 6.948e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time isDistributive P
    │ │ │ - -- used 6.21358s (cpu); 4.20688s (thread); 0s (gc)
    │ │ │ + -- used 7.50337s (cpu); 4.64905s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    We also know that the dual of a distributive lattice is again a distributive lattice. Other information is copied when possible.

    │ │ │ @@ -133,15 +133,15 @@ │ │ │ │ │ │
    i9 : C' = dual C;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time isDistributive C'
    │ │ │ - -- used 7.304e-06s (cpu); 6.462e-06s (thread); 0s (gc)
    │ │ │ + -- used 6.987e-06s (cpu); 5.608e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : peek C'.cache
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -41,26 +41,26 @@
    │ │ │ │  i5 : peek P.cache
    │ │ │ │  
    │ │ │ │  o5 = CacheTable{name => P}
    │ │ │ │  i6 : C == P
    │ │ │ │  
    │ │ │ │  o6 = true
    │ │ │ │  i7 : time isDistributive C
    │ │ │ │ - -- used 1.2633e-05s (cpu); 8.386e-06s (thread); 0s (gc)
    │ │ │ │ + -- used 1.4428e-05s (cpu); 6.948e-06s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o7 = true
    │ │ │ │  i8 : time isDistributive P
    │ │ │ │ - -- used 6.21358s (cpu); 4.20688s (thread); 0s (gc)
    │ │ │ │ + -- used 7.50337s (cpu); 4.64905s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = true
    │ │ │ │  We also know that the dual of a distributive lattice is again a distributive
    │ │ │ │  lattice. Other information is copied when possible.
    │ │ │ │  i9 : C' = dual C;
    │ │ │ │  i10 : time isDistributive C'
    │ │ │ │ - -- used 7.304e-06s (cpu); 6.462e-06s (thread); 0s (gc)
    │ │ │ │ + -- used 6.987e-06s (cpu); 5.608e-06s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = true
    │ │ │ │  i11 : peek C'.cache
    │ │ │ │  
    │ │ │ │  o11 = CacheTable{connectedComponents => {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}
    │ │ │ │  }
    │ │ │ │                   coveringRelations => {{1, 0}, {2, 1}, {3, 2}, {4, 3}, {5, 4},
    │ │ ├── ./usr/share/doc/Macaulay2/Posets/html/_greene__Kleitman__Partition.html
    │ │ │ @@ -100,25 +100,25 @@
    │ │ │              
    │ │ │                
    i3 : D = dominanceLattice 6;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time greeneKleitmanPartition(D, Strategy => "antichains")
    │ │ │ - -- used 0.414882s (cpu); 0.246902s (thread); 0s (gc)
    │ │ │ + -- used 0.427032s (cpu); 0.24243s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = Partition{9, 2}
    │ │ │  
    │ │ │  o4 : Partition
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time greeneKleitmanPartition(D, Strategy => "chains")
    │ │ │ - -- used 1.2734e-05s (cpu); 1.2373e-05s (thread); 0s (gc)
    │ │ │ + -- used 9.904e-06s (cpu); 9.4e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = Partition{9, 2}
    │ │ │  
    │ │ │  o5 : Partition
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -28,21 +28,21 @@ │ │ │ │ │ │ │ │ o2 : Partition │ │ │ │ The conjugate of $l$ has the same property, but with chains replaced by │ │ │ │ _a_n_t_i_c_h_a_i_n_s. Because of this, it is often better to count via antichains instead │ │ │ │ of chains. This can be done by passing "antichains" as the Strategy. │ │ │ │ i3 : D = dominanceLattice 6; │ │ │ │ i4 : time greeneKleitmanPartition(D, Strategy => "antichains") │ │ │ │ - -- used 0.414882s (cpu); 0.246902s (thread); 0s (gc) │ │ │ │ + -- used 0.427032s (cpu); 0.24243s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = Partition{9, 2} │ │ │ │ │ │ │ │ o4 : Partition │ │ │ │ i5 : time greeneKleitmanPartition(D, Strategy => "chains") │ │ │ │ - -- used 1.2734e-05s (cpu); 1.2373e-05s (thread); 0s (gc) │ │ │ │ + -- used 9.904e-06s (cpu); 9.4e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = Partition{9, 2} │ │ │ │ │ │ │ │ o5 : Partition │ │ │ │ The Greene-Kleitman partition of the $n$ _c_h_a_i_n is the partition of $n$ with $1$ │ │ │ │ part. │ │ │ │ i6 : greeneKleitmanPartition chain 10 │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_associated__Primes.out │ │ │ @@ -125,24 +125,24 @@ │ │ │ ----------------------------------------------------------------------- │ │ │ ideal (a, b, c, e), ideal (a, b, d, e), ideal (a, b, c, d, e)} │ │ │ │ │ │ o19 : List │ │ │ │ │ │ i20 : M1 = set apply(L1, I -> sort flatten entries gens I) │ │ │ │ │ │ -o20 = set {{e, c, b, a}, {e, d, c, b, a}, {d, b, a}, {e, a}, {c, b, a}, {d, │ │ │ +o20 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d, │ │ │ ----------------------------------------------------------------------- │ │ │ - c, b, a}, {e, d, b, a}} │ │ │ + b, a}, {e, d, c, b, a}} │ │ │ │ │ │ o20 : Set │ │ │ │ │ │ i21 : M2 = set apply(L2, I -> sort flatten entries gens I) │ │ │ │ │ │ -o21 = set {{e, c, b, a}, {e, d, c, b, a}, {d, b, a}, {e, a}, {c, b, a}, {d, │ │ │ +o21 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d, │ │ │ ----------------------------------------------------------------------- │ │ │ - c, b, a}, {e, d, b, a}} │ │ │ + b, a}, {e, d, c, b, a}} │ │ │ │ │ │ o21 : Set │ │ │ │ │ │ i22 : assert(M1 === M2) │ │ │ │ │ │ i23 : │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_kernel__Of__Localization.out │ │ │ @@ -24,35 +24,35 @@ │ │ │ | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o3 : R-module, quotient of R │ │ │ │ │ │ i4 : elapsedTime kernelOfLocalization(M, I1) │ │ │ - -- .113801s elapsed │ │ │ + -- .0988099s elapsed │ │ │ │ │ │ o4 = subquotient (| 0 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 0 |) │ │ │ | 1 0 | | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 1 | | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o4 : R-module, subquotient of R │ │ │ │ │ │ i5 : elapsedTime kernelOfLocalization(M, I2) │ │ │ - -- .0380783s elapsed │ │ │ + -- .0217768s elapsed │ │ │ │ │ │ o5 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 0 |) │ │ │ | 0 0 | | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 1 | | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o5 : R-module, subquotient of R │ │ │ │ │ │ i6 : elapsedTime kernelOfLocalization(M, I3) │ │ │ - -- .120101s elapsed │ │ │ + -- .0556174s elapsed │ │ │ │ │ │ o6 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 0 |) │ │ │ | 0 1 | | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 0 | | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o6 : R-module, subquotient of R │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_reg__Seq__In__Ideal.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ x x ) │ │ │ 0 4 │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : elapsedTime regSeqInIdeal I │ │ │ - -- .087123s elapsed │ │ │ + -- .0605169s elapsed │ │ │ │ │ │ o3 = ideal (x x , x x + x x , x x + x x , x x + x x ) │ │ │ 2 7 3 6 0 7 2 5 0 7 1 4 0 7 │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ │ │ i4 : R = QQ[h,l,s,x,y,z] │ │ │ @@ -41,15 +41,15 @@ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : isSubset(I, ideal(s,l,h)) -- implies codim I == 3 │ │ │ │ │ │ o6 = true │ │ │ │ │ │ i7 : elapsedTime regSeqInIdeal(I, 3, 3, 1) │ │ │ - -- .00815253s elapsed │ │ │ + -- .00993261s elapsed │ │ │ │ │ │ 2 3 2 2 8 3 2 2 │ │ │ o7 = ideal (h*l - l - 4l*s + h*y, h + l s - h x, s + h + l s - h x) │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_associated__Primes.html │ │ │ @@ -286,28 +286,28 @@ │ │ │ o19 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : M1 = set apply(L1, I -> sort flatten entries gens I)
    │ │ │  
    │ │ │ -o20 = set {{e, c, b, a}, {e, d, c, b, a}, {d, b, a}, {e, a}, {c, b, a}, {d,
    │ │ │ +o20 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      c, b, a}, {e, d, b, a}}
    │ │ │ +      b, a}, {e, d, c, b, a}}
    │ │ │  
    │ │ │  o20 : Set
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : M2 = set apply(L2, I -> sort flatten entries gens I)
    │ │ │  
    │ │ │ -o21 = set {{e, c, b, a}, {e, d, c, b, a}, {d, b, a}, {e, a}, {c, b, a}, {d,
    │ │ │ +o21 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      c, b, a}, {e, d, b, a}}
    │ │ │ +      b, a}, {e, d, c, b, a}}
    │ │ │  
    │ │ │  o21 : Set
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i22 : assert(M1 === M2)
    │ │ │ ├── html2text {} │ │ │ │ @@ -155,24 +155,24 @@ │ │ │ │ o19 = {ideal (a, e), ideal (a, b, c), ideal (a, b, d), ideal (a, b, c, d), │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ ideal (a, b, c, e), ideal (a, b, d, e), ideal (a, b, c, d, e)} │ │ │ │ │ │ │ │ o19 : List │ │ │ │ i20 : M1 = set apply(L1, I -> sort flatten entries gens I) │ │ │ │ │ │ │ │ -o20 = set {{e, c, b, a}, {e, d, c, b, a}, {d, b, a}, {e, a}, {c, b, a}, {d, │ │ │ │ +o20 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - c, b, a}, {e, d, b, a}} │ │ │ │ + b, a}, {e, d, c, b, a}} │ │ │ │ │ │ │ │ o20 : Set │ │ │ │ i21 : M2 = set apply(L2, I -> sort flatten entries gens I) │ │ │ │ │ │ │ │ -o21 = set {{e, c, b, a}, {e, d, c, b, a}, {d, b, a}, {e, a}, {c, b, a}, {d, │ │ │ │ +o21 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - c, b, a}, {e, d, b, a}} │ │ │ │ + b, a}, {e, d, c, b, a}} │ │ │ │ │ │ │ │ o21 : Set │ │ │ │ i22 : assert(M1 === M2) │ │ │ │ The method using Ext modules comes from Eisenbud-Huneke-Vasconcelos, Invent. │ │ │ │ Math 110 (1992) 207-235. │ │ │ │ Original author (for ideals): _C_._ _Y_a_c_k_e_l. Updated for modules by J. Chen. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_kernel__Of__Localization.html │ │ │ @@ -107,41 +107,41 @@ │ │ │ 3 │ │ │ o3 : R-module, quotient of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime kernelOfLocalization(M, I1)
    │ │ │ - -- .113801s elapsed
    │ │ │ + -- .0988099s elapsed
    │ │ │  
    │ │ │  o4 = subquotient (| 0 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0              0              |)
    │ │ │                    | 1 0 |  | 0            0             0            x_1^3-x_0x_2^2 0              |
    │ │ │                    | 0 1 |  | 0            0             0            0              x_1^5-x_0x_2^4 |
    │ │ │  
    │ │ │                                 3
    │ │ │  o4 : R-module, subquotient of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime kernelOfLocalization(M, I2)
    │ │ │ - -- .0380783s elapsed
    │ │ │ + -- .0217768s elapsed
    │ │ │  
    │ │ │  o5 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0              0              |)
    │ │ │                    | 0 0 |  | 0            0             0            x_1^3-x_0x_2^2 0              |
    │ │ │                    | 0 1 |  | 0            0             0            0              x_1^5-x_0x_2^4 |
    │ │ │  
    │ │ │                                 3
    │ │ │  o5 : R-module, subquotient of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime kernelOfLocalization(M, I3)
    │ │ │ - -- .120101s elapsed
    │ │ │ + -- .0556174s elapsed
    │ │ │  
    │ │ │  o6 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0              0              |)
    │ │ │                    | 0 1 |  | 0            0             0            x_1^3-x_0x_2^2 0              |
    │ │ │                    | 0 0 |  | 0            0             0            0              x_1^5-x_0x_2^4 |
    │ │ │  
    │ │ │                                 3
    │ │ │  o6 : R-module, subquotient of R
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,39 +41,39 @@ │ │ │ │ | │ │ │ │ | 0 0 0 0 x_1^5- │ │ │ │ x_0x_2^4 | │ │ │ │ │ │ │ │ 3 │ │ │ │ o3 : R-module, quotient of R │ │ │ │ i4 : elapsedTime kernelOfLocalization(M, I1) │ │ │ │ - -- .113801s elapsed │ │ │ │ + -- .0988099s elapsed │ │ │ │ │ │ │ │ o4 = subquotient (| 0 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 │ │ │ │ 0 |) │ │ │ │ | 1 0 | | 0 0 0 x_1^3- │ │ │ │ x_0x_2^2 0 | │ │ │ │ | 0 1 | | 0 0 0 0 │ │ │ │ x_1^5-x_0x_2^4 | │ │ │ │ │ │ │ │ 3 │ │ │ │ o4 : R-module, subquotient of R │ │ │ │ i5 : elapsedTime kernelOfLocalization(M, I2) │ │ │ │ - -- .0380783s elapsed │ │ │ │ + -- .0217768s elapsed │ │ │ │ │ │ │ │ o5 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 │ │ │ │ 0 |) │ │ │ │ | 0 0 | | 0 0 0 x_1^3- │ │ │ │ x_0x_2^2 0 | │ │ │ │ | 0 1 | | 0 0 0 0 │ │ │ │ x_1^5-x_0x_2^4 | │ │ │ │ │ │ │ │ 3 │ │ │ │ o5 : R-module, subquotient of R │ │ │ │ i6 : elapsedTime kernelOfLocalization(M, I3) │ │ │ │ - -- .120101s elapsed │ │ │ │ + -- .0556174s elapsed │ │ │ │ │ │ │ │ o6 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 │ │ │ │ 0 |) │ │ │ │ | 0 1 | | 0 0 0 x_1^3- │ │ │ │ x_0x_2^2 0 | │ │ │ │ | 0 0 | | 0 0 0 0 │ │ │ │ x_1^5-x_0x_2^4 | │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_reg__Seq__In__Ideal.html │ │ │ @@ -102,15 +102,15 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime regSeqInIdeal I
    │ │ │ - -- .087123s elapsed
    │ │ │ + -- .0605169s elapsed
    │ │ │  
    │ │ │  o3 = ideal (x x , x x  + x x , x x  + x x , x x  + x x )
    │ │ │               2 7   3 6    0 7   2 5    0 7   1 4    0 7
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │ │ │ │ │ │ │ @@ -148,15 +148,15 @@ │ │ │ │ │ │ o6 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime regSeqInIdeal(I, 3, 3, 1)
    │ │ │ - -- .00815253s elapsed
    │ │ │ + -- .00993261s elapsed
    │ │ │  
    │ │ │                     2                3    2     2    8    3    2     2
    │ │ │  o7 = ideal (h*l - l  - 4l*s + h*y, h  + l s - h x, s  + h  + l s - h x)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -40,15 +40,15 @@ │ │ │ │ 2 7 0 7 3 6 2 6 1 6 0 6 2 5 0 5 3 4 2 4 1 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x x ) │ │ │ │ 0 4 │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime regSeqInIdeal I │ │ │ │ - -- .087123s elapsed │ │ │ │ + -- .0605169s elapsed │ │ │ │ │ │ │ │ o3 = ideal (x x , x x + x x , x x + x x , x x + x x ) │ │ │ │ 2 7 3 6 0 7 2 5 0 7 1 4 0 7 │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ If I is the unit ideal, then an ideal of variables of the ring is returned. │ │ │ │ If the codimension of I is already known, then one can specify this, along with │ │ │ │ @@ -70,15 +70,15 @@ │ │ │ │ l , s ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : isSubset(I, ideal(s,l,h)) -- implies codim I == 3 │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : elapsedTime regSeqInIdeal(I, 3, 3, 1) │ │ │ │ - -- .00815253s elapsed │ │ │ │ + -- .00993261s elapsed │ │ │ │ │ │ │ │ 2 3 2 2 8 3 2 2 │ │ │ │ o7 = ideal (h*l - l - 4l*s + h*y, h + l s - h x, s + h + l s - h x) │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_d_i_c_a_l -- the radical of an ideal │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_iterator_lp__Python__Object_rp.out │ │ │ @@ -10,12 +10,12 @@ │ │ │ │ │ │ o2 = range(0, 3) │ │ │ │ │ │ o2 : PythonObject of class range │ │ │ │ │ │ i3 : i = iterator x │ │ │ │ │ │ -o3 = │ │ │ +o3 = │ │ │ │ │ │ o3 : PythonObject of class range_iterator │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_next_lp__Python__Object_rp.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ │ │ o2 = range(0, 3) │ │ │ │ │ │ o2 : PythonObject of class range │ │ │ │ │ │ i3 : i = iterator x │ │ │ │ │ │ -o3 = │ │ │ +o3 = │ │ │ │ │ │ o3 : PythonObject of class range_iterator │ │ │ │ │ │ i4 : next i │ │ │ │ │ │ o4 = 0 │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_python__Run__Script.out │ │ │ @@ -1,22 +1,22 @@ │ │ │ -- -*- M2-comint -*- hash: 447449196062331972 │ │ │ │ │ │ i1 : pyfile = temporaryFileName() | ".py" │ │ │ │ │ │ -o1 = /tmp/M2-47339-0/0.py │ │ │ +o1 = /tmp/M2-73786-0/0.py │ │ │ │ │ │ i2 : pyfile << "import math" << endl │ │ │ │ │ │ -o2 = /tmp/M2-47339-0/0.py │ │ │ +o2 = /tmp/M2-73786-0/0.py │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : pyfile << "x = math.sin(3.4)" << endl << close │ │ │ │ │ │ -o3 = /tmp/M2-47339-0/0.py │ │ │ +o3 = /tmp/M2-73786-0/0.py │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : get pyfile │ │ │ │ │ │ o4 = import math │ │ │ x = math.sin(3.4) │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_to__Python.out │ │ │ @@ -72,15 +72,15 @@ │ │ │ │ │ │ o12 = m2sqrt │ │ │ │ │ │ o12 : FunctionClosure │ │ │ │ │ │ i13 : pysqrt = toPython m2sqrt │ │ │ │ │ │ -o13 = │ │ │ +o13 = │ │ │ │ │ │ o13 : PythonObject of class builtin_function_or_method │ │ │ │ │ │ i14 : pysqrt 2 │ │ │ calling Macaulay2 code from Python! │ │ │ │ │ │ o14 = 1.4142135623730951 │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_use_lp__Python__Context_rp.out │ │ │ @@ -30,15 +30,15 @@ │ │ │ │ │ │ o7 : Symbol │ │ │ │ │ │ i8 : use ctx │ │ │ │ │ │ i9 : f │ │ │ │ │ │ -o9 = at 0x7f92fa0eccc0> │ │ │ +o9 = at 0x7fcc7df68cc0> │ │ │ │ │ │ o9 : PythonObject of class function │ │ │ │ │ │ i10 : x │ │ │ │ │ │ o10 = 5 │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_iterator_lp__Python__Object_rp.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ o2 : PythonObject of class range │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : i = iterator x
    │ │ │  
    │ │ │ -o3 = <range_iterator object at 0x7f92fa135650>
    │ │ │ +o3 = <range_iterator object at 0x7fcc7dfb1290>
    │ │ │  
    │ │ │  o3 : PythonObject of class range_iterator
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ i2 : x = builtins@@range 3 │ │ │ │ │ │ │ │ o2 = range(0, 3) │ │ │ │ │ │ │ │ o2 : PythonObject of class range │ │ │ │ i3 : i = iterator x │ │ │ │ │ │ │ │ -o3 = │ │ │ │ +o3 = │ │ │ │ │ │ │ │ o3 : PythonObject of class range_iterator │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _n_e_x_t_(_P_y_t_h_o_n_O_b_j_e_c_t_) -- retrieve the next item from a python iterator │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _i_t_e_r_a_t_o_r_(_P_y_t_h_o_n_O_b_j_e_c_t_) -- get iterator of iterable python object │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_next_lp__Python__Object_rp.html │ │ │ @@ -86,15 +86,15 @@ │ │ │ o2 : PythonObject of class range │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : i = iterator x
    │ │ │  
    │ │ │ -o3 = <range_iterator object at 0x7f92fa129da0>
    │ │ │ +o3 = <range_iterator object at 0x7fcc7dfa5920>
    │ │ │  
    │ │ │  o3 : PythonObject of class range_iterator
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : next i
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,15 +21,15 @@
    │ │ │ │  i2 : x = builtins@@range 3
    │ │ │ │  
    │ │ │ │  o2 = range(0, 3)
    │ │ │ │  
    │ │ │ │  o2 : PythonObject of class range
    │ │ │ │  i3 : i = iterator x
    │ │ │ │  
    │ │ │ │ -o3 = 
    │ │ │ │ +o3 = 
    │ │ │ │  
    │ │ │ │  o3 : PythonObject of class range_iterator
    │ │ │ │  i4 : next i
    │ │ │ │  
    │ │ │ │  o4 = 0
    │ │ │ │  
    │ │ │ │  o4 : PythonObject of class int
    │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_python__Run__Script.html
    │ │ │ @@ -76,31 +76,31 @@
    │ │ │            

    The return value is a Python dictionary containing all the variables defined in the global scope.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : pyfile = temporaryFileName() | ".py"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-47339-0/0.py
    │ │ │ +o1 = /tmp/M2-73786-0/0.py │ │ │
    │ │ │
    i2 : pyfile << "import math" << endl
    │ │ │  
    │ │ │ -o2 = /tmp/M2-47339-0/0.py
    │ │ │ +o2 = /tmp/M2-73786-0/0.py
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : pyfile << "x = math.sin(3.4)" << endl << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-47339-0/0.py
    │ │ │ +o3 = /tmp/M2-73786-0/0.py
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : get pyfile
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,23 +16,23 @@
    │ │ │ │  Execute a sequence of statements as if they were read from a Python file. This
    │ │ │ │  is for multi-line code that might contain definitions, control structures,
    │ │ │ │  imports, etc. It is great for running Python code from a file.
    │ │ │ │  The return value is a Python dictionary containing all the variables defined in
    │ │ │ │  the global scope.
    │ │ │ │  i1 : pyfile = temporaryFileName() | ".py"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-47339-0/0.py
    │ │ │ │ +o1 = /tmp/M2-73786-0/0.py
    │ │ │ │  i2 : pyfile << "import math" << endl
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-47339-0/0.py
    │ │ │ │ +o2 = /tmp/M2-73786-0/0.py
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : pyfile << "x = math.sin(3.4)" << endl << close
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-47339-0/0.py
    │ │ │ │ +o3 = /tmp/M2-73786-0/0.py
    │ │ │ │  
    │ │ │ │  o3 : File
    │ │ │ │  i4 : get pyfile
    │ │ │ │  
    │ │ │ │  o4 = import math
    │ │ │ │       x = math.sin(3.4)
    │ │ │ │  i5 : pythonRunScript oo
    │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_to__Python.html
    │ │ │ @@ -181,15 +181,15 @@
    │ │ │  o12 : FunctionClosure
    │ │ │
    │ │ │
    i13 : pysqrt = toPython m2sqrt
    │ │ │  
    │ │ │ -o13 = <built-in method m2sqrt of PyCapsule object at 0x7f92fa11a9d0>
    │ │ │ +o13 = <built-in method m2sqrt of PyCapsule object at 0x7fcc7df96a20>
    │ │ │  
    │ │ │  o13 : PythonObject of class builtin_function_or_method
    │ │ │
    │ │ │
    i14 : pysqrt 2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -72,15 +72,15 @@
    │ │ │ │            sqrt x)
    │ │ │ │  
    │ │ │ │  o12 = m2sqrt
    │ │ │ │  
    │ │ │ │  o12 : FunctionClosure
    │ │ │ │  i13 : pysqrt = toPython m2sqrt
    │ │ │ │  
    │ │ │ │ -o13 = 
    │ │ │ │ +o13 = 
    │ │ │ │  
    │ │ │ │  o13 : PythonObject of class builtin_function_or_method
    │ │ │ │  i14 : pysqrt 2
    │ │ │ │  calling Macaulay2 code from Python!
    │ │ │ │  
    │ │ │ │  o14 = 1.4142135623730951
    │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_use_lp__Python__Context_rp.html
    │ │ │ @@ -124,15 +124,15 @@
    │ │ │                
    i8 : use ctx
    │ │ │
    │ │ │
    i9 : f
    │ │ │  
    │ │ │ -o9 = <function <lambda> at 0x7f92fa0eccc0>
    │ │ │ +o9 = <function <lambda> at 0x7fcc7df68cc0>
    │ │ │  
    │ │ │  o9 : PythonObject of class function
    │ │ │
    │ │ │
    i10 : x
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │  
    │ │ │ │  o7 = y
    │ │ │ │  
    │ │ │ │  o7 : Symbol
    │ │ │ │  i8 : use ctx
    │ │ │ │  i9 : f
    │ │ │ │  
    │ │ │ │ -o9 =  at 0x7f92fa0eccc0>
    │ │ │ │ +o9 =  at 0x7fcc7df68cc0>
    │ │ │ │  
    │ │ │ │  o9 : PythonObject of class function
    │ │ │ │  i10 : x
    │ │ │ │  
    │ │ │ │  o10 = 5
    │ │ │ │  
    │ │ │ │  o10 : PythonObject of class int
    │ │ ├── ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.out
    │ │ │ @@ -180,15 +180,15 @@
    │ │ │  i21 : L = trim groebnerStratum F;
    │ │ │  
    │ │ │  o21 : Ideal of T
    │ │ │  
    │ │ │  i22 : assert(dim L == 18)
    │ │ │  
    │ │ │  i23 : elapsedTime isPrime L
    │ │ │ - -- 2.47531s elapsed
    │ │ │ + -- 2.22746s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │  
    │ │ │  i24 : I = pointsIdeal randomPoints(S, 6)
    │ │ │  
    │ │ │                               2                              2   2          
    │ │ │  o24 = ideal (a*c - 7b*c - 49c  + 40a*d - 42b*d + 12c*d + 28d , b  - 36b*c -
    │ │ │ @@ -302,15 +302,15 @@
    │ │ │  o38 = true
    │ │ │  
    │ │ │  i39 : L441 = trim(L + ideal M1);
    │ │ │  
    │ │ │  o39 : Ideal of T
    │ │ │  
    │ │ │  i40 : elapsedTime compsL441 = decompose L441;
    │ │ │ - -- 1.52419s elapsed
    │ │ │ + -- 1.24058s elapsed
    │ │ │  
    │ │ │  i41 : #compsL441
    │ │ │  
    │ │ │  o41 = 2
    │ │ │  
    │ │ │  i42 : compsL441/dim -- two components, of dimensions 14 and 16.
    │ │ │  
    │ │ │ @@ -320,37 +320,37 @@
    │ │ │  
    │ │ │  i43 : compsL441/dim == {16, 14}
    │ │ │  
    │ │ │  o43 = true
    │ │ │  
    │ │ │  i44 : pta = randomPointOnRationalVariety compsL441_0
    │ │ │  
    │ │ │ -o44 = | 22 -10 -8 -1 34 44 -21 -1 25 -41 6 -11 -50 -50 43 -28 -6 45 -28 22 42
    │ │ │ +o44 = | 32 -41 22 15 22 -46 43 42 -27 -27 -13 10 -24 19 -25 48 31 10 41 49 39
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -29 -32 -28 5 -10 34 15 19 37 26 49 19 5 10 18 |
    │ │ │ +      -28 -29 -10 -48 5 15 18 45 19 49 37 -32 34 26 -50 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o44 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i45 : Fa = sub(F, (vars S) | pta)
    │ │ │  
    │ │ │ -              2              2                             2              
    │ │ │ -o45 = ideal (a  + 43b*c - 41c  - 11a*d + 44b*d - 8c*d + 22d , a*b + 5b*c -
    │ │ │ +              2              2                              2               
    │ │ │ +o45 = ideal (a  - 25b*c - 27c  + 10a*d - 46b*d + 22c*d + 32d , a*b - 48b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │           2                              2   2              2                
    │ │ │ -      28c  + 42a*d - 50b*d + 25c*d - 10d , b  + 10b*c + 15c  + 19a*d - 29b*d
    │ │ │ +      41c  + 39a*d - 24b*d - 27c*d - 41d , b  + 26b*c + 18c  - 32a*d - 28b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2                   2                              2     2
    │ │ │ -      - 28c*d - 21d , a*c + 49b*c - 10c  + 19a*d + 22b*d - 50c*d + 34d , b*c 
    │ │ │ +                   2                  2                              2     2
    │ │ │ +      + 48c*d + 43d , a*c + 37b*c + 5c  + 45a*d + 49b*d + 19c*d + 22d , b*c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                     2         2       2       2    3   3                2   
    │ │ │ -      + 37b*c*d - 32c d + 34a*d  - 6b*d  + 6c*d  - d , c  + 18b*c*d + 26c d +
    │ │ │ +                     2         2        2        2      3   3            
    │ │ │ +      + 19b*c*d - 29c d + 15a*d  + 31b*d  - 13c*d  + 15d , c  - 50b*c*d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -          2        2        2    3
    │ │ │ -      5a*d  - 28b*d  + 45c*d  - d )
    │ │ │ +         2         2        2        2      3
    │ │ │ +      49c d + 34a*d  - 10b*d  + 10c*d  + 42d )
    │ │ │  
    │ │ │  o45 : Ideal of S
    │ │ │  
    │ │ │  i46 : betti res Fa
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │  o46 = total: 1 6 8 3
    │ │ │ @@ -358,81 +358,83 @@
    │ │ │            1: . 4 4 1
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o46 : BettiTally
    │ │ │  
    │ │ │  i47 : netList decompose Fa -- this one is 5 points on a plane, and another point
    │ │ │  
    │ │ │ -      +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -o47 = |ideal (c + 19d, b - 37d, a)                                                                                                                                        |
    │ │ │ -      +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                             2              2                      2   3                2         2       2     3     2                2         2        2      3 |
    │ │ │ -      |ideal (a + 49b - 10c + 39d, b  + 10b*c + 15c  + 50b*d - 40c*d + 46d , c  + 18b*c*d + 26c d + 30b*d  - 6c*d  + 6d , b*c  + 37b*c*d - 32c d + 45b*d  + 43c*d  - 14d )|
    │ │ │ -      +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      +----------------------------------------------------------------------------------------------+
    │ │ │ +o47 = |ideal (c + 45d, b - 34d, a - 35d)                                                             |
    │ │ │ +      +----------------------------------------------------------------------------------------------+
    │ │ │ +      |ideal (c + 18d, b - 12d, a + 47d)                                                             |
    │ │ │ +      +----------------------------------------------------------------------------------------------+
    │ │ │ +      |                                   2                      2   2      2                      2 |
    │ │ │ +      |ideal (a + 37b + 5c - 4d, b*c - 13c  + 45b*d - 28c*d - 29d , b  - 48c  - 14b*d + 27c*d - 38d )|
    │ │ │ +      +----------------------------------------------------------------------------------------------+
    │ │ │  
    │ │ │  i48 : CFa = minimalPrimes Fa
    │ │ │  
    │ │ │ -                                                                 2          
    │ │ │ -o48 = {ideal (c + 19d, b - 37d, a), ideal (a + 49b - 10c + 39d, b  + 10b*c +
    │ │ │ +                                                                            
    │ │ │ +o48 = {ideal (c + 45d, b - 34d, a - 35d), ideal (c + 18d, b - 12d, a + 47d),
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                      2   3                2         2       2  
    │ │ │ -      15c  + 50b*d - 40c*d + 46d , c  + 18b*c*d + 26c d + 30b*d  - 6c*d  +
    │ │ │ +                                         2                      2   2      2
    │ │ │ +      ideal (a + 37b + 5c - 4d, b*c - 13c  + 45b*d - 28c*d - 29d , b  - 48c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -        3     2                2         2        2      3
    │ │ │ -      6d , b*c  + 37b*c*d - 32c d + 45b*d  + 43c*d  - 14d )}
    │ │ │ +                           2
    │ │ │ +      - 14b*d + 27c*d - 38d )}
    │ │ │  
    │ │ │  o48 : List
    │ │ │  
    │ │ │  i49 : lin = CFa_1_0 -- a linear form, defining a plane.
    │ │ │  
    │ │ │ -o49 = a + 49b - 10c + 39d
    │ │ │ +o49 = c + 18d
    │ │ │  
    │ │ │  o49 : S
    │ │ │  
    │ │ │  i50 : CFa/degree
    │ │ │  
    │ │ │ -o50 = {1, 5}
    │ │ │ +o50 = {1, 1, 4}
    │ │ │  
    │ │ │  o50 : List
    │ │ │  
    │ │ │  i51 : CFa/(I -> lin % I == 0) -- so 5 points on the plane.
    │ │ │  
    │ │ │ -o51 = {false, true}
    │ │ │ +o51 = {false, true, false}
    │ │ │  
    │ │ │  o51 : List
    │ │ │  
    │ │ │  i52 : degree(Fa : (Fa : lin))  -- somewhat simpler(?) way to see the ideal of the 5 points
    │ │ │  
    │ │ │ -o52 = 5
    │ │ │ +o52 = 1
    │ │ │  
    │ │ │  i53 : ptb = randomPointOnRationalVariety compsL441_1
    │ │ │  
    │ │ │ -o53 = | 27 12 -34 9 -19 -43 -32 27 40 45 -13 29 -41 -13 22 -49 -4 -4 9 -23 43
    │ │ │ +o53 = | -31 -3 -29 -17 -21 5 -32 33 -24 2 26 -26 -45 -4 16 -22 2 -37 16 -23
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      18 -9 -47 43 21 38 17 -20 21 -29 47 0 2 -37 9 |
    │ │ │ +      -42 19 -29 21 7 2 17 9 -15 -9 -47 -13 0 38 47 21 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o53 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i54 : Fb = sub(F, (vars S) | ptb)
    │ │ │  
    │ │ │ -              2              2                              2               
    │ │ │ -o54 = ideal (a  + 22b*c + 45c  + 29a*d - 43b*d - 34c*d + 27d , a*b + 43b*c +
    │ │ │ +              2             2                             2              
    │ │ │ +o54 = ideal (a  + 16b*c + 2c  - 26a*d + 5b*d - 29c*d - 31d , a*b + 7b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -        2                              2   2              2                  
    │ │ │ -      9c  + 43a*d - 41b*d + 40c*d + 12d , b  - 37b*c + 17c  + 18b*d - 49c*d -
    │ │ │ +         2                             2   2             2                  
    │ │ │ +      16c  - 42a*d - 45b*d - 24c*d - 3d , b  + 47b*c + 9c  + 19b*d - 22c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                   2                              2     2          
    │ │ │ -      32d , a*c + 47b*c + 21c  - 20a*d - 23b*d - 13c*d - 19d , b*c  + 21b*c*d
    │ │ │ +         2                  2                             2     2           
    │ │ │ +      32d , a*c - 13b*c + 2c  - 15a*d - 23b*d - 4c*d - 21d , b*c  - 9b*c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -          2         2       2        2     3   3               2        2  
    │ │ │ -      - 9c d + 38a*d  - 4b*d  - 13c*d  + 9d , c  + 9b*c*d - 29c d + 2a*d  -
    │ │ │ +         2         2       2        2      3   3                2         2  
    │ │ │ +      29c d + 17a*d  + 2b*d  + 26c*d  - 17d , c  + 21b*c*d - 47c d + 38a*d  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2       2      3
    │ │ │ -      47b*d  - 4c*d  + 27d )
    │ │ │ +           2        2      3
    │ │ │ +      21b*d  - 37c*d  + 33d )
    │ │ │  
    │ │ │  o54 : Ideal of S
    │ │ │  
    │ │ │  i55 : betti res Fb
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │  o55 = total: 1 6 8 3
    │ │ │ @@ -440,80 +442,84 @@
    │ │ │            1: . 4 4 1
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o55 : BettiTally
    │ │ │  
    │ │ │  i56 : netList decompose Fb --
    │ │ │  
    │ │ │ -      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                      2              2                                                                                                                                                               |
    │ │ │ -o56 = |ideal (b - 50c - 43d, a + 15c - 46d, c  + 12c*d - 37d )                                                                                                                                                              |
    │ │ │ -      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                             2                                 2                                   2   2                            2                                   2   2                             2 |
    │ │ │ -      |ideal (c  + 46a*d - 39b*d + 2c*d - 24d , b*c - 9a*d + 16b*d + 2c*d + 27d , a*c + 43a*d + 44b*d - 48c*d + 24d , b  - 4a*d - 40b*d - 9c*d - 39d , a*b + 16a*d + 26b*d + 37c*d - 24d , a  - 25a*d + 47b*d + 34c*d + 8d )|
    │ │ │ -      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      +---------------------------------------------------------------+
    │ │ │ +o56 = |ideal (c - 17d, b - 26d, a - 49d)                              |
    │ │ │ +      +---------------------------------------------------------------+
    │ │ │ +      |                                     3      2         2      3 |
    │ │ │ +      |ideal (b + 39c - 21d, a + 4c - 27d, c  + 43c d + 39c*d  - 15d )|
    │ │ │ +      +---------------------------------------------------------------+
    │ │ │ +      |                                    2             2            |
    │ │ │ +      |ideal (b + 8c + 40d, a + 5c - 33d, c  + 4c*d + 45d )           |
    │ │ │ +      +---------------------------------------------------------------+
    │ │ │  
    │ │ │  i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2)
    │ │ │  
    │ │ │ -o57 = ++
    │ │ │ -      ++
    │ │ │ +      +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      |                       2                             2   2             2                      2                  2                             2   2             2                             2   3                2         2        2        2      3     2               2         2       2        2      3 |
    │ │ │ +o57 = |ideal (a*c - 13b*c + 2c  - 15a*d - 23b*d - 4c*d - 21d , b  + 47b*c + 9c  + 19b*d - 22c*d - 32d , a*b + 7b*c + 16c  - 42a*d - 45b*d - 24c*d - 3d , a  + 16b*c + 2c  - 26a*d + 5b*d - 29c*d - 31d , c  + 21b*c*d - 47c d + 38a*d  + 21b*d  - 37c*d  + 33d , b*c  - 9b*c*d - 29c d + 17a*d  + 2b*d  + 26c*d  - 17d )|
    │ │ │ +      +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │  
    │ │ │  i58 : pt0 = randomPointOnRationalVariety(compsL441_0)
    │ │ │  
    │ │ │ -o58 = | 32 -46 33 -7 -2 -29 -20 10 -23 -26 5 -16 1 -18 -3 46 13 -21 5 -22 17
    │ │ │ +o58 = | 49 0 -30 -36 -1 0 -9 17 37 29 34 13 19 8 -10 -47 21 -24 -44 42 9 46
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      15 -33 46 -2 -29 -23 18 -42 -2 -13 39 8 -40 -24 -22 |
    │ │ │ +      15 -29 35 -40 18 -22 -21 -42 39 -2 -33 -23 -13 -18 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o58 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i59 : pt1 = randomPointOnRationalVariety(compsL441_1)
    │ │ │  
    │ │ │ -o59 = | -8 41 28 -44 50 33 -38 33 -23 1 -2 -47 32 46 30 -22 -2 -14 27 37 15
    │ │ │ +o59 = | -5 -40 -6 3 -28 -8 -25 15 15 29 26 -37 11 -14 31 14 1 -50 43 37 5 50
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -25 -15 33 -23 3 21 -18 -9 3 10 -49 0 -35 -50 32 |
    │ │ │ +      10 3 -3 -35 -18 32 -7 -15 33 46 0 21 -49 3 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o59 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i60 : I0 = sub(sub(F, (vars ring F) | sub(pt0, ring F)), S)
    │ │ │  
    │ │ │ -              2             2                              2              
    │ │ │ -o60 = ideal (a  - 3b*c - 26c  - 16a*d - 29b*d + 33c*d + 32d , a*b - 2b*c +
    │ │ │ +              2              2                      2                   2  
    │ │ │ +o60 = ideal (a  - 10b*c + 29c  + 13a*d - 30c*d + 49d , a*b + 35b*c - 44c  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -        2                            2   2              2                 
    │ │ │ -      5c  + 17a*d + b*d - 23c*d - 46d , b  - 24b*c + 18c  + 8a*d + 15b*d +
    │ │ │ +                             2              2                             2 
    │ │ │ +      9a*d + 19b*d + 37c*d, b  - 13b*c - 22c  - 33a*d + 46b*d - 47c*d - 9d ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                   2                             2     2  
    │ │ │ -      46c*d - 20d , a*c + 39b*c - 29c  - 42a*d - 22b*d - 18c*d - 2d , b*c  -
    │ │ │ +                      2                           2     2                2   
    │ │ │ +      a*c - 2b*c - 40c  - 21a*d + 42b*d + 8c*d - d , b*c  - 42b*c*d + 15c d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                  2         2        2       2     3   3                2   
    │ │ │ -      2b*c*d - 33c d - 23a*d  + 13b*d  + 5c*d  - 7d , c  - 22b*c*d - 13c d -
    │ │ │ +           2        2        2      3   3                2         2        2
    │ │ │ +      18a*d  + 21b*d  + 34c*d  - 36d , c  - 18b*c*d + 39c d - 23a*d  - 29b*d 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2        2        2      3
    │ │ │ -      40a*d  + 46b*d  - 21c*d  + 10d )
    │ │ │ +             2      3
    │ │ │ +      - 24c*d  + 17d )
    │ │ │  
    │ │ │  o60 : Ideal of S
    │ │ │  
    │ │ │  i61 : I1 = sub(sub(F, (vars ring F) | sub(pt1, ring F)), S)
    │ │ │  
    │ │ │ -              2            2                             2               
    │ │ │ -o61 = ideal (a  + 30b*c + c  - 47a*d + 33b*d + 28c*d - 8d , a*b - 23b*c +
    │ │ │ +              2              2                           2                  2
    │ │ │ +o61 = ideal (a  + 31b*c + 29c  - 37a*d - 8b*d - 6c*d - 5d , a*b - 3b*c + 43c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                              2   2              2                
    │ │ │ -      27c  + 15a*d + 32b*d - 23c*d + 41d , b  - 50b*c - 18c  - 25b*d - 22c*d
    │ │ │ +                                  2   2              2                  
    │ │ │ +      + 5a*d + 11b*d + 15c*d - 40d , b  - 49b*c + 32c  + 50b*d + 14c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2                  2                             2     2         
    │ │ │ -      - 38d , a*c - 49b*c + 3c  - 9a*d + 37b*d + 46c*d + 50d , b*c  + 3b*c*d
    │ │ │ +         2                   2                             2     2          
    │ │ │ +      25d , a*c + 46b*c - 35c  - 7a*d + 37b*d - 14c*d - 28d , b*c  - 15b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2         2       2       2      3   3                2         2
    │ │ │ -      - 15c d + 21a*d  - 2b*d  - 2c*d  - 44d , c  + 32b*c*d + 10c d - 35a*d 
    │ │ │ +           2         2      2        2     3   3               2         2  
    │ │ │ +      + 10c d - 18a*d  + b*d  + 26c*d  + 3d , c  + 3b*c*d + 33c d + 21a*d  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2      3
    │ │ │ -      + 33b*d  - 14c*d  + 33d )
    │ │ │ +          2        2      3
    │ │ │ +      3b*d  - 50c*d  + 15d )
    │ │ │  
    │ │ │  o61 : Ideal of S
    │ │ │  
    │ │ │  i62 : betti res I0
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │  o62 = total: 1 6 8 3
    │ │ │ @@ -531,36 +537,33 @@
    │ │ │            1: . 4 4 1
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o63 : BettiTally
    │ │ │  
    │ │ │  i64 : netList decompose I0
    │ │ │  
    │ │ │ -      +------------------------------------------------------------------------------------------------+
    │ │ │ -o64 = |ideal (c - 42d, b + 26d, a - 30d)                                                               |
    │ │ │ -      +------------------------------------------------------------------------------------------------+
    │ │ │ -      |ideal (c - 47d, b + 7d, a - 44d)                                                                |
    │ │ │ -      +------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                      2   2      2                      2 |
    │ │ │ -      |ideal (a + 39b - 29c - 24d, b*c - 15c  - 29b*d - 38c*d + 16d , b  - 39c  + 17b*d - 28c*d - 50d )|
    │ │ │ -      +------------------------------------------------------------------------------------------------+
    │ │ │ +      +---------------------------------------------------+
    │ │ │ +o64 = |ideal (c - 21d, b - 26d, a - 50d)                  |
    │ │ │ +      +---------------------------------------------------+
    │ │ │ +      |ideal (c - 49d, b - 33d, a - 30d)                  |
    │ │ │ +      +---------------------------------------------------+
    │ │ │ +      |ideal (c + 41d, b + 33d, a - 35d)                  |
    │ │ │ +      +---------------------------------------------------+
    │ │ │ +      |ideal (c + d, b + 40d, a - 5d)                     |
    │ │ │ +      +---------------------------------------------------+
    │ │ │ +      |                                    2            2 |
    │ │ │ +      |ideal (b + c - 47d, a - 38c - 17d, c  + 4c*d - 8d )|
    │ │ │ +      +---------------------------------------------------+
    │ │ │  
    │ │ │  i65 : netList decompose I1
    │ │ │  
    │ │ │ -      +---------------------------------+
    │ │ │ -o65 = |ideal (c - 9d, b + 15d, a + 27d) |
    │ │ │ -      +---------------------------------+
    │ │ │ -      |ideal (c + 48d, b + 11d, a - 37d)|
    │ │ │ -      +---------------------------------+
    │ │ │ -      |ideal (c + 29d, b + 46d, a + 18d)|
    │ │ │ -      +---------------------------------+
    │ │ │ -      |ideal (c + 24d, b + 46d, a + 33d)|
    │ │ │ -      +---------------------------------+
    │ │ │ -      |ideal (c + 22d, b + 38d, a - 50d)|
    │ │ │ -      +---------------------------------+
    │ │ │ +      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      |                        2                             2   2              2                      2                  2                             2   2              2                           2   3               2         2       2        2      3     2                2         2      2        2     3 |
    │ │ │ +o65 = |ideal (a*c + 46b*c - 35c  - 7a*d + 37b*d - 14c*d - 28d , b  - 49b*c + 32c  + 50b*d + 14c*d - 25d , a*b - 3b*c + 43c  + 5a*d + 11b*d + 15c*d - 40d , a  + 31b*c + 29c  - 37a*d - 8b*d - 6c*d - 5d , c  + 3b*c*d + 33c d + 21a*d  + 3b*d  - 50c*d  + 15d , b*c  - 15b*c*d + 10c d - 18a*d  + b*d  + 26c*d  + 3d )|
    │ │ │ +      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │  
    │ │ │  i66 : L430 = (trim minors(2, M1)) + groebnerStratum F;
    │ │ │  
    │ │ │  o66 : Ideal of T
    │ │ │  
    │ │ │  i67 : C = res(I, FastNonminimal => true)
    │ │ ├── ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.html
    │ │ │ @@ -344,15 +344,15 @@
    │ │ │              
    │ │ │
    i22 : assert(dim L == 18)
    │ │ │
    │ │ │
    i23 : elapsedTime isPrime L
    │ │ │ - -- 2.47531s elapsed
    │ │ │ + -- 2.22746s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │
    │ │ │
    │ │ │

    The Schreyer resolution and minimal Betti numbers

    │ │ │ @@ -556,15 +556,15 @@ │ │ │ │ │ │ o39 : Ideal of T
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i40 : elapsedTime compsL441 = decompose L441;
    │ │ │ - -- 1.52419s elapsed
    │ │ │ + -- 1.24058s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i41 : #compsL441
    │ │ │  
    │ │ │  o41 = 2
    │ │ │ @@ -591,40 +591,40 @@ │ │ │

    Both components are rational, and here are random points, one on each component:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i44 : pta = randomPointOnRationalVariety compsL441_0
    │ │ │  
    │ │ │ -o44 = | 22 -10 -8 -1 34 44 -21 -1 25 -41 6 -11 -50 -50 43 -28 -6 45 -28 22 42
    │ │ │ +o44 = | 32 -41 22 15 22 -46 43 42 -27 -27 -13 10 -24 19 -25 48 31 10 41 49 39
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -29 -32 -28 5 -10 34 15 19 37 26 49 19 5 10 18 |
    │ │ │ +      -28 -29 -10 -48 5 15 18 45 19 49 37 -32 34 26 -50 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o44 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    i45 : Fa = sub(F, (vars S) | pta)
    │ │ │  
    │ │ │ -              2              2                             2              
    │ │ │ -o45 = ideal (a  + 43b*c - 41c  - 11a*d + 44b*d - 8c*d + 22d , a*b + 5b*c -
    │ │ │ +              2              2                              2               
    │ │ │ +o45 = ideal (a  - 25b*c - 27c  + 10a*d - 46b*d + 22c*d + 32d , a*b - 48b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │           2                              2   2              2                
    │ │ │ -      28c  + 42a*d - 50b*d + 25c*d - 10d , b  + 10b*c + 15c  + 19a*d - 29b*d
    │ │ │ +      41c  + 39a*d - 24b*d - 27c*d - 41d , b  + 26b*c + 18c  - 32a*d - 28b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2                   2                              2     2
    │ │ │ -      - 28c*d - 21d , a*c + 49b*c - 10c  + 19a*d + 22b*d - 50c*d + 34d , b*c 
    │ │ │ +                   2                  2                              2     2
    │ │ │ +      + 48c*d + 43d , a*c + 37b*c + 5c  + 45a*d + 49b*d + 19c*d + 22d , b*c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                     2         2       2       2    3   3                2   
    │ │ │ -      + 37b*c*d - 32c d + 34a*d  - 6b*d  + 6c*d  - d , c  + 18b*c*d + 26c d +
    │ │ │ +                     2         2        2        2      3   3            
    │ │ │ +      + 19b*c*d - 29c d + 15a*d  + 31b*d  - 13c*d  + 15d , c  - 50b*c*d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -          2        2        2    3
    │ │ │ -      5a*d  - 28b*d  + 45c*d  - d )
    │ │ │ +         2         2        2        2      3
    │ │ │ +      49c d + 34a*d  - 10b*d  + 10c*d  + 42d )
    │ │ │  
    │ │ │  o45 : Ideal of S
    │ │ │
    │ │ │
    i46 : betti res Fa
    │ │ │ @@ -638,104 +638,106 @@
    │ │ │  o46 : BettiTally
    │ │ │
    │ │ │
    i47 : netList decompose Fa -- this one is 5 points on a plane, and another point
    │ │ │  
    │ │ │ -      +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -o47 = |ideal (c + 19d, b - 37d, a)                                                                                                                                        |
    │ │ │ -      +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                             2              2                      2   3                2         2       2     3     2                2         2        2      3 |
    │ │ │ -      |ideal (a + 49b - 10c + 39d, b  + 10b*c + 15c  + 50b*d - 40c*d + 46d , c  + 18b*c*d + 26c d + 30b*d  - 6c*d  + 6d , b*c  + 37b*c*d - 32c d + 45b*d  + 43c*d  - 14d )|
    │ │ │ -      +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ + +----------------------------------------------------------------------------------------------+ │ │ │ +o47 = |ideal (c + 45d, b - 34d, a - 35d) | │ │ │ + +----------------------------------------------------------------------------------------------+ │ │ │ + |ideal (c + 18d, b - 12d, a + 47d) | │ │ │ + +----------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 2 2 | │ │ │ + |ideal (a + 37b + 5c - 4d, b*c - 13c + 45b*d - 28c*d - 29d , b - 48c - 14b*d + 27c*d - 38d )| │ │ │ + +----------------------------------------------------------------------------------------------+ │ │ │
    │ │ │
    i48 : CFa = minimalPrimes Fa
    │ │ │  
    │ │ │ -                                                                 2          
    │ │ │ -o48 = {ideal (c + 19d, b - 37d, a), ideal (a + 49b - 10c + 39d, b  + 10b*c +
    │ │ │ +                                                                            
    │ │ │ +o48 = {ideal (c + 45d, b - 34d, a - 35d), ideal (c + 18d, b - 12d, a + 47d),
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                      2   3                2         2       2  
    │ │ │ -      15c  + 50b*d - 40c*d + 46d , c  + 18b*c*d + 26c d + 30b*d  - 6c*d  +
    │ │ │ +                                         2                      2   2      2
    │ │ │ +      ideal (a + 37b + 5c - 4d, b*c - 13c  + 45b*d - 28c*d - 29d , b  - 48c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -        3     2                2         2        2      3
    │ │ │ -      6d , b*c  + 37b*c*d - 32c d + 45b*d  + 43c*d  - 14d )}
    │ │ │ +                           2
    │ │ │ +      - 14b*d + 27c*d - 38d )}
    │ │ │  
    │ │ │  o48 : List
    │ │ │
    │ │ │
    i49 : lin = CFa_1_0 -- a linear form, defining a plane.
    │ │ │  
    │ │ │ -o49 = a + 49b - 10c + 39d
    │ │ │ +o49 = c + 18d
    │ │ │  
    │ │ │  o49 : S
    │ │ │
    │ │ │
    i50 : CFa/degree
    │ │ │  
    │ │ │ -o50 = {1, 5}
    │ │ │ +o50 = {1, 1, 4}
    │ │ │  
    │ │ │  o50 : List
    │ │ │
    │ │ │
    i51 : CFa/(I -> lin % I == 0) -- so 5 points on the plane.
    │ │ │  
    │ │ │ -o51 = {false, true}
    │ │ │ +o51 = {false, true, false}
    │ │ │  
    │ │ │  o51 : List
    │ │ │
    │ │ │
    i52 : degree(Fa : (Fa : lin))  -- somewhat simpler(?) way to see the ideal of the 5 points
    │ │ │  
    │ │ │ -o52 = 5
    │ │ │ +o52 = 1 │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i53 : ptb = randomPointOnRationalVariety compsL441_1
    │ │ │  
    │ │ │ -o53 = | 27 12 -34 9 -19 -43 -32 27 40 45 -13 29 -41 -13 22 -49 -4 -4 9 -23 43
    │ │ │ +o53 = | -31 -3 -29 -17 -21 5 -32 33 -24 2 26 -26 -45 -4 16 -22 2 -37 16 -23
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      18 -9 -47 43 21 38 17 -20 21 -29 47 0 2 -37 9 |
    │ │ │ +      -42 19 -29 21 7 2 17 9 -15 -9 -47 -13 0 38 47 21 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o53 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    i54 : Fb = sub(F, (vars S) | ptb)
    │ │ │  
    │ │ │ -              2              2                              2               
    │ │ │ -o54 = ideal (a  + 22b*c + 45c  + 29a*d - 43b*d - 34c*d + 27d , a*b + 43b*c +
    │ │ │ +              2             2                             2              
    │ │ │ +o54 = ideal (a  + 16b*c + 2c  - 26a*d + 5b*d - 29c*d - 31d , a*b + 7b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -        2                              2   2              2                  
    │ │ │ -      9c  + 43a*d - 41b*d + 40c*d + 12d , b  - 37b*c + 17c  + 18b*d - 49c*d -
    │ │ │ +         2                             2   2             2                  
    │ │ │ +      16c  - 42a*d - 45b*d - 24c*d - 3d , b  + 47b*c + 9c  + 19b*d - 22c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                   2                              2     2          
    │ │ │ -      32d , a*c + 47b*c + 21c  - 20a*d - 23b*d - 13c*d - 19d , b*c  + 21b*c*d
    │ │ │ +         2                  2                             2     2           
    │ │ │ +      32d , a*c - 13b*c + 2c  - 15a*d - 23b*d - 4c*d - 21d , b*c  - 9b*c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -          2         2       2        2     3   3               2        2  
    │ │ │ -      - 9c d + 38a*d  - 4b*d  - 13c*d  + 9d , c  + 9b*c*d - 29c d + 2a*d  -
    │ │ │ +         2         2       2        2      3   3                2         2  
    │ │ │ +      29c d + 17a*d  + 2b*d  + 26c*d  - 17d , c  + 21b*c*d - 47c d + 38a*d  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2       2      3
    │ │ │ -      47b*d  - 4c*d  + 27d )
    │ │ │ +           2        2      3
    │ │ │ +      21b*d  - 37c*d  + 33d )
    │ │ │  
    │ │ │  o54 : Ideal of S
    │ │ │
    │ │ │
    i55 : betti res Fb
    │ │ │ @@ -749,102 +751,106 @@
    │ │ │  o55 : BettiTally
    │ │ │
    │ │ │
    i56 : netList decompose Fb --
    │ │ │  
    │ │ │ -      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                      2              2                                                                                                                                                               |
    │ │ │ -o56 = |ideal (b - 50c - 43d, a + 15c - 46d, c  + 12c*d - 37d )                                                                                                                                                              |
    │ │ │ -      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                             2                                 2                                   2   2                            2                                   2   2                             2 |
    │ │ │ -      |ideal (c  + 46a*d - 39b*d + 2c*d - 24d , b*c - 9a*d + 16b*d + 2c*d + 27d , a*c + 43a*d + 44b*d - 48c*d + 24d , b  - 4a*d - 40b*d - 9c*d - 39d , a*b + 16a*d + 26b*d + 37c*d - 24d , a  - 25a*d + 47b*d + 34c*d + 8d )|
    │ │ │ -      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ + +---------------------------------------------------------------+ │ │ │ +o56 = |ideal (c - 17d, b - 26d, a - 49d) | │ │ │ + +---------------------------------------------------------------+ │ │ │ + | 3 2 2 3 | │ │ │ + |ideal (b + 39c - 21d, a + 4c - 27d, c + 43c d + 39c*d - 15d )| │ │ │ + +---------------------------------------------------------------+ │ │ │ + | 2 2 | │ │ │ + |ideal (b + 8c + 40d, a + 5c - 33d, c + 4c*d + 45d ) | │ │ │ + +---------------------------------------------------------------+ │ │ │
    │ │ │
    i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2)
    │ │ │  
    │ │ │ -o57 = ++
    │ │ │ -      ++
    │ │ │ + +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 3 | │ │ │ +o57 = |ideal (a*c - 13b*c + 2c - 15a*d - 23b*d - 4c*d - 21d , b + 47b*c + 9c + 19b*d - 22c*d - 32d , a*b + 7b*c + 16c - 42a*d - 45b*d - 24c*d - 3d , a + 16b*c + 2c - 26a*d + 5b*d - 29c*d - 31d , c + 21b*c*d - 47c d + 38a*d + 21b*d - 37c*d + 33d , b*c - 9b*c*d - 29c d + 17a*d + 2b*d + 26c*d - 17d )| │ │ │ + +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i58 : pt0 = randomPointOnRationalVariety(compsL441_0)
    │ │ │  
    │ │ │ -o58 = | 32 -46 33 -7 -2 -29 -20 10 -23 -26 5 -16 1 -18 -3 46 13 -21 5 -22 17
    │ │ │ +o58 = | 49 0 -30 -36 -1 0 -9 17 37 29 34 13 19 8 -10 -47 21 -24 -44 42 9 46
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      15 -33 46 -2 -29 -23 18 -42 -2 -13 39 8 -40 -24 -22 |
    │ │ │ +      15 -29 35 -40 18 -22 -21 -42 39 -2 -33 -23 -13 -18 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o58 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    i59 : pt1 = randomPointOnRationalVariety(compsL441_1)
    │ │ │  
    │ │ │ -o59 = | -8 41 28 -44 50 33 -38 33 -23 1 -2 -47 32 46 30 -22 -2 -14 27 37 15
    │ │ │ +o59 = | -5 -40 -6 3 -28 -8 -25 15 15 29 26 -37 11 -14 31 14 1 -50 43 37 5 50
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -25 -15 33 -23 3 21 -18 -9 3 10 -49 0 -35 -50 32 |
    │ │ │ +      10 3 -3 -35 -18 32 -7 -15 33 46 0 21 -49 3 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o59 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    │ │ │

    We compute the ideal of the corresponding zero dimensional scheme with length 6, corresponding to the points pt0, pt1 in Hilb.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i60 : I0 = sub(sub(F, (vars ring F) | sub(pt0, ring F)), S)
    │ │ │  
    │ │ │ -              2             2                              2              
    │ │ │ -o60 = ideal (a  - 3b*c - 26c  - 16a*d - 29b*d + 33c*d + 32d , a*b - 2b*c +
    │ │ │ +              2              2                      2                   2  
    │ │ │ +o60 = ideal (a  - 10b*c + 29c  + 13a*d - 30c*d + 49d , a*b + 35b*c - 44c  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -        2                            2   2              2                 
    │ │ │ -      5c  + 17a*d + b*d - 23c*d - 46d , b  - 24b*c + 18c  + 8a*d + 15b*d +
    │ │ │ +                             2              2                             2 
    │ │ │ +      9a*d + 19b*d + 37c*d, b  - 13b*c - 22c  - 33a*d + 46b*d - 47c*d - 9d ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                   2                             2     2  
    │ │ │ -      46c*d - 20d , a*c + 39b*c - 29c  - 42a*d - 22b*d - 18c*d - 2d , b*c  -
    │ │ │ +                      2                           2     2                2   
    │ │ │ +      a*c - 2b*c - 40c  - 21a*d + 42b*d + 8c*d - d , b*c  - 42b*c*d + 15c d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                  2         2        2       2     3   3                2   
    │ │ │ -      2b*c*d - 33c d - 23a*d  + 13b*d  + 5c*d  - 7d , c  - 22b*c*d - 13c d -
    │ │ │ +           2        2        2      3   3                2         2        2
    │ │ │ +      18a*d  + 21b*d  + 34c*d  - 36d , c  - 18b*c*d + 39c d - 23a*d  - 29b*d 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2        2        2      3
    │ │ │ -      40a*d  + 46b*d  - 21c*d  + 10d )
    │ │ │ +             2      3
    │ │ │ +      - 24c*d  + 17d )
    │ │ │  
    │ │ │  o60 : Ideal of S
    │ │ │
    │ │ │
    i61 : I1 = sub(sub(F, (vars ring F) | sub(pt1, ring F)), S)
    │ │ │  
    │ │ │ -              2            2                             2               
    │ │ │ -o61 = ideal (a  + 30b*c + c  - 47a*d + 33b*d + 28c*d - 8d , a*b - 23b*c +
    │ │ │ +              2              2                           2                  2
    │ │ │ +o61 = ideal (a  + 31b*c + 29c  - 37a*d - 8b*d - 6c*d - 5d , a*b - 3b*c + 43c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                              2   2              2                
    │ │ │ -      27c  + 15a*d + 32b*d - 23c*d + 41d , b  - 50b*c - 18c  - 25b*d - 22c*d
    │ │ │ +                                  2   2              2                  
    │ │ │ +      + 5a*d + 11b*d + 15c*d - 40d , b  - 49b*c + 32c  + 50b*d + 14c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2                  2                             2     2         
    │ │ │ -      - 38d , a*c - 49b*c + 3c  - 9a*d + 37b*d + 46c*d + 50d , b*c  + 3b*c*d
    │ │ │ +         2                   2                             2     2          
    │ │ │ +      25d , a*c + 46b*c - 35c  - 7a*d + 37b*d - 14c*d - 28d , b*c  - 15b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2         2       2       2      3   3                2         2
    │ │ │ -      - 15c d + 21a*d  - 2b*d  - 2c*d  - 44d , c  + 32b*c*d + 10c d - 35a*d 
    │ │ │ +           2         2      2        2     3   3               2         2  
    │ │ │ +      + 10c d - 18a*d  + b*d  + 26c*d  + 3d , c  + 3b*c*d + 33c d + 21a*d  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2      3
    │ │ │ -      + 33b*d  - 14c*d  + 33d )
    │ │ │ +          2        2      3
    │ │ │ +      3b*d  - 50c*d  + 15d )
    │ │ │  
    │ │ │  o61 : Ideal of S
    │ │ │
    │ │ │
    i62 : betti res I0
    │ │ │ @@ -873,39 +879,36 @@
    │ │ │            
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i64 : netList decompose I0
    │ │ │  
    │ │ │ -      +------------------------------------------------------------------------------------------------+
    │ │ │ -o64 = |ideal (c - 42d, b + 26d, a - 30d)                                                               |
    │ │ │ -      +------------------------------------------------------------------------------------------------+
    │ │ │ -      |ideal (c - 47d, b + 7d, a - 44d)                                                                |
    │ │ │ -      +------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                      2   2      2                      2 |
    │ │ │ -      |ideal (a + 39b - 29c - 24d, b*c - 15c  - 29b*d - 38c*d + 16d , b  - 39c  + 17b*d - 28c*d - 50d )|
    │ │ │ -      +------------------------------------------------------------------------------------------------+
    │ │ │ + +---------------------------------------------------+ │ │ │ +o64 = |ideal (c - 21d, b - 26d, a - 50d) | │ │ │ + +---------------------------------------------------+ │ │ │ + |ideal (c - 49d, b - 33d, a - 30d) | │ │ │ + +---------------------------------------------------+ │ │ │ + |ideal (c + 41d, b + 33d, a - 35d) | │ │ │ + +---------------------------------------------------+ │ │ │ + |ideal (c + d, b + 40d, a - 5d) | │ │ │ + +---------------------------------------------------+ │ │ │ + | 2 2 | │ │ │ + |ideal (b + c - 47d, a - 38c - 17d, c + 4c*d - 8d )| │ │ │ + +---------------------------------------------------+ │ │ │
    │ │ │
    i65 : netList decompose I1
    │ │ │  
    │ │ │ -      +---------------------------------+
    │ │ │ -o65 = |ideal (c - 9d, b + 15d, a + 27d) |
    │ │ │ -      +---------------------------------+
    │ │ │ -      |ideal (c + 48d, b + 11d, a - 37d)|
    │ │ │ -      +---------------------------------+
    │ │ │ -      |ideal (c + 29d, b + 46d, a + 18d)|
    │ │ │ -      +---------------------------------+
    │ │ │ -      |ideal (c + 24d, b + 46d, a + 33d)|
    │ │ │ -      +---------------------------------+
    │ │ │ -      |ideal (c + 22d, b + 38d, a - 50d)|
    │ │ │ -      +---------------------------------+
    │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 3 | │ │ │ +o65 = |ideal (a*c + 46b*c - 35c - 7a*d + 37b*d - 14c*d - 28d , b - 49b*c + 32c + 50b*d + 14c*d - 25d , a*b - 3b*c + 43c + 5a*d + 11b*d + 15c*d - 40d , a + 31b*c + 29c - 37a*d - 8b*d - 6c*d - 5d , c + 3b*c*d + 33c d + 21a*d + 3b*d - 50c*d + 15d , b*c - 15b*c*d + 10c d - 18a*d + b*d + 26c*d + 3d )| │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i66 : L430 = (trim minors(2, M1)) + groebnerStratum F;
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -251,15 +251,15 @@
    │ │ │ │        |      31         33        32       34        35        36    |
    │ │ │ │        +--------------------------------------------------------------+
    │ │ │ │  i21 : L = trim groebnerStratum F;
    │ │ │ │  
    │ │ │ │  o21 : Ideal of T
    │ │ │ │  i22 : assert(dim L == 18)
    │ │ │ │  i23 : elapsedTime isPrime L
    │ │ │ │ - -- 2.47531s elapsed
    │ │ │ │ + -- 2.22746s elapsed
    │ │ │ │  
    │ │ │ │  o23 = true
    │ │ │ │  ********** TThhee SScchhrreeyyeerr rreessoolluuttiioonn aanndd mmiinniimmaall BBeettttii nnuummbbeerrss **********
    │ │ │ │  Schreyer's construction of a nonminimal free resolution starts with a Groebner
    │ │ │ │  basis. First, one constructs the SScchhrreeyyeerr ffrraammee (see La Scala, Stillman). This
    │ │ │ │  is determined solely from the initial ideal $J$ and its minimal generators (but
    │ │ │ │  depends on some choices of ordering, but otherwise is combinatorial). This
    │ │ │ │ @@ -415,15 +415,15 @@
    │ │ │ │  We now compute the locus in $V(L)$ where the Betti diagram has no cancellation.
    │ │ │ │  This is a closed subscheme of $V(L)$, which is a closed subscheme of the
    │ │ │ │  Hilbert scheme. Notice that there are two components.
    │ │ │ │  i39 : L441 = trim(L + ideal M1);
    │ │ │ │  
    │ │ │ │  o39 : Ideal of T
    │ │ │ │  i40 : elapsedTime compsL441 = decompose L441;
    │ │ │ │ - -- 1.52419s elapsed
    │ │ │ │ + -- 1.24058s elapsed
    │ │ │ │  i41 : #compsL441
    │ │ │ │  
    │ │ │ │  o41 = 2
    │ │ │ │  i42 : compsL441/dim -- two components, of dimensions 14 and 16.
    │ │ │ │  
    │ │ │ │  o42 = {16, 14}
    │ │ │ │  
    │ │ │ │ @@ -431,36 +431,36 @@
    │ │ │ │  i43 : compsL441/dim == {16, 14}
    │ │ │ │  
    │ │ │ │  o43 = true
    │ │ │ │  Both components are rational, and here are random points, one on each
    │ │ │ │  component:
    │ │ │ │  i44 : pta = randomPointOnRationalVariety compsL441_0
    │ │ │ │  
    │ │ │ │ -o44 = | 22 -10 -8 -1 34 44 -21 -1 25 -41 6 -11 -50 -50 43 -28 -6 45 -28 22 42
    │ │ │ │ +o44 = | 32 -41 22 15 22 -46 43 42 -27 -27 -13 10 -24 19 -25 48 31 10 41 49 39
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      -29 -32 -28 5 -10 34 15 19 37 26 49 19 5 10 18 |
    │ │ │ │ +      -28 -29 -10 -48 5 15 18 45 19 49 37 -32 34 26 -50 |
    │ │ │ │  
    │ │ │ │                 1       36
    │ │ │ │  o44 : Matrix kk  <-- kk
    │ │ │ │  i45 : Fa = sub(F, (vars S) | pta)
    │ │ │ │  
    │ │ │ │ -              2              2                             2
    │ │ │ │ -o45 = ideal (a  + 43b*c - 41c  - 11a*d + 44b*d - 8c*d + 22d , a*b + 5b*c -
    │ │ │ │ +              2              2                              2
    │ │ │ │ +o45 = ideal (a  - 25b*c - 27c  + 10a*d - 46b*d + 22c*d + 32d , a*b - 48b*c +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │           2                              2   2              2
    │ │ │ │ -      28c  + 42a*d - 50b*d + 25c*d - 10d , b  + 10b*c + 15c  + 19a*d - 29b*d
    │ │ │ │ +      41c  + 39a*d - 24b*d - 27c*d - 41d , b  + 26b*c + 18c  - 32a*d - 28b*d
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                   2                   2                              2     2
    │ │ │ │ -      - 28c*d - 21d , a*c + 49b*c - 10c  + 19a*d + 22b*d - 50c*d + 34d , b*c
    │ │ │ │ +                   2                  2                              2     2
    │ │ │ │ +      + 48c*d + 43d , a*c + 37b*c + 5c  + 45a*d + 49b*d + 19c*d + 22d , b*c
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                     2         2       2       2    3   3                2
    │ │ │ │ -      + 37b*c*d - 32c d + 34a*d  - 6b*d  + 6c*d  - d , c  + 18b*c*d + 26c d +
    │ │ │ │ +                     2         2        2        2      3   3
    │ │ │ │ +      + 19b*c*d - 29c d + 15a*d  + 31b*d  - 13c*d  + 15d , c  - 50b*c*d +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -          2        2        2    3
    │ │ │ │ -      5a*d  - 28b*d  + 45c*d  - d )
    │ │ │ │ +         2         2        2        2      3
    │ │ │ │ +      49c d + 34a*d  - 10b*d  + 10c*d  + 42d )
    │ │ │ │  
    │ │ │ │  o45 : Ideal of S
    │ │ │ │  i46 : betti res Fa
    │ │ │ │  
    │ │ │ │               0 1 2 3
    │ │ │ │  o46 = total: 1 6 8 3
    │ │ │ │            0: 1 . . .
    │ │ │ │ @@ -468,172 +468,177 @@
    │ │ │ │            2: . 2 4 2
    │ │ │ │  
    │ │ │ │  o46 : BettiTally
    │ │ │ │  i47 : netList decompose Fa -- this one is 5 points on a plane, and another
    │ │ │ │  point
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ -------------+
    │ │ │ │ -o47 = |ideal (c + 19d, b - 37d, a)
    │ │ │ │ +----------------------+
    │ │ │ │ +o47 = |ideal (c + 45d, b - 34d, a - 35d)
    │ │ │ │  |
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ -------------+
    │ │ │ │ -      |                             2              2                      2   3
    │ │ │ │ -2         2       2     3     2                2         2        2      3 |
    │ │ │ │ -      |ideal (a + 49b - 10c + 39d, b  + 10b*c + 15c  + 50b*d - 40c*d + 46d , c
    │ │ │ │ -+ 18b*c*d + 26c d + 30b*d  - 6c*d  + 6d , b*c  + 37b*c*d - 32c d + 45b*d  +
    │ │ │ │ -43c*d  - 14d )|
    │ │ │ │ +----------------------+
    │ │ │ │ +      |ideal (c + 18d, b - 12d, a + 47d)
    │ │ │ │ +|
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ -------------+
    │ │ │ │ +----------------------+
    │ │ │ │ +      |                                   2                      2   2      2
    │ │ │ │ +2 |
    │ │ │ │ +      |ideal (a + 37b + 5c - 4d, b*c - 13c  + 45b*d - 28c*d - 29d , b  - 48c  -
    │ │ │ │ +14b*d + 27c*d - 38d )|
    │ │ │ │ +      +------------------------------------------------------------------------
    │ │ │ │ +----------------------+
    │ │ │ │  i48 : CFa = minimalPrimes Fa
    │ │ │ │  
    │ │ │ │ -                                                                 2
    │ │ │ │ -o48 = {ideal (c + 19d, b - 37d, a), ideal (a + 49b - 10c + 39d, b  + 10b*c +
    │ │ │ │ +
    │ │ │ │ +o48 = {ideal (c + 45d, b - 34d, a - 35d), ideal (c + 18d, b - 12d, a + 47d),
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -         2                      2   3                2         2       2
    │ │ │ │ -      15c  + 50b*d - 40c*d + 46d , c  + 18b*c*d + 26c d + 30b*d  - 6c*d  +
    │ │ │ │ +                                         2                      2   2      2
    │ │ │ │ +      ideal (a + 37b + 5c - 4d, b*c - 13c  + 45b*d - 28c*d - 29d , b  - 48c
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -        3     2                2         2        2      3
    │ │ │ │ -      6d , b*c  + 37b*c*d - 32c d + 45b*d  + 43c*d  - 14d )}
    │ │ │ │ +                           2
    │ │ │ │ +      - 14b*d + 27c*d - 38d )}
    │ │ │ │  
    │ │ │ │  o48 : List
    │ │ │ │  i49 : lin = CFa_1_0 -- a linear form, defining a plane.
    │ │ │ │  
    │ │ │ │ -o49 = a + 49b - 10c + 39d
    │ │ │ │ +o49 = c + 18d
    │ │ │ │  
    │ │ │ │  o49 : S
    │ │ │ │  i50 : CFa/degree
    │ │ │ │  
    │ │ │ │ -o50 = {1, 5}
    │ │ │ │ +o50 = {1, 1, 4}
    │ │ │ │  
    │ │ │ │  o50 : List
    │ │ │ │  i51 : CFa/(I -> lin % I == 0) -- so 5 points on the plane.
    │ │ │ │  
    │ │ │ │ -o51 = {false, true}
    │ │ │ │ +o51 = {false, true, false}
    │ │ │ │  
    │ │ │ │  o51 : List
    │ │ │ │  i52 : degree(Fa : (Fa : lin))  -- somewhat simpler(?) way to see the ideal of
    │ │ │ │  the 5 points
    │ │ │ │  
    │ │ │ │ -o52 = 5
    │ │ │ │ +o52 = 1
    │ │ │ │  i53 : ptb = randomPointOnRationalVariety compsL441_1
    │ │ │ │  
    │ │ │ │ -o53 = | 27 12 -34 9 -19 -43 -32 27 40 45 -13 29 -41 -13 22 -49 -4 -4 9 -23 43
    │ │ │ │ +o53 = | -31 -3 -29 -17 -21 5 -32 33 -24 2 26 -26 -45 -4 16 -22 2 -37 16 -23
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      18 -9 -47 43 21 38 17 -20 21 -29 47 0 2 -37 9 |
    │ │ │ │ +      -42 19 -29 21 7 2 17 9 -15 -9 -47 -13 0 38 47 21 |
    │ │ │ │  
    │ │ │ │                 1       36
    │ │ │ │  o53 : Matrix kk  <-- kk
    │ │ │ │  i54 : Fb = sub(F, (vars S) | ptb)
    │ │ │ │  
    │ │ │ │ -              2              2                              2
    │ │ │ │ -o54 = ideal (a  + 22b*c + 45c  + 29a*d - 43b*d - 34c*d + 27d , a*b + 43b*c +
    │ │ │ │ +              2             2                             2
    │ │ │ │ +o54 = ideal (a  + 16b*c + 2c  - 26a*d + 5b*d - 29c*d - 31d , a*b + 7b*c +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -        2                              2   2              2
    │ │ │ │ -      9c  + 43a*d - 41b*d + 40c*d + 12d , b  - 37b*c + 17c  + 18b*d - 49c*d -
    │ │ │ │ +         2                             2   2             2
    │ │ │ │ +      16c  - 42a*d - 45b*d - 24c*d - 3d , b  + 47b*c + 9c  + 19b*d - 22c*d -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -         2                   2                              2     2
    │ │ │ │ -      32d , a*c + 47b*c + 21c  - 20a*d - 23b*d - 13c*d - 19d , b*c  + 21b*c*d
    │ │ │ │ +         2                  2                             2     2
    │ │ │ │ +      32d , a*c - 13b*c + 2c  - 15a*d - 23b*d - 4c*d - 21d , b*c  - 9b*c*d -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -          2         2       2        2     3   3               2        2
    │ │ │ │ -      - 9c d + 38a*d  - 4b*d  - 13c*d  + 9d , c  + 9b*c*d - 29c d + 2a*d  -
    │ │ │ │ +         2         2       2        2      3   3                2         2
    │ │ │ │ +      29c d + 17a*d  + 2b*d  + 26c*d  - 17d , c  + 21b*c*d - 47c d + 38a*d  +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -           2       2      3
    │ │ │ │ -      47b*d  - 4c*d  + 27d )
    │ │ │ │ +           2        2      3
    │ │ │ │ +      21b*d  - 37c*d  + 33d )
    │ │ │ │  
    │ │ │ │  o54 : Ideal of S
    │ │ │ │  i55 : betti res Fb
    │ │ │ │  
    │ │ │ │               0 1 2 3
    │ │ │ │  o55 = total: 1 6 8 3
    │ │ │ │            0: 1 . . .
    │ │ │ │            1: . 4 4 1
    │ │ │ │            2: . 2 4 2
    │ │ │ │  
    │ │ │ │  o55 : BettiTally
    │ │ │ │  i56 : netList decompose Fb --
    │ │ │ │  
    │ │ │ │ +      +---------------------------------------------------------------+
    │ │ │ │ +o56 = |ideal (c - 17d, b - 26d, a - 49d)                              |
    │ │ │ │ +      +---------------------------------------------------------------+
    │ │ │ │ +      |                                     3      2         2      3 |
    │ │ │ │ +      |ideal (b + 39c - 21d, a + 4c - 27d, c  + 43c d + 39c*d  - 15d )|
    │ │ │ │ +      +---------------------------------------------------------------+
    │ │ │ │ +      |                                    2             2            |
    │ │ │ │ +      |ideal (b + 8c + 40d, a + 5c - 33d, c  + 4c*d + 45d )           |
    │ │ │ │ +      +---------------------------------------------------------------+
    │ │ │ │ +i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2)
    │ │ │ │ +
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │ ---------------------------------------------------------------+
    │ │ │ │ -      |                                      2              2
    │ │ │ │ -|
    │ │ │ │ -o56 = |ideal (b - 50c - 43d, a + 15c - 46d, c  + 12c*d - 37d )
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │ ---------------------------------------------------------------+
    │ │ │ │ -      |        2                             2
    │ │ │ │ -2                                   2   2                            2
    │ │ │ │ -2   2                             2 |
    │ │ │ │ -      |ideal (c  + 46a*d - 39b*d + 2c*d - 24d , b*c - 9a*d + 16b*d + 2c*d + 27d
    │ │ │ │ -, a*c + 43a*d + 44b*d - 48c*d + 24d , b  - 4a*d - 40b*d - 9c*d - 39d , a*b +
    │ │ │ │ -16a*d + 26b*d + 37c*d - 24d , a  - 25a*d + 47b*d + 34c*d + 8d )|
    │ │ │ │ +---------------------------------------------------------------------------+
    │ │ │ │ +      |                       2                             2   2             2
    │ │ │ │ +2                  2                             2   2             2
    │ │ │ │ +2   3                2         2        2        2      3     2               2
    │ │ │ │ +2       2        2      3 |
    │ │ │ │ +o57 = |ideal (a*c - 13b*c + 2c  - 15a*d - 23b*d - 4c*d - 21d , b  + 47b*c + 9c
    │ │ │ │ ++ 19b*d - 22c*d - 32d , a*b + 7b*c + 16c  - 42a*d - 45b*d - 24c*d - 3d , a  +
    │ │ │ │ +16b*c + 2c  - 26a*d + 5b*d - 29c*d - 31d , c  + 21b*c*d - 47c d + 38a*d  +
    │ │ │ │ +21b*d  - 37c*d  + 33d , b*c  - 9b*c*d - 29c d + 17a*d  + 2b*d  + 26c*d  - 17d
    │ │ │ │ +)|
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │ ---------------------------------------------------------------+
    │ │ │ │ -i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2)
    │ │ │ │ -
    │ │ │ │ -o57 = ++
    │ │ │ │ -      ++
    │ │ │ │ +-------------------------------------------------------------------------------
    │ │ │ │ +---------------------------------------------------------------------------+
    │ │ │ │  i58 : pt0 = randomPointOnRationalVariety(compsL441_0)
    │ │ │ │  
    │ │ │ │ -o58 = | 32 -46 33 -7 -2 -29 -20 10 -23 -26 5 -16 1 -18 -3 46 13 -21 5 -22 17
    │ │ │ │ +o58 = | 49 0 -30 -36 -1 0 -9 17 37 29 34 13 19 8 -10 -47 21 -24 -44 42 9 46
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      15 -33 46 -2 -29 -23 18 -42 -2 -13 39 8 -40 -24 -22 |
    │ │ │ │ +      15 -29 35 -40 18 -22 -21 -42 39 -2 -33 -23 -13 -18 |
    │ │ │ │  
    │ │ │ │                 1       36
    │ │ │ │  o58 : Matrix kk  <-- kk
    │ │ │ │  i59 : pt1 = randomPointOnRationalVariety(compsL441_1)
    │ │ │ │  
    │ │ │ │ -o59 = | -8 41 28 -44 50 33 -38 33 -23 1 -2 -47 32 46 30 -22 -2 -14 27 37 15
    │ │ │ │ +o59 = | -5 -40 -6 3 -28 -8 -25 15 15 29 26 -37 11 -14 31 14 1 -50 43 37 5 50
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      -25 -15 33 -23 3 21 -18 -9 3 10 -49 0 -35 -50 32 |
    │ │ │ │ +      10 3 -3 -35 -18 32 -7 -15 33 46 0 21 -49 3 |
    │ │ │ │  
    │ │ │ │                 1       36
    │ │ │ │  o59 : Matrix kk  <-- kk
    │ │ │ │  We compute the ideal of the corresponding zero dimensional scheme with length
    │ │ │ │  6, corresponding to the points pt0, pt1 in Hilb.
    │ │ │ │  i60 : I0 = sub(sub(F, (vars ring F) | sub(pt0, ring F)), S)
    │ │ │ │  
    │ │ │ │ -              2             2                              2
    │ │ │ │ -o60 = ideal (a  - 3b*c - 26c  - 16a*d - 29b*d + 33c*d + 32d , a*b - 2b*c +
    │ │ │ │ +              2              2                      2                   2
    │ │ │ │ +o60 = ideal (a  - 10b*c + 29c  + 13a*d - 30c*d + 49d , a*b + 35b*c - 44c  +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -        2                            2   2              2
    │ │ │ │ -      5c  + 17a*d + b*d - 23c*d - 46d , b  - 24b*c + 18c  + 8a*d + 15b*d +
    │ │ │ │ +                             2              2                             2
    │ │ │ │ +      9a*d + 19b*d + 37c*d, b  - 13b*c - 22c  - 33a*d + 46b*d - 47c*d - 9d ,
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                 2                   2                             2     2
    │ │ │ │ -      46c*d - 20d , a*c + 39b*c - 29c  - 42a*d - 22b*d - 18c*d - 2d , b*c  -
    │ │ │ │ +                      2                           2     2                2
    │ │ │ │ +      a*c - 2b*c - 40c  - 21a*d + 42b*d + 8c*d - d , b*c  - 42b*c*d + 15c d +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                  2         2        2       2     3   3                2
    │ │ │ │ -      2b*c*d - 33c d - 23a*d  + 13b*d  + 5c*d  - 7d , c  - 22b*c*d - 13c d -
    │ │ │ │ +           2        2        2      3   3                2         2        2
    │ │ │ │ +      18a*d  + 21b*d  + 34c*d  - 36d , c  - 18b*c*d + 39c d - 23a*d  - 29b*d
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -           2        2        2      3
    │ │ │ │ -      40a*d  + 46b*d  - 21c*d  + 10d )
    │ │ │ │ +             2      3
    │ │ │ │ +      - 24c*d  + 17d )
    │ │ │ │  
    │ │ │ │  o60 : Ideal of S
    │ │ │ │  i61 : I1 = sub(sub(F, (vars ring F) | sub(pt1, ring F)), S)
    │ │ │ │  
    │ │ │ │ -              2            2                             2
    │ │ │ │ -o61 = ideal (a  + 30b*c + c  - 47a*d + 33b*d + 28c*d - 8d , a*b - 23b*c +
    │ │ │ │ +              2              2                           2                  2
    │ │ │ │ +o61 = ideal (a  + 31b*c + 29c  - 37a*d - 8b*d - 6c*d - 5d , a*b - 3b*c + 43c
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -         2                              2   2              2
    │ │ │ │ -      27c  + 15a*d + 32b*d - 23c*d + 41d , b  - 50b*c - 18c  - 25b*d - 22c*d
    │ │ │ │ +                                  2   2              2
    │ │ │ │ +      + 5a*d + 11b*d + 15c*d - 40d , b  - 49b*c + 32c  + 50b*d + 14c*d -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -           2                  2                             2     2
    │ │ │ │ -      - 38d , a*c - 49b*c + 3c  - 9a*d + 37b*d + 46c*d + 50d , b*c  + 3b*c*d
    │ │ │ │ +         2                   2                             2     2
    │ │ │ │ +      25d , a*c + 46b*c - 35c  - 7a*d + 37b*d - 14c*d - 28d , b*c  - 15b*c*d
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -           2         2       2       2      3   3                2         2
    │ │ │ │ -      - 15c d + 21a*d  - 2b*d  - 2c*d  - 44d , c  + 32b*c*d + 10c d - 35a*d
    │ │ │ │ +           2         2      2        2     3   3               2         2
    │ │ │ │ +      + 10c d - 18a*d  + b*d  + 26c*d  + 3d , c  + 3b*c*d + 33c d + 21a*d  +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -             2        2      3
    │ │ │ │ -      + 33b*d  - 14c*d  + 33d )
    │ │ │ │ +          2        2      3
    │ │ │ │ +      3b*d  - 50c*d  + 15d )
    │ │ │ │  
    │ │ │ │  o61 : Ideal of S
    │ │ │ │  i62 : betti res I0
    │ │ │ │  
    │ │ │ │               0 1 2 3
    │ │ │ │  o62 = total: 1 6 8 3
    │ │ │ │            0: 1 . . .
    │ │ │ │ @@ -648,43 +653,44 @@
    │ │ │ │            0: 1 . . .
    │ │ │ │            1: . 4 4 1
    │ │ │ │            2: . 2 4 2
    │ │ │ │  
    │ │ │ │  o63 : BettiTally
    │ │ │ │  i64 : netList decompose I0
    │ │ │ │  
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ -------------------------+
    │ │ │ │ -o64 = |ideal (c - 42d, b + 26d, a - 30d)
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ -------------------------+
    │ │ │ │ -      |ideal (c - 47d, b + 7d, a - 44d)
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ -------------------------+
    │ │ │ │ -      |                                     2                      2   2      2
    │ │ │ │ -2 |
    │ │ │ │ -      |ideal (a + 39b - 29c - 24d, b*c - 15c  - 29b*d - 38c*d + 16d , b  - 39c
    │ │ │ │ -+ 17b*d - 28c*d - 50d )|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ -------------------------+
    │ │ │ │ +      +---------------------------------------------------+
    │ │ │ │ +o64 = |ideal (c - 21d, b - 26d, a - 50d)                  |
    │ │ │ │ +      +---------------------------------------------------+
    │ │ │ │ +      |ideal (c - 49d, b - 33d, a - 30d)                  |
    │ │ │ │ +      +---------------------------------------------------+
    │ │ │ │ +      |ideal (c + 41d, b + 33d, a - 35d)                  |
    │ │ │ │ +      +---------------------------------------------------+
    │ │ │ │ +      |ideal (c + d, b + 40d, a - 5d)                     |
    │ │ │ │ +      +---------------------------------------------------+
    │ │ │ │ +      |                                    2            2 |
    │ │ │ │ +      |ideal (b + c - 47d, a - 38c - 17d, c  + 4c*d - 8d )|
    │ │ │ │ +      +---------------------------------------------------+
    │ │ │ │  i65 : netList decompose I1
    │ │ │ │  
    │ │ │ │ -      +---------------------------------+
    │ │ │ │ -o65 = |ideal (c - 9d, b + 15d, a + 27d) |
    │ │ │ │ -      +---------------------------------+
    │ │ │ │ -      |ideal (c + 48d, b + 11d, a - 37d)|
    │ │ │ │ -      +---------------------------------+
    │ │ │ │ -      |ideal (c + 29d, b + 46d, a + 18d)|
    │ │ │ │ -      +---------------------------------+
    │ │ │ │ -      |ideal (c + 24d, b + 46d, a + 33d)|
    │ │ │ │ -      +---------------------------------+
    │ │ │ │ -      |ideal (c + 22d, b + 38d, a - 50d)|
    │ │ │ │ -      +---------------------------------+
    │ │ │ │ +      +------------------------------------------------------------------------
    │ │ │ │ +-------------------------------------------------------------------------------
    │ │ │ │ +-------------------------------------------------------------------------------
    │ │ │ │ +-------------------------------------------------------------------------+
    │ │ │ │ +      |                        2                             2   2
    │ │ │ │ +2                      2                  2                             2   2
    │ │ │ │ +2                           2   3               2         2       2        2
    │ │ │ │ +3     2                2         2      2        2     3 |
    │ │ │ │ +o65 = |ideal (a*c + 46b*c - 35c  - 7a*d + 37b*d - 14c*d - 28d , b  - 49b*c +
    │ │ │ │ +32c  + 50b*d + 14c*d - 25d , a*b - 3b*c + 43c  + 5a*d + 11b*d + 15c*d - 40d , a
    │ │ │ │ ++ 31b*c + 29c  - 37a*d - 8b*d - 6c*d - 5d , c  + 3b*c*d + 33c d + 21a*d  + 3b*d
    │ │ │ │ +- 50c*d  + 15d , b*c  - 15b*c*d + 10c d - 18a*d  + b*d  + 26c*d  + 3d )|
    │ │ │ │ +      +------------------------------------------------------------------------
    │ │ │ │ +-------------------------------------------------------------------------------
    │ │ │ │ +-------------------------------------------------------------------------------
    │ │ │ │ +-------------------------------------------------------------------------+
    │ │ │ │  i66 : L430 = (trim minors(2, M1)) + groebnerStratum F;
    │ │ │ │  
    │ │ │ │  o66 : Ideal of T
    │ │ │ │  i67 : C = res(I, FastNonminimal => true)
    │ │ │ │  
    │ │ │ │         1      4      5      2
    │ │ │ │  o67 = S  <-- S  <-- S  <-- S  <-- 0
    │ │ ├── ./usr/share/doc/Macaulay2/RandomCanonicalCurves/example-output/_canonical__Curve.out
    │ │ │ @@ -6,15 +6,15 @@
    │ │ │  i2 : g=14;
    │ │ │  
    │ │ │  i3 : FF=ZZ/10007;
    │ │ │  
    │ │ │  i4 : R=FF[x_0..x_(g-1)];
    │ │ │  
    │ │ │  i5 : time betti(I=(random canonicalCurve)(g,R))
    │ │ │ - -- used 8.8703s (cpu); 6.22891s (thread); 0s (gc)
    │ │ │ + -- used 7.84087s (cpu); 6.07546s (thread); 0s (gc)
    │ │ │  
    │ │ │              0  1
    │ │ │  o5 = total: 1 66
    │ │ │           0: 1  .
    │ │ │           1: . 66
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ ├── ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/_canonical__Curve.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │              
    │ │ │
    i4 : R=FF[x_0..x_(g-1)];
    │ │ │
    │ │ │
    i5 : time betti(I=(random canonicalCurve)(g,R))
    │ │ │ - -- used 8.8703s (cpu); 6.22891s (thread); 0s (gc)
    │ │ │ + -- used 7.84087s (cpu); 6.07546s (thread); 0s (gc)
    │ │ │  
    │ │ │              0  1
    │ │ │  o5 = total: 1 66
    │ │ │           0: 1  .
    │ │ │           1: . 66
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ unirationality of $M_g$ by Severi, Sernesi, Chang-Ran and Verra. │ │ │ │ i1 : setRandomSeed "alpha"; │ │ │ │ -- setting random seed to 10206284518 │ │ │ │ i2 : g=14; │ │ │ │ i3 : FF=ZZ/10007; │ │ │ │ i4 : R=FF[x_0..x_(g-1)]; │ │ │ │ i5 : time betti(I=(random canonicalCurve)(g,R)) │ │ │ │ - -- used 8.8703s (cpu); 6.22891s (thread); 0s (gc) │ │ │ │ + -- used 7.84087s (cpu); 6.07546s (thread); 0s (gc) │ │ │ │ │ │ │ │ 0 1 │ │ │ │ o5 = total: 1 66 │ │ │ │ 0: 1 . │ │ │ │ 1: . 66 │ │ │ │ │ │ │ │ o5 : BettiTally │ │ ├── ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_test__Time__For__L__L__Lon__Syzygies.out │ │ │ @@ -7,42 +7,42 @@ │ │ │ │ │ │ o2 = (10, 20) │ │ │ │ │ │ o2 : Sequence │ │ │ │ │ │ i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) │ │ │ │ │ │ -o3 = ({5, 2.91596e52, 9}, .00212284, .000873057) │ │ │ +o3 = ({5, 2.91596e52, 9}, .00200359, .000953549) │ │ │ │ │ │ o3 : Sequence │ │ │ │ │ │ i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) │ │ │ │ │ │ -o4 = ({50, 2.30853e454, 98}, .00576907, .0352356) │ │ │ +o4 = ({50, 2.30853e454, 98}, .00558624, .0412762) │ │ │ │ │ │ o4 : Sequence │ │ │ │ │ │ i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) │ │ │ │ │ │ -o5 = {{.00542734, .0121802}, {.00514022, .00415768}, {.00512656, .00663411}, │ │ │ +o5 = {{.00585531, .0141493}, {.00574685, .00492169}, {.00652446, .00770385}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {.0049702, .00989477}, {.00503716, .0131842}, {.0883312, .0123666}, │ │ │ + {.00592265, .011718}, {.0065241, .0153972}, {.105145, .0162041}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {.00508916, .00815041}, {.00494047, .00757079}, {.00439367, .00535668}, │ │ │ + {.00513763, .00948813}, {.00522099, .0095678}, {.00441867, .00632193}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {.0060391, .00810552}} │ │ │ + {.00585314, .00972742}} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : 1/10*sum(L,t->t_0) │ │ │ │ │ │ -o6 = .01344950969999994 │ │ │ +o6 = .01563490230000007 │ │ │ │ │ │ o6 : RR (of precision 53) │ │ │ │ │ │ i7 : 1/10*sum(L,t->t_1) │ │ │ │ │ │ -o7 = .008760095100000065 │ │ │ +o7 = .01051994280000006 │ │ │ │ │ │ o7 : RR (of precision 53) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/RandomComplexes/html/_test__Time__For__L__L__Lon__Syzygies.html │ │ │ @@ -93,57 +93,57 @@ │ │ │ o2 : Sequence │ │ │
    │ │ │
    i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11)
    │ │ │  
    │ │ │ -o3 = ({5, 2.91596e52, 9}, .00212284, .000873057)
    │ │ │ +o3 = ({5, 2.91596e52, 9}, .00200359, .000953549)
    │ │ │  
    │ │ │  o3 : Sequence
    │ │ │
    │ │ │
    i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100)
    │ │ │  
    │ │ │ -o4 = ({50, 2.30853e454, 98}, .00576907, .0352356)
    │ │ │ +o4 = ({50, 2.30853e454, 98}, .00558624, .0412762)
    │ │ │  
    │ │ │  o4 : Sequence
    │ │ │
    │ │ │
    i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2})
    │ │ │  
    │ │ │ -o5 = {{.00542734, .0121802}, {.00514022, .00415768}, {.00512656, .00663411},
    │ │ │ +o5 = {{.00585531, .0141493}, {.00574685, .00492169}, {.00652446, .00770385},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {.0049702, .00989477}, {.00503716, .0131842}, {.0883312, .0123666},
    │ │ │ +     {.00592265, .011718}, {.0065241, .0153972}, {.105145, .0162041},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {.00508916, .00815041}, {.00494047, .00757079}, {.00439367, .00535668},
    │ │ │ +     {.00513763, .00948813}, {.00522099, .0095678}, {.00441867, .00632193},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {.0060391, .00810552}}
    │ │ │ +     {.00585314, .00972742}}
    │ │ │  
    │ │ │  o5 : List
    │ │ │
    │ │ │
    i6 : 1/10*sum(L,t->t_0)
    │ │ │  
    │ │ │ -o6 = .01344950969999994
    │ │ │ +o6 = .01563490230000007
    │ │ │  
    │ │ │  o6 : RR (of precision 53)
    │ │ │
    │ │ │
    i7 : 1/10*sum(L,t->t_1)
    │ │ │  
    │ │ │ -o7 = .008760095100000065
    │ │ │ +o7 = .01051994280000006
    │ │ │  
    │ │ │  o7 : RR (of precision 53)
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -25,41 +25,41 @@ │ │ │ │ i2 : r=10,n=20 │ │ │ │ │ │ │ │ o2 = (10, 20) │ │ │ │ │ │ │ │ o2 : Sequence │ │ │ │ i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) │ │ │ │ │ │ │ │ -o3 = ({5, 2.91596e52, 9}, .00212284, .000873057) │ │ │ │ +o3 = ({5, 2.91596e52, 9}, .00200359, .000953549) │ │ │ │ │ │ │ │ o3 : Sequence │ │ │ │ i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) │ │ │ │ │ │ │ │ -o4 = ({50, 2.30853e454, 98}, .00576907, .0352356) │ │ │ │ +o4 = ({50, 2.30853e454, 98}, .00558624, .0412762) │ │ │ │ │ │ │ │ o4 : Sequence │ │ │ │ i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) │ │ │ │ │ │ │ │ -o5 = {{.00542734, .0121802}, {.00514022, .00415768}, {.00512656, .00663411}, │ │ │ │ +o5 = {{.00585531, .0141493}, {.00574685, .00492169}, {.00652446, .00770385}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {.0049702, .00989477}, {.00503716, .0131842}, {.0883312, .0123666}, │ │ │ │ + {.00592265, .011718}, {.0065241, .0153972}, {.105145, .0162041}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {.00508916, .00815041}, {.00494047, .00757079}, {.00439367, .00535668}, │ │ │ │ + {.00513763, .00948813}, {.00522099, .0095678}, {.00441867, .00632193}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {.0060391, .00810552}} │ │ │ │ + {.00585314, .00972742}} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : 1/10*sum(L,t->t_0) │ │ │ │ │ │ │ │ -o6 = .01344950969999994 │ │ │ │ +o6 = .01563490230000007 │ │ │ │ │ │ │ │ o6 : RR (of precision 53) │ │ │ │ i7 : 1/10*sum(L,t->t_1) │ │ │ │ │ │ │ │ -o7 = .008760095100000065 │ │ │ │ +o7 = .01051994280000006 │ │ │ │ │ │ │ │ o7 : RR (of precision 53) │ │ │ │ ********** WWaayyss ttoo uussee tteessttTTiimmeeFFoorrLLLLLLoonnSSyyzzyyggiieess:: ********** │ │ │ │ * testTimeForLLLonSyzygies(ZZ,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _t_e_s_t_T_i_m_e_F_o_r_L_L_L_o_n_S_y_z_y_g_i_e_s is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/RandomCurvesOverVerySmallFiniteFields/example-output/_smooth__Canonical__Curve.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 11549527689790345152 │ │ │ │ │ │ i1 : time ICan = smoothCanonicalCurve(11,5); │ │ │ - -- used 1.37715s (cpu); 1.10031s (thread); 0s (gc) │ │ │ + -- used 1.60419s (cpu); 1.27355s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o1 : Ideal of --[t ..t ] │ │ │ 5 0 10 │ │ │ │ │ │ i2 : (dim ICan, genus ICan, degree ICan) │ │ ├── ./usr/share/doc/Macaulay2/RandomCurvesOverVerySmallFiniteFields/html/_smooth__Canonical__Curve.html │ │ │ @@ -82,15 +82,15 @@ │ │ │

    If the option Printing is set to true then printings about the current step in the construction are displayed.

    │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ For g<=10 the curves are constructed via plane models. │ │ │ │ For g<=13 the curves are constructed via space models. │ │ │ │ For g=14 the curves are constructed by Verra's method. │ │ │ │ For g=15 the curves are constructed via matrix factorizations. │ │ │ │ If the option Printing is set to true then printings about the current step in │ │ │ │ the construction are displayed. │ │ │ │ i1 : time ICan = smoothCanonicalCurve(11,5); │ │ │ │ - -- used 1.37715s (cpu); 1.10031s (thread); 0s (gc) │ │ │ │ + -- used 1.60419s (cpu); 1.27355s (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o1 : Ideal of --[t ..t ] │ │ │ │ 5 0 10 │ │ │ │ i2 : (dim ICan, genus ICan, degree ICan) │ │ │ │ │ │ │ │ o2 = (2, 11, 20) │ │ ├── ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_random__Curve__Genus14__Degree18in__P6.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ -- setting random seed to 10206284518 │ │ │ │ │ │ i2 : FF=ZZ/10007; │ │ │ │ │ │ i3 : S=FF[x_0..x_6]; │ │ │ │ │ │ i4 : time I=randomCurveGenus14Degree18inP6(S); │ │ │ - -- used 1.70428s (cpu); 1.37292s (thread); 0s (gc) │ │ │ + -- used 1.87235s (cpu); 1.55882s (thread); 0s (gc) │ │ │ │ │ │ o4 : Ideal of S │ │ │ │ │ │ i5 : betti res I │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ o5 = total: 1 13 45 56 25 2 │ │ ├── ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_random__Curve__Genus14__Degree18in__P6.html │ │ │ @@ -93,15 +93,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time ICan = smoothCanonicalCurve(11,5);
    │ │ │ - -- used 1.37715s (cpu); 1.10031s (thread); 0s (gc)
    │ │ │ + -- used 1.60419s (cpu); 1.27355s (thread); 0s (gc)
    │ │ │  
    │ │ │                ZZ
    │ │ │  o1 : Ideal of --[t ..t  ]
    │ │ │                 5  0   10
    │ │ │
    │ │ │
    i3 : S=FF[x_0..x_6];
    │ │ │
    │ │ │
    i4 : time I=randomCurveGenus14Degree18inP6(S);
    │ │ │ - -- used 1.70428s (cpu); 1.37292s (thread); 0s (gc)
    │ │ │ + -- used 1.87235s (cpu); 1.55882s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │
    │ │ │
    i5 : betti res I
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,15 +28,15 @@
    │ │ │ │  fields of the chosen finite characteristic 10007, for fields of characteristic
    │ │ │ │  0 by semi-continuity, and, hence, for all but finitely many primes $p$.
    │ │ │ │  i1 : setRandomSeed("alpha");
    │ │ │ │   -- setting random seed to 10206284518
    │ │ │ │  i2 : FF=ZZ/10007;
    │ │ │ │  i3 : S=FF[x_0..x_6];
    │ │ │ │  i4 : time I=randomCurveGenus14Degree18inP6(S);
    │ │ │ │ - -- used 1.70428s (cpu); 1.37292s (thread); 0s (gc)
    │ │ │ │ + -- used 1.87235s (cpu); 1.55882s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : Ideal of S
    │ │ │ │  i5 : betti res I
    │ │ │ │  
    │ │ │ │              0  1  2  3  4 5
    │ │ │ │  o5 = total: 1 13 45 56 25 2
    │ │ │ │           0: 1  .  .  .  . .
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/___Random__Ideals.out
    │ │ │ @@ -1,25 +1,23 @@
    │ │ │  -- -*- M2-comint -*- hash: 9542801742429495161
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1763142113
    │ │ │ + -- setting random seed to 1763722477
    │ │ │  
    │ │ │ -o1 = 1763142113
    │ │ │ +o1 = 1763722477
    │ │ │  
    │ │ │  i2 : kk=ZZ/101;
    │ │ │  
    │ │ │  i3 : S=kk[vars(0..5)];
    │ │ │  
    │ │ │  i4 : time tally for n from 1 to 500 list regularity randomMonomialIdeal(10:3,S)
    │ │ │ - -- used 3.09133s (cpu); 1.64886s (thread); 0s (gc)
    │ │ │ + -- used 3.66806s (cpu); 1.74225s (thread); 0s (gc)
    │ │ │  
    │ │ │ -o4 = Tally{4 => 45 }
    │ │ │ -           5 => 189
    │ │ │ -           6 => 186
    │ │ │ -           7 => 71
    │ │ │ -           8 => 7
    │ │ │ -           9 => 1
    │ │ │ -           10 => 1
    │ │ │ +o4 = Tally{4 => 40 }
    │ │ │ +           5 => 226
    │ │ │ +           6 => 183
    │ │ │ +           7 => 40
    │ │ │ +           8 => 11
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 5959465567197821046
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1763142118
    │ │ │ + -- setting random seed to 1763722481
    │ │ │  
    │ │ │ -o1 = 1763142118
    │ │ │ +o1 = 1763722481
    │ │ │  
    │ │ │  i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │  
    │ │ │ @@ -15,13 +15,13 @@
    │ │ │  
    │ │ │  o3 = S
    │ │ │  
    │ │ │  o3 : PolynomialRing
    │ │ │  
    │ │ │  i4 : randomMonomial(3,S)
    │ │ │  
    │ │ │ -      3
    │ │ │ -o4 = a
    │ │ │ +        2
    │ │ │ +o4 = a*c
    │ │ │  
    │ │ │  o4 : S
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Monomial__Ideal.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 8876340562021865447
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1763142127
    │ │ │ + -- setting random seed to 1763722488
    │ │ │  
    │ │ │ -o1 = 1763142127
    │ │ │ +o1 = 1763722488
    │ │ │  
    │ │ │  i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │  
    │ │ │ @@ -22,18 +22,18 @@
    │ │ │  o4 = {3, 5, 7}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : randomSquareFreeMonomialIdeal(L, S)
    │ │ │  low degree gens generated everything
    │ │ │  
    │ │ │ -o5 = ideal(b*d*e)
    │ │ │ +o5 = ideal(a*d*e)
    │ │ │  
    │ │ │  o5 : Ideal of S
    │ │ │  
    │ │ │  i6 : randomSquareFreeMonomialIdeal(5:2, S)
    │ │ │  
    │ │ │ -o6 = ideal (b*c, a*c, a*e, c*e, c*d)
    │ │ │ +o6 = ideal (c*e, d*e, a*e, c*d, a*d)
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Step.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 10504911213508281315
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1763142123
    │ │ │ + -- setting random seed to 1763722484
    │ │ │  
    │ │ │ -o1 = 1763142123
    │ │ │ +o1 = 1763722484
    │ │ │  
    │ │ │  i2 : S=ZZ/2[vars(0..3)]
    │ │ │  
    │ │ │  o2 = S
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │  
    │ │ │ @@ -15,17 +15,15 @@
    │ │ │  
    │ │ │  o3 = monomialIdeal (a*b, a*d, b*c*d)
    │ │ │  
    │ │ │  o3 : MonomialIdeal of S
    │ │ │  
    │ │ │  i4 : randomSquareFreeStep J
    │ │ │  
    │ │ │ -o4 = {monomialIdeal (a*b, a*c, a*d, b*d), {a*b, a*c, a*d, b*d}, {c*d, b*c,
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     a}}
    │ │ │ +o4 = {monomialIdeal (a*b, b*c, a*d), {a*b, b*c, a*d}, {c*d, b*d, a*c}}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : setRandomSeed(1)
    │ │ │   -- setting random seed to 1
    │ │ │  
    │ │ │  o5 = 1
    │ │ │ @@ -39,15 +37,15 @@
    │ │ │  i7 : J = monomialIdeal 0_S
    │ │ │  
    │ │ │  o7 = monomialIdeal ()
    │ │ │  
    │ │ │  o7 : MonomialIdeal of S
    │ │ │  
    │ │ │  i8 : time T=tally for t from 1 to 5000 list first (J=rsfs(J,AlexanderProbability => .01));
    │ │ │ - -- used 4.19238s (cpu); 2.83348s (thread); 0s (gc)
    │ │ │ + -- used 4.79144s (cpu); 3.18347s (thread); 0s (gc)
    │ │ │  
    │ │ │  i9 : #T
    │ │ │  
    │ │ │  o9 = 168
    │ │ │  
    │ │ │  i10 : T
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial.html
    │ │ │ @@ -71,17 +71,17 @@
    │ │ │          
    │ │ │

    Chooses a random monomial.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1763142118
    │ │ │ + -- setting random seed to 1763722481
    │ │ │  
    │ │ │ -o1 = 1763142118
    │ │ │ +o1 = 1763722481 │ │ │
    │ │ │
    i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │ @@ -98,16 +98,16 @@
    │ │ │  o3 : PolynomialRing
    │ │ │
    │ │ │
    i4 : randomMonomial(3,S)
    │ │ │  
    │ │ │ -      3
    │ │ │ -o4 = a
    │ │ │ +        2
    │ │ │ +o4 = a*c
    │ │ │  
    │ │ │  o4 : S
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,31 +11,31 @@ │ │ │ │ o d, an _i_n_t_e_g_e_r, non-negative │ │ │ │ o S, a _r_i_n_g, polynomial ring │ │ │ │ * Outputs: │ │ │ │ o m, a _r_i_n_g_ _e_l_e_m_e_n_t, monomial of S │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Chooses a random monomial. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ - -- setting random seed to 1763142118 │ │ │ │ + -- setting random seed to 1763722481 │ │ │ │ │ │ │ │ -o1 = 1763142118 │ │ │ │ +o1 = 1763722481 │ │ │ │ i2 : kk=ZZ/101 │ │ │ │ │ │ │ │ o2 = kk │ │ │ │ │ │ │ │ o2 : QuotientRing │ │ │ │ i3 : S=kk[a,b,c] │ │ │ │ │ │ │ │ o3 = S │ │ │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ i4 : randomMonomial(3,S) │ │ │ │ │ │ │ │ - 3 │ │ │ │ -o4 = a │ │ │ │ + 2 │ │ │ │ +o4 = a*c │ │ │ │ │ │ │ │ o4 : S │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m_M_o_n_o_m_i_a_l_I_d_e_a_l -- random monomial ideal with given degree generators │ │ │ │ * _r_a_n_d_o_m_S_q_u_a_r_e_F_r_e_e_M_o_n_o_m_i_a_l_I_d_e_a_l -- random square-free monomial ideal with │ │ │ │ given degree generators │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommMMoonnoommiiaall:: ********** │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Monomial__Ideal.html │ │ │ @@ -71,17 +71,17 @@ │ │ │
    │ │ │

    Choose a random square-free monomial ideal whose generators have the degrees specified by the list or sequence L.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1763142127
    │ │ │ + -- setting random seed to 1763722488
    │ │ │  
    │ │ │ -o1 = 1763142127
    │ │ │ +o1 = 1763722488 │ │ │
    │ │ │
    i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │ @@ -108,24 +108,24 @@
    │ │ │              
    │ │ │
    i5 : randomSquareFreeMonomialIdeal(L, S)
    │ │ │  low degree gens generated everything
    │ │ │  
    │ │ │ -o5 = ideal(b*d*e)
    │ │ │ +o5 = ideal(a*d*e)
    │ │ │  
    │ │ │  o5 : Ideal of S
    │ │ │
    │ │ │
    i6 : randomSquareFreeMonomialIdeal(5:2, S)
    │ │ │  
    │ │ │ -o6 = ideal (b*c, a*c, a*e, c*e, c*d)
    │ │ │ +o6 = ideal (c*e, d*e, a*e, c*d, a*d)
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -13,17 +13,17 @@ │ │ │ │ * Outputs: │ │ │ │ o I, an _i_d_e_a_l, square-free monomial ideal with generators of │ │ │ │ specified degrees │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Choose a random square-free monomial ideal whose generators have the degrees │ │ │ │ specified by the list or sequence L. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ - -- setting random seed to 1763142127 │ │ │ │ + -- setting random seed to 1763722488 │ │ │ │ │ │ │ │ -o1 = 1763142127 │ │ │ │ +o1 = 1763722488 │ │ │ │ i2 : kk=ZZ/101 │ │ │ │ │ │ │ │ o2 = kk │ │ │ │ │ │ │ │ o2 : QuotientRing │ │ │ │ i3 : S=kk[a..e] │ │ │ │ │ │ │ │ @@ -34,20 +34,20 @@ │ │ │ │ │ │ │ │ o4 = {3, 5, 7} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : randomSquareFreeMonomialIdeal(L, S) │ │ │ │ low degree gens generated everything │ │ │ │ │ │ │ │ -o5 = ideal(b*d*e) │ │ │ │ +o5 = ideal(a*d*e) │ │ │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ i6 : randomSquareFreeMonomialIdeal(5:2, S) │ │ │ │ │ │ │ │ -o6 = ideal (b*c, a*c, a*e, c*e, c*d) │ │ │ │ +o6 = ideal (c*e, d*e, a*e, c*d, a*d) │ │ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The ideal is constructed degree by degree, starting from the lowest degree │ │ │ │ specified. If there are not enough monomials of the next specified degree that │ │ │ │ are not already in the ideal, the function prints a warning and returns an │ │ │ │ ideal containing all the generators of that degree. │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Step.html │ │ │ @@ -79,17 +79,17 @@ │ │ │

    With probability p the routine takes the Alexander dual of I; the default value of p is .05, and it can be set with the option AlexanderProbility.

    │ │ │

    Otherwise uses the Metropolis algorithm to produce a random walk on the space of square-free ideals. Note that there are a LOT of square-free ideals; these are the Dedekind numbers, and the sequence (with 1,2,3,4,5,6,7,8 variables) begins 3,6,20,168,7581, 7828354, 2414682040998, 56130437228687557907788. (see the Online Encyclopedia of Integer Sequences for more information). Given I in a polynomial ring S, we make a list ISocgens of the square-free minimal monomial generators of the socle of S/(squares+I) and a list of minimal generators Igens of I. A candidate "next" ideal J is formed as follows: We choose randomly from the union of these lists; if a socle element is chosen, it's added to I; if a minimal generator is chosen, it's replaced by the square-free part of the maximal ideal times it. the chance of making the given move is then 1/(#ISocgens+#Igens), and the chance of making the move back would be the similar quantity for J, so we make the move or not depending on whether random RR < (nJ+nSocJ)/(nI+nSocI) or not; here random RR is a random number in [0,1].

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1763142123
    │ │ │ + -- setting random seed to 1763722484
    │ │ │  
    │ │ │ -o1 = 1763142123
    │ │ │ +o1 = 1763722484 │ │ │
    │ │ │
    i2 : S=ZZ/2[vars(0..3)]
    │ │ │  
    │ │ │  o2 = S
    │ │ │ @@ -106,17 +106,15 @@
    │ │ │  o3 : MonomialIdeal of S
    │ │ │
    │ │ │
    i4 : randomSquareFreeStep J
    │ │ │  
    │ │ │ -o4 = {monomialIdeal (a*b, a*c, a*d, b*d), {a*b, a*c, a*d, b*d}, {c*d, b*c,
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     a}}
    │ │ │ +o4 = {monomialIdeal (a*b, b*c, a*d), {a*b, b*c, a*d}, {c*d, b*d, a*c}}
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    │ │ │

    With 4 variables and 168 possible monomial ideals, a run of 5000 takes less than 6 seconds on a reasonably fast machine. With 10 variables a run of 1000 takes about 2 seconds.

    │ │ │ @@ -147,15 +145,15 @@ │ │ │ │ │ │ o7 : MonomialIdeal of S
    │ │ │
    │ │ │
    i8 : time T=tally for t from 1 to 5000 list first (J=rsfs(J,AlexanderProbability => .01));
    │ │ │ - -- used 4.19238s (cpu); 2.83348s (thread); 0s (gc)
    │ │ │ + -- used 4.79144s (cpu); 3.18347s (thread); 0s (gc) │ │ │
    │ │ │
    i9 : #T
    │ │ │  
    │ │ │  o9 = 168
    │ │ │ ├── html2text {} │ │ │ │ @@ -35,32 +35,30 @@ │ │ │ │ choose randomly from the union of these lists; if a socle element is chosen, │ │ │ │ it's added to I; if a minimal generator is chosen, it's replaced by the square- │ │ │ │ free part of the maximal ideal times it. the chance of making the given move is │ │ │ │ then 1/(#ISocgens+#Igens), and the chance of making the move back would be the │ │ │ │ similar quantity for J, so we make the move or not depending on whether random │ │ │ │ RR < (nJ+nSocJ)/(nI+nSocI) or not; here random RR is a random number in [0,1]. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ - -- setting random seed to 1763142123 │ │ │ │ + -- setting random seed to 1763722484 │ │ │ │ │ │ │ │ -o1 = 1763142123 │ │ │ │ +o1 = 1763722484 │ │ │ │ i2 : S=ZZ/2[vars(0..3)] │ │ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ i3 : J = monomialIdeal"ab,ad, bcd" │ │ │ │ │ │ │ │ o3 = monomialIdeal (a*b, a*d, b*c*d) │ │ │ │ │ │ │ │ o3 : MonomialIdeal of S │ │ │ │ i4 : randomSquareFreeStep J │ │ │ │ │ │ │ │ -o4 = {monomialIdeal (a*b, a*c, a*d, b*d), {a*b, a*c, a*d, b*d}, {c*d, b*c, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - a}} │ │ │ │ +o4 = {monomialIdeal (a*b, b*c, a*d), {a*b, b*c, a*d}, {c*d, b*d, a*c}} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ With 4 variables and 168 possible monomial ideals, a run of 5000 takes less │ │ │ │ than 6 seconds on a reasonably fast machine. With 10 variables a run of 1000 │ │ │ │ takes about 2 seconds. │ │ │ │ i5 : setRandomSeed(1) │ │ │ │ -- setting random seed to 1 │ │ │ │ @@ -74,15 +72,15 @@ │ │ │ │ i7 : J = monomialIdeal 0_S │ │ │ │ │ │ │ │ o7 = monomialIdeal () │ │ │ │ │ │ │ │ o7 : MonomialIdeal of S │ │ │ │ i8 : time T=tally for t from 1 to 5000 list first (J=rsfs │ │ │ │ (J,AlexanderProbability => .01)); │ │ │ │ - -- used 4.19238s (cpu); 2.83348s (thread); 0s (gc) │ │ │ │ + -- used 4.79144s (cpu); 3.18347s (thread); 0s (gc) │ │ │ │ i9 : #T │ │ │ │ │ │ │ │ o9 = 168 │ │ │ │ i10 : T │ │ │ │ │ │ │ │ o10 = Tally{monomialIdeal () => 45 } │ │ │ │ monomialIdeal (a*b*c, a*b*d) => 33 │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/index.html │ │ │ @@ -54,17 +54,17 @@ │ │ │
    │ │ │

    This package can be used to make experiments, trying many ideals, perhaps over small fields. For example...what would you expect the regularities of "typical" monomial ideals with 10 generators of degree 3 in 6 variables to be? Try a bunch of examples -- it's fast. Here we do only 500 -- this takes about a second on a fast machine -- but with a little patience, thousands can be done conveniently.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -72,23 +72,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1763142113
    │ │ │ + -- setting random seed to 1763722477
    │ │ │  
    │ │ │ -o1 = 1763142113
    │ │ │ +o1 = 1763722477 │ │ │
    │ │ │
    i2 : kk=ZZ/101;
    │ │ │
    │ │ │
    i3 : S=kk[vars(0..5)];
    │ │ │
    │ │ │
    i4 : time tally for n from 1 to 500 list regularity randomMonomialIdeal(10:3,S)
    │ │ │ - -- used 3.09133s (cpu); 1.64886s (thread); 0s (gc)
    │ │ │ + -- used 3.66806s (cpu); 1.74225s (thread); 0s (gc)
    │ │ │  
    │ │ │ -o4 = Tally{4 => 45 }
    │ │ │ -           5 => 189
    │ │ │ -           6 => 186
    │ │ │ -           7 => 71
    │ │ │ -           8 => 7
    │ │ │ -           9 => 1
    │ │ │ -           10 => 1
    │ │ │ +o4 = Tally{4 => 40 }
    │ │ │ +           5 => 226
    │ │ │ +           6 => 183
    │ │ │ +           7 => 40
    │ │ │ +           8 => 11
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │
    │ │ │
    │ │ │

    How does this compare with the case of binomial ideals? or pure binomial ideals? We invite the reader to experiment, replacing "randomMonomialIdeal" above with "randomBinomialIdeal" or "randomPureBinomialIdeal", or taking larger numbers of examples. Click the link "Finding Extreme Examples" below to see some other, more elaborate ways to search.

    │ │ │ ├── html2text {} │ │ │ │ @@ -9,29 +9,27 @@ │ │ │ │ This package can be used to make experiments, trying many ideals, perhaps over │ │ │ │ small fields. For example...what would you expect the regularities of "typical" │ │ │ │ monomial ideals with 10 generators of degree 3 in 6 variables to be? Try a │ │ │ │ bunch of examples -- it's fast. Here we do only 500 -- this takes about a │ │ │ │ second on a fast machine -- but with a little patience, thousands can be done │ │ │ │ conveniently. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ - -- setting random seed to 1763142113 │ │ │ │ + -- setting random seed to 1763722477 │ │ │ │ │ │ │ │ -o1 = 1763142113 │ │ │ │ +o1 = 1763722477 │ │ │ │ i2 : kk=ZZ/101; │ │ │ │ i3 : S=kk[vars(0..5)]; │ │ │ │ i4 : time tally for n from 1 to 500 list regularity randomMonomialIdeal(10:3,S) │ │ │ │ - -- used 3.09133s (cpu); 1.64886s (thread); 0s (gc) │ │ │ │ + -- used 3.66806s (cpu); 1.74225s (thread); 0s (gc) │ │ │ │ │ │ │ │ -o4 = Tally{4 => 45 } │ │ │ │ - 5 => 189 │ │ │ │ - 6 => 186 │ │ │ │ - 7 => 71 │ │ │ │ - 8 => 7 │ │ │ │ - 9 => 1 │ │ │ │ - 10 => 1 │ │ │ │ +o4 = Tally{4 => 40 } │ │ │ │ + 5 => 226 │ │ │ │ + 6 => 183 │ │ │ │ + 7 => 40 │ │ │ │ + 8 => 11 │ │ │ │ │ │ │ │ o4 : Tally │ │ │ │ How does this compare with the case of binomial ideals? or pure binomial │ │ │ │ ideals? We invite the reader to experiment, replacing "randomMonomialIdeal" │ │ │ │ above with "randomBinomialIdeal" or "randomPureBinomialIdeal", or taking larger │ │ │ │ numbers of examples. Click the link "Finding Extreme Examples" below to see │ │ │ │ some other, more elaborate ways to search. │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/example-output/_dim__Via__Bezout.out │ │ │ @@ -5,17 +5,17 @@ │ │ │ i2 : S=kk[y_0..y_8]; │ │ │ │ │ │ i3 : I=ideal random(S^1,S^{-2,-2,-2,-2})+(ideal random(2,S))^2; │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ i4 : elapsedTime dimViaBezout(I) │ │ │ - -- 1.48313s elapsed │ │ │ + -- 1.3554s elapsed │ │ │ │ │ │ o4 = 4 │ │ │ │ │ │ i5 : elapsedTime dim I │ │ │ - -- 3.03377s elapsed │ │ │ + -- 3.27507s elapsed │ │ │ │ │ │ o5 = 4 │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/example-output/_extend__Ideal__By__Non__Zero__Minor.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ i8 : i = 0; │ │ │ │ │ │ i9 : J = I; │ │ │ │ │ │ o9 : Ideal of T │ │ │ │ │ │ i10 : elapsedTime(while (i < 10) and dim J > 1 do (i = i+1; J = extendIdealByNonZeroMinor(4, M, J)) ); │ │ │ - -- 2.18511s elapsed │ │ │ + -- 1.76708s elapsed │ │ │ │ │ │ i11 : dim J │ │ │ │ │ │ o11 = 1 │ │ │ │ │ │ i12 : i │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/example-output/_random__Points.out │ │ │ @@ -27,24 +27,24 @@ │ │ │ i6 : S=ZZ/103[y_0..y_30]; │ │ │ │ │ │ i7 : I=minors(2,random(S^3,S^{3:-1})); │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ │ │ i8 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>MultiplicationTable) │ │ │ - -- 3.48603s elapsed │ │ │ + -- 2.98021s elapsed │ │ │ │ │ │ o8 = {{-4, -35, -7, 0, 0, 1, 5, -13, 0, -47, 0, 41, 0, -51, -46, 35, 0, 0, │ │ │ ------------------------------------------------------------------------ │ │ │ -47, 14, -30, 42, 30, 4, -41, 24, 0, 0, 15, 20, 1}} │ │ │ │ │ │ o8 : List │ │ │ │ │ │ i9 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>Decompose) │ │ │ - -- 2.33464s elapsed │ │ │ + -- 2.18869s elapsed │ │ │ │ │ │ o9 = {{11, 9, -9, -15, -7, 27, 19, -36, 48, 26, -4, 3, 29, -8, 7, -32, 16, │ │ │ ------------------------------------------------------------------------ │ │ │ 11, 7, 7, 25, -14, -39, 17, -16, 4, -50, -12, 21, -50, 51}} │ │ │ │ │ │ o9 : List │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/html/_dim__Via__Bezout.html │ │ │ @@ -95,23 +95,23 @@ │ │ │ │ │ │ o3 : Ideal of S │ │ │
    │ │ │
    i4 : elapsedTime dimViaBezout(I)
    │ │ │ - -- 1.48313s elapsed
    │ │ │ + -- 1.3554s elapsed
    │ │ │  
    │ │ │  o4 = 4
    │ │ │
    │ │ │
    i5 : elapsedTime dim I
    │ │ │ - -- 3.03377s elapsed
    │ │ │ + -- 3.27507s elapsed
    │ │ │  
    │ │ │  o5 = 4
    │ │ │
    │ │ │
    │ │ │

    The user may set the MinimumFieldSize to ensure that the field being worked over is big enough. For instance, there are relatively few linear spaces over a field of characteristic 2, and this can cause incorrect results to be provided. If no size is provided, the function tries to guess a good size based on ambient ring.

    │ │ │ ├── html2text {} │ │ │ │ @@ -32,19 +32,19 @@ │ │ │ │ examples, the built in dim function is much faster. │ │ │ │ i1 : kk=ZZ/101; │ │ │ │ i2 : S=kk[y_0..y_8]; │ │ │ │ i3 : I=ideal random(S^1,S^{-2,-2,-2,-2})+(ideal random(2,S))^2; │ │ │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ i4 : elapsedTime dimViaBezout(I) │ │ │ │ - -- 1.48313s elapsed │ │ │ │ + -- 1.3554s elapsed │ │ │ │ │ │ │ │ o4 = 4 │ │ │ │ i5 : elapsedTime dim I │ │ │ │ - -- 3.03377s elapsed │ │ │ │ + -- 3.27507s elapsed │ │ │ │ │ │ │ │ o5 = 4 │ │ │ │ The user may set the MinimumFieldSize to ensure that the field being worked │ │ │ │ over is big enough. For instance, there are relatively few linear spaces over a │ │ │ │ field of characteristic 2, and this can cause incorrect results to be provided. │ │ │ │ If no size is provided, the function tries to guess a good size based on │ │ │ │ ambient ring. │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/html/_extend__Ideal__By__Non__Zero__Minor.html │ │ │ @@ -155,15 +155,15 @@ │ │ │ │ │ │ o9 : Ideal of T │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : elapsedTime(while (i < 10) and dim J > 1 do (i = i+1; J = extendIdealByNonZeroMinor(4, M, J)) );
    │ │ │ - -- 2.18511s elapsed
    │ │ │ + -- 1.76708s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : dim J
    │ │ │  
    │ │ │  o11 = 1
    │ │ │ ├── html2text {} │ │ │ │ @@ -79,15 +79,15 @@ │ │ │ │ o7 : Matrix T <-- T │ │ │ │ i8 : i = 0; │ │ │ │ i9 : J = I; │ │ │ │ │ │ │ │ o9 : Ideal of T │ │ │ │ i10 : elapsedTime(while (i < 10) and dim J > 1 do (i = i+1; J = │ │ │ │ extendIdealByNonZeroMinor(4, M, J)) ); │ │ │ │ - -- 2.18511s elapsed │ │ │ │ + -- 1.76708s elapsed │ │ │ │ i11 : dim J │ │ │ │ │ │ │ │ o11 = 1 │ │ │ │ i12 : i │ │ │ │ │ │ │ │ o12 = 4 │ │ │ │ In this particular example, there tend to be about 5 associated primes when │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/html/_random__Points.html │ │ │ @@ -144,27 +144,27 @@ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>MultiplicationTable)
    │ │ │ - -- 3.48603s elapsed
    │ │ │ + -- 2.98021s elapsed
    │ │ │  
    │ │ │  o8 = {{-4, -35, -7, 0, 0, 1, 5, -13, 0, -47, 0, 41, 0, -51, -46, 35, 0, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       -47, 14, -30, 42, 30, 4, -41, 24, 0, 0, 15, 20, 1}}
    │ │ │  
    │ │ │  o8 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>Decompose)
    │ │ │ - -- 2.33464s elapsed
    │ │ │ + -- 2.18869s elapsed
    │ │ │  
    │ │ │  o9 = {{11, 9, -9, -15, -7, 27, 19, -36, 48, 26, -4, 3, 29, -8, 7, -32, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       11, 7, 7, 25, -14, -39, 17, -16, 4, -50, -12, 21, -50, 51}}
    │ │ │  
    │ │ │  o9 : List
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -66,24 +66,24 @@ │ │ │ │ first in rings with more variables. │ │ │ │ i6 : S=ZZ/103[y_0..y_30]; │ │ │ │ i7 : I=minors(2,random(S^3,S^{3:-1})); │ │ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ i8 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, │ │ │ │ DecompositionStrategy=>MultiplicationTable) │ │ │ │ - -- 3.48603s elapsed │ │ │ │ + -- 2.98021s elapsed │ │ │ │ │ │ │ │ o8 = {{-4, -35, -7, 0, 0, 1, 5, -13, 0, -47, 0, 41, 0, -51, -46, 35, 0, 0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ -47, 14, -30, 42, 30, 4, -41, 24, 0, 0, 15, 20, 1}} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ i9 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, │ │ │ │ DecompositionStrategy=>Decompose) │ │ │ │ - -- 2.33464s elapsed │ │ │ │ + -- 2.18869s elapsed │ │ │ │ │ │ │ │ o9 = {{11, 9, -9, -15, -7, 27, 19, -36, 48, 26, -4, 3, 29, -8, 7, -32, 16, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 11, 7, 7, 25, -14, -39, 17, -16, 4, -50, -12, 21, -50, 51}} │ │ │ │ │ │ │ │ o9 : List │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommPPooiinnttss:: ********** │ │ ├── ./usr/share/doc/Macaulay2/RationalMaps/example-output/_inverse__Of__Map.out │ │ │ @@ -49,15 +49,15 @@ │ │ │ i12 : Q=QQ[x,y,z,t,u]; │ │ │ │ │ │ i13 : phi=map(Q,Q,matrix{{x^5,y*x^4,z*x^4+y^5,t*x^4+z^5,u*x^4+t^5}}); │ │ │ │ │ │ o13 : RingMap Q <-- Q │ │ │ │ │ │ i14 : time inverseOfMap(phi,CheckBirational=>false, Verbosity=>0) │ │ │ - -- used 0.616843s (cpu); 0.437628s (thread); 0s (gc) │ │ │ + -- used 0.850614s (cpu); 0.470375s (thread); 0s (gc) │ │ │ │ │ │ 125 124 120 5 124 100 25 104 20 108 15 2 112 10 3 116 5 4 120 5 124 125 4 120 8 115 2 12 110 3 16 105 4 20 100 5 24 95 6 28 90 7 32 85 8 36 80 9 40 75 10 44 70 11 48 65 12 52 60 13 56 55 14 60 50 15 64 45 16 68 40 17 72 35 18 76 30 19 80 25 20 84 20 21 88 15 22 92 10 23 96 5 24 100 25 24 100 28 95 32 90 2 36 85 3 40 80 4 44 75 5 48 70 6 52 65 7 56 60 8 60 55 9 64 50 10 68 45 11 72 40 12 76 35 13 80 30 14 84 25 15 88 20 16 92 15 17 96 10 18 100 5 19 104 20 48 75 2 52 70 2 56 65 2 2 60 60 3 2 64 55 4 2 68 50 5 2 72 45 6 2 76 40 7 2 80 35 8 2 84 30 9 2 88 25 10 2 92 20 11 2 96 15 12 2 100 10 13 2 104 5 14 2 108 15 2 72 50 3 76 45 3 80 40 2 3 84 35 3 3 88 30 4 3 92 25 5 3 96 20 6 3 100 15 7 3 104 10 8 3 108 5 9 3 112 10 3 96 25 4 100 20 4 104 15 2 4 108 10 3 4 112 5 4 4 116 5 4 120 5 124 │ │ │ o14 = Proj Q - - - > Proj Q {x , x y, - x y + x z, x y - 5x y z + 10x y z - 10x y z + 5x y z - x z + x t, - y + 25x y z - 300x y z + 2300x y z - 12650x y z + 53130x y z - 177100x y z + 480700x y z - 1081575x y z + 2042975x y z - 3268760x y z + 4457400x y z - 5200300x y z + 5200300x y z - 4457400x y z + 3268760x y z - 2042975x y z + 1081575x y z - 480700x y z + 177100x y z - 53130x y z + 12650x y z - 2300x y z + 300x y z - 25x y z + x z - 5x y t + 100x y z*t - 950x y z t + 5700x y z t - 24225x y z t + 77520x y z t - 193800x y z t + 387600x y z t - 629850x y z t + 839800x y z t - 923780x y z t + 839800x y z t - 629850x y z t + 387600x y z t - 193800x y z t + 77520x y z t - 24225x y z t + 5700x y z t - 950x y z t + 100x y z t - 5x z t - 10x y t + 150x y z*t - 1050x y z t + 4550x y z t - 13650x y z t + 30030x y z t - 50050x y z t + 64350x y z t - 64350x y z t + 50050x y z t - 30030x y z t + 13650x y z t - 4550x y z t + 1050x y z t - 150x y z t + 10x z t - 10x y t + 100x y z*t - 450x y z t + 1200x y z t - 2100x y z t + 2520x y z t - 2100x y z t + 1200x y z t - 450x y z t + 100x y z t - 10x z t - 5x y t + 25x y z*t - 50x y z t + 50x y z t - 25x y z t + 5x z t - x t + x u} │ │ │ │ │ │ o14 : RationalMapping │ │ │ │ │ │ i15 : R=QQ[x,y,z,t]/(z-2*t); │ │ ├── ./usr/share/doc/Macaulay2/RationalMaps/html/_inverse__Of__Map.html │ │ │ @@ -189,15 +189,15 @@ │ │ │ │ │ │ o13 : RingMap Q <-- Q │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : time inverseOfMap(phi,CheckBirational=>false, Verbosity=>0)
    │ │ │ - -- used 0.616843s (cpu); 0.437628s (thread); 0s (gc)
    │ │ │ + -- used 0.850614s (cpu); 0.470375s (thread); 0s (gc)
    │ │ │  
    │ │ │                                  125   124      120 5    124    100 25     104 20       108 15 2      112 10 3     116 5 4    120 5    124      125      4 120        8 115 2        12 110 3         16 105 4         20 100 5          24 95 6          28 90 7           32 85 8           36 80 9           40 75 10           44 70 11           48 65 12           52 60 13           56 55 14           60 50 15           64 45 16           68 40 17          72 35 18          76 30 19         80 25 20         84 20 21        88 15 22       92 10 23      96 5 24    100 25     24 100        28 95          32 90 2         36 85 3          40 80 4          44 75 5           48 70 6           52 65 7           56 60 8           60 55 9           64 50 10           68 45 11           72 40 12           76 35 13           80 30 14          84 25 15          88 20 16         92 15 17        96 10 18        100 5 19      104 20       48 75 2       52 70   2        56 65 2 2        60 60 3 2         64 55 4 2         68 50 5 2         72 45 6 2         76 40 7 2         80 35 8 2         84 30 9 2         88 25 10 2         92 20 11 2        96 15 12 2        100 10 13 2       104 5 14 2      108 15 2      72 50 3       76 45   3       80 40 2 3        84 35 3 3        88 30 4 3        92 25 5 3        96 20 6 3        100 15 7 3       104 10 8 3       108 5 9 3      112 10 3     96 25 4      100 20   4      104 15 2 4      108 10 3 4      112 5 4 4     116 5 4    120 5    124
    │ │ │  o14 = Proj Q - - - > Proj Q   {x   , x   y, - x   y  + x   z, x   y   - 5x   y  z + 10x   y  z  - 10x   y  z  + 5x   y z  - x   z  + x   t, - y    + 25x y   z - 300x y   z  + 2300x  y   z  - 12650x  y   z  + 53130x  y   z  - 177100x  y  z  + 480700x  y  z  - 1081575x  y  z  + 2042975x  y  z  - 3268760x  y  z   + 4457400x  y  z   - 5200300x  y  z   + 5200300x  y  z   - 4457400x  y  z   + 3268760x  y  z   - 2042975x  y  z   + 1081575x  y  z   - 480700x  y  z   + 177100x  y  z   - 53130x  y  z   + 12650x  y  z   - 2300x  y  z   + 300x  y  z   - 25x  y z   + x   z   - 5x  y   t + 100x  y  z*t - 950x  y  z t + 5700x  y  z t - 24225x  y  z t + 77520x  y  z t - 193800x  y  z t + 387600x  y  z t - 629850x  y  z t + 839800x  y  z t - 923780x  y  z  t + 839800x  y  z  t - 629850x  y  z  t + 387600x  y  z  t - 193800x  y  z  t + 77520x  y  z  t - 24225x  y  z  t + 5700x  y  z  t - 950x  y  z  t + 100x   y z  t - 5x   z  t - 10x  y  t  + 150x  y  z*t  - 1050x  y  z t  + 4550x  y  z t  - 13650x  y  z t  + 30030x  y  z t  - 50050x  y  z t  + 64350x  y  z t  - 64350x  y  z t  + 50050x  y  z t  - 30030x  y  z  t  + 13650x  y  z  t  - 4550x  y  z  t  + 1050x   y  z  t  - 150x   y z  t  + 10x   z  t  - 10x  y  t  + 100x  y  z*t  - 450x  y  z t  + 1200x  y  z t  - 2100x  y  z t  + 2520x  y  z t  - 2100x  y  z t  + 1200x   y  z t  - 450x   y  z t  + 100x   y z t  - 10x   z  t  - 5x  y  t  + 25x   y  z*t  - 50x   y  z t  + 50x   y  z t  - 25x   y z t  + 5x   z t  - x   t  + x   u}
    │ │ │  
    │ │ │  o14 : RationalMapping
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ o11 : Ideal of blowUpSubvar │ │ │ │ The next example is a birational map on $\mathbb{P}^4$. │ │ │ │ i12 : Q=QQ[x,y,z,t,u]; │ │ │ │ i13 : phi=map(Q,Q,matrix{{x^5,y*x^4,z*x^4+y^5,t*x^4+z^5,u*x^4+t^5}}); │ │ │ │ │ │ │ │ o13 : RingMap Q <-- Q │ │ │ │ i14 : time inverseOfMap(phi,CheckBirational=>false, Verbosity=>0) │ │ │ │ - -- used 0.616843s (cpu); 0.437628s (thread); 0s (gc) │ │ │ │ + -- used 0.850614s (cpu); 0.470375s (thread); 0s (gc) │ │ │ │ │ │ │ │ 125 124 120 5 124 100 25 104 │ │ │ │ 20 108 15 2 112 10 3 116 5 4 120 5 124 125 4 120 │ │ │ │ 8 115 2 12 110 3 16 105 4 20 100 5 24 95 6 │ │ │ │ 28 90 7 32 85 8 36 80 9 40 75 10 44 70 │ │ │ │ 11 48 65 12 52 60 13 56 55 14 60 50 15 │ │ │ │ 64 45 16 68 40 17 72 35 18 76 30 19 80 25 │ │ ├── ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_rational__Points.out │ │ │ @@ -48,15 +48,15 @@ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ ZZ │ │ │ o13 : Ideal of ---[u ..u ] │ │ │ 101 0 10 │ │ │ │ │ │ i14 : time rationalPoints(I, Amount => true) │ │ │ - -- used 0.00326124s (cpu); 0.00325846s (thread); 0s (gc) │ │ │ + -- used 0.00375978s (cpu); 0.00375504s (thread); 0s (gc) │ │ │ │ │ │ o14 = 110462212541120451001 │ │ │ │ │ │ i15 : QQ[x,y,z]; I = homogenize(ideal(y^2-x*(x-1)*(x-2)*(x-5)*(x-6)), z); │ │ │ │ │ │ o16 : Ideal of QQ[x..z] │ │ │ │ │ │ @@ -142,23 +142,23 @@ │ │ │ │ │ │ i31 : nodes = I + ideal jacobian I; │ │ │ │ │ │ o31 : Ideal of R │ │ │ │ │ │ i32 : time rationalPoints(variety nodes, Split=>true, Verbose=>true); │ │ │ -- base change to the field QQ[a]/(a^8-40*a^6+230*a^4-200*a^2+25) │ │ │ - -- used 1.00756s (cpu); 0.82979s (thread); 0s (gc) │ │ │ + -- used 1.18562s (cpu); 0.951258s (thread); 0s (gc) │ │ │ │ │ │ i33 : #oo │ │ │ │ │ │ o33 = 31 │ │ │ │ │ │ i34 : nodes' = baseChange_32003 nodes; │ │ │ │ │ │ o34 : Ideal of GF 1048969271299456081[x..z, w] │ │ │ │ │ │ i35 : time #rationalPoints(variety nodes', Split=>true, Verbose=>true) │ │ │ - -- used 0.288685s (cpu); 0.211506s (thread); 0s (gc) │ │ │ + -- used 0.332717s (cpu); 0.247358s (thread); 0s (gc) │ │ │ │ │ │ o35 = 31 │ │ │ │ │ │ i36 : │ │ ├── ./usr/share/doc/Macaulay2/RationalPoints2/html/_rational__Points.html │ │ │ @@ -178,15 +178,15 @@ │ │ │ o13 : Ideal of ---[u ..u ] │ │ │ 101 0 10 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : time rationalPoints(I, Amount => true)
    │ │ │ - -- used 0.00326124s (cpu); 0.00325846s (thread); 0s (gc)
    │ │ │ + -- used 0.00375978s (cpu); 0.00375504s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = 110462212541120451001
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Over number fields

    │ │ │ @@ -348,15 +348,15 @@ │ │ │ o31 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i32 : time rationalPoints(variety nodes, Split=>true, Verbose=>true);
    │ │ │  -- base change to the field QQ[a]/(a^8-40*a^6+230*a^4-200*a^2+25)
    │ │ │ - -- used 1.00756s (cpu); 0.82979s (thread); 0s (gc)
    │ │ │ + -- used 1.18562s (cpu); 0.951258s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i33 : #oo
    │ │ │  
    │ │ │  o33 = 31
    │ │ │ @@ -373,15 +373,15 @@ │ │ │ │ │ │ o34 : Ideal of GF 1048969271299456081[x..z, w] │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i35 : time #rationalPoints(variety nodes', Split=>true, Verbose=>true)
    │ │ │ - -- used 0.288685s (cpu); 0.211506s (thread); 0s (gc)
    │ │ │ + -- used 0.332717s (cpu); 0.247358s (thread); 0s (gc)
    │ │ │  
    │ │ │  o35 = 31
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ o13 = ideal(u + u + u + u + u + u + u + u + u + u + u ) │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ │ │ ZZ │ │ │ │ o13 : Ideal of ---[u ..u ] │ │ │ │ 101 0 10 │ │ │ │ i14 : time rationalPoints(I, Amount => true) │ │ │ │ - -- used 0.00326124s (cpu); 0.00325846s (thread); 0s (gc) │ │ │ │ + -- used 0.00375978s (cpu); 0.00375504s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = 110462212541120451001 │ │ │ │ ****** OOvveerr nnuummbbeerr ffiieellddss ****** │ │ │ │ Over a number field one can use the option Bound to specify a maximal │ │ │ │ multiplicative height given by $(x_0:\dots:x_n)\mapsto \prod_{v}\max_i|x_i|_v ^ │ │ │ │ {d_v/d}$ (this is also available as a method _g_l_o_b_a_l_H_e_i_g_h_t). │ │ │ │ i15 : QQ[x,y,z]; I = homogenize(ideal(y^2-x*(x-1)*(x-2)*(x-5)*(x-6)), z); │ │ │ │ @@ -197,24 +197,24 @@ │ │ │ │ │ │ │ │ o30 : Ideal of R │ │ │ │ i31 : nodes = I + ideal jacobian I; │ │ │ │ │ │ │ │ o31 : Ideal of R │ │ │ │ i32 : time rationalPoints(variety nodes, Split=>true, Verbose=>true); │ │ │ │ -- base change to the field QQ[a]/(a^8-40*a^6+230*a^4-200*a^2+25) │ │ │ │ - -- used 1.00756s (cpu); 0.82979s (thread); 0s (gc) │ │ │ │ + -- used 1.18562s (cpu); 0.951258s (thread); 0s (gc) │ │ │ │ i33 : #oo │ │ │ │ │ │ │ │ o33 = 31 │ │ │ │ Still it runs a lot faster when reduced to a positive characteristic. │ │ │ │ i34 : nodes' = baseChange_32003 nodes; │ │ │ │ │ │ │ │ o34 : Ideal of GF 1048969271299456081[x..z, w] │ │ │ │ i35 : time #rationalPoints(variety nodes', Split=>true, Verbose=>true) │ │ │ │ - -- used 0.288685s (cpu); 0.211506s (thread); 0s (gc) │ │ │ │ + -- used 0.332717s (cpu); 0.247358s (thread); 0s (gc) │ │ │ │ │ │ │ │ o35 = 31 │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ For a number field other than QQ, the enumeration of elements with bounded │ │ │ │ height depends on an algorithm by Doyle–Krumm, which is currently only │ │ │ │ implemented in Sage. │ │ │ │ ******** MMeennuu ******** │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Plane__Curve__Singularities.out │ │ │ @@ -331,15 +331,15 @@ │ │ │ 2 2 2 2 2 2 2 │ │ │ - p w , p y - p , p w y - p p , p w - p ) │ │ │ 2 1 0 1 0 0 1 2 0 0 2 │ │ │ │ │ │ o47 : Ideal of B2 │ │ │ │ │ │ i48 : time sing2 = ideal singularLocus strictTransform2; │ │ │ - -- used 0.84218s (cpu); 0.713177s (thread); 0s (gc) │ │ │ + -- used 1.01408s (cpu); 0.830484s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o48 : Ideal of -----[p ..p , w ..w , x..y] │ │ │ 32003 0 2 0 1 │ │ │ │ │ │ i49 : saturate(sing2, sub(irrelTot, ring sing2)) │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_expected__Rees__Ideal.out │ │ │ @@ -58,15 +58,15 @@ │ │ │ o5 : Matrix S <-- S │ │ │ │ │ │ i6 : I = minors(n-1, M); │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ i7 : time rI = expectedReesIdeal I; -- n= 5 case takes < 1 sec. │ │ │ - -- used 1.03324s (cpu); 0.7369s (thread); 0s (gc) │ │ │ + -- used 1.22453s (cpu); 0.833834s (thread); 0s (gc) │ │ │ │ │ │ o7 : Ideal of S[w ..w ] │ │ │ 0 4 │ │ │ │ │ │ i8 : kk = ZZ/101; │ │ │ │ │ │ i9 : S = kk[x,y,z]; │ │ │ @@ -77,19 +77,19 @@ │ │ │ o10 : Matrix S <-- S │ │ │ │ │ │ i11 : I = minors(3,m); │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ │ │ i12 : time reesIdeal (I, I_0); │ │ │ - -- used 1.49044s (cpu); 1.21436s (thread); 0s (gc) │ │ │ + -- used 1.70004s (cpu); 1.45222s (thread); 0s (gc) │ │ │ │ │ │ o12 : Ideal of S[w ..w ] │ │ │ 0 3 │ │ │ │ │ │ i13 : time reesIdeal (I, I_0, Jacobian =>false); │ │ │ - -- used 1.63351s (cpu); 1.25312s (thread); 0s (gc) │ │ │ + -- used 1.72603s (cpu); 1.42884s (thread); 0s (gc) │ │ │ │ │ │ o13 : Ideal of S[w ..w ] │ │ │ 0 3 │ │ │ │ │ │ i14 : │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Ideal.out │ │ │ @@ -13,21 +13,21 @@ │ │ │ 3 2 │ │ │ - x x x , x - x x ) │ │ │ 0 2 4 1 0 4 │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ i4 : time V1 = reesIdeal i; │ │ │ - -- used 0.0281685s (cpu); 0.0259639s (thread); 0s (gc) │ │ │ + -- used 0.134457s (cpu); 0.0392151s (thread); 0s (gc) │ │ │ │ │ │ o4 : Ideal of S[w ..w ] │ │ │ 0 6 │ │ │ │ │ │ i5 : time V2 = reesIdeal(i,i_0); │ │ │ - -- used 0.116569s (cpu); 0.115819s (thread); 0s (gc) │ │ │ + -- used 0.253011s (cpu); 0.176505s (thread); 0s (gc) │ │ │ │ │ │ o5 : Ideal of S[w ..w ] │ │ │ 0 6 │ │ │ │ │ │ i6 : S=kk[a,b,c] │ │ │ │ │ │ o6 = S │ │ │ @@ -47,21 +47,21 @@ │ │ │ │ │ │ 2 2 │ │ │ o8 = ideal (a , a*b, b ) │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ i9 : time I1 = reesIdeal i; │ │ │ - -- used 0.0193057s (cpu); 0.0182587s (thread); 0s (gc) │ │ │ + -- used 0.164425s (cpu); 0.0395528s (thread); 0s (gc) │ │ │ │ │ │ o9 : Ideal of S[w ..w ] │ │ │ 0 2 │ │ │ │ │ │ i10 : time I2 = reesIdeal(i,i_0); │ │ │ - -- used 0.00768211s (cpu); 0.00741424s (thread); 0s (gc) │ │ │ + -- used 0.0705845s (cpu); 0.0187201s (thread); 0s (gc) │ │ │ │ │ │ o10 : Ideal of S[w ..w ] │ │ │ 0 2 │ │ │ │ │ │ i11 : transpose gens I1 │ │ │ │ │ │ o11 = {-1, -3} | aw_1-bw_2 | │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Plane__Curve__Singularities.html │ │ │ @@ -587,15 +587,15 @@ │ │ │
    │ │ │

    We compute the singular locus once again:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -325,15 +325,15 @@ │ │ │ │ 2 2 2 2 2 2 2 │ │ │ │ - p w , p y - p , p w y - p p , p w - p ) │ │ │ │ 2 1 0 1 0 0 1 2 0 0 2 │ │ │ │ │ │ │ │ o47 : Ideal of B2 │ │ │ │ We compute the singular locus once again: │ │ │ │ i48 : time sing2 = ideal singularLocus strictTransform2; │ │ │ │ - -- used 0.84218s (cpu); 0.713177s (thread); 0s (gc) │ │ │ │ + -- used 1.01408s (cpu); 0.830484s (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o48 : Ideal of -----[p ..p , w ..w , x..y] │ │ │ │ 32003 0 2 0 1 │ │ │ │ i49 : saturate(sing2, sub(irrelTot, ring sing2)) │ │ │ │ │ │ │ │ o49 = ideal 1 │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/html/_expected__Rees__Ideal.html │ │ │ @@ -151,15 +151,15 @@ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i48 : time sing2 = ideal singularLocus strictTransform2;
    │ │ │ - -- used 0.84218s (cpu); 0.713177s (thread); 0s (gc)
    │ │ │ + -- used 1.01408s (cpu); 0.830484s (thread); 0s (gc)
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o48 : Ideal of -----[p ..p , w ..w , x..y]
    │ │ │                 32003  0   2   0   1
    │ │ │
    │ │ │
    i7 : time rI = expectedReesIdeal I; -- n= 5 case takes < 1 sec.
    │ │ │ - -- used 1.03324s (cpu); 0.7369s (thread); 0s (gc)
    │ │ │ + -- used 1.22453s (cpu); 0.833834s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of S[w ..w ]
    │ │ │                   0   4
    │ │ │
    │ │ │ @@ -185,24 +185,24 @@ │ │ │ │ │ │ o11 : Ideal of S │ │ │
    │ │ │
    i12 : time reesIdeal (I, I_0);
    │ │ │ - -- used 1.49044s (cpu); 1.21436s (thread); 0s (gc)
    │ │ │ + -- used 1.70004s (cpu); 1.45222s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of S[w ..w ]
    │ │ │                    0   3
    │ │ │
    │ │ │
    i13 : time reesIdeal (I, I_0, Jacobian =>false);
    │ │ │ - -- used 1.63351s (cpu); 1.25312s (thread); 0s (gc)
    │ │ │ + -- used 1.72603s (cpu); 1.42884s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of S[w ..w ]
    │ │ │                    0   3
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -86,34 +86,34 @@ │ │ │ │ │ │ │ │ 5 4 │ │ │ │ o5 : Matrix S <-- S │ │ │ │ i6 : I = minors(n-1, M); │ │ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ i7 : time rI = expectedReesIdeal I; -- n= 5 case takes < 1 sec. │ │ │ │ - -- used 1.03324s (cpu); 0.7369s (thread); 0s (gc) │ │ │ │ + -- used 1.22453s (cpu); 0.833834s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : Ideal of S[w ..w ] │ │ │ │ 0 4 │ │ │ │ i8 : kk = ZZ/101; │ │ │ │ i9 : S = kk[x,y,z]; │ │ │ │ i10 : m = random(S^3, S^{4:-2}); │ │ │ │ │ │ │ │ 3 4 │ │ │ │ o10 : Matrix S <-- S │ │ │ │ i11 : I = minors(3,m); │ │ │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ i12 : time reesIdeal (I, I_0); │ │ │ │ - -- used 1.49044s (cpu); 1.21436s (thread); 0s (gc) │ │ │ │ + -- used 1.70004s (cpu); 1.45222s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 : Ideal of S[w ..w ] │ │ │ │ 0 3 │ │ │ │ i13 : time reesIdeal (I, I_0, Jacobian =>false); │ │ │ │ - -- used 1.63351s (cpu); 1.25312s (thread); 0s (gc) │ │ │ │ + -- used 1.72603s (cpu); 1.42884s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 : Ideal of S[w ..w ] │ │ │ │ 0 3 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_y_m_m_e_t_r_i_c_A_l_g_e_b_r_a_I_d_e_a_l -- Ideal of the symmetric algebra of an ideal or │ │ │ │ module │ │ │ │ * _j_a_c_o_b_i_a_n_D_u_a_l -- Computes the 'jacobian dual', part of a method of finding │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal.html │ │ │ @@ -110,24 +110,24 @@ │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time V1 = reesIdeal i;
    │ │ │ - -- used 0.0281685s (cpu); 0.0259639s (thread); 0s (gc)
    │ │ │ + -- used 0.134457s (cpu); 0.0392151s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of S[w ..w ]
    │ │ │                   0   6
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time V2 = reesIdeal(i,i_0);
    │ │ │ - -- used 0.116569s (cpu); 0.115819s (thread); 0s (gc)
    │ │ │ + -- used 0.253011s (cpu); 0.176505s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : Ideal of S[w ..w ]
    │ │ │                   0   6
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ @@ -164,24 +164,24 @@ │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time I1 = reesIdeal i;
    │ │ │ - -- used 0.0193057s (cpu); 0.0182587s (thread); 0s (gc)
    │ │ │ + -- used 0.164425s (cpu); 0.0395528s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of S[w ..w ]
    │ │ │                   0   2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time I2 = reesIdeal(i,i_0);
    │ │ │ - -- used 0.00768211s (cpu); 0.00741424s (thread); 0s (gc)
    │ │ │ + -- used 0.0705845s (cpu); 0.0187201s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of S[w ..w ]
    │ │ │                    0   2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -51,20 +51,20 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 │ │ │ │ - x x x , x - x x ) │ │ │ │ 0 2 4 1 0 4 │ │ │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ i4 : time V1 = reesIdeal i; │ │ │ │ - -- used 0.0281685s (cpu); 0.0259639s (thread); 0s (gc) │ │ │ │ + -- used 0.134457s (cpu); 0.0392151s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 : Ideal of S[w ..w ] │ │ │ │ 0 6 │ │ │ │ i5 : time V2 = reesIdeal(i,i_0); │ │ │ │ - -- used 0.116569s (cpu); 0.115819s (thread); 0s (gc) │ │ │ │ + -- used 0.253011s (cpu); 0.176505s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : Ideal of S[w ..w ] │ │ │ │ 0 6 │ │ │ │ The following example shows how we handle degrees │ │ │ │ i6 : S=kk[a,b,c] │ │ │ │ │ │ │ │ o6 = S │ │ │ │ @@ -81,20 +81,20 @@ │ │ │ │ i8 : i=minors(2,m) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o8 = ideal (a , a*b, b ) │ │ │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ i9 : time I1 = reesIdeal i; │ │ │ │ - -- used 0.0193057s (cpu); 0.0182587s (thread); 0s (gc) │ │ │ │ + -- used 0.164425s (cpu); 0.0395528s (thread); 0s (gc) │ │ │ │ │ │ │ │ o9 : Ideal of S[w ..w ] │ │ │ │ 0 2 │ │ │ │ i10 : time I2 = reesIdeal(i,i_0); │ │ │ │ - -- used 0.00768211s (cpu); 0.00741424s (thread); 0s (gc) │ │ │ │ + -- used 0.0705845s (cpu); 0.0187201s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 : Ideal of S[w ..w ] │ │ │ │ 0 2 │ │ │ │ i11 : transpose gens I1 │ │ │ │ │ │ │ │ o11 = {-1, -3} | aw_1-bw_2 | │ │ │ │ {-1, -3} | aw_0-bw_1 | │ │ ├── ./usr/share/doc/Macaulay2/Regularity/example-output/_m__Regularity.out │ │ │ @@ -71,15 +71,15 @@ │ │ │ x x x , x + x x - x x - x x x , x + x - x x ) │ │ │ 0 1 3 0 0 1 1 2 0 2 5 0 2 0 5 │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : benchmark "mRegularity I1" │ │ │ │ │ │ -o8 = .2611710043999999 │ │ │ +o8 = .2737790067777777 │ │ │ │ │ │ o8 : RR (of precision 53) │ │ │ │ │ │ i9 : R = QQ[x_0..x_5] │ │ │ │ │ │ o9 = R │ │ │ │ │ │ @@ -87,17 +87,17 @@ │ │ │ │ │ │ i10 : I2 = ideal ( x_0^2+x_5^2, x_0^2+x_0*x_3+x_4^2, x_0^2+x_0*x_5+x_2*x_5, x_0^2-x_0*x_3-x_3*x_5, x_0^2-x_3*x_4, x_0*x_3); │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ i11 : benchmark " mRegularity I2" │ │ │ │ │ │ -o11 = .07145842478873242 │ │ │ +o11 = .08565459710169493 │ │ │ │ │ │ o11 : RR (of precision 53) │ │ │ │ │ │ i12 : time regularity I2 │ │ │ - -- used 0.00248761s (cpu); 0.00248695s (thread); 0s (gc) │ │ │ + -- used 0.00256636s (cpu); 0.00256953s (thread); 0s (gc) │ │ │ │ │ │ o12 = 4 │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/Regularity/html/_m__Regularity.html │ │ │ @@ -176,15 +176,15 @@ │ │ │ o7 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : benchmark "mRegularity I1"
    │ │ │  
    │ │ │ -o8 = .2611710043999999
    │ │ │ +o8 = .2737790067777777
    │ │ │  
    │ │ │  o8 : RR (of precision 53)
    │ │ │ │ │ │ │ │ │ │ │ │

    This is an example where regularity is faster than mRegularity.

    │ │ │ │ │ │ @@ -204,23 +204,23 @@ │ │ │ o10 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i11 : benchmark " mRegularity I2"
    │ │ │  
    │ │ │ -o11 = .07145842478873242
    │ │ │ +o11 = .08565459710169493
    │ │ │  
    │ │ │  o11 : RR (of precision 53)
    │ │ │
    │ │ │
    i12 : time regularity I2  
    │ │ │ - -- used 0.00248761s (cpu); 0.00248695s (thread); 0s (gc)
    │ │ │ + -- used 0.00256636s (cpu); 0.00256953s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = 4
    │ │ │
    │ │ │

    This symbol is provided by the package Regularity.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -94,34 +94,34 @@ │ │ │ │ 3 2 2 3 3 2 │ │ │ │ x x x , x + x x - x x - x x x , x + x - x x ) │ │ │ │ 0 1 3 0 0 1 1 2 0 2 5 0 2 0 5 │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ i8 : benchmark "mRegularity I1" │ │ │ │ │ │ │ │ -o8 = .2611710043999999 │ │ │ │ +o8 = .2737790067777777 │ │ │ │ │ │ │ │ o8 : RR (of precision 53) │ │ │ │ This is an example where regularity is faster than mRegularity. │ │ │ │ i9 : R = QQ[x_0..x_5] │ │ │ │ │ │ │ │ o9 = R │ │ │ │ │ │ │ │ o9 : PolynomialRing │ │ │ │ i10 : I2 = ideal ( x_0^2+x_5^2, x_0^2+x_0*x_3+x_4^2, x_0^2+x_0*x_5+x_2*x_5, │ │ │ │ x_0^2-x_0*x_3-x_3*x_5, x_0^2-x_3*x_4, x_0*x_3); │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ i11 : benchmark " mRegularity I2" │ │ │ │ │ │ │ │ -o11 = .07145842478873242 │ │ │ │ +o11 = .08565459710169493 │ │ │ │ │ │ │ │ o11 : RR (of precision 53) │ │ │ │ i12 : time regularity I2 │ │ │ │ - -- used 0.00248761s (cpu); 0.00248695s (thread); 0s (gc) │ │ │ │ + -- used 0.00256636s (cpu); 0.00256953s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 = 4 │ │ │ │ This symbol is provided by the package Regularity. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_g_u_l_a_r_i_t_y -- compute the Castelnuovo-Mumford regularity │ │ │ │ ********** WWaayyss ttoo uussee mmRReegguullaarriittyy:: ********** │ │ │ │ * mRegularity(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_cayley__Trick.out │ │ │ @@ -5,18 +5,18 @@ │ │ │ o2 = ideal(x x - x x ) │ │ │ 0 1 2 3 │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ i3 : time (P1xP1xP2,P1xP1xP2') = cayleyTrick(P1xP1,2); │ │ │ - -- used 0.105384s (cpu); 0.0634894s (thread); 0s (gc) │ │ │ + -- used 0.154302s (cpu); 0.0815941s (thread); 0s (gc) │ │ │ │ │ │ i4 : time (P1xP1xP1,P1xP1xP1') = cayleyTrick(P1xP1,1) │ │ │ - -- used 0.120535s (cpu); 0.0680862s (thread); 0s (gc) │ │ │ + -- used 0.164102s (cpu); 0.0891023s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o4 = (ideal (x x - x x , x x - x x , x x - x x , │ │ │ 0,3 1,2 0,2 1,3 1,0 1,1 1,2 1,3 0,3 1,1 0,1 1,3 │ │ │ ------------------------------------------------------------------------ │ │ │ │ │ │ x x - x x , x x - x x , x x - x x , x x │ │ │ @@ -37,17 +37,17 @@ │ │ │ 2 2 │ │ │ 4x x x x - 2x x x x + x x )) │ │ │ 0,0 0,1 1,2 1,3 0,2 0,3 1,2 1,3 0,2 1,3 │ │ │ │ │ │ o4 : Sequence │ │ │ │ │ │ i5 : time cayleyTrick(P1xP1,1,Duality=>true); │ │ │ - -- used 0.128164s (cpu); 0.0856389s (thread); 0s (gc) │ │ │ + -- used 0.190117s (cpu); 0.117432s (thread); 0s (gc) │ │ │ │ │ │ i6 : assert(oo == (P1xP1xP1,P1xP1xP1')) │ │ │ │ │ │ i7 : time cayleyTrick(P1xP1,2,Duality=>true); │ │ │ - -- used 0.140744s (cpu); 0.0923886s (thread); 0s (gc) │ │ │ + -- used 0.19423s (cpu); 0.119775s (thread); 0s (gc) │ │ │ │ │ │ i8 : assert(oo == (P1xP1xP2,P1xP1xP2')) │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Equations.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ o2 = ideal (x + x + x + x , x x + x x + x x ) │ │ │ 0 1 2 3 0 1 1 2 2 3 │ │ │ │ │ │ o2 : Ideal of P3 │ │ │ │ │ │ i3 : -- Chow equations of C │ │ │ time eqsC = chowEquations chowForm C │ │ │ - -- used 0.122683s (cpu); 0.065425s (thread); 0s (gc) │ │ │ + -- used 0.139587s (cpu); 0.0693091s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 4 2 2 2 2 │ │ │ o3 = ideal (x x + x x + x x + x , x x x x + x x x + x x , x x x + │ │ │ 0 3 1 3 2 3 3 0 1 2 3 1 2 3 2 3 0 2 3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 2 3 3 2 2 2 2 │ │ │ x x x + x x - 2x x x - 2x x x - x x , x x + 2x x x - x x x + x x │ │ │ @@ -72,15 +72,15 @@ │ │ │ o5 = ideal (x - x x , x - x x x , x x - x x ) │ │ │ 1 0 2 2 0 1 3 1 2 0 3 │ │ │ │ │ │ o5 : Ideal of P3 │ │ │ │ │ │ i6 : -- Chow equations of D │ │ │ time eqsD = chowEquations chowForm D │ │ │ - -- used 0.110296s (cpu); 0.0572802s (thread); 0s (gc) │ │ │ + -- used 0.135123s (cpu); 0.0632665s (thread); 0s (gc) │ │ │ │ │ │ 4 3 2 3 2 2 3 2 2 2 2 2 2 │ │ │ o6 = ideal (x x - x x , x x x - x x x , x x x - x x x , x x x - x x x , │ │ │ 2 3 1 3 1 2 3 0 1 3 0 2 3 0 1 3 1 2 3 0 1 3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 3 3 2 4 2 2 2 3 │ │ │ x x x x - x x , x x x - x x , x x - 4x x x x + 3x x x , x x x - │ │ │ @@ -117,24 +117,24 @@ │ │ │ o9 = ideal(x x + x x ) │ │ │ 0 1 2 3 │ │ │ │ │ │ o9 : Ideal of P3 │ │ │ │ │ │ i10 : -- tangential Chow forms of Q │ │ │ time (W0,W1,W2) = (tangentialChowForm(Q,0),tangentialChowForm(Q,1),tangentialChowForm(Q,2)) │ │ │ - -- used 0.222628s (cpu); 0.114447s (thread); 0s (gc) │ │ │ + -- used 0.279547s (cpu); 0.133275s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o10 = (x x + x x , x - 4x x + 2x x + x , x x + │ │ │ 0 1 2 3 0,1 0,2 1,3 0,1 2,3 2,3 0,1,2 0,1,3 │ │ │ ----------------------------------------------------------------------- │ │ │ x x ) │ │ │ 0,2,3 1,2,3 │ │ │ │ │ │ o10 : Sequence │ │ │ │ │ │ i11 : time (Q,Q,Q) == (chowEquations(W0,0),chowEquations(W1,1),chowEquations(W2,2)) │ │ │ - -- used 0.148849s (cpu); 0.0872414s (thread); 0s (gc) │ │ │ + -- used 0.163614s (cpu); 0.0944509s (thread); 0s (gc) │ │ │ │ │ │ o11 = true │ │ │ │ │ │ i12 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Form.out │ │ │ @@ -16,15 +16,15 @@ │ │ │ │ │ │ ZZ │ │ │ o2 : Ideal of ----[x ..x ] │ │ │ 3331 0 5 │ │ │ │ │ │ i3 : -- Chow form of V in Grass(2,5) (performing internal computations on an affine chart of the Grassmannian) │ │ │ time ChowV = chowForm(V,AffineChartGrass=>{1,2,3}) │ │ │ - -- used 5.02713s (cpu); 4.55844s (thread); 0s (gc) │ │ │ + -- used 5.5181s (cpu); 5.09759s (thread); 0s (gc) │ │ │ │ │ │ 4 2 2 2 2 │ │ │ o3 = x + 2x x x + x x - 2x x x + │ │ │ 1,2,4 0,2,4 1,2,4 2,3,4 0,2,4 2,3,4 1,2,3 1,2,4 1,2,5 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 │ │ │ x x - x x x + x x x x + │ │ │ @@ -143,19 +143,19 @@ │ │ │ 3331 0,1,2 0,1,3 0,2,3 1,2,3 0,1,4 0,2,4 1,2,4 0,3,4 1,3,4 2,3,4 0,1,5 0,2,5 1,2,5 0,3,5 1,3,5 2,3,5 0,4,5 1,4,5 2,4,5 3,4,5 │ │ │ o3 : ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- │ │ │ (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x - x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x + x x - x x + x x , x x - x x + x x , x x - x x + x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x - x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) │ │ │ 2,3,5 1,4,5 1,3,5 2,4,5 1,2,5 3,4,5 2,3,4 1,4,5 1,3,4 2,4,5 1,2,4 3,4,5 2,3,5 0,4,5 0,3,5 2,4,5 0,2,5 3,4,5 1,3,5 0,4,5 0,3,5 1,4,5 0,1,5 3,4,5 1,2,5 0,4,5 0,2,5 1,4,5 0,1,5 2,4,5 2,3,4 0,4,5 0,3,4 2,4,5 0,2,4 3,4,5 1,3,4 0,4,5 0,3,4 1,4,5 0,1,4 3,4,5 1,2,4 0,4,5 0,2,4 1,4,5 0,1,4 2,4,5 1,2,3 0,4,5 0,2,3 1,4,5 0,1,3 2,4,5 0,1,2 3,4,5 2,3,4 1,3,5 1,3,4 2,3,5 1,2,3 3,4,5 1,2,5 0,3,5 0,2,5 1,3,5 0,1,5 2,3,5 2,3,4 0,3,5 0,3,4 2,3,5 0,2,3 3,4,5 1,3,4 0,3,5 0,3,4 1,3,5 0,1,3 3,4,5 1,2,4 0,3,5 0,2,4 1,3,5 0,1,4 2,3,5 0,1,2 3,4,5 1,2,3 0,3,5 0,2,3 1,3,5 0,1,3 2,3,5 2,3,4 1,2,5 1,2,4 2,3,5 1,2,3 2,4,5 1,3,4 1,2,5 1,2,4 1,3,5 1,2,3 1,4,5 0,3,4 1,2,5 0,2,4 1,3,5 0,1,4 2,3,5 0,2,3 1,4,5 0,1,3 2,4,5 0,1,2 3,4,5 2,3,4 0,2,5 0,2,4 2,3,5 0,2,3 2,4,5 1,3,4 0,2,5 0,2,4 1,3,5 0,2,3 1,4,5 0,1,2 3,4,5 0,3,4 0,2,5 0,2,4 0,3,5 0,2,3 0,4,5 1,2,4 0,2,5 0,2,4 1,2,5 0,1,2 2,4,5 1,2,3 0,2,5 0,2,3 1,2,5 0,1,2 2,3,5 2,3,4 0,1,5 0,1,4 2,3,5 0,1,3 2,4,5 0,1,2 3,4,5 1,3,4 0,1,5 0,1,4 1,3,5 0,1,3 1,4,5 0,3,4 0,1,5 0,1,4 0,3,5 0,1,3 0,4,5 1,2,4 0,1,5 0,1,4 1,2,5 0,1,2 1,4,5 0,2,4 0,1,5 0,1,4 0,2,5 0,1,2 0,4,5 1,2,3 0,1,5 0,1,3 1,2,5 0,1,2 1,3,5 0,2,3 0,1,5 0,1,3 0,2,5 0,1,2 0,3,5 1,2,4 0,3,4 0,2,4 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 0,1,3 2,3,4 1,2,3 0,2,4 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 1,2,4 0,1,2 1,3,4 0,2,3 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ │ │ i4 : -- equivalently (but faster)... │ │ │ time assert(ChowV === chowForm f) │ │ │ - -- used 1.12217s (cpu); 1.02004s (thread); 0s (gc) │ │ │ + -- used 1.17299s (cpu); 1.09778s (thread); 0s (gc) │ │ │ │ │ │ i5 : -- X-resultant of V │ │ │ time Xres = fromPluckerToStiefel dualize ChowV; │ │ │ - -- used 0.305813s (cpu); 0.217168s (thread); 0s (gc) │ │ │ + -- used 0.306588s (cpu); 0.22751s (thread); 0s (gc) │ │ │ │ │ │ i6 : -- three generic ternary quadrics │ │ │ F = genericPolynomials({2,2,2},ZZ/3331) │ │ │ │ │ │ 2 2 2 2 2 │ │ │ o6 = {a x + a x x + a x + a x x + a x x + a x , b x + b x x + b x + │ │ │ 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 │ │ │ @@ -164,12 +164,12 @@ │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : -- resultant of the three forms │ │ │ time resF = resultant F; │ │ │ - -- used 0.206977s (cpu); 0.161989s (thread); 0s (gc) │ │ │ + -- used 0.29725s (cpu); 0.225873s (thread); 0s (gc) │ │ │ │ │ │ i8 : assert(resF === sub(Xres,vars ring resF) and Xres === sub(resF,vars ring Xres)) │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_discriminant_lp__Ring__Element_rp.out │ │ │ @@ -4,30 +4,30 @@ │ │ │ │ │ │ 2 2 │ │ │ o2 = a*x + b*x*y + c*y │ │ │ │ │ │ o2 : ZZ[a..c][x..y] │ │ │ │ │ │ i3 : time discriminant F │ │ │ - -- used 0.00923004s (cpu); 0.00922235s (thread); 0s (gc) │ │ │ + -- used 0.010437s (cpu); 0.0104344s (thread); 0s (gc) │ │ │ │ │ │ 2 │ │ │ o3 = - b + 4a*c │ │ │ │ │ │ o3 : ZZ[a..c] │ │ │ │ │ │ i4 : ZZ[a,b,c,d][x,y]; F = a*x^3+b*x^2*y+c*x*y^2+d*y^3 │ │ │ │ │ │ 3 2 2 3 │ │ │ o5 = a*x + b*x y + c*x*y + d*y │ │ │ │ │ │ o5 : ZZ[a..d][x..y] │ │ │ │ │ │ i6 : time discriminant F │ │ │ - -- used 0.0095562s (cpu); 0.00955663s (thread); 0s (gc) │ │ │ + -- used 0.0115463s (cpu); 0.0115476s (thread); 0s (gc) │ │ │ │ │ │ 2 2 3 3 2 2 │ │ │ o6 = - b c + 4a*c + 4b d - 18a*b*c*d + 27a d │ │ │ │ │ │ o6 : ZZ[a..d] │ │ │ │ │ │ i7 : x=symbol x; R=ZZ/331[x_0..x_3] │ │ │ @@ -59,15 +59,15 @@ │ │ │ 4 3 4 4 3 4 │ │ │ o12 = (t + t )x - t x x + t x + (t - t )x + t x x + t x │ │ │ 0 1 0 1 0 1 0 1 0 1 2 1 2 3 0 3 │ │ │ │ │ │ o12 : R' │ │ │ │ │ │ i13 : time D=discriminant pencil │ │ │ - -- used 0.488929s (cpu); 0.431808s (thread); 0s (gc) │ │ │ + -- used 0.587336s (cpu); 0.510662s (thread); 0s (gc) │ │ │ │ │ │ 108 106 2 102 6 100 8 98 10 96 12 │ │ │ o13 = - 62t + 19t t + 160t t + 91t t + 129t t + 117t t + │ │ │ 0 0 1 0 1 0 1 0 1 0 1 │ │ │ ----------------------------------------------------------------------- │ │ │ 94 14 92 16 90 18 88 20 86 22 84 24 │ │ │ 161t t + 124t t - 82t t - 21t t - 49t t - 123t t + │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_dual__Variety.out │ │ │ @@ -9,25 +9,25 @@ │ │ │ x x ) │ │ │ 0 3 │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ 0 5 │ │ │ │ │ │ i2 : time V' = dualVariety V │ │ │ - -- used 0.177816s (cpu); 0.127633s (thread); 0s (gc) │ │ │ + -- used 0.211169s (cpu); 0.141664s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 │ │ │ o2 = ideal(x x - x x x + x x + x x - 4x x x ) │ │ │ 2 3 1 2 4 0 4 1 5 0 3 5 │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ 0 5 │ │ │ │ │ │ i3 : time V == dualVariety V' │ │ │ - -- used 0.183756s (cpu); 0.142182s (thread); 0s (gc) │ │ │ + -- used 0.251266s (cpu); 0.175171s (thread); 0s (gc) │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : F = first genericPolynomials({3,-1,-1},ZZ/3331) │ │ │ │ │ │ 3 2 2 3 2 2 2 │ │ │ o4 = a x + a x x + a x x + a x + a x x + a x x x + a x x + a x x + │ │ │ @@ -38,22 +38,22 @@ │ │ │ 8 1 2 9 2 │ │ │ │ │ │ ZZ │ │ │ o4 : ----[a ..a ][x ..x ] │ │ │ 3331 0 9 0 2 │ │ │ │ │ │ i5 : time discF = ideal discriminant F; │ │ │ - -- used 0.0560351s (cpu); 0.0560385s (thread); 0s (gc) │ │ │ + -- used 0.0724355s (cpu); 0.0724346s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o5 : Ideal of ----[a ..a ] │ │ │ 3331 0 9 │ │ │ │ │ │ i6 : time Z = dualVariety(veronese(2,3,ZZ/3331),AssumeOrdinary=>true); │ │ │ - -- used 0.590731s (cpu); 0.548602s (thread); 0s (gc) │ │ │ + -- used 0.748825s (cpu); 0.662088s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o6 : Ideal of ----[x ..x ] │ │ │ 3331 0 9 │ │ │ │ │ │ i7 : discF == sub(Z,vars ring discF) and Z == sub(discF,vars ring Z) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_from__Plucker__To__Stiefel.out │ │ │ @@ -6,15 +6,15 @@ │ │ │ o1 = ideal (x - x x , x x - x x , x - x x ) │ │ │ 2 1 3 1 2 0 3 1 0 2 │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ i2 : time fromPluckerToStiefel dualize chowForm C │ │ │ - -- used 0.109761s (cpu); 0.0701715s (thread); 0s (gc) │ │ │ + -- used 0.142239s (cpu); 0.0693373s (thread); 0s (gc) │ │ │ │ │ │ 3 3 2 2 2 2 2 3 │ │ │ o2 = - x x + x x x x - x x x x + x x x - │ │ │ 0,3 1,0 0,2 0,3 1,0 1,1 0,1 0,3 1,0 1,1 0,0 0,3 1,1 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 2 │ │ │ x x x x + 2x x x x + x x x x x x - │ │ │ @@ -56,15 +56,15 @@ │ │ │ x x x x - 2x x x x - x x x x + x x │ │ │ 0,0 0,1 1,1 1,3 0,0 0,2 1,1 1,3 0,0 0,1 1,2 1,3 0,0 1,3 │ │ │ │ │ │ o2 : QQ[x ..x ] │ │ │ 0,0 1,3 │ │ │ │ │ │ i3 : time fromPluckerToStiefel(dualize chowForm C,AffineChartGrass=>{0,1}) │ │ │ - -- used 0.04042s (cpu); 0.0404231s (thread); 0s (gc) │ │ │ + -- used 0.0502822s (cpu); 0.0502862s (thread); 0s (gc) │ │ │ │ │ │ 3 2 2 │ │ │ o3 = - x x + x x x - x x x + x x + 3x x x - │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,3 1,2 0,2 1,3 0,3 1,2 1,3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 │ │ │ 2x x + x + x │ │ │ @@ -85,15 +85,15 @@ │ │ │ │ │ │ o4 : QQ[a ..a ] │ │ │ 0,0 1,1 │ │ │ │ │ │ i5 : w = chowForm C; │ │ │ │ │ │ i6 : time U = apply(subsets(4,2),s->ideal fromPluckerToStiefel(w,AffineChartGrass=>s)) │ │ │ - -- used 0.0192665s (cpu); 0.0192642s (thread); 0s (gc) │ │ │ + -- used 0.0258641s (cpu); 0.0258627s (thread); 0s (gc) │ │ │ │ │ │ 3 2 3 2 │ │ │ o6 = {ideal(- x x + x x x - x - 3x x x + 2x x + │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,2 0,3 1,2 0,2 1,3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 3 2 │ │ │ x x x - x x + x ), ideal(x x - 2x x x x + │ │ │ @@ -130,14 +130,14 @@ │ │ │ 2 3 2 │ │ │ 2x x - x + x )} │ │ │ 0,0 1,1 1,1 1,0 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : time apply(U,u->dim singularLocus u) │ │ │ - -- used 0.0171298s (cpu); 0.0171312s (thread); 0s (gc) │ │ │ + -- used 0.022329s (cpu); 0.0223309s (thread); 0s (gc) │ │ │ │ │ │ o7 = {2, 2, 2, 2, 2, 2} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_hurwitz__Form.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ + -p + -p p + 7p p + 6p p + -p p + --p ) │ │ │ 4 3 9 0 4 1 4 2 4 9 3 4 10 4 │ │ │ │ │ │ o1 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ i2 : time hurwitzForm Q │ │ │ - -- used 0.0374164s (cpu); 0.0374172s (thread); 0s (gc) │ │ │ + -- used 0.0423052s (cpu); 0.0423069s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o2 = 11966535p + 14645610p p + 11354175p + 1666980p p + │ │ │ 0,1 0,1 0,2 0,2 0,1 1,2 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 │ │ │ 4456620p p + 1127196p + 54176850p p + 20326950p p + │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_is__Coisotropic.out │ │ │ @@ -26,15 +26,15 @@ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ o1 : -------------------------------------- │ │ │ p p - p p + p p │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ │ │ i2 : time isCoisotropic w │ │ │ - -- used 0.00831348s (cpu); 0.00831097s (thread); 0s (gc) │ │ │ + -- used 0.0111053s (cpu); 0.0111045s (thread); 0s (gc) │ │ │ │ │ │ o2 = true │ │ │ │ │ │ i3 : -- random quadric in G(1,3) │ │ │ w' = random(2,Grass(1,3)) │ │ │ │ │ │ 2 5 10 2 2 2 3 │ │ │ @@ -56,12 +56,12 @@ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ o3 : -------------------------------------- │ │ │ p p - p p + p p │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ │ │ i4 : time isCoisotropic w' │ │ │ - -- used 0.00672256s (cpu); 0.00672294s (thread); 0s (gc) │ │ │ + -- used 0.00899041s (cpu); 0.008992s (thread); 0s (gc) │ │ │ │ │ │ o4 = false │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_is__In__Coisotropic.out │ │ │ @@ -31,12 +31,12 @@ │ │ │ 4 5 │ │ │ │ │ │ ZZ │ │ │ o3 : Ideal of -----[x ..x ] │ │ │ 33331 0 5 │ │ │ │ │ │ i4 : time isInCoisotropic(L,I) -- whether L belongs to Z_1(V(I)) │ │ │ - -- used 0.0197561s (cpu); 0.019757s (thread); 0s (gc) │ │ │ + -- used 0.0238624s (cpu); 0.0238521s (thread); 0s (gc) │ │ │ │ │ │ o4 = true │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_macaulay__Formula.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ 2 2 2 3 │ │ │ c x x x + c x x + c x x + c x x + c x } │ │ │ 4 0 1 2 7 1 2 5 0 2 8 1 2 9 2 │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : time (D,D') = macaulayFormula F │ │ │ - -- used 0.00363368s (cpu); 0.00363028s (thread); 0s (gc) │ │ │ + -- used 0.00395763s (cpu); 0.00394839s (thread); 0s (gc) │ │ │ │ │ │ o2 = (| a_0 a_1 a_2 a_3 a_4 a_5 0 0 0 0 0 0 0 0 0 0 0 │ │ │ | 0 a_0 0 a_1 a_2 0 a_3 a_4 a_5 0 0 0 0 0 0 0 0 │ │ │ | 0 0 a_0 0 a_1 a_2 0 a_3 a_4 a_5 0 0 0 0 0 0 0 │ │ │ | 0 0 0 a_0 0 0 a_1 a_2 0 0 a_3 a_4 a_5 0 0 0 0 │ │ │ | 0 0 0 0 a_0 0 0 a_1 a_2 0 0 a_3 a_4 a_5 0 0 0 │ │ │ | 0 0 0 0 0 a_0 0 0 a_1 a_2 0 0 a_3 a_4 a_5 0 0 │ │ │ @@ -78,15 +78,15 @@ │ │ │ 10 2 7 2 5 3 │ │ │ --p p + -p p + -p } │ │ │ 9 0 2 8 1 2 6 2 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : time (D,D') = macaulayFormula F │ │ │ - -- used 0.00232045s (cpu); 0.00232055s (thread); 0s (gc) │ │ │ + -- used 0.0027233s (cpu); 0.00265041s (thread); 0s (gc) │ │ │ │ │ │ o4 = (| 9/2 9/4 3/4 7/4 7/9 7/10 0 0 0 0 0 0 0 0 0 │ │ │ | 0 9/2 0 9/4 3/4 0 7/4 7/9 7/10 0 0 0 0 0 0 │ │ │ | 0 0 9/2 0 9/4 3/4 0 7/4 7/9 7/10 0 0 0 0 0 │ │ │ | 0 0 0 9/2 0 0 9/4 3/4 0 0 7/4 7/9 7/10 0 0 │ │ │ | 0 0 0 0 9/2 0 0 9/4 3/4 0 0 7/4 7/9 7/10 0 │ │ │ | 0 0 0 0 0 9/2 0 0 9/4 3/4 0 0 7/4 7/9 7/10 │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_plucker.out │ │ │ @@ -9,29 +9,29 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ 664x ) │ │ │ 4 │ │ │ │ │ │ o3 : Ideal of P4 │ │ │ │ │ │ i4 : time p = plucker L │ │ │ - -- used 0.00446275s (cpu); 0.00446052s (thread); 0s (gc) │ │ │ + -- used 0.00945487s (cpu); 0.00945542s (thread); 0s (gc) │ │ │ │ │ │ o4 = ideal (x + 8480x , x - 6727x , x + 15777x , x + │ │ │ 2,4 3,4 1,4 3,4 0,4 3,4 2,3 │ │ │ ------------------------------------------------------------------------ │ │ │ 11656x , x - 14853x , x + 664x , x + 13522x , x + │ │ │ 3,4 1,3 3,4 0,3 3,4 1,2 3,4 0,2 │ │ │ ------------------------------------------------------------------------ │ │ │ 11804x , x + 14854x ) │ │ │ 3,4 0,1 3,4 │ │ │ │ │ │ o4 : Ideal of G'1'4 │ │ │ │ │ │ i5 : time L' = plucker p │ │ │ - -- used 0.101231s (cpu); 0.0491833s (thread); 0s (gc) │ │ │ + -- used 0.148852s (cpu); 0.0800914s (thread); 0s (gc) │ │ │ │ │ │ o5 = ideal (x + 8480x - 11656x , x - 6727x + 14853x , x + 15777x - │ │ │ 2 3 4 1 3 4 0 3 │ │ │ ------------------------------------------------------------------------ │ │ │ 664x ) │ │ │ 4 │ │ │ │ │ │ @@ -40,25 +40,25 @@ │ │ │ i6 : assert(L' == L) │ │ │ │ │ │ i7 : Y = ideal apply(5,i->random(1,G'1'4)); -- an elliptic curve │ │ │ │ │ │ o7 : Ideal of G'1'4 │ │ │ │ │ │ i8 : time W = plucker Y; -- surface swept out by the lines of Y │ │ │ - -- used 0.0311593s (cpu); 0.0311572s (thread); 0s (gc) │ │ │ + -- used 0.0371343s (cpu); 0.0371336s (thread); 0s (gc) │ │ │ │ │ │ o8 : Ideal of P4 │ │ │ │ │ │ i9 : (codim W,degree W) │ │ │ │ │ │ o9 = (2, 5) │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ i10 : time Y' = plucker(W,1); -- variety of lines contained in W │ │ │ - -- used 0.144036s (cpu); 0.144016s (thread); 0s (gc) │ │ │ + -- used 0.178218s (cpu); 0.178221s (thread); 0s (gc) │ │ │ │ │ │ o10 : Ideal of G'1'4 │ │ │ │ │ │ i11 : assert(Y' == Y) │ │ │ │ │ │ i12 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ 3 2 9 7 2 9 3 1 8 4 │ │ │ -b)y*w + (-a + -b)z*w + (-a + 2b)w , 2x + -y + -z + -w} │ │ │ 4 8 8 7 4 3 5 │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : time resultant(F,Algorithm=>"Poisson2") │ │ │ - -- used 0.286935s (cpu); 0.170618s (thread); 0s (gc) │ │ │ + -- used 0.377957s (cpu); 0.211057s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o3 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ │ @@ -56,15 +56,15 @@ │ │ │ 1146977327343523453866040839029 4 194441910898734675845094443 5 │ │ │ -------------------------------a*b - ---------------------------b │ │ │ 1119954511872000000000 895963609497600000 │ │ │ │ │ │ o3 : QQ[a..b] │ │ │ │ │ │ i4 : time resultant(F,Algorithm=>"Macaulay2") │ │ │ - -- used 0.145456s (cpu); 0.0909893s (thread); 0s (gc) │ │ │ + -- used 0.178575s (cpu); 0.0941626s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o4 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ │ @@ -77,15 +77,15 @@ │ │ │ 1146977327343523453866040839029 4 194441910898734675845094443 5 │ │ │ -------------------------------a*b - ---------------------------b │ │ │ 1119954511872000000000 895963609497600000 │ │ │ │ │ │ o4 : QQ[a..b] │ │ │ │ │ │ i5 : time resultant(F,Algorithm=>"Poisson") │ │ │ - -- used 0.376249s (cpu); 0.321284s (thread); 0s (gc) │ │ │ + -- used 0.423812s (cpu); 0.347667s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o5 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ │ @@ -98,15 +98,15 @@ │ │ │ 1146977327343523453866040839029 4 194441910898734675845094443 5 │ │ │ -------------------------------a*b - ---------------------------b │ │ │ 1119954511872000000000 895963609497600000 │ │ │ │ │ │ o5 : QQ[a..b] │ │ │ │ │ │ i6 : time resultant(F,Algorithm=>"Macaulay") │ │ │ - -- used 0.62408s (cpu); 0.567743s (thread); 0s (gc) │ │ │ + -- used 0.73392s (cpu); 0.653995s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o6 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp__Matrix_rp.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ │ │ 2 2 3 2 4 │ │ │ o2 = {x + 3t*y*z - u*z , (t + 3u - 1)x - y, - t*x*y + t*x y*z + u*z } │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : time resultant F │ │ │ - -- used 0.024024s (cpu); 0.0240227s (thread); 0s (gc) │ │ │ + -- used 0.0280936s (cpu); 0.0280945s (thread); 0s (gc) │ │ │ │ │ │ 12 11 2 10 3 9 4 8 5 7 6 │ │ │ o3 = - 81t u - 1701t u - 15309t u - 76545t u - 229635t u - 413343t u │ │ │ ------------------------------------------------------------------------ │ │ │ 6 7 5 8 11 10 2 9 3 │ │ │ - 413343t u - 177147t u + 567t u + 10206t u + 76545t u + │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -64,15 +64,15 @@ │ │ │ 3 │ │ │ + c x } │ │ │ 9 2 │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : time resultant F │ │ │ - -- used 2.64631s (cpu); 2.04937s (thread); 0s (gc) │ │ │ + -- used 2.66251s (cpu); 2.12856s (thread); 0s (gc) │ │ │ │ │ │ 6 3 2 5 2 2 2 4 2 2 3 3 3 2 2 4 2 2 │ │ │ o5 = a b c - 3a a b b c + 3a a b b c - a a b c + 3a a b b c - │ │ │ 2 3 0 1 2 3 4 0 1 2 3 4 0 1 2 4 0 1 2 3 5 0 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 3 2 4 2 2 2 4 2 2 2 5 2 2 6 3 2 │ │ │ 6a a b b b c + 3a a b b c + 3a a b b c - 3a a b b c + a b c - │ │ │ @@ -1690,12 +1690,12 @@ │ │ │ 2 2 2 2 │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : time # terms resultant F │ │ │ - -- used 0.588475s (cpu); 0.418407s (thread); 0s (gc) │ │ │ + -- used 0.477156s (cpu); 0.403322s (thread); 0s (gc) │ │ │ │ │ │ o7 = 21894 │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_tangential__Chow__Form.out │ │ │ @@ -8,15 +8,15 @@ │ │ │ 1 2 0 3 1 3 0 4 3 2 4 │ │ │ │ │ │ o2 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ i3 : -- 0-th associated hypersurface of S in G(1,4) (Chow form) │ │ │ time tangentialChowForm(S,0) │ │ │ - -- used 0.0288231s (cpu); 0.0288233s (thread); 0s (gc) │ │ │ + -- used 0.035083s (cpu); 0.0350825s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o3 = p p - p p p - p p p + p p p + p p + │ │ │ 1,3 2,3 1,2 1,3 2,4 0,3 1,3 2,4 0,2 1,4 2,4 1,2 3,4 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 │ │ │ p p - 2p p p - p p p │ │ │ @@ -26,15 +26,15 @@ │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 0,4 1,4 2,4 3,4 │ │ │ o3 : ---------------------------------------------------------------------------------------------------------------------------------------------------------------- │ │ │ (p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p ) │ │ │ 2,3 1,4 1,3 2,4 1,2 3,4 2,3 0,4 0,3 2,4 0,2 3,4 1,3 0,4 0,3 1,4 0,1 3,4 1,2 0,4 0,2 1,4 0,1 2,4 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ │ │ i4 : -- 1-th associated hypersurface of S in G(2,4) │ │ │ time tangentialChowForm(S,1) │ │ │ - -- used 0.1176s (cpu); 0.0698098s (thread); 0s (gc) │ │ │ + -- used 0.155213s (cpu); 0.088828s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 3 2 2 │ │ │ o4 = p p + p p - 2p p + p p - │ │ │ 1,2,3 1,2,4 0,2,4 1,2,4 0,2,3 1,2,4 0,2,4 0,3,4 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 3 3 │ │ │ 4p p - 4p p - 2p p + │ │ │ @@ -68,32 +68,32 @@ │ │ │ 0,1,2 0,1,3 0,2,3 1,2,3 0,1,4 0,2,4 1,2,4 0,3,4 1,3,4 2,3,4 │ │ │ o4 : ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- │ │ │ (p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p ) │ │ │ 1,2,4 0,3,4 0,2,4 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 0,1,3 2,3,4 1,2,3 0,2,4 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 1,2,4 0,1,2 1,3,4 0,2,3 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ │ │ i5 : -- 2-th associated hypersurface of S in G(3,4) (parameterizing tangent hyperplanes to S) │ │ │ time tangentialChowForm(S,2) │ │ │ - -- used 0.0316428s (cpu); 0.0316457s (thread); 0s (gc) │ │ │ + -- used 0.0390777s (cpu); 0.0390815s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o5 = p p - p p p + p p │ │ │ 0,1,3,4 0,2,3,4 0,1,2,4 0,2,3,4 1,2,3,4 0,1,2,3 1,2,3,4 │ │ │ │ │ │ o5 : QQ[p ..p , p , p , p ] │ │ │ 0,1,2,3 0,1,2,4 0,1,3,4 0,2,3,4 1,2,3,4 │ │ │ │ │ │ i6 : -- we get the dual hypersurface of S in G(0,4) by dualizing │ │ │ time S' = ideal dualize tangentialChowForm(S,2) │ │ │ - -- used 0.103735s (cpu); 0.0542823s (thread); 0s (gc) │ │ │ + -- used 0.132473s (cpu); 0.0620165s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o6 = ideal(p p - p p p + p p ) │ │ │ 1 2 0 1 3 0 4 │ │ │ │ │ │ o6 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ i7 : -- we then can recover S │ │ │ time assert(dualize tangentialChowForm(S',3) == S) │ │ │ - -- used 0.149537s (cpu); 0.110227s (thread); 0s (gc) │ │ │ + -- used 0.186898s (cpu); 0.111362s (thread); 0s (gc) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_cayley__Trick.html │ │ │ @@ -86,24 +86,24 @@ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time (P1xP1xP2,P1xP1xP2') = cayleyTrick(P1xP1,2);
    │ │ │ - -- used 0.105384s (cpu); 0.0634894s (thread); 0s (gc)
    │ │ │ + -- used 0.154302s (cpu); 0.0815941s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │

    In the next example, we calculate the defining ideal of $\mathbb{P}^1\times\mathbb{P}^1\times\mathbb{P}^1\subset\mathbb{P}^7$ and that of its dual variety.

    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : time (P1xP1xP1,P1xP1xP1') = cayleyTrick(P1xP1,1)
    │ │ │ - -- used 0.120535s (cpu); 0.0680862s (thread); 0s (gc)
    │ │ │ + -- used 0.164102s (cpu); 0.0891023s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                             
    │ │ │  o4 = (ideal (x   x    - x   x   , x   x    - x   x   , x   x    - x   x   ,
    │ │ │                0,3 1,2    0,2 1,3   1,0 1,1    1,2 1,3   0,3 1,1    0,1 1,3 
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                                                              
    │ │ │       x   x    - x   x   , x   x    - x   x   , x   x    - x   x   , x   x   
    │ │ │ @@ -130,26 +130,26 @@
    │ │ │            
    │ │ │

    If the option Duality is set to true, then the method applies the so-called "dual Cayley trick".

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -38,20 +38,20 @@ │ │ │ │ │ │ │ │ o2 = ideal(x x - x x ) │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ │ 0 3 │ │ │ │ i3 : time (P1xP1xP2,P1xP1xP2') = cayleyTrick(P1xP1,2); │ │ │ │ - -- used 0.105384s (cpu); 0.0634894s (thread); 0s (gc) │ │ │ │ + -- used 0.154302s (cpu); 0.0815941s (thread); 0s (gc) │ │ │ │ In the next example, we calculate the defining ideal of $\mathbb │ │ │ │ {P}^1\times\mathbb{P}^1\times\mathbb{P}^1\subset\mathbb{P}^7$ and that of its │ │ │ │ dual variety. │ │ │ │ i4 : time (P1xP1xP1,P1xP1xP1') = cayleyTrick(P1xP1,1) │ │ │ │ - -- used 0.120535s (cpu); 0.0680862s (thread); 0s (gc) │ │ │ │ + -- used 0.164102s (cpu); 0.0891023s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ o4 = (ideal (x x - x x , x x - x x , x x - x x , │ │ │ │ 0,3 1,2 0,2 1,3 1,0 1,1 1,2 1,3 0,3 1,1 0,1 1,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ │ │ │ │ x x - x x , x x - x x , x x - x x , x x │ │ │ │ @@ -73,18 +73,18 @@ │ │ │ │ 4x x x x - 2x x x x + x x )) │ │ │ │ 0,0 0,1 1,2 1,3 0,2 0,3 1,2 1,3 0,2 1,3 │ │ │ │ │ │ │ │ o4 : Sequence │ │ │ │ If the option Duality is set to true, then the method applies the so-called │ │ │ │ "dual Cayley trick". │ │ │ │ i5 : time cayleyTrick(P1xP1,1,Duality=>true); │ │ │ │ - -- used 0.128164s (cpu); 0.0856389s (thread); 0s (gc) │ │ │ │ + -- used 0.190117s (cpu); 0.117432s (thread); 0s (gc) │ │ │ │ i6 : assert(oo == (P1xP1xP1,P1xP1xP1')) │ │ │ │ i7 : time cayleyTrick(P1xP1,2,Duality=>true); │ │ │ │ - -- used 0.140744s (cpu); 0.0923886s (thread); 0s (gc) │ │ │ │ + -- used 0.19423s (cpu); 0.119775s (thread); 0s (gc) │ │ │ │ i8 : assert(oo == (P1xP1xP2,P1xP1xP2')) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_u_a_l_V_a_r_i_e_t_y -- projective dual variety │ │ │ │ ********** WWaayyss ttoo uussee ccaayylleeyyTTrriicckk:: ********** │ │ │ │ * cayleyTrick(Ideal,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_a_y_l_e_y_T_r_i_c_k is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_chow__Equations.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ o2 : Ideal of P3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : time cayleyTrick(P1xP1,1,Duality=>true);
    │ │ │ - -- used 0.128164s (cpu); 0.0856389s (thread); 0s (gc)
    │ │ │ + -- used 0.190117s (cpu); 0.117432s (thread); 0s (gc) │ │ │
    │ │ │
    i6 : assert(oo == (P1xP1xP1,P1xP1xP1'))
    │ │ │
    │ │ │
    i7 : time cayleyTrick(P1xP1,2,Duality=>true);
    │ │ │ - -- used 0.140744s (cpu); 0.0923886s (thread); 0s (gc)
    │ │ │ + -- used 0.19423s (cpu); 0.119775s (thread); 0s (gc) │ │ │
    │ │ │
    i8 : assert(oo == (P1xP1xP2,P1xP1xP2'))
    │ │ │
    │ │ │
    i3 : -- Chow equations of C
    │ │ │       time eqsC = chowEquations chowForm C
    │ │ │ - -- used 0.122683s (cpu); 0.065425s (thread); 0s (gc)
    │ │ │ + -- used 0.139587s (cpu); 0.0693091s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2    2 2    2 2    4                2      2 2   2      
    │ │ │  o3 = ideal (x x  + x x  + x x  + x , x x x x  + x x x  + x x , x x x  +
    │ │ │               0 3    1 3    2 3    3   0 1 2 3    1 2 3    2 3   0 2 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2        3           2         2      3   3         2          2    2 2
    │ │ │       x x x  + x x  - 2x x x  - 2x x x  - x x , x x  + 2x x x  - x x x  + x x 
    │ │ │ @@ -162,15 +162,15 @@
    │ │ │  o5 : Ideal of P3
    │ │ │
    │ │ │
    i6 : -- Chow equations of D
    │ │ │       time eqsD = chowEquations chowForm D
    │ │ │ - -- used 0.110296s (cpu); 0.0572802s (thread); 0s (gc)
    │ │ │ + -- used 0.135123s (cpu); 0.0632665s (thread); 0s (gc)
    │ │ │  
    │ │ │               4      3 2     3        2 2     3      2   2   2 2      2   2 
    │ │ │  o6 = ideal (x x  - x x , x x x  - x x x , x x x  - x x x , x x x  - x x x ,
    │ │ │               2 3    1 3   1 2 3    0 1 3   0 2 3    0 1 3   1 2 3    0 1 3 
    │ │ │       ------------------------------------------------------------------------
    │ │ │            2      3 2   3        3 2   4         2         2 2       3    
    │ │ │       x x x x  - x x , x x x  - x x , x x  - 4x x x x  + 3x x x , x x x  -
    │ │ │ @@ -222,30 +222,30 @@
    │ │ │  o9 : Ideal of P3
    │ │ │
    │ │ │
    i10 : -- tangential Chow forms of Q
    │ │ │        time (W0,W1,W2) = (tangentialChowForm(Q,0),tangentialChowForm(Q,1),tangentialChowForm(Q,2))
    │ │ │ - -- used 0.222628s (cpu); 0.114447s (thread); 0s (gc)
    │ │ │ + -- used 0.279547s (cpu); 0.133275s (thread); 0s (gc)
    │ │ │  
    │ │ │                       2                              2
    │ │ │  o10 = (x x  + x x , x    - 4x   x    + 2x   x    + x   , x     x      +
    │ │ │          0 1    2 3   0,1     0,2 1,3     0,1 2,3    2,3   0,1,2 0,1,3  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x     x     )
    │ │ │         0,2,3 1,2,3
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │
    │ │ │
    i11 : time (Q,Q,Q) == (chowEquations(W0,0),chowEquations(W1,1),chowEquations(W2,2))
    │ │ │ - -- used 0.148849s (cpu); 0.0872414s (thread); 0s (gc)
    │ │ │ + -- used 0.163614s (cpu); 0.0944509s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = true
    │ │ │
    │ │ │

    Note that chowEquations(W,0) is not the same as chowEquations W.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,15 +28,15 @@ │ │ │ │ 2 2 2 2 │ │ │ │ o2 = ideal (x + x + x + x , x x + x x + x x ) │ │ │ │ 0 1 2 3 0 1 1 2 2 3 │ │ │ │ │ │ │ │ o2 : Ideal of P3 │ │ │ │ i3 : -- Chow equations of C │ │ │ │ time eqsC = chowEquations chowForm C │ │ │ │ - -- used 0.122683s (cpu); 0.065425s (thread); 0s (gc) │ │ │ │ + -- used 0.139587s (cpu); 0.0693091s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 4 2 2 2 2 │ │ │ │ o3 = ideal (x x + x x + x x + x , x x x x + x x x + x x , x x x + │ │ │ │ 0 3 1 3 2 3 3 0 1 2 3 1 2 3 2 3 0 2 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 2 3 3 2 2 2 2 │ │ │ │ x x x + x x - 2x x x - 2x x x - x x , x x + 2x x x - x x x + x x │ │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ 2 3 2 2 │ │ │ │ o5 = ideal (x - x x , x - x x x , x x - x x ) │ │ │ │ 1 0 2 2 0 1 3 1 2 0 3 │ │ │ │ │ │ │ │ o5 : Ideal of P3 │ │ │ │ i6 : -- Chow equations of D │ │ │ │ time eqsD = chowEquations chowForm D │ │ │ │ - -- used 0.110296s (cpu); 0.0572802s (thread); 0s (gc) │ │ │ │ + -- used 0.135123s (cpu); 0.0632665s (thread); 0s (gc) │ │ │ │ │ │ │ │ 4 3 2 3 2 2 3 2 2 2 2 2 2 │ │ │ │ o6 = ideal (x x - x x , x x x - x x x , x x x - x x x , x x x - x x x , │ │ │ │ 2 3 1 3 1 2 3 0 1 3 0 2 3 0 1 3 1 2 3 0 1 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 3 3 2 4 2 2 2 3 │ │ │ │ x x x x - x x , x x x - x x , x x - 4x x x x + 3x x x , x x x - │ │ │ │ @@ -135,27 +135,27 @@ │ │ │ │ o9 = ideal(x x + x x ) │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o9 : Ideal of P3 │ │ │ │ i10 : -- tangential Chow forms of Q │ │ │ │ time (W0,W1,W2) = (tangentialChowForm(Q,0),tangentialChowForm │ │ │ │ (Q,1),tangentialChowForm(Q,2)) │ │ │ │ - -- used 0.222628s (cpu); 0.114447s (thread); 0s (gc) │ │ │ │ + -- used 0.279547s (cpu); 0.133275s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o10 = (x x + x x , x - 4x x + 2x x + x , x x + │ │ │ │ 0 1 2 3 0,1 0,2 1,3 0,1 2,3 2,3 0,1,2 0,1,3 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ x x ) │ │ │ │ 0,2,3 1,2,3 │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ i11 : time (Q,Q,Q) == (chowEquations(W0,0),chowEquations(W1,1),chowEquations │ │ │ │ (W2,2)) │ │ │ │ - -- used 0.148849s (cpu); 0.0872414s (thread); 0s (gc) │ │ │ │ + -- used 0.163614s (cpu); 0.0944509s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = true │ │ │ │ Note that chowEquations(W,0) is not the same as chowEquations W. │ │ │ │ ********** WWaayyss ttoo uussee cchhoowwEEqquuaattiioonnss:: ********** │ │ │ │ * chowEquations(RingElement) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_h_o_w_E_q_u_a_t_i_o_n_s is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_chow__Form.html │ │ │ @@ -97,15 +97,15 @@ │ │ │ 3331 0 5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : -- Chow form of V in Grass(2,5) (performing internal computations on an affine chart of the Grassmannian)
    │ │ │       time ChowV = chowForm(V,AffineChartGrass=>{1,2,3})
    │ │ │ - -- used 5.02713s (cpu); 4.55844s (thread); 0s (gc)
    │ │ │ + -- used 5.5181s (cpu); 5.09759s (thread); 0s (gc)
    │ │ │  
    │ │ │        4               2              2     2               2            
    │ │ │  o3 = x      + 2x     x     x      + x     x      - 2x     x     x      +
    │ │ │        1,2,4     0,2,4 1,2,4 2,3,4    0,2,4 2,3,4     1,2,3 1,2,4 1,2,5  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2     2              2                                       
    │ │ │       x     x      - x     x     x      + x     x     x     x      +
    │ │ │ @@ -227,22 +227,22 @@
    │ │ │         2,3,5 1,4,5    1,3,5 2,4,5    1,2,5 3,4,5   2,3,4 1,4,5    1,3,4 2,4,5    1,2,4 3,4,5   2,3,5 0,4,5    0,3,5 2,4,5    0,2,5 3,4,5   1,3,5 0,4,5    0,3,5 1,4,5    0,1,5 3,4,5   1,2,5 0,4,5    0,2,5 1,4,5    0,1,5 2,4,5   2,3,4 0,4,5    0,3,4 2,4,5    0,2,4 3,4,5   1,3,4 0,4,5    0,3,4 1,4,5    0,1,4 3,4,5   1,2,4 0,4,5    0,2,4 1,4,5    0,1,4 2,4,5   1,2,3 0,4,5    0,2,3 1,4,5    0,1,3 2,4,5    0,1,2 3,4,5   2,3,4 1,3,5    1,3,4 2,3,5    1,2,3 3,4,5   1,2,5 0,3,5    0,2,5 1,3,5    0,1,5 2,3,5   2,3,4 0,3,5    0,3,4 2,3,5    0,2,3 3,4,5   1,3,4 0,3,5    0,3,4 1,3,5    0,1,3 3,4,5   1,2,4 0,3,5    0,2,4 1,3,5    0,1,4 2,3,5    0,1,2 3,4,5   1,2,3 0,3,5    0,2,3 1,3,5    0,1,3 2,3,5   2,3,4 1,2,5    1,2,4 2,3,5    1,2,3 2,4,5   1,3,4 1,2,5    1,2,4 1,3,5    1,2,3 1,4,5   0,3,4 1,2,5    0,2,4 1,3,5    0,1,4 2,3,5    0,2,3 1,4,5    0,1,3 2,4,5    0,1,2 3,4,5   2,3,4 0,2,5    0,2,4 2,3,5    0,2,3 2,4,5   1,3,4 0,2,5    0,2,4 1,3,5    0,2,3 1,4,5    0,1,2 3,4,5   0,3,4 0,2,5    0,2,4 0,3,5    0,2,3 0,4,5   1,2,4 0,2,5    0,2,4 1,2,5    0,1,2 2,4,5   1,2,3 0,2,5    0,2,3 1,2,5    0,1,2 2,3,5   2,3,4 0,1,5    0,1,4 2,3,5    0,1,3 2,4,5    0,1,2 3,4,5   1,3,4 0,1,5    0,1,4 1,3,5    0,1,3 1,4,5   0,3,4 0,1,5    0,1,4 0,3,5    0,1,3 0,4,5   1,2,4 0,1,5    0,1,4 1,2,5    0,1,2 1,4,5   0,2,4 0,1,5    0,1,4 0,2,5    0,1,2 0,4,5   1,2,3 0,1,5    0,1,3 1,2,5    0,1,2 1,3,5   0,2,3 0,1,5    0,1,3 0,2,5    0,1,2 0,3,5   1,2,4 0,3,4    0,2,4 1,3,4    0,1,4 2,3,4   1,2,3 0,3,4    0,2,3 1,3,4    0,1,3 2,3,4   1,2,3 0,2,4    0,2,3 1,2,4    0,1,2 2,3,4   1,2,3 0,1,4    0,1,3 1,2,4    0,1,2 1,3,4   0,2,3 0,1,4    0,1,3 0,2,4    0,1,2 0,3,4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : -- equivalently (but faster)...
    │ │ │       time assert(ChowV === chowForm f)
    │ │ │ - -- used 1.12217s (cpu); 1.02004s (thread); 0s (gc)
    │ │ │ + -- used 1.17299s (cpu); 1.09778s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : -- X-resultant of V
    │ │ │       time Xres = fromPluckerToStiefel dualize ChowV;
    │ │ │ - -- used 0.305813s (cpu); 0.217168s (thread); 0s (gc)
    │ │ │ + -- used 0.306588s (cpu); 0.22751s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : -- three generic ternary quadrics
    │ │ │       F = genericPolynomials({2,2,2},ZZ/3331)
    │ │ │  
    │ │ │ @@ -257,15 +257,15 @@
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : -- resultant of the three forms
    │ │ │       time resF = resultant F;
    │ │ │ - -- used 0.206977s (cpu); 0.161989s (thread); 0s (gc)
    │ │ │ + -- used 0.29725s (cpu); 0.225873s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : assert(resF === sub(Xres,vars ring resF) and Xres === sub(resF,vars ring Xres))
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ │ │ │ │ ZZ │ │ │ │ o2 : Ideal of ----[x ..x ] │ │ │ │ 3331 0 5 │ │ │ │ i3 : -- Chow form of V in Grass(2,5) (performing internal computations on an │ │ │ │ affine chart of the Grassmannian) │ │ │ │ time ChowV = chowForm(V,AffineChartGrass=>{1,2,3}) │ │ │ │ - -- used 5.02713s (cpu); 4.55844s (thread); 0s (gc) │ │ │ │ + -- used 5.5181s (cpu); 5.09759s (thread); 0s (gc) │ │ │ │ │ │ │ │ 4 2 2 2 2 │ │ │ │ o3 = x + 2x x x + x x - 2x x x + │ │ │ │ 1,2,4 0,2,4 1,2,4 2,3,4 0,2,4 2,3,4 1,2,3 1,2,4 1,2,5 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 │ │ │ │ x x - x x x + x x x x + │ │ │ │ @@ -234,33 +234,33 @@ │ │ │ │ 1,4,5 0,2,4 0,1,5 0,1,4 0,2,5 0,1,2 0,4,5 1,2,3 0,1,5 0,1,3 1,2,5 │ │ │ │ 0,1,2 1,3,5 0,2,3 0,1,5 0,1,3 0,2,5 0,1,2 0,3,5 1,2,4 0,3,4 0,2,4 │ │ │ │ 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 0,1,3 2,3,4 1,2,3 0,2,4 │ │ │ │ 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 1,2,4 0,1,2 1,3,4 0,2,3 │ │ │ │ 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ i4 : -- equivalently (but faster)... │ │ │ │ time assert(ChowV === chowForm f) │ │ │ │ - -- used 1.12217s (cpu); 1.02004s (thread); 0s (gc) │ │ │ │ + -- used 1.17299s (cpu); 1.09778s (thread); 0s (gc) │ │ │ │ i5 : -- X-resultant of V │ │ │ │ time Xres = fromPluckerToStiefel dualize ChowV; │ │ │ │ - -- used 0.305813s (cpu); 0.217168s (thread); 0s (gc) │ │ │ │ + -- used 0.306588s (cpu); 0.22751s (thread); 0s (gc) │ │ │ │ i6 : -- three generic ternary quadrics │ │ │ │ F = genericPolynomials({2,2,2},ZZ/3331) │ │ │ │ │ │ │ │ 2 2 2 2 2 │ │ │ │ o6 = {a x + a x x + a x + a x x + a x x + a x , b x + b x x + b x + │ │ │ │ 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 2 │ │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : -- resultant of the three forms │ │ │ │ time resF = resultant F; │ │ │ │ - -- used 0.206977s (cpu); 0.161989s (thread); 0s (gc) │ │ │ │ + -- used 0.29725s (cpu); 0.225873s (thread); 0s (gc) │ │ │ │ i8 : assert(resF === sub(Xres,vars ring resF) and Xres === sub(resF,vars ring │ │ │ │ Xres)) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_a_n_g_e_n_t_i_a_l_C_h_o_w_F_o_r_m -- higher Chow forms of a projective variety │ │ │ │ * _h_u_r_w_i_t_z_F_o_r_m -- Hurwitz form of a projective variety │ │ │ │ ********** WWaayyss ttoo uussee cchhoowwFFoorrmm:: ********** │ │ │ │ * chowForm(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_discriminant_lp__Ring__Element_rp.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ │ │ │ o2 : ZZ[a..c][x..y] │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time discriminant F
    │ │ │ - -- used 0.00923004s (cpu); 0.00922235s (thread); 0s (gc)
    │ │ │ + -- used 0.010437s (cpu); 0.0104344s (thread); 0s (gc)
    │ │ │  
    │ │ │          2
    │ │ │  o3 = - b  + 4a*c
    │ │ │  
    │ │ │  o3 : ZZ[a..c]
    │ │ │ │ │ │ │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o5 : ZZ[a..d][x..y] │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time discriminant F
    │ │ │ - -- used 0.0095562s (cpu); 0.00955663s (thread); 0s (gc)
    │ │ │ + -- used 0.0115463s (cpu); 0.0115476s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2       3     3                   2 2
    │ │ │  o6 = - b c  + 4a*c  + 4b d - 18a*b*c*d + 27a d
    │ │ │  
    │ │ │  o6 : ZZ[a..d]
    │ │ │ │ │ │ │ │ │ @@ -165,15 +165,15 @@ │ │ │ │ │ │ o12 : R' │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : time D=discriminant pencil
    │ │ │ - -- used 0.488929s (cpu); 0.431808s (thread); 0s (gc)
    │ │ │ + -- used 0.587336s (cpu); 0.510662s (thread); 0s (gc)
    │ │ │  
    │ │ │             108      106 2       102 6      100 8       98 10       96 12  
    │ │ │  o13 = - 62t    + 19t   t  + 160t   t  + 91t   t  + 129t  t   + 117t  t   +
    │ │ │             0        0   1       0   1      0   1       0  1        0  1   
    │ │ │        -----------------------------------------------------------------------
    │ │ │            94 14       92 16      90 18      88 20      86 22       84 24  
    │ │ │        161t  t   + 124t  t   - 82t  t   - 21t  t   - 49t  t   - 123t  t   +
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -23,28 +23,28 @@
    │ │ │ │  i1 : ZZ[a,b,c][x,y]; F = a*x^2+b*x*y+c*y^2
    │ │ │ │  
    │ │ │ │          2              2
    │ │ │ │  o2 = a*x  + b*x*y + c*y
    │ │ │ │  
    │ │ │ │  o2 : ZZ[a..c][x..y]
    │ │ │ │  i3 : time discriminant F
    │ │ │ │ - -- used 0.00923004s (cpu); 0.00922235s (thread); 0s (gc)
    │ │ │ │ + -- used 0.010437s (cpu); 0.0104344s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          2
    │ │ │ │  o3 = - b  + 4a*c
    │ │ │ │  
    │ │ │ │  o3 : ZZ[a..c]
    │ │ │ │  i4 : ZZ[a,b,c,d][x,y]; F = a*x^3+b*x^2*y+c*x*y^2+d*y^3
    │ │ │ │  
    │ │ │ │          3      2         2      3
    │ │ │ │  o5 = a*x  + b*x y + c*x*y  + d*y
    │ │ │ │  
    │ │ │ │  o5 : ZZ[a..d][x..y]
    │ │ │ │  i6 : time discriminant F
    │ │ │ │ - -- used 0.0095562s (cpu); 0.00955663s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0115463s (cpu); 0.0115476s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          2 2       3     3                   2 2
    │ │ │ │  o6 = - b c  + 4a*c  + 4b d - 18a*b*c*d + 27a d
    │ │ │ │  
    │ │ │ │  o6 : ZZ[a..d]
    │ │ │ │  The next example illustrates how computing the intersection of a pencil
    │ │ │ │  generated by two degree $d$ forms $F(x_0,\ldots,x_n), G(x_0,\ldots,x_n)$ with
    │ │ │ │ @@ -74,15 +74,15 @@
    │ │ │ │  
    │ │ │ │                  4        3      4             4        3      4
    │ │ │ │  o12 = (t  + t )x  - t x x  + t x  + (t  - t )x  + t x x  + t x
    │ │ │ │          0    1  0    1 0 1    0 1     0    1  2    1 2 3    0 3
    │ │ │ │  
    │ │ │ │  o12 : R'
    │ │ │ │  i13 : time D=discriminant pencil
    │ │ │ │ - -- used 0.488929s (cpu); 0.431808s (thread); 0s (gc)
    │ │ │ │ + -- used 0.587336s (cpu); 0.510662s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │             108      106 2       102 6      100 8       98 10       96 12
    │ │ │ │  o13 = - 62t    + 19t   t  + 160t   t  + 91t   t  + 129t  t   + 117t  t   +
    │ │ │ │             0        0   1       0   1      0   1       0  1        0  1
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │            94 14       92 16      90 18      88 20      86 22       84 24
    │ │ │ │        161t  t   + 124t  t   - 82t  t   - 21t  t   - 49t  t   - 123t  t   +
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_dual__Variety.html
    │ │ │ @@ -90,28 +90,28 @@
    │ │ │  o1 : Ideal of QQ[x ..x ]
    │ │ │                    0   5
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time V' = dualVariety V
    │ │ │ - -- used 0.177816s (cpu); 0.127633s (thread); 0s (gc)
    │ │ │ + -- used 0.211169s (cpu); 0.141664s (thread); 0s (gc)
    │ │ │  
    │ │ │              2                 2    2
    │ │ │  o2 = ideal(x x  - x x x  + x x  + x x  - 4x x x )
    │ │ │              2 3    1 2 4    0 4    1 5     0 3 5
    │ │ │  
    │ │ │  o2 : Ideal of QQ[x ..x ]
    │ │ │                    0   5
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time V == dualVariety V'
    │ │ │ - -- used 0.183756s (cpu); 0.142182s (thread); 0s (gc)
    │ │ │ + -- used 0.251266s (cpu); 0.175171s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │ │ │ │

    In the next example, we verify that the discriminant of a generic ternary cubic form coincides with the dual variety of the 3-th Veronese embedding of the plane, which is a hypersurface of degree 12 in $\mathbb{P}^9$

    │ │ │ │ │ │ @@ -131,25 +131,25 @@ │ │ │ o4 : ----[a ..a ][x ..x ] │ │ │ 3331 0 9 0 2 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -31,24 +31,24 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x x ) │ │ │ │ 0 3 │ │ │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ │ 0 5 │ │ │ │ i2 : time V' = dualVariety V │ │ │ │ - -- used 0.177816s (cpu); 0.127633s (thread); 0s (gc) │ │ │ │ + -- used 0.211169s (cpu); 0.141664s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 │ │ │ │ o2 = ideal(x x - x x x + x x + x x - 4x x x ) │ │ │ │ 2 3 1 2 4 0 4 1 5 0 3 5 │ │ │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ │ 0 5 │ │ │ │ i3 : time V == dualVariety V' │ │ │ │ - -- used 0.183756s (cpu); 0.142182s (thread); 0s (gc) │ │ │ │ + -- used 0.251266s (cpu); 0.175171s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ In the next example, we verify that the discriminant of a generic ternary cubic │ │ │ │ form coincides with the dual variety of the 3-th Veronese embedding of the │ │ │ │ plane, which is a hypersurface of degree 12 in $\mathbb{P}^9$ │ │ │ │ i4 : F = first genericPolynomials({3,-1,-1},ZZ/3331) │ │ │ │ │ │ │ │ @@ -60,21 +60,21 @@ │ │ │ │ a x x + a x │ │ │ │ 8 1 2 9 2 │ │ │ │ │ │ │ │ ZZ │ │ │ │ o4 : ----[a ..a ][x ..x ] │ │ │ │ 3331 0 9 0 2 │ │ │ │ i5 : time discF = ideal discriminant F; │ │ │ │ - -- used 0.0560351s (cpu); 0.0560385s (thread); 0s (gc) │ │ │ │ + -- used 0.0724355s (cpu); 0.0724346s (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o5 : Ideal of ----[a ..a ] │ │ │ │ 3331 0 9 │ │ │ │ i6 : time Z = dualVariety(veronese(2,3,ZZ/3331),AssumeOrdinary=>true); │ │ │ │ - -- used 0.590731s (cpu); 0.548602s (thread); 0s (gc) │ │ │ │ + -- used 0.748825s (cpu); 0.662088s (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o6 : Ideal of ----[x ..x ] │ │ │ │ 3331 0 9 │ │ │ │ i7 : discF == sub(Z,vars ring discF) and Z == sub(discF,vars ring Z) │ │ │ │ │ │ │ │ o7 = true │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_from__Plucker__To__Stiefel.html │ │ │ @@ -85,15 +85,15 @@ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : time discF = ideal discriminant F;
    │ │ │ - -- used 0.0560351s (cpu); 0.0560385s (thread); 0s (gc)
    │ │ │ + -- used 0.0724355s (cpu); 0.0724346s (thread); 0s (gc)
    │ │ │  
    │ │ │                 ZZ
    │ │ │  o5 : Ideal of ----[a ..a ]
    │ │ │                3331  0   9
    │ │ │
    │ │ │
    i6 : time Z = dualVariety(veronese(2,3,ZZ/3331),AssumeOrdinary=>true);
    │ │ │ - -- used 0.590731s (cpu); 0.548602s (thread); 0s (gc)
    │ │ │ + -- used 0.748825s (cpu); 0.662088s (thread); 0s (gc)
    │ │ │  
    │ │ │                 ZZ
    │ │ │  o6 : Ideal of ----[x ..x ]
    │ │ │                3331  0   9
    │ │ │
    │ │ │
    i2 : time fromPluckerToStiefel dualize chowForm C
    │ │ │ - -- used 0.109761s (cpu); 0.0701715s (thread); 0s (gc)
    │ │ │ + -- used 0.142239s (cpu); 0.0693373s (thread); 0s (gc)
    │ │ │  
    │ │ │          3   3          2   2              2       2          2   3    
    │ │ │  o2 = - x   x    + x   x   x   x    - x   x   x   x    + x   x   x    -
    │ │ │          0,3 1,0    0,2 0,3 1,0 1,1    0,1 0,3 1,0 1,1    0,0 0,3 1,1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2       2               2   2                                   
    │ │ │       x   x   x   x    + 2x   x   x   x    + x   x   x   x   x   x    -
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │  o2 : QQ[x   ..x   ]
    │ │ │           0,0   1,3
    │ │ │
    │ │ │
    i3 : time fromPluckerToStiefel(dualize chowForm C,AffineChartGrass=>{0,1})
    │ │ │ - -- used 0.04042s (cpu); 0.0404231s (thread); 0s (gc)
    │ │ │ + -- used 0.0502822s (cpu); 0.0502862s (thread); 0s (gc)
    │ │ │  
    │ │ │              3          2                         2                        
    │ │ │  o3 = - x   x    + x   x   x    - x   x   x    + x   x    + 3x   x   x    -
    │ │ │          0,3 1,2    0,2 1,2 1,3    0,2 0,3 1,2    0,2 1,3     0,3 1,2 1,3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2      3      2
    │ │ │       2x   x    + x    + x
    │ │ │ @@ -179,15 +179,15 @@
    │ │ │              
    │ │ │
    i5 : w = chowForm C;
    │ │ │
    │ │ │
    i6 : time U = apply(subsets(4,2),s->ideal fromPluckerToStiefel(w,AffineChartGrass=>s))
    │ │ │ - -- used 0.0192665s (cpu); 0.0192642s (thread); 0s (gc)
    │ │ │ + -- used 0.0258641s (cpu); 0.0258627s (thread); 0s (gc)
    │ │ │  
    │ │ │                     3          2          3                       2        
    │ │ │  o6 = {ideal(- x   x    + x   x   x    - x    - 3x   x   x    + 2x   x    +
    │ │ │                 0,3 1,2    0,2 1,2 1,3    0,2     0,2 0,3 1,2     0,2 1,3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                           2      2            2   3               2        
    │ │ │       x   x   x    - x   x    + x   ), ideal(x   x    - 2x   x   x   x    +
    │ │ │ @@ -227,15 +227,15 @@
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : time apply(U,u->dim singularLocus u)
    │ │ │ - -- used 0.0171298s (cpu); 0.0171312s (thread); 0s (gc)
    │ │ │ + -- used 0.022329s (cpu); 0.0223309s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {2, 2, 2, 2, 2, 2}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ 2 2 │ │ │ │ o1 = ideal (x - x x , x x - x x , x - x x ) │ │ │ │ 2 1 3 1 2 0 3 1 0 2 │ │ │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ │ 0 3 │ │ │ │ i2 : time fromPluckerToStiefel dualize chowForm C │ │ │ │ - -- used 0.109761s (cpu); 0.0701715s (thread); 0s (gc) │ │ │ │ + -- used 0.142239s (cpu); 0.0693373s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 3 2 2 2 2 2 3 │ │ │ │ o2 = - x x + x x x x - x x x x + x x x - │ │ │ │ 0,3 1,0 0,2 0,3 1,0 1,1 0,1 0,3 1,0 1,1 0,0 0,3 1,1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 2 │ │ │ │ x x x x + 2x x x x + x x x x x x - │ │ │ │ @@ -75,15 +75,15 @@ │ │ │ │ 2 2 2 2 2 2 3 3 │ │ │ │ x x x x - 2x x x x - x x x x + x x │ │ │ │ 0,0 0,1 1,1 1,3 0,0 0,2 1,1 1,3 0,0 0,1 1,2 1,3 0,0 1,3 │ │ │ │ │ │ │ │ o2 : QQ[x ..x ] │ │ │ │ 0,0 1,3 │ │ │ │ i3 : time fromPluckerToStiefel(dualize chowForm C,AffineChartGrass=>{0,1}) │ │ │ │ - -- used 0.04042s (cpu); 0.0404231s (thread); 0s (gc) │ │ │ │ + -- used 0.0502822s (cpu); 0.0502862s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 2 │ │ │ │ o3 = - x x + x x x - x x x + x x + 3x x x - │ │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,3 1,2 0,2 1,3 0,3 1,2 1,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 │ │ │ │ 2x x + x + x │ │ │ │ @@ -105,15 +105,15 @@ │ │ │ │ o4 : QQ[a ..a ] │ │ │ │ 0,0 1,1 │ │ │ │ As another application, we check that the singular locus of the Chow form of │ │ │ │ the twisted cubic has dimension 2 (on each standard chart). │ │ │ │ i5 : w = chowForm C; │ │ │ │ i6 : time U = apply(subsets(4,2),s->ideal fromPluckerToStiefel │ │ │ │ (w,AffineChartGrass=>s)) │ │ │ │ - -- used 0.0192665s (cpu); 0.0192642s (thread); 0s (gc) │ │ │ │ + -- used 0.0258641s (cpu); 0.0258627s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 3 2 │ │ │ │ o6 = {ideal(- x x + x x x - x - 3x x x + 2x x + │ │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,2 0,3 1,2 0,2 1,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 3 2 │ │ │ │ x x x - x x + x ), ideal(x x - 2x x x x + │ │ │ │ @@ -149,15 +149,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 │ │ │ │ 2x x - x + x )} │ │ │ │ 0,0 1,1 1,1 1,0 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : time apply(U,u->dim singularLocus u) │ │ │ │ - -- used 0.0171298s (cpu); 0.0171312s (thread); 0s (gc) │ │ │ │ + -- used 0.022329s (cpu); 0.0223309s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {2, 2, 2, 2, 2, 2} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** WWaayyss ttoo uussee ffrroommPPlluucckkeerrTTooSSttiieeffeell:: ********** │ │ │ │ * fromPluckerToStiefel(Ideal) │ │ │ │ * fromPluckerToStiefel(Matrix) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_hurwitz__Form.html │ │ │ @@ -92,15 +92,15 @@ │ │ │ o1 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time hurwitzForm Q
    │ │ │ - -- used 0.0374164s (cpu); 0.0374172s (thread); 0s (gc)
    │ │ │ + -- used 0.0423052s (cpu); 0.0423069s (thread); 0s (gc)
    │ │ │  
    │ │ │                2                                 2                      
    │ │ │  o2 = 11966535p    + 14645610p   p    + 11354175p    + 1666980p   p    +
    │ │ │                0,1            0,1 0,2            0,2           0,1 1,2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                 2                                          
    │ │ │       4456620p   p    + 1127196p    + 54176850p   p    + 20326950p   p    +
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │         5 2   7                       2        3 2
    │ │ │ │       + -p  + -p p  + 7p p  + 6p p  + -p p  + --p )
    │ │ │ │         4 3   9 0 4     1 4     2 4   9 3 4   10 4
    │ │ │ │  
    │ │ │ │  o1 : Ideal of QQ[p ..p ]
    │ │ │ │                    0   4
    │ │ │ │  i2 : time hurwitzForm Q
    │ │ │ │ - -- used 0.0374164s (cpu); 0.0374172s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0423052s (cpu); 0.0423069s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                2                                 2
    │ │ │ │  o2 = 11966535p    + 14645610p   p    + 11354175p    + 1666980p   p    +
    │ │ │ │                0,1            0,1 0,2            0,2           0,1 1,2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                                 2
    │ │ │ │       4456620p   p    + 1127196p    + 54176850p   p    + 20326950p   p    +
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_is__Coisotropic.html
    │ │ │ @@ -104,15 +104,15 @@
    │ │ │           p   p    - p   p    + p   p
    │ │ │            1,2 0,3    0,2 1,3    0,1 2,3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time isCoisotropic w
    │ │ │ - -- used 0.00831348s (cpu); 0.00831097s (thread); 0s (gc)
    │ │ │ + -- used 0.0111053s (cpu); 0.0111045s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : -- random quadric in G(1,3)
    │ │ │ @@ -140,15 +140,15 @@
    │ │ │           p   p    - p   p    + p   p
    │ │ │            1,2 0,3    0,2 1,3    0,1 2,3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time isCoisotropic w'
    │ │ │ - -- used 0.00672256s (cpu); 0.00672294s (thread); 0s (gc)
    │ │ │ + -- used 0.00899041s (cpu); 0.008992s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = false
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -44,15 +44,15 @@ │ │ │ │ │ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ │ o1 : -------------------------------------- │ │ │ │ p p - p p + p p │ │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ i2 : time isCoisotropic w │ │ │ │ - -- used 0.00831348s (cpu); 0.00831097s (thread); 0s (gc) │ │ │ │ + -- used 0.0111053s (cpu); 0.0111045s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = true │ │ │ │ i3 : -- random quadric in G(1,3) │ │ │ │ w' = random(2,Grass(1,3)) │ │ │ │ │ │ │ │ 2 5 10 2 2 2 3 │ │ │ │ o3 = 6p + -p p + --p + -p p + 10p p + 5p + --p p │ │ │ │ @@ -72,15 +72,15 @@ │ │ │ │ │ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ │ o3 : -------------------------------------- │ │ │ │ p p - p p + p p │ │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ i4 : time isCoisotropic w' │ │ │ │ - -- used 0.00672256s (cpu); 0.00672294s (thread); 0s (gc) │ │ │ │ + -- used 0.00899041s (cpu); 0.008992s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = false │ │ │ │ ********** WWaayyss ttoo uussee iissCCooiissoottrrooppiicc:: ********** │ │ │ │ * isCoisotropic(RingElement) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _i_s_C_o_i_s_o_t_r_o_p_i_c is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_is__In__Coisotropic.html │ │ │ @@ -117,15 +117,15 @@ │ │ │ o3 : Ideal of -----[x ..x ] │ │ │ 33331 0 5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time isInCoisotropic(L,I) -- whether L belongs to Z_1(V(I))
    │ │ │ - -- used 0.0197561s (cpu); 0.019757s (thread); 0s (gc)
    │ │ │ + -- used 0.0238624s (cpu); 0.0238521s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ 2380x + 9482x ) │ │ │ │ 4 5 │ │ │ │ │ │ │ │ ZZ │ │ │ │ o3 : Ideal of -----[x ..x ] │ │ │ │ 33331 0 5 │ │ │ │ i4 : time isInCoisotropic(L,I) -- whether L belongs to Z_1(V(I)) │ │ │ │ - -- used 0.0197561s (cpu); 0.019757s (thread); 0s (gc) │ │ │ │ + -- used 0.0238624s (cpu); 0.0238521s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_a_n_g_e_n_t_i_a_l_C_h_o_w_F_o_r_m -- higher Chow forms of a projective variety │ │ │ │ * _p_l_u_c_k_e_r -- get the Plücker coordinates of a linear subspace │ │ │ │ ********** WWaayyss ttoo uussee iissIInnCCooiissoottrrooppiicc:: ********** │ │ │ │ * isInCoisotropic(Ideal,Ideal) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_macaulay__Formula.html │ │ │ @@ -87,15 +87,15 @@ │ │ │ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time (D,D') = macaulayFormula F
    │ │ │ - -- used 0.00363368s (cpu); 0.00363028s (thread); 0s (gc)
    │ │ │ + -- used 0.00395763s (cpu); 0.00394839s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = (| a_0 a_1 a_2 a_3 a_4 a_5 0   0   0   0   0   0   0   0   0   0   0  
    │ │ │        | 0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0   0  
    │ │ │        | 0   0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0  
    │ │ │        | 0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0   0  
    │ │ │        | 0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0  
    │ │ │        | 0   0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0  
    │ │ │ @@ -158,15 +158,15 @@
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time (D,D') = macaulayFormula F
    │ │ │ - -- used 0.00232045s (cpu); 0.00232055s (thread); 0s (gc)
    │ │ │ + -- used 0.0027233s (cpu); 0.00265041s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = (| 9/2 9/4 3/4 7/4  7/9  7/10 0    0    0    0    0   0   0    0    0   
    │ │ │        | 0   9/2 0   9/4  3/4  0    7/4  7/9  7/10 0    0   0   0    0    0   
    │ │ │        | 0   0   9/2 0    9/4  3/4  0    7/4  7/9  7/10 0   0   0    0    0   
    │ │ │        | 0   0   0   9/2  0    0    9/4  3/4  0    0    7/4 7/9 7/10 0    0   
    │ │ │        | 0   0   0   0    9/2  0    0    9/4  3/4  0    0   7/4 7/9  7/10 0   
    │ │ │        | 0   0   0   0    0    9/2  0    0    9/4  3/4  0   0   7/4  7/9  7/10
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,15 +28,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                     2          2        2      3
    │ │ │ │       c x x x  + c x x  + c x x  + c x x  + c x }
    │ │ │ │        4 0 1 2    7 1 2    5 0 2    8 1 2    9 2
    │ │ │ │  
    │ │ │ │  o1 : List
    │ │ │ │  i2 : time (D,D') = macaulayFormula F
    │ │ │ │ - -- used 0.00363368s (cpu); 0.00363028s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00395763s (cpu); 0.00394839s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = (| a_0 a_1 a_2 a_3 a_4 a_5 0   0   0   0   0   0   0   0   0   0   0
    │ │ │ │        | 0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0   0
    │ │ │ │        | 0   0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0
    │ │ │ │        | 0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0   0
    │ │ │ │        | 0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0
    │ │ │ │        | 0   0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0
    │ │ │ │ @@ -91,15 +91,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       10   2   7   2   5 3
    │ │ │ │       --p p  + -p p  + -p }
    │ │ │ │        9 0 2   8 1 2   6 2
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : time (D,D') = macaulayFormula F
    │ │ │ │ - -- used 0.00232045s (cpu); 0.00232055s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0027233s (cpu); 0.00265041s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = (| 9/2 9/4 3/4 7/4  7/9  7/10 0    0    0    0    0   0   0    0    0
    │ │ │ │        | 0   9/2 0   9/4  3/4  0    7/4  7/9  7/10 0    0   0   0    0    0
    │ │ │ │        | 0   0   9/2 0    9/4  3/4  0    7/4  7/9  7/10 0   0   0    0    0
    │ │ │ │        | 0   0   0   9/2  0    0    9/4  3/4  0    0    7/4 7/9 7/10 0    0
    │ │ │ │        | 0   0   0   0    9/2  0    0    9/4  3/4  0    0   7/4 7/9  7/10 0
    │ │ │ │        | 0   0   0   0    0    9/2  0    0    9/4  3/4  0   0   7/4  7/9  7/10
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_plucker.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o3 : Ideal of P4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time p = plucker L
    │ │ │ - -- used 0.00446275s (cpu); 0.00446052s (thread); 0s (gc)
    │ │ │ + -- used 0.00945487s (cpu); 0.00945542s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = ideal (x    + 8480x   , x    - 6727x   , x    + 15777x   , x    +
    │ │ │               2,4        3,4   1,4        3,4   0,4         3,4   2,3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       11656x   , x    - 14853x   , x    + 664x   , x    + 13522x   , x    +
    │ │ │             3,4   1,3         3,4   0,3       3,4   1,2         3,4   0,2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │  
    │ │ │  o4 : Ideal of G'1'4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time L' = plucker p
    │ │ │ - -- used 0.101231s (cpu); 0.0491833s (thread); 0s (gc)
    │ │ │ + -- used 0.148852s (cpu); 0.0800914s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = ideal (x  + 8480x  - 11656x , x  - 6727x  + 14853x , x  + 15777x  -
    │ │ │               2        3         4   1        3         4   0         3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       664x )
    │ │ │           4
    │ │ │  
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │  
    │ │ │  o7 : Ideal of G'1'4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time W = plucker Y; -- surface swept out by the lines of Y
    │ │ │ - -- used 0.0311593s (cpu); 0.0311572s (thread); 0s (gc)
    │ │ │ + -- used 0.0371343s (cpu); 0.0371336s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 : Ideal of P4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : (codim W,degree W)
    │ │ │ @@ -158,15 +158,15 @@
    │ │ │            
    │ │ │          
    │ │ │          

    In this example, we can recover the subvariety $Y\subset\mathbb{G}(k,\mathbb{P}^n)$ by computing the Fano variety of $k$-planes contained in $W$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : time Y' = plucker(W,1); -- variety of lines contained in W
    │ │ │ - -- used 0.144036s (cpu); 0.144016s (thread); 0s (gc)
    │ │ │ + -- used 0.178218s (cpu); 0.178221s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of G'1'4
    │ │ │
    │ │ │
    i11 : assert(Y' == Y)
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,28 +28,28 @@ │ │ │ │ 2 3 4 1 3 4 0 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 664x ) │ │ │ │ 4 │ │ │ │ │ │ │ │ o3 : Ideal of P4 │ │ │ │ i4 : time p = plucker L │ │ │ │ - -- used 0.00446275s (cpu); 0.00446052s (thread); 0s (gc) │ │ │ │ + -- used 0.00945487s (cpu); 0.00945542s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = ideal (x + 8480x , x - 6727x , x + 15777x , x + │ │ │ │ 2,4 3,4 1,4 3,4 0,4 3,4 2,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 11656x , x - 14853x , x + 664x , x + 13522x , x + │ │ │ │ 3,4 1,3 3,4 0,3 3,4 1,2 3,4 0,2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 11804x , x + 14854x ) │ │ │ │ 3,4 0,1 3,4 │ │ │ │ │ │ │ │ o4 : Ideal of G'1'4 │ │ │ │ i5 : time L' = plucker p │ │ │ │ - -- used 0.101231s (cpu); 0.0491833s (thread); 0s (gc) │ │ │ │ + -- used 0.148852s (cpu); 0.0800914s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = ideal (x + 8480x - 11656x , x - 6727x + 14853x , x + 15777x - │ │ │ │ 2 3 4 1 3 4 0 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 664x ) │ │ │ │ 4 │ │ │ │ │ │ │ │ @@ -60,26 +60,26 @@ │ │ │ │ $W\subset\mathbb{P}^n$ swept out by the linear spaces corresponding to points │ │ │ │ of $Y$. As an example, we now compute a surface scroll $W\subset\mathbb{P}^4$ │ │ │ │ over an elliptic curve $Y\subset\mathbb{G}(1,\mathbb{P}^4)$. │ │ │ │ i7 : Y = ideal apply(5,i->random(1,G'1'4)); -- an elliptic curve │ │ │ │ │ │ │ │ o7 : Ideal of G'1'4 │ │ │ │ i8 : time W = plucker Y; -- surface swept out by the lines of Y │ │ │ │ - -- used 0.0311593s (cpu); 0.0311572s (thread); 0s (gc) │ │ │ │ + -- used 0.0371343s (cpu); 0.0371336s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 : Ideal of P4 │ │ │ │ i9 : (codim W,degree W) │ │ │ │ │ │ │ │ o9 = (2, 5) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ In this example, we can recover the subvariety $Y\subset\mathbb{G}(k,\mathbb │ │ │ │ {P}^n)$ by computing the Fano variety of $k$-planes contained in $W$. │ │ │ │ i10 : time Y' = plucker(W,1); -- variety of lines contained in W │ │ │ │ - -- used 0.144036s (cpu); 0.144016s (thread); 0s (gc) │ │ │ │ + -- used 0.178218s (cpu); 0.178221s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 : Ideal of G'1'4 │ │ │ │ i11 : assert(Y' == Y) │ │ │ │ WWaarrnniinngg: Notice that, by default, the computation is done on a randomly chosen │ │ │ │ affine chart on the Grassmannian. To change this behavior, you can use the │ │ │ │ _A_f_f_i_n_e_C_h_a_r_t_G_r_a_s_s option. │ │ │ │ ********** WWaayyss ttoo uussee pplluucckkeerr:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ @@ -108,15 +108,15 @@ │ │ │ │ │ │ o2 : List │ │ │
    │ │ │
    i3 : time resultant(F,Algorithm=>"Poisson2")
    │ │ │ - -- used 0.286935s (cpu); 0.170618s (thread); 0s (gc)
    │ │ │ + -- used 0.377957s (cpu); 0.211057s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o3 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ @@ -132,15 +132,15 @@
    │ │ │  
    │ │ │  o3 : QQ[a..b]
    │ │ │
    │ │ │
    i4 : time resultant(F,Algorithm=>"Macaulay2")
    │ │ │ - -- used 0.145456s (cpu); 0.0909893s (thread); 0s (gc)
    │ │ │ + -- used 0.178575s (cpu); 0.0941626s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o4 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ @@ -156,15 +156,15 @@
    │ │ │  
    │ │ │  o4 : QQ[a..b]
    │ │ │
    │ │ │
    i5 : time resultant(F,Algorithm=>"Poisson")
    │ │ │ - -- used 0.376249s (cpu); 0.321284s (thread); 0s (gc)
    │ │ │ + -- used 0.423812s (cpu); 0.347667s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o5 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ @@ -180,15 +180,15 @@
    │ │ │  
    │ │ │  o5 : QQ[a..b]
    │ │ │
    │ │ │
    i6 : time resultant(F,Algorithm=>"Macaulay")
    │ │ │ - -- used 0.62408s (cpu); 0.567743s (thread); 0s (gc)
    │ │ │ + -- used 0.73392s (cpu); 0.653995s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o6 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -58,15 +58,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       3     2    9    7     2    9        3       1    8    4
    │ │ │ │       -b)y*w  + (-a + -b)z*w  + (-a + 2b)w , 2x + -y + -z + -w}
    │ │ │ │       4          8    8          7                4    3    5
    │ │ │ │  
    │ │ │ │  o2 : List
    │ │ │ │  i3 : time resultant(F,Algorithm=>"Poisson2")
    │ │ │ │ - -- used 0.286935s (cpu); 0.170618s (thread); 0s (gc)
    │ │ │ │ + -- used 0.377957s (cpu); 0.211057s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o3 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ │ │ @@ -78,15 +78,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       1146977327343523453866040839029   4   194441910898734675845094443 5
    │ │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │ │            1119954511872000000000                895963609497600000
    │ │ │ │  
    │ │ │ │  o3 : QQ[a..b]
    │ │ │ │  i4 : time resultant(F,Algorithm=>"Macaulay2")
    │ │ │ │ - -- used 0.145456s (cpu); 0.0909893s (thread); 0s (gc)
    │ │ │ │ + -- used 0.178575s (cpu); 0.0941626s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o4 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ │ │ @@ -98,15 +98,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       1146977327343523453866040839029   4   194441910898734675845094443 5
    │ │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │ │            1119954511872000000000                895963609497600000
    │ │ │ │  
    │ │ │ │  o4 : QQ[a..b]
    │ │ │ │  i5 : time resultant(F,Algorithm=>"Poisson")
    │ │ │ │ - -- used 0.376249s (cpu); 0.321284s (thread); 0s (gc)
    │ │ │ │ + -- used 0.423812s (cpu); 0.347667s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o5 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ │ │ @@ -118,15 +118,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       1146977327343523453866040839029   4   194441910898734675845094443 5
    │ │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │ │            1119954511872000000000                895963609497600000
    │ │ │ │  
    │ │ │ │  o5 : QQ[a..b]
    │ │ │ │  i6 : time resultant(F,Algorithm=>"Macaulay")
    │ │ │ │ - -- used 0.62408s (cpu); 0.567743s (thread); 0s (gc)
    │ │ │ │ + -- used 0.73392s (cpu); 0.653995s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o6 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp__Matrix_rp.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o2 : List
    │ │ │
    │ │ │
    i3 : time resultant F
    │ │ │ - -- used 0.024024s (cpu); 0.0240227s (thread); 0s (gc)
    │ │ │ + -- used 0.0280936s (cpu); 0.0280945s (thread); 0s (gc)
    │ │ │  
    │ │ │            12         11 2         10 3         9 4          8 5          7 6
    │ │ │  o3 = - 81t  u - 1701t  u  - 15309t  u  - 76545t u  - 229635t u  - 413343t u 
    │ │ │       ------------------------------------------------------------------------
    │ │ │                6 7          5 8       11          10 2         9 3  
    │ │ │       - 413343t u  - 177147t u  + 567t  u + 10206t  u  + 76545t u  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -155,15 +155,15 @@
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : time resultant F
    │ │ │ - -- used 2.64631s (cpu); 2.04937s (thread); 0s (gc)
    │ │ │ + -- used 2.66251s (cpu); 2.12856s (thread); 0s (gc)
    │ │ │  
    │ │ │        6 3 2       5 2   2     2 4   2 2    3 3 3 2     2 4 2   2  
    │ │ │  o5 = a b c  - 3a a b b c  + 3a a b b c  - a a b c  + 3a a b b c  -
    │ │ │        2 3 0     1 2 3 4 0     1 2 3 4 0    1 2 4 0     1 2 3 5 0  
    │ │ │       ------------------------------------------------------------------------
    │ │ │         3 3       2     4 2 2   2     4 2   2 2     5     2 2    6 3 2  
    │ │ │       6a a b b b c  + 3a a b b c  + 3a a b b c  - 3a a b b c  + a b c  -
    │ │ │ @@ -1790,15 +1790,15 @@
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : time # terms resultant F
    │ │ │ - -- used 0.588475s (cpu); 0.418407s (thread); 0s (gc)
    │ │ │ + -- used 0.477156s (cpu); 0.403322s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 21894
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -32,15 +32,15 @@ │ │ │ │ i2 : F = {x^2+3*t*y*z-u*z^2,(t+3*u-1)*x-y,-t*x*y^3+t*x^2*y*z+u*z^4} │ │ │ │ │ │ │ │ 2 2 3 2 4 │ │ │ │ o2 = {x + 3t*y*z - u*z , (t + 3u - 1)x - y, - t*x*y + t*x y*z + u*z } │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : time resultant F │ │ │ │ - -- used 0.024024s (cpu); 0.0240227s (thread); 0s (gc) │ │ │ │ + -- used 0.0280936s (cpu); 0.0280945s (thread); 0s (gc) │ │ │ │ │ │ │ │ 12 11 2 10 3 9 4 8 5 7 6 │ │ │ │ o3 = - 81t u - 1701t u - 15309t u - 76545t u - 229635t u - 413343t u │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 6 7 5 8 11 10 2 9 3 │ │ │ │ - 413343t u - 177147t u + 567t u + 10206t u + 76545t u + │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -86,15 +86,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 │ │ │ │ + c x } │ │ │ │ 9 2 │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : time resultant F │ │ │ │ - -- used 2.64631s (cpu); 2.04937s (thread); 0s (gc) │ │ │ │ + -- used 2.66251s (cpu); 2.12856s (thread); 0s (gc) │ │ │ │ │ │ │ │ 6 3 2 5 2 2 2 4 2 2 3 3 3 2 2 4 2 2 │ │ │ │ o5 = a b c - 3a a b b c + 3a a b b c - a a b c + 3a a b b c - │ │ │ │ 2 3 0 1 2 3 4 0 1 2 3 4 0 1 2 4 0 1 2 3 5 0 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 3 2 4 2 2 2 4 2 2 2 5 2 2 6 3 2 │ │ │ │ 6a a b b b c + 3a a b b c + 3a a b b c - 3a a b b c + a b c - │ │ │ │ @@ -1712,15 +1712,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 2 │ │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : time # terms resultant F │ │ │ │ - -- used 0.588475s (cpu); 0.418407s (thread); 0s (gc) │ │ │ │ + -- used 0.477156s (cpu); 0.403322s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = 21894 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_h_o_w_F_o_r_m -- Chow form of a projective variety │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_R_i_n_g_E_l_e_m_e_n_t_) │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * resultant(List) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_tangential__Chow__Form.html │ │ │ @@ -97,15 +97,15 @@ │ │ │ 0 4 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : -- 0-th associated hypersurface of S in G(1,4) (Chow form)
    │ │ │       time tangentialChowForm(S,0)
    │ │ │ - -- used 0.0288231s (cpu); 0.0288233s (thread); 0s (gc)
    │ │ │ + -- used 0.035083s (cpu); 0.0350825s (thread); 0s (gc)
    │ │ │  
    │ │ │        2                                                       2        
    │ │ │  o3 = p   p    - p   p   p    - p   p   p    + p   p   p    + p   p    +
    │ │ │        1,3 2,3    1,2 1,3 2,4    0,3 1,3 2,4    0,2 1,4 2,4    1,2 3,4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2
    │ │ │       p   p    - 2p   p   p    - p   p   p
    │ │ │ @@ -118,15 +118,15 @@
    │ │ │         2,3 1,4    1,3 2,4    1,2 3,4   2,3 0,4    0,3 2,4    0,2 3,4   1,3 0,4    0,3 1,4    0,1 3,4   1,2 0,4    0,2 1,4    0,1 2,4   1,2 0,3    0,2 1,3    0,1 2,3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : -- 1-th associated hypersurface of S in G(2,4)
    │ │ │       time tangentialChowForm(S,1)
    │ │ │ - -- used 0.1176s (cpu); 0.0698098s (thread); 0s (gc)
    │ │ │ + -- used 0.155213s (cpu); 0.088828s (thread); 0s (gc)
    │ │ │  
    │ │ │        2     2        2     2               3        2     2      
    │ │ │  o4 = p     p      + p     p      - 2p     p      + p     p      -
    │ │ │        1,2,3 1,2,4    0,2,4 1,2,4     0,2,3 1,2,4    0,2,4 0,3,4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │               3         3               3            
    │ │ │       4p     p      - 4p     p      - 2p     p      +
    │ │ │ @@ -163,43 +163,43 @@
    │ │ │         1,2,4 0,3,4    0,2,4 1,3,4    0,1,4 2,3,4   1,2,3 0,3,4    0,2,3 1,3,4    0,1,3 2,3,4   1,2,3 0,2,4    0,2,3 1,2,4    0,1,2 2,3,4   1,2,3 0,1,4    0,1,3 1,2,4    0,1,2 1,3,4   0,2,3 0,1,4    0,1,3 0,2,4    0,1,2 0,3,4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : -- 2-th associated hypersurface of S in G(3,4) (parameterizing tangent hyperplanes to S)
    │ │ │       time tangentialChowForm(S,2)
    │ │ │ - -- used 0.0316428s (cpu); 0.0316457s (thread); 0s (gc)
    │ │ │ + -- used 0.0390777s (cpu); 0.0390815s (thread); 0s (gc)
    │ │ │  
    │ │ │                2                                             2
    │ │ │  o5 = p       p        - p       p       p        + p       p
    │ │ │        0,1,3,4 0,2,3,4    0,1,2,4 0,2,3,4 1,2,3,4    0,1,2,3 1,2,3,4
    │ │ │  
    │ │ │  o5 : QQ[p       ..p       , p       , p       , p       ]
    │ │ │           0,1,2,3   0,1,2,4   0,1,3,4   0,2,3,4   1,2,3,4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : -- we get the dual hypersurface of S in G(0,4) by dualizing
    │ │ │       time S' = ideal dualize tangentialChowForm(S,2)
    │ │ │ - -- used 0.103735s (cpu); 0.0542823s (thread); 0s (gc)
    │ │ │ + -- used 0.132473s (cpu); 0.0620165s (thread); 0s (gc)
    │ │ │  
    │ │ │              2               2
    │ │ │  o6 = ideal(p p  - p p p  + p p )
    │ │ │              1 2    0 1 3    0 4
    │ │ │  
    │ │ │  o6 : Ideal of QQ[p ..p ]
    │ │ │                    0   4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : -- we then can recover S
    │ │ │       time assert(dualize tangentialChowForm(S',3) == S)
    │ │ │ - -- used 0.149537s (cpu); 0.110227s (thread); 0s (gc)
    │ │ │ + -- used 0.186898s (cpu); 0.111362s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -63,15 +63,15 @@ │ │ │ │ o2 = ideal (- p p + p p , - p p + p p , - p + p p ) │ │ │ │ 1 2 0 3 1 3 0 4 3 2 4 │ │ │ │ │ │ │ │ o2 : Ideal of QQ[p ..p ] │ │ │ │ 0 4 │ │ │ │ i3 : -- 0-th associated hypersurface of S in G(1,4) (Chow form) │ │ │ │ time tangentialChowForm(S,0) │ │ │ │ - -- used 0.0288231s (cpu); 0.0288233s (thread); 0s (gc) │ │ │ │ + -- used 0.035083s (cpu); 0.0350825s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o3 = p p - p p p - p p p + p p p + p p + │ │ │ │ 1,3 2,3 1,2 1,3 2,4 0,3 1,3 2,4 0,2 1,4 2,4 1,2 3,4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 │ │ │ │ p p - 2p p p - p p p │ │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ - p p + p p , p p - p p + p p , p p - p p + p │ │ │ │ p ) │ │ │ │ 2,3 1,4 1,3 2,4 1,2 3,4 2,3 0,4 0,3 2,4 0,2 3,4 1,3 0,4 │ │ │ │ 0,3 1,4 0,1 3,4 1,2 0,4 0,2 1,4 0,1 2,4 1,2 0,3 0,2 1,3 0,1 │ │ │ │ 2,3 │ │ │ │ i4 : -- 1-th associated hypersurface of S in G(2,4) │ │ │ │ time tangentialChowForm(S,1) │ │ │ │ - -- used 0.1176s (cpu); 0.0698098s (thread); 0s (gc) │ │ │ │ + -- used 0.155213s (cpu); 0.088828s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 3 2 2 │ │ │ │ o4 = p p + p p - 2p p + p p - │ │ │ │ 1,2,3 1,2,4 0,2,4 1,2,4 0,2,3 1,2,4 0,2,4 0,3,4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 3 3 │ │ │ │ 4p p - 4p p - 2p p + │ │ │ │ @@ -138,35 +138,35 @@ │ │ │ │ p + p p , p p - p p + p p ) │ │ │ │ 1,2,4 0,3,4 0,2,4 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 │ │ │ │ 0,1,3 2,3,4 1,2,3 0,2,4 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 │ │ │ │ 1,2,4 0,1,2 1,3,4 0,2,3 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ i5 : -- 2-th associated hypersurface of S in G(3,4) (parameterizing tangent │ │ │ │ hyperplanes to S) │ │ │ │ time tangentialChowForm(S,2) │ │ │ │ - -- used 0.0316428s (cpu); 0.0316457s (thread); 0s (gc) │ │ │ │ + -- used 0.0390777s (cpu); 0.0390815s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o5 = p p - p p p + p p │ │ │ │ 0,1,3,4 0,2,3,4 0,1,2,4 0,2,3,4 1,2,3,4 0,1,2,3 1,2,3,4 │ │ │ │ │ │ │ │ o5 : QQ[p ..p , p , p , p ] │ │ │ │ 0,1,2,3 0,1,2,4 0,1,3,4 0,2,3,4 1,2,3,4 │ │ │ │ i6 : -- we get the dual hypersurface of S in G(0,4) by dualizing │ │ │ │ time S' = ideal dualize tangentialChowForm(S,2) │ │ │ │ - -- used 0.103735s (cpu); 0.0542823s (thread); 0s (gc) │ │ │ │ + -- used 0.132473s (cpu); 0.0620165s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o6 = ideal(p p - p p p + p p ) │ │ │ │ 1 2 0 1 3 0 4 │ │ │ │ │ │ │ │ o6 : Ideal of QQ[p ..p ] │ │ │ │ 0 4 │ │ │ │ i7 : -- we then can recover S │ │ │ │ time assert(dualize tangentialChowForm(S',3) == S) │ │ │ │ - -- used 0.149537s (cpu); 0.110227s (thread); 0s (gc) │ │ │ │ + -- used 0.186898s (cpu); 0.111362s (thread); 0s (gc) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_C_o_i_s_o_t_r_o_p_i_c -- whether a hypersurface of a Grassmannian is a tangential │ │ │ │ Chow form │ │ │ │ * _c_h_o_w_F_o_r_m -- Chow form of a projective variety │ │ │ │ ********** WWaayyss ttoo uussee ttaannggeennttiiaallCChhoowwFFoorrmm:: ********** │ │ │ │ * tangentialChowForm(Ideal,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_resource_splimits.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ time(seconds) 700 │ │ │ file(blocks) unlimited │ │ │ data(kbytes) unlimited │ │ │ stack(kbytes) 8192 │ │ │ coredump(blocks) unlimited │ │ │ memory(kbytes) 850000 │ │ │ locked memory(kbytes) 8192 │ │ │ -process 63817 │ │ │ +process 63521 │ │ │ nofiles 512 │ │ │ vmemory(kbytes) unlimited │ │ │ locks unlimited │ │ │ rtprio 0 │ │ │ │ │ │ o1 = 0 │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_run__External__M2.out │ │ │ @@ -1,23 +1,23 @@ │ │ │ -- -*- M2-comint -*- hash: 2927978066455787395 │ │ │ │ │ │ i1 : fn=temporaryFileName()|".m2" │ │ │ │ │ │ -o1 = /tmp/M2-29954-0/0.m2 │ │ │ +o1 = /tmp/M2-43115-0/0.m2 │ │ │ │ │ │ i2 : fn< (stderr<<"Running"< ( exit(27); ); ///< (stderr<<"Spinning!!"<"/tmp/M2-29954-0/1.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43115-0/1.m2" >"/tmp/M2-43115-0/1.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ i7 : h │ │ │ │ │ │ o7 = HashTable{"answer file" => null} │ │ │ "exit code" => 0 │ │ │ "output file" => null │ │ │ @@ -33,105 +33,105 @@ │ │ │ o8 = true │ │ │ │ │ │ i9 : h#"exit code"===0 │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : h=runExternalM2(fn,"justexit",()); │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/2.m2" >"/tmp/M2-29954-0/2.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43115-0/2.m2" >"/tmp/M2-43115-0/2.out" 2>&1 )) │ │ │ Finished running. │ │ │ RunExternalM2: expected answer file does not exist │ │ │ │ │ │ i11 : h │ │ │ │ │ │ -o11 = HashTable{"answer file" => /tmp/M2-29954-0/2.ans} │ │ │ +o11 = HashTable{"answer file" => /tmp/M2-43115-0/2.ans} │ │ │ "exit code" => 27 │ │ │ - "output file" => /tmp/M2-29954-0/2.out │ │ │ + "output file" => /tmp/M2-43115-0/2.out │ │ │ "return code" => 6912 │ │ │ "statistics" => null │ │ │ - "time used" => 2 │ │ │ + "time used" => 1 │ │ │ value => null │ │ │ │ │ │ o11 : HashTable │ │ │ │ │ │ i12 : fileExists(h#"output file") │ │ │ │ │ │ o12 = true │ │ │ │ │ │ i13 : fileExists(h#"answer file") │ │ │ │ │ │ o13 = false │ │ │ │ │ │ i14 : h=runExternalM2(fn,"spin",10,PreRunScript=>"ulimit -t 2"); │ │ │ -Running (ulimit -t 2 && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/3.m2" >"/tmp/M2-29954-0/3.out" 2>&1 )) │ │ │ +Running (ulimit -t 2 && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43115-0/3.m2" >"/tmp/M2-43115-0/3.out" 2>&1 )) │ │ │ Killed │ │ │ Finished running. │ │ │ RunExternalM2: expected answer file does not exist │ │ │ │ │ │ i15 : h │ │ │ │ │ │ -o15 = HashTable{"answer file" => /tmp/M2-29954-0/3.ans} │ │ │ +o15 = HashTable{"answer file" => /tmp/M2-43115-0/3.ans} │ │ │ "exit code" => 0 │ │ │ - "output file" => /tmp/M2-29954-0/3.out │ │ │ + "output file" => /tmp/M2-43115-0/3.out │ │ │ "return code" => 9 │ │ │ "statistics" => null │ │ │ "time used" => 2 │ │ │ value => null │ │ │ │ │ │ o15 : HashTable │ │ │ │ │ │ i16 : if h#"output file" =!= null and fileExists(h#"output file") then get(h#"output file") │ │ │ │ │ │ o16 = │ │ │ - i1 : -- Script /tmp/M2-29954-0/3.m2 automatically generated by RunExternalM2 │ │ │ + i1 : -- Script /tmp/M2-43115-0/3.m2 automatically generated by RunExternalM2 │ │ │ needsPackage("RunExternalM2",Configuration=>{"isChild"=>true}); │ │ │ │ │ │ - i2 : load "/tmp/M2-29954-0/0.m2"; │ │ │ + i2 : load "/tmp/M2-43115-0/0.m2"; │ │ │ │ │ │ - i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/3.ans",spin (10)); │ │ │ + i3 : runExternalM2ReturnAnswer("/tmp/M2-43115-0/3.ans",spin (10)); │ │ │ Spinning!! │ │ │ │ │ │ │ │ │ i17 : if h#"answer file" =!= null and fileExists(h#"answer file") then get(h#"answer file") │ │ │ │ │ │ i18 : h=runExternalM2(fn,"spin",3,KeepStatistics=>true); │ │ │ -Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1') >"/tmp/M2-29954-0/4.stat" 2>&1 )) │ │ │ +Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43115-0/4.m2" >"/tmp/M2-43115-0/4.out" 2>&1') >"/tmp/M2-43115-0/4.stat" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ i19 : h#"statistics" │ │ │ │ │ │ -o19 = Command being timed: "sh -c /usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1" │ │ │ - User time (seconds): 5.28 │ │ │ - System time (seconds): 0.08 │ │ │ - Percent of CPU this job got: 95% │ │ │ - Elapsed (wall clock) time (h:mm:ss or m:ss): 0:05.62 │ │ │ +o19 = Command being timed: "sh -c /usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43115-0/4.m2" >"/tmp/M2-43115-0/4.out" 2>&1" │ │ │ + User time (seconds): 4.70 │ │ │ + System time (seconds): 0.26 │ │ │ + Percent of CPU this job got: 120% │ │ │ + Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.11 │ │ │ Average shared text size (kbytes): 0 │ │ │ Average unshared data size (kbytes): 0 │ │ │ Average stack size (kbytes): 0 │ │ │ Average total size (kbytes): 0 │ │ │ - Maximum resident set size (kbytes): 252580 │ │ │ + Maximum resident set size (kbytes): 340536 │ │ │ Average resident set size (kbytes): 0 │ │ │ Major (requiring I/O) page faults: 0 │ │ │ - Minor (reclaiming a frame) page faults: 9521 │ │ │ - Voluntary context switches: 2087 │ │ │ - Involuntary context switches: 1715 │ │ │ + Minor (reclaiming a frame) page faults: 10947 │ │ │ + Voluntary context switches: 6298 │ │ │ + Involuntary context switches: 1304 │ │ │ Swaps: 0 │ │ │ File system inputs: 0 │ │ │ - File system outputs: 0 │ │ │ + File system outputs: 24 │ │ │ Socket messages sent: 0 │ │ │ Socket messages received: 0 │ │ │ Signals delivered: 0 │ │ │ Page size (bytes): 4096 │ │ │ Exit status: 0 │ │ │ │ │ │ │ │ │ i20 : v=/// A complicated string^%&C@#CERQVASDFQ#BQBSDH"' ewrjwklsf///; │ │ │ │ │ │ i21 : (runExternalM2(fn,identity,v))#value===v │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/6.m2" >"/tmp/M2-29954-0/6.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43115-0/6.m2" >"/tmp/M2-43115-0/6.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ o21 = true │ │ │ │ │ │ i22 : R=QQ[x,y]; │ │ │ │ │ │ i23 : v=coker random(R^2,R^{3:-1}) │ │ │ @@ -139,54 +139,54 @@ │ │ │ o23 = cokernel | 9/2x+9/4y 7/9x+7/10y 7x+3/7y | │ │ │ | 3/4x+7/4y 7/10x+7/3y 6/7x+6y | │ │ │ │ │ │ 2 │ │ │ o23 : R-module, quotient of R │ │ │ │ │ │ i24 : h=runExternalM2(fn,identity,v) │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/7.m2" >"/tmp/M2-29954-0/7.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43115-0/7.m2" >"/tmp/M2-43115-0/7.out" 2>&1 )) │ │ │ Finished running. │ │ │ RunExternalM2: expected answer file does not exist │ │ │ │ │ │ -o24 = HashTable{"answer file" => /tmp/M2-29954-0/7.ans} │ │ │ +o24 = HashTable{"answer file" => /tmp/M2-43115-0/7.ans} │ │ │ "exit code" => 1 │ │ │ - "output file" => /tmp/M2-29954-0/7.out │ │ │ + "output file" => /tmp/M2-43115-0/7.out │ │ │ "return code" => 256 │ │ │ "statistics" => null │ │ │ - "time used" => 2 │ │ │ + "time used" => 1 │ │ │ value => null │ │ │ │ │ │ o24 : HashTable │ │ │ │ │ │ i25 : get(h#"output file") │ │ │ │ │ │ o25 = │ │ │ - i1 : -- Script /tmp/M2-29954-0/7.m2 automatically generated by RunExternalM2 │ │ │ + i1 : -- Script /tmp/M2-43115-0/7.m2 automatically generated by RunExternalM2 │ │ │ needsPackage("RunExternalM2",Configuration=>{"isChild"=>true}); │ │ │ │ │ │ - i2 : load "/tmp/M2-29954-0/0.m2"; │ │ │ + i2 : load "/tmp/M2-43115-0/0.m2"; │ │ │ │ │ │ - i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}})))); │ │ │ + i3 : runExternalM2ReturnAnswer("/tmp/M2-43115-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}})))); │ │ │ stdio:4:74:(3):[1]: error: no method for binary operator ^ applied to objects: │ │ │ R (of class Symbol) │ │ │ ^ 2 (of class ZZ) │ │ │ │ │ │ │ │ │ i26 : fn<"/tmp/M2-29954-0/8.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43115-0/8.m2" >"/tmp/M2-43115-0/8.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ o27 = true │ │ │ │ │ │ i28 : v=R; │ │ │ │ │ │ i29 : h=runExternalM2(fn,identity,v); │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/9.m2" >"/tmp/M2-29954-0/9.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43115-0/9.m2" >"/tmp/M2-43115-0/9.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ i30 : h#value │ │ │ │ │ │ o30 = QQ[x..y] │ │ │ │ │ │ o30 : PolynomialRing │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/html/_resource_splimits.html │ │ │ @@ -75,15 +75,15 @@ │ │ │ time(seconds) 700 │ │ │ file(blocks) unlimited │ │ │ data(kbytes) unlimited │ │ │ stack(kbytes) 8192 │ │ │ coredump(blocks) unlimited │ │ │ memory(kbytes) 850000 │ │ │ locked memory(kbytes) 8192 │ │ │ -process 63817 │ │ │ +process 63521 │ │ │ nofiles 512 │ │ │ vmemory(kbytes) unlimited │ │ │ locks unlimited │ │ │ rtprio 0 │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -35,15 +35,15 @@ │ │ │ │ time(seconds) 700 │ │ │ │ file(blocks) unlimited │ │ │ │ data(kbytes) unlimited │ │ │ │ stack(kbytes) 8192 │ │ │ │ coredump(blocks) unlimited │ │ │ │ memory(kbytes) 850000 │ │ │ │ locked memory(kbytes) 8192 │ │ │ │ -process 63817 │ │ │ │ +process 63521 │ │ │ │ nofiles 512 │ │ │ │ vmemory(kbytes) unlimited │ │ │ │ locks unlimited │ │ │ │ rtprio 0 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ This starts a new shell and executes the command given, which in this case │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2.html │ │ │ @@ -84,15 +84,15 @@ │ │ │

      For example, we can write a few functions to a temporary file:

      │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -115,15 +115,15 @@ │ │ │
    │ │ │

    and then call them:

    │ │ │
    │ │ │
    │ │ │
    i1 : fn=temporaryFileName()|".m2"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-29954-0/0.m2
    │ │ │ +o1 = /tmp/M2-43115-0/0.m2 │ │ │
    │ │ │
    i2 : fn<</// square = (x) -> (stderr<<"Running"<<endl; sleep(1); x^2); ///<<endl;
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : h=runExternalM2(fn,"square",(4));
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/1.m2" >"/tmp/M2-29954-0/1.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43115-0/1.m2" >"/tmp/M2-43115-0/1.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │
    │ │ │
    i7 : h
    │ │ │  
    │ │ │ @@ -157,29 +157,29 @@
    │ │ │            

    │ │ │

    An abnormal program exit will have a nonzero exit code; also, the value will be null, the output file should exist, but the answer file may not exist unless the routine finished successfully.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : h=runExternalM2(fn,"justexit",());
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/2.m2" >"/tmp/M2-29954-0/2.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43115-0/2.m2" >"/tmp/M2-43115-0/2.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │
    │ │ │
    i11 : h
    │ │ │  
    │ │ │ -o11 = HashTable{"answer file" => /tmp/M2-29954-0/2.ans}
    │ │ │ +o11 = HashTable{"answer file" => /tmp/M2-43115-0/2.ans}
    │ │ │                  "exit code" => 27
    │ │ │ -                "output file" => /tmp/M2-29954-0/2.out
    │ │ │ +                "output file" => /tmp/M2-43115-0/2.out
    │ │ │                  "return code" => 6912
    │ │ │                  "statistics" => null
    │ │ │ -                "time used" => 2
    │ │ │ +                "time used" => 1
    │ │ │                  value => null
    │ │ │  
    │ │ │  o11 : HashTable
    │ │ │
    │ │ │ @@ -199,46 +199,46 @@ │ │ │
    │ │ │

    Here, we use resource limits to limit the routine to 2 seconds of computational time, while the system is asked to use 10 seconds of computational time:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -248,40 +248,40 @@ │ │ │

    │ │ │

    We can get quite a lot of detail on the resources used with the KeepStatistics command:

    │ │ │ │ │ │
    │ │ │
    i14 : h=runExternalM2(fn,"spin",10,PreRunScript=>"ulimit -t 2");
    │ │ │ -Running (ulimit -t 2 && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/3.m2" >"/tmp/M2-29954-0/3.out" 2>&1 ))
    │ │ │ +Running (ulimit -t 2 && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43115-0/3.m2" >"/tmp/M2-43115-0/3.out" 2>&1 ))
    │ │ │  Killed
    │ │ │  Finished running.
    │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │
    │ │ │
    i15 : h
    │ │ │  
    │ │ │ -o15 = HashTable{"answer file" => /tmp/M2-29954-0/3.ans}
    │ │ │ +o15 = HashTable{"answer file" => /tmp/M2-43115-0/3.ans}
    │ │ │                  "exit code" => 0
    │ │ │ -                "output file" => /tmp/M2-29954-0/3.out
    │ │ │ +                "output file" => /tmp/M2-43115-0/3.out
    │ │ │                  "return code" => 9
    │ │ │                  "statistics" => null
    │ │ │                  "time used" => 2
    │ │ │                  value => null
    │ │ │  
    │ │ │  o15 : HashTable
    │ │ │
    │ │ │
    i16 : if h#"output file" =!= null and fileExists(h#"output file") then get(h#"output file")
    │ │ │  
    │ │ │  o16 = 
    │ │ │ -      i1 : -- Script /tmp/M2-29954-0/3.m2 automatically generated by RunExternalM2
    │ │ │ +      i1 : -- Script /tmp/M2-43115-0/3.m2 automatically generated by RunExternalM2
    │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │  
    │ │ │ -      i2 : load "/tmp/M2-29954-0/0.m2";
    │ │ │ +      i2 : load "/tmp/M2-43115-0/0.m2";
    │ │ │  
    │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/3.ans",spin (10));
    │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-43115-0/3.ans",spin (10));
    │ │ │        Spinning!!
    │ │ │
    │ │ │
    i17 : if h#"answer file" =!= null and fileExists(h#"answer file") then get(h#"answer file")
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -295,15 +295,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i18 : h=runExternalM2(fn,"spin",3,KeepStatistics=>true);
    │ │ │ -Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1') >"/tmp/M2-29954-0/4.stat" 2>&1 ))
    │ │ │ +Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43115-0/4.m2" >"/tmp/M2-43115-0/4.out" 2>&1') >"/tmp/M2-43115-0/4.stat" 2>&1 ))
    │ │ │  Finished running.
    │ │ │
    │ │ │
    i19 : h#"statistics"
    │ │ │  
    │ │ │ -o19 =         Command being timed: "sh -c /usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1"
    │ │ │ -              User time (seconds): 5.28
    │ │ │ -              System time (seconds): 0.08
    │ │ │ -              Percent of CPU this job got: 95%
    │ │ │ -              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:05.62
    │ │ │ +o19 =         Command being timed: "sh -c /usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43115-0/4.m2" >"/tmp/M2-43115-0/4.out" 2>&1"
    │ │ │ +              User time (seconds): 4.70
    │ │ │ +              System time (seconds): 0.26
    │ │ │ +              Percent of CPU this job got: 120%
    │ │ │ +              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.11
    │ │ │                Average shared text size (kbytes): 0
    │ │ │                Average unshared data size (kbytes): 0
    │ │ │                Average stack size (kbytes): 0
    │ │ │                Average total size (kbytes): 0
    │ │ │ -              Maximum resident set size (kbytes): 252580
    │ │ │ +              Maximum resident set size (kbytes): 340536
    │ │ │                Average resident set size (kbytes): 0
    │ │ │                Major (requiring I/O) page faults: 0
    │ │ │ -              Minor (reclaiming a frame) page faults: 9521
    │ │ │ -              Voluntary context switches: 2087
    │ │ │ -              Involuntary context switches: 1715
    │ │ │ +              Minor (reclaiming a frame) page faults: 10947
    │ │ │ +              Voluntary context switches: 6298
    │ │ │ +              Involuntary context switches: 1304
    │ │ │                Swaps: 0
    │ │ │                File system inputs: 0
    │ │ │ -              File system outputs: 0
    │ │ │ +              File system outputs: 24
    │ │ │                Socket messages sent: 0
    │ │ │                Socket messages received: 0
    │ │ │                Signals delivered: 0
    │ │ │                Page size (bytes): 4096
    │ │ │                Exit status: 0
    │ │ │
    │ │ │
    i20 : v=/// A complicated string^%&C@#CERQVASDFQ#BQBSDH"' ewrjwklsf///;
    │ │ │
    │ │ │
    i21 : (runExternalM2(fn,identity,v))#value===v
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/6.m2" >"/tmp/M2-29954-0/6.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43115-0/6.m2" >"/tmp/M2-43115-0/6.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  
    │ │ │  o21 = true
    │ │ │
    │ │ │
    │ │ │ @@ -325,24 +325,24 @@ │ │ │ 2 │ │ │ o23 : R-module, quotient of R │ │ │
    │ │ │
    i24 : h=runExternalM2(fn,identity,v)
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/7.m2" >"/tmp/M2-29954-0/7.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43115-0/7.m2" >"/tmp/M2-43115-0/7.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │  
    │ │ │ -o24 = HashTable{"answer file" => /tmp/M2-29954-0/7.ans}
    │ │ │ +o24 = HashTable{"answer file" => /tmp/M2-43115-0/7.ans}
    │ │ │                  "exit code" => 1
    │ │ │ -                "output file" => /tmp/M2-29954-0/7.out
    │ │ │ +                "output file" => /tmp/M2-43115-0/7.out
    │ │ │                  "return code" => 256
    │ │ │                  "statistics" => null
    │ │ │ -                "time used" => 2
    │ │ │ +                "time used" => 1
    │ │ │                  value => null
    │ │ │  
    │ │ │  o24 : HashTable
    │ │ │
    │ │ │
    │ │ │ @@ -350,20 +350,20 @@ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i25 : get(h#"output file")
    │ │ │  
    │ │ │  o25 = 
    │ │ │ -      i1 : -- Script /tmp/M2-29954-0/7.m2 automatically generated by RunExternalM2
    │ │ │ +      i1 : -- Script /tmp/M2-43115-0/7.m2 automatically generated by RunExternalM2
    │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │  
    │ │ │ -      i2 : load "/tmp/M2-29954-0/0.m2";
    │ │ │ +      i2 : load "/tmp/M2-43115-0/0.m2";
    │ │ │  
    │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}}))));
    │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-43115-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}}))));
    │ │ │        stdio:4:74:(3):[1]: error: no method for binary operator ^ applied to objects:
    │ │ │                    R (of class Symbol)
    │ │ │              ^     2 (of class ZZ)
    │ │ │
    │ │ │
    │ │ │ @@ -374,15 +374,15 @@ │ │ │
    │ │ │
    i26 : fn<<///R=QQ[x,y];///<<endl<<flush;
    │ │ │
    │ │ │
    i27 : (runExternalM2(fn,identity,v))#value===v
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/8.m2" >"/tmp/M2-29954-0/8.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43115-0/8.m2" >"/tmp/M2-43115-0/8.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  
    │ │ │  o27 = true
    │ │ │
    │ │ │
    │ │ │ @@ -394,15 +394,15 @@ │ │ │ │ │ │
    i28 : v=R;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : h=runExternalM2(fn,identity,v);
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/9.m2" >"/tmp/M2-29954-0/9.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43115-0/9.m2" >"/tmp/M2-43115-0/9.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i30 : h#value
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -45,25 +45,25 @@
    │ │ │ │  the output file (unless it was deleted), the name of the answer file (unless it
    │ │ │ │  was deleted), any statistics recorded about the resource usage, and the value
    │ │ │ │  returned by the function func. If the child process terminates abnormally, then
    │ │ │ │  usually the exit code is nonzero and the value returned is _n_u_l_l.
    │ │ │ │  For example, we can write a few functions to a temporary file:
    │ │ │ │  i1 : fn=temporaryFileName()|".m2"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-29954-0/0.m2
    │ │ │ │ +o1 = /tmp/M2-43115-0/0.m2
    │ │ │ │  i2 : fn< (stderr<<"Running"< ( exit(27); ); ///< (stderr<<"Spinning!!"<"/tmp/M2-29954-0/1.out" 2>&1 ))
    │ │ │ │ +M2-43115-0/1.m2" >"/tmp/M2-43115-0/1.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  i7 : h
    │ │ │ │  
    │ │ │ │  o7 = HashTable{"answer file" => null}
    │ │ │ │                 "exit code" => 0
    │ │ │ │                 "output file" => null
    │ │ │ │                 "return code" => 0
    │ │ │ │ @@ -79,167 +79,167 @@
    │ │ │ │  
    │ │ │ │  o9 = true
    │ │ │ │  An abnormal program exit will have a nonzero exit code; also, the value will be
    │ │ │ │  null, the output file should exist, but the answer file may not exist unless
    │ │ │ │  the routine finished successfully.
    │ │ │ │  i10 : h=runExternalM2(fn,"justexit",());
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-29954-0/2.m2" >"/tmp/M2-29954-0/2.out" 2>&1 ))
    │ │ │ │ +M2-43115-0/2.m2" >"/tmp/M2-43115-0/2.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │ │  i11 : h
    │ │ │ │  
    │ │ │ │ -o11 = HashTable{"answer file" => /tmp/M2-29954-0/2.ans}
    │ │ │ │ +o11 = HashTable{"answer file" => /tmp/M2-43115-0/2.ans}
    │ │ │ │                  "exit code" => 27
    │ │ │ │ -                "output file" => /tmp/M2-29954-0/2.out
    │ │ │ │ +                "output file" => /tmp/M2-43115-0/2.out
    │ │ │ │                  "return code" => 6912
    │ │ │ │                  "statistics" => null
    │ │ │ │ -                "time used" => 2
    │ │ │ │ +                "time used" => 1
    │ │ │ │                  value => null
    │ │ │ │  
    │ │ │ │  o11 : HashTable
    │ │ │ │  i12 : fileExists(h#"output file")
    │ │ │ │  
    │ │ │ │  o12 = true
    │ │ │ │  i13 : fileExists(h#"answer file")
    │ │ │ │  
    │ │ │ │  o13 = false
    │ │ │ │  Here, we use _r_e_s_o_u_r_c_e_ _l_i_m_i_t_s to limit the routine to 2 seconds of computational
    │ │ │ │  time, while the system is asked to use 10 seconds of computational time:
    │ │ │ │  i14 : h=runExternalM2(fn,"spin",10,PreRunScript=>"ulimit -t 2");
    │ │ │ │  Running (ulimit -t 2 && (/usr/bin/M2-binary  --stop --no-debug --silent  -
    │ │ │ │ -q  <"/tmp/M2-29954-0/3.m2" >"/tmp/M2-29954-0/3.out" 2>&1 ))
    │ │ │ │ +q  <"/tmp/M2-43115-0/3.m2" >"/tmp/M2-43115-0/3.out" 2>&1 ))
    │ │ │ │  Killed
    │ │ │ │  Finished running.
    │ │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │ │  i15 : h
    │ │ │ │  
    │ │ │ │ -o15 = HashTable{"answer file" => /tmp/M2-29954-0/3.ans}
    │ │ │ │ +o15 = HashTable{"answer file" => /tmp/M2-43115-0/3.ans}
    │ │ │ │                  "exit code" => 0
    │ │ │ │ -                "output file" => /tmp/M2-29954-0/3.out
    │ │ │ │ +                "output file" => /tmp/M2-43115-0/3.out
    │ │ │ │                  "return code" => 9
    │ │ │ │                  "statistics" => null
    │ │ │ │                  "time used" => 2
    │ │ │ │                  value => null
    │ │ │ │  
    │ │ │ │  o15 : HashTable
    │ │ │ │  i16 : if h#"output file" =!= null and fileExists(h#"output file") then get
    │ │ │ │  (h#"output file")
    │ │ │ │  
    │ │ │ │  o16 =
    │ │ │ │ -      i1 : -- Script /tmp/M2-29954-0/3.m2 automatically generated by
    │ │ │ │ +      i1 : -- Script /tmp/M2-43115-0/3.m2 automatically generated by
    │ │ │ │  RunExternalM2
    │ │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │ │  
    │ │ │ │ -      i2 : load "/tmp/M2-29954-0/0.m2";
    │ │ │ │ +      i2 : load "/tmp/M2-43115-0/0.m2";
    │ │ │ │  
    │ │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/3.ans",spin (10));
    │ │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-43115-0/3.ans",spin (10));
    │ │ │ │        Spinning!!
    │ │ │ │  i17 : if h#"answer file" =!= null and fileExists(h#"answer file") then get
    │ │ │ │  (h#"answer file")
    │ │ │ │  We can get quite a lot of detail on the resources used with the _K_e_e_p_S_t_a_t_i_s_t_i_c_s
    │ │ │ │  command:
    │ │ │ │  i18 : h=runExternalM2(fn,"spin",3,KeepStatistics=>true);
    │ │ │ │  Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary  --stop -
    │ │ │ │ --no-debug --silent  -q  <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1')
    │ │ │ │ ->"/tmp/M2-29954-0/4.stat" 2>&1 ))
    │ │ │ │ +-no-debug --silent  -q  <"/tmp/M2-43115-0/4.m2" >"/tmp/M2-43115-0/4.out" 2>&1')
    │ │ │ │ +>"/tmp/M2-43115-0/4.stat" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  i19 : h#"statistics"
    │ │ │ │  
    │ │ │ │  o19 =         Command being timed: "sh -c /usr/bin/M2-binary  --stop --no-debug
    │ │ │ │ ---silent  -q  <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1"
    │ │ │ │ -              User time (seconds): 5.28
    │ │ │ │ -              System time (seconds): 0.08
    │ │ │ │ -              Percent of CPU this job got: 95%
    │ │ │ │ -              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:05.62
    │ │ │ │ +--silent  -q  <"/tmp/M2-43115-0/4.m2" >"/tmp/M2-43115-0/4.out" 2>&1"
    │ │ │ │ +              User time (seconds): 4.70
    │ │ │ │ +              System time (seconds): 0.26
    │ │ │ │ +              Percent of CPU this job got: 120%
    │ │ │ │ +              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.11
    │ │ │ │                Average shared text size (kbytes): 0
    │ │ │ │                Average unshared data size (kbytes): 0
    │ │ │ │                Average stack size (kbytes): 0
    │ │ │ │                Average total size (kbytes): 0
    │ │ │ │ -              Maximum resident set size (kbytes): 252580
    │ │ │ │ +              Maximum resident set size (kbytes): 340536
    │ │ │ │                Average resident set size (kbytes): 0
    │ │ │ │                Major (requiring I/O) page faults: 0
    │ │ │ │ -              Minor (reclaiming a frame) page faults: 9521
    │ │ │ │ -              Voluntary context switches: 2087
    │ │ │ │ -              Involuntary context switches: 1715
    │ │ │ │ +              Minor (reclaiming a frame) page faults: 10947
    │ │ │ │ +              Voluntary context switches: 6298
    │ │ │ │ +              Involuntary context switches: 1304
    │ │ │ │                Swaps: 0
    │ │ │ │                File system inputs: 0
    │ │ │ │ -              File system outputs: 0
    │ │ │ │ +              File system outputs: 24
    │ │ │ │                Socket messages sent: 0
    │ │ │ │                Socket messages received: 0
    │ │ │ │                Signals delivered: 0
    │ │ │ │                Page size (bytes): 4096
    │ │ │ │                Exit status: 0
    │ │ │ │  We can handle most kinds of objects as return values, although _M_u_t_a_b_l_e_M_a_t_r_i_x
    │ │ │ │  does not work. Here, we use the built-in _i_d_e_n_t_i_t_y function:
    │ │ │ │  i20 : v=/// A complicated string^%&C@#CERQVASDFQ#BQBSDH"' ewrjwklsf///;
    │ │ │ │  i21 : (runExternalM2(fn,identity,v))#value===v
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-29954-0/6.m2" >"/tmp/M2-29954-0/6.out" 2>&1 ))
    │ │ │ │ +M2-43115-0/6.m2" >"/tmp/M2-43115-0/6.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  
    │ │ │ │  o21 = true
    │ │ │ │  Some care is required, however:
    │ │ │ │  i22 : R=QQ[x,y];
    │ │ │ │  i23 : v=coker random(R^2,R^{3:-1})
    │ │ │ │  
    │ │ │ │  o23 = cokernel | 9/2x+9/4y 7/9x+7/10y 7x+3/7y |
    │ │ │ │                 | 3/4x+7/4y 7/10x+7/3y 6/7x+6y |
    │ │ │ │  
    │ │ │ │                               2
    │ │ │ │  o23 : R-module, quotient of R
    │ │ │ │  i24 : h=runExternalM2(fn,identity,v)
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-29954-0/7.m2" >"/tmp/M2-29954-0/7.out" 2>&1 ))
    │ │ │ │ +M2-43115-0/7.m2" >"/tmp/M2-43115-0/7.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │ │  
    │ │ │ │ -o24 = HashTable{"answer file" => /tmp/M2-29954-0/7.ans}
    │ │ │ │ +o24 = HashTable{"answer file" => /tmp/M2-43115-0/7.ans}
    │ │ │ │                  "exit code" => 1
    │ │ │ │ -                "output file" => /tmp/M2-29954-0/7.out
    │ │ │ │ +                "output file" => /tmp/M2-43115-0/7.out
    │ │ │ │                  "return code" => 256
    │ │ │ │                  "statistics" => null
    │ │ │ │ -                "time used" => 2
    │ │ │ │ +                "time used" => 1
    │ │ │ │                  value => null
    │ │ │ │  
    │ │ │ │  o24 : HashTable
    │ │ │ │  To view the error message:
    │ │ │ │  i25 : get(h#"output file")
    │ │ │ │  
    │ │ │ │  o25 =
    │ │ │ │ -      i1 : -- Script /tmp/M2-29954-0/7.m2 automatically generated by
    │ │ │ │ +      i1 : -- Script /tmp/M2-43115-0/7.m2 automatically generated by
    │ │ │ │  RunExternalM2
    │ │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │ │  
    │ │ │ │ -      i2 : load "/tmp/M2-29954-0/0.m2";
    │ │ │ │ +      i2 : load "/tmp/M2-43115-0/0.m2";
    │ │ │ │  
    │ │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/7.ans",identity (cokernel
    │ │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-43115-0/7.ans",identity (cokernel
    │ │ │ │  (map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/
    │ │ │ │  4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}}))));
    │ │ │ │        stdio:4:74:(3):[1]: error: no method for binary operator ^ applied to
    │ │ │ │  objects:
    │ │ │ │                    R (of class Symbol)
    │ │ │ │              ^     2 (of class ZZ)
    │ │ │ │  Keep in mind that the object you are passing must make sense in the context of
    │ │ │ │  the file containing your function! For instance, here we need to define the
    │ │ │ │  ring:
    │ │ │ │  i26 : fn<"/tmp/M2-29954-0/8.out" 2>&1 ))
    │ │ │ │ +M2-43115-0/8.m2" >"/tmp/M2-43115-0/8.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  
    │ │ │ │  o27 = true
    │ │ │ │  This problem can be avoided by following some _s_u_g_g_e_s_t_i_o_n_s_ _f_o_r_ _u_s_i_n_g
    │ │ │ │  _R_u_n_E_x_t_e_r_n_a_l_M_2.
    │ │ │ │  The objects may unavoidably lose some internal references, though:
    │ │ │ │  i28 : v=R;
    │ │ │ │  i29 : h=runExternalM2(fn,identity,v);
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-29954-0/9.m2" >"/tmp/M2-29954-0/9.out" 2>&1 ))
    │ │ │ │ +M2-43115-0/9.m2" >"/tmp/M2-43115-0/9.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  i30 : h#value
    │ │ │ │  
    │ │ │ │  o30 = QQ[x..y]
    │ │ │ │  
    │ │ │ │  o30 : PolynomialRing
    │ │ │ │  i31 : v===h#value
    │ │ ├── ./usr/share/doc/Macaulay2/SLPexpressions/example-output/___S__L__Pexpressions.out
    │ │ │ @@ -30,23 +30,23 @@
    │ │ │                                              )
    │ │ │  
    │ │ │                            "variable positions" => {-1}
    │ │ │  
    │ │ │  o5 : InterpretedSLProgram
    │ │ │  
    │ │ │  i6 : time A = evaluate(slp,matrix{{1}});
    │ │ │ - -- used 0.00188335s (cpu); 0.000216766s (thread); 0s (gc)
    │ │ │ + -- used 0.00178362s (cpu); 0.000226794s (thread); 0s (gc)
    │ │ │  
    │ │ │                1       1
    │ │ │  o6 : Matrix ZZ  <-- ZZ
    │ │ │  
    │ │ │  i7 : ZZ[y];
    │ │ │  
    │ │ │  i8 : time B = sub((y+1)^(2^n),{y=>1})
    │ │ │ - -- used 4.80745s (cpu); 3.48244s (thread); 0s (gc)
    │ │ │ + -- used 4.2896s (cpu); 3.16229s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = 104438888141315250669175271071662438257996424904738378038423348328395390
    │ │ │       797155745684882681193499755834089010671443926283798757343818579360726323
    │ │ │       608785136527794595697654370999834036159013438371831442807001185594622637
    │ │ │       631883939771274567233468434458661749680790870580370407128404874011860911
    │ │ │       446797778359802900668693897688178778594690563019026094059957945343282346
    │ │ │       930302669644305902501597239986771421554169383555988529148631823791443449
    │ │ ├── ./usr/share/doc/Macaulay2/SLPexpressions/html/index.html
    │ │ │ @@ -104,29 +104,29 @@
    │ │ │  
    │ │ │  o5 : InterpretedSLProgram
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time A = evaluate(slp,matrix{{1}});
    │ │ │ - -- used 0.00188335s (cpu); 0.000216766s (thread); 0s (gc)
    │ │ │ + -- used 0.00178362s (cpu); 0.000226794s (thread); 0s (gc)
    │ │ │  
    │ │ │                1       1
    │ │ │  o6 : Matrix ZZ  <-- ZZ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : ZZ[y];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time B = sub((y+1)^(2^n),{y=>1})
    │ │ │ - -- used 4.80745s (cpu); 3.48244s (thread); 0s (gc)
    │ │ │ + -- used 4.2896s (cpu); 3.16229s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = 104438888141315250669175271071662438257996424904738378038423348328395390
    │ │ │       797155745684882681193499755834089010671443926283798757343818579360726323
    │ │ │       608785136527794595697654370999834036159013438371831442807001185594622637
    │ │ │       631883939771274567233468434458661749680790870580370407128404874011860911
    │ │ │       446797778359802900668693897688178778594690563019026094059957945343282346
    │ │ │       930302669644305902501597239986771421554169383555988529148631823791443449
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -38,21 +38,21 @@
    │ │ │ │                                              output nodes: 1
    │ │ │ │                                              )
    │ │ │ │  
    │ │ │ │                            "variable positions" => {-1}
    │ │ │ │  
    │ │ │ │  o5 : InterpretedSLProgram
    │ │ │ │  i6 : time A = evaluate(slp,matrix{{1}});
    │ │ │ │ - -- used 0.00188335s (cpu); 0.000216766s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00178362s (cpu); 0.000226794s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                1       1
    │ │ │ │  o6 : Matrix ZZ  <-- ZZ
    │ │ │ │  i7 : ZZ[y];
    │ │ │ │  i8 : time B = sub((y+1)^(2^n),{y=>1})
    │ │ │ │ - -- used 4.80745s (cpu); 3.48244s (thread); 0s (gc)
    │ │ │ │ + -- used 4.2896s (cpu); 3.16229s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = 104438888141315250669175271071662438257996424904738378038423348328395390
    │ │ │ │       797155745684882681193499755834089010671443926283798757343818579360726323
    │ │ │ │       608785136527794595697654370999834036159013438371831442807001185594622637
    │ │ │ │       631883939771274567233468434458661749680790870580370407128404874011860911
    │ │ │ │       446797778359802900668693897688178778594690563019026094059957945343282346
    │ │ │ │       930302669644305902501597239986771421554169383555988529148631823791443449
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Complex.out
    │ │ │ @@ -15,15 +15,15 @@
    │ │ │  i3 : r={5,11,3,2}
    │ │ │  
    │ │ │  o3 = {5, 11, 3, 2}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : elapsedTime C=randomChainComplex(h,r,Height=>4)
    │ │ │ - -- .0071433s elapsed
    │ │ │ + -- .00745417s elapsed
    │ │ │  
    │ │ │         6       19       19       7       3
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ  <-- ZZ
    │ │ │                                          
    │ │ │       0       1        2        3       4
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -51,15 +51,15 @@
    │ │ │         53        53         53         53        53
    │ │ │                                                  
    │ │ │       -1        0          1          2         3
    │ │ │  
    │ │ │  o6 : ChainComplex
    │ │ │  
    │ │ │  i7 : elapsedTime (h,U)=SVDComplex CR;
    │ │ │ - -- .00262291s elapsed
    │ │ │ + -- .00300999s elapsed
    │ │ │  
    │ │ │  i8 : h
    │ │ │  
    │ │ │  o8 = HashTable{-1 => 1}
    │ │ │                 0 => 3
    │ │ │                 1 => 5
    │ │ │                 2 => 2
    │ │ │ @@ -95,15 +95,15 @@
    │ │ │  i12 : maximalEntry chainComplex errors
    │ │ │  
    │ │ │  o12 = {8.43769e-15, 6.39488e-14, 1.06581e-13, 9.76996e-15}
    │ │ │  
    │ │ │  o12 : List
    │ │ │  
    │ │ │  i13 : elapsedTime (hL,U)=SVDComplex(CR,Strategy=>Laplacian);
    │ │ │ - -- .00583468s elapsed
    │ │ │ + -- .00763411s elapsed
    │ │ │  
    │ │ │  i14 : hL === h
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 : SigmaL =source U;
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Homology.out
    │ │ │ @@ -15,15 +15,15 @@
    │ │ │  i3 : r={4,3,3}
    │ │ │  
    │ │ │  o3 = {4, 3, 3}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00298752s elapsed
    │ │ │ + -- .00316702s elapsed
    │ │ │  
    │ │ │         5       10       11       5
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -47,25 +47,25 @@
    │ │ │         53        53         53         53
    │ │ │                                        
    │ │ │       0         1          2          3
    │ │ │  
    │ │ │  o6 : ChainComplex
    │ │ │  
    │ │ │  i7 : elapsedTime (h,h1)=SVDHomology CR
    │ │ │ - -- .000624815s elapsed
    │ │ │ + -- .000704728s elapsed
    │ │ │  
    │ │ │  o7 = (HashTable{0 => 1}, HashTable{1 => (7.87842, 1.31052, )           })
    │ │ │                  1 => 3             2 => (37.9214, 30.3707, 1.61954e-14)
    │ │ │                  2 => 5             3 => (14.972, 8.57847, 3.90646e-15)
    │ │ │                  3 => 2
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │  
    │ │ │  i8 : elapsedTime (hL,hL1)=SVDHomology(CR,Strategy=>Laplacian)
    │ │ │ - -- .00154927s elapsed
    │ │ │ + -- .00147666s elapsed
    │ │ │  
    │ │ │  o8 = (HashTable{0 => 1}, HashTable{0 => (, 1.71747, -1.72291e-14)      })
    │ │ │                  1 => 3             1 => (1.71747, 922.381, 2.51496e-13)
    │ │ │                  2 => 5             2 => (922.381, 73.5901, 1.81323e-13)
    │ │ │                  3 => 2             3 => (73.5901, , 2.82914e-13)
    │ │ │  
    │ │ │  o8 : Sequence
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_common__Entries.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i4 : r={4,3,5}
    │ │ │  
    │ │ │  o4 = {4, 3, 5}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime C=randomChainComplex(h,r,Height=>100,ZeroMean=>true)
    │ │ │ - -- .00379414s elapsed
    │ │ │ + -- .00401865s elapsed
    │ │ │  
    │ │ │         6       10       13       8
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_euclidean__Distance.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i4 : r={4,3,3}
    │ │ │  
    │ │ │  o4 = {4, 3, 3}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00281601s elapsed
    │ │ │ + -- .00336886s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_project__To__Complex.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i4 : r={4,3,3}
    │ │ │  
    │ │ │  o4 = {4, 3, 3}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00287549s elapsed
    │ │ │ + -- .00763882s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Complex.html
    │ │ │ @@ -105,15 +105,15 @@
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime C=randomChainComplex(h,r,Height=>4)
    │ │ │ - -- .0071433s elapsed
    │ │ │ + -- .00745417s elapsed
    │ │ │  
    │ │ │         6       19       19       7       3
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ  <-- ZZ
    │ │ │                                          
    │ │ │       0       1        2        3       4
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -150,15 +150,15 @@ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime (h,U)=SVDComplex CR;
    │ │ │ - -- .00262291s elapsed
    │ │ │ + -- .00300999s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : h
    │ │ │  
    │ │ │  o8 = HashTable{-1 => 1}
    │ │ │ @@ -212,15 +212,15 @@
    │ │ │  
    │ │ │  o12 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : elapsedTime (hL,U)=SVDComplex(CR,Strategy=>Laplacian);
    │ │ │ - -- .00583468s elapsed
    │ │ │ + -- .00763411s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : hL === h
    │ │ │  
    │ │ │  o14 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -37,15 +37,15 @@ │ │ │ │ o2 : List │ │ │ │ i3 : r={5,11,3,2} │ │ │ │ │ │ │ │ o3 = {5, 11, 3, 2} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : elapsedTime C=randomChainComplex(h,r,Height=>4) │ │ │ │ - -- .0071433s elapsed │ │ │ │ + -- .00745417s elapsed │ │ │ │ │ │ │ │ 6 19 19 7 3 │ │ │ │ o4 = ZZ <-- ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o4 : ChainComplex │ │ │ │ @@ -70,15 +70,15 @@ │ │ │ │ o6 = RR <-- RR <-- RR <-- RR <-- RR │ │ │ │ 53 53 53 53 53 │ │ │ │ │ │ │ │ -1 0 1 2 3 │ │ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ i7 : elapsedTime (h,U)=SVDComplex CR; │ │ │ │ - -- .00262291s elapsed │ │ │ │ + -- .00300999s elapsed │ │ │ │ i8 : h │ │ │ │ │ │ │ │ o8 = HashTable{-1 => 1} │ │ │ │ 0 => 3 │ │ │ │ 1 => 5 │ │ │ │ 2 => 2 │ │ │ │ 3 => 1 │ │ │ │ @@ -109,15 +109,15 @@ │ │ │ │ 1)*Sigma.dd_ell*transpose U_ell); │ │ │ │ i12 : maximalEntry chainComplex errors │ │ │ │ │ │ │ │ o12 = {8.43769e-15, 6.39488e-14, 1.06581e-13, 9.76996e-15} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ i13 : elapsedTime (hL,U)=SVDComplex(CR,Strategy=>Laplacian); │ │ │ │ - -- .00583468s elapsed │ │ │ │ + -- .00763411s elapsed │ │ │ │ i14 : hL === h │ │ │ │ │ │ │ │ o14 = true │ │ │ │ i15 : SigmaL =source U; │ │ │ │ i16 : for i from min CR+1 to max CR list maximalEntry(SigmaL.dd_i -Sigma.dd_i) │ │ │ │ │ │ │ │ o16 = {1.77636e-14, 6.39488e-14, 8.52651e-14, 3.55271e-15} │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Homology.html │ │ │ @@ -107,15 +107,15 @@ │ │ │ │ │ │ o3 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00298752s elapsed
    │ │ │ + -- .00316702s elapsed
    │ │ │  
    │ │ │         5       10       11       5
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -148,28 +148,28 @@ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime (h,h1)=SVDHomology CR
    │ │ │ - -- .000624815s elapsed
    │ │ │ + -- .000704728s elapsed
    │ │ │  
    │ │ │  o7 = (HashTable{0 => 1}, HashTable{1 => (7.87842, 1.31052, )           })
    │ │ │                  1 => 3             2 => (37.9214, 30.3707, 1.61954e-14)
    │ │ │                  2 => 5             3 => (14.972, 8.57847, 3.90646e-15)
    │ │ │                  3 => 2
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : elapsedTime (hL,hL1)=SVDHomology(CR,Strategy=>Laplacian)
    │ │ │ - -- .00154927s elapsed
    │ │ │ + -- .00147666s elapsed
    │ │ │  
    │ │ │  o8 = (HashTable{0 => 1}, HashTable{0 => (, 1.71747, -1.72291e-14)      })
    │ │ │                  1 => 3             1 => (1.71747, 922.381, 2.51496e-13)
    │ │ │                  2 => 5             2 => (922.381, 73.5901, 1.81323e-13)
    │ │ │                  3 => 2             3 => (73.5901, , 2.82914e-13)
    │ │ │  
    │ │ │  o8 : Sequence
    │ │ │ ├── html2text {} │ │ │ │ @@ -40,15 +40,15 @@ │ │ │ │ o2 : List │ │ │ │ i3 : r={4,3,3} │ │ │ │ │ │ │ │ o3 = {4, 3, 3} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ │ - -- .00298752s elapsed │ │ │ │ + -- .00316702s elapsed │ │ │ │ │ │ │ │ 5 10 11 5 │ │ │ │ o4 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o4 : ChainComplex │ │ │ │ @@ -69,24 +69,24 @@ │ │ │ │ o6 = RR <-- RR <-- RR <-- RR │ │ │ │ 53 53 53 53 │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ i7 : elapsedTime (h,h1)=SVDHomology CR │ │ │ │ - -- .000624815s elapsed │ │ │ │ + -- .000704728s elapsed │ │ │ │ │ │ │ │ o7 = (HashTable{0 => 1}, HashTable{1 => (7.87842, 1.31052, ) }) │ │ │ │ 1 => 3 2 => (37.9214, 30.3707, 1.61954e-14) │ │ │ │ 2 => 5 3 => (14.972, 8.57847, 3.90646e-15) │ │ │ │ 3 => 2 │ │ │ │ │ │ │ │ o7 : Sequence │ │ │ │ i8 : elapsedTime (hL,hL1)=SVDHomology(CR,Strategy=>Laplacian) │ │ │ │ - -- .00154927s elapsed │ │ │ │ + -- .00147666s elapsed │ │ │ │ │ │ │ │ o8 = (HashTable{0 => 1}, HashTable{0 => (, 1.71747, -1.72291e-14) }) │ │ │ │ 1 => 3 1 => (1.71747, 922.381, 2.51496e-13) │ │ │ │ 2 => 5 2 => (922.381, 73.5901, 1.81323e-13) │ │ │ │ 3 => 2 3 => (73.5901, , 2.82914e-13) │ │ │ │ │ │ │ │ o8 : Sequence │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/_common__Entries.html │ │ │ @@ -110,15 +110,15 @@ │ │ │ │ │ │ o4 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime C=randomChainComplex(h,r,Height=>100,ZeroMean=>true)
    │ │ │ - -- .00379414s elapsed
    │ │ │ + -- .00401865s elapsed
    │ │ │  
    │ │ │         6       10       13       8
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -34,15 +34,15 @@ │ │ │ │ o3 : List │ │ │ │ i4 : r={4,3,5} │ │ │ │ │ │ │ │ o4 = {4, 3, 5} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>100,ZeroMean=>true) │ │ │ │ - -- .00379414s elapsed │ │ │ │ + -- .00401865s elapsed │ │ │ │ │ │ │ │ 6 10 13 8 │ │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/_euclidean__Distance.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o4 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00281601s elapsed
    │ │ │ + -- .00336886s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o3 : List │ │ │ │ i4 : r={4,3,3} │ │ │ │ │ │ │ │ o4 = {4, 3, 3} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ │ - -- .00281601s elapsed │ │ │ │ + -- .00336886s elapsed │ │ │ │ │ │ │ │ 6 10 11 5 │ │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/_project__To__Complex.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o4 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00287549s elapsed
    │ │ │ + -- .00763882s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o3 : List │ │ │ │ i4 : r={4,3,3} │ │ │ │ │ │ │ │ o4 = {4, 3, 3} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ │ - -- .00287549s elapsed │ │ │ │ + -- .00763882s elapsed │ │ │ │ │ │ │ │ 6 10 11 5 │ │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ @@ -37,33 +37,33 @@ │ │ │ o5 : Ideal of S │ │ │ │ │ │ i6 : J = ideal(map(S^1, S^n, (p, q) -> S_q^5)); │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ i7 : time quotient(I^3, J^2, Strategy => Iterate); │ │ │ - -- used 0.385785s (cpu); 0.315262s (thread); 0s (gc) │ │ │ + -- used 0.401514s (cpu); 0.401517s (thread); 0s (gc) │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ │ │ i8 : time quotient(I^3, J^2, Strategy => Quotient); │ │ │ - -- used 0.459981s (cpu); 0.459987s (thread); 0s (gc) │ │ │ + -- used 0.785584s (cpu); 0.691222s (thread); 0s (gc) │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ i9 : S = ZZ/101[vars(0..4)]; │ │ │ │ │ │ i10 : I = ideal vars S; │ │ │ │ │ │ o10 : Ideal of S │ │ │ │ │ │ i11 : time quotient(I^5, I^3, Strategy => Iterate); │ │ │ - -- used 0.0242176s (cpu); 0.0242182s (thread); 0s (gc) │ │ │ + -- used 0.0275378s (cpu); 0.02754s (thread); 0s (gc) │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ │ │ i12 : time quotient(I^5, I^3, Strategy => Quotient); │ │ │ - -- used 0.00726035s (cpu); 0.00726111s (thread); 0s (gc) │ │ │ + -- used 0.00932168s (cpu); 0.00932831s (thread); 0s (gc) │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ @@ -125,23 +125,23 @@ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time quotient(I^3, J^2, Strategy => Iterate);
    │ │ │ - -- used 0.385785s (cpu); 0.315262s (thread); 0s (gc)
    │ │ │ + -- used 0.401514s (cpu); 0.401517s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time quotient(I^3, J^2, Strategy => Quotient);
    │ │ │ - -- used 0.459981s (cpu); 0.459987s (thread); 0s (gc)
    │ │ │ + -- used 0.785584s (cpu); 0.691222s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Strategy => Quotient is faster in other cases:

    │ │ │ @@ -158,23 +158,23 @@ │ │ │ │ │ │ o10 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : time quotient(I^5, I^3, Strategy => Iterate);
    │ │ │ - -- used 0.0242176s (cpu); 0.0242182s (thread); 0s (gc)
    │ │ │ + -- used 0.0275378s (cpu); 0.02754s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : time quotient(I^5, I^3, Strategy => Quotient);
    │ │ │ - -- used 0.00726035s (cpu); 0.00726111s (thread); 0s (gc)
    │ │ │ + -- used 0.00932168s (cpu); 0.00932831s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -56,32 +56,32 @@ │ │ │ │ i5 : I = monomialCurveIdeal(S, 1..n-1); │ │ │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ i6 : J = ideal(map(S^1, S^n, (p, q) -> S_q^5)); │ │ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ i7 : time quotient(I^3, J^2, Strategy => Iterate); │ │ │ │ - -- used 0.385785s (cpu); 0.315262s (thread); 0s (gc) │ │ │ │ + -- used 0.401514s (cpu); 0.401517s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ i8 : time quotient(I^3, J^2, Strategy => Quotient); │ │ │ │ - -- used 0.459981s (cpu); 0.459987s (thread); 0s (gc) │ │ │ │ + -- used 0.785584s (cpu); 0.691222s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ Strategy => Quotient is faster in other cases: │ │ │ │ i9 : S = ZZ/101[vars(0..4)]; │ │ │ │ i10 : I = ideal vars S; │ │ │ │ │ │ │ │ o10 : Ideal of S │ │ │ │ i11 : time quotient(I^5, I^3, Strategy => Iterate); │ │ │ │ - -- used 0.0242176s (cpu); 0.0242182s (thread); 0s (gc) │ │ │ │ + -- used 0.0275378s (cpu); 0.02754s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ i12 : time quotient(I^5, I^3, Strategy => Quotient); │ │ │ │ - -- used 0.00726035s (cpu); 0.00726111s (thread); 0s (gc) │ │ │ │ + -- used 0.00932168s (cpu); 0.00932831s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ ********** RReeffeerreenncceess ********** │ │ │ │ For further information see for example Exercise 15.41 in Eisenbud's │ │ │ │ Commutative Algebra with a View Towards Algebraic Geometry. │ │ │ │ ********** FFuunnccttiioonnss wwiitthh ooppttiioonnaall aarrgguummeenntt nnaammeedd SSttrraatteeggyy:: ********** │ │ │ │ * addHook(...,Strategy=>...) -- see _a_d_d_H_o_o_k -- add a hook function to an │ │ ├── ./usr/share/doc/Macaulay2/Schubert2/example-output/___Lines_spon_sphypersurfaces.out │ │ │ @@ -40,23 +40,23 @@ │ │ │ ) │ │ │ │ │ │ o6 = f │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ │ │ i7 : for n from 2 to 10 list time f n │ │ │ - -- used 0.00492304s (cpu); 0.00491944s (thread); 0s (gc) │ │ │ - -- used 0.00638266s (cpu); 0.00638735s (thread); 0s (gc) │ │ │ - -- used 0.00960665s (cpu); 0.0096079s (thread); 0s (gc) │ │ │ - -- used 0.0166536s (cpu); 0.0166633s (thread); 0s (gc) │ │ │ - -- used 0.0323217s (cpu); 0.0323255s (thread); 0s (gc) │ │ │ - -- used 0.0554866s (cpu); 0.0554921s (thread); 0s (gc) │ │ │ - -- used 0.0940579s (cpu); 0.0940639s (thread); 0s (gc) │ │ │ - -- used 0.274754s (cpu); 0.18535s (thread); 0s (gc) │ │ │ - -- used 0.22605s (cpu); 0.226055s (thread); 0s (gc) │ │ │ + -- used 0.0063503s (cpu); 0.00634673s (thread); 0s (gc) │ │ │ + -- used 0.00817883s (cpu); 0.00818545s (thread); 0s (gc) │ │ │ + -- used 0.0114841s (cpu); 0.0114921s (thread); 0s (gc) │ │ │ + -- used 0.0206457s (cpu); 0.0206558s (thread); 0s (gc) │ │ │ + -- used 0.0407575s (cpu); 0.0407669s (thread); 0s (gc) │ │ │ + -- used 0.0677951s (cpu); 0.0678037s (thread); 0s (gc) │ │ │ + -- used 0.114649s (cpu); 0.114659s (thread); 0s (gc) │ │ │ + -- used 0.18424s (cpu); 0.183971s (thread); 0s (gc) │ │ │ + -- used 0.444245s (cpu); 0.31545s (thread); 0s (gc) │ │ │ │ │ │ o7 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, │ │ │ ------------------------------------------------------------------------ │ │ │ 289139638632755625, 520764738758073845321} │ │ │ │ │ │ o7 : List │ │ ├── ./usr/share/doc/Macaulay2/Schubert2/html/___Lines_spon_sphypersurfaces.html │ │ │ @@ -126,23 +126,23 @@ │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : for n from 2 to 10 list time f n
    │ │ │ - -- used 0.00492304s (cpu); 0.00491944s (thread); 0s (gc)
    │ │ │ - -- used 0.00638266s (cpu); 0.00638735s (thread); 0s (gc)
    │ │ │ - -- used 0.00960665s (cpu); 0.0096079s (thread); 0s (gc)
    │ │ │ - -- used 0.0166536s (cpu); 0.0166633s (thread); 0s (gc)
    │ │ │ - -- used 0.0323217s (cpu); 0.0323255s (thread); 0s (gc)
    │ │ │ - -- used 0.0554866s (cpu); 0.0554921s (thread); 0s (gc)
    │ │ │ - -- used 0.0940579s (cpu); 0.0940639s (thread); 0s (gc)
    │ │ │ - -- used 0.274754s (cpu); 0.18535s (thread); 0s (gc)
    │ │ │ - -- used 0.22605s (cpu); 0.226055s (thread); 0s (gc)
    │ │ │ + -- used 0.0063503s (cpu); 0.00634673s (thread); 0s (gc)
    │ │ │ + -- used 0.00817883s (cpu); 0.00818545s (thread); 0s (gc)
    │ │ │ + -- used 0.0114841s (cpu); 0.0114921s (thread); 0s (gc)
    │ │ │ + -- used 0.0206457s (cpu); 0.0206558s (thread); 0s (gc)
    │ │ │ + -- used 0.0407575s (cpu); 0.0407669s (thread); 0s (gc)
    │ │ │ + -- used 0.0677951s (cpu); 0.0678037s (thread); 0s (gc)
    │ │ │ + -- used 0.114649s (cpu); 0.114659s (thread); 0s (gc)
    │ │ │ + -- used 0.18424s (cpu); 0.183971s (thread); 0s (gc)
    │ │ │ + -- used 0.444245s (cpu); 0.31545s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       289139638632755625, 520764738758073845321}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -56,23 +56,23 @@ │ │ │ │ integral chern symmetricPower_(2*n-3) last bundles G │ │ │ │ ) │ │ │ │ │ │ │ │ o6 = f │ │ │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ i7 : for n from 2 to 10 list time f n │ │ │ │ - -- used 0.00492304s (cpu); 0.00491944s (thread); 0s (gc) │ │ │ │ - -- used 0.00638266s (cpu); 0.00638735s (thread); 0s (gc) │ │ │ │ - -- used 0.00960665s (cpu); 0.0096079s (thread); 0s (gc) │ │ │ │ - -- used 0.0166536s (cpu); 0.0166633s (thread); 0s (gc) │ │ │ │ - -- used 0.0323217s (cpu); 0.0323255s (thread); 0s (gc) │ │ │ │ - -- used 0.0554866s (cpu); 0.0554921s (thread); 0s (gc) │ │ │ │ - -- used 0.0940579s (cpu); 0.0940639s (thread); 0s (gc) │ │ │ │ - -- used 0.274754s (cpu); 0.18535s (thread); 0s (gc) │ │ │ │ - -- used 0.22605s (cpu); 0.226055s (thread); 0s (gc) │ │ │ │ + -- used 0.0063503s (cpu); 0.00634673s (thread); 0s (gc) │ │ │ │ + -- used 0.00817883s (cpu); 0.00818545s (thread); 0s (gc) │ │ │ │ + -- used 0.0114841s (cpu); 0.0114921s (thread); 0s (gc) │ │ │ │ + -- used 0.0206457s (cpu); 0.0206558s (thread); 0s (gc) │ │ │ │ + -- used 0.0407575s (cpu); 0.0407669s (thread); 0s (gc) │ │ │ │ + -- used 0.0677951s (cpu); 0.0678037s (thread); 0s (gc) │ │ │ │ + -- used 0.114649s (cpu); 0.114659s (thread); 0s (gc) │ │ │ │ + -- used 0.18424s (cpu); 0.183971s (thread); 0s (gc) │ │ │ │ + -- used 0.444245s (cpu); 0.31545s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 289139638632755625, 520764738758073845321} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ Note: in characteristic zero, using Bertini's theorem, the numbers computed can │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/example-output/_is__Component__Contained.out │ │ │ @@ -53,15 +53,15 @@ │ │ │ o9 : Ideal of R │ │ │ │ │ │ i10 : X=((W)*ideal(y)+ideal(f)); │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ i11 : time isComponentContained(X,Y) │ │ │ - -- used 4.62089s (cpu); 3.61525s (thread); 0s (gc) │ │ │ + -- used 7.47103s (cpu); 3.8044s (thread); 0s (gc) │ │ │ │ │ │ o11 = true │ │ │ │ │ │ i12 : print "we could confirm this with the computation:" │ │ │ we could confirm this with the computation: │ │ │ │ │ │ i13 : B=ideal(x)*ideal(y)*ideal(z) │ │ │ @@ -71,12 +71,12 @@ │ │ │ b*d*g, b*d*h, b*d*i, b*e*g, b*e*h, b*e*i, b*f*g, b*f*h, b*f*i, c*d*g, │ │ │ ----------------------------------------------------------------------- │ │ │ c*d*h, c*d*i, c*e*g, c*e*h, c*e*i, c*f*g, c*f*h, c*f*i) │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ │ │ i14 : time isSubset(saturate(Y,B),saturate(X,B)) │ │ │ - -- used 49.7272s (cpu); 46.0603s (thread); 0s (gc) │ │ │ + -- used 60.0888s (cpu); 54.9671s (thread); 0s (gc) │ │ │ │ │ │ o14 = true │ │ │ │ │ │ i15 : │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre__Dim__X.out │ │ │ @@ -23,24 +23,24 @@ │ │ │ i5 : A = makeChowRing(R) │ │ │ │ │ │ o5 = A │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ │ │ i6 : time s = segreDimX(X,Y,A) │ │ │ - -- used 0.274879s (cpu); 0.168297s (thread); 0s (gc) │ │ │ + -- used 0.655951s (cpu); 0.21193s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o6 = 2H + 4H H + 2H │ │ │ 1 1 2 2 │ │ │ │ │ │ o6 : A │ │ │ │ │ │ i7 : time segre(X,Y,A) │ │ │ - -- used 0.193686s (cpu); 0.116572s (thread); 0s (gc) │ │ │ + -- used 0.27354s (cpu); 0.12608s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ o7 = 12H H - 6H H - 6H H + 2H + 4H H + 2H │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ o7 : A │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Component__Contained.html │ │ │ @@ -162,15 +162,15 @@ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : time isComponentContained(X,Y)
    │ │ │ - -- used 4.62089s (cpu); 3.61525s (thread); 0s (gc)
    │ │ │ + -- used 7.47103s (cpu); 3.8044s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : print "we could confirm this with the computation:"
    │ │ │ @@ -189,15 +189,15 @@
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : time isSubset(saturate(Y,B),saturate(X,B))
    │ │ │ - -- used 49.7272s (cpu); 46.0603s (thread); 0s (gc)
    │ │ │ + -- used 60.0888s (cpu); 54.9671s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -68,30 +68,30 @@ │ │ │ │ i9 : Y=ideal (z_0*W_0-z_1*W_1)+ideal(f); │ │ │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ i10 : X=((W)*ideal(y)+ideal(f)); │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ i11 : time isComponentContained(X,Y) │ │ │ │ - -- used 4.62089s (cpu); 3.61525s (thread); 0s (gc) │ │ │ │ + -- used 7.47103s (cpu); 3.8044s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = true │ │ │ │ i12 : print "we could confirm this with the computation:" │ │ │ │ we could confirm this with the computation: │ │ │ │ i13 : B=ideal(x)*ideal(y)*ideal(z) │ │ │ │ │ │ │ │ o13 = ideal (a*d*g, a*d*h, a*d*i, a*e*g, a*e*h, a*e*i, a*f*g, a*f*h, a*f*i, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ b*d*g, b*d*h, b*d*i, b*e*g, b*e*h, b*e*i, b*f*g, b*f*h, b*f*i, c*d*g, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ c*d*h, c*d*i, c*e*g, c*e*h, c*e*i, c*f*g, c*f*h, c*f*i) │ │ │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ i14 : time isSubset(saturate(Y,B),saturate(X,B)) │ │ │ │ - -- used 49.7272s (cpu); 46.0603s (thread); 0s (gc) │ │ │ │ + -- used 60.0888s (cpu); 54.9671s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = true │ │ │ │ ********** WWaayyss ttoo uussee iissCCoommppoonneennttCCoonnttaaiinneedd:: ********** │ │ │ │ * isComponentContained(Ideal,Ideal) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _i_s_C_o_m_p_o_n_e_n_t_C_o_n_t_a_i_n_e_d is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/html/_segre__Dim__X.html │ │ │ @@ -118,27 +118,27 @@ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time s = segreDimX(X,Y,A)
    │ │ │ - -- used 0.274879s (cpu); 0.168297s (thread); 0s (gc)
    │ │ │ + -- used 0.655951s (cpu); 0.21193s (thread); 0s (gc)
    │ │ │  
    │ │ │         2             2
    │ │ │  o6 = 2H  + 4H H  + 2H
    │ │ │         1     1 2     2
    │ │ │  
    │ │ │  o6 : A
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time segre(X,Y,A)
    │ │ │ - -- used 0.193686s (cpu); 0.116572s (thread); 0s (gc)
    │ │ │ + -- used 0.27354s (cpu); 0.12608s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2     2             2
    │ │ │  o7 = 12H H  - 6H H  - 6H H  + 2H  + 4H H  + 2H
    │ │ │          1 2     1 2     1 2     1     1 2     2
    │ │ │  
    │ │ │  o7 : A
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -48,23 +48,23 @@ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : A = makeChowRing(R) │ │ │ │ │ │ │ │ o5 = A │ │ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ i6 : time s = segreDimX(X,Y,A) │ │ │ │ - -- used 0.274879s (cpu); 0.168297s (thread); 0s (gc) │ │ │ │ + -- used 0.655951s (cpu); 0.21193s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o6 = 2H + 4H H + 2H │ │ │ │ 1 1 2 2 │ │ │ │ │ │ │ │ o6 : A │ │ │ │ i7 : time segre(X,Y,A) │ │ │ │ - -- used 0.193686s (cpu); 0.116572s (thread); 0s (gc) │ │ │ │ + -- used 0.27354s (cpu); 0.12608s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o7 = 12H H - 6H H - 6H H + 2H + 4H H + 2H │ │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ │ │ o7 : A │ │ │ │ ********** WWaayyss ttoo uussee sseeggrreeDDiimmXX:: ********** │ │ ├── ./usr/share/doc/Macaulay2/SimpleDoc/example-output/_test__Example.out │ │ │ @@ -1,6 +1,6 @@ │ │ │ -- -*- M2-comint -*- hash: 1331702921222 │ │ │ │ │ │ i1 : check SimpleDoc │ │ │ - -- capturing check(0, "SimpleDoc") -- .389602s elapsed │ │ │ + -- capturing check(0, "SimpleDoc") -- .139958s elapsed │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/SimpleDoc/html/_test__Example.html │ │ │ @@ -74,15 +74,15 @@ │ │ │
    │ │ │

    The check method executes all package tests defined this way.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : check SimpleDoc
    │ │ │ - -- capturing check(0, "SimpleDoc")           -- .389602s elapsed
    │ │ │ + -- capturing check(0, "SimpleDoc") -- .139958s elapsed │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ The variable testExample is a _S_t_r_i_n_g containing an example of the use of _T_E_S_T │ │ │ │ to write a test case. │ │ │ │ TEST /// -* test for simpleDocFrob *- │ │ │ │ assert(simpleDocFrob(2,matrix{{1,2}}) == matrix{{1,2,0,0},{0,0,1,2}}) │ │ │ │ /// │ │ │ │ The _c_h_e_c_k method executes all package tests defined this way. │ │ │ │ i1 : check SimpleDoc │ │ │ │ - -- capturing check(0, "SimpleDoc") -- .389602s elapsed │ │ │ │ + -- capturing check(0, "SimpleDoc") -- .139958s elapsed │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _T_E_S_T -- add a test for a package │ │ │ │ * _c_h_e_c_k -- perform tests of a package │ │ │ │ * _p_a_c_k_a_g_e_T_e_m_p_l_a_t_e -- a template for a package │ │ │ │ * _d_o_c_E_x_a_m_p_l_e -- an example of a documentation string │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _t_e_s_t_E_x_a_m_p_l_e is a _s_t_r_i_n_g. │ │ ├── ./usr/share/doc/Macaulay2/SimplicialDecomposability/dump/rawdocumentation.dump │ │ │ @@ -1,8 +1,8 @@ │ │ │ -# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Fri Nov 14 16:08:07 2025 │ │ │ +# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Fri Nov 14 16:08:08 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ #:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=30 │ │ │ c2hlbGxpbmdPcmRlciguLi4sUmFuZG9tPT4uLi4p │ │ ├── ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_rehomogenize__Polynomial.out │ │ │ @@ -9,14 +9,14 @@ │ │ │ │ │ │ i3 : (Y, T) = setOnesForest X; │ │ │ │ │ │ i4 : remVars := flatten entries Y - set{0_(ring Y), 1_(ring Y)}; │ │ │ │ │ │ i5 : h = rehomogenizePolynomial(X, Y, T, remVars_0^2+remVars_0*remVars_1-1) │ │ │ │ │ │ - 2 2 2 2 2 2 2 2 2 2 │ │ │ -o5 = - x x x x x x + x x x x x x + x x x x x x x x │ │ │ - 1 4 6 7 10 11 2 3 5 8 10 11 2 3 5 6 7 8 9 12 │ │ │ + 2 2 2 2 2 2 2 2 2 2 │ │ │ +o5 = x x x x x x - x x x x x x + x x x x x x x x │ │ │ + 1 4 6 7 10 11 2 3 5 8 10 11 1 2 3 4 6 7 9 12 │ │ │ │ │ │ o5 : R │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_set__Ones__Forest.out │ │ │ @@ -14,20 +14,20 @@ │ │ │ │ │ │ 4 4 │ │ │ o2 : Matrix (QQ[x ..x ]) <-- (QQ[x ..x ]) │ │ │ 0 7 0 7 │ │ │ │ │ │ i3 : (Y, F) = setOnesForest X │ │ │ │ │ │ -o3 = (| 0 1 0 1 |, Graph{"edges" => {{y , y }, {y , y }, {y , y }, {y , │ │ │ - | 1 0 0 1 | 1 4 3 4 0 5 2 │ │ │ - | 0 1 1 0 | "ring" => QQ[y ..y ] │ │ │ - | 1 0 x_7 0 | 0 7 │ │ │ +o3 = (| 0 1 0 1 |, Graph{"edges" => {{y , y }, {y , y }, {y , y }, {y , │ │ │ + | 1 0 0 1 | 1 4 3 4 0 5 2 │ │ │ + | 0 x_4 1 0 | "ring" => QQ[y ..y ] │ │ │ + | 1 0 1 0 | 0 7 │ │ │ "vertices" => {y , y , y , y , y , y , y , y } │ │ │ 0 1 2 3 4 5 6 7 │ │ │ ------------------------------------------------------------------------ │ │ │ y }, {y , y }, {y , y }, {y , y }}}) │ │ │ - 5 2 6 0 7 1 7 │ │ │ + 6 3 6 0 7 1 7 │ │ │ │ │ │ o3 : Sequence │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Polynomial.html │ │ │ @@ -99,17 +99,17 @@ │ │ │
      i4 : remVars := flatten entries Y - set{0_(ring Y), 1_(ring Y)};
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i5 : h = rehomogenizePolynomial(X, Y, T, remVars_0^2+remVars_0*remVars_1-1)
      │ │ │  
      │ │ │ -        2 2 2 2          2 2 2 2          2 2
      │ │ │ -o5 = - x x x x x  x   + x x x x x  x   + x x x x x x x x
      │ │ │ -        1 4 6 7 10 11    2 3 5 8 10 11    2 3 5 6 7 8 9 12
      │ │ │ +      2 2 2 2          2 2 2 2                  2 2
      │ │ │ +o5 = x x x x x  x   - x x x x x  x   + x x x x x x x x
      │ │ │ +      1 4 6 7 10 11    2 3 5 8 10 11    1 2 3 4 6 7 9 12
      │ │ │  
      │ │ │  o5 : R
      │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -31,17 +31,17 @@ │ │ │ │ │ │ │ │ 6 5 │ │ │ │ o2 : Matrix R <-- R │ │ │ │ i3 : (Y, T) = setOnesForest X; │ │ │ │ i4 : remVars := flatten entries Y - set{0_(ring Y), 1_(ring Y)}; │ │ │ │ i5 : h = rehomogenizePolynomial(X, Y, T, remVars_0^2+remVars_0*remVars_1-1) │ │ │ │ │ │ │ │ - 2 2 2 2 2 2 2 2 2 2 │ │ │ │ -o5 = - x x x x x x + x x x x x x + x x x x x x x x │ │ │ │ - 1 4 6 7 10 11 2 3 5 8 10 11 2 3 5 6 7 8 9 12 │ │ │ │ + 2 2 2 2 2 2 2 2 2 2 │ │ │ │ +o5 = x x x x x x - x x x x x x + x x x x x x x x │ │ │ │ + 1 4 6 7 10 11 2 3 5 8 10 11 1 2 3 4 6 7 9 12 │ │ │ │ │ │ │ │ o5 : R │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_e_t_O_n_e_s_F_o_r_e_s_t -- sets to 1 variables in a symbolic slack matrix which │ │ │ │ corresponding to edges of a spanning forest │ │ │ │ * _s_l_a_c_k_I_d_e_a_l -- computes the slack ideal │ │ │ │ * _s_y_m_b_o_l_i_c_S_l_a_c_k_M_a_t_r_i_x -- computes the symbolic slack matrix │ │ ├── ./usr/share/doc/Macaulay2/SlackIdeals/html/_set__Ones__Forest.html │ │ │ @@ -95,23 +95,23 @@ │ │ │ 0 7 0 7 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : (Y, F) = setOnesForest X
    │ │ │  
    │ │ │ -o3 = (| 0 1 0   1 |, Graph{"edges" => {{y , y }, {y , y }, {y , y }, {y ,
    │ │ │ -      | 1 0 0   1 |                      1   4     3   4     0   5     2 
    │ │ │ -      | 0 1 1   0 |        "ring" => QQ[y ..y ]
    │ │ │ -      | 1 0 x_7 0 |                      0   7
    │ │ │ +o3 = (| 0 1   0 1 |, Graph{"edges" => {{y , y }, {y , y }, {y , y }, {y ,
    │ │ │ +      | 1 0   0 1 |                      1   4     3   4     0   5     2 
    │ │ │ +      | 0 x_4 1 0 |        "ring" => QQ[y ..y ]
    │ │ │ +      | 1 0   1 0 |                      0   7
    │ │ │                             "vertices" => {y , y , y , y , y , y , y , y }
    │ │ │                                             0   1   2   3   4   5   6   7
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y }, {y , y }, {y , y }, {y , y }}})
    │ │ │ -      5     2   6     0   7     1   7
    │ │ │ +      6     3   6     0   7     1   7
    │ │ │  
    │ │ │  o3 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -36,23 +36,23 @@ │ │ │ │ | x_6 0 x_7 0 | │ │ │ │ │ │ │ │ 4 4 │ │ │ │ o2 : Matrix (QQ[x ..x ]) <-- (QQ[x ..x ]) │ │ │ │ 0 7 0 7 │ │ │ │ i3 : (Y, F) = setOnesForest X │ │ │ │ │ │ │ │ -o3 = (| 0 1 0 1 |, Graph{"edges" => {{y , y }, {y , y }, {y , y }, {y , │ │ │ │ - | 1 0 0 1 | 1 4 3 4 0 5 2 │ │ │ │ - | 0 1 1 0 | "ring" => QQ[y ..y ] │ │ │ │ - | 1 0 x_7 0 | 0 7 │ │ │ │ +o3 = (| 0 1 0 1 |, Graph{"edges" => {{y , y }, {y , y }, {y , y }, {y , │ │ │ │ + | 1 0 0 1 | 1 4 3 4 0 5 2 │ │ │ │ + | 0 x_4 1 0 | "ring" => QQ[y ..y ] │ │ │ │ + | 1 0 1 0 | 0 7 │ │ │ │ "vertices" => {y , y , y , y , y , y , y , y } │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ y }, {y , y }, {y , y }, {y , y }}}) │ │ │ │ - 5 2 6 0 7 1 7 │ │ │ │ + 6 3 6 0 7 1 7 │ │ │ │ │ │ │ │ o3 : Sequence │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_r_a_p_h_F_r_o_m_S_l_a_c_k_M_a_t_r_i_x -- creates the vertex-edge incidence matrix for the │ │ │ │ bipartite non-incidence graph with adjacency matrix the given slack │ │ │ │ matrix │ │ │ │ * _s_l_a_c_k_I_d_e_a_l -- computes the slack ideal │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_degree__Determinant.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : n = {2,3,2} │ │ │ │ │ │ o1 = {2, 3, 2} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : time degreeDeterminant n │ │ │ - -- used 8.2585e-05s (cpu); 7.8617e-05s (thread); 0s (gc) │ │ │ + -- used 8.6747e-05s (cpu); 7.9277e-05s (thread); 0s (gc) │ │ │ │ │ │ o2 = 6 │ │ │ │ │ │ i3 : M = genericMultidimensionalMatrix n; │ │ │ warning: clearing value of symbol x2 to allow access to subscripted variables based on it │ │ │ : debug with expression debug 1368 or with command line option --debug 1368 │ │ │ warning: clearing value of symbol x1 to allow access to subscripted variables based on it │ │ │ @@ -19,14 +19,14 @@ │ │ │ warning: clearing value of symbol x0 to allow access to subscripted variables based on it │ │ │ : debug with expression debug 6010 or with command line option --debug 6010 │ │ │ │ │ │ o3 : 3-dimensional matrix of shape 2 x 3 x 2 over ZZ[a ..a ] │ │ │ 0,0,0 1,2,1 │ │ │ │ │ │ i4 : time degree determinant M │ │ │ - -- used 0.0314058s (cpu); 0.0305595s (thread); 0s (gc) │ │ │ + -- used 0.165207s (cpu); 0.0541163s (thread); 0s (gc) │ │ │ │ │ │ o4 = {6} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Discriminant.out │ │ │ @@ -1,13 +1,13 @@ │ │ │ -- -*- M2-comint -*- hash: 17130321902108223178 │ │ │ │ │ │ i1 : (d,n) := (2,3); │ │ │ │ │ │ i2 : time Disc = denseDiscriminant(d,n) │ │ │ - -- used 0.429761s (cpu); 0.235137s (thread); 0s (gc) │ │ │ + -- used 0.501718s (cpu); 0.269363s (thread); 0s (gc) │ │ │ │ │ │ o2 = Disc │ │ │ │ │ │ o2 : SparseDiscriminant (sparse discriminant associated to | 0 0 0 0 0 0 1 1 1 2 |) │ │ │ | 0 0 0 1 1 2 0 0 1 0 | │ │ │ | 0 1 2 0 1 0 0 1 0 0 | │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Resultant.out │ │ │ @@ -9,18 +9,18 @@ │ │ │ 2 │ │ │ c x x + c x + c x + c x + c ) │ │ │ 4 1 2 2 2 3 1 1 2 0 │ │ │ │ │ │ o1 : Sequence │ │ │ │ │ │ i2 : time denseResultant(f0,f1,f2); -- using Poisson formula │ │ │ - -- used 0.163415s (cpu); 0.105804s (thread); 0s (gc) │ │ │ + -- used 0.166218s (cpu); 0.109623s (thread); 0s (gc) │ │ │ │ │ │ i3 : time denseResultant(f0,f1,f2,Algorithm=>"Macaulay"); -- using Macaulay formula │ │ │ - -- used 0.292346s (cpu); 0.241712s (thread); 0s (gc) │ │ │ + -- used 0.360646s (cpu); 0.289261s (thread); 0s (gc) │ │ │ │ │ │ i4 : time (denseResultant(1,2,2)) (f0,f1,f2); -- using sparseResultant │ │ │ - -- used 0.361747s (cpu); 0.305057s (thread); 0s (gc) │ │ │ + -- used 0.333319s (cpu); 0.315356s (thread); 0s (gc) │ │ │ │ │ │ i5 : assert(o2 == o3 and o3 == o4) │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_determinant_lp__Multidimensional__Matrix_rp.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ o1 = {{{{8, 1}, {3, 7}}, {{8, 3}, {3, 7}}}, {{{8, 8}, {5, 7}}, {{8, 5}, {2, │ │ │ ------------------------------------------------------------------------ │ │ │ 3}}}} │ │ │ │ │ │ o1 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ │ │ │ │ │ │ i2 : time det M │ │ │ - -- used 0.0870891s (cpu); 0.0852933s (thread); 0s (gc) │ │ │ + -- used 0.227165s (cpu); 0.123995s (thread); 0s (gc) │ │ │ │ │ │ o2 = 9698337990421512192 │ │ │ │ │ │ i3 : M = randomMultidimensionalMatrix(2,2,2,2,5) │ │ │ │ │ │ o3 = {{{{{6, 3, 6, 8, 6}, {9, 3, 7, 6, 9}}, {{6, 2, 6, 0, 2}, {6, 9, 3, 5, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -24,13 +24,13 @@ │ │ │ 7, 4, 5}}}, {{{4, 0, 1, 4, 4}, {2, 6, 1, 1, 4}}, {{5, 4, 9, 7, 4}, {6, │ │ │ ------------------------------------------------------------------------ │ │ │ 4, 8, 4, 2}}}}} │ │ │ │ │ │ o3 : 5-dimensional matrix of shape 2 x 2 x 2 x 2 x 5 over ZZ │ │ │ │ │ │ i4 : time det M │ │ │ - -- used 0.539221s (cpu); 0.47049s (thread); 0s (gc) │ │ │ + -- used 0.460704s (cpu); 0.460706s (thread); 0s (gc) │ │ │ │ │ │ o4 = 912984499996938980479447727885644530753184525786986940737407301278806287 │ │ │ 9257139493926586400187927813888 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_generic__Skew__Multidimensional__Matrix.out │ │ │ @@ -34,23 +34,23 @@ │ │ │ ZZ │ │ │ o2 : 3-dimensional matrix of shape 4 x 4 x 4 over ---[a ..a ] │ │ │ 101 0 3 │ │ │ │ │ │ i3 : genericSkewMultidimensionalMatrix(3,4,CoefficientRing=>ZZ/101,Variable=>"b") │ │ │ │ │ │ o3 = {{{0, 0, 0, 0}, {0, 0, -b , -b }, {0, b , 0, -b }, {0, b , b , 0}}, {{0, │ │ │ - 3 2 3 0 2 0 │ │ │ + 1 0 1 2 0 2 │ │ │ ------------------------------------------------------------------------ │ │ │ 0, b , b }, {0, 0, 0, 0}, {-b , 0, 0, -b }, {-b , 0, b , 0}}, {{0, -b , │ │ │ - 3 2 3 1 2 1 3 │ │ │ + 1 0 1 3 0 3 1 │ │ │ ------------------------------------------------------------------------ │ │ │ 0, b }, {b , 0, 0, b }, {0, 0, 0, 0}, {-b , -b , 0, 0}}, {{0, -b , -b , │ │ │ - 0 3 1 0 1 2 0 │ │ │ + 2 1 3 2 3 0 2 │ │ │ ------------------------------------------------------------------------ │ │ │ 0}, {b , 0, -b , 0}, {b , b , 0, 0}, {0, 0, 0, 0}}} │ │ │ - 2 1 0 1 │ │ │ + 0 3 2 3 │ │ │ │ │ │ ZZ │ │ │ o3 : 3-dimensional matrix of shape 4 x 4 x 4 over ---[b ..b ] │ │ │ 101 0 3 │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Discriminant.out │ │ │ @@ -11,15 +11,15 @@ │ │ │ a x y z + a x y z + a x y z │ │ │ 1,1,1 1 1 1 1,2,0 1 2 0 1,2,1 1 2 1 │ │ │ │ │ │ o1 : ZZ[a ..a ][x ..x , y ..y , z ..z ] │ │ │ 0,0,0 1,2,1 0 1 0 2 0 1 │ │ │ │ │ │ i2 : time sparseDiscriminant f │ │ │ - -- used 2.53309s (cpu); 2.15434s (thread); 0s (gc) │ │ │ + -- used 2.81789s (cpu); 2.47313s (thread); 0s (gc) │ │ │ │ │ │ 2 │ │ │ o2 = a a a a a a - a a a a a - │ │ │ 0,1,1 0,2,0 0,2,1 1,0,0 1,0,1 1,1,0 0,1,0 0,2,1 1,0,0 1,0,1 1,1,0 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 │ │ │ a a a a + a a a a a - │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Resultant.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 16228363821945730064 │ │ │ │ │ │ i1 : time Res = sparseResultant(matrix{{0,1,1,2},{0,0,1,1}},matrix{{0,1,2,2},{1,0,1,2}},matrix{{0,0,1,1},{0,1,0,1}}) │ │ │ - -- used 0.496444s (cpu); 0.422067s (thread); 0s (gc) │ │ │ + -- used 0.449871s (cpu); 0.430076s (thread); 0s (gc) │ │ │ │ │ │ o1 = Res │ │ │ │ │ │ o1 : SparseResultant (sparse mixed resultant associated to {| 0 1 1 2 |, | 0 1 2 2 |, | 0 0 1 1 |}) │ │ │ | 0 0 1 1 | | 1 0 1 2 | | 0 1 0 1 | │ │ │ │ │ │ i2 : QQ[c_(1,1)..c_(3,4)][x,y]; │ │ │ @@ -18,15 +18,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ c x*y + c x + c y + c ) │ │ │ 3,3 3,4 3,2 3,1 │ │ │ │ │ │ o3 : Sequence │ │ │ │ │ │ i4 : time Res(f,g,h) │ │ │ - -- used 0.00962779s (cpu); 0.00962822s (thread); 0s (gc) │ │ │ + -- used 0.0105511s (cpu); 0.0105509s (thread); 0s (gc) │ │ │ │ │ │ 2 4 2 2 4 │ │ │ o4 = - c c c c c c c + c c c c c c + │ │ │ 1,2 1,3 1,4 2,1 2,2 2,3 3,1 1,2 1,3 2,1 2,2 2,4 3,1 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 2 3 2 3 │ │ │ c c c c c c - 2c c c c c c c c + │ │ │ @@ -730,30 +730,30 @@ │ │ │ │ │ │ o4 : QQ[c ..c ] │ │ │ 1,1 3,4 │ │ │ │ │ │ i5 : assert(Res(f,g,h) == sparseResultant(f,g,h)) │ │ │ │ │ │ i6 : time Res = sparseResultant(matrix{{0,0,1,1},{0,1,0,1}},CoefficientRing=>ZZ/3331); │ │ │ - -- used 0.0317773s (cpu); 0.0309755s (thread); 0s (gc) │ │ │ + -- used 0.0738619s (cpu); 0.0397433s (thread); 0s (gc) │ │ │ │ │ │ o6 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 | over ZZ/3331) │ │ │ | 0 1 0 1 | │ │ │ │ │ │ i7 : ZZ/3331[a_0..a_3,b_0..b_3,c_0..c_3][x,y]; │ │ │ │ │ │ i8 : (f,g,h) = (a_0 + a_1*x + a_2*y + a_3*x*y, b_0 + b_1*x + b_2*y + b_3*x*y, c_0 + c_1*x + c_2*y + c_3*x*y) │ │ │ │ │ │ o8 = (a x*y + a x + a y + a , b x*y + b x + b y + b , c x*y + c x + c y + c ) │ │ │ 3 1 2 0 3 1 2 0 3 1 2 0 │ │ │ │ │ │ o8 : Sequence │ │ │ │ │ │ i9 : time Res(f,g,h) │ │ │ - -- used 0.00333243s (cpu); 0.00331511s (thread); 0s (gc) │ │ │ + -- used 0.00413688s (cpu); 0.00413697s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 2 │ │ │ o9 = a b b c - a a b b c - a a b b c + a a b c - a b b c c - │ │ │ 3 1 2 0 2 3 1 3 0 1 3 2 3 0 1 2 3 0 3 0 2 0 1 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 │ │ │ a a b b c c + a a b c c + a a b b c c + a b b c c - a a b b c c + │ │ │ @@ -822,15 +822,15 @@ │ │ │ 2 │ │ │ c x x + c x + c x + c x + c ) │ │ │ 4 1 2 2 2 3 1 1 2 0 │ │ │ │ │ │ o11 : Sequence │ │ │ │ │ │ i12 : time (MixedRes,UnmixedRes) = (sparseResultant(f,g,h),sparseResultant(f,g,h,Unmixed=>true)); │ │ │ - -- used 0.276884s (cpu); 0.197253s (thread); 0s (gc) │ │ │ + -- used 0.256768s (cpu); 0.188863s (thread); 0s (gc) │ │ │ │ │ │ i13 : quotientRemainder(UnmixedRes,MixedRes) │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ o13 = (b c - b b c c + b b c + b c c - 2b b c c - b b c c + b c , 0) │ │ │ 5 2 4 5 2 4 2 5 4 4 2 5 2 5 2 5 2 4 4 5 2 5 │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_degree__Determinant.html │ │ │ @@ -76,15 +76,15 @@ │ │ │ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time degreeDeterminant n
    │ │ │ - -- used 8.2585e-05s (cpu); 7.8617e-05s (thread); 0s (gc)
    │ │ │ + -- used 8.6747e-05s (cpu); 7.9277e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 6
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : M = genericMultidimensionalMatrix n;
    │ │ │ @@ -98,15 +98,15 @@
    │ │ │  o3 : 3-dimensional matrix of shape 2 x 3 x 2 over ZZ[a     ..a     ]
    │ │ │                                                        0,0,0   1,2,1
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time degree determinant M
    │ │ │ - -- used 0.0314058s (cpu); 0.0305595s (thread); 0s (gc)
    │ │ │ + -- used 0.165207s (cpu); 0.0541163s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = {6}
    │ │ │  
    │ │ │  o4 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -15,15 +15,15 @@ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : n = {2,3,2} │ │ │ │ │ │ │ │ o1 = {2, 3, 2} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : time degreeDeterminant n │ │ │ │ - -- used 8.2585e-05s (cpu); 7.8617e-05s (thread); 0s (gc) │ │ │ │ + -- used 8.6747e-05s (cpu); 7.9277e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 6 │ │ │ │ i3 : M = genericMultidimensionalMatrix n; │ │ │ │ warning: clearing value of symbol x2 to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 1368 or with command line option -- │ │ │ │ debug 1368 │ │ │ │ @@ -35,15 +35,15 @@ │ │ │ │ based on it │ │ │ │ : debug with expression debug 6010 or with command line option -- │ │ │ │ debug 6010 │ │ │ │ │ │ │ │ o3 : 3-dimensional matrix of shape 2 x 3 x 2 over ZZ[a ..a ] │ │ │ │ 0,0,0 1,2,1 │ │ │ │ i4 : time degree determinant M │ │ │ │ - -- used 0.0314058s (cpu); 0.0305595s (thread); 0s (gc) │ │ │ │ + -- used 0.165207s (cpu); 0.0541163s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = {6} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_t_e_r_m_i_n_a_n_t_(_M_u_l_t_i_d_i_m_e_n_s_i_o_n_a_l_M_a_t_r_i_x_) -- hyperdeterminant of a │ │ │ │ multidimensional matrix │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Discriminant.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │
    i1 : (d,n) := (2,3);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time Disc = denseDiscriminant(d,n)
    │ │ │ - -- used 0.429761s (cpu); 0.235137s (thread); 0s (gc)
    │ │ │ + -- used 0.501718s (cpu); 0.269363s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = Disc
    │ │ │  
    │ │ │  o2 : SparseDiscriminant (sparse discriminant associated to | 0 0 0 0 0 0 1 1 1 2 |)
    │ │ │                                                             | 0 0 0 1 1 2 0 0 1 0 |
    │ │ │                                                             | 0 1 2 0 1 0 0 1 0 0 |
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ * Outputs: │ │ │ │ o for (d,n), this is the same as _s_p_a_r_s_e_D_i_s_c_r_i_m_i_n_a_n_t _e_x_p_o_n_e_n_t_s_M_a_t_r_i_x │ │ │ │ ""ggeenneerriicc ppoollyynnoommiiaall ooff ddeeggrreeee dd iinn nn vvaarriiaabblleess"";; │ │ │ │ o for f, this is the same as _a_f_f_i_n_e_D_i_s_c_r_i_m_i_n_a_n_t(f). │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : (d,n) := (2,3); │ │ │ │ i2 : time Disc = denseDiscriminant(d,n) │ │ │ │ - -- used 0.429761s (cpu); 0.235137s (thread); 0s (gc) │ │ │ │ + -- used 0.501718s (cpu); 0.269363s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = Disc │ │ │ │ │ │ │ │ o2 : SparseDiscriminant (sparse discriminant associated to | 0 0 0 0 0 0 1 1 1 │ │ │ │ 2 |) │ │ │ │ | 0 0 0 1 1 2 0 0 1 │ │ │ │ 0 | │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Resultant.html │ │ │ @@ -90,27 +90,27 @@ │ │ │ │ │ │ o1 : Sequence │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time denseResultant(f0,f1,f2); -- using Poisson formula
    │ │ │ - -- used 0.163415s (cpu); 0.105804s (thread); 0s (gc)
    │ │ │ + -- used 0.166218s (cpu); 0.109623s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time denseResultant(f0,f1,f2,Algorithm=>"Macaulay"); -- using Macaulay formula
    │ │ │ - -- used 0.292346s (cpu); 0.241712s (thread); 0s (gc)
    │ │ │ + -- used 0.360646s (cpu); 0.289261s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time (denseResultant(1,2,2)) (f0,f1,f2); -- using sparseResultant
    │ │ │ - -- used 0.361747s (cpu); 0.305057s (thread); 0s (gc)
    │ │ │ + -- used 0.333319s (cpu); 0.315356s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : assert(o2 == o3 and o3 == o4)
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -28,20 +28,20 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 │ │ │ │ c x x + c x + c x + c x + c ) │ │ │ │ 4 1 2 2 2 3 1 1 2 0 │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : time denseResultant(f0,f1,f2); -- using Poisson formula │ │ │ │ - -- used 0.163415s (cpu); 0.105804s (thread); 0s (gc) │ │ │ │ + -- used 0.166218s (cpu); 0.109623s (thread); 0s (gc) │ │ │ │ i3 : time denseResultant(f0,f1,f2,Algorithm=>"Macaulay"); -- using Macaulay │ │ │ │ formula │ │ │ │ - -- used 0.292346s (cpu); 0.241712s (thread); 0s (gc) │ │ │ │ + -- used 0.360646s (cpu); 0.289261s (thread); 0s (gc) │ │ │ │ i4 : time (denseResultant(1,2,2)) (f0,f1,f2); -- using sparseResultant │ │ │ │ - -- used 0.361747s (cpu); 0.305057s (thread); 0s (gc) │ │ │ │ + -- used 0.333319s (cpu); 0.315356s (thread); 0s (gc) │ │ │ │ i5 : assert(o2 == o3 and o3 == o4) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_p_a_r_s_e_R_e_s_u_l_t_a_n_t -- sparse resultant (A-resultant) │ │ │ │ * _a_f_f_i_n_e_R_e_s_u_l_t_a_n_t -- affine resultant │ │ │ │ * _d_e_n_s_e_D_i_s_c_r_i_m_i_n_a_n_t -- dense discriminant (classical discriminant) │ │ │ │ * _e_x_p_o_n_e_n_t_s_M_a_t_r_i_x -- exponents in one or more polynomials │ │ │ │ * _g_e_n_e_r_i_c_L_a_u_r_e_n_t_P_o_l_y_n_o_m_i_a_l_s -- generic (Laurent) polynomials │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_determinant_lp__Multidimensional__Matrix_rp.html │ │ │ @@ -84,15 +84,15 @@ │ │ │ │ │ │ o1 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time det M
    │ │ │ - -- used 0.0870891s (cpu); 0.0852933s (thread); 0s (gc)
    │ │ │ + -- used 0.227165s (cpu); 0.123995s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 9698337990421512192
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : M = randomMultidimensionalMatrix(2,2,2,2,5)
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │  
    │ │ │  o3 : 5-dimensional matrix of shape 2 x 2 x 2 x 2 x 5 over ZZ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time det M
    │ │ │ - -- used 0.539221s (cpu); 0.47049s (thread); 0s (gc)
    │ │ │ + -- used 0.460704s (cpu); 0.460706s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 912984499996938980479447727885644530753184525786986940737407301278806287
    │ │ │       9257139493926586400187927813888
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -25,15 +25,15 @@ │ │ │ │ │ │ │ │ o1 = {{{{8, 1}, {3, 7}}, {{8, 3}, {3, 7}}}, {{{8, 8}, {5, 7}}, {{8, 5}, {2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3}}}} │ │ │ │ │ │ │ │ o1 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ │ │ │ │ i2 : time det M │ │ │ │ - -- used 0.0870891s (cpu); 0.0852933s (thread); 0s (gc) │ │ │ │ + -- used 0.227165s (cpu); 0.123995s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 9698337990421512192 │ │ │ │ i3 : M = randomMultidimensionalMatrix(2,2,2,2,5) │ │ │ │ │ │ │ │ o3 = {{{{{6, 3, 6, 8, 6}, {9, 3, 7, 6, 9}}, {{6, 2, 6, 0, 2}, {6, 9, 3, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 6}}}, {{{3, 5, 7, 7, 9}, {4, 5, 0, 4, 3}}, {{1, 8, 9, 1, 2}, {9, 6, 6, │ │ │ │ @@ -42,15 +42,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 7, 4, 5}}}, {{{4, 0, 1, 4, 4}, {2, 6, 1, 1, 4}}, {{5, 4, 9, 7, 4}, {6, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 4, 8, 4, 2}}}}} │ │ │ │ │ │ │ │ o3 : 5-dimensional matrix of shape 2 x 2 x 2 x 2 x 5 over ZZ │ │ │ │ i4 : time det M │ │ │ │ - -- used 0.539221s (cpu); 0.47049s (thread); 0s (gc) │ │ │ │ + -- used 0.460704s (cpu); 0.460706s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 912984499996938980479447727885644530753184525786986940737407301278806287 │ │ │ │ 9257139493926586400187927813888 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _M_u_l_t_i_d_i_m_e_n_s_i_o_n_a_l_M_a_t_r_i_x -- the class of all multidimensional matrices │ │ │ │ * _d_e_g_r_e_e_D_e_t_e_r_m_i_n_a_n_t -- degree of the hyperdeterminant of a generic │ │ │ │ multidimensional matrix │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_generic__Skew__Multidimensional__Matrix.html │ │ │ @@ -116,24 +116,24 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : genericSkewMultidimensionalMatrix(3,4,CoefficientRing=>ZZ/101,Variable=>"b")
    │ │ │  
    │ │ │  o3 = {{{0, 0, 0, 0}, {0, 0, -b , -b }, {0, b , 0, -b }, {0, b , b , 0}}, {{0,
    │ │ │ -                              3    2        3       0        2   0           
    │ │ │ +                              1    0        1       2        0   2           
    │ │ │       ------------------------------------------------------------------------
    │ │ │       0, b , b }, {0, 0, 0, 0}, {-b , 0, 0, -b }, {-b , 0, b , 0}}, {{0, -b ,
    │ │ │ -         3   2                    3          1      2      1              3 
    │ │ │ +         1   0                    1          3      0      3              1 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       0, b }, {b , 0, 0, b }, {0, 0, 0, 0}, {-b , -b , 0, 0}}, {{0, -b , -b ,
    │ │ │ -         0     3         1                    0    1                 2    0 
    │ │ │ +         2     1         3                    2    3                 0    2 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       0}, {b , 0, -b , 0}, {b , b , 0, 0}, {0, 0, 0, 0}}}
    │ │ │ -           2       1        0   1
    │ │ │ +           0       3        2   3
    │ │ │  
    │ │ │                                                     ZZ
    │ │ │  o3 : 3-dimensional matrix of shape 4 x 4 x 4 over ---[b ..b ]
    │ │ │                                                    101  0   3
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -51,24 +51,24 @@ │ │ │ │ ZZ │ │ │ │ o2 : 3-dimensional matrix of shape 4 x 4 x 4 over ---[a ..a ] │ │ │ │ 101 0 3 │ │ │ │ i3 : genericSkewMultidimensionalMatrix(3,4,CoefficientRing=>ZZ/ │ │ │ │ 101,Variable=>"b") │ │ │ │ │ │ │ │ o3 = {{{0, 0, 0, 0}, {0, 0, -b , -b }, {0, b , 0, -b }, {0, b , b , 0}}, {{0, │ │ │ │ - 3 2 3 0 2 0 │ │ │ │ + 1 0 1 2 0 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 0, b , b }, {0, 0, 0, 0}, {-b , 0, 0, -b }, {-b , 0, b , 0}}, {{0, -b , │ │ │ │ - 3 2 3 1 2 1 3 │ │ │ │ + 1 0 1 3 0 3 1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 0, b }, {b , 0, 0, b }, {0, 0, 0, 0}, {-b , -b , 0, 0}}, {{0, -b , -b , │ │ │ │ - 0 3 1 0 1 2 0 │ │ │ │ + 2 1 3 2 3 0 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 0}, {b , 0, -b , 0}, {b , b , 0, 0}, {0, 0, 0, 0}}} │ │ │ │ - 2 1 0 1 │ │ │ │ + 0 3 2 3 │ │ │ │ │ │ │ │ ZZ │ │ │ │ o3 : 3-dimensional matrix of shape 4 x 4 x 4 over ---[b ..b ] │ │ │ │ 101 0 3 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_e_n_e_r_i_c_M_u_l_t_i_d_i_m_e_n_s_i_o_n_a_l_M_a_t_r_i_x -- make a generic multidimensional matrix │ │ │ │ of variables │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Discriminant.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ o1 : ZZ[a ..a ][x ..x , y ..y , z ..z ] │ │ │ 0,0,0 1,2,1 0 1 0 2 0 1 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time sparseDiscriminant f
    │ │ │ - -- used 2.53309s (cpu); 2.15434s (thread); 0s (gc)
    │ │ │ + -- used 2.81789s (cpu); 2.47313s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                     2                        
    │ │ │  o2 = a     a     a     a     a     a      - a     a     a     a     a      -
    │ │ │        0,1,1 0,2,0 0,2,1 1,0,0 1,0,1 1,1,0    0,1,0 0,2,1 1,0,0 1,0,1 1,1,0  
    │ │ │       ------------------------------------------------------------------------
    │ │ │              2     2                                2            
    │ │ │       a     a     a     a      + a     a     a     a     a      -
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       a     x y z  + a     x y z  + a     x y z
    │ │ │ │        1,1,1 1 1 1    1,2,0 1 2 0    1,2,1 1 2 1
    │ │ │ │  
    │ │ │ │  o1 : ZZ[a     ..a     ][x ..x , y ..y , z ..z ]
    │ │ │ │           0,0,0   1,2,1   0   1   0   2   0   1
    │ │ │ │  i2 : time sparseDiscriminant f
    │ │ │ │ - -- used 2.53309s (cpu); 2.15434s (thread); 0s (gc)
    │ │ │ │ + -- used 2.81789s (cpu); 2.47313s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                     2
    │ │ │ │  o2 = a     a     a     a     a     a      - a     a     a     a     a      -
    │ │ │ │        0,1,1 0,2,0 0,2,1 1,0,0 1,0,1 1,1,0    0,1,0 0,2,1 1,0,0 1,0,1 1,1,0
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │              2     2                                2
    │ │ │ │       a     a     a     a      + a     a     a     a     a      -
    │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Resultant.html
    │ │ │ @@ -74,15 +74,15 @@
    │ │ │          

    Description

    │ │ │

    Alternatively, one can apply the method directly to the list of Laurent polynomials $f_0,\ldots,f_n$. In this case, the matrices $A_0,\ldots,A_n$ are automatically determined by exponentsMatrix. If you want require that $A_0=\cdots=A_n$, then use the option Unmixed=>true (this could be faster). Below we consider some examples.

    │ │ │

    In the first example, we calculate the sparse (mixed) resultant associated to the three sets of monomials $(1,x y,x^2 y,x),(y,x^2 y^2,x^2 y,x),(1,y,x y,x)$. Then we evaluate it at the three polynomials $f = c_{(1,1)}+c_{(1,2)} x y+c_{(1,3)} x^2 y+c_{(1,4)} x, g = c_{(2,1)} y+c_{(2,2)} x^2 y^2+c_{(2,3)} x^2 y+c_{(2,4)} x, h = c_{(3,1)}+c_{(3,2)} y+c_{(3,3)} x y+c_{(3,4)} x$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o3 : Sequence │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time Res = sparseResultant(matrix{{0,1,1,2},{0,0,1,1}},matrix{{0,1,2,2},{1,0,1,2}},matrix{{0,0,1,1},{0,1,0,1}})
    │ │ │ - -- used 0.496444s (cpu); 0.422067s (thread); 0s (gc)
    │ │ │ + -- used 0.449871s (cpu); 0.430076s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = Res
    │ │ │  
    │ │ │  o1 : SparseResultant (sparse mixed resultant associated to {| 0 1 1 2 |, | 0 1 2 2 |, | 0 0 1 1 |})
    │ │ │                                                              | 0 0 1 1 |  | 1 0 1 2 |  | 0 1 0 1 |
    │ │ │
    │ │ │
    i4 : time Res(f,g,h)
    │ │ │ - -- used 0.00962779s (cpu); 0.00962822s (thread); 0s (gc)
    │ │ │ + -- used 0.0105511s (cpu); 0.0105509s (thread); 0s (gc)
    │ │ │  
    │ │ │          2                       4      2   2               4    
    │ │ │  o4 = - c   c   c   c   c   c   c    + c   c   c   c   c   c    +
    │ │ │          1,2 1,3 1,4 2,1 2,2 2,3 3,1    1,2 1,3 2,1 2,2 2,4 3,1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3       2       3               2                   3        
    │ │ │       c   c   c   c   c   c    - 2c   c   c   c   c   c   c   c    +
    │ │ │ @@ -825,15 +825,15 @@
    │ │ │            
    │ │ │

    In the second example, we calculate the sparse unmixed resultant associated to the set of monomials $(1,x,y,xy)$. Then we evaluate it at the three polynomials $f = a_0 + a_1 x + a_2 y + a_3 x y, g = b_0 + b_1 x + b_2 y + b_3 x y, h = c_0 + c_1 x + c_2 y + c_3 x y$. Moreover, we perform all the computation over $\mathbb{Z}/3331$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -68,15 +68,15 @@ │ │ │ │ │ │ │ │ o4 = | 0 1 | │ │ │ │ | 2 3 | │ │ │ │ | 4 | │ │ │ │ │ │ │ │ o4 : YoungTableau │ │ │ │ i5 : time higherSpechtPolynomial(S,T,R) │ │ │ │ - -- used 0.00149283s (cpu); 0.00148952s (thread); 0s (gc) │ │ │ │ + -- used 0.00163961s (cpu); 0.00163624s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 2 3 3 2 3 2 3 2 2 3 │ │ │ │ o5 = x x x x - x x x x - x x x x + x x x x + x x x x - x x x x - │ │ │ │ 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 4 0 1 2 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 3 2 2 3 2 3 3 2 3 2 │ │ │ │ x x x x - x x x x + x x x x + x x x x + x x x x - x x x x - │ │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 3 2 3 2 3 2 3 2 3 │ │ │ │ x x x x - x x x x - x x x x + x x x x - x x x x + x x x x │ │ │ │ 0 1 3 4 0 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 1 2 3 4 │ │ │ │ │ │ │ │ o5 : R │ │ │ │ i6 : time higherSpechtPolynomial(S,T,R, Robust => false) │ │ │ │ - -- used 0.00128378s (cpu); 0.00128396s (thread); 0s (gc) │ │ │ │ + -- used 0.0015232s (cpu); 0.00153247s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 2 3 3 2 3 2 3 2 2 3 │ │ │ │ o6 = x x x x - x x x x - x x x x + x x x x + x x x x - x x x x - │ │ │ │ 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 4 0 1 2 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 3 2 2 3 2 3 3 2 3 2 │ │ │ │ x x x x - x x x x + x x x x + x x x x + x x x x - x x x x - │ │ │ │ @@ -108,15 +108,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 3 2 3 2 3 2 3 2 3 │ │ │ │ x x x x - x x x x - x x x x + x x x x - x x x x + x x x x │ │ │ │ 0 1 3 4 0 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 1 2 3 4 │ │ │ │ │ │ │ │ o6 : R │ │ │ │ i7 : time higherSpechtPolynomial(S,T,R, Robust => false, AsExpression => true) │ │ │ │ - -- used 0.00197708s (cpu); 0.00197739s (thread); 0s (gc) │ │ │ │ + -- used 0.00220092s (cpu); 0.00220175s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = (- x + x )(- x + x )(- x + x )(- x + x )((x + x + x )(x )(x ) + (x ) │ │ │ │ (x )(x )) │ │ │ │ 0 2 0 4 2 4 1 3 0 2 4 3 1 4 │ │ │ │ 2 0 │ │ │ │ │ │ │ │ o7 : Expression of class Product │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/html/_representation__Multiplicity.html │ │ │ @@ -126,15 +126,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -111,15 +111,15 @@ │ │ │ │ │ │ o4 : ProjectiveVariety, a point in PP^5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -121,15 +121,15 @@ │ │ │ │ │ │ o5 : ProjectiveVariety, a point in PP^8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : time Res = sparseResultant(matrix{{0,0,1,1},{0,1,0,1}},CoefficientRing=>ZZ/3331);
    │ │ │ - -- used 0.0317773s (cpu); 0.0309755s (thread); 0s (gc)
    │ │ │ + -- used 0.0738619s (cpu); 0.0397433s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 | over ZZ/3331)
    │ │ │                                                               | 0 1 0 1 |
    │ │ │
    │ │ │ @@ -849,15 +849,15 @@ │ │ │ │ │ │ o8 : Sequence │ │ │
    │ │ │
    i9 : time Res(f,g,h)
    │ │ │ - -- used 0.00333243s (cpu); 0.00331511s (thread); 0s (gc)
    │ │ │ + -- used 0.00413688s (cpu); 0.00413697s (thread); 0s (gc)
    │ │ │  
    │ │ │        2     2            2            2        2 2    2          
    │ │ │  o9 = a b b c  - a a b b c  - a a b b c  + a a b c  - a b b c c  -
    │ │ │        3 1 2 0    2 3 1 3 0    1 3 2 3 0    1 2 3 0    3 0 2 0 1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                           2                       2                         
    │ │ │       a a b b c c  + a a b c c  + a a b b c c  + a b b c c  - a a b b c c  +
    │ │ │ @@ -938,15 +938,15 @@
    │ │ │  
    │ │ │  o11 : Sequence
    │ │ │
    │ │ │
    i12 : time (MixedRes,UnmixedRes) = (sparseResultant(f,g,h),sparseResultant(f,g,h,Unmixed=>true));
    │ │ │ - -- used 0.276884s (cpu); 0.197253s (thread); 0s (gc)
    │ │ │ + -- used 0.256768s (cpu); 0.188863s (thread); 0s (gc) │ │ │
    │ │ │
    i13 : quotientRemainder(UnmixedRes,MixedRes)
    │ │ │  
    │ │ │          2 2                   2    2                               2 2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │  In the first example, we calculate the sparse (mixed) resultant associated to
    │ │ │ │  the three sets of monomials $(1,x y,x^2 y,x),(y,x^2 y^2,x^2 y,x),(1,y,x y,x)$.
    │ │ │ │  Then we evaluate it at the three polynomials $f = c_{(1,1)}+c_{(1,2)} x y+c_{
    │ │ │ │  (1,3)} x^2 y+c_{(1,4)} x, g = c_{(2,1)} y+c_{(2,2)} x^2 y^2+c_{(2,3)} x^2 y+c_{
    │ │ │ │  (2,4)} x, h = c_{(3,1)}+c_{(3,2)} y+c_{(3,3)} x y+c_{(3,4)} x$.
    │ │ │ │  i1 : time Res = sparseResultant(matrix{{0,1,1,2},{0,0,1,1}},matrix{{0,1,2,2},
    │ │ │ │  {1,0,1,2}},matrix{{0,0,1,1},{0,1,0,1}})
    │ │ │ │ - -- used 0.496444s (cpu); 0.422067s (thread); 0s (gc)
    │ │ │ │ + -- used 0.449871s (cpu); 0.430076s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = Res
    │ │ │ │  
    │ │ │ │  o1 : SparseResultant (sparse mixed resultant associated to {| 0 1 1 2 |, | 0 1
    │ │ │ │  2 2 |, | 0 0 1 1 |})
    │ │ │ │                                                              | 0 0 1 1 |  | 1 0
    │ │ │ │  1 2 |  | 0 1 0 1 |
    │ │ │ │ @@ -55,15 +55,15 @@
    │ │ │ │         1,3       1,2       1,4     1,1   2,2        2,3       2,4     2,1
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       c   x*y + c   x + c   y + c   )
    │ │ │ │        3,3       3,4     3,2     3,1
    │ │ │ │  
    │ │ │ │  o3 : Sequence
    │ │ │ │  i4 : time Res(f,g,h)
    │ │ │ │ - -- used 0.00962779s (cpu); 0.00962822s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0105511s (cpu); 0.0105509s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          2                       4      2   2               4
    │ │ │ │  o4 = - c   c   c   c   c   c   c    + c   c   c   c   c   c    +
    │ │ │ │          1,2 1,3 1,4 2,1 2,2 2,3 3,1    1,2 1,3 2,1 2,2 2,4 3,1
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        3       2       3               2                   3
    │ │ │ │       c   c   c   c   c   c    - 2c   c   c   c   c   c   c   c    +
    │ │ │ │ @@ -771,29 +771,29 @@
    │ │ │ │  In the second example, we calculate the sparse unmixed resultant associated to
    │ │ │ │  the set of monomials $(1,x,y,xy)$. Then we evaluate it at the three polynomials
    │ │ │ │  $f = a_0 + a_1 x + a_2 y + a_3 x y, g = b_0 + b_1 x + b_2 y + b_3 x y, h = c_0
    │ │ │ │  + c_1 x + c_2 y + c_3 x y$. Moreover, we perform all the computation over
    │ │ │ │  $\mathbb{Z}/3331$.
    │ │ │ │  i6 : time Res = sparseResultant(matrix{{0,0,1,1},
    │ │ │ │  {0,1,0,1}},CoefficientRing=>ZZ/3331);
    │ │ │ │ - -- used 0.0317773s (cpu); 0.0309755s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0738619s (cpu); 0.0397433s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 | over
    │ │ │ │  ZZ/3331)
    │ │ │ │                                                               | 0 1 0 1 |
    │ │ │ │  i7 : ZZ/3331[a_0..a_3,b_0..b_3,c_0..c_3][x,y];
    │ │ │ │  i8 : (f,g,h) = (a_0 + a_1*x + a_2*y + a_3*x*y, b_0 + b_1*x + b_2*y + b_3*x*y,
    │ │ │ │  c_0 + c_1*x + c_2*y + c_3*x*y)
    │ │ │ │  
    │ │ │ │  o8 = (a x*y + a x + a y + a , b x*y + b x + b y + b , c x*y + c x + c y + c )
    │ │ │ │         3       1     2     0   3       1     2     0   3       1     2     0
    │ │ │ │  
    │ │ │ │  o8 : Sequence
    │ │ │ │  i9 : time Res(f,g,h)
    │ │ │ │ - -- used 0.00333243s (cpu); 0.00331511s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00413688s (cpu); 0.00413697s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │        2     2            2            2        2 2    2
    │ │ │ │  o9 = a b b c  - a a b b c  - a a b b c  + a a b c  - a b b c c  -
    │ │ │ │        3 1 2 0    2 3 1 3 0    1 3 2 3 0    1 2 3 0    3 0 2 0 1
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                           2                       2
    │ │ │ │       a a b b c c  + a a b c c  + a a b b c c  + a b b c c  - a a b b c c  +
    │ │ │ │ @@ -863,15 +863,15 @@
    │ │ │ │                    2
    │ │ │ │        c x x  + c x  + c x  + c x  + c )
    │ │ │ │         4 1 2    2 2    3 1    1 2    0
    │ │ │ │  
    │ │ │ │  o11 : Sequence
    │ │ │ │  i12 : time (MixedRes,UnmixedRes) = (sparseResultant(f,g,h),sparseResultant
    │ │ │ │  (f,g,h,Unmixed=>true));
    │ │ │ │ - -- used 0.276884s (cpu); 0.197253s (thread); 0s (gc)
    │ │ │ │ + -- used 0.256768s (cpu); 0.188863s (thread); 0s (gc)
    │ │ │ │  i13 : quotientRemainder(UnmixedRes,MixedRes)
    │ │ │ │  
    │ │ │ │          2 2                   2    2                               2 2
    │ │ │ │  o13 = (b c  - b b c c  + b b c  + b c c  - 2b b c c  - b b c c  + b c , 0)
    │ │ │ │          5 2    4 5 2 4    2 5 4    4 2 5     2 5 2 5    2 4 4 5    2 5
    │ │ │ │  
    │ │ │ │  o13 : Sequence
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out
    │ │ │ @@ -25,15 +25,15 @@
    │ │ │  o4 = | 0 1 |
    │ │ │       | 2 3 |
    │ │ │       | 4 |
    │ │ │  
    │ │ │  o4 : YoungTableau
    │ │ │  
    │ │ │  i5 : time higherSpechtPolynomial(S,T,R)
    │ │ │ - -- used 0.00149283s (cpu); 0.00148952s (thread); 0s (gc)
    │ │ │ + -- used 0.00163961s (cpu); 0.00163624s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o5 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -46,15 +46,15 @@
    │ │ │          2   3    2     3    2     3      2   3        2 3        2 3
    │ │ │       x x x x  - x x x x  - x x x x  + x x x x  - x x x x  + x x x x
    │ │ │        0 1 3 4    0 2 3 4    1 2 3 4    0 2 3 4    0 1 3 4    1 2 3 4
    │ │ │  
    │ │ │  o5 : R
    │ │ │  
    │ │ │  i6 : time higherSpechtPolynomial(S,T,R, Robust => false)
    │ │ │ - -- used 0.00128378s (cpu); 0.00128396s (thread); 0s (gc)
    │ │ │ + -- used 0.0015232s (cpu); 0.00153247s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o6 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -67,15 +67,15 @@
    │ │ │          2   3    2     3    2     3      2   3        2 3        2 3
    │ │ │       x x x x  - x x x x  - x x x x  + x x x x  - x x x x  + x x x x
    │ │ │        0 1 3 4    0 2 3 4    1 2 3 4    0 2 3 4    0 1 3 4    1 2 3 4
    │ │ │  
    │ │ │  o6 : R
    │ │ │  
    │ │ │  i7 : time higherSpechtPolynomial(S,T,R, Robust => false, AsExpression => true)
    │ │ │ - -- used 0.00197708s (cpu); 0.00197739s (thread); 0s (gc)
    │ │ │ + -- used 0.00220092s (cpu); 0.00220175s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = (- x  + x )(- x  + x )(- x  + x )(- x  + x )((x  + x  + x )(x )(x ) + (x )(x )(x ))
    │ │ │           0    2     0    4     2    4     1    3    0    2    4   3   1      4   2   0
    │ │ │  
    │ │ │  o7 : Expression of class Product
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/example-output/_representation__Multiplicity.out
    │ │ │ @@ -25,15 +25,15 @@
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : tal := tally apply (H,h->conjugacyClass h);
    │ │ │  
    │ │ │  i4 : partis = partitions 6;
    │ │ │  
    │ │ │  i5 : time multi = hashTable apply (partis, p-> p=> representationMultiplicity(tal,p))
    │ │ │ - -- used 0.339216s (cpu); 0.297324s (thread); 0s (gc)
    │ │ │ + -- used 0.374747s (cpu); 0.317438s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HashTable{Partition{1, 1, 1, 1, 1, 1} => 1}
    │ │ │                 Partition{2, 1, 1, 1, 1} => 0
    │ │ │                 Partition{2, 2, 1, 1} => 1
    │ │ │                 Partition{2, 2, 2} => 1
    │ │ │                 Partition{3, 1, 1, 1} => 0
    │ │ │                 Partition{3, 2, 1} => 0
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/example-output/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.out
    │ │ │ @@ -20,15 +20,15 @@
    │ │ │  (Partition{3, 3}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{3, 2, 1}, Ambient_Dimension, 16, Rank, 0)
    │ │ │  (Partition{3, 1, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ │  (Partition{2, 2, 2}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{2, 2, 1, 1}, Ambient_Dimension, 9, Rank, 1)
    │ │ │  (Partition{2, 1, 1, 1, 1}, Ambient_Dimension, 5, Rank, 0)
    │ │ │  (Partition{1, 1, 1, 1, 1, 1}, Ambient_Dimension, 1, Rank, 1)
    │ │ │ - -- used 0.860244s (cpu); 0.695269s (thread); 0s (gc)
    │ │ │ + -- used 0.810203s (cpu); 0.57825s (thread); 0s (gc)
    │ │ │  
    │ │ │  i4 : seco#(new Partition from {2,2,2})
    │ │ │  
    │ │ │                                                        2 2 2       4 2   2     2   2 2     2 2     2   4   2   2   2     2 2   1 2 2       2 2   2     1   2 2     1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2     1   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2   2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1     2 2   1 2 2       2 2   2     1   2 2     1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2     1   2 2     1   2 2     2 2 2       4 2 2       2 2 2       2 2 2       4 2 2       2 2 2       1 2   2     1   2 2     2 2   2     1 2   2     2   2 2     1   2 2     1 2   2     2 2   2     1 2   2     1   2 2     2   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2   2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1     2 2   1 2     2   1   2   2   2 2     2   1 2     2   2   2   2   1   2   2   1 2     2   2 2     2   1 2     2   1   2   2   2   2   2   1   2   2   2     2 2   4     2 2   2     2 2   2     2 2   4     2 2   2     2 2
    │ │ │  o4 = HashTable{{0, 1, 2, 3, 4, 5} => HashTable{0 => - -x x x x  + -x x x x  - -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  - -x x x x  + -x x x x  - -x x x x }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        }
    │ │ │                                                        3 1 2 3 4   3 1 2 3 4   3 1 2 3 4   3 1 2 3 4   3 1 2 3 4   3 1 2 3 4   3 1 2 3 5   3 1 2 3 5   3 1 2 3 5   3 1 2 4 5   3 1 3 4 5   3 2 3 4 5   3 1 2 4 5   3 1 2 4 5   3 1 3 4 5   3 2 3 4 5   3 1 3 4 5   3 2 3 4 5   3 1 2 3 5   3 1 2 3 5   3 1 2 3 5   3 1 2 4 5   3 1 2 4 5   3 1 3 4 5   3 2 3 4 5   3 1 3 4 5   3 2 3 4 5   3 1 2 4 5   3 1 3 4 5   3 2 3 4 5   3 1 2 3 6   3 1 2 3 6   3 1 2 3 6   3 1 2 4 6   3 1 3 4 6   3 2 3 4 6   3 1 2 4 6   3 1 2 4 6   3 1 3 4 6   3 2 3 4 6   3 1 3 4 6   3 2 3 4 6   3 1 2 5 6   3 1 3 5 6   3 2 3 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 2 5 6   3 1 2 5 6   3 1 3 5 6   3 2 3 5 6   3 1 3 5 6   3 2 3 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 2 3 6   3 1 2 3 6   3 1 2 3 6   3 1 2 4 6   3 1 2 4 6   3 1 3 4 6   3 2 3 4 6   3 1 3 4 6   3 2 3 4 6   3 1 2 4 6   3 1 3 4 6   3 2 3 4 6   3 1 2 5 6   3 1 2 5 6   3 1 3 5 6   3 2 3 5 6   3 1 3 5 6   3 2 3 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 2 5 6   3 1 3 5 6   3 2 3 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6
    │ │ │                                                      2 3 2 2     4 2 3 2     2 2 2 3     4 3 2   2   2 2 3   2   2 3   2 2   2   3 2 2   2 2   3 2   4   2 3 2   2 2 2   3   4 2   2 3   2   2 2 3   1 3 2 2     2 2 3 2     1 2 2 3     2 3 2 2     1 2 3 2     1 3 2 2     1 3 2 2     1 2 3 2     2 2 3 2     1 2 2 3     2 2 2 3     1 2 2 3     2 3 2   2   1 2 3   2   1 3   2 2   1   3 2 2   1 2   3 2   2   2 3 2   1 3 2   2   2 2 3   2   1 3 2   2   2 3 2   2   1 2 3   2   1 2 3   2   1 3   2 2   1   3 2 2   2 3   2 2   1 3   2 2   2   3 2 2   1   3 2 2   2 2   3 2   1   2 3 2   1 2   3 2   1 2   3 2   1   2 3 2   2   2 3 2   1 2 2   3   2 2   2 3   1   2 2 3   1 2 2   3   2 2 2   3   1 2 2   3   1 2   2 3   2   2 2 3   1 2   2 3   2 2   2 3   1   2 2 3   1   2 2 3   1 3 2 2     2 2 3 2     1 2 2 3     2 3 2 2     1 2 3 2     1 3 2 2     1 3 2 2     1 2 3 2     2 2 3 2     1 2 2 3     2 2 2 3     1 2 2 3     1 3 2 2     1 2 3 2     2 3 2 2     1 3 2 2     2 2 3 2     1 2 3 2     1 3 2 2     2 3 2 2     1 3 2 2     1 2 3 2     2 2 3 2     1 2 3 2     2 2 2 3     4 2 2 3     2 2 2 3     2 2 2 3     4 2 2 3     2 2 2 3     2 3 2   2   1 2 3   2   1 3   2 2   1   3 2 2   1 2   3 2   2   2 3 2   1 3 2   2   2 2 3   2   1 3 2   2   2 3 2   2   1 2 3   2   1 2 3   2   1 3   2 2   1   3 2 2   2 3   2 2   1 3   2 2   2   3 2 2   1   3 2 2   2 2   3 2   1   2 3 2   1 2   3 2   1 2   3 2   1   2 3 2   2   2 3 2   1 3 2   2   1 2 3   2   2 3 2   2   1 3 2   2   2 2 3   2   1 2 3   2   1 3 2   2   2 3 2   2   1 3 2   2   1 2 3   2   2 2 3   2   1 2 3   2   2 3   2 2   2   3 2 2   4 3   2 2   2 3   2 2   4   3 2 2   2   3 2 2   2 3   2 2   4 3   2 2   2 3   2 2   2   3 2 2   4   3 2 2   2   3 2 2   1 2   3 2   1   2 3 2   2 2   3 2   1 2   3 2   2   2 3 2   1   2 3 2   1 2   3 2   2 2   3 2   1 2   3 2   1   2 3 2   2   2 3 2   1   2 3 2   1 2 2   3   2 2   2 3   1   2 2 3   1 2 2   3   2 2 2   3   1 2 2   3   1 2   2 3   2   2 2 3   1 2   2 3   2 2   2 3   1   2 2 3   1   2 2 3   2 2 2   3   4 2 2   3   2 2 2   3   2 2 2   3   4 2 2   3   2 2 2   3   1 2   2 3   1   2 2 3   2 2   2 3   1 2   2 3   2   2 2 3   1   2 2 3   1 2   2 3   2 2   2 3   1 2   2 3   1   2 2 3   2   2 2 3   1   2 2 3
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html
    │ │ │ @@ -125,15 +125,15 @@
    │ │ │  
    │ │ │  o4 : YoungTableau
    │ │ │
    │ │ │
    i5 : time higherSpechtPolynomial(S,T,R)
    │ │ │ - -- used 0.00149283s (cpu); 0.00148952s (thread); 0s (gc)
    │ │ │ + -- used 0.00163961s (cpu); 0.00163624s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o5 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -149,15 +149,15 @@
    │ │ │  
    │ │ │  o5 : R
    │ │ │
    │ │ │
    i6 : time higherSpechtPolynomial(S,T,R, Robust => false)
    │ │ │ - -- used 0.00128378s (cpu); 0.00128396s (thread); 0s (gc)
    │ │ │ + -- used 0.0015232s (cpu); 0.00153247s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o6 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -173,15 +173,15 @@
    │ │ │  
    │ │ │  o6 : R
    │ │ │
    │ │ │
    i7 : time higherSpechtPolynomial(S,T,R, Robust => false, AsExpression => true)
    │ │ │ - -- used 0.00197708s (cpu); 0.00197739s (thread); 0s (gc)
    │ │ │ + -- used 0.00220092s (cpu); 0.00220175s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = (- x  + x )(- x  + x )(- x  + x )(- x  + x )((x  + x  + x )(x )(x ) + (x )(x )(x ))
    │ │ │           0    2     0    4     2    4     1    3    0    2    4   3   1      4   2   0
    │ │ │  
    │ │ │  o7 : Expression of class Product
    │ │ │
    │ │ │
    i4 : partis = partitions 6;
    │ │ │
    │ │ │
    i5 : time multi = hashTable apply (partis, p-> p=> representationMultiplicity(tal,p))
    │ │ │ - -- used 0.339216s (cpu); 0.297324s (thread); 0s (gc)
    │ │ │ + -- used 0.374747s (cpu); 0.317438s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HashTable{Partition{1, 1, 1, 1, 1, 1} => 1}
    │ │ │                 Partition{2, 1, 1, 1, 1} => 0
    │ │ │                 Partition{2, 2, 1, 1} => 1
    │ │ │                 Partition{2, 2, 2} => 1
    │ │ │                 Partition{3, 1, 1, 1} => 0
    │ │ │                 Partition{3, 2, 1} => 0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -63,15 +63,15 @@
    │ │ │ │  representations of $H$ in each irreducible representation of $S_6$. We take
    │ │ │ │  into account that there are multiple copies of each representation by
    │ │ │ │  multiplying the values with the number of copies which is given by the
    │ │ │ │  hookLengthFormula.
    │ │ │ │  i4 : partis = partitions 6;
    │ │ │ │  i5 : time multi = hashTable apply (partis, p-> p=> representationMultiplicity
    │ │ │ │  (tal,p))
    │ │ │ │ - -- used 0.339216s (cpu); 0.297324s (thread); 0s (gc)
    │ │ │ │ + -- used 0.374747s (cpu); 0.317438s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = HashTable{Partition{1, 1, 1, 1, 1, 1} => 1}
    │ │ │ │                 Partition{2, 1, 1, 1, 1} => 0
    │ │ │ │                 Partition{2, 2, 1, 1} => 1
    │ │ │ │                 Partition{2, 2, 2} => 1
    │ │ │ │                 Partition{3, 1, 1, 1} => 0
    │ │ │ │                 Partition{3, 2, 1} => 0
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/html/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.html
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │  (Partition{3, 3}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{3, 2, 1}, Ambient_Dimension, 16, Rank, 0)
    │ │ │  (Partition{3, 1, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ │  (Partition{2, 2, 2}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{2, 2, 1, 1}, Ambient_Dimension, 9, Rank, 1)
    │ │ │  (Partition{2, 1, 1, 1, 1}, Ambient_Dimension, 5, Rank, 0)
    │ │ │  (Partition{1, 1, 1, 1, 1, 1}, Ambient_Dimension, 1, Rank, 1)
    │ │ │ - -- used 0.860244s (cpu); 0.695269s (thread); 0s (gc)
    │ │ │ + -- used 0.810203s (cpu); 0.57825s (thread); 0s (gc) │ │ │
    │ │ │
    i4 : seco#(new Partition from {2,2,2})
    │ │ │  
    │ │ │                                                        2 2 2       4 2   2     2   2 2     2 2     2   4   2   2   2     2 2   1 2 2       2 2   2     1   2 2     1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2     1   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2   2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1     2 2   1 2 2       2 2   2     1   2 2     1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2     1   2 2     1   2 2     2 2 2       4 2 2       2 2 2       2 2 2       4 2 2       2 2 2       1 2   2     1   2 2     2 2   2     1 2   2     2   2 2     1   2 2     1 2   2     2 2   2     1 2   2     1   2 2     2   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2   2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1     2 2   1 2     2   1   2   2   2 2     2   1 2     2   2   2   2   1   2   2   1 2     2   2 2     2   1 2     2   1   2   2   2   2   2   1   2   2   2     2 2   4     2 2   2     2 2   2     2 2   4     2 2   2     2 2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -56,15 +56,15 @@
    │ │ │ │  (Partition{3, 3}, Ambient_Dimension, 5, Rank, 1)
    │ │ │ │  (Partition{3, 2, 1}, Ambient_Dimension, 16, Rank, 0)
    │ │ │ │  (Partition{3, 1, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ │ │  (Partition{2, 2, 2}, Ambient_Dimension, 5, Rank, 1)
    │ │ │ │  (Partition{2, 2, 1, 1}, Ambient_Dimension, 9, Rank, 1)
    │ │ │ │  (Partition{2, 1, 1, 1, 1}, Ambient_Dimension, 5, Rank, 0)
    │ │ │ │  (Partition{1, 1, 1, 1, 1, 1}, Ambient_Dimension, 1, Rank, 1)
    │ │ │ │ - -- used 0.860244s (cpu); 0.695269s (thread); 0s (gc)
    │ │ │ │ + -- used 0.810203s (cpu); 0.57825s (thread); 0s (gc)
    │ │ │ │  i4 : seco#(new Partition from {2,2,2})
    │ │ │ │  
    │ │ │ │                                                        2 2 2       4 2   2     2
    │ │ │ │  2 2     2 2     2   4   2   2   2     2 2   1 2 2       2 2   2     1   2 2
    │ │ │ │  1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2
    │ │ │ │  1   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2
    │ │ │ │  2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__Castelnuovo__Surface.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │       of discriminant 31 = det| 8 1 |
    │ │ │                               | 1 4 |
    │ │ │       containing a surface of degree 1 and sectional genus 0
    │ │ │       cut out by 5 hypersurfaces of degree 1
    │ │ │       (This is a classical example of rational fourfold)
    │ │ │  
    │ │ │  i3 : time U' = associatedCastelnuovoSurface X;
    │ │ │ - -- used 2.03131s (cpu); 1.06704s (thread); 0s (gc)
    │ │ │ + -- used 2.68326s (cpu); 1.1113s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, Castelnuovo surface associated to X
    │ │ │  
    │ │ │  i4 : (mu,U,C,f) = building U';
    │ │ │  
    │ │ │  i5 : ? mu
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.out
    │ │ │ @@ -7,15 +7,15 @@
    │ │ │  i2 : describe X
    │ │ │  
    │ │ │  o2 = Special cubic fourfold of discriminant 14
    │ │ │       containing a (smooth) surface of degree 4 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degree 2
    │ │ │  
    │ │ │  i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 1.94686s (cpu); 1.08366s (thread); 0s (gc)
    │ │ │ + -- used 2.78912s (cpu); 1.15029s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │  
    │ │ │  i4 : (mu,U,C,f) = building U';
    │ │ │  
    │ │ │  i5 : ? mu
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │       containing a surface in PP^8 of degree 2 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2)
    │ │ │       and with class in G(1,4) given by s_(3,1)+s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 1 of Table 1 in arXiv:2002.07026)
    │ │ │  
    │ │ │  i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 6.18185s (cpu); 3.89639s (thread); 0s (gc)
    │ │ │ + -- used 8.18715s (cpu); 4.60455s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │  
    │ │ │  i4 : (mu,U,C,f) = building U';
    │ │ │  
    │ │ │  i5 : ? mu
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.out
    │ │ │ @@ -8,28 +8,28 @@
    │ │ │  i2 : describe X
    │ │ │  
    │ │ │  o2 = Special cubic fourfold of discriminant 26
    │ │ │       containing a 3-nodal surface of degree 7 and sectional genus 0
    │ │ │       cut out by 13 hypersurfaces of degree 3
    │ │ │  
    │ │ │  i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 3.88786s (cpu); 2.13569s (thread); 0s (gc)
    │ │ │ + -- used 3.32346s (cpu); 2.05847s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the cubic map and passing through a general point: 8
    │ │ │  number 2-secant lines = 7
    │ │ │  number 5-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 5-secant conics to surface in PP^5
    │ │ │  
    │ │ │  i4 : p := point ambient X -- random point on P^5
    │ │ │  
    │ │ │  o4 = point of coordinates [15092, -9738, -3620, -15181, 12688, 1]
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, a point in PP^5
    │ │ │  
    │ │ │  i5 : time C = f p; -- 5-secant conic to the surface
    │ │ │ - -- used 0.372515s (cpu); 0.293278s (thread); 0s (gc)
    │ │ │ + -- used 0.359777s (cpu); 0.28534s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, curve in PP^5
    │ │ │  
    │ │ │  i6 : assert(dim C == 1 and degree C == 2 and dim(C * surface X) == 0 and degree(C * surface X) == 5 and isSubset(p, C))
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │       containing a surface in PP^8 of degree 9 and sectional genus 2
    │ │ │       cut out by 19 hypersurfaces of degree 2
    │ │ │       and with class in G(1,4) given by 6*s_(3,1)+3*s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 17 of Table 1 in arXiv:2002.07026)
    │ │ │  
    │ │ │  i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 12.44s (cpu); 6.54122s (thread); 0s (gc)
    │ │ │ + -- used 22.0305s (cpu); 7.90313s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the quadratic map and passing through a general point: 7
    │ │ │  number 1-secant lines = 6
    │ │ │  number 3-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 3-secant conics to surface in a fivefold in PP^8
    │ │ │  
    │ │ │  i4 : Y = ambientFivefold X; -- del Pezzo fivefold containing X
    │ │ │ @@ -29,15 +29,15 @@
    │ │ │  i5 : p := point Y -- random point on Y
    │ │ │  
    │ │ │  o5 = point of coordinates [7214, -1460, 7057, -2440, 15907, -14345, -5937, 13402, 1]
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, a point in PP^8
    │ │ │  
    │ │ │  i6 : time C = f p; -- 3-secant conic to the surface
    │ │ │ - -- used 0.442939s (cpu); 0.267302s (thread); 0s (gc)
    │ │ │ + -- used 0.571613s (cpu); 0.296546s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : ProjectiveVariety, curve in PP^8 (subvariety of codimension 4 in Y)
    │ │ │  
    │ │ │  i7 : S = surface X;
    │ │ │  
    │ │ │  o7 : ProjectiveVariety, surface in PP^8 (subvariety of codimension 3 in Y)
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Cubic__Fourfold_rp.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729890813579561111
    │ │ │  
    │ │ │  i1 : X = specialCubicFourfold "quintic del Pezzo surface";
    │ │ │  
    │ │ │  o1 : ProjectiveVariety, cubic fourfold containing a surface of degree 5 and sectional genus 1
    │ │ │  
    │ │ │  i2 : time discriminant X
    │ │ │ - -- used 0.455756s (cpu); 0.177026s (thread); 0s (gc)
    │ │ │ + -- used 0.833404s (cpu); 0.138254s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 14
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730220932418738713
    │ │ │  
    │ │ │  i1 : X = specialGushelMukaiFourfold "tau-quadric";
    │ │ │  
    │ │ │  o1 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │  
    │ │ │  i2 : time discriminant X
    │ │ │ - -- used 0.961803s (cpu); 0.441922s (thread); 0s (gc)
    │ │ │ + -- used 1.23064s (cpu); 0.488271s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  o2 : ProjectiveVariety, curve in PP^5
    │ │ │  
    │ │ │  i3 : X = random({{2},{2},{2}},S);
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i4 : time parameterCount(S,X,Verbose=>true)
    │ │ │ - -- used 0.295634s (cpu); 0.202129s (thread); 0s (gc)
    │ │ │ + -- used 0.474884s (cpu); 0.265972s (thread); 0s (gc)
    │ │ │  S: rational normal curve of degree 5 in PP^5
    │ │ │  X: smooth surface of degree 8 and sectional genus 5 in PP^5 cut out by 3 hypersurfaces of degree 2
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 32
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,P^5}(2)) = 10 = h^0(O_(P^5)(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,P^5}(2)) is minimal
    │ │ │  dim GG(2,9) = 21
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Cubic__Fourfold_rp.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i3 : X = specialCubicFourfold V;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
    │ │ │  
    │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 0.655776s (cpu); 0.413174s (thread); 0s (gc)
    │ │ │ + -- used 0.730636s (cpu); 0.401387s (thread); 0s (gc)
    │ │ │  S: Veronese surface in PP^5
    │ │ │  X: smooth cubic hypersurface in PP^5
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 27
    │ │ │  h^1(O_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(O_(P^5)(3)) - \chi(O_S(3));
    │ │ │  in particular, h^0(I_{S,P^5}(3)) is minimal
    │ │ │  h^0(N_{S,P^5}) + 27 = 54
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │  o2 : ProjectiveVariety, surface in PP^9 (subvariety of codimension 4 in G)
    │ │ │  
    │ │ │  i3 : X = specialGushelMukaiFourfold S;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, GM fourfold containing a surface of degree 3 and sectional genus 0
    │ │ │  
    │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 3.58482s (cpu); 2.29779s (thread); 0s (gc)
    │ │ │ + -- used 3.88488s (cpu); 2.65346s (thread); 0s (gc)
    │ │ │  S: cubic surface in PP^8 cut out by 7 hypersurfaces of degrees (1,1,1,1,2,2,2)
    │ │ │  X: GM fourfold containing S
    │ │ │  Y: del Pezzo fivefold containing X
    │ │ │  h^1(N_{S,Y}) = 0
    │ │ │  h^0(N_{S,Y}) = 11
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(O_Y(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,Y}(2)) is minimal
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize__Fano__Fourfold.out
    │ │ │ @@ -6,15 +6,15 @@
    │ │ │  
    │ │ │  i3 : ? X
    │ │ │  
    │ │ │  o3 = 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees
    │ │ │       1^2 2^5
    │ │ │  
    │ │ │  i4 : time parametrizeFanoFourfold X
    │ │ │ - -- used 1.60219s (cpu); 0.786489s (thread); 0s (gc)
    │ │ │ + -- used 1.93441s (cpu); 0.853836s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = multi-rational map consisting of one single rational map
    │ │ │       source variety: PP^4
    │ │ │       target variety: 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees 1^2 2^5 
    │ │ │       dominance: true
    │ │ │       degree: 1
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold.out
    │ │ │ @@ -7,22 +7,22 @@
    │ │ │  o3 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i4 : X = projectiveVariety ideal(x_1^2*x_3+x_0*x_2*x_3-6*x_1*x_2*x_3-x_0*x_3^2-4*x_1*x_3^2-3*x_2*x_3^2+2*x_0^2*x_4-10*x_0*x_1*x_4+13*x_1^2*x_4-x_0*x_2*x_4-3*x_1*x_2*x_4+3*x_2^2*x_4+14*x_0*x_3*x_4-8*x_1*x_3*x_4-4*x_3^2*x_4+x_0*x_4^2-7*x_1*x_4^2+4*x_2*x_4^2-2*x_3*x_4^2-2*x_4^3-x_0*x_1*x_5+x_1^2*x_5+2*x_1*x_2*x_5+3*x_0*x_3*x_5+3*x_1*x_3*x_5-x_3^2*x_5-x_0*x_4*x_5-4*x_1*x_4*x_5+3*x_2*x_4*x_5+2*x_3*x_4*x_5-x_1*x_5^2);
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, hypersurface in PP^5
    │ │ │  
    │ │ │  i5 : time F = specialCubicFourfold(S,X,NumNodes=>3);
    │ │ │ - -- used 0.00810325s (cpu); 0.00921378s (thread); 0s (gc)
    │ │ │ + -- used 0.011925s (cpu); 0.00957372s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, cubic fourfold containing a surface of degree 7 and sectional genus 0
    │ │ │  
    │ │ │  i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 0.45505s (cpu); 0.218762s (thread); 0s (gc)
    │ │ │ + -- used 1.08712s (cpu); 0.253896s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special cubic fourfold of discriminant 26
    │ │ │       containing a 3-nodal surface of degree 7 and sectional genus 0
    │ │ │       cut out by 13 hypersurfaces of degree 3
    │ │ │  
    │ │ │  i7 : assert(F == X)
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold.out
    │ │ │ @@ -7,22 +7,22 @@
    │ │ │  o3 : ProjectiveVariety, surface in PP^8
    │ │ │  
    │ │ │  i4 : X = projectiveVariety ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2-x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4-2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2-3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8);
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, 4-dimensional subvariety of PP^8
    │ │ │  
    │ │ │  i5 : time F = specialGushelMukaiFourfold(S,X);
    │ │ │ - -- used 2.32867s (cpu); 1.58006s (thread); 0s (gc)
    │ │ │ + -- used 1.9805s (cpu); 1.60842s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │  
    │ │ │  i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 5.28433s (cpu); 3.03701s (thread); 0s (gc)
    │ │ │ + -- used 6.68105s (cpu); 3.50205s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special Gushel-Mukai fourfold of discriminant 10(')
    │ │ │       containing a surface in PP^8 of degree 2 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2)
    │ │ │       and with class in G(1,4) given by s_(3,1)+s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 1 of Table 1 in arXiv:2002.07026)
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__Grass.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  i2 : X = specialGushelMukaiFourfold(ideal(x_6-x_7, x_5, x_3-x_4, x_1, x_0-x_4, x_2*x_7-x_4*x_8), ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2-x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4-2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2-3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8));
    │ │ │  
    │ │ │  o2 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │  
    │ │ │  i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.33255s (cpu); 2.58524s (thread); 0s (gc)
    │ │ │ + -- used 5.72025s (cpu); 3.05895s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 4-dimensional subvariety of PP^8 cut out by 6 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__Grass_lp__Embedded__Projective__Variety_rp.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  i2 : X = projectiveVariety ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8);
    │ │ │  
    │ │ │  o2 : ProjectiveVariety, 5-dimensional subvariety of PP^8
    │ │ │  
    │ │ │  i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.71829s (cpu); 2.90582s (thread); 0s (gc)
    │ │ │ + -- used 5.84565s (cpu); 3.19503s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 5-dimensional subvariety of PP^8 cut out by 5 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_unirational__Parametrization.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i3 : X = specialCubicFourfold S;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
    │ │ │  
    │ │ │  i4 : time f = unirationalParametrization X;
    │ │ │ - -- used 1.21143s (cpu); 0.601591s (thread); 0s (gc)
    │ │ │ + -- used 1.45756s (cpu); 0.7087s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : MultirationalMap (rational map from PP^4 to X)
    │ │ │  
    │ │ │  i5 : degreeSequence f
    │ │ │  
    │ │ │  o5 = {[10]}
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__Castelnuovo__Surface.html
    │ │ │ @@ -106,15 +106,15 @@
    │ │ │       cut out by 5 hypersurfaces of degree 1
    │ │ │       (This is a classical example of rational fourfold)
    │ │ │
    │ │ │
    i3 : time U' = associatedCastelnuovoSurface X;
    │ │ │ - -- used 2.03131s (cpu); 1.06704s (thread); 0s (gc)
    │ │ │ + -- used 2.68326s (cpu); 1.1113s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, Castelnuovo surface associated to X
    │ │ │
    │ │ │
    i4 : (mu,U,C,f) = building U';
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ o2 = Complete intersection of 3 quadrics in PP^7 │ │ │ │ of discriminant 31 = det| 8 1 | │ │ │ │ | 1 4 | │ │ │ │ containing a surface of degree 1 and sectional genus 0 │ │ │ │ cut out by 5 hypersurfaces of degree 1 │ │ │ │ (This is a classical example of rational fourfold) │ │ │ │ i3 : time U' = associatedCastelnuovoSurface X; │ │ │ │ - -- used 2.03131s (cpu); 1.06704s (thread); 0s (gc) │ │ │ │ + -- used 2.68326s (cpu); 1.1113s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, Castelnuovo surface associated to X │ │ │ │ i4 : (mu,U,C,f) = building U'; │ │ │ │ i5 : ? mu │ │ │ │ │ │ │ │ o5 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 5-dimensional subvariety of PP^7 cut out by 2 │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ containing a (smooth) surface of degree 4 and sectional genus 0 │ │ │ cut out by 6 hypersurfaces of degree 2 │ │ │
    │ │ │
    i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 1.94686s (cpu); 1.08366s (thread); 0s (gc)
    │ │ │ + -- used 2.78912s (cpu); 1.15029s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │
    │ │ │
    i4 : (mu,U,C,f) = building U';
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ sectional genus 0 │ │ │ │ i2 : describe X │ │ │ │ │ │ │ │ o2 = Special cubic fourfold of discriminant 14 │ │ │ │ containing a (smooth) surface of degree 4 and sectional genus 0 │ │ │ │ cut out by 6 hypersurfaces of degree 2 │ │ │ │ i3 : time U' = associatedK3surface X; │ │ │ │ - -- used 1.94686s (cpu); 1.08366s (thread); 0s (gc) │ │ │ │ + -- used 2.78912s (cpu); 1.15029s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, K3 surface associated to X │ │ │ │ i4 : (mu,U,C,f) = building U'; │ │ │ │ i5 : ? mu │ │ │ │ │ │ │ │ o5 = multi-rational map consisting of one single rational map │ │ │ │ source variety: PP^5 │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ @@ -107,15 +107,15 @@ │ │ │ Type: ordinary │ │ │ (case 1 of Table 1 in arXiv:2002.07026) │ │ │
    │ │ │
    i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 6.18185s (cpu); 3.89639s (thread); 0s (gc)
    │ │ │ + -- used 8.18715s (cpu); 4.60455s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │
    │ │ │
    i4 : (mu,U,C,f) = building U';
    │ │ │ ├── html2text {} │ │ │ │ @@ -43,15 +43,15 @@ │ │ │ │ o2 = Special Gushel-Mukai fourfold of discriminant 10(') │ │ │ │ containing a surface in PP^8 of degree 2 and sectional genus 0 │ │ │ │ cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2) │ │ │ │ and with class in G(1,4) given by s_(3,1)+s_(2,2) │ │ │ │ Type: ordinary │ │ │ │ (case 1 of Table 1 in arXiv:2002.07026) │ │ │ │ i3 : time U' = associatedK3surface X; │ │ │ │ - -- used 6.18185s (cpu); 3.89639s (thread); 0s (gc) │ │ │ │ + -- used 8.18715s (cpu); 4.60455s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, K3 surface associated to X │ │ │ │ i4 : (mu,U,C,f) = building U'; │ │ │ │ i5 : ? mu │ │ │ │ │ │ │ │ o5 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 5-dimensional subvariety of PP^8 cut out by 5 │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.html │ │ │ @@ -91,15 +91,15 @@ │ │ │ containing a 3-nodal surface of degree 7 and sectional genus 0 │ │ │ cut out by 13 hypersurfaces of degree 3 │ │ │
    │ │ │
    i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 3.88786s (cpu); 2.13569s (thread); 0s (gc)
    │ │ │ + -- used 3.32346s (cpu); 2.05847s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the cubic map and passing through a general point: 8
    │ │ │  number 2-secant lines = 7
    │ │ │  number 5-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 5-secant conics to surface in PP^5
    │ │ │
    │ │ │
    i5 : time C = f p; -- 5-secant conic to the surface
    │ │ │ - -- used 0.372515s (cpu); 0.293278s (thread); 0s (gc)
    │ │ │ + -- used 0.359777s (cpu); 0.28534s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, curve in PP^5
    │ │ │
    │ │ │
    i6 : assert(dim C == 1 and degree C == 2 and dim(C * surface X) == 0 and degree(C * surface X) == 5 and isSubset(p, C))
    │ │ │ ├── html2text {} │ │ │ │ @@ -30,28 +30,28 @@ │ │ │ │ sectional genus 0 │ │ │ │ i2 : describe X │ │ │ │ │ │ │ │ o2 = Special cubic fourfold of discriminant 26 │ │ │ │ containing a 3-nodal surface of degree 7 and sectional genus 0 │ │ │ │ cut out by 13 hypersurfaces of degree 3 │ │ │ │ i3 : time f = detectCongruence(X,Verbose=>true); │ │ │ │ - -- used 3.88786s (cpu); 2.13569s (thread); 0s (gc) │ │ │ │ + -- used 3.32346s (cpu); 2.05847s (thread); 0s (gc) │ │ │ │ number lines contained in the image of the cubic map and passing through a │ │ │ │ general point: 8 │ │ │ │ number 2-secant lines = 7 │ │ │ │ number 5-secant conics = 1 │ │ │ │ │ │ │ │ o3 : Congruence of 5-secant conics to surface in PP^5 │ │ │ │ i4 : p := point ambient X -- random point on P^5 │ │ │ │ │ │ │ │ o4 = point of coordinates [15092, -9738, -3620, -15181, 12688, 1] │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, a point in PP^5 │ │ │ │ i5 : time C = f p; -- 5-secant conic to the surface │ │ │ │ - -- used 0.372515s (cpu); 0.293278s (thread); 0s (gc) │ │ │ │ + -- used 0.359777s (cpu); 0.28534s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, curve in PP^5 │ │ │ │ i6 : assert(dim C == 1 and degree C == 2 and dim(C * surface X) == 0 and degree │ │ │ │ (C * surface X) == 5 and isSubset(p, C)) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_t_e_c_t_C_o_n_g_r_u_e_n_c_e_(_S_p_e_c_i_a_l_G_u_s_h_e_l_M_u_k_a_i_F_o_u_r_f_o_l_d_,_Z_Z_) -- detect and return a │ │ │ │ congruence of (2e-1)-secant curves of degree e inside a del Pezzo │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.html │ │ │ @@ -94,15 +94,15 @@ │ │ │ Type: ordinary │ │ │ (case 17 of Table 1 in arXiv:2002.07026) │ │ │
    │ │ │
    i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 12.44s (cpu); 6.54122s (thread); 0s (gc)
    │ │ │ + -- used 22.0305s (cpu); 7.90313s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the quadratic map and passing through a general point: 7
    │ │ │  number 1-secant lines = 6
    │ │ │  number 3-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 3-secant conics to surface in a fivefold in PP^8
    │ │ │
    │ │ │
    i6 : time C = f p; -- 3-secant conic to the surface
    │ │ │ - -- used 0.442939s (cpu); 0.267302s (thread); 0s (gc)
    │ │ │ + -- used 0.571613s (cpu); 0.296546s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : ProjectiveVariety, curve in PP^8 (subvariety of codimension 4 in Y)
    │ │ │
    │ │ │
    i7 : S = surface X;
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -36,15 +36,15 @@
    │ │ │ │  o2 = Special Gushel-Mukai fourfold of discriminant 20
    │ │ │ │       containing a surface in PP^8 of degree 9 and sectional genus 2
    │ │ │ │       cut out by 19 hypersurfaces of degree 2
    │ │ │ │       and with class in G(1,4) given by 6*s_(3,1)+3*s_(2,2)
    │ │ │ │       Type: ordinary
    │ │ │ │       (case 17 of Table 1 in arXiv:2002.07026)
    │ │ │ │  i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ │ - -- used 12.44s (cpu); 6.54122s (thread); 0s (gc)
    │ │ │ │ + -- used 22.0305s (cpu); 7.90313s (thread); 0s (gc)
    │ │ │ │  number lines contained in the image of the quadratic map and passing through a
    │ │ │ │  general point: 7
    │ │ │ │  number 1-secant lines = 6
    │ │ │ │  number 3-secant conics = 1
    │ │ │ │  
    │ │ │ │  o3 : Congruence of 3-secant conics to surface in a fivefold in PP^8
    │ │ │ │  i4 : Y = ambientFivefold X; -- del Pezzo fivefold containing X
    │ │ │ │ @@ -53,15 +53,15 @@
    │ │ │ │  i5 : p := point Y -- random point on Y
    │ │ │ │  
    │ │ │ │  o5 = point of coordinates [7214, -1460, 7057, -2440, 15907, -14345, -5937,
    │ │ │ │  13402, 1]
    │ │ │ │  
    │ │ │ │  o5 : ProjectiveVariety, a point in PP^8
    │ │ │ │  i6 : time C = f p; -- 3-secant conic to the surface
    │ │ │ │ - -- used 0.442939s (cpu); 0.267302s (thread); 0s (gc)
    │ │ │ │ + -- used 0.571613s (cpu); 0.296546s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 : ProjectiveVariety, curve in PP^8 (subvariety of codimension 4 in Y)
    │ │ │ │  i7 : S = surface X;
    │ │ │ │  
    │ │ │ │  o7 : ProjectiveVariety, surface in PP^8 (subvariety of codimension 3 in Y)
    │ │ │ │  i8 : assert(dim C == 1 and degree C == 2 and dim(C*S) == 0 and degree(C*S) == 3
    │ │ │ │  and isSubset(p,C) and isSubset(C,Y))
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Cubic__Fourfold_rp.html
    │ │ │ @@ -80,15 +80,15 @@
    │ │ │  
    │ │ │  o1 : ProjectiveVariety, cubic fourfold containing a surface of degree 5 and sectional genus 1
    │ │ │
    │ │ │
    i2 : time discriminant X
    │ │ │ - -- used 0.455756s (cpu); 0.177026s (thread); 0s (gc)
    │ │ │ + -- used 0.833404s (cpu); 0.138254s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 14
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ thanks to the functions _E_u_l_e_r_C_h_a_r_a_c_t_e_r_i_s_t_i_c and _E_u_l_e_r (the option Algorithm │ │ │ │ allows you to select the method). │ │ │ │ i1 : X = specialCubicFourfold "quintic del Pezzo surface"; │ │ │ │ │ │ │ │ o1 : ProjectiveVariety, cubic fourfold containing a surface of degree 5 and │ │ │ │ sectional genus 1 │ │ │ │ i2 : time discriminant X │ │ │ │ - -- used 0.455756s (cpu); 0.177026s (thread); 0s (gc) │ │ │ │ + -- used 0.833404s (cpu); 0.138254s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 14 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_S_p_e_c_i_a_l_G_u_s_h_e_l_M_u_k_a_i_F_o_u_r_f_o_l_d_) -- discriminant of a special │ │ │ │ Gushel-Mukai fourfold │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * discriminant(HodgeSpecialFourfold) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │ o1 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time discriminant X
    │ │ │ - -- used 0.961803s (cpu); 0.441922s (thread); 0s (gc)
    │ │ │ + -- used 1.23064s (cpu); 0.488271s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ the functions _c_y_c_l_e_C_l_a_s_s, _E_u_l_e_r_C_h_a_r_a_c_t_e_r_i_s_t_i_c and _E_u_l_e_r (the option Algorithm │ │ │ │ allows you to select the method). │ │ │ │ i1 : X = specialGushelMukaiFourfold "tau-quadric"; │ │ │ │ │ │ │ │ o1 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and │ │ │ │ sectional genus 0 │ │ │ │ i2 : time discriminant X │ │ │ │ - -- used 0.961803s (cpu); 0.441922s (thread); 0s (gc) │ │ │ │ + -- used 1.23064s (cpu); 0.488271s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 10 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_S_p_e_c_i_a_l_C_u_b_i_c_F_o_u_r_f_o_l_d_) -- discriminant of a special cubic │ │ │ │ fourfold │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_S_p_e_c_i_a_l_G_u_s_h_e_l_M_u_k_a_i_F_o_u_r_f_o_l_d_) -- discriminant of a special │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count.html │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ │ │ o3 : ProjectiveVariety, surface in PP^5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time parameterCount(S,X,Verbose=>true)
    │ │ │ - -- used 0.295634s (cpu); 0.202129s (thread); 0s (gc)
    │ │ │ + -- used 0.474884s (cpu); 0.265972s (thread); 0s (gc)
    │ │ │  S: rational normal curve of degree 5 in PP^5
    │ │ │  X: smooth surface of degree 8 and sectional genus 5 in PP^5 cut out by 3 hypersurfaces of degree 2
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 32
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,P^5}(2)) = 10 = h^0(O_(P^5)(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,P^5}(2)) is minimal
    │ │ │  dim GG(2,9) = 21
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -23,15 +23,15 @@
    │ │ │ │  i1 : K = ZZ/33331; S = PP_K^(1,5);
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, curve in PP^5
    │ │ │ │  i3 : X = random({{2},{2},{2}},S);
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, surface in PP^5
    │ │ │ │  i4 : time parameterCount(S,X,Verbose=>true)
    │ │ │ │ - -- used 0.295634s (cpu); 0.202129s (thread); 0s (gc)
    │ │ │ │ + -- used 0.474884s (cpu); 0.265972s (thread); 0s (gc)
    │ │ │ │  S: rational normal curve of degree 5 in PP^5
    │ │ │ │  X: smooth surface of degree 8 and sectional genus 5 in PP^5 cut out by 3
    │ │ │ │  hypersurfaces of degree 2
    │ │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │ │  h^0(N_{S,P^5}) = 32
    │ │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,P^5}(2)) = 10 = h^0(O_(P^5)(2)) - \chi(O_S(2));
    │ │ │ │  in particular, h^0(I_{S,P^5}(2)) is minimal
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Cubic__Fourfold_rp.html
    │ │ │ @@ -89,15 +89,15 @@
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 0.655776s (cpu); 0.413174s (thread); 0s (gc)
    │ │ │ + -- used 0.730636s (cpu); 0.401387s (thread); 0s (gc)
    │ │ │  S: Veronese surface in PP^5
    │ │ │  X: smooth cubic hypersurface in PP^5
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 27
    │ │ │  h^1(O_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(O_(P^5)(3)) - \chi(O_S(3));
    │ │ │  in particular, h^0(I_{S,P^5}(3)) is minimal
    │ │ │  h^0(N_{S,P^5}) + 27 = 54
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -33,15 +33,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │ │  i3 : X = specialCubicFourfold V;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and
    │ │ │ │  sectional genus 0
    │ │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ │ - -- used 0.655776s (cpu); 0.413174s (thread); 0s (gc)
    │ │ │ │ + -- used 0.730636s (cpu); 0.401387s (thread); 0s (gc)
    │ │ │ │  S: Veronese surface in PP^5
    │ │ │ │  X: smooth cubic hypersurface in PP^5
    │ │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │ │  h^0(N_{S,P^5}) = 27
    │ │ │ │  h^1(O_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(O_(P^5)(3)) - \chi(O_S(3));
    │ │ │ │  in particular, h^0(I_{S,P^5}(3)) is minimal
    │ │ │ │  h^0(N_{S,P^5}) + 27 = 54
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.html
    │ │ │ @@ -98,15 +98,15 @@
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, GM fourfold containing a surface of degree 3 and sectional genus 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 3.58482s (cpu); 2.29779s (thread); 0s (gc)
    │ │ │ + -- used 3.88488s (cpu); 2.65346s (thread); 0s (gc)
    │ │ │  S: cubic surface in PP^8 cut out by 7 hypersurfaces of degrees (1,1,1,1,2,2,2)
    │ │ │  X: GM fourfold containing S
    │ │ │  Y: del Pezzo fivefold containing X
    │ │ │  h^1(N_{S,Y}) = 0
    │ │ │  h^0(N_{S,Y}) = 11
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(O_Y(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,Y}(2)) is minimal
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,15 +35,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, surface in PP^9 (subvariety of codimension 4 in G)
    │ │ │ │  i3 : X = specialGushelMukaiFourfold S;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, GM fourfold containing a surface of degree 3 and
    │ │ │ │  sectional genus 0
    │ │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ │ - -- used 3.58482s (cpu); 2.29779s (thread); 0s (gc)
    │ │ │ │ + -- used 3.88488s (cpu); 2.65346s (thread); 0s (gc)
    │ │ │ │  S: cubic surface in PP^8 cut out by 7 hypersurfaces of degrees (1,1,1,1,2,2,2)
    │ │ │ │  X: GM fourfold containing S
    │ │ │ │  Y: del Pezzo fivefold containing X
    │ │ │ │  h^1(N_{S,Y}) = 0
    │ │ │ │  h^0(N_{S,Y}) = 11
    │ │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(O_Y(2)) - \chi(O_S(2));
    │ │ │ │  in particular, h^0(I_{S,Y}(2)) is minimal
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize__Fano__Fourfold.html
    │ │ │ @@ -88,15 +88,15 @@
    │ │ │  o3 = 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees
    │ │ │       1^2 2^5
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time parametrizeFanoFourfold X
    │ │ │ - -- used 1.60219s (cpu); 0.786489s (thread); 0s (gc)
    │ │ │ + -- used 1.93441s (cpu); 0.853836s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = multi-rational map consisting of one single rational map
    │ │ │       source variety: PP^4
    │ │ │       target variety: 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees 1^2 2^5 
    │ │ │       dominance: true
    │ │ │       degree: 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,15 +29,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, 4-dimensional subvariety of PP^9
    │ │ │ │  i3 : ? X
    │ │ │ │  
    │ │ │ │  o3 = 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees
    │ │ │ │       1^2 2^5
    │ │ │ │  i4 : time parametrizeFanoFourfold X
    │ │ │ │ - -- used 1.60219s (cpu); 0.786489s (thread); 0s (gc)
    │ │ │ │ + -- used 1.93441s (cpu); 0.853836s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = multi-rational map consisting of one single rational map
    │ │ │ │       source variety: PP^4
    │ │ │ │       target variety: 4-dimensional subvariety of PP^9 cut out by 7
    │ │ │ │  hypersurfaces of degrees 1^2 2^5
    │ │ │ │       dominance: true
    │ │ │ │       degree: 1
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold.html
    │ │ │ @@ -95,25 +95,25 @@
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, hypersurface in PP^5
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time F = specialCubicFourfold(S,X,NumNodes=>3);
    │ │ │ - -- used 0.00810325s (cpu); 0.00921378s (thread); 0s (gc)
    │ │ │ + -- used 0.011925s (cpu); 0.00957372s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, cubic fourfold containing a surface of degree 7 and sectional genus 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 0.45505s (cpu); 0.218762s (thread); 0s (gc)
    │ │ │ + -- used 1.08712s (cpu); 0.253896s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special cubic fourfold of discriminant 26
    │ │ │       containing a 3-nodal surface of degree 7 and sectional genus 0
    │ │ │       cut out by 13 hypersurfaces of degree 3
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -115,24 +115,24 @@ │ │ │ │ 3*x_1*x_2*x_4+3*x_2^2*x_4+14*x_0*x_3*x_4-8*x_1*x_3*x_4-4*x_3^2*x_4+x_0*x_4^2- │ │ │ │ 7*x_1*x_4^2+4*x_2*x_4^2-2*x_3*x_4^2-2*x_4^3- │ │ │ │ x_0*x_1*x_5+x_1^2*x_5+2*x_1*x_2*x_5+3*x_0*x_3*x_5+3*x_1*x_3*x_5-x_3^2*x_5- │ │ │ │ x_0*x_4*x_5-4*x_1*x_4*x_5+3*x_2*x_4*x_5+2*x_3*x_4*x_5-x_1*x_5^2); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^5 │ │ │ │ i5 : time F = specialCubicFourfold(S,X,NumNodes=>3); │ │ │ │ - -- used 0.00810325s (cpu); 0.00921378s (thread); 0s (gc) │ │ │ │ + -- used 0.011925s (cpu); 0.00957372s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, cubic fourfold containing a surface of degree 7 and │ │ │ │ sectional genus 0 │ │ │ │ i6 : time describe F │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 0.45505s (cpu); 0.218762s (thread); 0s (gc) │ │ │ │ + -- used 1.08712s (cpu); 0.253896s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = Special cubic fourfold of discriminant 26 │ │ │ │ containing a 3-nodal surface of degree 7 and sectional genus 0 │ │ │ │ cut out by 13 hypersurfaces of degree 3 │ │ │ │ i7 : assert(F == X) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_p_e_c_i_a_l_C_u_b_i_c_F_o_u_r_f_o_l_d_(_E_m_b_e_d_d_e_d_P_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y_) -- random special cubic │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold.html │ │ │ @@ -93,25 +93,25 @@ │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time F = specialGushelMukaiFourfold(S,X);
    │ │ │ - -- used 2.32867s (cpu); 1.58006s (thread); 0s (gc)
    │ │ │ + -- used 1.9805s (cpu); 1.60842s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 5.28433s (cpu); 3.03701s (thread); 0s (gc)
    │ │ │ + -- used 6.68105s (cpu); 3.50205s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special Gushel-Mukai fourfold of discriminant 10(')
    │ │ │       containing a surface in PP^8 of degree 2 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2)
    │ │ │       and with class in G(1,4) given by s_(3,1)+s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 1 of Table 1 in arXiv:2002.07026)
    │ │ │ ├── html2text {} │ │ │ │ @@ -33,24 +33,24 @@ │ │ │ │ x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2- │ │ │ │ x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4- │ │ │ │ 2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2- │ │ │ │ 3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^8 │ │ │ │ i5 : time F = specialGushelMukaiFourfold(S,X); │ │ │ │ - -- used 2.32867s (cpu); 1.58006s (thread); 0s (gc) │ │ │ │ + -- used 1.9805s (cpu); 1.60842s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and │ │ │ │ sectional genus 0 │ │ │ │ i6 : time describe F │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 5.28433s (cpu); 3.03701s (thread); 0s (gc) │ │ │ │ + -- used 6.68105s (cpu); 3.50205s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = Special Gushel-Mukai fourfold of discriminant 10(') │ │ │ │ containing a surface in PP^8 of degree 2 and sectional genus 0 │ │ │ │ cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2) │ │ │ │ and with class in G(1,4) given by s_(3,1)+s_(2,2) │ │ │ │ Type: ordinary │ │ │ │ (case 1 of Table 1 in arXiv:2002.07026) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__Grass.html │ │ │ @@ -81,15 +81,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.33255s (cpu); 2.58524s (thread); 0s (gc)
    │ │ │ + -- used 5.72025s (cpu); 3.05895s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 4-dimensional subvariety of PP^8 cut out by 6 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ o2 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and │ │ │ │ sectional genus 0 │ │ │ │ i3 : time toGrass X │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 4.33255s (cpu); 2.58524s (thread); 0s (gc) │ │ │ │ + -- used 5.72025s (cpu); 3.05895s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 4-dimensional subvariety of PP^8 cut out by 6 hypersurfaces │ │ │ │ of degree 2 │ │ │ │ target variety: GG(1,4) ⊂ PP^9 │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from X to GG(1,4)) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__Grass_lp__Embedded__Projective__Variety_rp.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.71829s (cpu); 2.90582s (thread); 0s (gc)
    │ │ │ + -- used 5.84565s (cpu); 3.19503s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 5-dimensional subvariety of PP^8 cut out by 5 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -25,15 +25,15 @@ │ │ │ │ │ │ │ │ o2 : ProjectiveVariety, 5-dimensional subvariety of PP^8 │ │ │ │ i3 : time toGrass X │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 4.71829s (cpu); 2.90582s (thread); 0s (gc) │ │ │ │ + -- used 5.84565s (cpu); 3.19503s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 5-dimensional subvariety of PP^8 cut out by 5 │ │ │ │ hypersurfaces of degree 2 │ │ │ │ target variety: GG(1,4) ⊂ PP^9 │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from X to GG(1,4)) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_unirational__Parametrization.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ │ │ │ o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time f = unirationalParametrization X;
    │ │ │ - -- used 1.21143s (cpu); 0.601591s (thread); 0s (gc)
    │ │ │ + -- used 1.45756s (cpu); 0.7087s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : MultirationalMap (rational map from PP^4 to X)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : degreeSequence f
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,15 +18,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │ │  i3 : X = specialCubicFourfold S;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and
    │ │ │ │  sectional genus 0
    │ │ │ │  i4 : time f = unirationalParametrization X;
    │ │ │ │ - -- used 1.21143s (cpu); 0.601591s (thread); 0s (gc)
    │ │ │ │ + -- used 1.45756s (cpu); 0.7087s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : MultirationalMap (rational map from PP^4 to X)
    │ │ │ │  i5 : degreeSequence f
    │ │ │ │  
    │ │ │ │  o5 = {[10]}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ ├── ./usr/share/doc/Macaulay2/StatGraphs/example-output/_graph_lp__Mixed__Graph_rp.out
    │ │ │ @@ -30,15 +30,15 @@
    │ │ │                                b => {a, c}
    │ │ │                                c => {b}
    │ │ │  
    │ │ │  o2 : HashTable
    │ │ │  
    │ │ │  i3 : keys (graph G)
    │ │ │  
    │ │ │ -o3 = {Graph, Bigraph, Digraph}
    │ │ │ +o3 = {Digraph, Graph, Bigraph}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : (graph G)#Bigraph === bigraph G
    │ │ │  
    │ │ │  o4 = true
    │ │ ├── ./usr/share/doc/Macaulay2/StatGraphs/example-output/_to__String_lp__Mixed__Graph_rp.out
    │ │ │ @@ -11,12 +11,12 @@
    │ │ │                  Graph => Graph{1 => {3}}
    │ │ │                                 3 => {1}
    │ │ │  
    │ │ │  o1 : MixedGraph
    │ │ │  
    │ │ │  i2 : toString G
    │ │ │  
    │ │ │ -o2 = new HashTable from {Digraph => digraph ({1, 2, 3}, {{1, 2}, {2, 3}}),
    │ │ │ -     Graph => graph ({3, 1}, {{1, 3}}), Bigraph => bigraph ({3, 4, 2}, {{4,
    │ │ │ -     3}, {4, 2}})}
    │ │ │ +o2 = new HashTable from {Graph => graph ({3, 1}, {{1, 3}}), Bigraph =>
    │ │ │ +     bigraph ({3, 4, 2}, {{4, 3}, {4, 2}}), Digraph => digraph ({1, 2, 3},
    │ │ │ +     {{1, 2}, {2, 3}})}
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/StatGraphs/html/_graph_lp__Mixed__Graph_rp.html
    │ │ │ @@ -116,15 +116,15 @@
    │ │ │  o2 : HashTable
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : keys (graph G)
    │ │ │  
    │ │ │ -o3 = {Graph, Bigraph, Digraph}
    │ │ │ +o3 = {Digraph, Graph, Bigraph}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : (graph G)#Bigraph === bigraph G
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,15 +46,15 @@
    │ │ │ │                 Graph => Graph{a => {b}   }
    │ │ │ │                                b => {a, c}
    │ │ │ │                                c => {b}
    │ │ │ │  
    │ │ │ │  o2 : HashTable
    │ │ │ │  i3 : keys (graph G)
    │ │ │ │  
    │ │ │ │ -o3 = {Graph, Bigraph, Digraph}
    │ │ │ │ +o3 = {Digraph, Graph, Bigraph}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : (graph G)#Bigraph === bigraph G
    │ │ │ │  
    │ │ │ │  o4 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _M_i_x_e_d_G_r_a_p_h -- a graph that has undirected, directed and bidirected edges
    │ │ ├── ./usr/share/doc/Macaulay2/StatGraphs/html/_to__String_lp__Mixed__Graph_rp.html
    │ │ │ @@ -88,17 +88,17 @@
    │ │ │  o1 : MixedGraph
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : toString G
    │ │ │  
    │ │ │ -o2 = new HashTable from {Digraph => digraph ({1, 2, 3}, {{1, 2}, {2, 3}}),
    │ │ │ -     Graph => graph ({3, 1}, {{1, 3}}), Bigraph => bigraph ({3, 4, 2}, {{4,
    │ │ │ -     3}, {4, 2}})}
    │ │ │ +o2 = new HashTable from {Graph => graph ({3, 1}, {{1, 3}}), Bigraph => │ │ │ + bigraph ({3, 4, 2}, {{4, 3}, {4, 2}}), Digraph => digraph ({1, 2, 3}, │ │ │ + {{1, 2}, {2, 3}})} │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -23,17 +23,17 @@ │ │ │ │ 3 => {} │ │ │ │ Graph => Graph{1 => {3}} │ │ │ │ 3 => {1} │ │ │ │ │ │ │ │ o1 : MixedGraph │ │ │ │ i2 : toString G │ │ │ │ │ │ │ │ -o2 = new HashTable from {Digraph => digraph ({1, 2, 3}, {{1, 2}, {2, 3}}), │ │ │ │ - Graph => graph ({3, 1}, {{1, 3}}), Bigraph => bigraph ({3, 4, 2}, {{4, │ │ │ │ - 3}, {4, 2}})} │ │ │ │ +o2 = new HashTable from {Graph => graph ({3, 1}, {{1, 3}}), Bigraph => │ │ │ │ + bigraph ({3, 4, 2}, {{4, 3}, {4, 2}}), Digraph => digraph ({1, 2, 3}, │ │ │ │ + {{1, 2}, {2, 3}})} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _M_i_x_e_d_G_r_a_p_h -- a graph that has undirected, directed and bidirected edges │ │ │ │ * _n_e_t_(_M_i_x_e_d_G_r_a_p_h_) -- print a mixed graph as a net │ │ │ │ * _S_t_r_i_n_g -- the class of all strings │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _t_o_S_t_r_i_n_g_(_M_i_x_e_d_G_r_a_p_h_) -- print a mixed graph as a string │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Style/example-output/_generate__Grammar.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 3455701143666534588 │ │ │ │ │ │ i1 : outfile = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10069-0/0 │ │ │ +o1 = /tmp/M2-10109-0/0 │ │ │ │ │ │ i2 : template = outfile | ".in" │ │ │ │ │ │ -o2 = /tmp/M2-10069-0/0.in │ │ │ +o2 = /tmp/M2-10109-0/0.in │ │ │ │ │ │ i3 : template << "@M2BANNER@" << endl << endl; │ │ │ │ │ │ i4 : template << "This is an example file for the generateGrammar method!"; │ │ │ │ │ │ i5 : template << endl; │ │ │ │ │ │ @@ -30,15 +30,15 @@ │ │ │ String regex: @M2STRINGS@ │ │ │ List of keywords: { │ │ │ @M2KEYWORDS@ │ │ │ } │ │ │ │ │ │ │ │ │ i11 : generateGrammar(template, outfile, x -> demark(",\n ", x)) │ │ │ - -- generating /tmp/M2-10069-0/0 │ │ │ + -- generating /tmp/M2-10109-0/0 │ │ │ │ │ │ i12 : get outfile │ │ │ │ │ │ o12 = Auto-generated for Macaulay2-1.25.11. Do not modify this file manually. │ │ │ │ │ │ This is an example file for the generateGrammar method! │ │ │ String regex: "///\\(/?/?[^/]\\|\\(//\\)*////[^/]\\)*\\(//\\)*///" │ │ ├── ./usr/share/doc/Macaulay2/Style/html/_generate__Grammar.html │ │ │ @@ -82,22 +82,22 @@ │ │ │

      The function demarkf indicates how the elements of each of the lists will be demarked in the resulting file. The file outfile will then be generated, replacing each of these strings as indicated above.

      │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -143,15 +143,15 @@ │ │ │ @M2KEYWORDS@ │ │ │ } │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : outfile = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10069-0/0
    │ │ │ +o1 = /tmp/M2-10109-0/0 │ │ │
    │ │ │
    i2 : template = outfile | ".in"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10069-0/0.in
    │ │ │ +o2 = /tmp/M2-10109-0/0.in │ │ │
    │ │ │
    i3 : template << "@M2BANNER@" << endl << endl;
    │ │ │
    │ │ │
    i11 : generateGrammar(template, outfile, x -> demark(",\n    ", x))
    │ │ │ - -- generating /tmp/M2-10069-0/0
    │ │ │ + -- generating /tmp/M2-10109-0/0 │ │ │
    │ │ │
    i12 : get outfile
    │ │ │  
    │ │ │  o12 = Auto-generated for Macaulay2-1.25.11. Do not modify this file manually.
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -26,18 +26,18 @@
    │ │ │ │      * @M2CONSTANTS@, for a list of Macaulay2 symbols and packages.
    │ │ │ │      * @M2STRINGS@, for a regular expression that matches Macaulay2 strings.
    │ │ │ │  The function demarkf indicates how the elements of each of the lists will be
    │ │ │ │  demarked in the resulting file. The file outfile will then be generated,
    │ │ │ │  replacing each of these strings as indicated above.
    │ │ │ │  i1 : outfile = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10069-0/0
    │ │ │ │ +o1 = /tmp/M2-10109-0/0
    │ │ │ │  i2 : template = outfile | ".in"
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-10069-0/0.in
    │ │ │ │ +o2 = /tmp/M2-10109-0/0.in
    │ │ │ │  i3 : template << "@M2BANNER@" << endl << endl;
    │ │ │ │  i4 : template << "This is an example file for the generateGrammar method!";
    │ │ │ │  i5 : template << endl;
    │ │ │ │  i6 : template << "String regex: @M2STRINGS@" << endl;
    │ │ │ │  i7 : template << "List of keywords: {" << endl;
    │ │ │ │  i8 : template << "    @M2KEYWORDS@" << endl;
    │ │ │ │  i9 : template << "}" << endl << close;
    │ │ │ │ @@ -47,15 +47,15 @@
    │ │ │ │  
    │ │ │ │        This is an example file for the generateGrammar method!
    │ │ │ │        String regex: @M2STRINGS@
    │ │ │ │        List of keywords: {
    │ │ │ │            @M2KEYWORDS@
    │ │ │ │        }
    │ │ │ │  i11 : generateGrammar(template, outfile, x -> demark(",\n    ", x))
    │ │ │ │ - -- generating /tmp/M2-10069-0/0
    │ │ │ │ + -- generating /tmp/M2-10109-0/0
    │ │ │ │  i12 : get outfile
    │ │ │ │  
    │ │ │ │  o12 = Auto-generated for Macaulay2-1.25.11. Do not modify this file manually.
    │ │ │ │  
    │ │ │ │        This is an example file for the generateGrammar method!
    │ │ │ │        String regex: "///\\(/?/?[^/]\\|\\(//\\)*////[^/]\\)*\\(//\\)*///"
    │ │ │ │        List of keywords: {
    │ │ ├── ./usr/share/doc/Macaulay2/SubalgebraBases/dump/rawdocumentation.dump
    │ │ │ @@ -1,8 +1,8 @@
    │ │ │ -# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Fri Nov 14 16:08:08 2025
    │ │ │ +# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Fri Nov 14 16:08:07 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │  #:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=24
    │ │ │  c2FnYmkoLi4uLFN0cmF0ZWd5PT4uLi4p
    │ │ ├── ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_symbolic__Power.out
    │ │ │ @@ -31,15 +31,15 @@
    │ │ │  o5 : Ideal of QQ[x..z]
    │ │ │  
    │ │ │  i6 : isHomogeneous P
    │ │ │  
    │ │ │  o6 = false
    │ │ │  
    │ │ │  i7 : time symbolicPower(P,4);
    │ │ │ - -- used 0.257575s (cpu); 0.158536s (thread); 0s (gc)
    │ │ │ + -- used 0.328369s (cpu); 0.189759s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of QQ[x..z]
    │ │ │  
    │ │ │  i8 : Q = ker map(QQ[t],QQ[x,y,z, Degrees => {3,4,5}],{t^3,t^4,t^5})
    │ │ │  
    │ │ │               2         3         2     2
    │ │ │  o8 = ideal (y  - x*z, x  - y*z, x y - z )
    │ │ │ @@ -47,12 +47,12 @@
    │ │ │  o8 : Ideal of QQ[x..z]
    │ │ │  
    │ │ │  i9 : isHomogeneous Q
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : time symbolicPower(Q,4);
    │ │ │ - -- used 0.0335686s (cpu); 0.0335728s (thread); 0s (gc)
    │ │ │ + -- used 0.0396778s (cpu); 0.0396804s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of QQ[x..z]
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/SymbolicPowers/html/_symbolic__Power.html
    │ │ │ @@ -141,15 +141,15 @@
    │ │ │  
    │ │ │  o6 = false
    │ │ │
    │ │ │
    i7 : time symbolicPower(P,4);
    │ │ │ - -- used 0.257575s (cpu); 0.158536s (thread); 0s (gc)
    │ │ │ + -- used 0.328369s (cpu); 0.189759s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of QQ[x..z]
    │ │ │
    │ │ │
    i8 : Q = ker map(QQ[t],QQ[x,y,z, Degrees => {3,4,5}],{t^3,t^4,t^5})
    │ │ │ @@ -166,15 +166,15 @@
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    │ │ │
    i10 : time symbolicPower(Q,4);
    │ │ │ - -- used 0.0335686s (cpu); 0.0335728s (thread); 0s (gc)
    │ │ │ + -- used 0.0396778s (cpu); 0.0396804s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of QQ[x..z]
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -59,28 +59,28 @@ │ │ │ │ o5 = ideal (y - x*z, x y - z , x - y*z) │ │ │ │ │ │ │ │ o5 : Ideal of QQ[x..z] │ │ │ │ i6 : isHomogeneous P │ │ │ │ │ │ │ │ o6 = false │ │ │ │ i7 : time symbolicPower(P,4); │ │ │ │ - -- used 0.257575s (cpu); 0.158536s (thread); 0s (gc) │ │ │ │ + -- used 0.328369s (cpu); 0.189759s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : Ideal of QQ[x..z] │ │ │ │ i8 : Q = ker map(QQ[t],QQ[x,y,z, Degrees => {3,4,5}],{t^3,t^4,t^5}) │ │ │ │ │ │ │ │ 2 3 2 2 │ │ │ │ o8 = ideal (y - x*z, x - y*z, x y - z ) │ │ │ │ │ │ │ │ o8 : Ideal of QQ[x..z] │ │ │ │ i9 : isHomogeneous Q │ │ │ │ │ │ │ │ o9 = true │ │ │ │ i10 : time symbolicPower(Q,4); │ │ │ │ - -- used 0.0335686s (cpu); 0.0335728s (thread); 0s (gc) │ │ │ │ + -- used 0.0396778s (cpu); 0.0396804s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 : Ideal of QQ[x..z] │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_y_m_b_P_o_w_e_r_P_r_i_m_e_P_o_s_C_h_a_r │ │ │ │ ********** WWaayyss ttoo uussee ssyymmbboolliiccPPoowweerr:: ********** │ │ │ │ * symbolicPower(Ideal,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_beilinson__Window.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ o3 = 0 <-- E <-- 0 │ │ │ │ │ │ -1 0 1 │ │ │ │ │ │ o3 : ChainComplex │ │ │ │ │ │ i4 : time T=tateExtension W; │ │ │ - -- used 0.118011s (cpu); 0.118013s (thread); 0s (gc) │ │ │ + -- used 0.136264s (cpu); 0.13464s (thread); 0s (gc) │ │ │ │ │ │ i5 : cohomologyMatrix(T,-{3,3},{3,3}) │ │ │ │ │ │ o5 = | 8h 4h 0 4 8 12 16 | │ │ │ | 6h 3h 0 3 6 9 12 | │ │ │ | 4h 2h 0 2 4 6 8 | │ │ │ | 2h h 0 1 2 3 4 | │ │ ├── ./usr/share/doc/Macaulay2/TateOnProducts/html/_beilinson__Window.html │ │ │ @@ -92,15 +92,15 @@ │ │ │ │ │ │ o3 : ChainComplex │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time T=tateExtension W;
    │ │ │ - -- used 0.118011s (cpu); 0.118013s (thread); 0s (gc)
    │ │ │ + -- used 0.136264s (cpu); 0.13464s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : cohomologyMatrix(T,-{3,3},{3,3})
    │ │ │  
    │ │ │  o5 = | 8h  4h  0 4  8  12 16 |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -23,15 +23,15 @@
    │ │ │ │               1
    │ │ │ │  o3 = 0  <-- E  <-- 0
    │ │ │ │  
    │ │ │ │       -1     0      1
    │ │ │ │  
    │ │ │ │  o3 : ChainComplex
    │ │ │ │  i4 : time T=tateExtension W;
    │ │ │ │ - -- used 0.118011s (cpu); 0.118013s (thread); 0s (gc)
    │ │ │ │ + -- used 0.136264s (cpu); 0.13464s (thread); 0s (gc)
    │ │ │ │  i5 : cohomologyMatrix(T,-{3,3},{3,3})
    │ │ │ │  
    │ │ │ │  o5 = | 8h  4h  0 4  8  12 16 |
    │ │ │ │       | 6h  3h  0 3  6  9  12 |
    │ │ │ │       | 4h  2h  0 2  4  6  8  |
    │ │ │ │       | 2h  h   0 1  2  3  4  |
    │ │ │ │       | 0   0   0 0  0  0  0  |
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Root.out
    │ │ │ @@ -63,20 +63,20 @@
    │ │ │  o15 : Ideal of R
    │ │ │  
    │ │ │  i16 : I3 = ideal(x^50*y^50*z^50);
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │  
    │ │ │  i17 : time J1 = frobeniusRoot(1, {8, 10, 12}, {I1, I2, I3});
    │ │ │ - -- used 0.852713s (cpu); 0.64916s (thread); 0s (gc)
    │ │ │ + -- used 1.00292s (cpu); 0.729848s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 : Ideal of R
    │ │ │  
    │ │ │  i18 : time J2 = frobeniusRoot(1, I1^8*I2^10*I3^12);
    │ │ │ - -- used 2.97145s (cpu); 2.57894s (thread); 0s (gc)
    │ │ │ + -- used 2.86138s (cpu); 2.34632s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 : Ideal of R
    │ │ │  
    │ │ │  i19 : J1 == J2
    │ │ │  
    │ │ │  o19 = true
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__Cohen__Macaulay.out
    │ │ │ @@ -7,20 +7,20 @@
    │ │ │  i3 : g = map(T, S, {x^3, x^2*y, x*y^2, y^3});
    │ │ │  
    │ │ │  o3 : RingMap T <-- S
    │ │ │  
    │ │ │  i4 : R = S/(ker g);
    │ │ │  
    │ │ │  i5 : time isCohenMacaulay(R)
    │ │ │ - -- used 0.00319701s (cpu); 0.00319364s (thread); 0s (gc)
    │ │ │ + -- used 0.00230175s (cpu); 0.00229704s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = true
    │ │ │  
    │ │ │  i6 : time isCohenMacaulay(R, AtOrigin => true)
    │ │ │ - -- used 0.00756402s (cpu); 0.00756525s (thread); 0s (gc)
    │ │ │ + -- used 0.00574147s (cpu); 0.0057473s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : R = QQ[x,y,u,v]/(x*u, x*v, y*u, y*v);
    │ │ │  
    │ │ │  i8 : isCohenMacaulay(R)
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Injective.out
    │ │ │ @@ -60,49 +60,49 @@
    │ │ │  i19 : R = ZZ/5[x,y,z]/(y^2*z + x*y*z-x^3)
    │ │ │  
    │ │ │  o19 = R
    │ │ │  
    │ │ │  o19 : QuotientRing
    │ │ │  
    │ │ │  i20 : time isFInjective(R)
    │ │ │ - -- used 0.026s (cpu); 0.0259991s (thread); 0s (gc)
    │ │ │ + -- used 0.0315033s (cpu); 0.0315024s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = true
    │ │ │  
    │ │ │  i21 : time isFInjective(R, CanonicalStrategy => null)
    │ │ │ - -- used 2.29738s (cpu); 1.38959s (thread); 0s (gc)
    │ │ │ + -- used 2.68289s (cpu); 1.44861s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │  
    │ │ │  i22 : R = ZZ/7[x,y,z]/((x-1)^5 + (y+1)^5 + z^5);
    │ │ │  
    │ │ │  i23 : time isFInjective(R)
    │ │ │ - -- used 0.146035s (cpu); 0.0901309s (thread); 0s (gc)
    │ │ │ + -- used 0.172549s (cpu); 0.105137s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = false
    │ │ │  
    │ │ │  i24 : time isFInjective(R, AtOrigin => true)
    │ │ │ - -- used 0.15607s (cpu); 0.0971744s (thread); 0s (gc)
    │ │ │ + -- used 0.186482s (cpu); 0.112334s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │  
    │ │ │  i25 : S = ZZ/3[xs, ys, zs, xt, yt, zt];
    │ │ │  
    │ │ │  i26 : EP1 = ZZ/3[x,y,z,s,t]/(x^3 + y^2*z - x*z^2);
    │ │ │  
    │ │ │  i27 : f = map(EP1, S, {x*s, y*s, z*s, x*t, y*t, z*t});
    │ │ │  
    │ │ │  o27 : RingMap EP1 <-- S
    │ │ │  
    │ │ │  i28 : R = S/(ker f);
    │ │ │  
    │ │ │  i29 : time isFInjective(R)
    │ │ │ - -- used 0.875806s (cpu); 0.712389s (thread); 0s (gc)
    │ │ │ + -- used 1.02627s (cpu); 0.814609s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = false
    │ │ │  
    │ │ │  i30 : time isFInjective(R, AssumeCM => true)
    │ │ │ - -- used 0.362851s (cpu); 0.249689s (thread); 0s (gc)
    │ │ │ + -- used 0.413764s (cpu); 0.269554s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │  
    │ │ │  i31 :
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Regular.out
    │ │ │ @@ -80,19 +80,19 @@
    │ │ │  
    │ │ │  o25 : Ideal of S
    │ │ │  
    │ │ │  i26 : debugLevel = 1;
    │ │ │  
    │ │ │  i27 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 1)
    │ │ │  isFRegular: This ring does not appear to be F-regular.  Increasing DepthOfSearch will let the function search more deeply.
    │ │ │ - -- used 0.124736s (cpu); 0.0763298s (thread); 0s (gc)
    │ │ │ + -- used 0.147464s (cpu); 0.0804069s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = false
    │ │ │  
    │ │ │  i28 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 2)
    │ │ │ - -- used 0.229358s (cpu); 0.169449s (thread); 0s (gc)
    │ │ │ + -- used 0.265402s (cpu); 0.192155s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │  
    │ │ │  i29 : debugLevel = 0;
    │ │ │  
    │ │ │  i30 :
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Ideal.out
    │ │ │ @@ -81,21 +81,21 @@
    │ │ │  i22 : testIdeal({3/4, 2/3, 3/5}, L)
    │ │ │  
    │ │ │  o22 = ideal (y, x)
    │ │ │  
    │ │ │  o22 : Ideal of R
    │ │ │  
    │ │ │  i23 : time testIdeal({3/4, 2/3, 3/5}, L)
    │ │ │ - -- used 0.331885s (cpu); 0.176341s (thread); 0s (gc)
    │ │ │ + -- used 0.420985s (cpu); 0.212681s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = ideal (y, x)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │  
    │ │ │  i24 : time testIdeal(1/60, x^45*y^40*(x + y)^36)
    │ │ │ - -- used 0.371358s (cpu); 0.249305s (thread); 0s (gc)
    │ │ │ + -- used 0.507802s (cpu); 0.292404s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = ideal (y, x)
    │ │ │  
    │ │ │  o24 : Ideal of R
    │ │ │  
    │ │ │  i25 :
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Root.html
    │ │ │ @@ -226,23 +226,23 @@
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : time J1 = frobeniusRoot(1, {8, 10, 12}, {I1, I2, I3});
    │ │ │ - -- used 0.852713s (cpu); 0.64916s (thread); 0s (gc)
    │ │ │ + -- used 1.00292s (cpu); 0.729848s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : time J2 = frobeniusRoot(1, I1^8*I2^10*I3^12);
    │ │ │ - -- used 2.97145s (cpu); 2.57894s (thread); 0s (gc)
    │ │ │ + -- used 2.86138s (cpu); 2.34632s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i19 : J1 == J2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -106,19 +106,19 @@
    │ │ │ │  i15 : I2 = ideal(x^20*y^100, x + z^100);
    │ │ │ │  
    │ │ │ │  o15 : Ideal of R
    │ │ │ │  i16 : I3 = ideal(x^50*y^50*z^50);
    │ │ │ │  
    │ │ │ │  o16 : Ideal of R
    │ │ │ │  i17 : time J1 = frobeniusRoot(1, {8, 10, 12}, {I1, I2, I3});
    │ │ │ │ - -- used 0.852713s (cpu); 0.64916s (thread); 0s (gc)
    │ │ │ │ + -- used 1.00292s (cpu); 0.729848s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o17 : Ideal of R
    │ │ │ │  i18 : time J2 = frobeniusRoot(1, I1^8*I2^10*I3^12);
    │ │ │ │ - -- used 2.97145s (cpu); 2.57894s (thread); 0s (gc)
    │ │ │ │ + -- used 2.86138s (cpu); 2.34632s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o18 : Ideal of R
    │ │ │ │  i19 : J1 == J2
    │ │ │ │  
    │ │ │ │  o19 = true
    │ │ │ │  For legacy reasons, the last ideal in the list can be specified separately,
    │ │ │ │  using frobeniusRoot(e, \{a_1,\ldots,a_n\}, \{I_1,\ldots,I_n\}, I). The last
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_is__Cohen__Macaulay.html
    │ │ │ @@ -96,23 +96,23 @@
    │ │ │              
    │ │ │                
    i4 : R = S/(ker g);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time isCohenMacaulay(R)
    │ │ │ - -- used 0.00319701s (cpu); 0.00319364s (thread); 0s (gc)
    │ │ │ + -- used 0.00230175s (cpu); 0.00229704s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time isCohenMacaulay(R, AtOrigin => true)
    │ │ │ - -- used 0.00756402s (cpu); 0.00756525s (thread); 0s (gc)
    │ │ │ + -- used 0.00574147s (cpu); 0.0057473s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -23,19 +23,19 @@ │ │ │ │ i1 : T = ZZ/5[x,y]; │ │ │ │ i2 : S = ZZ/5[a,b,c,d]; │ │ │ │ i3 : g = map(T, S, {x^3, x^2*y, x*y^2, y^3}); │ │ │ │ │ │ │ │ o3 : RingMap T <-- S │ │ │ │ i4 : R = S/(ker g); │ │ │ │ i5 : time isCohenMacaulay(R) │ │ │ │ - -- used 0.00319701s (cpu); 0.00319364s (thread); 0s (gc) │ │ │ │ + -- used 0.00230175s (cpu); 0.00229704s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = true │ │ │ │ i6 : time isCohenMacaulay(R, AtOrigin => true) │ │ │ │ - -- used 0.00756402s (cpu); 0.00756525s (thread); 0s (gc) │ │ │ │ + -- used 0.00574147s (cpu); 0.0057473s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : R = QQ[x,y,u,v]/(x*u, x*v, y*u, y*v); │ │ │ │ i8 : isCohenMacaulay(R) │ │ │ │ │ │ │ │ o8 = false │ │ │ │ The function isCohenMacaulay considers $R$ as a quotient of a polynomial ring, │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Injective.html │ │ │ @@ -214,23 +214,23 @@ │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i20 : time isFInjective(R)
    │ │ │ - -- used 0.026s (cpu); 0.0259991s (thread); 0s (gc)
    │ │ │ + -- used 0.0315033s (cpu); 0.0315024s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = true
    │ │ │
    │ │ │
    i21 : time isFInjective(R, CanonicalStrategy => null)
    │ │ │ - -- used 2.29738s (cpu); 1.38959s (thread); 0s (gc)
    │ │ │ + -- used 2.68289s (cpu); 1.44861s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │
    │ │ │
    │ │ │

    If the option AtOrigin (default value false) is set to true, isFInjective will only check $F$-injectivity at the origin. Otherwise, it will check $F$-injectivity globally. Note that checking $F$-injectivity at the origin can be slower than checking it globally. Consider the following example of a non-$F$-injective ring.

    │ │ │ @@ -240,23 +240,23 @@ │ │ │ │ │ │
    i22 : R = ZZ/7[x,y,z]/((x-1)^5 + (y+1)^5 + z^5);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i23 : time isFInjective(R)
    │ │ │ - -- used 0.146035s (cpu); 0.0901309s (thread); 0s (gc)
    │ │ │ + -- used 0.172549s (cpu); 0.105137s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i24 : time isFInjective(R, AtOrigin => true)
    │ │ │ - -- used 0.15607s (cpu); 0.0971744s (thread); 0s (gc)
    │ │ │ + -- used 0.186482s (cpu); 0.112334s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    If the option AssumeCM (default value false) is set to true, then isFInjective only checks the Frobenius action on top cohomology (which is typically much faster). Note that it can give an incorrect answer if the non-injective Frobenius occurs in a lower degree. Consider the example of the cone over a supersingular elliptic curve times $\mathbb{P}^1$.

    │ │ │ @@ -283,23 +283,23 @@ │ │ │ │ │ │
    i28 : R = S/(ker f);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : time isFInjective(R)
    │ │ │ - -- used 0.875806s (cpu); 0.712389s (thread); 0s (gc)
    │ │ │ + -- used 1.02627s (cpu); 0.814609s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i30 : time isFInjective(R, AssumeCM => true)
    │ │ │ - -- used 0.362851s (cpu); 0.249689s (thread); 0s (gc)
    │ │ │ + -- used 0.413764s (cpu); 0.269554s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    If the option AssumedReduced is set to true (its default behavior), then the bottom local cohomology is avoided (this means the Frobenius action on the top potentially nonzero Ext is not computed).

    │ │ │ ├── html2text {} │ │ │ │ @@ -81,52 +81,52 @@ │ │ │ │ much faster. │ │ │ │ i19 : R = ZZ/5[x,y,z]/(y^2*z + x*y*z-x^3) │ │ │ │ │ │ │ │ o19 = R │ │ │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ i20 : time isFInjective(R) │ │ │ │ - -- used 0.026s (cpu); 0.0259991s (thread); 0s (gc) │ │ │ │ + -- used 0.0315033s (cpu); 0.0315024s (thread); 0s (gc) │ │ │ │ │ │ │ │ o20 = true │ │ │ │ i21 : time isFInjective(R, CanonicalStrategy => null) │ │ │ │ - -- used 2.29738s (cpu); 1.38959s (thread); 0s (gc) │ │ │ │ + -- used 2.68289s (cpu); 1.44861s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = true │ │ │ │ If the option AtOrigin (default value false) is set to true, isFInjective will │ │ │ │ only check $F$-injectivity at the origin. Otherwise, it will check $F$- │ │ │ │ injectivity globally. Note that checking $F$-injectivity at the origin can be │ │ │ │ slower than checking it globally. Consider the following example of a non-$F$- │ │ │ │ injective ring. │ │ │ │ i22 : R = ZZ/7[x,y,z]/((x-1)^5 + (y+1)^5 + z^5); │ │ │ │ i23 : time isFInjective(R) │ │ │ │ - -- used 0.146035s (cpu); 0.0901309s (thread); 0s (gc) │ │ │ │ + -- used 0.172549s (cpu); 0.105137s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = false │ │ │ │ i24 : time isFInjective(R, AtOrigin => true) │ │ │ │ - -- used 0.15607s (cpu); 0.0971744s (thread); 0s (gc) │ │ │ │ + -- used 0.186482s (cpu); 0.112334s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = true │ │ │ │ If the option AssumeCM (default value false) is set to true, then isFInjective │ │ │ │ only checks the Frobenius action on top cohomology (which is typically much │ │ │ │ faster). Note that it can give an incorrect answer if the non-injective │ │ │ │ Frobenius occurs in a lower degree. Consider the example of the cone over a │ │ │ │ supersingular elliptic curve times $\mathbb{P}^1$. │ │ │ │ i25 : S = ZZ/3[xs, ys, zs, xt, yt, zt]; │ │ │ │ i26 : EP1 = ZZ/3[x,y,z,s,t]/(x^3 + y^2*z - x*z^2); │ │ │ │ i27 : f = map(EP1, S, {x*s, y*s, z*s, x*t, y*t, z*t}); │ │ │ │ │ │ │ │ o27 : RingMap EP1 <-- S │ │ │ │ i28 : R = S/(ker f); │ │ │ │ i29 : time isFInjective(R) │ │ │ │ - -- used 0.875806s (cpu); 0.712389s (thread); 0s (gc) │ │ │ │ + -- used 1.02627s (cpu); 0.814609s (thread); 0s (gc) │ │ │ │ │ │ │ │ o29 = false │ │ │ │ i30 : time isFInjective(R, AssumeCM => true) │ │ │ │ - -- used 0.362851s (cpu); 0.249689s (thread); 0s (gc) │ │ │ │ + -- used 0.413764s (cpu); 0.269554s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = true │ │ │ │ If the option AssumedReduced is set to true (its default behavior), then the │ │ │ │ bottom local cohomology is avoided (this means the Frobenius action on the top │ │ │ │ potentially nonzero Ext is not computed). │ │ │ │ If the option AssumeNormal (default value false) is set to true, then the │ │ │ │ bottom two local cohomology modules (or, rather, their duals) need not be │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Regular.html │ │ │ @@ -273,23 +273,23 @@ │ │ │
    i26 : debugLevel = 1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i27 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 1)
    │ │ │  isFRegular: This ring does not appear to be F-regular.  Increasing DepthOfSearch will let the function search more deeply.
    │ │ │ - -- used 0.124736s (cpu); 0.0763298s (thread); 0s (gc)
    │ │ │ + -- used 0.147464s (cpu); 0.0804069s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 2)
    │ │ │ - -- used 0.229358s (cpu); 0.169449s (thread); 0s (gc)
    │ │ │ + -- used 0.265402s (cpu); 0.192155s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : debugLevel = 0;
    │ │ │ ├── html2text {} │ │ │ │ @@ -114,19 +114,19 @@ │ │ │ │ i25 : I = minors(2, matrix {{x, y, z}, {u, v, w}}); │ │ │ │ │ │ │ │ o25 : Ideal of S │ │ │ │ i26 : debugLevel = 1; │ │ │ │ i27 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 1) │ │ │ │ isFRegular: This ring does not appear to be F-regular. Increasing │ │ │ │ DepthOfSearch will let the function search more deeply. │ │ │ │ - -- used 0.124736s (cpu); 0.0763298s (thread); 0s (gc) │ │ │ │ + -- used 0.147464s (cpu); 0.0804069s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = false │ │ │ │ i28 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 2) │ │ │ │ - -- used 0.229358s (cpu); 0.169449s (thread); 0s (gc) │ │ │ │ + -- used 0.265402s (cpu); 0.192155s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = true │ │ │ │ i29 : debugLevel = 0; │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_e_s_t_I_d_e_a_l -- compute a test ideal in a Q-Gorenstein ring │ │ │ │ * _i_s_F_R_a_t_i_o_n_a_l -- whether a ring is F-rational │ │ │ │ ********** WWaayyss ttoo uussee iissFFRReegguullaarr:: ********** │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Ideal.html │ │ │ @@ -255,25 +255,25 @@ │ │ │
    │ │ │

    It is often more efficient to pass a list, as opposed to finding a common denominator and passing a single element, since testIdeal can do things in a more intelligent way for such a list.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i23 : time testIdeal({3/4, 2/3, 3/5}, L)
    │ │ │ - -- used 0.331885s (cpu); 0.176341s (thread); 0s (gc)
    │ │ │ + -- used 0.420985s (cpu); 0.212681s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = ideal (y, x)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │
    │ │ │
    i24 : time testIdeal(1/60, x^45*y^40*(x + y)^36)
    │ │ │ - -- used 0.371358s (cpu); 0.249305s (thread); 0s (gc)
    │ │ │ + -- used 0.507802s (cpu); 0.292404s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = ideal (y, x)
    │ │ │  
    │ │ │  o24 : Ideal of R
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -100,21 +100,21 @@ │ │ │ │ o22 = ideal (y, x) │ │ │ │ │ │ │ │ o22 : Ideal of R │ │ │ │ It is often more efficient to pass a list, as opposed to finding a common │ │ │ │ denominator and passing a single element, since testIdeal can do things in a │ │ │ │ more intelligent way for such a list. │ │ │ │ i23 : time testIdeal({3/4, 2/3, 3/5}, L) │ │ │ │ - -- used 0.331885s (cpu); 0.176341s (thread); 0s (gc) │ │ │ │ + -- used 0.420985s (cpu); 0.212681s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = ideal (y, x) │ │ │ │ │ │ │ │ o23 : Ideal of R │ │ │ │ i24 : time testIdeal(1/60, x^45*y^40*(x + y)^36) │ │ │ │ - -- used 0.371358s (cpu); 0.249305s (thread); 0s (gc) │ │ │ │ + -- used 0.507802s (cpu); 0.292404s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = ideal (y, x) │ │ │ │ │ │ │ │ o24 : Ideal of R │ │ │ │ The option AssumeDomain (default value false) is used when finding a test │ │ │ │ element. The option FrobeniusRootStrategy (default value Substitution) is │ │ │ │ passed to internal _f_r_o_b_e_n_i_u_s_R_o_o_t calls. │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Minimal.out │ │ │ @@ -2,17 +2,15 @@ │ │ │ │ │ │ i1 : S = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2", Minimal=>true) │ │ │ │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null} │ │ │ - ((0, 1), 0) => null │ │ │ - ((0, 1), 1) => null │ │ │ +o3 = LineageTable{((0, 2), 0) => null} │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_minimize_lp__Lineage__Table_rp.out │ │ │ @@ -2,18 +2,16 @@ │ │ │ │ │ │ i1 : R = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2") │ │ │ │ │ │ - 3 │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => -c } │ │ │ - 2 │ │ │ - ((0, 1), 0) => -a*c │ │ │ + 3 │ │ │ +o3 = LineageTable{((0, 2), 0) => -c } │ │ │ 2 │ │ │ ((1, 2), 0) => -c │ │ │ 2 │ │ │ (0, 1) => a c │ │ │ 2 │ │ │ (0, 2) => b*c │ │ │ (1, 2) => -a*c │ │ │ @@ -24,16 +22,15 @@ │ │ │ 2 │ │ │ 2 => b │ │ │ │ │ │ o3 : LineageTable │ │ │ │ │ │ i4 : minimize T │ │ │ │ │ │ -o4 = LineageTable{(((0, 1), 0), 0) => null} │ │ │ - ((0, 1), 0) => null │ │ │ +o4 = LineageTable{((0, 2), 0) => null} │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_reduce.out │ │ │ @@ -2,18 +2,16 @@ │ │ │ │ │ │ i1 : R = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = tgb ideal "abc+c2,ab2-b3c+ac,b2" │ │ │ │ │ │ - 3 │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => -c } │ │ │ - 2 │ │ │ - ((0, 1), 0) => -a*c │ │ │ + 3 │ │ │ +o3 = LineageTable{((0, 2), 0) => -c } │ │ │ 2 │ │ │ ((1, 2), 0) => -c │ │ │ 2 │ │ │ (0, 1) => a c │ │ │ 2 │ │ │ (0, 2) => b*c │ │ │ (1, 2) => -a*c │ │ │ @@ -24,16 +22,15 @@ │ │ │ 2 │ │ │ 2 => b │ │ │ │ │ │ o3 : LineageTable │ │ │ │ │ │ i4 : reduce T │ │ │ │ │ │ -o4 = LineageTable{(((0, 1), 0), 0) => null} │ │ │ - ((0, 1), 0) => null │ │ │ +o4 = LineageTable{((0, 2), 0) => null} │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb.out │ │ │ @@ -6,84 +6,34 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : allowableThreads = 4; │ │ │ │ │ │ i4 : H = tgb I │ │ │ │ │ │ - 2 13 │ │ │ -o4 = LineageTable{((((((0, 1), 2), 1), 2), 2), 2) => 9y z } │ │ │ - 2 12 │ │ │ - ((((((0, 1), 2), 1), 3), 2), 2) => 9y z │ │ │ - 2 8 │ │ │ - ((((((0, 1), 2), 2), ((0, 1), 2)), 2), 2) => 9y z │ │ │ - 2 11 │ │ │ - ((((((0, 1), 2), 2), 1), 2), 2) => 9y z │ │ │ - 2 10 │ │ │ - ((((((0, 1), 2), 2), 2), 2), 2) => 9y z │ │ │ - 3 11 │ │ │ - (((((0, 1), 2), 1), 2), 2) => 9y z │ │ │ - 3 10 │ │ │ - (((((0, 1), 2), 1), 3), 2) => 9y z │ │ │ - 3 6 │ │ │ - (((((0, 1), 2), 2), ((0, 1), 2)), 2) => 9y z │ │ │ - 3 9 │ │ │ - (((((0, 1), 2), 2), 1), 2) => 9y z │ │ │ - 3 8 │ │ │ - (((((0, 1), 2), 2), 2), 2) => 9y z │ │ │ - 2 25 │ │ │ - (((((0, 1), 3), 1), 2), 2) => 9y z │ │ │ - 2 15 │ │ │ - (((((0, 1), 3), 2), 2), 2) => 9y z │ │ │ - 4 7 4 6 │ │ │ - ((((0, 1), 2), 1), ((0, 1), 3)) => - 16y z + 40y z │ │ │ - 4 9 4 7 │ │ │ - ((((0, 1), 2), 1), 2) => 6y z + 30y z │ │ │ - 4 8 4 7 │ │ │ - ((((0, 1), 2), 1), 3) => 27y z + 30y z │ │ │ - 4 4 │ │ │ - ((((0, 1), 2), 2), ((0, 1), 2)) => 13y z │ │ │ - 4 7 │ │ │ - ((((0, 1), 2), 2), 1) => -45y z │ │ │ - 4 6 │ │ │ - ((((0, 1), 2), 2), 2) => 9y z │ │ │ - 3 12 │ │ │ - ((((0, 1), 3), ((0, 1), 2)), 2) => 9y z │ │ │ - 3 23 │ │ │ - ((((0, 1), 3), 1), 2) => 9y z │ │ │ - 3 13 │ │ │ - ((((0, 1), 3), 2), 2) => 9y z │ │ │ - 6 4 4 6 │ │ │ - (((0, 1), 2), 1) => 19y z - 30y z │ │ │ - 5 4 4 7 │ │ │ - (((0, 1), 2), 2) => 37y z + 9y z │ │ │ - 4 14 4 11 │ │ │ - (((0, 1), 2), 3) => 27y z - 16y z │ │ │ - 4 10 4 7 │ │ │ - (((0, 1), 3), ((0, 1), 2)) => 17y z - 40y z │ │ │ - 4 21 4 18 │ │ │ - (((0, 1), 3), 1) => - 37y z - 8y z │ │ │ - 4 11 4 10 │ │ │ - (((0, 1), 3), 2) => 44y z + 4y z │ │ │ - 5 5 4 4 │ │ │ - ((0, 1), 2) => - 24y z + 9y z │ │ │ - 7 2 4 4 │ │ │ - ((0, 1), 3) => 28y z - 9y z │ │ │ - 2 5 │ │ │ - ((0, 2), (((((0, 1), 2), 2), ((0, 1), 2)), 2)) => -13y z │ │ │ - 2 4 │ │ │ - ((0, 2), ((((0, 1), 2), 2), ((0, 1), 2))) => 41y z │ │ │ - 2 7 │ │ │ - ((0, 2), 2) => 9y z │ │ │ + 2 7 2 4 │ │ │ +o4 = LineageTable{((0, 1), 2) => 50y z + 19y z } │ │ │ + 2 6 2 4 │ │ │ + ((0, 1), 3) => - 23y z - 19y z │ │ │ + 2 5 2 4 │ │ │ + ((0, 2), (0, 1)) => 40y z + 22y z │ │ │ + 2 5 2 4 │ │ │ + ((0, 2), 3) => - 19y z + 35y z │ │ │ + 5 │ │ │ + ((0, 3), (0, 1)) => 46y z │ │ │ + 2 4 │ │ │ + ((1, 2), 2) => 30y z │ │ │ 5 2 3 4 │ │ │ (0, 1) => - 25y z - 19y z │ │ │ - 3 5 2 4 │ │ │ - (0, 2) => - 24y z + 9y z │ │ │ - 5 3 4 │ │ │ - (0, 3) => 28y z - 24y z │ │ │ + 5 3 2 4 │ │ │ + (0, 2) => 5y z + 9y z │ │ │ + 5 2 5 │ │ │ + (0, 3) => 5y z + 28y z │ │ │ + 5 6 4 5 │ │ │ + (1, 2) => 19y z - 45y z │ │ │ 3 4 2 4 │ │ │ (2, 3) => 7y z - 9y z │ │ │ 2 │ │ │ 0 => 2x + 10y z │ │ │ 2 3 │ │ │ 1 => 8x y + 10x*y*z │ │ │ 3 2 3 │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/___Minimal.html │ │ │ @@ -73,17 +73,15 @@ │ │ │
    i2 : allowableThreads= 2;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2", Minimal=>true)
    │ │ │  
    │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ -                  ((0, 1), 0) => null
    │ │ │ -                  ((0, 1), 1) => null
    │ │ │ +o3 = LineageTable{((0, 2), 0) => null}
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │                    (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -12,17 +12,15 @@
    │ │ │ │  Gr\"obner basis is minimized. Lineages of non-minimal Gr\"obner basis elements
    │ │ │ │  that were added to the basis during the distributed computation are saved, with
    │ │ │ │  the corresponding entry in the table being null.
    │ │ │ │  i1 : S = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2", Minimal=>true)
    │ │ │ │  
    │ │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ │ -                  ((0, 1), 0) => null
    │ │ │ │ -                  ((0, 1), 1) => null
    │ │ │ │ +o3 = LineageTable{((0, 2), 0) => null}
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │                    (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_minimize_lp__Lineage__Table_rp.html
    │ │ │ @@ -82,18 +82,16 @@
    │ │ │                
    i2 : allowableThreads= 2;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │  
    │ │ │ -                                        3
    │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => -c }
    │ │ │ -                                     2
    │ │ │ -                  ((0, 1), 0) => -a*c
    │ │ │ +                                   3
    │ │ │ +o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │                                     2
    │ │ │                    ((1, 2), 0) => -c
    │ │ │                               2
    │ │ │                    (0, 1) => a c
    │ │ │                                 2
    │ │ │                    (0, 2) => b*c
    │ │ │                    (1, 2) => -a*c
    │ │ │ @@ -107,16 +105,15 @@
    │ │ │  o3 : LineageTable
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : minimize T
    │ │ │  
    │ │ │ -o4 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ -                  ((0, 1), 0) => null
    │ │ │ +o4 = LineageTable{((0, 2), 0) => null}
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │                    (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,18 +19,16 @@
    │ │ │ │  minimal generators of the ideal generated by the leading terms of the values of
    │ │ │ │  H. If the values of H constitute a Gr\"obner basis of the ideal they generate,
    │ │ │ │  this method returns a minimal Gr\"obner basis.
    │ │ │ │  i1 : R = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │ │  
    │ │ │ │ -                                        3
    │ │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => -c }
    │ │ │ │ -                                     2
    │ │ │ │ -                  ((0, 1), 0) => -a*c
    │ │ │ │ +                                   3
    │ │ │ │ +o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ │                                     2
    │ │ │ │                    ((1, 2), 0) => -c
    │ │ │ │                               2
    │ │ │ │                    (0, 1) => a c
    │ │ │ │                                 2
    │ │ │ │                    (0, 2) => b*c
    │ │ │ │                    (1, 2) => -a*c
    │ │ │ │ @@ -40,16 +38,15 @@
    │ │ │ │                    1 => - b c + a*b  + a*c
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ │ │  
    │ │ │ │  o3 : LineageTable
    │ │ │ │  i4 : minimize T
    │ │ │ │  
    │ │ │ │ -o4 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ │ -                  ((0, 1), 0) => null
    │ │ │ │ +o4 = LineageTable{((0, 2), 0) => null}
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │                    (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_reduce.html
    │ │ │ @@ -82,18 +82,16 @@
    │ │ │                
    i2 : allowableThreads= 2;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : T = tgb ideal "abc+c2,ab2-b3c+ac,b2"
    │ │ │  
    │ │ │ -                                        3
    │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => -c }
    │ │ │ -                                     2
    │ │ │ -                  ((0, 1), 0) => -a*c
    │ │ │ +                                   3
    │ │ │ +o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │                                     2
    │ │ │                    ((1, 2), 0) => -c
    │ │ │                               2
    │ │ │                    (0, 1) => a c
    │ │ │                                 2
    │ │ │                    (0, 2) => b*c
    │ │ │                    (1, 2) => -a*c
    │ │ │ @@ -107,16 +105,15 @@
    │ │ │  o3 : LineageTable
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : reduce T
    │ │ │  
    │ │ │ -o4 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ -                  ((0, 1), 0) => null
    │ │ │ +o4 = LineageTable{((0, 2), 0) => null}
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │                    (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,18 +20,16 @@
    │ │ │ │  remainder on the division by the remaining values H.
    │ │ │ │  If values H constitute a Gr\"obner basis of the ideal they generate, this
    │ │ │ │  method returns a reduced Gr\"obner basis.
    │ │ │ │  i1 : R = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = tgb ideal "abc+c2,ab2-b3c+ac,b2"
    │ │ │ │  
    │ │ │ │ -                                        3
    │ │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => -c }
    │ │ │ │ -                                     2
    │ │ │ │ -                  ((0, 1), 0) => -a*c
    │ │ │ │ +                                   3
    │ │ │ │ +o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ │                                     2
    │ │ │ │                    ((1, 2), 0) => -c
    │ │ │ │                               2
    │ │ │ │                    (0, 1) => a c
    │ │ │ │                                 2
    │ │ │ │                    (0, 2) => b*c
    │ │ │ │                    (1, 2) => -a*c
    │ │ │ │ @@ -41,16 +39,15 @@
    │ │ │ │                    1 => - b c + a*b  + a*c
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ │ │  
    │ │ │ │  o3 : LineageTable
    │ │ │ │  i4 : reduce T
    │ │ │ │  
    │ │ │ │ -o4 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ │ -                  ((0, 1), 0) => null
    │ │ │ │ +o4 = LineageTable{((0, 2), 0) => null}
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │                    (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb.html
    │ │ │ @@ -95,84 +95,34 @@
    │ │ │                
    i3 : allowableThreads  = 4;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : H = tgb I
    │ │ │  
    │ │ │ -                                                       2 13
    │ │ │ -o4 = LineageTable{((((((0, 1), 2), 1), 2), 2), 2) => 9y z                  }
    │ │ │ -                                                       2 12
    │ │ │ -                  ((((((0, 1), 2), 1), 3), 2), 2) => 9y z
    │ │ │ -                                                                 2 8
    │ │ │ -                  ((((((0, 1), 2), 2), ((0, 1), 2)), 2), 2) => 9y z
    │ │ │ -                                                       2 11
    │ │ │ -                  ((((((0, 1), 2), 2), 1), 2), 2) => 9y z
    │ │ │ -                                                       2 10
    │ │ │ -                  ((((((0, 1), 2), 2), 2), 2), 2) => 9y z
    │ │ │ -                                                  3 11
    │ │ │ -                  (((((0, 1), 2), 1), 2), 2) => 9y z
    │ │ │ -                                                  3 10
    │ │ │ -                  (((((0, 1), 2), 1), 3), 2) => 9y z
    │ │ │ -                                                            3 6
    │ │ │ -                  (((((0, 1), 2), 2), ((0, 1), 2)), 2) => 9y z
    │ │ │ -                                                  3 9
    │ │ │ -                  (((((0, 1), 2), 2), 1), 2) => 9y z
    │ │ │ -                                                  3 8
    │ │ │ -                  (((((0, 1), 2), 2), 2), 2) => 9y z
    │ │ │ -                                                  2 25
    │ │ │ -                  (((((0, 1), 3), 1), 2), 2) => 9y z
    │ │ │ -                                                  2 15
    │ │ │ -                  (((((0, 1), 3), 2), 2), 2) => 9y z
    │ │ │ -                                                          4 7      4 6
    │ │ │ -                  ((((0, 1), 2), 1), ((0, 1), 3)) => - 16y z  + 40y z
    │ │ │ -                                             4 9      4 7
    │ │ │ -                  ((((0, 1), 2), 1), 2) => 6y z  + 30y z
    │ │ │ -                                              4 8      4 7
    │ │ │ -                  ((((0, 1), 2), 1), 3) => 27y z  + 30y z
    │ │ │ -                                                        4 4
    │ │ │ -                  ((((0, 1), 2), 2), ((0, 1), 2)) => 13y z
    │ │ │ -                                               4 7
    │ │ │ -                  ((((0, 1), 2), 2), 1) => -45y z
    │ │ │ -                                             4 6
    │ │ │ -                  ((((0, 1), 2), 2), 2) => 9y z
    │ │ │ -                                                       3 12
    │ │ │ -                  ((((0, 1), 3), ((0, 1), 2)), 2) => 9y z
    │ │ │ -                                             3 23
    │ │ │ -                  ((((0, 1), 3), 1), 2) => 9y z
    │ │ │ -                                             3 13
    │ │ │ -                  ((((0, 1), 3), 2), 2) => 9y z
    │ │ │ -                                         6 4      4 6
    │ │ │ -                  (((0, 1), 2), 1) => 19y z  - 30y z
    │ │ │ -                                         5 4     4 7
    │ │ │ -                  (((0, 1), 2), 2) => 37y z  + 9y z
    │ │ │ -                                         4 14      4 11
    │ │ │ -                  (((0, 1), 2), 3) => 27y z   - 16y z
    │ │ │ -                                                   4 10      4 7
    │ │ │ -                  (((0, 1), 3), ((0, 1), 2)) => 17y z   - 40y z
    │ │ │ -                                           4 21     4 18
    │ │ │ -                  (((0, 1), 3), 1) => - 37y z   - 8y z
    │ │ │ -                                         4 11     4 10
    │ │ │ -                  (((0, 1), 3), 2) => 44y z   + 4y z
    │ │ │ -                                      5 5     4 4
    │ │ │ -                  ((0, 1), 2) => - 24y z  + 9y z
    │ │ │ -                                    7 2     4 4
    │ │ │ -                  ((0, 1), 3) => 28y z  - 9y z
    │ │ │ -                                                                        2 5
    │ │ │ -                  ((0, 2), (((((0, 1), 2), 2), ((0, 1), 2)), 2)) => -13y z
    │ │ │ -                                                                  2 4
    │ │ │ -                  ((0, 2), ((((0, 1), 2), 2), ((0, 1), 2))) => 41y z
    │ │ │ -                                   2 7
    │ │ │ -                  ((0, 2), 2) => 9y z
    │ │ │ +                                    2 7      2 4
    │ │ │ +o4 = LineageTable{((0, 1), 2) => 50y z  + 19y z      }
    │ │ │ +                                      2 6      2 4
    │ │ │ +                  ((0, 1), 3) => - 23y z  - 19y z
    │ │ │ +                                         2 5      2 4
    │ │ │ +                  ((0, 2), (0, 1)) => 40y z  + 22y z
    │ │ │ +                                      2 5      2 4
    │ │ │ +                  ((0, 2), 3) => - 19y z  + 35y z
    │ │ │ +                                         5
    │ │ │ +                  ((0, 3), (0, 1)) => 46y z
    │ │ │ +                                    2 4
    │ │ │ +                  ((1, 2), 2) => 30y z
    │ │ │                                   5 2      3 4
    │ │ │                    (0, 1) => - 25y z  - 19y z
    │ │ │ -                                 3 5     2 4
    │ │ │ -                  (0, 2) => - 24y z  + 9y z
    │ │ │ -                               5       3 4
    │ │ │ -                  (0, 3) => 28y z - 24y z
    │ │ │ +                              5 3     2 4
    │ │ │ +                  (0, 2) => 5y z  + 9y z
    │ │ │ +                              5 2      5
    │ │ │ +                  (0, 3) => 5y z  + 28y z
    │ │ │ +                               5 6      4 5
    │ │ │ +                  (1, 2) => 19y z  - 45y z
    │ │ │                                3 4     2 4
    │ │ │                    (2, 3) => 7y z  - 9y z
    │ │ │                                 2
    │ │ │                    0 => 2x + 10y z
    │ │ │                           2           3
    │ │ │                    1 => 8x y + 10x*y*z
    │ │ │                             3 2       3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -26,84 +26,34 @@
    │ │ │ │  i2 : I = ideal {2*x + 10*y^2*z, 8*x^2*y + 10*x*y*z^3, 5*x*y^3*z^2 + 9*x*z^3,
    │ │ │ │  9*x*y^3*z + 10*x*y^3};
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : allowableThreads  = 4;
    │ │ │ │  i4 : H = tgb I
    │ │ │ │  
    │ │ │ │ -                                                       2 13
    │ │ │ │ -o4 = LineageTable{((((((0, 1), 2), 1), 2), 2), 2) => 9y z                  }
    │ │ │ │ -                                                       2 12
    │ │ │ │ -                  ((((((0, 1), 2), 1), 3), 2), 2) => 9y z
    │ │ │ │ -                                                                 2 8
    │ │ │ │ -                  ((((((0, 1), 2), 2), ((0, 1), 2)), 2), 2) => 9y z
    │ │ │ │ -                                                       2 11
    │ │ │ │ -                  ((((((0, 1), 2), 2), 1), 2), 2) => 9y z
    │ │ │ │ -                                                       2 10
    │ │ │ │ -                  ((((((0, 1), 2), 2), 2), 2), 2) => 9y z
    │ │ │ │ -                                                  3 11
    │ │ │ │ -                  (((((0, 1), 2), 1), 2), 2) => 9y z
    │ │ │ │ -                                                  3 10
    │ │ │ │ -                  (((((0, 1), 2), 1), 3), 2) => 9y z
    │ │ │ │ -                                                            3 6
    │ │ │ │ -                  (((((0, 1), 2), 2), ((0, 1), 2)), 2) => 9y z
    │ │ │ │ -                                                  3 9
    │ │ │ │ -                  (((((0, 1), 2), 2), 1), 2) => 9y z
    │ │ │ │ -                                                  3 8
    │ │ │ │ -                  (((((0, 1), 2), 2), 2), 2) => 9y z
    │ │ │ │ -                                                  2 25
    │ │ │ │ -                  (((((0, 1), 3), 1), 2), 2) => 9y z
    │ │ │ │ -                                                  2 15
    │ │ │ │ -                  (((((0, 1), 3), 2), 2), 2) => 9y z
    │ │ │ │ -                                                          4 7      4 6
    │ │ │ │ -                  ((((0, 1), 2), 1), ((0, 1), 3)) => - 16y z  + 40y z
    │ │ │ │ -                                             4 9      4 7
    │ │ │ │ -                  ((((0, 1), 2), 1), 2) => 6y z  + 30y z
    │ │ │ │ -                                              4 8      4 7
    │ │ │ │ -                  ((((0, 1), 2), 1), 3) => 27y z  + 30y z
    │ │ │ │ -                                                        4 4
    │ │ │ │ -                  ((((0, 1), 2), 2), ((0, 1), 2)) => 13y z
    │ │ │ │ -                                               4 7
    │ │ │ │ -                  ((((0, 1), 2), 2), 1) => -45y z
    │ │ │ │ -                                             4 6
    │ │ │ │ -                  ((((0, 1), 2), 2), 2) => 9y z
    │ │ │ │ -                                                       3 12
    │ │ │ │ -                  ((((0, 1), 3), ((0, 1), 2)), 2) => 9y z
    │ │ │ │ -                                             3 23
    │ │ │ │ -                  ((((0, 1), 3), 1), 2) => 9y z
    │ │ │ │ -                                             3 13
    │ │ │ │ -                  ((((0, 1), 3), 2), 2) => 9y z
    │ │ │ │ -                                         6 4      4 6
    │ │ │ │ -                  (((0, 1), 2), 1) => 19y z  - 30y z
    │ │ │ │ -                                         5 4     4 7
    │ │ │ │ -                  (((0, 1), 2), 2) => 37y z  + 9y z
    │ │ │ │ -                                         4 14      4 11
    │ │ │ │ -                  (((0, 1), 2), 3) => 27y z   - 16y z
    │ │ │ │ -                                                   4 10      4 7
    │ │ │ │ -                  (((0, 1), 3), ((0, 1), 2)) => 17y z   - 40y z
    │ │ │ │ -                                           4 21     4 18
    │ │ │ │ -                  (((0, 1), 3), 1) => - 37y z   - 8y z
    │ │ │ │ -                                         4 11     4 10
    │ │ │ │ -                  (((0, 1), 3), 2) => 44y z   + 4y z
    │ │ │ │ -                                      5 5     4 4
    │ │ │ │ -                  ((0, 1), 2) => - 24y z  + 9y z
    │ │ │ │ -                                    7 2     4 4
    │ │ │ │ -                  ((0, 1), 3) => 28y z  - 9y z
    │ │ │ │ -                                                                        2 5
    │ │ │ │ -                  ((0, 2), (((((0, 1), 2), 2), ((0, 1), 2)), 2)) => -13y z
    │ │ │ │ -                                                                  2 4
    │ │ │ │ -                  ((0, 2), ((((0, 1), 2), 2), ((0, 1), 2))) => 41y z
    │ │ │ │ -                                   2 7
    │ │ │ │ -                  ((0, 2), 2) => 9y z
    │ │ │ │ +                                    2 7      2 4
    │ │ │ │ +o4 = LineageTable{((0, 1), 2) => 50y z  + 19y z      }
    │ │ │ │ +                                      2 6      2 4
    │ │ │ │ +                  ((0, 1), 3) => - 23y z  - 19y z
    │ │ │ │ +                                         2 5      2 4
    │ │ │ │ +                  ((0, 2), (0, 1)) => 40y z  + 22y z
    │ │ │ │ +                                      2 5      2 4
    │ │ │ │ +                  ((0, 2), 3) => - 19y z  + 35y z
    │ │ │ │ +                                         5
    │ │ │ │ +                  ((0, 3), (0, 1)) => 46y z
    │ │ │ │ +                                    2 4
    │ │ │ │ +                  ((1, 2), 2) => 30y z
    │ │ │ │                                   5 2      3 4
    │ │ │ │                    (0, 1) => - 25y z  - 19y z
    │ │ │ │ -                                 3 5     2 4
    │ │ │ │ -                  (0, 2) => - 24y z  + 9y z
    │ │ │ │ -                               5       3 4
    │ │ │ │ -                  (0, 3) => 28y z - 24y z
    │ │ │ │ +                              5 3     2 4
    │ │ │ │ +                  (0, 2) => 5y z  + 9y z
    │ │ │ │ +                              5 2      5
    │ │ │ │ +                  (0, 3) => 5y z  + 28y z
    │ │ │ │ +                               5 6      4 5
    │ │ │ │ +                  (1, 2) => 19y z  - 45y z
    │ │ │ │                                3 4     2 4
    │ │ │ │                    (2, 3) => 7y z  - 9y z
    │ │ │ │                                 2
    │ │ │ │                    0 => 2x + 10y z
    │ │ │ │                           2           3
    │ │ │ │                    1 => 8x y + 10x*y*z
    │ │ │ │                             3 2       3
    │ │ ├── ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_ed__Deg.out
    │ │ │ @@ -40,15 +40,15 @@
    │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │  ED Degree = 252
    │ │ │  
    │ │ │                         5      4      3      2
    │ │ │  Chern-Mather Class: 20h  + 23h  + 31h  + 28h
    │ │ │ - -- used 1.18281s (cpu); 0.815142s (thread); 0s (gc)
    │ │ │ + -- used 1.38163s (cpu); 0.889385s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 252
    │ │ │  
    │ │ │  o4 : QQ
    │ │ │  
    │ │ │  i5 : time edDeg(A,ForceAmat=>true)
    │ │ │  
    │ │ │ @@ -56,14 +56,14 @@
    │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │  ED Degree = 252
    │ │ │  
    │ │ │                         5      4      3      2
    │ │ │  Chern-Mather Class: 20h  + 23h  + 31h  + 28h
    │ │ │ - -- used 4.85555s (cpu); 3.16599s (thread); 0s (gc)
    │ │ │ + -- used 5.51023s (cpu); 3.38337s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 252
    │ │ │  
    │ │ │  o5 : QQ
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/ToricInvariants/html/_ed__Deg.html
    │ │ │ @@ -131,15 +131,15 @@
    │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │  ED Degree = 252
    │ │ │  
    │ │ │                         5      4      3      2
    │ │ │  Chern-Mather Class: 20h  + 23h  + 31h  + 28h
    │ │ │ - -- used 1.18281s (cpu); 0.815142s (thread); 0s (gc)
    │ │ │ + -- used 1.38163s (cpu); 0.889385s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 252
    │ │ │  
    │ │ │  o4 : QQ
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -150,15 +150,15 @@ │ │ │ The dual variety has degree = 45, and codimension = 1 │ │ │ Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28} │ │ │ Polar Degrees: {45, 98, 81, 28} │ │ │ ED Degree = 252 │ │ │ │ │ │ 5 4 3 2 │ │ │ Chern-Mather Class: 20h + 23h + 31h + 28h │ │ │ - -- used 4.85555s (cpu); 3.16599s (thread); 0s (gc) │ │ │ + -- used 5.51023s (cpu); 3.38337s (thread); 0s (gc) │ │ │ │ │ │ o5 = 252 │ │ │ │ │ │ o5 : QQ
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -66,30 +66,30 @@ │ │ │ │ The dual variety has degree = 45, and codimension = 1 │ │ │ │ Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28} │ │ │ │ Polar Degrees: {45, 98, 81, 28} │ │ │ │ ED Degree = 252 │ │ │ │ │ │ │ │ 5 4 3 2 │ │ │ │ Chern-Mather Class: 20h + 23h + 31h + 28h │ │ │ │ - -- used 1.18281s (cpu); 0.815142s (thread); 0s (gc) │ │ │ │ + -- used 1.38163s (cpu); 0.889385s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 252 │ │ │ │ │ │ │ │ o4 : QQ │ │ │ │ i5 : time edDeg(A,ForceAmat=>true) │ │ │ │ │ │ │ │ The toric variety has degree = 28 │ │ │ │ The dual variety has degree = 45, and codimension = 1 │ │ │ │ Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28} │ │ │ │ Polar Degrees: {45, 98, 81, 28} │ │ │ │ ED Degree = 252 │ │ │ │ │ │ │ │ 5 4 3 2 │ │ │ │ Chern-Mather Class: 20h + 23h + 31h + 28h │ │ │ │ - -- used 4.85555s (cpu); 3.16599s (thread); 0s (gc) │ │ │ │ + -- used 5.51023s (cpu); 3.38337s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 252 │ │ │ │ │ │ │ │ o5 : QQ │ │ │ │ ********** WWaayyss ttoo uussee eeddDDeegg:: ********** │ │ │ │ * edDeg(Matrix) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/example-output/___Triangulations.out │ │ │ @@ -17,15 +17,15 @@ │ │ │ | -1 1 2 -1 -1 1 -1 1 0 0 | │ │ │ | 1 0 -1 0 0 0 0 0 0 0 | │ │ │ │ │ │ 4 10 │ │ │ o2 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i3 : elapsedTime Ts = allTriangulations(A, Fine => true); │ │ │ - -- .14823s elapsed │ │ │ + -- .105402s elapsed │ │ │ │ │ │ i4 : select(Ts, T -> isStar T) │ │ │ │ │ │ o4 = {triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0, │ │ │ ------------------------------------------------------------------------ │ │ │ 1, 6, 7, 9}, {0, 2, 3, 6, 9}, {0, 3, 4, 6, 9}, {0, 3, 4, 8, 9}, {0, 3, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -50,14 +50,14 @@ │ │ │ i7 : T = regularFineTriangulation A │ │ │ │ │ │ o7 = triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0, 1, 6, 7, 9}, {0, 2, 3, 4, 6}, {0, 2, 3, 4, 9}, {0, 2, 4, 6, 9}, {0, 3, 4, 7, 8}, {0, 3, 4, 7, 9}, {0, 3, 5, 7, 8}, {0, 4, 6, 7, 8}, {0, 4, 6, 7, 9}, {0, 5, 6, 7, 8}, {1, 2, 3, 7, 9}, {1, 2, 6, 7, 9}, {2, 3, 4, 7, 8}, {2, 3, 4, 7, 9}, {2, 3, 5, 7, 8}, {2, 4, 6, 7, 8}, {2, 4, 6, 7, 9}, {2, 5, 6, 7, 8}} │ │ │ │ │ │ o7 : Triangulation │ │ │ │ │ │ i8 : elapsedTime Ts2 = generateTriangulations T; │ │ │ - -- 1.22082s elapsed │ │ │ + -- .990971s elapsed │ │ │ │ │ │ i9 : #Ts2 == #Ts │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/example-output/_generate__Triangulations.out │ │ │ @@ -21,87 +21,15 @@ │ │ │ │ │ │ o3 = triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}} │ │ │ │ │ │ o3 : Triangulation │ │ │ │ │ │ i4 : Ts1 = generateTriangulations A -- list of Triangulation's. │ │ │ │ │ │ -o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ +o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -227,275 +155,275 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}} │ │ │ - │ │ │ -o4 : List │ │ │ - │ │ │ -i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ - │ │ │ -o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 3, 5, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 4, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 7}, │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, │ │ │ + {2, 4, 6, 7}}} │ │ │ + │ │ │ +o4 : List │ │ │ + │ │ │ +i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ + │ │ │ +o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, │ │ │ + {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, │ │ │ + {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ + {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 2, 7}, │ │ │ + {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ + {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ + {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, │ │ │ + {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, │ │ │ + {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ + {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ + {0, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ + {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 6}, │ │ │ + {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ + {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ + {1, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, │ │ │ + {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 6, 7}, │ │ │ + {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ + {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ + {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ + {0, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 6}, │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 6}, │ │ │ + {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ + {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ + {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {2, 5, 6, 7}}} │ │ │ - │ │ │ -o5 : List │ │ │ - │ │ │ -i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ - │ │ │ -o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ + {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ + {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ + {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ + {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ + {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ + {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ + {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ + {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ + {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ + {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ + {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ + {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ + {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ + {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ + {1, 4, 5, 7}, {2, 4, 6, 7}}} │ │ │ + │ │ │ +o5 : List │ │ │ + │ │ │ +i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ + │ │ │ +o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -621,93 +549,93 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}} │ │ │ - │ │ │ -o6 : List │ │ │ - │ │ │ -i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ - │ │ │ -o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ + {2, 4, 6, 7}}} │ │ │ + │ │ │ +o6 : List │ │ │ + │ │ │ +i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ + │ │ │ +o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -833,15 +761,87 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}} │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 4, 6, 7}}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : all(Ts4, isFine) │ │ │ │ │ │ o8 = true │ │ │ │ │ │ @@ -858,191 +858,193 @@ │ │ │ o11 = Tally{false => 66} │ │ │ true => 8 │ │ │ │ │ │ o11 : Tally │ │ │ │ │ │ i12 : Ts4/gkzVector │ │ │ │ │ │ - 16 16 4 8 4 20 8 8 4 8 4 8 8 │ │ │ -o12 = {{--, 4, --, -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 20 16 16 4 16 4 4 8 4 16 4 16 │ │ │ - 4, -, --}, {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 4 4 20 16 8 16 4 4 20 4 4 │ │ │ - 4, --, -, -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 16 16 4 4 8 4 4 16 8 16 16 4 │ │ │ - --, 4}, {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 4 8 4 16 4 16 8 8 8 8 8 8 │ │ │ - --, 4, -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 4 20 8 8 16 4 4 16 16 4 4 16 │ │ │ - -}, {4, -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 8 4 4 20 20 4 4 20 20 │ │ │ - --, -, 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 8 16 16 4 4 20 20 4 4 │ │ │ - -}, {-, 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 20 4 8 16 4 4 16 8 4 8 8 20 │ │ │ - --, --, -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 8 4 20 20 4 4 20 4 20 20 4 4 20 │ │ │ - 4}, {-, 8, -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 4 20 4 4 20 20 4 4 20 8 4 4 │ │ │ - --, -, --, -, -, --}, {--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 16 8 4 4 16 16 4 16 16 4 8 4 │ │ │ - --, --}, {-, 8, 4, -, 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 8 8 8 8 8 8 20 4 4 8 8 20 │ │ │ - 4, --, 8, -, -, -}, {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 4 16 4 8 16 4 20 8 8 8 16 4 4 │ │ │ - -}, {-, 8, --, -, 4, -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 8 16 4 16 4 16 4 8 20 8 4 │ │ │ - 8, --, 4, 4, -}, {--, 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 8 8 20 4 4 16 4 16 4 16 20 8 │ │ │ - -}, {-, -, 8, -, 4, --, -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 4 8 20 4 8 8 8 8 8 8 4 20 │ │ │ - -, -, 4, 8, -}, {--, 4, 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 16 4 4 8 8 4 8 8 20 20 4 4 │ │ │ - {--, --, 4, -, 4, -, -, 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 20 4 4 20 4 20 20 4 8 │ │ │ - 4, --, 4}, {--, -, 4, 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, │ │ │ - 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 20 4 8 16 4 16 8 4 4 16 16 8 │ │ │ - 4, -, --, 8, -, -, 4}, {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 8 16 16 4 4 20 20 4 8 8 │ │ │ - -, 4}, {4, -, -, 8, --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 8 8 8 20 8 8 4 16 8 4 16 │ │ │ - -, 8, 8, -, -, -}, {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 8 16 4 16 16 4 16 4 16 4 4 16 │ │ │ - -}, {-, 8, 4, -, --, -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 16 4 16 8 8 8 8 8 8 20 8 8 8 4 │ │ │ - -, --, -, 4, --}, {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 8 4 16 16 20 4 4 20 4 4 16 │ │ │ - {8, -, -, 4, -, --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 16 16 8 16 4 16 4 8 8 20 8 4 │ │ │ - -, --, --, 4}, {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 8 20 8 8 8 4 16 16 4 8 8 20 8 │ │ │ - {4, -, -, 8, --, 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 8 20 8 8 8 8 8 8 8 8 4 16 │ │ │ - 8, 4, -}, {-, 4, 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 4 4 16 20 4 8 8 8 8 4 8 20 8 │ │ │ - --, 4, 8, -, -, --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4}} │ │ │ + 20 4 4 20 8 4 4 16 16 8 4 │ │ │ +o12 = {{--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, --, --}, {-, 8, 4, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 16 16 4 16 16 4 8 4 20 8 8 8 │ │ │ + 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, 4, --, 8, -, -, -}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 8 20 4 4 8 8 20 8 4 16 4 │ │ │ + {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, -}, {-, 8, --, -, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 16 4 20 8 8 8 16 4 4 16 8 16 │ │ │ + -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, 8, --, 4, 4, -}, {--, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 16 4 16 4 8 20 8 4 8 8 8 8 20 │ │ │ + 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, -}, {-, -, 8, -, 4, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 4 16 4 16 4 16 20 8 8 4 8 20 │ │ │ + -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, -, -, 4, 8, -}, {--, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 8 8 8 8 8 4 20 16 16 4 4 8 │ │ │ + 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -, 4, -, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 4 8 8 20 20 4 4 20 20 4 │ │ │ + 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4}, {--, -, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 20 4 20 20 4 8 8 20 4 8 │ │ │ + 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --, 8, -, -, 4}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 4 16 8 4 4 16 16 8 4 4 8 │ │ │ + {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4}, {4, -, -, 8, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 16 4 4 20 20 4 8 8 8 8 8 8 │ │ │ + --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8, -, -, -}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 20 8 8 4 16 8 4 16 4 4 8 16 │ │ │ + {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8, 4, -, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 16 16 4 16 4 16 4 4 16 4 16 4 16 │ │ │ + -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -, 4, --}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 8 8 8 8 20 8 8 8 4 4 8 4 │ │ │ + {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -, 4, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 16 20 4 4 20 4 4 16 4 16 16 │ │ │ + --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --, 4}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 16 4 16 4 8 8 20 8 4 4 8 20 │ │ │ + {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 8 4 16 16 4 8 8 20 8 4 4 │ │ │ + 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -}, {-, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 20 8 8 8 8 8 8 8 8 4 16 16 4 4 │ │ │ + 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8, -, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 20 4 8 8 8 8 4 8 20 8 16 16 │ │ │ + --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--, 4, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 4 20 8 8 4 8 4 8 8 8 20 │ │ │ + -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -, --}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 16 4 16 4 4 8 4 16 4 16 20 4 │ │ │ + {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4, --, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 20 16 8 16 4 4 20 4 4 20 │ │ │ + -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, --, 4}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 16 4 4 8 4 4 16 8 16 16 4 16 │ │ │ + {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, --, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 4 16 4 16 8 8 8 8 8 8 8 │ │ │ + -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, -}, {4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 4 20 8 8 16 4 4 16 16 4 4 16 16 8 │ │ │ + -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, --, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 4 20 20 4 4 20 20 4 4 │ │ │ + 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, -}, {-, │ │ │ + 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 16 16 4 4 20 20 4 4 20 20 │ │ │ + 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, --, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 16 4 4 16 8 4 8 8 20 8 │ │ │ + -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, 4}, {-, 8, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 4 20 20 4 4 20 4 20 20 4 4 20 20 4 20 4 │ │ │ + -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, --, -, --, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 20 │ │ │ + -, --}} │ │ │ + 3 3 │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : volume convexHull A -- 8 │ │ │ │ │ │ o13 = 8 │ │ │ │ │ │ o13 : QQ │ │ │ │ │ │ i14 : stars1 = select(Ts4, t -> (gkzVector t)#-1 == 8) │ │ │ │ │ │ -o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ +o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ + {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation │ │ │ ----------------------------------------------------------------------- │ │ │ - {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, │ │ │ + {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ + {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, │ │ │ ----------------------------------------------------------------------- │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ + triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ----------------------------------------------------------------------- │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ + {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ {2, 4, 6, 7}}} │ │ │ │ │ │ o14 : List │ │ │ │ │ │ i15 : stars2 = select(Ts4, isStar) │ │ │ │ │ │ -o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ +o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ + {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation │ │ │ ----------------------------------------------------------------------- │ │ │ - {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, │ │ │ + {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ + {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, │ │ │ ----------------------------------------------------------------------- │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ + triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ----------------------------------------------------------------------- │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ + {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ {2, 4, 6, 7}}} │ │ │ │ │ │ o15 : List │ │ │ │ │ │ i16 : stars1 == stars2 │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/html/_generate__Triangulations.html │ │ │ @@ -117,87 +117,15 @@ │ │ │ o3 : Triangulation
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : Ts1 = generateTriangulations A -- list of Triangulation's.
    │ │ │  
    │ │ │ -o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ +o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -323,281 +251,281 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}}
    │ │ │ -
    │ │ │ -o4 : List
    │ │ │ - │ │ │ - │ │ │ - │ │ │ - │ │ │ -
    i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets
    │ │ │ -
    │ │ │ -o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7},
    │ │ │ +     {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │ +     {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 3, 5, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │ +     triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5},
    │ │ │ +     {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7},
    │ │ │ +     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7},
    │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6},
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6},
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}},
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7},
    │ │ │ +     {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5},
    │ │ │ +     {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │ +     {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6},
    │ │ │ +     {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6},
    │ │ │ +     {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │ +     {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7},
    │ │ │ +     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 4, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7},
    │ │ │ +     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 7},
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}},
    │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │ +     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4},
    │ │ │ +     {2, 4, 6, 7}}}
    │ │ │ +
    │ │ │ +o4 : List
    │ │ │ + │ │ │ + │ │ │ + │ │ │ + │ │ │ +
    i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets
    │ │ │ +
    │ │ │ +o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7},
    │ │ │ +     {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6},
    │ │ │ +     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 6},
    │ │ │ +     {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │ +     {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5},
    │ │ │ +     {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6},
    │ │ │ +     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 2, 7},
    │ │ │ +     {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}},
    │ │ │ +     {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ +     {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7},
    │ │ │ +     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6},
    │ │ │ +     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6},
    │ │ │ +     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7},
    │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7},
    │ │ │ +     {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6},
    │ │ │ +     {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │ +     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6},
    │ │ │ +     {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │ +     {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6},
    │ │ │ +     {0, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6},
    │ │ │ +     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}},
    │ │ │ +     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 6},
    │ │ │ +     {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7},
    │ │ │ +     {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7},
    │ │ │ +     {1, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ +     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}},
    │ │ │ +     {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 6, 7},
    │ │ │ +     {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7},
    │ │ │ +     {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ +     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4},
    │ │ │ +     {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ +     {0, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 6},
    │ │ │ +     {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 6},
    │ │ │ +     {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
    │ │ │ +     {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │ +     {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7},
    │ │ │ +     {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {2, 5, 6, 7}}}
    │ │ │ -
    │ │ │ -o5 : List
    │ │ │ - │ │ │ - │ │ │ - │ │ │ - │ │ │ -
    i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations
    │ │ │ -
    │ │ │ -o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +     {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │ +     {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │ +     {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7},
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │ +     {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ +     {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}},
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ +     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ +     {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │ +     {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │ +     {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6},
    │ │ │ +     {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ +     {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ +     {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ +     {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │ +     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7},
    │ │ │ +     {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4},
    │ │ │ +     {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6},
    │ │ │ +     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ +     {1, 4, 5, 7}, {2, 4, 6, 7}}}
    │ │ │ +
    │ │ │ +o5 : List
    │ │ │ + │ │ │ + │ │ │ + │ │ │ + │ │ │ +
    i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations
    │ │ │ +
    │ │ │ +o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -723,96 +651,96 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}}
    │ │ │ -
    │ │ │ -o6 : List
    │ │ │ - │ │ │ - │ │ │ - │ │ │ - │ │ │ -
    i7 : Ts4 = generateTriangulations tri -- list of Triangulations
    │ │ │ -
    │ │ │ -o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +     {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +     {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │ +     triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7},
    │ │ │ +     {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │ +     {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7},
    │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │ +     triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ +     {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ +     {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │ +     {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6},
    │ │ │ +     {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ +     {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
    │ │ │ +     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7},
    │ │ │ +     {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4},
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ +     {2, 4, 6, 7}}}
    │ │ │ +
    │ │ │ +o6 : List
    │ │ │ + │ │ │ + │ │ │ + │ │ │ + │ │ │ +
    i7 : Ts4 = generateTriangulations tri -- list of Triangulations
    │ │ │ +
    │ │ │ +o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -938,15 +866,87 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}}
    │ │ │ +     {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 4, 6, 7}}}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : all(Ts4, isFine)
    │ │ │ @@ -978,131 +978,133 @@
    │ │ │  o11 : Tally
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : Ts4/gkzVector
    │ │ │  
    │ │ │ -        16     16  4     8  4       20     8  8     4  8          4  8     8 
    │ │ │ -o12 = {{--, 4, --, -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -,
    │ │ │ -         3      3  3     3  3        3     3  3     3  3          3  3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         8  20       16  16  4  16  4  4       8        4     16  4  16      
    │ │ │ -      4, -, --}, {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4,
    │ │ │ -         3   3        3   3  3   3  3  3       3        3      3  3   3      
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         20  4  4  20          16        8  16  4  4          20  4        4 
    │ │ │ -      4, --, -, -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -,
    │ │ │ -          3  3  3   3           3        3   3  3  3           3  3        3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      20       16  16  4     4        8       4  4  16  8        16    16  4 
    │ │ │ -      --, 4}, {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -,
    │ │ │ -       3        3   3  3     3        3       3  3   3  3         3     3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16     4        8    4  16     4     16  8       8  8     8  8     8 
    │ │ │ -      --, 4, -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -,
    │ │ │ -       3     3        3    3   3     3      3  3       3  3     3  3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8       8  4     20  8     8    16  4  4        16  16  4       4  16 
    │ │ │ -      -}, {4, -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --,
    │ │ │ -      3       3  3      3  3     3     3  3  3         3   3  3       3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16  8        4    4  20              20  4    4        20  20       
    │ │ │ -      --, -, 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4,
    │ │ │ -       3  3        3    3   3               3  3    3         3   3       
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4    4        8  16  16  4          4     20  20     4             4 
    │ │ │ -      -}, {-, 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -,
    │ │ │ -      3    3        3   3   3  3          3      3   3     3             3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      20  20  4          8        16     4  4  16    8        4  8  8  20 
    │ │ │ -      --, --, -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --,
    │ │ │ -       3   3  3          3         3     3  3   3    3        3  3  3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -           8     8  8     4  20       20  4  4  20  4  20  20  4    4  20 
    │ │ │ -      4}, {-, 8, -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --,
    │ │ │ -           3     3  3     3   3        3  3  3   3  3   3   3  3    3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      20  4  20  4  4  20    20        4  4        20       8  4     4    
    │ │ │ -      --, -, --, -, -, --}, {--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4,
    │ │ │ -       3  3   3  3  3   3     3        3  3         3       3  3     3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16  16    8        4     4  16  16    4  16     16     4  8       4    
    │ │ │ -      --, --}, {-, 8, 4, -, 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4,
    │ │ │ -       3   3    3        3     3   3   3    3   3      3     3  3       3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         20     8  8  8    8  8  8     20        4    4        8     8  20 
    │ │ │ -      4, --, 8, -, -, -}, {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --,
    │ │ │ -          3     3  3  3    3  3  3      3        3    3        3     3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8    4     16  4     8  16          4  20     8     8  8    16  4  4 
    │ │ │ -      -}, {-, 8, --, -, 4, -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -,
    │ │ │ -      3    3      3  3     3   3          3   3     3     3  3     3  3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         16        8    16     4  16  4  16     4       8  20  8  4       
    │ │ │ -      8, --, 4, 4, -}, {--, 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4,
    │ │ │ -          3        3     3     3   3  3   3     3       3   3  3  3       
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8    8  8     8     20  4       4  16     4  16     4  16       20  8 
    │ │ │ -      -}, {-, -, 8, -, 4, --, -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -,
    │ │ │ -      3    3  3     3      3  3       3   3     3   3     3   3        3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8  4        8    20        4  8  8  8          8  8  8  4        20  
    │ │ │ -      -, -, 4, 8, -}, {--, 4, 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --},
    │ │ │ -      3  3        3     3        3  3  3  3          3  3  3  3         3  
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -       16  16     4     4  8          8  4     8  8     20       20     4  4 
    │ │ │ -      {--, --, 4, -, 4, -, -, 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -,
    │ │ │ -        3   3     3     3  3          3  3     3  3      3        3     3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         20       20  4              4  20       4  20        20  4       8 
    │ │ │ -      4, --, 4}, {--, -, 4, 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-,
    │ │ │ -          3        3  3              3   3       3   3         3  3       3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         8  20     4  8          16  4  16  8        4    4     16  16     8 
    │ │ │ -      4, -, --, 8, -, -, 4}, {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -,
    │ │ │ -         3   3     3  3           3  3   3  3        3    3      3   3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4          4  8     16  16     4    4     20        20     4    8  8 
    │ │ │ -      -, 4}, {4, -, -, 8, --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -,
    │ │ │ -      3          3  3      3   3     3    3      3         3     3    3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8        8  8  8    8  20  8     8        4       16  8     4  16    
    │ │ │ -      -, 8, 8, -, -, -}, {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8,
    │ │ │ -      3        3  3  3    3   3  3     3        3        3  3     3   3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4    4        8  16  4  16       16  4     16  4     16  4    4     16 
    │ │ │ -      -}, {-, 8, 4, -, --, -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --,
    │ │ │ -      3    3        3   3  3   3        3  3      3  3      3  3    3      3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4  16  4     16       8  8  8  8  8  8       20  8     8     8  4     
    │ │ │ -      -, --, -, 4, --}, {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8},
    │ │ │ -      3   3  3      3       3  3  3  3  3  3        3  3     3     3  3     
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -          4  8     4  16     16    20     4        4     20       4  4  16 
    │ │ │ -      {8, -, -, 4, -, --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --,
    │ │ │ -          3  3     3   3      3     3     3        3      3       3  3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4  16  16          8  16     4     16  4    8  8     20     8  4     
    │ │ │ -      -, --, --, 4}, {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4},
    │ │ │ -      3   3   3          3   3     3      3  3    3  3      3     3  3     
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -          4  8     20     8  8       8  4     16     16  4    8  8  20     8 
    │ │ │ -      {4, -, -, 8, --, 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -,
    │ │ │ -          3  3      3     3  3       3  3      3      3  3    3  3   3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -            4    4        8     20  8  8    8     8  8  8  8     8    4  16 
    │ │ │ -      8, 4, -}, {-, 4, 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --,
    │ │ │ -            3    3        3      3  3  3    3     3  3  3  3     3    3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16        4  4  16       20  4     8  8     8    8        4  8  20  8
    │ │ │ -      --, 4, 8, -, -, --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -,
    │ │ │ -       3        3  3   3        3  3     3  3     3    3        3  3   3  3
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4}}
    │ │ │ +        20        4  4        20       8  4     4     16  16    8        4 
    │ │ │ +o12 = {{--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, --, --}, {-, 8, 4, -,
    │ │ │ +         3        3  3         3       3  3     3      3   3    3        3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         4  16  16    4  16     16     4  8       4        20     8  8  8  
    │ │ │ +      4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, 4, --, 8, -, -, -},
    │ │ │ +         3   3   3    3   3      3     3  3       3         3     3  3  3  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +       8  8  8     20        4    4        8     8  20  8    4     16  4    
    │ │ │ +      {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, -}, {-, 8, --, -, 4,
    │ │ │ +       3  3  3      3        3    3        3     3   3  3    3      3  3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8  16          4  20     8     8  8    16  4  4     16        8    16 
    │ │ │ +      -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, 8, --, 4, 4, -}, {--,
    │ │ │ +      3   3          3   3     3     3  3     3  3  3      3        3     3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         4  16  4  16     4       8  20  8  4        8    8  8     8     20 
    │ │ │ +      4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, -}, {-, -, 8, -, 4, --,
    │ │ │ +         3   3  3   3     3       3   3  3  3        3    3  3     3      3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4       4  16     4  16     4  16       20  8  8  4        8    20    
    │ │ │ +      -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, -, -, 4, 8, -}, {--, 4,
    │ │ │ +      3       3   3     3   3     3   3        3  3  3  3        3     3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         4  8  8  8          8  8  8  4        20    16  16     4     4  8 
    │ │ │ +      4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -, 4, -, -,
    │ │ │ +         3  3  3  3          3  3  3  3         3     3   3     3     3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +              8  4     8  8     20       20     4  4     20       20  4    
    │ │ │ +      8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4}, {--, -, 4,
    │ │ │ +              3  3     3  3      3        3     3  3      3        3  3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +               4  20       4  20        20  4       8     8  20     4  8     
    │ │ │ +      4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --, 8, -, -, 4},
    │ │ │ +               3   3       3   3         3  3       3     3   3     3  3     
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +          16  4  16  8        4    4     16  16     8  4          4  8    
    │ │ │ +      {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4}, {4, -, -, 8,
    │ │ │ +           3  3   3  3        3    3      3   3     3  3          3  3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      16  16     4    4     20        20     4    8  8  8        8  8  8  
    │ │ │ +      --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8, -, -, -},
    │ │ │ +       3   3     3    3      3         3     3    3  3  3        3  3  3  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +       8  20  8     8        4       16  8     4  16     4    4        8  16 
    │ │ │ +      {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8, 4, -, --,
    │ │ │ +       3   3  3     3        3        3  3     3   3     3    3        3   3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4  16       16  4     16  4     16  4    4     16  4  16  4     16  
    │ │ │ +      -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -, 4, --},
    │ │ │ +      3   3        3  3      3  3      3  3    3      3  3   3  3      3  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +          8  8  8  8  8  8       20  8     8     8  4          4  8     4 
    │ │ │ +      {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -, 4, -,
    │ │ │ +          3  3  3  3  3  3        3  3     3     3  3          3  3     3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      16     16    20     4        4     20       4  4  16  4  16  16     
    │ │ │ +      --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --, 4},
    │ │ │ +       3      3     3     3        3      3       3  3   3  3   3   3     
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +          8  16     4     16  4    8  8     20     8  4          4  8     20 
    │ │ │ +      {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8, --,
    │ │ │ +          3   3     3      3  3    3  3      3     3  3          3  3      3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         8  8       8  4     16     16  4    8  8  20     8        4    4    
    │ │ │ +      4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -}, {-, 4,
    │ │ │ +         3  3       3  3      3      3  3    3  3   3     3        3    3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         8     20  8  8    8     8  8  8  8     8    4  16  16        4  4 
    │ │ │ +      8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8, -, -,
    │ │ │ +         3      3  3  3    3     3  3  3  3     3    3   3   3        3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      16       20  4     8  8     8    8        4  8  20  8       16     16 
    │ │ │ +      --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--, 4, --,
    │ │ │ +       3        3  3     3  3     3    3        3  3   3  3        3      3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4     8  4       20     8  8     4  8          4  8     8     8  20  
    │ │ │ +      -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -, --},
    │ │ │ +      3     3  3        3     3  3     3  3          3  3     3     3   3  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +          16  16  4  16  4  4       8        4     16  4  16          20  4 
    │ │ │ +      {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4, --, -,
    │ │ │ +           3   3  3   3  3  3       3        3      3  3   3           3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4  20          16        8  16  4  4          20  4        4  20     
    │ │ │ +      -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, --, 4},
    │ │ │ +      3   3           3        3   3  3  3           3  3        3   3     
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +       16  16  4     4        8       4  4  16  8        16    16  4  16    
    │ │ │ +      {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, --, 4,
    │ │ │ +        3   3  3     3        3       3  3   3  3         3     3  3   3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4        8    4  16     4     16  8       8  8     8  8     8  8      
    │ │ │ +      -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, -}, {4,
    │ │ │ +      3        3    3   3     3      3  3       3  3     3  3     3  3      
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8  4     20  8     8    16  4  4        16  16  4       4  16  16  8 
    │ │ │ +      -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, --, -,
    │ │ │ +      3  3      3  3     3     3  3  3         3   3  3       3   3   3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +            4    4  20              20  4    4        20  20        4    4 
    │ │ │ +      8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, -}, {-,
    │ │ │ +            3    3   3               3  3    3         3   3        3    3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +            8  16  16  4          4     20  20     4             4  20  20 
    │ │ │ +      4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, --, --,
    │ │ │ +            3   3   3  3          3      3   3     3             3   3   3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4          8        16     4  4  16    8        4  8  8  20       8    
    │ │ │ +      -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, 4}, {-, 8,
    │ │ │ +      3          3         3     3  3   3    3        3  3  3   3       3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8  8     4  20       20  4  4  20  4  20  20  4    4  20  20  4  20  4 
    │ │ │ +      -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, --, -, --, -,
    │ │ │ +      3  3     3   3        3  3  3   3  3   3   3  3    3   3   3  3   3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4  20
    │ │ │ +      -, --}}
    │ │ │ +      3   3
    │ │ │  
    │ │ │  o12 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : volume convexHull A -- 8
    │ │ │ @@ -1112,66 +1114,66 @@
    │ │ │  o13 : QQ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : stars1 = select(Ts4, t -> (gkzVector t)#-1 == 8)
    │ │ │  
    │ │ │ -o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +      {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ +      {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7},
    │ │ │ +      {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7},
    │ │ │ +      {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7},
    │ │ │ +      {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}},
    │ │ │ +      {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7},
    │ │ │ +      triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ +      {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation
    │ │ │ +      {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +      {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │        {2, 4, 6, 7}}}
    │ │ │  
    │ │ │  o14 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : stars2 = select(Ts4, isStar)
    │ │ │  
    │ │ │ -o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +      {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ +      {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7},
    │ │ │ +      {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7},
    │ │ │ +      {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7},
    │ │ │ +      {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}},
    │ │ │ +      {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7},
    │ │ │ +      triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ +      {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation
    │ │ │ +      {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +      {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │        {2, 4, 6, 7}}}
    │ │ │  
    │ │ │  o15 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -57,87 +57,15 @@ │ │ │ │ │ │ │ │ o3 = triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, │ │ │ │ 4, 5, 6}, {3, 5, 6, 7}} │ │ │ │ │ │ │ │ o3 : Triangulation │ │ │ │ i4 : Ts1 = generateTriangulations A -- list of Triangulation's. │ │ │ │ │ │ │ │ -o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ +o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -263,273 +191,273 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}} │ │ │ │ - │ │ │ │ -o4 : List │ │ │ │ -i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ │ - │ │ │ │ -o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, │ │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 3, 5, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, │ │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, │ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, │ │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, │ │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, │ │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, │ │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, │ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 4, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, │ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 7}, │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, │ │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, │ │ │ │ + {2, 4, 6, 7}}} │ │ │ │ + │ │ │ │ +o4 : List │ │ │ │ +i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ │ + │ │ │ │ +o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, │ │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, │ │ │ │ + {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, │ │ │ │ + {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, │ │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ │ + {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 2, 7}, │ │ │ │ + {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ + {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ │ + {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, │ │ │ │ + {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, │ │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, │ │ │ │ + {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, │ │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ │ + {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ │ + {0, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ │ + {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, │ │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 6}, │ │ │ │ + {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ │ + {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ │ + {1, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, │ │ │ │ + {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 6, 7}, │ │ │ │ + {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, │ │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ + {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ │ + {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ │ + {0, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 6}, │ │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 6}, │ │ │ │ + {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ │ + {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ + {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, │ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, │ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {2, 5, 6, 7}}} │ │ │ │ - │ │ │ │ -o5 : List │ │ │ │ -i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ │ - │ │ │ │ -o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ + {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ │ + {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ + {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ │ + {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ + {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ │ + {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ │ + {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ │ + {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ + {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ │ + {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ │ + {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ + {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ │ + {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ │ + {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ + {1, 4, 5, 7}, {2, 4, 6, 7}}} │ │ │ │ + │ │ │ │ +o5 : List │ │ │ │ +i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ │ + │ │ │ │ +o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -655,92 +583,92 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}} │ │ │ │ - │ │ │ │ -o6 : List │ │ │ │ -i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ │ - │ │ │ │ -o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ + {2, 4, 6, 7}}} │ │ │ │ + │ │ │ │ +o6 : List │ │ │ │ +i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ │ + │ │ │ │ +o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -866,15 +794,87 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}} │ │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {2, 4, 6, 7}}} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : all(Ts4, isFine) │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : all(Ts4, isStar) │ │ │ │ │ │ │ │ @@ -886,188 +886,190 @@ │ │ │ │ │ │ │ │ o11 = Tally{false => 66} │ │ │ │ true => 8 │ │ │ │ │ │ │ │ o11 : Tally │ │ │ │ i12 : Ts4/gkzVector │ │ │ │ │ │ │ │ - 16 16 4 8 4 20 8 8 4 8 4 8 8 │ │ │ │ -o12 = {{--, 4, --, -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 20 16 16 4 16 4 4 8 4 16 4 16 │ │ │ │ - 4, -, --}, {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 4 4 20 16 8 16 4 4 20 4 4 │ │ │ │ - 4, --, -, -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 16 16 4 4 8 4 4 16 8 16 16 4 │ │ │ │ - --, 4}, {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 4 8 4 16 4 16 8 8 8 8 8 8 │ │ │ │ - --, 4, -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 8 4 20 8 8 16 4 4 16 16 4 4 16 │ │ │ │ - -}, {4, -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 8 4 4 20 20 4 4 20 20 │ │ │ │ - --, -, 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 4 8 16 16 4 4 20 20 4 4 │ │ │ │ - -}, {-, 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 20 4 8 16 4 4 16 8 4 8 8 20 │ │ │ │ - --, --, -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 8 8 4 20 20 4 4 20 4 20 20 4 4 20 │ │ │ │ - 4}, {-, 8, -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 4 20 4 4 20 20 4 4 20 8 4 4 │ │ │ │ - --, -, --, -, -, --}, {--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 16 8 4 4 16 16 4 16 16 4 8 4 │ │ │ │ - --, --}, {-, 8, 4, -, 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 8 8 8 8 8 8 20 4 4 8 8 20 │ │ │ │ - 4, --, 8, -, -, -}, {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 4 16 4 8 16 4 20 8 8 8 16 4 4 │ │ │ │ - -}, {-, 8, --, -, 4, -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 8 16 4 16 4 16 4 8 20 8 4 │ │ │ │ - 8, --, 4, 4, -}, {--, 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 8 8 8 20 4 4 16 4 16 4 16 20 8 │ │ │ │ - -}, {-, -, 8, -, 4, --, -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 4 8 20 4 8 8 8 8 8 8 4 20 │ │ │ │ - -, -, 4, 8, -}, {--, 4, 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 16 4 4 8 8 4 8 8 20 20 4 4 │ │ │ │ - {--, --, 4, -, 4, -, -, 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 20 4 4 20 4 20 20 4 8 │ │ │ │ - 4, --, 4}, {--, -, 4, 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 20 4 8 16 4 16 8 4 4 16 16 8 │ │ │ │ - 4, -, --, 8, -, -, 4}, {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 4 8 16 16 4 4 20 20 4 8 8 │ │ │ │ - -, 4}, {4, -, -, 8, --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 8 8 8 8 20 8 8 4 16 8 4 16 │ │ │ │ - -, 8, 8, -, -, -}, {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 4 8 16 4 16 16 4 16 4 16 4 4 16 │ │ │ │ - -}, {-, 8, 4, -, --, -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 16 4 16 8 8 8 8 8 8 20 8 8 8 4 │ │ │ │ - -, --, -, 4, --}, {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 8 4 16 16 20 4 4 20 4 4 16 │ │ │ │ - {8, -, -, 4, -, --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 16 16 8 16 4 16 4 8 8 20 8 4 │ │ │ │ - -, --, --, 4}, {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 8 20 8 8 8 4 16 16 4 8 8 20 8 │ │ │ │ - {4, -, -, 8, --, 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 4 8 20 8 8 8 8 8 8 8 8 4 16 │ │ │ │ - 8, 4, -}, {-, 4, 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 4 4 16 20 4 8 8 8 8 4 8 20 8 │ │ │ │ - --, 4, 8, -, -, --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4}} │ │ │ │ + 20 4 4 20 8 4 4 16 16 8 4 │ │ │ │ +o12 = {{--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, --, --}, {-, 8, 4, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 16 16 4 16 16 4 8 4 20 8 8 8 │ │ │ │ + 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, 4, --, 8, -, -, -}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 8 8 20 4 4 8 8 20 8 4 16 4 │ │ │ │ + {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, -}, {-, 8, --, -, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 16 4 20 8 8 8 16 4 4 16 8 16 │ │ │ │ + -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, 8, --, 4, 4, -}, {--, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 16 4 16 4 8 20 8 4 8 8 8 8 20 │ │ │ │ + 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, -}, {-, -, 8, -, 4, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 4 16 4 16 4 16 20 8 8 4 8 20 │ │ │ │ + -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, -, -, 4, 8, -}, {--, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 8 8 8 8 8 8 4 20 16 16 4 4 8 │ │ │ │ + 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -, 4, -, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 4 8 8 20 20 4 4 20 20 4 │ │ │ │ + 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4}, {--, -, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 20 4 20 20 4 8 8 20 4 8 │ │ │ │ + 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --, 8, -, -, 4}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 4 16 8 4 4 16 16 8 4 4 8 │ │ │ │ + {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4}, {4, -, -, 8, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 16 4 4 20 20 4 8 8 8 8 8 8 │ │ │ │ + --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8, -, -, -}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 20 8 8 4 16 8 4 16 4 4 8 16 │ │ │ │ + {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8, 4, -, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 16 16 4 16 4 16 4 4 16 4 16 4 16 │ │ │ │ + -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -, 4, --}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 8 8 8 8 8 20 8 8 8 4 4 8 4 │ │ │ │ + {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -, 4, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 16 20 4 4 20 4 4 16 4 16 16 │ │ │ │ + --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --, 4}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 16 4 16 4 8 8 20 8 4 4 8 20 │ │ │ │ + {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 8 8 4 16 16 4 8 8 20 8 4 4 │ │ │ │ + 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -}, {-, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 20 8 8 8 8 8 8 8 8 4 16 16 4 4 │ │ │ │ + 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8, -, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 20 4 8 8 8 8 4 8 20 8 16 16 │ │ │ │ + --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--, 4, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 8 4 20 8 8 4 8 4 8 8 8 20 │ │ │ │ + -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -, --}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 16 4 16 4 4 8 4 16 4 16 20 4 │ │ │ │ + {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4, --, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 20 16 8 16 4 4 20 4 4 20 │ │ │ │ + -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, --, 4}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 16 4 4 8 4 4 16 8 16 16 4 16 │ │ │ │ + {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, --, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 8 4 16 4 16 8 8 8 8 8 8 8 │ │ │ │ + -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, -}, {4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 4 20 8 8 16 4 4 16 16 4 4 16 16 8 │ │ │ │ + -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, --, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 4 20 20 4 4 20 20 4 4 │ │ │ │ + 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, -}, {-, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 16 16 4 4 20 20 4 4 20 20 │ │ │ │ + 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, --, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 8 16 4 4 16 8 4 8 8 20 8 │ │ │ │ + -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, 4}, {-, 8, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 8 4 20 20 4 4 20 4 20 20 4 4 20 20 4 20 4 │ │ │ │ + -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, --, -, --, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 20 │ │ │ │ + -, --}} │ │ │ │ + 3 3 │ │ │ │ │ │ │ │ o12 : List │ │ │ │ i13 : volume convexHull A -- 8 │ │ │ │ │ │ │ │ o13 = 8 │ │ │ │ │ │ │ │ o13 : QQ │ │ │ │ i14 : stars1 = select(Ts4, t -> (gkzVector t)#-1 == 8) │ │ │ │ │ │ │ │ -o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ +o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ + {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, │ │ │ │ + {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ │ + {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ │ + triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ + {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {2, 4, 6, 7}}} │ │ │ │ │ │ │ │ o14 : List │ │ │ │ i15 : stars2 = select(Ts4, isStar) │ │ │ │ │ │ │ │ -o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ +o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ + {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, │ │ │ │ + {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ │ + {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ │ + triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ + {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {2, 4, 6, 7}}} │ │ │ │ │ │ │ │ o15 : List │ │ │ │ i16 : stars1 == stars2 │ │ │ │ │ │ │ │ o16 = true │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/html/index.html │ │ │ @@ -150,15 +150,15 @@ │ │ │ 4 10 │ │ │ o2 : Matrix ZZ <-- ZZ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime Ts = allTriangulations(A, Fine => true);
    │ │ │ - -- .14823s elapsed
    │ │ │ + -- .105402s elapsed
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : select(Ts, T -> isStar T)
    │ │ │  
    │ │ │  o4 = {triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0,
    │ │ │ @@ -198,15 +198,15 @@
    │ │ │  
    │ │ │  o7 : Triangulation
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : elapsedTime Ts2 = generateTriangulations T;
    │ │ │ - -- 1.22082s elapsed
    │ │ │ + -- .990971s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : #Ts2 == #Ts
    │ │ │  
    │ │ │  o9 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ | 0 0 0 1 0 0 -1 0 0 0 | │ │ │ │ | -1 1 2 -1 -1 1 -1 1 0 0 | │ │ │ │ | 1 0 -1 0 0 0 0 0 0 0 | │ │ │ │ │ │ │ │ 4 10 │ │ │ │ o2 : Matrix ZZ <-- ZZ │ │ │ │ i3 : elapsedTime Ts = allTriangulations(A, Fine => true); │ │ │ │ - -- .14823s elapsed │ │ │ │ + -- .105402s elapsed │ │ │ │ i4 : select(Ts, T -> isStar T) │ │ │ │ │ │ │ │ o4 = {triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 1, 6, 7, 9}, {0, 2, 3, 6, 9}, {0, 3, 4, 6, 9}, {0, 3, 4, 8, 9}, {0, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 5, 7, 9}, {0, 3, 5, 8, 9}, {0, 4, 6, 8, 9}, {0, 5, 6, 7, 9}, {0, 5, 6, │ │ │ │ @@ -86,15 +86,15 @@ │ │ │ │ 6, 7, 9}, {0, 2, 3, 4, 6}, {0, 2, 3, 4, 9}, {0, 2, 4, 6, 9}, {0, 3, 4, 7, 8}, │ │ │ │ {0, 3, 4, 7, 9}, {0, 3, 5, 7, 8}, {0, 4, 6, 7, 8}, {0, 4, 6, 7, 9}, {0, 5, 6, │ │ │ │ 7, 8}, {1, 2, 3, 7, 9}, {1, 2, 6, 7, 9}, {2, 3, 4, 7, 8}, {2, 3, 4, 7, 9}, {2, │ │ │ │ 3, 5, 7, 8}, {2, 4, 6, 7, 8}, {2, 4, 6, 7, 9}, {2, 5, 6, 7, 8}} │ │ │ │ │ │ │ │ o7 : Triangulation │ │ │ │ i8 : elapsedTime Ts2 = generateTriangulations T; │ │ │ │ - -- 1.22082s elapsed │ │ │ │ + -- .990971s elapsed │ │ │ │ i9 : #Ts2 == #Ts │ │ │ │ │ │ │ │ o9 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _P_o_l_y_h_e_d_r_a -- for computations with convex polyhedra, cones, and fans │ │ │ │ * _T_o_p_c_o_m -- interface to selected functions from topcom package │ │ │ │ * _R_e_f_l_e_x_i_v_e_P_o_l_y_t_o_p_e_s_D_B -- simple access to Kreuzer-Skarke database of │ │ ├── ./usr/share/doc/Macaulay2/VersalDeformations/example-output/___Smart__Lift.out │ │ │ @@ -6,30 +6,30 @@ │ │ │ │ │ │ o2 = | xz yz z2 x3 | │ │ │ │ │ │ 1 4 │ │ │ o2 : Matrix S <-- S │ │ │ │ │ │ i3 : time (F,R,G,C)=localHilbertScheme(F0); │ │ │ - -- used 0.928671s (cpu); 0.578647s (thread); 0s (gc) │ │ │ + -- used 1.15787s (cpu); 0.665544s (thread); 0s (gc) │ │ │ │ │ │ i4 : T=ring first G; │ │ │ │ │ │ i5 : sum G │ │ │ │ │ │ o5 = | t_1t_16 | │ │ │ | t_9t_16 | │ │ │ | -t_4t_16 | │ │ │ | -2t_14t_16+t_15t_16 | │ │ │ │ │ │ 4 1 │ │ │ o5 : Matrix T <-- T │ │ │ │ │ │ i6 : time (F,R,G,C)=localHilbertScheme(F0,SmartLift=>false); │ │ │ - -- used 0.732527s (cpu); 0.472537s (thread); 0s (gc) │ │ │ + -- used 0.862114s (cpu); 0.490515s (thread); 0s (gc) │ │ │ │ │ │ i7 : sum G │ │ │ │ │ │ o7 = | t_1t_16 │ │ │ | 2t_5t_10t_11t_16+t_7t_11^2t_16-2t_6t_10t_16+3t_10^2t_16-t_8t_11t_16+ │ │ │ | -t_5t_10^2t_16-2t_7t_10t_11t_16-3t_2t_11^2t_16+t_8t_10t_16+2t_3t_11t │ │ │ | 2t_5t_10t_16^2+2t_7t_11t_16^2+4t_10t_12t_16+2t_11t_13t_16-t_8t_16^2- │ │ ├── ./usr/share/doc/Macaulay2/VersalDeformations/html/___Smart__Lift.html │ │ │ @@ -71,15 +71,15 @@ │ │ │ │ │ │ │ │ │

    With the default setting SmartLift=>true we get very nice equations for the base space:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -98,15 +98,15 @@ │ │ │ │ │ │
    │ │ │
    i3 : time (F,R,G,C)=localHilbertScheme(F0);
    │ │ │ - -- used 0.928671s (cpu); 0.578647s (thread); 0s (gc)
    │ │ │ + -- used 1.15787s (cpu); 0.665544s (thread); 0s (gc) │ │ │
    │ │ │
    i4 : T=ring first G;
    │ │ │
    │ │ │

    With the setting SmartLift=>false the calculation is faster, but the equations are no longer homogeneous:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : time (F,R,G,C)=localHilbertScheme(F0,SmartLift=>false);
    │ │ │ - -- used 0.732527s (cpu); 0.472537s (thread); 0s (gc)
    │ │ │ + -- used 0.862114s (cpu); 0.490515s (thread); 0s (gc) │ │ │
    │ │ │
    i7 : sum G
    │ │ │  
    │ │ │  o7 = | t_1t_16
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,29 +18,29 @@
    │ │ │ │  o2 = | xz yz z2 x3 |
    │ │ │ │  
    │ │ │ │               1      4
    │ │ │ │  o2 : Matrix S  <-- S
    │ │ │ │  With the default setting SmartLift=>true we get very nice equations for the
    │ │ │ │  base space:
    │ │ │ │  i3 : time (F,R,G,C)=localHilbertScheme(F0);
    │ │ │ │ - -- used 0.928671s (cpu); 0.578647s (thread); 0s (gc)
    │ │ │ │ + -- used 1.15787s (cpu); 0.665544s (thread); 0s (gc)
    │ │ │ │  i4 : T=ring first G;
    │ │ │ │  i5 : sum G
    │ │ │ │  
    │ │ │ │  o5 = | t_1t_16             |
    │ │ │ │       | t_9t_16             |
    │ │ │ │       | -t_4t_16            |
    │ │ │ │       | -2t_14t_16+t_15t_16 |
    │ │ │ │  
    │ │ │ │               4      1
    │ │ │ │  o5 : Matrix T  <-- T
    │ │ │ │  With the setting SmartLift=>false the calculation is faster, but the equations
    │ │ │ │  are no longer homogeneous:
    │ │ │ │  i6 : time (F,R,G,C)=localHilbertScheme(F0,SmartLift=>false);
    │ │ │ │ - -- used 0.732527s (cpu); 0.472537s (thread); 0s (gc)
    │ │ │ │ + -- used 0.862114s (cpu); 0.490515s (thread); 0s (gc)
    │ │ │ │  i7 : sum G
    │ │ │ │  
    │ │ │ │  o7 = | t_1t_16
    │ │ │ │       | 2t_5t_10t_11t_16+t_7t_11^2t_16-2t_6t_10t_16+3t_10^2t_16-t_8t_11t_16+
    │ │ │ │       | -t_5t_10^2t_16-2t_7t_10t_11t_16-3t_2t_11^2t_16+t_8t_10t_16+2t_3t_11t
    │ │ │ │       | 2t_5t_10t_16^2+2t_7t_11t_16^2+4t_10t_12t_16+2t_11t_13t_16-t_8t_16^2-
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_dualize.out
    │ │ │ @@ -44,51 +44,51 @@
    │ │ │  i10 : J = m^9;
    │ │ │  
    │ │ │  o10 : Ideal of R
    │ │ │  
    │ │ │  i11 : M = J*R^1;
    │ │ │  
    │ │ │  i12 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.12276s (cpu); 0.0663951s (thread); 0s (gc)
    │ │ │ + -- used 0.158742s (cpu); 0.0779777s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │  
    │ │ │  i13 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.408131s (cpu); 0.408137s (thread); 0s (gc)
    │ │ │ + -- used 0.522671s (cpu); 0.522456s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │  
    │ │ │  i14 : time dualize(M, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.54272s (cpu); 0.47665s (thread); 0s (gc)
    │ │ │ + -- used 0.760289s (cpu); 0.660743s (thread); 0s (gc)
    │ │ │  
    │ │ │  i15 : time dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.002816s (cpu); 0.00281656s (thread); 0s (gc)
    │ │ │ + -- used 0.00300596s (cpu); 0.00301099s (thread); 0s (gc)
    │ │ │  
    │ │ │  i16 : time embedAsIdeal dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00217764s (cpu); 0.00217846s (thread); 0s (gc)
    │ │ │ + -- used 0.00269811s (cpu); 0.00270151s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │  
    │ │ │  i17 : R = ZZ/7[x,y,u,v]/ideal(x*y-u*v);
    │ │ │  
    │ │ │  i18 : I = ideal(x,u);
    │ │ │  
    │ │ │  o18 : Ideal of R
    │ │ │  
    │ │ │  i19 : J = I^15;
    │ │ │  
    │ │ │  o19 : Ideal of R
    │ │ │  
    │ │ │  i20 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.232709s (cpu); 0.117318s (thread); 0s (gc)
    │ │ │ + -- used 0.329871s (cpu); 0.15473s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : Ideal of R
    │ │ │  
    │ │ │  i21 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00588895s (cpu); 0.00588973s (thread); 0s (gc)
    │ │ │ + -- used 0.0074677s (cpu); 0.00747265s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 : Ideal of R
    │ │ │  
    │ │ │  i22 : R = QQ[x,y]/ideal(x*y);
    │ │ │  
    │ │ │  i23 : J = ideal(x,y);
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexify.out
    │ │ │ @@ -103,104 +103,104 @@
    │ │ │  o21 : Ideal of R
    │ │ │  
    │ │ │  i22 : J = I^21;
    │ │ │  
    │ │ │  o22 : Ideal of R
    │ │ │  
    │ │ │  i23 : time reflexify(J);
    │ │ │ - -- used 0.265292s (cpu); 0.211481s (thread); 0s (gc)
    │ │ │ + -- used 0.301972s (cpu); 0.220651s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │  
    │ │ │  i24 : time reflexify(J*R^1);
    │ │ │ - -- used 0.508363s (cpu); 0.374589s (thread); 0s (gc)
    │ │ │ + -- used 0.461034s (cpu); 0.36898s (thread); 0s (gc)
    │ │ │  
    │ │ │  i25 : R = ZZ/13[x,y,z]/ideal(x^3 + y^3-z^11*x*y);
    │ │ │  
    │ │ │  i26 : I = ideal(x-4*y, z);
    │ │ │  
    │ │ │  o26 : Ideal of R
    │ │ │  
    │ │ │  i27 : J = I^20;
    │ │ │  
    │ │ │  o27 : Ideal of R
    │ │ │  
    │ │ │  i28 : M = J*R^1;
    │ │ │  
    │ │ │  i29 : J1 = time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 0.270151s (cpu); 0.134196s (thread); 0s (gc)
    │ │ │ + -- used 0.327227s (cpu); 0.157695s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o29 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │  
    │ │ │  i30 : J2 = time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 6.77561s (cpu); 4.70658s (thread); 0s (gc)
    │ │ │ + -- used 6.0517s (cpu); 4.69876s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o30 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o30 : Ideal of R
    │ │ │  
    │ │ │  i31 : J1 == J2
    │ │ │  
    │ │ │  o31 = true
    │ │ │  
    │ │ │  i32 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 5.83438s (cpu); 4.55312s (thread); 0s (gc)
    │ │ │ + -- used 6.07621s (cpu); 4.82643s (thread); 0s (gc)
    │ │ │  
    │ │ │  i33 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.553639s (cpu); 0.383614s (thread); 0s (gc)
    │ │ │ + -- used 0.569882s (cpu); 0.386597s (thread); 0s (gc)
    │ │ │  
    │ │ │  i34 : R = QQ[x,y,u,v]/ideal(x*y-u*v);
    │ │ │  
    │ │ │  i35 : I = ideal(x,u);
    │ │ │  
    │ │ │  o35 : Ideal of R
    │ │ │  
    │ │ │  i36 : J = I^20;
    │ │ │  
    │ │ │  o36 : Ideal of R
    │ │ │  
    │ │ │  i37 : M = I^20*R^1;
    │ │ │  
    │ │ │  i38 : time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 1.11106s (cpu); 0.416741s (thread); 0s (gc)
    │ │ │ + -- used 1.20735s (cpu); 0.439681s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o38 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         19    20
    │ │ │        x  u, x  )
    │ │ │  
    │ │ │  o38 : Ideal of R
    │ │ │  
    │ │ │  i39 : time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 0.0142796s (cpu); 0.0142766s (thread); 0s (gc)
    │ │ │ + -- used 0.257901s (cpu); 0.0545514s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o39 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         19    20
    │ │ │        x  u, x  )
    │ │ │  
    │ │ │  o39 : Ideal of R
    │ │ │  
    │ │ │  i40 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 0.270201s (cpu); 0.0924585s (thread); 0s (gc)
    │ │ │ + -- used 0.0506219s (cpu); 0.0506253s (thread); 0s (gc)
    │ │ │  
    │ │ │  i41 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.00697604s (cpu); 0.00697697s (thread); 0s (gc)
    │ │ │ + -- used 0.243201s (cpu); 0.0522343s (thread); 0s (gc)
    │ │ │  
    │ │ │  i42 : R = QQ[x,y]/ideal(x*y);
    │ │ │  
    │ │ │  i43 : I = ideal(x,y);
    │ │ │  
    │ │ │  o43 : Ideal of R
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexive__Power.out
    │ │ │ @@ -23,44 +23,44 @@
    │ │ │  i5 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │  
    │ │ │  i6 : I = ideal(x-z,y-2*z);
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : time J20a = reflexivePower(20, I);
    │ │ │ - -- used 0.0328143s (cpu); 0.0327921s (thread); 0s (gc)
    │ │ │ + -- used 0.0351563s (cpu); 0.0351537s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │  
    │ │ │  i8 : I20 = I^20;
    │ │ │  
    │ │ │  o8 : Ideal of R
    │ │ │  
    │ │ │  i9 : time J20b = reflexify(I20);
    │ │ │ - -- used 0.208458s (cpu); 0.147573s (thread); 0s (gc)
    │ │ │ + -- used 0.239317s (cpu); 0.156542s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │  
    │ │ │  i10 : J20a == J20b
    │ │ │  
    │ │ │  o10 = true
    │ │ │  
    │ │ │  i11 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │  
    │ │ │  i12 : I = ideal(x-z,y-2*z);
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │  
    │ │ │  i13 : time J1 = reflexivePower(20, I, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.0296356s (cpu); 0.029641s (thread); 0s (gc)
    │ │ │ + -- used 0.0372146s (cpu); 0.0372163s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │  
    │ │ │  i14 : time J2 = reflexivePower(20, I, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.152316s (cpu); 0.0807728s (thread); 0s (gc)
    │ │ │ + -- used 0.176357s (cpu); 0.09534s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │  
    │ │ │  i15 : J1 == J2
    │ │ │  
    │ │ │  o15 = true
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_dualize.html
    │ │ │ @@ -163,43 +163,43 @@
    │ │ │              
    │ │ │
    i11 : M = J*R^1;
    │ │ │
    │ │ │
    i12 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.12276s (cpu); 0.0663951s (thread); 0s (gc)
    │ │ │ + -- used 0.158742s (cpu); 0.0779777s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │
    │ │ │
    i13 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.408131s (cpu); 0.408137s (thread); 0s (gc)
    │ │ │ + -- used 0.522671s (cpu); 0.522456s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │
    │ │ │
    i14 : time dualize(M, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.54272s (cpu); 0.47665s (thread); 0s (gc)
    │ │ │ + -- used 0.760289s (cpu); 0.660743s (thread); 0s (gc) │ │ │
    │ │ │
    i15 : time dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.002816s (cpu); 0.00281656s (thread); 0s (gc)
    │ │ │ + -- used 0.00300596s (cpu); 0.00301099s (thread); 0s (gc) │ │ │
    │ │ │
    i16 : time embedAsIdeal dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00217764s (cpu); 0.00217846s (thread); 0s (gc)
    │ │ │ + -- used 0.00269811s (cpu); 0.00270151s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │
    │ │ │
    │ │ │

    For monomial ideals in toric rings, frequently ModuleStrategy appears faster.

    │ │ │ @@ -223,23 +223,23 @@ │ │ │ │ │ │ o19 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.232709s (cpu); 0.117318s (thread); 0s (gc)
    │ │ │ + -- used 0.329871s (cpu); 0.15473s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00588895s (cpu); 0.00588973s (thread); 0s (gc)
    │ │ │ + -- used 0.0074677s (cpu); 0.00747265s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    KnownDomain is an option for dualize. If it is false (default is true), then the computer will first check whether the ring is a domain, if it is not then it will revert to ModuleStrategy. If KnownDomain is set to true for a non-domain, then the function can return an incorrect answer.

    │ │ │ ├── html2text {} │ │ │ │ @@ -60,43 +60,43 @@ │ │ │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ i10 : J = m^9; │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ i11 : M = J*R^1; │ │ │ │ i12 : time dualize(J, Strategy=>IdealStrategy); │ │ │ │ - -- used 0.12276s (cpu); 0.0663951s (thread); 0s (gc) │ │ │ │ + -- used 0.158742s (cpu); 0.0779777s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 : Ideal of R │ │ │ │ i13 : time dualize(J, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.408131s (cpu); 0.408137s (thread); 0s (gc) │ │ │ │ + -- used 0.522671s (cpu); 0.522456s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ i14 : time dualize(M, Strategy=>IdealStrategy); │ │ │ │ - -- used 0.54272s (cpu); 0.47665s (thread); 0s (gc) │ │ │ │ + -- used 0.760289s (cpu); 0.660743s (thread); 0s (gc) │ │ │ │ i15 : time dualize(M, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.002816s (cpu); 0.00281656s (thread); 0s (gc) │ │ │ │ + -- used 0.00300596s (cpu); 0.00301099s (thread); 0s (gc) │ │ │ │ i16 : time embedAsIdeal dualize(M, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.00217764s (cpu); 0.00217846s (thread); 0s (gc) │ │ │ │ + -- used 0.00269811s (cpu); 0.00270151s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 : Ideal of R │ │ │ │ For monomial ideals in toric rings, frequently ModuleStrategy appears faster. │ │ │ │ i17 : R = ZZ/7[x,y,u,v]/ideal(x*y-u*v); │ │ │ │ i18 : I = ideal(x,u); │ │ │ │ │ │ │ │ o18 : Ideal of R │ │ │ │ i19 : J = I^15; │ │ │ │ │ │ │ │ o19 : Ideal of R │ │ │ │ i20 : time dualize(J, Strategy=>IdealStrategy); │ │ │ │ - -- used 0.232709s (cpu); 0.117318s (thread); 0s (gc) │ │ │ │ + -- used 0.329871s (cpu); 0.15473s (thread); 0s (gc) │ │ │ │ │ │ │ │ o20 : Ideal of R │ │ │ │ i21 : time dualize(J, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.00588895s (cpu); 0.00588973s (thread); 0s (gc) │ │ │ │ + -- used 0.0074677s (cpu); 0.00747265s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 : Ideal of R │ │ │ │ KnownDomain is an option for dualize. If it is false (default is true), then │ │ │ │ the computer will first check whether the ring is a domain, if it is not then │ │ │ │ it will revert to ModuleStrategy. If KnownDomain is set to true for a non- │ │ │ │ domain, then the function can return an incorrect answer. │ │ │ │ i22 : R = QQ[x,y]/ideal(x*y); │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexify.html │ │ │ @@ -267,23 +267,23 @@ │ │ │ │ │ │ o22 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i23 : time reflexify(J);
    │ │ │ - -- used 0.265292s (cpu); 0.211481s (thread); 0s (gc)
    │ │ │ + -- used 0.301972s (cpu); 0.220651s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i24 : time reflexify(J*R^1);
    │ │ │ - -- used 0.508363s (cpu); 0.374589s (thread); 0s (gc)
    │ │ │ + -- used 0.461034s (cpu); 0.36898s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Because of this, there are two strategies for computing a reflexification (at least if the module embeds as an ideal).

    │ │ │
    │ │ │
    │ │ │ @@ -319,26 +319,26 @@ │ │ │ │ │ │
    i28 : M = J*R^1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : J1 = time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 0.270151s (cpu); 0.134196s (thread); 0s (gc)
    │ │ │ + -- used 0.327227s (cpu); 0.157695s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o29 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i30 : J2 = time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 6.77561s (cpu); 4.70658s (thread); 0s (gc)
    │ │ │ + -- used 6.0517s (cpu); 4.69876s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o30 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o30 : Ideal of R
    │ │ │ │ │ │ │ │ │ @@ -348,21 +348,21 @@ │ │ │ │ │ │ o31 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i32 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 5.83438s (cpu); 4.55312s (thread); 0s (gc)
    │ │ │ + -- used 6.07621s (cpu); 4.82643s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i33 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.553639s (cpu); 0.383614s (thread); 0s (gc)
    │ │ │ + -- used 0.569882s (cpu); 0.386597s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    However, sometimes ModuleStrategy is faster, especially for Monomial ideals.

    │ │ │
    │ │ │ │ │ │ @@ -389,15 +389,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i37 : M = I^20*R^1;
    │ │ │
    │ │ │
    i38 : time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 1.11106s (cpu); 0.416741s (thread); 0s (gc)
    │ │ │ + -- used 1.20735s (cpu); 0.439681s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o38 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -406,15 +406,15 @@
    │ │ │  
    │ │ │  o38 : Ideal of R
    │ │ │
    │ │ │
    i39 : time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 0.0142796s (cpu); 0.0142766s (thread); 0s (gc)
    │ │ │ + -- used 0.257901s (cpu); 0.0545514s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o39 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -423,21 +423,21 @@
    │ │ │  
    │ │ │  o39 : Ideal of R
    │ │ │
    │ │ │
    i40 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 0.270201s (cpu); 0.0924585s (thread); 0s (gc)
    │ │ │ + -- used 0.0506219s (cpu); 0.0506253s (thread); 0s (gc) │ │ │
    │ │ │
    i41 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.00697604s (cpu); 0.00697697s (thread); 0s (gc)
    │ │ │ + -- used 0.243201s (cpu); 0.0522343s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    For ideals, if KnownDomain is false (default value is true), then the function will check whether it is a domain. If it is a domain (or assumed to be a domain), it will reflexify using a strategy which can speed up computation, if not it will compute using a sometimes slower method which is essentially reflexifying it as a module.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -114,19 +114,19 @@ │ │ │ │ i21 : I = ideal(x-z,y-2*z); │ │ │ │ │ │ │ │ o21 : Ideal of R │ │ │ │ i22 : J = I^21; │ │ │ │ │ │ │ │ o22 : Ideal of R │ │ │ │ i23 : time reflexify(J); │ │ │ │ - -- used 0.265292s (cpu); 0.211481s (thread); 0s (gc) │ │ │ │ + -- used 0.301972s (cpu); 0.220651s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 : Ideal of R │ │ │ │ i24 : time reflexify(J*R^1); │ │ │ │ - -- used 0.508363s (cpu); 0.374589s (thread); 0s (gc) │ │ │ │ + -- used 0.461034s (cpu); 0.36898s (thread); 0s (gc) │ │ │ │ Because of this, there are two strategies for computing a reflexification (at │ │ │ │ least if the module embeds as an ideal). │ │ │ │ IdealStrategy. In the case that $R$ is a domain, and our module is isomorphic │ │ │ │ to an ideal $I$, then one can compute the reflexification by computing colons. │ │ │ │ ModuleStrategy. This computes the reflexification simply by computing $Hom$ │ │ │ │ twice. │ │ │ │ ModuleStrategy is the default strategy for modules, IdealStrategy is the │ │ │ │ @@ -139,73 +139,73 @@ │ │ │ │ │ │ │ │ o26 : Ideal of R │ │ │ │ i27 : J = I^20; │ │ │ │ │ │ │ │ o27 : Ideal of R │ │ │ │ i28 : M = J*R^1; │ │ │ │ i29 : J1 = time reflexify( J, Strategy=>IdealStrategy ) │ │ │ │ - -- used 0.270151s (cpu); 0.134196s (thread); 0s (gc) │ │ │ │ + -- used 0.327227s (cpu); 0.157695s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 9 9 11 │ │ │ │ o29 = ideal (x + 5x*y + 3y , x*z - 4y*z , z + x - 4y) │ │ │ │ │ │ │ │ o29 : Ideal of R │ │ │ │ i30 : J2 = time reflexify( J, Strategy=>ModuleStrategy ) │ │ │ │ - -- used 6.77561s (cpu); 4.70658s (thread); 0s (gc) │ │ │ │ + -- used 6.0517s (cpu); 4.69876s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 9 9 11 │ │ │ │ o30 = ideal (x + 5x*y + 3y , x*z - 4y*z , z + x - 4y) │ │ │ │ │ │ │ │ o30 : Ideal of R │ │ │ │ i31 : J1 == J2 │ │ │ │ │ │ │ │ o31 = true │ │ │ │ i32 : time reflexify( M, Strategy=>IdealStrategy ); │ │ │ │ - -- used 5.83438s (cpu); 4.55312s (thread); 0s (gc) │ │ │ │ + -- used 6.07621s (cpu); 4.82643s (thread); 0s (gc) │ │ │ │ i33 : time reflexify( M, Strategy=>ModuleStrategy ); │ │ │ │ - -- used 0.553639s (cpu); 0.383614s (thread); 0s (gc) │ │ │ │ + -- used 0.569882s (cpu); 0.386597s (thread); 0s (gc) │ │ │ │ However, sometimes ModuleStrategy is faster, especially for Monomial ideals. │ │ │ │ i34 : R = QQ[x,y,u,v]/ideal(x*y-u*v); │ │ │ │ i35 : I = ideal(x,u); │ │ │ │ │ │ │ │ o35 : Ideal of R │ │ │ │ i36 : J = I^20; │ │ │ │ │ │ │ │ o36 : Ideal of R │ │ │ │ i37 : M = I^20*R^1; │ │ │ │ i38 : time reflexify( J, Strategy=>IdealStrategy ) │ │ │ │ - -- used 1.11106s (cpu); 0.416741s (thread); 0s (gc) │ │ │ │ + -- used 1.20735s (cpu); 0.439681s (thread); 0s (gc) │ │ │ │ │ │ │ │ 20 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 │ │ │ │ o38 = ideal (u , x*u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 9 11 10 10 11 9 12 8 13 7 14 6 15 5 16 4 17 3 18 2 │ │ │ │ x u , x u , x u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 19 20 │ │ │ │ x u, x ) │ │ │ │ │ │ │ │ o38 : Ideal of R │ │ │ │ i39 : time reflexify( J, Strategy=>ModuleStrategy ) │ │ │ │ - -- used 0.0142796s (cpu); 0.0142766s (thread); 0s (gc) │ │ │ │ + -- used 0.257901s (cpu); 0.0545514s (thread); 0s (gc) │ │ │ │ │ │ │ │ 20 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 │ │ │ │ o39 = ideal (u , x*u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 9 11 10 10 11 9 12 8 13 7 14 6 15 5 16 4 17 3 18 2 │ │ │ │ x u , x u , x u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 19 20 │ │ │ │ x u, x ) │ │ │ │ │ │ │ │ o39 : Ideal of R │ │ │ │ i40 : time reflexify( M, Strategy=>IdealStrategy ); │ │ │ │ - -- used 0.270201s (cpu); 0.0924585s (thread); 0s (gc) │ │ │ │ + -- used 0.0506219s (cpu); 0.0506253s (thread); 0s (gc) │ │ │ │ i41 : time reflexify( M, Strategy=>ModuleStrategy ); │ │ │ │ - -- used 0.00697604s (cpu); 0.00697697s (thread); 0s (gc) │ │ │ │ + -- used 0.243201s (cpu); 0.0522343s (thread); 0s (gc) │ │ │ │ For ideals, if KnownDomain is false (default value is true), then the function │ │ │ │ will check whether it is a domain. If it is a domain (or assumed to be a │ │ │ │ domain), it will reflexify using a strategy which can speed up computation, if │ │ │ │ not it will compute using a sometimes slower method which is essentially │ │ │ │ reflexifying it as a module. │ │ │ │ Consider the following example showing the importance of making the correct │ │ │ │ assumption about the ring being a domain. │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexive__Power.html │ │ │ @@ -124,30 +124,30 @@ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time J20a = reflexivePower(20, I);
    │ │ │ - -- used 0.0328143s (cpu); 0.0327921s (thread); 0s (gc)
    │ │ │ + -- used 0.0351563s (cpu); 0.0351537s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : I20 = I^20;
    │ │ │  
    │ │ │  o8 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time J20b = reflexify(I20);
    │ │ │ - -- used 0.208458s (cpu); 0.147573s (thread); 0s (gc)
    │ │ │ + -- used 0.239317s (cpu); 0.156542s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : J20a == J20b
    │ │ │ @@ -171,23 +171,23 @@
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : time J1 = reflexivePower(20, I, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.0296356s (cpu); 0.029641s (thread); 0s (gc)
    │ │ │ + -- used 0.0372146s (cpu); 0.0372163s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : time J2 = reflexivePower(20, I, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.152316s (cpu); 0.0807728s (thread); 0s (gc)
    │ │ │ + -- used 0.176357s (cpu); 0.09534s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : J1 == J2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -40,39 +40,39 @@
    │ │ │ │  of the generators of $I$. Consider the example of a cone over a point on an
    │ │ │ │  elliptic curve.
    │ │ │ │  i5 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │ │  i6 : I = ideal(x-z,y-2*z);
    │ │ │ │  
    │ │ │ │  o6 : Ideal of R
    │ │ │ │  i7 : time J20a = reflexivePower(20, I);
    │ │ │ │ - -- used 0.0328143s (cpu); 0.0327921s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0351563s (cpu); 0.0351537s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o7 : Ideal of R
    │ │ │ │  i8 : I20 = I^20;
    │ │ │ │  
    │ │ │ │  o8 : Ideal of R
    │ │ │ │  i9 : time J20b = reflexify(I20);
    │ │ │ │ - -- used 0.208458s (cpu); 0.147573s (thread); 0s (gc)
    │ │ │ │ + -- used 0.239317s (cpu); 0.156542s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 : Ideal of R
    │ │ │ │  i10 : J20a == J20b
    │ │ │ │  
    │ │ │ │  o10 = true
    │ │ │ │  This passes the Strategy option to a reflexify call. Valid options are
    │ │ │ │  IdealStrategy and ModuleStrategy.
    │ │ │ │  i11 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │ │  i12 : I = ideal(x-z,y-2*z);
    │ │ │ │  
    │ │ │ │  o12 : Ideal of R
    │ │ │ │  i13 : time J1 = reflexivePower(20, I, Strategy=>IdealStrategy);
    │ │ │ │ - -- used 0.0296356s (cpu); 0.029641s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0372146s (cpu); 0.0372163s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o13 : Ideal of R
    │ │ │ │  i14 : time J2 = reflexivePower(20, I, Strategy=>ModuleStrategy);
    │ │ │ │ - -- used 0.152316s (cpu); 0.0807728s (thread); 0s (gc)
    │ │ │ │ + -- used 0.176357s (cpu); 0.09534s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o14 : Ideal of R
    │ │ │ │  i15 : J1 == J2
    │ │ │ │  
    │ │ │ │  o15 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _r_e_f_l_e_x_i_f_y -- calculate the double dual of an ideal or module Hom(Hom(M,
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/example-output/_above__Bruhat_lp__Basic__List_rp.out
    │ │ │ @@ -36,34 +36,34 @@
    │ │ │                                             |  2 |
    │ │ │                                             | -1 |
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : aboveBruhat(L1)
    │ │ │  
    │ │ │ -o4 = {{WeylGroupElement{RootSystem{...8...}, |  3 |}, {{1, |  0 |}, {2, | -1
    │ │ │ -                                             | -2 |        | -1 |       |  1
    │ │ │ -                                             |  1 |        |  2 |       |  1
    │ │ │ +o4 = {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {{1, | -1 |}, {2, | -1
    │ │ │ +                                             |  1 |        |  1 |       |  2
    │ │ │ +                                             | -2 |        |  1 |       | -1
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1 |}, {1,
    │ │ │ +     |}}}, {WeylGroupElement{RootSystem{...8...}, |  3 |}, {{1, |  0 |}, {2,
    │ │ │ +     |                                            | -2 |        | -1 |      
    │ │ │       |                                            |  1 |        |  2 |      
    │ │ │ -     |                                            |  2 |        | -1 |      
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |  1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  0 |},
    │ │ │ -     |  1 |                                            |  3 |        | -1 |  
    │ │ │ -     | -1 |                                            | -1 |        |  2 |  
    │ │ │ +     | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1 |},
    │ │ │ +     |  1 |                                            |  1 |        |  2 |  
    │ │ │ +     |  1 |                                            |  2 |        | -1 |  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  1
    │ │ │ -         | -1 |                                            | -2 |        |  1
    │ │ │ -         |  0 |                                            |  3 |        | -1
    │ │ │ +     {1, |  1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  0
    │ │ │ +         |  1 |                                            |  3 |        | -1
    │ │ │ +         | -1 |                                            | -1 |        |  2
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |}, {1, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{1,
    │ │ │ -     |       | -1 |                                            |  1 |       
    │ │ │ -     |       |  0 |                                            | -2 |       
    │ │ │ +     |}, {2, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0,
    │ │ │ +     |       | -1 |                                            | -2 |       
    │ │ │ +     |       |  0 |                                            |  3 |       
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     | -1 |}, {2, | -1 |}}}}
    │ │ │ -     |  1 |       |  2 |
    │ │ │ +     |  1 |}, {1, |  2 |}}}}
    │ │ │       |  1 |       | -1 |
    │ │ │ +     | -1 |       |  0 |
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/example-output/_eval_lp__Root__System_cm__Weight_cm__Root_rp.out
    │ │ │ @@ -4,33 +4,33 @@
    │ │ │  
    │ │ │  o1 = RootSystem{...8...}
    │ │ │  
    │ │ │  o1 : RootSystem
    │ │ │  
    │ │ │  i2 : L=toList(positiveRoots(R))
    │ │ │  
    │ │ │ -o2 = {| 1 |, |  2 |, | -1 |}
    │ │ │ -      | 1 |  | -1 |  |  2 |
    │ │ │ +o2 = {| -1 |, | 1 |, |  2 |}
    │ │ │ +      |  2 |  | 1 |  | -1 |
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : v=weight(R,{1,2})
    │ │ │  
    │ │ │  o3 = | 1 |
    │ │ │       | 2 |
    │ │ │  
    │ │ │         2
    │ │ │  o3 : ZZ
    │ │ │  
    │ │ │  i4 : eval(R,v,L#0)
    │ │ │  
    │ │ │ -o4 = 3
    │ │ │ +o4 = 2
    │ │ │  
    │ │ │  i5 : eval(R,v,L#1)
    │ │ │  
    │ │ │ -o5 = 1
    │ │ │ +o5 = 3
    │ │ │  
    │ │ │  i6 : eval(R,v,L#2)
    │ │ │  
    │ │ │ -o6 = 2
    │ │ │ +o6 = 1
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/example-output/_eval_lp__Root__System_cm__Z__Z_cm__Root_rp.out
    │ │ │ @@ -4,25 +4,25 @@
    │ │ │  
    │ │ │  o1 = RootSystem{...8...}
    │ │ │  
    │ │ │  o1 : RootSystem
    │ │ │  
    │ │ │  i2 : L=toList(positiveRoots(R))
    │ │ │  
    │ │ │ -o2 = {| 1 |, |  2 |, | -1 |}
    │ │ │ -      | 1 |  | -1 |  |  2 |
    │ │ │ +o2 = {| -1 |, | 1 |, |  2 |}
    │ │ │ +      |  2 |  | 1 |  | -1 |
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : eval(R,1,L#0)
    │ │ │  
    │ │ │ -o3 = 1
    │ │ │ +o3 = 0
    │ │ │  
    │ │ │  i4 : eval(R,1,L#1)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │  
    │ │ │  i5 : eval(R,1,L#2)
    │ │ │  
    │ │ │ -o5 = 0
    │ │ │ +o5 = 1
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/example-output/_hasse__Diagram__To__Graph_lp__Hasse__Diagram_rp.out
    │ │ │ @@ -20,26 +20,26 @@
    │ │ │                                             | -2 |
    │ │ │                                             |  1 |
    │ │ │  
    │ │ │  o3 : WeylGroupElement
    │ │ │  
    │ │ │  i4 : myInterval=intervalBruhat(w1,w2)
    │ │ │  
    │ │ │ -o4 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  0 |}, {1, |  1 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | -1 |}, {1, |  1 |}, {3, | 1 |}, {4, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{1, | 1 |}, {2, | -1 |}, {3, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1 |}, {2, |  2 |}, {4, |  0 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, |  0 |}, {2, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  3 |}, {{1, |  0 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{2, | 1 |}, {3, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {3, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {3, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  3 |}, {{0, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ -                                                          | -2 |        | -1 |       |  1 |       |  2 |                                              | -3 |        |  2 |       |  1 |       | 0 |       |  1 |                                            |  2 |        | 0 |       |  2 |       | -1 |                                            | -1 |        |  1 |       | -1 |       | -1 |                                              | -3 |        | -1 |       | -1 |                                            | -1 |        | -1 |       |  2 |                                            |  1 |        | 0 |       | -1 |                                            |  3 |        |  1 |       |  1 |                                            | -1 |        |  2 |       | -1 |                                              | -2 |        | -1 |                                            |  1 |        |  1 |                                            | -2 |        | -1 |                                            |  1 |        |  1 |                                              | -1 |
    │ │ │ -                                                          |  1 |        |  2 |       | -1 |       | -1 |                                              |  1 |        | -1 |       | -1 |       | 1 |       |  1 |                                            | -1 |        | 1 |       | -1 |       |  2 |                                            |  2 |        |  1 |       |  0 |       |  2 |                                              |  2 |        |  2 |       |  0 |                                            | -1 |        |  2 |       | -1 |                                            |  1 |        | 1 |       |  2 |                                            | -2 |        | -1 |       |  1 |                                            |  3 |        | -1 |       |  0 |                                              |  3 |        |  0 |                                            | -2 |        |  1 |                                            |  1 |        |  2 |                                            |  2 |        | -1 |                                              |  2 |
    │ │ │ +o4 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  0 |}, {1, |  1 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | -1 |}, {1, | -1 |}, {2, |  1 |}, {4, | 1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{2, | 1 |}, {3, | -1 |}, {4, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  0 |}, {1, | -1 |}, {3, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {3, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, |  0 |}, {2, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  3 |}, {{1, |  0 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{2, | 1 |}, {3, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {3, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  3 |}, {{0, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ +                                                          | -2 |        | -1 |       |  1 |       |  2 |                                              | -3 |        |  1 |       |  2 |       |  1 |       | 0 |                                            |  2 |        | 0 |       |  2 |       | -1 |                                            | -1 |        | -1 |       |  1 |       | -1 |                                              | -1 |        |  2 |       | -1 |                                            | -3 |        | -1 |       | -1 |                                            | -1 |        | -1 |       |  2 |                                            |  1 |        | 0 |       | -1 |                                            |  3 |        |  1 |       |  1 |                                              | -2 |        | -1 |                                            |  1 |        |  1 |                                            | -2 |        | -1 |                                            |  1 |        |  1 |                                              | -1 |
    │ │ │ +                                                          |  1 |        |  2 |       | -1 |       | -1 |                                              |  1 |        |  1 |       | -1 |       | -1 |       | 1 |                                            | -1 |        | 1 |       | -1 |       |  2 |                                            |  2 |        |  2 |       |  1 |       |  0 |                                              |  3 |        | -1 |       |  0 |                                            |  2 |        |  2 |       |  0 |                                            | -1 |        |  2 |       | -1 |                                            |  1 |        | 1 |       |  2 |                                            | -2 |        | -1 |       |  1 |                                              |  3 |        |  0 |                                            | -2 |        |  1 |                                            |  1 |        |  2 |                                            |  2 |        | -1 |                                              |  2 |
    │ │ │  
    │ │ │  o4 : HasseDiagram
    │ │ │  
    │ │ │  i5 : hasseDiagramToGraph(myInterval)
    │ │ │  
    │ │ │ -o5 = HasseGraph{{{, {{, 0}, {, 1}, {, 2}}}}, {{, {{, 0}, {, 1}, {, 3}, {, 4}}}, {, {{, 1}, {, 2}, {, 3}}}, {, {{, 0}, {, 2}, {, 4}}}}, {{, {{, 0}, {, 2}}}, {, {{, 1}, {, 2}}}, {, {{, 2}, {, 3}}}, {, {{, 1}, {, 3}}}, {, {{, 0}, {, 3}}}}, {{, {{, 0}}}, {, {{, 0}}}, {, {{, 0}}}, {, {{, 0}}}}, {{, {}}}}
    │ │ │ +o5 = HasseGraph{{{, {{, 0}, {, 1}, {, 2}}}}, {{, {{, 0}, {, 1}, {, 2}, {, 4}}}, {, {{, 2}, {, 3}, {, 4}}}, {, {{, 0}, {, 1}, {, 3}}}}, {{, {{, 0}, {, 3}}}, {, {{, 0}, {, 2}}}, {, {{, 1}, {, 2}}}, {, {{, 2}, {, 3}}}, {, {{, 1}, {, 3}}}}, {{, {{, 0}}}, {, {{, 0}}}, {, {{, 0}}}, {, {{, 0}}}}, {{, {}}}}
    │ │ │  
    │ │ │  o5 : HasseGraph
    │ │ │  
    │ │ │  i6 : hasseDiagramToGraph(myInterval,"labels"=>"reduced decomposition")
    │ │ │  
    │ │ │ -o6 = HasseGraph{{{12132, {{3, 0}, {121, 1}, {2, 2}}}}, {{2132, {{2, 0}, {121, 1}, {12321, 3}, {232, 4}}}, {1232, {{12321, 1}, {2, 2}, {3, 3}}}, {1213, {{232, 0}, {1, 2}, {3, 4}}}}, {{213, {{3, 0}, {1, 2}}}, {232, {{3, 1}, {2, 2}}}, {123, {{12321, 2}, {3, 3}}}, {132, {{121, 1}, {232, 3}}}, {121, {{2, 0}, {1, 3}}}}, {{21, {{1, 0}}}, {32, {{232, 0}}}, {23, {{3, 0}}}, {12, {{121, 0}}}}, {{2, {}}}}
    │ │ │ +o6 = HasseGraph{{{12132, {{3, 0}, {121, 1}, {2, 2}}}}, {{2132, {{232, 0}, {2, 1}, {121, 2}, {12321, 4}}}, {1232, {{12321, 2}, {2, 3}, {3, 4}}}, {1213, {{3, 0}, {232, 1}, {1, 3}}}}, {{121, {{2, 0}, {1, 3}}}, {213, {{3, 0}, {1, 2}}}, {232, {{3, 1}, {2, 2}}}, {123, {{12321, 2}, {3, 3}}}, {132, {{121, 1}, {232, 3}}}}, {{21, {{1, 0}}}, {32, {{232, 0}}}, {23, {{3, 0}}}, {12, {{121, 0}}}}, {{2, {}}}}
    │ │ │  
    │ │ │  o6 : HasseGraph
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/example-output/_interval__Bruhat_lp__Weyl__Group__Left__Coset_cm__Weyl__Group__Left__Coset_rp.out
    │ │ │ @@ -26,30 +26,30 @@
    │ │ │                                             | -2 |
    │ │ │                                             |  1 |
    │ │ │  
    │ │ │  o4 : WeylGroupElement
    │ │ │  
    │ │ │  i5 : myInterval=intervalBruhat(w1 % P,w2 % P)
    │ │ │  
    │ │ │ -o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | 1 |}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ -                                                          | -3 |        | 0 |       |  1 |                                              |  3 |        |  1 |       |  1 |                                            | -1 |        |  2 |       | -1 |                                              | -2 |        | -1 |                                            |  1 |        |  1 |                                            |  1 |        |  1 |                                              | -1 |
    │ │ │ -                                                          |  1 |        | 1 |       |  1 |                                              | -2 |        | -1 |       |  1 |                                            |  3 |        | -1 |       |  0 |                                              |  3 |        |  0 |                                            | -2 |        |  1 |                                            |  2 |        | -1 |                                              |  2 |
    │ │ │ +o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | -1 |}, {1, | 1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ +                                                          | -3 |        |  1 |       | 0 |                                              | -1 |        |  2 |       | -1 |                                            |  3 |        |  1 |       |  1 |                                              | -2 |        | -1 |                                            |  1 |        |  1 |                                            |  1 |        |  1 |                                              | -1 |
    │ │ │ +                                                          |  1 |        |  1 |       | 1 |                                              |  3 |        | -1 |       |  0 |                                            | -2 |        | -1 |       |  1 |                                              |  3 |        |  0 |                                            | -2 |        |  1 |                                            |  2 |        | -1 |                                              |  2 |
    │ │ │  
    │ │ │  o5 : HasseDiagram
    │ │ │  
    │ │ │  i6 : myInterval#1
    │ │ │  
    │ │ │ -o6 = {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {2, | -1
    │ │ │ -                                             |  3 |        |  1 |       |  1
    │ │ │ -                                             | -2 |        | -1 |       |  1
    │ │ │ +o6 = {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2, |  2
    │ │ │ +                                             | -1 |        |  2 |       | -1
    │ │ │ +                                             |  3 |        | -1 |       |  0
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2,
    │ │ │ -     |                                            | -1 |        |  2 |      
    │ │ │ -     |                                            |  3 |        | -1 |      
    │ │ │ +     |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {2,
    │ │ │ +     |                                            |  3 |        |  1 |      
    │ │ │ +     |                                            | -2 |        | -1 |      
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |  2 |}}}}
    │ │ │ -     | -1 |
    │ │ │ -     |  0 |
    │ │ │ +     | -1 |}}}}
    │ │ │ +     |  1 |
    │ │ │ +     |  1 |
    │ │ │  
    │ │ │  o6 : List
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/example-output/_interval__Bruhat_lp__Weyl__Group__Right__Coset_cm__Weyl__Group__Right__Coset_rp.out
    │ │ │ @@ -26,17 +26,17 @@
    │ │ │                                             | -2 |
    │ │ │                                             |  1 |
    │ │ │  
    │ │ │  o4 : WeylGroupElement
    │ │ │  
    │ │ │  i5 : myInterval=intervalBruhat(P % w1,P % w2)
    │ │ │  
    │ │ │ -o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  0 |}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{1, | -1 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  2 |}, {1, |  0 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -3 |}, {{0, |  0 |}, {2, | 1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  2 |}, {1, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{1, |  0 |}, {2, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  3 |}, {{0, |  0 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ -                                                          | -2 |        | -1 |       |  2 |                                              | -3 |        |  1 |       |  2 |                                            | -1 |        | -1 |       | -1 |       |  1 |                                              |  1 |        | -1 |       | 0 |                                            | -1 |        | -1 |       |  2 |                                            | -3 |        | -1 |       | -1 |                                              |  1 |        |  1 |                                            | -2 |        | -1 |                                            | -2 |        | -1 |                                              | -1 |
    │ │ │ -                                                          |  1 |        |  2 |       | -1 |                                              |  1 |        |  1 |       | -1 |                                            |  2 |        |  0 |       |  2 |       |  1 |                                              |  1 |        |  2 |       | 1 |                                            |  3 |        |  0 |       | -1 |                                            |  2 |        |  2 |       |  0 |                                              |  2 |        | -1 |                                            |  3 |        |  0 |                                            |  1 |        |  2 |                                              |  2 |
    │ │ │ +o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  0 |}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{1, | -1 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  2 |}, {1, |  0 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -3 |}, {{0, | 1 |}, {1, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1, |  2 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, |  2 |}, {2, |  0 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  3 |}, {{0, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ +                                                          | -2 |        | -1 |       |  2 |                                              | -3 |        |  1 |       |  2 |                                            | -1 |        | -1 |       | -1 |       |  1 |                                              |  1 |        | 0 |       | -1 |                                            | -1 |        | -1 |       |  2 |                                            | -3 |        | -1 |       | -1 |                                              | -2 |        | -1 |                                            |  1 |        |  1 |                                            | -2 |        | -1 |                                              | -1 |
    │ │ │ +                                                          |  1 |        |  2 |       | -1 |                                              |  1 |        |  1 |       | -1 |                                            |  2 |        |  0 |       |  2 |       |  1 |                                              |  1 |        | 1 |       |  2 |                                            |  3 |        |  0 |       | -1 |                                            |  2 |        |  0 |       |  2 |                                              |  1 |        |  2 |                                            |  2 |        | -1 |                                            |  3 |        |  0 |                                              |  2 |
    │ │ │  
    │ │ │  o5 : HasseDiagram
    │ │ │  
    │ │ │  i6 : myInterval#1
    │ │ │  
    │ │ │  o6 = {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{1, | -1 |}, {2, | -1
    │ │ │                                               | -3 |        |  1 |       |  2
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/example-output/_poincare__Series_lp__Hasse__Diagram_cm__Ring__Element_rp.out
    │ │ │ @@ -4,16 +4,16 @@
    │ │ │  
    │ │ │  o1 = RootSystem{...8...}
    │ │ │  
    │ │ │  o1 : RootSystem
    │ │ │  
    │ │ │  i2 : H=intervalBruhat(neutralWeylGroupElement R, longestWeylGroupElement R)
    │ │ │  
    │ │ │ -o2 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {1, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | 1 |}, {1, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1 |}, {1, | 1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 1 |}, {}}}}
    │ │ │ -                                                          | -1 |        |  2 |       | -1 |                                              | -2 |        | 1 |       | -1 |                                            |  1 |        |  2 |       | 1 |                                              |  2 |        | -1 |                                            | -1 |        |  2 |                                              | 1 |
    │ │ │ +o2 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  2 |}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | 1 |}, {1, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}, {1, | 1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 1 |}, {}}}}
    │ │ │ +                                                          | -1 |        | -1 |       |  2 |                                              |  1 |        | 1 |       |  2 |                                            | -2 |        | -1 |       | 1 |                                              | -1 |        |  2 |                                            |  2 |        | -1 |                                              | 1 |
    │ │ │  
    │ │ │  o2 : HasseDiagram
    │ │ │  
    │ │ │  i3 : ZZ[x]
    │ │ │  
    │ │ │  o3 = ZZ[x]
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/example-output/_positive__Roots_lp__Root__System_cm__Parabolic_rp.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │  
    │ │ │  o2 = set {1, 2}
    │ │ │  
    │ │ │  o2 : Parabolic
    │ │ │  
    │ │ │  i3 : positiveRoots(R,P)
    │ │ │  
    │ │ │ -o3 = set {|  2 |, | -1 |, |  1 |}
    │ │ │ -          | -1 |  |  2 |  |  1 |
    │ │ │ -          |  0 |  | -1 |  | -1 |
    │ │ │ +o3 = set {|  1 |, |  2 |, | -1 |}
    │ │ │ +          |  1 |  | -1 |  |  2 |
    │ │ │ +          | -1 |  |  0 |  | -1 |
    │ │ │            |  0 |  |  0 |  |  0 |
    │ │ │  
    │ │ │  o3 : Set
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/example-output/_positive__Roots_lp__Root__System_rp.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1330744940387
    │ │ │  
    │ │ │  i1 : positiveRoots(rootSystemA(3))
    │ │ │  
    │ │ │ -o1 = set {|  0 |, | -1 |, | -1 |, | 1 |, |  1 |, |  2 |}
    │ │ │ -          | -1 |  |  1 |  |  2 |  | 0 |  |  1 |  | -1 |
    │ │ │ -          |  2 |  |  1 |  | -1 |  | 1 |  | -1 |  |  0 |
    │ │ │ +o1 = set {|  2 |, |  0 |, | -1 |, | -1 |, | 1 |, |  1 |}
    │ │ │ +          | -1 |  | -1 |  |  1 |  |  2 |  | 0 |  |  1 |
    │ │ │ +          |  0 |  |  2 |  |  1 |  | -1 |  | 1 |  | -1 |
    │ │ │  
    │ │ │  o1 : Set
    │ │ │  
    │ │ │  i2 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/example-output/_under__Bruhat_lp__Basic__List_rp.out
    │ │ │ @@ -36,34 +36,34 @@
    │ │ │                                             | -2 |
    │ │ │                                             | -1 |
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : underBruhat(L1)
    │ │ │  
    │ │ │ -o4 = {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  0 |}, {2, |  2
    │ │ │ -                                             | -3 |        | -1 |       | -1
    │ │ │ -                                             |  1 |        |  2 |       |  0
    │ │ │ +o4 = {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1, |  0 |}, {2, | -1
    │ │ │ +                                             |  2 |        | -1 |       |  1
    │ │ │ +                                             | -3 |        |  2 |       |  1
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{1, | -1 |}, {2,
    │ │ │ -     |                                            | -1 |        |  1 |      
    │ │ │ -     |                                            | -2 |        |  1 |      
    │ │ │ +     |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  0 |}, {2,
    │ │ │ +     |                                            | -3 |        | -1 |      
    │ │ │ +     |                                            |  1 |        |  2 |      
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{0, |  1 |},
    │ │ │ -     |  2 |                                            |  2 |        |  1 |  
    │ │ │ -     | -1 |                                            | -1 |        | -1 |  
    │ │ │ +     |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{1, | -1 |},
    │ │ │ +     | -1 |                                            | -1 |        |  1 |  
    │ │ │ +     |  0 |                                            | -2 |        |  1 |  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1
    │ │ │ -         | -1 |                                            | -1 |        |  2
    │ │ │ -         |  0 |                                            |  2 |        | -1
    │ │ │ +     {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{0, |  1
    │ │ │ +         |  2 |                                            |  2 |        |  1
    │ │ │ +         | -1 |                                            | -1 |        | -1
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |}, {1, |  1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1,
    │ │ │ -     |       |  1 |                                            |  2 |       
    │ │ │ -     |       | -1 |                                            | -3 |       
    │ │ │ +     |}, {1, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0,
    │ │ │ +     |       | -1 |                                            | -1 |       
    │ │ │ +     |       |  0 |                                            |  2 |       
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |  0 |}, {2, | -1 |}}}}
    │ │ │ -     | -1 |       |  1 |
    │ │ │ +     | -1 |}, {1, |  1 |}}}}
    │ │ │       |  2 |       |  1 |
    │ │ │ +     | -1 |       | -1 |
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/html/_above__Bruhat_lp__Basic__List_rp.html
    │ │ │ @@ -116,37 +116,37 @@
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : aboveBruhat(L1)
    │ │ │  
    │ │ │ -o4 = {{WeylGroupElement{RootSystem{...8...}, |  3 |}, {{1, |  0 |}, {2, | -1
    │ │ │ -                                             | -2 |        | -1 |       |  1
    │ │ │ -                                             |  1 |        |  2 |       |  1
    │ │ │ +o4 = {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {{1, | -1 |}, {2, | -1
    │ │ │ +                                             |  1 |        |  1 |       |  2
    │ │ │ +                                             | -2 |        |  1 |       | -1
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1 |}, {1,
    │ │ │ +     |}}}, {WeylGroupElement{RootSystem{...8...}, |  3 |}, {{1, |  0 |}, {2,
    │ │ │ +     |                                            | -2 |        | -1 |      
    │ │ │       |                                            |  1 |        |  2 |      
    │ │ │ -     |                                            |  2 |        | -1 |      
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |  1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  0 |},
    │ │ │ -     |  1 |                                            |  3 |        | -1 |  
    │ │ │ -     | -1 |                                            | -1 |        |  2 |  
    │ │ │ +     | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1 |},
    │ │ │ +     |  1 |                                            |  1 |        |  2 |  
    │ │ │ +     |  1 |                                            |  2 |        | -1 |  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  1
    │ │ │ -         | -1 |                                            | -2 |        |  1
    │ │ │ -         |  0 |                                            |  3 |        | -1
    │ │ │ +     {1, |  1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  0
    │ │ │ +         |  1 |                                            |  3 |        | -1
    │ │ │ +         | -1 |                                            | -1 |        |  2
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |}, {1, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{1,
    │ │ │ -     |       | -1 |                                            |  1 |       
    │ │ │ -     |       |  0 |                                            | -2 |       
    │ │ │ +     |}, {2, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0,
    │ │ │ +     |       | -1 |                                            | -2 |       
    │ │ │ +     |       |  0 |                                            |  3 |       
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     | -1 |}, {2, | -1 |}}}}
    │ │ │ -     |  1 |       |  2 |
    │ │ │ +     |  1 |}, {1, |  2 |}}}}
    │ │ │       |  1 |       | -1 |
    │ │ │ +     | -1 |       |  0 |
    │ │ │  
    │ │ │  o4 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -48,37 +48,37 @@ │ │ │ │ WeylGroupElement{RootSystem{...8...}, | 1 |}} │ │ │ │ | 2 | │ │ │ │ | -1 | │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : aboveBruhat(L1) │ │ │ │ │ │ │ │ -o4 = {{WeylGroupElement{RootSystem{...8...}, | 3 |}, {{1, | 0 |}, {2, | -1 │ │ │ │ - | -2 | | -1 | | 1 │ │ │ │ - | 1 | | 2 | | 1 │ │ │ │ +o4 = {{WeylGroupElement{RootSystem{...8...}, | 2 |}, {{1, | -1 |}, {2, | -1 │ │ │ │ + | 1 | | 1 | | 2 │ │ │ │ + | -2 | | 1 | | -1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1 |}, {1, │ │ │ │ + |}}}, {WeylGroupElement{RootSystem{...8...}, | 3 |}, {{1, | 0 |}, {2, │ │ │ │ + | | -2 | | -1 | │ │ │ │ | | 1 | | 2 | │ │ │ │ - | | 2 | | -1 | │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - | 1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | 0 |}, │ │ │ │ - | 1 | | 3 | | -1 | │ │ │ │ - | -1 | | -1 | | 2 | │ │ │ │ + | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1 |}, │ │ │ │ + | 1 | | 1 | | 2 | │ │ │ │ + | 1 | | 2 | | -1 | │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, | 2 |}}}, {WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | 1 │ │ │ │ - | -1 | | -2 | | 1 │ │ │ │ - | 0 | | 3 | | -1 │ │ │ │ + {1, | 1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | 0 │ │ │ │ + | 1 | | 3 | | -1 │ │ │ │ + | -1 | | -1 | | 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - |}, {1, | 2 |}}}, {WeylGroupElement{RootSystem{...8...}, | 2 |}, {{1, │ │ │ │ - | | -1 | | 1 | │ │ │ │ - | | 0 | | -2 | │ │ │ │ + |}, {2, | 2 |}}}, {WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, │ │ │ │ + | | -1 | | -2 | │ │ │ │ + | | 0 | | 3 | │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - | -1 |}, {2, | -1 |}}}} │ │ │ │ - | 1 | | 2 | │ │ │ │ + | 1 |}, {1, | 2 |}}}} │ │ │ │ | 1 | | -1 | │ │ │ │ + | -1 | | 0 | │ │ │ │ │ │ │ │ o4 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _a_b_o_v_e_B_r_u_h_a_t_(_B_a_s_i_c_L_i_s_t_) -- The Weyl group elements just under the ones in │ │ │ │ the list for the Bruhat order │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/html/_eval_lp__Root__System_cm__Weight_cm__Root_rp.html │ │ │ @@ -80,16 +80,16 @@ │ │ │ o1 : RootSystem │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : L=toList(positiveRoots(R))
    │ │ │  
    │ │ │ -o2 = {| 1 |, |  2 |, | -1 |}
    │ │ │ -      | 1 |  | -1 |  |  2 |
    │ │ │ +o2 = {| -1 |, | 1 |, |  2 |}
    │ │ │ +      |  2 |  | 1 |  | -1 |
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : v=weight(R,{1,2})
    │ │ │ @@ -101,29 +101,29 @@
    │ │ │  o3 : ZZ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : eval(R,v,L#0)
    │ │ │  
    │ │ │ -o4 = 3
    │ │ │ +o4 = 2 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : eval(R,v,L#1)
    │ │ │  
    │ │ │ -o5 = 1
    │ │ │ +o5 = 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : eval(R,v,L#2)
    │ │ │  
    │ │ │ -o6 = 2
    │ │ │ +o6 = 1 │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -18,32 +18,32 @@ │ │ │ │ i1 : R=rootSystemA(2) │ │ │ │ │ │ │ │ o1 = RootSystem{...8...} │ │ │ │ │ │ │ │ o1 : RootSystem │ │ │ │ i2 : L=toList(positiveRoots(R)) │ │ │ │ │ │ │ │ -o2 = {| 1 |, | 2 |, | -1 |} │ │ │ │ - | 1 | | -1 | | 2 | │ │ │ │ +o2 = {| -1 |, | 1 |, | 2 |} │ │ │ │ + | 2 | | 1 | | -1 | │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : v=weight(R,{1,2}) │ │ │ │ │ │ │ │ o3 = | 1 | │ │ │ │ | 2 | │ │ │ │ │ │ │ │ 2 │ │ │ │ o3 : ZZ │ │ │ │ i4 : eval(R,v,L#0) │ │ │ │ │ │ │ │ -o4 = 3 │ │ │ │ +o4 = 2 │ │ │ │ i5 : eval(R,v,L#1) │ │ │ │ │ │ │ │ -o5 = 1 │ │ │ │ +o5 = 3 │ │ │ │ i6 : eval(R,v,L#2) │ │ │ │ │ │ │ │ -o6 = 2 │ │ │ │ +o6 = 1 │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _e_v_a_l_(_R_o_o_t_S_y_s_t_e_m_,_W_e_i_g_h_t_,_R_o_o_t_) -- evaluate the dual of a root at a Weight │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/WeylGroups.m2:2488:0. │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/html/_eval_lp__Root__System_cm__Z__Z_cm__Root_rp.html │ │ │ @@ -80,39 +80,39 @@ │ │ │ o1 : RootSystem │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : L=toList(positiveRoots(R))
    │ │ │  
    │ │ │ -o2 = {| 1 |, |  2 |, | -1 |}
    │ │ │ -      | 1 |  | -1 |  |  2 |
    │ │ │ +o2 = {| -1 |, | 1 |, |  2 |}
    │ │ │ +      |  2 |  | 1 |  | -1 |
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : eval(R,1,L#0)
    │ │ │  
    │ │ │ -o3 = 1
    │ │ │ +o3 = 0 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : eval(R,1,L#1)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : eval(R,1,L#2)
    │ │ │  
    │ │ │ -o5 = 0
    │ │ │ +o5 = 1 │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -19,26 +19,26 @@ │ │ │ │ i1 : R=rootSystemA(2) │ │ │ │ │ │ │ │ o1 = RootSystem{...8...} │ │ │ │ │ │ │ │ o1 : RootSystem │ │ │ │ i2 : L=toList(positiveRoots(R)) │ │ │ │ │ │ │ │ -o2 = {| 1 |, | 2 |, | -1 |} │ │ │ │ - | 1 | | -1 | | 2 | │ │ │ │ +o2 = {| -1 |, | 1 |, | 2 |} │ │ │ │ + | 2 | | 1 | | -1 | │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : eval(R,1,L#0) │ │ │ │ │ │ │ │ -o3 = 1 │ │ │ │ +o3 = 0 │ │ │ │ i4 : eval(R,1,L#1) │ │ │ │ │ │ │ │ o4 = 1 │ │ │ │ i5 : eval(R,1,L#2) │ │ │ │ │ │ │ │ -o5 = 0 │ │ │ │ +o5 = 1 │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _e_v_a_l_(_R_o_o_t_S_y_s_t_e_m_,_Z_Z_,_R_o_o_t_) -- evaluate the dual of a root at a fundamental │ │ │ │ weight │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/WeylGroups.m2:2512:0. │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/html/_hasse__Diagram__To__Graph_lp__Hasse__Diagram_rp.html │ │ │ @@ -107,40 +107,40 @@ │ │ │ o3 : WeylGroupElement │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : myInterval=intervalBruhat(w1,w2)
    │ │ │  
    │ │ │ -o4 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  0 |}, {1, |  1 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | -1 |}, {1, |  1 |}, {3, | 1 |}, {4, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{1, | 1 |}, {2, | -1 |}, {3, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1 |}, {2, |  2 |}, {4, |  0 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, |  0 |}, {2, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  3 |}, {{1, |  0 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{2, | 1 |}, {3, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {3, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {3, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  3 |}, {{0, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ -                                                          | -2 |        | -1 |       |  1 |       |  2 |                                              | -3 |        |  2 |       |  1 |       | 0 |       |  1 |                                            |  2 |        | 0 |       |  2 |       | -1 |                                            | -1 |        |  1 |       | -1 |       | -1 |                                              | -3 |        | -1 |       | -1 |                                            | -1 |        | -1 |       |  2 |                                            |  1 |        | 0 |       | -1 |                                            |  3 |        |  1 |       |  1 |                                            | -1 |        |  2 |       | -1 |                                              | -2 |        | -1 |                                            |  1 |        |  1 |                                            | -2 |        | -1 |                                            |  1 |        |  1 |                                              | -1 |
    │ │ │ -                                                          |  1 |        |  2 |       | -1 |       | -1 |                                              |  1 |        | -1 |       | -1 |       | 1 |       |  1 |                                            | -1 |        | 1 |       | -1 |       |  2 |                                            |  2 |        |  1 |       |  0 |       |  2 |                                              |  2 |        |  2 |       |  0 |                                            | -1 |        |  2 |       | -1 |                                            |  1 |        | 1 |       |  2 |                                            | -2 |        | -1 |       |  1 |                                            |  3 |        | -1 |       |  0 |                                              |  3 |        |  0 |                                            | -2 |        |  1 |                                            |  1 |        |  2 |                                            |  2 |        | -1 |                                              |  2 |
    │ │ │ +o4 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  0 |}, {1, |  1 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | -1 |}, {1, | -1 |}, {2, |  1 |}, {4, | 1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{2, | 1 |}, {3, | -1 |}, {4, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  0 |}, {1, | -1 |}, {3, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {3, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, |  0 |}, {2, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  3 |}, {{1, |  0 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{2, | 1 |}, {3, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {3, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  3 |}, {{0, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ +                                                          | -2 |        | -1 |       |  1 |       |  2 |                                              | -3 |        |  1 |       |  2 |       |  1 |       | 0 |                                            |  2 |        | 0 |       |  2 |       | -1 |                                            | -1 |        | -1 |       |  1 |       | -1 |                                              | -1 |        |  2 |       | -1 |                                            | -3 |        | -1 |       | -1 |                                            | -1 |        | -1 |       |  2 |                                            |  1 |        | 0 |       | -1 |                                            |  3 |        |  1 |       |  1 |                                              | -2 |        | -1 |                                            |  1 |        |  1 |                                            | -2 |        | -1 |                                            |  1 |        |  1 |                                              | -1 |
    │ │ │ +                                                          |  1 |        |  2 |       | -1 |       | -1 |                                              |  1 |        |  1 |       | -1 |       | -1 |       | 1 |                                            | -1 |        | 1 |       | -1 |       |  2 |                                            |  2 |        |  2 |       |  1 |       |  0 |                                              |  3 |        | -1 |       |  0 |                                            |  2 |        |  2 |       |  0 |                                            | -1 |        |  2 |       | -1 |                                            |  1 |        | 1 |       |  2 |                                            | -2 |        | -1 |       |  1 |                                              |  3 |        |  0 |                                            | -2 |        |  1 |                                            |  1 |        |  2 |                                            |  2 |        | -1 |                                              |  2 |
    │ │ │  
    │ │ │  o4 : HasseDiagram
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : hasseDiagramToGraph(myInterval)
    │ │ │  
    │ │ │ -o5 = HasseGraph{{{, {{, 0}, {, 1}, {, 2}}}}, {{, {{, 0}, {, 1}, {, 3}, {, 4}}}, {, {{, 1}, {, 2}, {, 3}}}, {, {{, 0}, {, 2}, {, 4}}}}, {{, {{, 0}, {, 2}}}, {, {{, 1}, {, 2}}}, {, {{, 2}, {, 3}}}, {, {{, 1}, {, 3}}}, {, {{, 0}, {, 3}}}}, {{, {{, 0}}}, {, {{, 0}}}, {, {{, 0}}}, {, {{, 0}}}}, {{, {}}}}
    │ │ │ +o5 = HasseGraph{{{, {{, 0}, {, 1}, {, 2}}}}, {{, {{, 0}, {, 1}, {, 2}, {, 4}}}, {, {{, 2}, {, 3}, {, 4}}}, {, {{, 0}, {, 1}, {, 3}}}}, {{, {{, 0}, {, 3}}}, {, {{, 0}, {, 2}}}, {, {{, 1}, {, 2}}}, {, {{, 2}, {, 3}}}, {, {{, 1}, {, 3}}}}, {{, {{, 0}}}, {, {{, 0}}}, {, {{, 0}}}, {, {{, 0}}}}, {{, {}}}}
    │ │ │  
    │ │ │  o5 : HasseGraph
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    It is also possible to ask for reduced decompositions as labels by changing the option "labels" as below.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : hasseDiagramToGraph(myInterval,"labels"=>"reduced decomposition")
    │ │ │  
    │ │ │ -o6 = HasseGraph{{{12132, {{3, 0}, {121, 1}, {2, 2}}}}, {{2132, {{2, 0}, {121, 1}, {12321, 3}, {232, 4}}}, {1232, {{12321, 1}, {2, 2}, {3, 3}}}, {1213, {{232, 0}, {1, 2}, {3, 4}}}}, {{213, {{3, 0}, {1, 2}}}, {232, {{3, 1}, {2, 2}}}, {123, {{12321, 2}, {3, 3}}}, {132, {{121, 1}, {232, 3}}}, {121, {{2, 0}, {1, 3}}}}, {{21, {{1, 0}}}, {32, {{232, 0}}}, {23, {{3, 0}}}, {12, {{121, 0}}}}, {{2, {}}}}
    │ │ │ +o6 = HasseGraph{{{12132, {{3, 0}, {121, 1}, {2, 2}}}}, {{2132, {{232, 0}, {2, 1}, {121, 2}, {12321, 4}}}, {1232, {{12321, 2}, {2, 3}, {3, 4}}}, {1213, {{3, 0}, {232, 1}, {1, 3}}}}, {{121, {{2, 0}, {1, 3}}}, {213, {{3, 0}, {1, 2}}}, {232, {{3, 1}, {2, 2}}}, {123, {{12321, 2}, {3, 3}}}, {132, {{121, 1}, {232, 3}}}}, {{21, {{1, 0}}}, {32, {{232, 0}}}, {23, {{3, 0}}}, {12, {{121, 0}}}}, {{2, {}}}}
    │ │ │  
    │ │ │  o6 : HasseGraph
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -35,72 +35,73 @@ │ │ │ │ | 1 | │ │ │ │ │ │ │ │ o3 : WeylGroupElement │ │ │ │ i4 : myInterval=intervalBruhat(w1,w2) │ │ │ │ │ │ │ │ o4 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | 0 │ │ │ │ |}, {1, | 1 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 1 │ │ │ │ -|}, {{0, | -1 |}, {1, | 1 |}, {3, | 1 |}, {4, | -1 |}}}, {WeylGroupElement │ │ │ │ -{RootSystem{...8...}, | -3 |}, {{1, | 1 |}, {2, | -1 |}, {3, | 0 |}}}, │ │ │ │ -{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1 |}, {2, | 2 |}, {4, │ │ │ │ -| 0 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 2 |}, {{0, | 0 |}, {2, │ │ │ │ -| 2 |}}}, {WeylGroupElement{RootSystem{...8...}, | 3 |}, {{1, | 0 |}, {2, | │ │ │ │ --1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{2, | 1 |}, {3, | 0 │ │ │ │ +|}, {{0, | -1 |}, {1, | -1 |}, {2, | 1 |}, {4, | 1 |}}}, {WeylGroupElement │ │ │ │ +{RootSystem{...8...}, | -3 |}, {{2, | 1 |}, {3, | -1 |}, {4, | 0 |}}}, │ │ │ │ +{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | 0 |}, {1, | -1 |}, {3, │ │ │ │ +| 2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {3, │ │ │ │ +| 2 |}}}, {WeylGroupElement{RootSystem{...8...}, | 2 |}, {{0, | 0 |}, {2, | │ │ │ │ +2 |}}}, {WeylGroupElement{RootSystem{...8...}, | 3 |}, {{1, | 0 |}, {2, | - │ │ │ │ +1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{2, | 1 |}, {3, | 0 │ │ │ │ |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, | 1 |}, {3, | - │ │ │ │ -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {3, | 2 │ │ │ │ -|}}}}, {{WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | 2 |}}}, │ │ │ │ +1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | 2 |}}}, │ │ │ │ {WeylGroupElement{RootSystem{...8...}, | 2 |}, {{0, | -1 |}}}, │ │ │ │ {WeylGroupElement{RootSystem{...8...}, | 3 |}, {{0, | 0 |}}}, │ │ │ │ {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | 1 |}}}}, { │ │ │ │ {WeylGroupElement{RootSystem{...8...}, | 2 |}, {}}}} │ │ │ │ | -2 | | -1 | │ │ │ │ | 1 | | 2 | | -3 | │ │ │ │ -| 2 | | 1 | | 0 | | 1 | │ │ │ │ +| 1 | | 2 | | 1 | | 0 | │ │ │ │ | 2 | | 0 | | 2 | | -1 | │ │ │ │ -| -1 | | 1 | | -1 | | -1 | │ │ │ │ -| -3 | | -1 | | -1 | | │ │ │ │ --1 | | -1 | | 2 | | 1 │ │ │ │ +| -1 | | -1 | | 1 | | -1 | │ │ │ │ +| -1 | | 2 | | -1 | | │ │ │ │ +-3 | | -1 | | -1 | | - │ │ │ │ +1 | | -1 | | 2 | | 1 │ │ │ │ | | 0 | | -1 | | 3 | │ │ │ │ -| 1 | | 1 | | -1 | | │ │ │ │ -2 | | -1 | | -2 | | - │ │ │ │ -1 | | 1 | | 1 | │ │ │ │ +| 1 | | 1 | | -2 | │ │ │ │ +| -1 | | 1 | | 1 | │ │ │ │ | -2 | | -1 | | 1 | | │ │ │ │ 1 | | -1 | │ │ │ │ | 1 | | 2 | │ │ │ │ | -1 | | -1 | | 1 | │ │ │ │ -| -1 | | -1 | | 1 | | 1 | │ │ │ │ +| 1 | | -1 | | -1 | | 1 | │ │ │ │ | -1 | | 1 | | -1 | | 2 | │ │ │ │ -| 2 | | 1 | | 0 | | 2 | │ │ │ │ -| 2 | | 2 | | 0 | | │ │ │ │ --1 | | 2 | | -1 | | 1 │ │ │ │ +| 2 | | 2 | | 1 | | 0 | │ │ │ │ +| 3 | | -1 | | 0 | | │ │ │ │ +2 | | 2 | | 0 | | - │ │ │ │ +1 | | 2 | | -1 | | 1 │ │ │ │ | | 1 | | 2 | | -2 | │ │ │ │ -| -1 | | 1 | | 3 | | │ │ │ │ --1 | | 0 | | 3 | | │ │ │ │ -0 | | -2 | | 1 | │ │ │ │ +| -1 | | 1 | | 3 | │ │ │ │ +| 0 | | -2 | | 1 | │ │ │ │ | 1 | | 2 | | 2 | | │ │ │ │ -1 | | 2 | │ │ │ │ │ │ │ │ o4 : HasseDiagram │ │ │ │ i5 : hasseDiagramToGraph(myInterval) │ │ │ │ │ │ │ │ -o5 = HasseGraph{{{, {{, 0}, {, 1}, {, 2}}}}, {{, {{, 0}, {, 1}, {, 3}, {, 4}}}, │ │ │ │ -{, {{, 1}, {, 2}, {, 3}}}, {, {{, 0}, {, 2}, {, 4}}}}, {{, {{, 0}, {, 2}}}, {, │ │ │ │ -{{, 1}, {, 2}}}, {, {{, 2}, {, 3}}}, {, {{, 1}, {, 3}}}, {, {{, 0}, {, 3}}}}, { │ │ │ │ +o5 = HasseGraph{{{, {{, 0}, {, 1}, {, 2}}}}, {{, {{, 0}, {, 1}, {, 2}, {, 4}}}, │ │ │ │ +{, {{, 2}, {, 3}, {, 4}}}, {, {{, 0}, {, 1}, {, 3}}}}, {{, {{, 0}, {, 3}}}, {, │ │ │ │ +{{, 0}, {, 2}}}, {, {{, 1}, {, 2}}}, {, {{, 2}, {, 3}}}, {, {{, 1}, {, 3}}}}, { │ │ │ │ {, {{, 0}}}, {, {{, 0}}}, {, {{, 0}}}, {, {{, 0}}}}, {{, {}}}} │ │ │ │ │ │ │ │ o5 : HasseGraph │ │ │ │ It is also possible to ask for reduced decompositions as labels by changing the │ │ │ │ option "labels" as below. │ │ │ │ i6 : hasseDiagramToGraph(myInterval,"labels"=>"reduced decomposition") │ │ │ │ │ │ │ │ -o6 = HasseGraph{{{12132, {{3, 0}, {121, 1}, {2, 2}}}}, {{2132, {{2, 0}, {121, │ │ │ │ -1}, {12321, 3}, {232, 4}}}, {1232, {{12321, 1}, {2, 2}, {3, 3}}}, {1213, {{232, │ │ │ │ -0}, {1, 2}, {3, 4}}}}, {{213, {{3, 0}, {1, 2}}}, {232, {{3, 1}, {2, 2}}}, {123, │ │ │ │ -{{12321, 2}, {3, 3}}}, {132, {{121, 1}, {232, 3}}}, {121, {{2, 0}, {1, 3}}}}, { │ │ │ │ -{21, {{1, 0}}}, {32, {{232, 0}}}, {23, {{3, 0}}}, {12, {{121, 0}}}}, {{2, {}}}} │ │ │ │ +o6 = HasseGraph{{{12132, {{3, 0}, {121, 1}, {2, 2}}}}, {{2132, {{232, 0}, {2, │ │ │ │ +1}, {121, 2}, {12321, 4}}}, {1232, {{12321, 2}, {2, 3}, {3, 4}}}, {1213, {{3, │ │ │ │ +0}, {232, 1}, {1, 3}}}}, {{121, {{2, 0}, {1, 3}}}, {213, {{3, 0}, {1, 2}}}, │ │ │ │ +{232, {{3, 1}, {2, 2}}}, {123, {{12321, 2}, {3, 3}}}, {132, {{121, 1}, {232, │ │ │ │ +3}}}}, {{21, {{1, 0}}}, {32, {{232, 0}}}, {23, {{3, 0}}}, {12, {{121, 0}}}}, { │ │ │ │ +{2, {}}}} │ │ │ │ │ │ │ │ o6 : HasseGraph │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _h_a_s_s_e_D_i_a_g_r_a_m_T_o_G_r_a_p_h_(_H_a_s_s_e_D_i_a_g_r_a_m_) -- turning a hasse diagram into a graph │ │ │ │ (intended for graphic representation) │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/html/_interval__Bruhat_lp__Weyl__Group__Left__Coset_cm__Weyl__Group__Left__Coset_rp.html │ │ │ @@ -110,41 +110,41 @@ │ │ │ o4 : WeylGroupElement │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : myInterval=intervalBruhat(w1 % P,w2 % P)
    │ │ │  
    │ │ │ -o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | 1 |}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ -                                                          | -3 |        | 0 |       |  1 |                                              |  3 |        |  1 |       |  1 |                                            | -1 |        |  2 |       | -1 |                                              | -2 |        | -1 |                                            |  1 |        |  1 |                                            |  1 |        |  1 |                                              | -1 |
    │ │ │ -                                                          |  1 |        | 1 |       |  1 |                                              | -2 |        | -1 |       |  1 |                                            |  3 |        | -1 |       |  0 |                                              |  3 |        |  0 |                                            | -2 |        |  1 |                                            |  2 |        | -1 |                                              |  2 |
    │ │ │ +o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | -1 |}, {1, | 1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ +                                                          | -3 |        |  1 |       | 0 |                                              | -1 |        |  2 |       | -1 |                                            |  3 |        |  1 |       |  1 |                                              | -2 |        | -1 |                                            |  1 |        |  1 |                                            |  1 |        |  1 |                                              | -1 |
    │ │ │ +                                                          |  1 |        |  1 |       | 1 |                                              |  3 |        | -1 |       |  0 |                                            | -2 |        | -1 |       |  1 |                                              |  3 |        |  0 |                                            | -2 |        |  1 |                                            |  2 |        | -1 |                                              |  2 |
    │ │ │  
    │ │ │  o5 : HasseDiagram
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Each row of the Hasse diagram contains the elements of a certain length together with their links to the next row.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : myInterval#1
    │ │ │  
    │ │ │ -o6 = {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {2, | -1
    │ │ │ -                                             |  3 |        |  1 |       |  1
    │ │ │ -                                             | -2 |        | -1 |       |  1
    │ │ │ +o6 = {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2, |  2
    │ │ │ +                                             | -1 |        |  2 |       | -1
    │ │ │ +                                             |  3 |        | -1 |       |  0
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2,
    │ │ │ -     |                                            | -1 |        |  2 |      
    │ │ │ -     |                                            |  3 |        | -1 |      
    │ │ │ +     |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {2,
    │ │ │ +     |                                            |  3 |        |  1 |      
    │ │ │ +     |                                            | -2 |        | -1 |      
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |  2 |}}}}
    │ │ │ -     | -1 |
    │ │ │ -     |  0 |
    │ │ │ +     | -1 |}}}}
    │ │ │ +     |  1 |
    │ │ │ +     |  1 |
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -40,50 +40,50 @@ │ │ │ │ o4 = WeylGroupElement{RootSystem{...8...}, | -1 |} │ │ │ │ | -2 | │ │ │ │ | 1 | │ │ │ │ │ │ │ │ o4 : WeylGroupElement │ │ │ │ i5 : myInterval=intervalBruhat(w1 % P,w2 % P) │ │ │ │ │ │ │ │ -o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | 1 |}, │ │ │ │ -{1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, | 1 |}, │ │ │ │ -{2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, │ │ │ │ -{2, | 2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | 2 │ │ │ │ +o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | - │ │ │ │ +1 |}, {1, | 1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | - │ │ │ │ +1 |}, {2, | 2 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, | 1 │ │ │ │ +|}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | 2 │ │ │ │ |}}}, {WeylGroupElement{RootSystem{...8...}, | 2 |}, {{0, | -1 |}}}, │ │ │ │ {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | 1 |}}}}, { │ │ │ │ {WeylGroupElement{RootSystem{...8...}, | 2 |}, {}}}} │ │ │ │ - | -3 | | 0 | │ │ │ │ -| 1 | | 3 | | 1 | │ │ │ │ -| 1 | | -1 | | 2 | | │ │ │ │ --1 | | -2 | | -1 | │ │ │ │ + | -3 | | 1 | │ │ │ │ +| 0 | | -1 | | 2 | | │ │ │ │ +-1 | | 3 | | 1 | | 1 │ │ │ │ +| | -2 | | -1 | │ │ │ │ | 1 | | 1 | | 1 | | │ │ │ │ 1 | | -1 | │ │ │ │ - | 1 | | 1 | │ │ │ │ -| 1 | | -2 | | -1 | │ │ │ │ -| 1 | | 3 | | -1 | | │ │ │ │ -0 | | 3 | | 0 | │ │ │ │ + | 1 | | 1 | │ │ │ │ +| 1 | | 3 | | -1 | | │ │ │ │ +0 | | -2 | | -1 | | 1 │ │ │ │ +| | 3 | | 0 | │ │ │ │ | -2 | | 1 | | 2 | | │ │ │ │ -1 | | 2 | │ │ │ │ │ │ │ │ o5 : HasseDiagram │ │ │ │ Each row of the Hasse diagram contains the elements of a certain length │ │ │ │ together with their links to the next row. │ │ │ │ i6 : myInterval#1 │ │ │ │ │ │ │ │ -o6 = {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, | 1 |}, {2, | -1 │ │ │ │ - | 3 | | 1 | | 1 │ │ │ │ - | -2 | | -1 | | 1 │ │ │ │ +o6 = {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2, | 2 │ │ │ │ + | -1 | | 2 | | -1 │ │ │ │ + | 3 | | -1 | | 0 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2, │ │ │ │ - | | -1 | | 2 | │ │ │ │ - | | 3 | | -1 | │ │ │ │ + |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, | 1 |}, {2, │ │ │ │ + | | 3 | | 1 | │ │ │ │ + | | -2 | | -1 | │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - | 2 |}}}} │ │ │ │ - | -1 | │ │ │ │ - | 0 | │ │ │ │ + | -1 |}}}} │ │ │ │ + | 1 | │ │ │ │ + | 1 | │ │ │ │ │ │ │ │ o6 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _i_n_t_e_r_v_a_l_B_r_u_h_a_t_(_W_e_y_l_G_r_o_u_p_L_e_f_t_C_o_s_e_t_,_W_e_y_l_G_r_o_u_p_L_e_f_t_C_o_s_e_t_) -- elements between │ │ │ │ two given ones for the Bruhat order on a quotient of a Weyl group │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/html/_interval__Bruhat_lp__Weyl__Group__Right__Coset_cm__Weyl__Group__Right__Coset_rp.html │ │ │ @@ -110,17 +110,17 @@ │ │ │ o4 : WeylGroupElement │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : myInterval=intervalBruhat(P % w1,P % w2)
    │ │ │  
    │ │ │ -o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  0 |}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{1, | -1 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  2 |}, {1, |  0 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -3 |}, {{0, |  0 |}, {2, | 1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  2 |}, {1, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{1, |  0 |}, {2, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  3 |}, {{0, |  0 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ -                                                          | -2 |        | -1 |       |  2 |                                              | -3 |        |  1 |       |  2 |                                            | -1 |        | -1 |       | -1 |       |  1 |                                              |  1 |        | -1 |       | 0 |                                            | -1 |        | -1 |       |  2 |                                            | -3 |        | -1 |       | -1 |                                              |  1 |        |  1 |                                            | -2 |        | -1 |                                            | -2 |        | -1 |                                              | -1 |
    │ │ │ -                                                          |  1 |        |  2 |       | -1 |                                              |  1 |        |  1 |       | -1 |                                            |  2 |        |  0 |       |  2 |       |  1 |                                              |  1 |        |  2 |       | 1 |                                            |  3 |        |  0 |       | -1 |                                            |  2 |        |  2 |       |  0 |                                              |  2 |        | -1 |                                            |  3 |        |  0 |                                            |  1 |        |  2 |                                              |  2 |
    │ │ │ +o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  0 |}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{1, | -1 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  2 |}, {1, |  0 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -3 |}, {{0, | 1 |}, {1, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1, |  2 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, |  2 |}, {2, |  0 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  3 |}, {{0, |  0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ +                                                          | -2 |        | -1 |       |  2 |                                              | -3 |        |  1 |       |  2 |                                            | -1 |        | -1 |       | -1 |       |  1 |                                              |  1 |        | 0 |       | -1 |                                            | -1 |        | -1 |       |  2 |                                            | -3 |        | -1 |       | -1 |                                              | -2 |        | -1 |                                            |  1 |        |  1 |                                            | -2 |        | -1 |                                              | -1 |
    │ │ │ +                                                          |  1 |        |  2 |       | -1 |                                              |  1 |        |  1 |       | -1 |                                            |  2 |        |  0 |       |  2 |       |  1 |                                              |  1 |        | 1 |       |  2 |                                            |  3 |        |  0 |       | -1 |                                            |  2 |        |  0 |       |  2 |                                              |  1 |        |  2 |                                            |  2 |        | -1 |                                            |  3 |        |  0 |                                              |  2 |
    │ │ │  
    │ │ │  o5 : HasseDiagram
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Each row of the Hasse diagram contains the elements of a certain length together with their links to the next row.

    │ │ │ ├── html2text {} │ │ │ │ @@ -45,38 +45,38 @@ │ │ │ │ o4 : WeylGroupElement │ │ │ │ i5 : myInterval=intervalBruhat(P % w1,P % w2) │ │ │ │ │ │ │ │ o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | 0 │ │ │ │ |}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 1 |}, {{1, | - │ │ │ │ 1 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | 2 │ │ │ │ |}, {1, | 0 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | - │ │ │ │ -3 |}, {{0, | 0 |}, {2, | 1 |}}}, {WeylGroupElement{RootSystem{...8...}, | - │ │ │ │ -1 |}, {{0, | 2 |}, {1, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | 2 │ │ │ │ -|}, {{1, | 0 |}, {2, | 2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | - │ │ │ │ -2 |}, {{0, | 1 |}}}, {WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | 2 │ │ │ │ -|}}}, {WeylGroupElement{RootSystem{...8...}, | 3 |}, {{0, | 0 |}}}}, { │ │ │ │ +3 |}, {{0, | 1 |}, {1, | 0 |}}}, {WeylGroupElement{RootSystem{...8...}, | - │ │ │ │ +1 |}, {{1, | 2 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | 2 │ │ │ │ +|}, {{0, | 2 |}, {2, | 0 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 3 │ │ │ │ +|}, {{0, | 0 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | 1 │ │ │ │ +|}}}, {WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | 2 |}}}}, { │ │ │ │ {WeylGroupElement{RootSystem{...8...}, | 2 |}, {}}}} │ │ │ │ | -2 | | -1 | │ │ │ │ | 2 | | -3 | | 1 | │ │ │ │ | 2 | | -1 | | -1 | | │ │ │ │ -1 | | 1 | | 1 | | │ │ │ │ --1 | | 0 | | -1 | | - │ │ │ │ +0 | | -1 | | -1 | | - │ │ │ │ 1 | | 2 | | -3 | | - │ │ │ │ -1 | | -1 | | 1 | | │ │ │ │ -1 | | -2 | | -1 | │ │ │ │ +1 | | -1 | | -2 | | - │ │ │ │ +1 | | 1 | | 1 | │ │ │ │ | -2 | | -1 | | -1 | │ │ │ │ | 1 | | 2 | │ │ │ │ | -1 | | 1 | | 1 | │ │ │ │ | -1 | | 2 | | 0 | | │ │ │ │ -2 | | 1 | | 1 | | │ │ │ │ -2 | | 1 | | 3 | | 0 | │ │ │ │ -| -1 | | 2 | | 2 | | │ │ │ │ -0 | | 2 | | -1 | │ │ │ │ -| 3 | | 0 | | 1 | | │ │ │ │ -2 | | 2 | │ │ │ │ +2 | | 1 | | 1 | | 1 │ │ │ │ +| | 2 | | 3 | | 0 | │ │ │ │ +| -1 | | 2 | | 0 | | │ │ │ │ +2 | | 1 | | 2 | │ │ │ │ +| 2 | | -1 | | 3 | | │ │ │ │ +0 | | 2 | │ │ │ │ │ │ │ │ o5 : HasseDiagram │ │ │ │ Each row of the Hasse diagram contains the elements of a certain length │ │ │ │ together with their links to the next row. │ │ │ │ i6 : myInterval#1 │ │ │ │ │ │ │ │ o6 = {{WeylGroupElement{RootSystem{...8...}, | 1 |}, {{1, | -1 |}, {2, | -1 │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/html/_poincare__Series_lp__Hasse__Diagram_cm__Ring__Element_rp.html │ │ │ @@ -79,16 +79,16 @@ │ │ │ o1 : RootSystem │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : H=intervalBruhat(neutralWeylGroupElement R, longestWeylGroupElement R)
    │ │ │  
    │ │ │ -o2 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {1, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | 1 |}, {1, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1 |}, {1, | 1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 1 |}, {}}}}
    │ │ │ -                                                          | -1 |        |  2 |       | -1 |                                              | -2 |        | 1 |       | -1 |                                            |  1 |        |  2 |       | 1 |                                              |  2 |        | -1 |                                            | -1 |        |  2 |                                              | 1 |
    │ │ │ +o2 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  2 |}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | 1 |}, {1, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}, {1, | 1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 1 |}, {}}}}
    │ │ │ +                                                          | -1 |        | -1 |       |  2 |                                              |  1 |        | 1 |       |  2 |                                            | -2 |        | -1 |       | 1 |                                              | -1 |        |  2 |                                            |  2 |        | -1 |                                              | 1 |
    │ │ │  
    │ │ │  o2 : HasseDiagram
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : ZZ[x]
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,25 +19,25 @@
    │ │ │ │  i1 : R=rootSystemA(2)
    │ │ │ │  
    │ │ │ │  o1 = RootSystem{...8...}
    │ │ │ │  
    │ │ │ │  o1 : RootSystem
    │ │ │ │  i2 : H=intervalBruhat(neutralWeylGroupElement R, longestWeylGroupElement R)
    │ │ │ │  
    │ │ │ │ -o2 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -
    │ │ │ │ -1 |}, {1, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | 1
    │ │ │ │ -|}, {1, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -
    │ │ │ │ -1 |}, {1, | 1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  2
    │ │ │ │ -|}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}}, {
    │ │ │ │ +o2 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  2
    │ │ │ │ +|}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | 1
    │ │ │ │ +|}, {1, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2
    │ │ │ │ +|}, {1, | 1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -
    │ │ │ │ +1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, |  2 |}}}}, {
    │ │ │ │  {WeylGroupElement{RootSystem{...8...}, | 1 |}, {}}}}
    │ │ │ │ -                                                          | -1 |        |  2 |
    │ │ │ │ -| -1 |                                              | -2 |        | 1 |       |
    │ │ │ │ --1 |                                            |  1 |        |  2 |       | 1
    │ │ │ │ -|                                              |  2 |        | -1 |
    │ │ │ │ -| -1 |        |  2 |                                              | 1 |
    │ │ │ │ +                                                          | -1 |        | -1 |
    │ │ │ │ +|  2 |                                              |  1 |        | 1 |       |
    │ │ │ │ +2 |                                            | -2 |        | -1 |       | 1 |
    │ │ │ │ +| -1 |        |  2 |                                            |  2 |        |
    │ │ │ │ +-1 |                                              | 1 |
    │ │ │ │  
    │ │ │ │  o2 : HasseDiagram
    │ │ │ │  i3 : ZZ[x]
    │ │ │ │  
    │ │ │ │  o3 = ZZ[x]
    │ │ │ │  
    │ │ │ │  o3 : PolynomialRing
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/html/_positive__Roots_lp__Root__System_cm__Parabolic_rp.html
    │ │ │ @@ -88,17 +88,17 @@
    │ │ │  o2 : Parabolic
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : positiveRoots(R,P)
    │ │ │  
    │ │ │ -o3 = set {|  2 |, | -1 |, |  1 |}
    │ │ │ -          | -1 |  |  2 |  |  1 |
    │ │ │ -          |  0 |  | -1 |  | -1 |
    │ │ │ +o3 = set {|  1 |, |  2 |, | -1 |}
    │ │ │ +          |  1 |  | -1 |  |  2 |
    │ │ │ +          | -1 |  |  0 |  | -1 |
    │ │ │            |  0 |  |  0 |  |  0 |
    │ │ │  
    │ │ │  o3 : Set
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -23,17 +23,17 @@ │ │ │ │ i2 : P=parabolic(R,set{1,2}) │ │ │ │ │ │ │ │ o2 = set {1, 2} │ │ │ │ │ │ │ │ o2 : Parabolic │ │ │ │ i3 : positiveRoots(R,P) │ │ │ │ │ │ │ │ -o3 = set {| 2 |, | -1 |, | 1 |} │ │ │ │ - | -1 | | 2 | | 1 | │ │ │ │ - | 0 | | -1 | | -1 | │ │ │ │ +o3 = set {| 1 |, | 2 |, | -1 |} │ │ │ │ + | 1 | | -1 | | 2 | │ │ │ │ + | -1 | | 0 | | -1 | │ │ │ │ | 0 | | 0 | | 0 | │ │ │ │ │ │ │ │ o3 : Set │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _p_o_s_i_t_i_v_e_R_o_o_t_s_(_R_o_o_t_S_y_s_t_e_m_,_P_a_r_a_b_o_l_i_c_) -- the set of all positive roots in a │ │ │ │ parabolic sugroups │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/html/_positive__Roots_lp__Root__System_rp.html │ │ │ @@ -69,17 +69,17 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : positiveRoots(rootSystemA(3))
    │ │ │  
    │ │ │ -o1 = set {|  0 |, | -1 |, | -1 |, | 1 |, |  1 |, |  2 |}
    │ │ │ -          | -1 |  |  1 |  |  2 |  | 0 |  |  1 |  | -1 |
    │ │ │ -          |  2 |  |  1 |  | -1 |  | 1 |  | -1 |  |  0 |
    │ │ │ +o1 = set {|  2 |, |  0 |, | -1 |, | -1 |, | 1 |, |  1 |}
    │ │ │ +          | -1 |  | -1 |  |  1 |  |  2 |  | 0 |  |  1 |
    │ │ │ +          |  0 |  |  2 |  |  1 |  | -1 |  | 1 |  | -1 |
    │ │ │  
    │ │ │  o1 : Set
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,17 +10,17 @@ │ │ │ │ * Inputs: │ │ │ │ o R, an instance of the type _R_o_o_t_S_y_s_t_e_m, │ │ │ │ * Outputs: │ │ │ │ o a _s_e_t, of all positive roots of R │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : positiveRoots(rootSystemA(3)) │ │ │ │ │ │ │ │ -o1 = set {| 0 |, | -1 |, | -1 |, | 1 |, | 1 |, | 2 |} │ │ │ │ - | -1 | | 1 | | 2 | | 0 | | 1 | | -1 | │ │ │ │ - | 2 | | 1 | | -1 | | 1 | | -1 | | 0 | │ │ │ │ +o1 = set {| 2 |, | 0 |, | -1 |, | -1 |, | 1 |, | 1 |} │ │ │ │ + | -1 | | -1 | | 1 | | 2 | | 0 | | 1 | │ │ │ │ + | 0 | | 2 | | 1 | | -1 | | 1 | | -1 | │ │ │ │ │ │ │ │ o1 : Set │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _p_o_s_i_t_i_v_e_R_o_o_t_s_(_R_o_o_t_S_y_s_t_e_m_) -- the set of all positive roots │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/WeylGroups.m2:2604:0. │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/html/_under__Bruhat_lp__Basic__List_rp.html │ │ │ @@ -116,37 +116,37 @@ │ │ │ o3 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : underBruhat(L1)
    │ │ │  
    │ │ │ -o4 = {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  0 |}, {2, |  2
    │ │ │ -                                             | -3 |        | -1 |       | -1
    │ │ │ -                                             |  1 |        |  2 |       |  0
    │ │ │ +o4 = {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1, |  0 |}, {2, | -1
    │ │ │ +                                             |  2 |        | -1 |       |  1
    │ │ │ +                                             | -3 |        |  2 |       |  1
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{1, | -1 |}, {2,
    │ │ │ -     |                                            | -1 |        |  1 |      
    │ │ │ -     |                                            | -2 |        |  1 |      
    │ │ │ +     |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  0 |}, {2,
    │ │ │ +     |                                            | -3 |        | -1 |      
    │ │ │ +     |                                            |  1 |        |  2 |      
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{0, |  1 |},
    │ │ │ -     |  2 |                                            |  2 |        |  1 |  
    │ │ │ -     | -1 |                                            | -1 |        | -1 |  
    │ │ │ +     |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{1, | -1 |},
    │ │ │ +     | -1 |                                            | -1 |        |  1 |  
    │ │ │ +     |  0 |                                            | -2 |        |  1 |  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1
    │ │ │ -         | -1 |                                            | -1 |        |  2
    │ │ │ -         |  0 |                                            |  2 |        | -1
    │ │ │ +     {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{0, |  1
    │ │ │ +         |  2 |                                            |  2 |        |  1
    │ │ │ +         | -1 |                                            | -1 |        | -1
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |}, {1, |  1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1,
    │ │ │ -     |       |  1 |                                            |  2 |       
    │ │ │ -     |       | -1 |                                            | -3 |       
    │ │ │ +     |}, {1, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0,
    │ │ │ +     |       | -1 |                                            | -1 |       
    │ │ │ +     |       |  0 |                                            |  2 |       
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |  0 |}, {2, | -1 |}}}}
    │ │ │ -     | -1 |       |  1 |
    │ │ │ +     | -1 |}, {1, |  1 |}}}}
    │ │ │       |  2 |       |  1 |
    │ │ │ +     | -1 |       | -1 |
    │ │ │  
    │ │ │  o4 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -48,37 +48,37 @@ │ │ │ │ WeylGroupElement{RootSystem{...8...}, | 1 |}} │ │ │ │ | -2 | │ │ │ │ | -1 | │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : underBruhat(L1) │ │ │ │ │ │ │ │ -o4 = {{WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | 0 |}, {2, | 2 │ │ │ │ - | -3 | | -1 | | -1 │ │ │ │ - | 1 | | 2 | | 0 │ │ │ │ +o4 = {{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1, | 0 |}, {2, | -1 │ │ │ │ + | 2 | | -1 | | 1 │ │ │ │ + | -3 | | 2 | | 1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - |}}}, {WeylGroupElement{RootSystem{...8...}, | 2 |}, {{1, | -1 |}, {2, │ │ │ │ - | | -1 | | 1 | │ │ │ │ - | | -2 | | 1 | │ │ │ │ + |}}}, {WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | 0 |}, {2, │ │ │ │ + | | -3 | | -1 | │ │ │ │ + | | 1 | | 2 | │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{0, | 1 |}, │ │ │ │ - | 2 | | 2 | | 1 | │ │ │ │ - | -1 | | -1 | | -1 | │ │ │ │ + | 2 |}}}, {WeylGroupElement{RootSystem{...8...}, | 2 |}, {{1, | -1 |}, │ │ │ │ + | -1 | | -1 | | 1 | │ │ │ │ + | 0 | | -2 | | 1 | │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, | 2 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1 │ │ │ │ - | -1 | | -1 | | 2 │ │ │ │ - | 0 | | 2 | | -1 │ │ │ │ + {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{0, | 1 │ │ │ │ + | 2 | | 2 | | 1 │ │ │ │ + | -1 | | -1 | | -1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - |}, {1, | 1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1, │ │ │ │ - | | 1 | | 2 | │ │ │ │ - | | -1 | | -3 | │ │ │ │ + |}, {1, | 2 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, │ │ │ │ + | | -1 | | -1 | │ │ │ │ + | | 0 | | 2 | │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - | 0 |}, {2, | -1 |}}}} │ │ │ │ - | -1 | | 1 | │ │ │ │ + | -1 |}, {1, | 1 |}}}} │ │ │ │ | 2 | | 1 | │ │ │ │ + | -1 | | -1 | │ │ │ │ │ │ │ │ o4 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _u_n_d_e_r_B_r_u_h_a_t_(_B_a_s_i_c_L_i_s_t_) -- Weyl group elements just under the ones in the │ │ │ │ list for the Bruhat order │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_map__Stratify.out │ │ │ @@ -122,15 +122,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 1.96289s (cpu); 1.23405s (thread); 0s (gc) │ │ │ + -- used 2.32398s (cpu); 1.25978s (thread); 0s (gc) │ │ │ │ │ │ o23 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o23 : List │ │ │ │ │ │ i24 : peek last ms │ │ │ │ │ │ @@ -142,15 +142,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 4.52445s (cpu); 2.71961s (thread); 0s (gc) │ │ │ + -- used 7.12623s (cpu); 3.07232s (thread); 0s (gc) │ │ │ │ │ │ o25 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o25 : List │ │ │ │ │ │ i26 : peek last ms │ │ │ │ │ │ @@ -162,15 +162,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 5.27688s (cpu); 3.13311s (thread); 0s (gc) │ │ │ + -- used 7.95597s (cpu); 3.37708s (thread); 0s (gc) │ │ │ │ │ │ o27 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o27 : List │ │ │ │ │ │ i28 : peek last ms │ │ ├── ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_map__Stratify.html │ │ │ @@ -292,15 +292,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 1.96289s (cpu); 1.23405s (thread); 0s (gc) │ │ │ + -- used 2.32398s (cpu); 1.25978s (thread); 0s (gc) │ │ │ │ │ │ o23 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o23 : List │ │ │ │ │ │ │ │ │ │ │ │ @@ -318,15 +318,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 4.52445s (cpu); 2.71961s (thread); 0s (gc) │ │ │ + -- used 7.12623s (cpu); 3.07232s (thread); 0s (gc) │ │ │ │ │ │ o25 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o25 : List │ │ │ │ │ │ │ │ │ │ │ │ @@ -344,15 +344,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 5.27688s (cpu); 3.13311s (thread); 0s (gc) │ │ │ + -- used 7.95597s (cpu); 3.37708s (thread); 0s (gc) │ │ │ │ │ │ o27 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o27 : List │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -184,15 +184,15 @@ │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ - -- used 1.96289s (cpu); 1.23405s (thread); 0s (gc) │ │ │ │ + -- used 2.32398s (cpu); 1.25978s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ │ │ o23 : List │ │ │ │ i24 : peek last ms │ │ │ │ │ │ │ │ o24 = MutableHashTable{0 => {ideal (P, M1)} } │ │ │ │ @@ -202,15 +202,15 @@ │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ - -- used 4.52445s (cpu); 2.71961s (thread); 0s (gc) │ │ │ │ + -- used 7.12623s (cpu); 3.07232s (thread); 0s (gc) │ │ │ │ │ │ │ │ o25 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ │ │ o25 : List │ │ │ │ i26 : peek last ms │ │ │ │ │ │ │ │ o26 = MutableHashTable{0 => {ideal (P, M1)} } │ │ │ │ @@ -220,15 +220,15 @@ │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ - -- used 5.27688s (cpu); 3.13311s (thread); 0s (gc) │ │ │ │ + -- used 7.95597s (cpu); 3.37708s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ │ │ o27 : List │ │ │ │ i28 : peek last ms │ │ │ │ │ │ │ │ o28 = MutableHashTable{0 => {ideal (P, M1)} } │ │ ├── ./usr/share/doc/Macaulay2/gfanInterface/example-output/___Installation_spand_sp__Configuration_spof_spgfan__Interface.out │ │ │ @@ -19,15 +19,15 @@ │ │ │ i4 : prefixDirectory | currentLayout#"programs" │ │ │ │ │ │ o4 = /usr/x86_64-Linux- │ │ │ Debian-forky/libexec/Macaulay2/bin/ │ │ │ │ │ │ i5 : loadPackage("gfanInterface", Configuration => { "keepfiles" => true, "verbose" => true}, Reload => true); │ │ │ -- warning: reloading gfanInterface; recreate instances of types from this package │ │ │ - -- running: /usr/bin/gfan gfan --help < /tmp/M2-16975-0/172 │ │ │ + -- running: /usr/bin/gfan gfan --help < /tmp/M2-22520-0/172 │ │ │ This is a program for computing all reduced Groebner bases of a polynomial ideal. It takes the ring and a generating set for the ideal as input. By default the enumeration is done by an almost memoryless reverse search. If the ideal is symmetric the symmetry option is useful and enumeration will be done up to symmetry using a breadth first search. The program needs a starting Groebner basis to do its computations. If the -g option is not specified it will compute one using Buchberger's algorithm. │ │ │ Options: │ │ │ -g: │ │ │ Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if it takes too much time to compute the starting (standard degree lexicographic) Groebner basis and the input is already a Groebner basis. │ │ │ │ │ │ --symmetry: │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup. │ │ │ @@ -38,16 +38,16 @@ │ │ │ --disableSymmetryTest: │ │ │ When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal. │ │ │ │ │ │ --parameters value: │ │ │ With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters. │ │ │ --interrupt value: │ │ │ Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans). │ │ │ -using temporary file /tmp/M2-16975-0/172 │ │ │ - -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-16975-0/174 │ │ │ +using temporary file /tmp/M2-22520-0/172 │ │ │ + -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-22520-0/174 │ │ │ This program computes a reduced lexicographic Groebner basis of the polynomial ideal given as input. The default behavior is to use Buchberger's algorithm. The ordering of the variables is $a>b>c...$ (assuming that the ring is Q[a,b,c,...]). │ │ │ Options: │ │ │ -w: │ │ │ Compute a Groebner basis with respect to a degree lexicographic order with $a>b>c...$ instead. The degrees are given by a weight vector which is read from the input after the generating set has been read. │ │ │ │ │ │ -r: │ │ │ Use the reverse lexicographic order (or the reverse lexicographic order as a tie breaker if -w is used). The input must be homogeneous if the pure reverse lexicographic order is chosen. Ignored if -W is used. │ │ │ @@ -56,69 +56,69 @@ │ │ │ Do a Groebner walk. The input must be a minimal Groebner basis. If -W is used -w is ignored. │ │ │ │ │ │ -g: │ │ │ Do a generic Groebner walk. The input must be homogeneous and must be a minimal Groebner basis with respect to the reverse lexicographic term order. The target term order is always lexicographic. The -W option must be used. │ │ │ │ │ │ --parameters value: │ │ │ With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters. │ │ │ -using temporary file /tmp/M2-16975-0/174 │ │ │ - -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-16975-0/176 │ │ │ +using temporary file /tmp/M2-22520-0/174 │ │ │ + -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-22520-0/176 │ │ │ This program takes a marked Groebner basis of an ideal I and a set of polynomials on its input and tests if the polynomial set is contained in I by applying the division algorithm for each element. The output is 1 for true and 0 for false. │ │ │ Options: │ │ │ --remainder: │ │ │ Tell the program to output the remainders of the divisions rather than outputting 0 or 1. │ │ │ --multiplier: │ │ │ Reads in a polynomial that will be multiplied to the polynomial to be divided before doing the division. │ │ │ -using temporary file /tmp/M2-16975-0/176 │ │ │ - -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-16975-0/178 │ │ │ +using temporary file /tmp/M2-22520-0/176 │ │ │ + -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-22520-0/178 │ │ │ This program takes two polyhedral fans and computes their common refinement. │ │ │ Options: │ │ │ -i1 value: │ │ │ Specify the name of the first input file. │ │ │ -i2 value: │ │ │ Specify the name of the second input file. │ │ │ --stable: │ │ │ Compute the stable intersection. │ │ │ -using temporary file /tmp/M2-16975-0/178 │ │ │ - -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-16975-0/180 │ │ │ +using temporary file /tmp/M2-22520-0/178 │ │ │ + -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-22520-0/180 │ │ │ This program takes a polyhedral fan and a vector and computes the link of the polyhedral fan around that vertex. The link will have lineality space dimension equal to the dimension of the relative open polyhedral cone of the original fan containing the vector. │ │ │ Options: │ │ │ -i value: │ │ │ Specify the name of the input file. │ │ │ --symmetry: │ │ │ Reads in a fan stored with symmetry. The generators of the symmetry group must be given on the standard input. │ │ │ │ │ │ --star: │ │ │ Computes the star instead. The star is defined as the smallest polyhedral fan containing all cones of the original fan containing the vector. │ │ │ -using temporary file /tmp/M2-16975-0/180 │ │ │ - -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-16975-0/182 │ │ │ +using temporary file /tmp/M2-22520-0/180 │ │ │ + -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-22520-0/182 │ │ │ This program takes two polyhedral fans and computes their product. │ │ │ Options: │ │ │ -i1 value: │ │ │ Specify the name of the first input file. │ │ │ -i2 value: │ │ │ Specify the name of the second input file. │ │ │ -using temporary file /tmp/M2-16975-0/182 │ │ │ - -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-16975-0/184 │ │ │ +using temporary file /tmp/M2-22520-0/182 │ │ │ + -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-22520-0/184 │ │ │ This program computes a Groebner cone. Three different cases are handled. The input may be a marked reduced Groebner basis in which case its Groebner cone is computed. The input may be just a marked minimal basis in which case the cone computed is not a Groebner cone in the usual sense but smaller. (These cones are described in [Fukuda, Jensen, Lauritzen, Thomas]). The third possible case is that the Groebner cone is possibly lower dimensional and given by a pair of Groebner bases as it is useful to do for tropical varieties, see option --pair. The facets of the cone can be read off in section FACETS and the equations in section IMPLIED_EQUATIONS. │ │ │ Options: │ │ │ --restrict: │ │ │ Add an inequality for each coordinate, so that the the cone is restricted to the non-negative orthant. │ │ │ --pair: │ │ │ The Groebner cone is given by a pair of compatible Groebner bases. The first basis is for the initial ideal and the second for the ideal itself. See the tropical section of the manual. │ │ │ --asfan: │ │ │ Writes the cone as a polyhedral fan with all its faces instead. In this way the extreme rays of the cone are also computed. │ │ │ --vectorinput: │ │ │ Compute a cone given list of inequalities rather than a Groebner cone. The input is an integer which specifies the dimension of the ambient space, a list of inequalities given as vectors and a list of equations. │ │ │ -using temporary file /tmp/M2-16975-0/184 │ │ │ - -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-16975-0/186 │ │ │ +using temporary file /tmp/M2-22520-0/184 │ │ │ + -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-22520-0/186 │ │ │ This program computes the homogeneity space of a list of polynomials - as a cone. Thus generators for the homogeneity space are found in the section LINEALITY_SPACE. If you wish the homogeneity space of an ideal you should first compute a set of homogeneous generators and call the program on these. A reduced Groebner basis will always suffice for this purpose. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16975-0/186 │ │ │ - -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-16975-0/188 │ │ │ +using temporary file /tmp/M2-22520-0/186 │ │ │ + -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-22520-0/188 │ │ │ This program homogenises a list of polynomials by introducing an extra variable. The name of the variable to be introduced is read from the input after the list of polynomials. Without the -w option the homogenisation is done with respect to total degree. │ │ │ Example: │ │ │ Input: │ │ │ Q[x,y]{y-1} │ │ │ z │ │ │ Output: │ │ │ Q[x,y,z]{y-z} │ │ │ @@ -126,30 +126,30 @@ │ │ │ -i: │ │ │ Treat input as an ideal. This will make the program compute the homogenisation of the input ideal. This is done by computing a degree Groebner basis and homogenising it. │ │ │ -w: │ │ │ Specify a homogenisation vector. The length of the vector must be the same as the number of variables in the ring. The vector is read from the input after the list of polynomials. │ │ │ │ │ │ -H: │ │ │ Let the name of the new variable be H rather than reading in a name from the input. │ │ │ -using temporary file /tmp/M2-16975-0/188 │ │ │ - -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-16975-0/190 │ │ │ +using temporary file /tmp/M2-22520-0/188 │ │ │ + -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-22520-0/190 │ │ │ This program converts a list of polynomials to a list of their initial forms with respect to the vector given after the list. │ │ │ Options: │ │ │ --ideal: │ │ │ Treat input as an ideal. This will make the program compute the initial ideal of the ideal generated by the input polynomials. The computation is done by computing a Groebner basis with respect to the given vector. The vector must be positive or the input polynomials must be homogeneous in a positive grading. None of these conditions are checked by the program. │ │ │ │ │ │ --pair: │ │ │ Produce a pair of polynomial lists. Used together with --ideal this option will also write a compatible reduced Groebner basis for the input ideal to the output. This is useful for finding the Groebner cone of a non-monomial initial ideal. │ │ │ │ │ │ --mark: │ │ │ If the --pair option is and the --ideal option is not used this option will still make sure that the second output basis is marked consistently with the vector. │ │ │ --list: │ │ │ Read in a list of vectors instead of a single vector and produce a list of polynomial sets as output. │ │ │ -using temporary file /tmp/M2-16975-0/190 │ │ │ - -- running: /usr/bin/gfan _interactive --help < /tmp/M2-16975-0/192 │ │ │ +using temporary file /tmp/M2-22520-0/190 │ │ │ + -- running: /usr/bin/gfan _interactive --help < /tmp/M2-22520-0/192 │ │ │ This is a program for doing interactive walks in the Groebner fan of an ideal. The input is a Groebner basis defining the starting Groebner cone of the walk. The program will list all flippable facets of the Groebner cone and ask the user to choose one. The user types in the index (number) of the facet in the list. The program will walk through the selected facet and display the new Groebner basis and a list of new facet normals for the user to choose from. Since the program reads the user's choices through the the standard input it is recommended not to redirect the standard input for this program. │ │ │ Options: │ │ │ -L: │ │ │ Latex mode. The program will try to show the current Groebner basis in a readable form by invoking LaTeX and xdvi. │ │ │ │ │ │ -x: │ │ │ Exit immediately. │ │ │ @@ -164,57 +164,57 @@ │ │ │ Tell the program to list the defining set of inequalities of the non-restricted Groebner cone as a set of vectors after having listed the current Groebner basis. │ │ │ │ │ │ -W: │ │ │ Print weight vector. This will make the program print an interior vector of the current Groebner cone and a relative interior point for each flippable facet of the current Groebner cone. │ │ │ │ │ │ --tropical: │ │ │ Traverse a tropical variety interactively. │ │ │ -using temporary file /tmp/M2-16975-0/192 │ │ │ - -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-16975-0/194 │ │ │ +using temporary file /tmp/M2-22520-0/192 │ │ │ + -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-22520-0/194 │ │ │ This program checks if a set of marked polynomials is a Groebner basis with respect to its marking. First it is checked if the markings are consistent with respect to a positive vector. Then Buchberger's S-criterion is checked. The output is boolean value. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16975-0/194 │ │ │ - -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-16975-0/196 │ │ │ +using temporary file /tmp/M2-22520-0/194 │ │ │ + -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-22520-0/196 │ │ │ Takes an ideal $I$ and computes the Krull dimension of R/I where R is the polynomial ring. This is done by first computing a Groebner basis. │ │ │ Options: │ │ │ -g: │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ -using temporary file /tmp/M2-16975-0/196 │ │ │ - -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-16975-0/198 │ │ │ +using temporary file /tmp/M2-22520-0/196 │ │ │ + -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-22520-0/198 │ │ │ This program computes the lattice ideal of a lattice. The input is a list of generators for the lattice. │ │ │ Options: │ │ │ -t: │ │ │ Compute the toric ideal of the matrix whose rows are given on the input instead. │ │ │ --convert: │ │ │ Does not do any computation, but just converts the vectors to binomials. │ │ │ -using temporary file /tmp/M2-16975-0/198 │ │ │ - -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-16975-0/200 │ │ │ +using temporary file /tmp/M2-22520-0/198 │ │ │ + -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-22520-0/200 │ │ │ This program converts a list of polynomials to a list of their leading terms. │ │ │ Options: │ │ │ -m: │ │ │ Do the same thing for a list of polynomial sets. That is, output the set of sets of leading terms. │ │ │ │ │ │ -using temporary file /tmp/M2-16975-0/200 │ │ │ - -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-16975-0/202 │ │ │ +using temporary file /tmp/M2-22520-0/200 │ │ │ + -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-22520-0/202 │ │ │ This program marks a set of polynomials with respect to the vector given at the end of the input, meaning that the largest terms are moved to the front. In case of a tie the lexicographic term order with $a>b>c...$ is used to break it. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16975-0/202 │ │ │ - -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-16975-0/204 │ │ │ +using temporary file /tmp/M2-22520-0/202 │ │ │ + -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-22520-0/204 │ │ │ This is a program for computing the normal fan of the Minkowski sum of the Newton polytopes of a list of polynomials. │ │ │ Options: │ │ │ --symmetry: │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup. │ │ │ │ │ │ --disableSymmetryTest: │ │ │ When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal. │ │ │ │ │ │ --nocones: │ │ │ Tell the program to not list cones in the output. │ │ │ -using temporary file /tmp/M2-16975-0/204 │ │ │ - -- running: /usr/bin/gfan _minors --help < /tmp/M2-16975-0/206 │ │ │ +using temporary file /tmp/M2-22520-0/204 │ │ │ + -- running: /usr/bin/gfan _minors --help < /tmp/M2-22520-0/206 │ │ │ This program will generate the r*r minors of a d*n matrix of indeterminates. │ │ │ Options: │ │ │ -r value: │ │ │ Specify r. │ │ │ -d value: │ │ │ Specify d. │ │ │ -n value: │ │ │ @@ -229,16 +229,16 @@ │ │ │ Do nothing but produce symmetry generators for the Pluecker ideal. │ │ │ --symmetry: │ │ │ Produces a list of generators for the group of symmetries keeping the set of minors fixed. (Only without --names). │ │ │ --parametrize: │ │ │ Parametrize the set of d times n matrices of Barvinok rank less than or equal to r-1 by a list of tropical polynomials. │ │ │ --ultrametric: │ │ │ Produce tropical equations cutting out the ultrametrics. │ │ │ -using temporary file /tmp/M2-16975-0/206 │ │ │ - -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-16975-0/208 │ │ │ +using temporary file /tmp/M2-22520-0/206 │ │ │ + -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-22520-0/208 │ │ │ This program computes the mixed volume of the Newton polytopes of a list of polynomials. The ring is specified on the input. After this follows the list of polynomials. │ │ │ Options: │ │ │ --vectorinput: │ │ │ Read in a list of point configurations instead of a polynomial ring and a list of polynomials. │ │ │ --cyclic value: │ │ │ Use cyclic-n example instead of reading input. │ │ │ --noon value: │ │ │ @@ -249,44 +249,44 @@ │ │ │ Use Katsura-n example instead of reading input. │ │ │ --gaukwa value: │ │ │ Use Gaukwa-n example instead of reading input. │ │ │ --eco value: │ │ │ Use Eco-n example instead of reading input. │ │ │ -j value: │ │ │ Number of threads │ │ │ -using temporary file /tmp/M2-16975-0/208 │ │ │ - -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-16975-0/210 │ │ │ +using temporary file /tmp/M2-22520-0/208 │ │ │ + -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-22520-0/210 │ │ │ This program computes the union of a list of polynomial sets given as input. The polynomials must all belong to the same ring. The ring is specified on the input. After this follows the list of polynomial sets. │ │ │ Options: │ │ │ -s: │ │ │ Sort output by degree. │ │ │ │ │ │ -using temporary file /tmp/M2-16975-0/210 │ │ │ - -- running: /usr/bin/gfan _render --help < /tmp/M2-16975-0/212 │ │ │ +using temporary file /tmp/M2-22520-0/210 │ │ │ + -- running: /usr/bin/gfan _render --help < /tmp/M2-22520-0/212 │ │ │ This program renders a Groebner fan as an xfig file. To be more precise, the input is the list of all reduced Groebner bases of an ideal. The output is a drawing of the Groebner fan intersected with a triangle. The corners of the triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. If there are more than three variables in the ring these coordinates are extended with zeros. It is possible to shift the 1 entry cyclic with the option --shiftVariables. │ │ │ Options: │ │ │ -L: │ │ │ Make the triangle larger so that the shape of the Groebner region appears. │ │ │ --shiftVariables value: │ │ │ Shift the positions of the variables in the drawing. For example with the value equal to 1 the corners will be right: (0,1,0,0,...), left: (0,0,1,0,...) and top: (0,0,0,1,...). The shifting is done modulo the number of variables in the polynomial ring. The default value is 0. │ │ │ -using temporary file /tmp/M2-16975-0/212 │ │ │ - -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-16975-0/214 │ │ │ +using temporary file /tmp/M2-22520-0/212 │ │ │ + -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-22520-0/214 │ │ │ This program renders a staircase diagram of a monomial initial ideal to an xfig file. The input is a Groebner basis of a (not necessarily monomial) polynomial ideal. The initial ideal is given by the leading terms in the Groebner basis. Using the -m option it is possible to render more than one staircase diagram. The program only works for ideals in a polynomial ring with three variables. │ │ │ Options: │ │ │ -m: │ │ │ Read multiple ideals from the input. The ideals are given as a list of lists of polynomials. For each polynomial list in the list a staircase diagram is drawn. │ │ │ │ │ │ -d value: │ │ │ Specifies the number of boxes being shown along each axis. Be sure that this number is large enough to give a correct picture of the standard monomials. The default value is 8. │ │ │ │ │ │ -w value: │ │ │ Width. Specifies the number of staircase diagrams per row in the xfig file. The default value is 5. │ │ │ │ │ │ -using temporary file /tmp/M2-16975-0/214 │ │ │ - -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-16975-0/216 │ │ │ +using temporary file /tmp/M2-22520-0/214 │ │ │ + -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-22520-0/216 │ │ │ This program computes the resultant fan as defined in "Computing Tropical Resultants" by Jensen and Yu. The input is a polynomial ring followed by polynomials, whose coefficients are ignored. The output is the fan of coefficients such that the input system has a tropical solution. │ │ │ Options: │ │ │ --codimension: │ │ │ Compute only the codimension of the resultant fan and return. │ │ │ │ │ │ --symmetry: │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program DOES NOT checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry. │ │ │ @@ -299,25 +299,25 @@ │ │ │ │ │ │ --vectorinput: │ │ │ Read in a list of point configurations instead of a polynomial ring and a list of polynomials. │ │ │ │ │ │ --projection: │ │ │ Use the projection method to compute the resultant fan. This works only if the resultant fan is a hypersurface. If this option is combined with --special, then the output fan lives in the subspace of the non-specialized coordinates. │ │ │ │ │ │ -using temporary file /tmp/M2-16975-0/216 │ │ │ - -- running: /usr/bin/gfan _saturation --help < /tmp/M2-16975-0/218 │ │ │ +using temporary file /tmp/M2-22520-0/216 │ │ │ + -- running: /usr/bin/gfan _saturation --help < /tmp/M2-22520-0/218 │ │ │ This program computes the saturation of the input ideal with the product of the variables x_1,...,x_n. The ideal does not have to be homogeneous. │ │ │ Options: │ │ │ -h: │ │ │ Tell the program that the input is a homogeneous ideal (with homogeneous generators). │ │ │ │ │ │ --noideal: │ │ │ Do not treat input as an ideal but just factor out common monomial factors of the input polynomials. │ │ │ -using temporary file /tmp/M2-16975-0/218 │ │ │ - -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-16975-0/220 │ │ │ +using temporary file /tmp/M2-22520-0/218 │ │ │ + -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-22520-0/220 │ │ │ This program computes the secondary fan of a vector configuration. The configuration is given as an ordered list of vectors. In order to compute the secondary fan of a point configuration an additional coordinate of ones must be added. For example {(1,0),(1,1),(1,2),(1,3)}. │ │ │ Options: │ │ │ --unimodular: │ │ │ Use heuristics to search for unimodular triangulation rather than computing the complete secondary fan │ │ │ --scale value: │ │ │ Assuming that the first coordinate of each vector is 1, this option will take the polytope in the 1 plane and scale it. The point configuration will be all lattice points in that scaled polytope. The polytope must have maximal dimension. When this option is used the vector configuration must have full rank. This option may be removed in the future. │ │ │ --restrictingfan value: │ │ │ @@ -326,70 +326,70 @@ │ │ │ --symmetry: │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry. │ │ │ │ │ │ --nocones: │ │ │ Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used. │ │ │ --interrupt value: │ │ │ Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans). │ │ │ -using temporary file /tmp/M2-16975-0/220 │ │ │ - -- running: /usr/bin/gfan _stats --help < /tmp/M2-16975-0/222 │ │ │ +using temporary file /tmp/M2-22520-0/220 │ │ │ + -- running: /usr/bin/gfan _stats --help < /tmp/M2-22520-0/222 │ │ │ This program takes a list of reduced Groebner bases for the same ideal and computes various statistics. The following information is listed: the number of bases in the input, the number of variables, the dimension of the homogeneity space, the maximal total degree of any polynomial in the input and the minimal total degree of any basis in the input, the maximal number of polynomials and terms in a basis in the input. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16975-0/222 │ │ │ - -- running: /usr/bin/gfan _substitute --help < /tmp/M2-16975-0/224 │ │ │ +using temporary file /tmp/M2-22520-0/222 │ │ │ + -- running: /usr/bin/gfan _substitute --help < /tmp/M2-22520-0/224 │ │ │ This program changes the variable names of a polynomial ring. The input is a polynomial ring, a polynomial set in the ring and a new polynomial ring with the same coefficient field but different variable names. The output is the polynomial set written with the variable names of the second polynomial ring. │ │ │ Example: │ │ │ Input: │ │ │ Q[a,b,c,d]{2a-3b,c+d}Q[b,a,c,x] │ │ │ Output: │ │ │ Q[b,a,c,x]{2*b-3*a,c+x} │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16975-0/224 │ │ │ - -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-16975-0/226 │ │ │ +using temporary file /tmp/M2-22520-0/224 │ │ │ + -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-22520-0/226 │ │ │ This program converts ASCII math to TeX math. The data-type is specified by the options. │ │ │ Options: │ │ │ -h: │ │ │ Add a header to the output. Using this option the output will be LaTeXable right away. │ │ │ --polynomialset_: │ │ │ The data to be converted is a list of polynomials. │ │ │ --polynomialsetlist_: │ │ │ The data to be converted is a list of lists of polynomials. │ │ │ -using temporary file /tmp/M2-16975-0/226 │ │ │ - -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-16975-0/228 │ │ │ +using temporary file /tmp/M2-22520-0/226 │ │ │ + -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-22520-0/228 │ │ │ This program takes a list of reduced Groebner bases and produces the fan of all faces of these. In this way by giving the complete list of reduced Groebner bases, the Groebner fan can be computed as a polyhedral complex. The option --restrict lets the user choose between computing the Groebner fan or the restricted Groebner fan. │ │ │ Options: │ │ │ --restrict: │ │ │ Add an inequality for each coordinate, so that the the cones are restricted to the non-negative orthant. │ │ │ --symmetry: │ │ │ Tell the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ring. The output is grouped according to these symmetries. Only one representative for each orbit is needed on the input. │ │ │ │ │ │ -using temporary file /tmp/M2-16975-0/228 │ │ │ - -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-16975-0/230 │ │ │ +using temporary file /tmp/M2-22520-0/228 │ │ │ + -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-22520-0/230 │ │ │ This program computes a tropical basis for an ideal defining a tropical curve. Defining a tropical curve means that the Krull dimension of R/I is at most 1 + the dimension of the homogeneity space of I where R is the polynomial ring. The input is a generating set for the ideal. If the input is not homogeneous option -h must be used. │ │ │ Options: │ │ │ -h: │ │ │ Homogenise the input before computing a tropical basis and dehomogenise the output. This is needed if the input generators are not already homogeneous. │ │ │ -using temporary file /tmp/M2-16975-0/230 │ │ │ - -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-16975-0/232 │ │ │ +using temporary file /tmp/M2-22520-0/230 │ │ │ + -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-22520-0/232 │ │ │ This program takes a marked reduced Groebner basis for a homogeneous ideal and computes the tropical variety of the ideal as a subfan of the Groebner fan. The program is slow but works for any homogeneous ideal. If you know that your ideal is prime over the complex numbers or you simply know that its tropical variety is pure and connected in codimension one then use gfan_tropicalstartingcone and gfan_tropicaltraverse instead. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16975-0/232 │ │ │ - -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-16975-0/234 │ │ │ +using temporary file /tmp/M2-22520-0/232 │ │ │ + -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-22520-0/234 │ │ │ This program evaluates a tropical polynomial function in a given set of points. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16975-0/234 │ │ │ - -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-16975-0/236 │ │ │ +using temporary file /tmp/M2-22520-0/234 │ │ │ + -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-22520-0/236 │ │ │ This program takes a polynomial and tropicalizes it. The output is piecewise linear function represented by a fan whose cones are the linear regions. Each ray of the fan gets the value of the tropical function assigned to it. In other words this program computes the normal fan of the Newton polytope of the input polynomial with additional information.Options: │ │ │ --exponents: │ │ │ Tell program to read a list of exponent vectors instead. │ │ │ -using temporary file /tmp/M2-16975-0/236 │ │ │ - -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-16975-0/238 │ │ │ +using temporary file /tmp/M2-22520-0/236 │ │ │ + -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-22520-0/238 │ │ │ This program computes the tropical hypersurface defined by a principal ideal. The input is the polynomial ring followed by a set containing just a generator of the ideal.Options: │ │ │ -using temporary file /tmp/M2-16975-0/238 │ │ │ - -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-16975-0/240 │ │ │ +using temporary file /tmp/M2-22520-0/238 │ │ │ + -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-22520-0/240 │ │ │ This program computes the set theoretical intersection of a set of tropical hypersurfaces (or to be precise, their common refinement as a fan). The input is a list of polynomials with each polynomial defining a hypersurface. Considering tropical hypersurfaces as fans, the intersection can be computed as the common refinement of these. Thus the output is a fan whose support is the intersection of the tropical hypersurfaces. │ │ │ Options: │ │ │ --tropicalbasistest: │ │ │ This option will test that the input polynomials for a tropical basis of the ideal they generate by computing the tropical prevariety of the input polynomials and then refine each cone with the Groebner fan and testing whether each cone in the refinement has an associated monomial free initial ideal. If so, then we have a tropical basis and 1 is written as output. If not, then a zero is written to the output together with a vector in the tropical prevariety but not in the variety. The actual check is done on a homogenization of the input ideal, but this does not affect the result. (This option replaces the -t option from earlier gfan versions.) │ │ │ │ │ │ --tplane: │ │ │ This option intersects the resulting fan with the plane x_0=-1, where x_0 is the first variable. To simplify the implementation the output is actually the common refinement with the non-negative half space. This means that "stuff at infinity" (where x_0=0) is not removed. │ │ │ @@ -401,16 +401,16 @@ │ │ │ Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used. │ │ │ --restrict: │ │ │ Restrict the computation to a full-dimensional cone given by a list of marked polynomials. The cone is the closure of all weight vectors choosing these marked terms. │ │ │ --stable: │ │ │ Find the stable intersection of the input polynomials using tropical intersection theory. This can be slow. Most other options are ignored. │ │ │ --parameters value: │ │ │ With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters. │ │ │ -using temporary file /tmp/M2-16975-0/240 │ │ │ - -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-16975-0/242 │ │ │ +using temporary file /tmp/M2-22520-0/240 │ │ │ + -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-22520-0/242 │ │ │ This program is part of the Puiseux lifting algorithm implemented in Gfan and Singular. The Singular part of the implementation can be found in: │ │ │ │ │ │ Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig: │ │ │ tropical.lib. A SINGULAR 3.0 library for computations in tropical geometry, 2007 │ │ │ │ │ │ See also │ │ │ │ │ │ @@ -435,48 +435,48 @@ │ │ │ Options: │ │ │ --noMult: │ │ │ Disable the multiplicity computation. │ │ │ -n value: │ │ │ Number of variables that should have negative weight. │ │ │ -c: │ │ │ Only output a list of vectors being the possible choices. │ │ │ -using temporary file /tmp/M2-16975-0/242 │ │ │ - -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-16975-0/244 │ │ │ +using temporary file /tmp/M2-22520-0/242 │ │ │ + -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-22520-0/244 │ │ │ This program generates tropical equations for a tropical linear space in the Speyer sense given the tropical Pluecker coordinates as input. │ │ │ Options: │ │ │ -d value: │ │ │ Specify d. │ │ │ -n value: │ │ │ Specify n. │ │ │ --trees: │ │ │ list the boundary trees (assumes d=3) │ │ │ -using temporary file /tmp/M2-16975-0/244 │ │ │ - -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-16975-0/246 │ │ │ +using temporary file /tmp/M2-22520-0/244 │ │ │ + -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-22520-0/246 │ │ │ This program computes the multiplicity of a tropical cone given a marked reduced Groebner basis for its initial ideal. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16975-0/246 │ │ │ - -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-16975-0/248 │ │ │ +using temporary file /tmp/M2-22520-0/246 │ │ │ + -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-22520-0/248 │ │ │ This program will compute the tropical rank of matrix given as input. Tropical addition is MAXIMUM. │ │ │ Options: │ │ │ --kapranov: │ │ │ Compute Kapranov rank instead of tropical rank. │ │ │ --determinant: │ │ │ Compute the tropical determinant instead. │ │ │ -using temporary file /tmp/M2-16975-0/248 │ │ │ - -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-16975-0/250 │ │ │ +using temporary file /tmp/M2-22520-0/248 │ │ │ + -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-22520-0/250 │ │ │ This program computes a starting pair of marked reduced Groebner bases to be used as input for gfan_tropicaltraverse. The input is a homogeneous ideal whose tropical variety is a pure d-dimensional polyhedral complex. │ │ │ Options: │ │ │ -g: │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ -d: │ │ │ Output dimension information to standard error. │ │ │ --stable: │ │ │ Find starting cone in the stable intersection or, equivalently, pretend that the coefficients are genereric. │ │ │ -using temporary file /tmp/M2-16975-0/250 │ │ │ - -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-16975-0/252 │ │ │ +using temporary file /tmp/M2-22520-0/250 │ │ │ + -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-22520-0/252 │ │ │ This program computes a polyhedral fan representation of the tropical variety of a homogeneous prime ideal $I$. Let $d$ be the Krull dimension of $I$ and let $\omega$ be a relative interior point of $d$-dimensional Groebner cone contained in the tropical variety. The input for this program is a pair of marked reduced Groebner bases with respect to the term order represented by $\omega$, tie-broken in some way. The first one is for the initial ideal $in_\omega(I)$ the second one for $I$ itself. The pair is the starting point for a traversal of the $d$-dimensional Groebner cones contained in the tropical variety. If the ideal is not prime but with the tropical variety still being pure $d$-dimensional the program will only compute a codimension $1$ connected component of the tropical variety. │ │ │ Options: │ │ │ --symmetry: │ │ │ Do computations up to symmetry and group the output accordingly. If this option is used the program will read in a list of generators for a symmetry group after the pair of Groebner bases have been read. Two advantages of using this option is that the output is nicely grouped and that the computation can be done faster. │ │ │ --symsigns: │ │ │ Specify for each generator of the symmetry group an element of ${-1,+1}^n$ which by its multiplication on the variables together with the permutation will keep the ideal fixed. The vectors are given as the rows of a matrix. │ │ │ --nocones: │ │ │ @@ -484,24 +484,24 @@ │ │ │ --disableSymmetryTest: │ │ │ When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal. │ │ │ │ │ │ --stable: │ │ │ Traverse the stable intersection or, equivalently, pretend that the coefficients are genereric. │ │ │ --interrupt value: │ │ │ Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans). │ │ │ -using temporary file /tmp/M2-16975-0/252 │ │ │ - -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-16975-0/254 │ │ │ +using temporary file /tmp/M2-22520-0/252 │ │ │ + -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-22520-0/254 │ │ │ This program computes the tropical Weil divisor of piecewise linear (or tropical rational) function on a tropical k-cycle. See the Gfan manual for more information. │ │ │ Options: │ │ │ -i1 value: │ │ │ Specify the name of the Polymake input file containing the k-cycle. │ │ │ -i2 value: │ │ │ Specify the name of the Polymake input file containing the piecewise linear function. │ │ │ -using temporary file /tmp/M2-16975-0/254 │ │ │ - -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-16975-0/256 │ │ │ +using temporary file /tmp/M2-22520-0/254 │ │ │ + -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-22520-0/256 │ │ │ This program is an experimental implementation of Groebner bases for ideals in Z[x_1,...,x_n]. │ │ │ Several operations are supported by specifying the appropriate option: │ │ │ (1) computation of the reduced Groebner basis with respect to a given vector (tiebroken lexicographically), │ │ │ (2) computation of an initial ideal, │ │ │ (3) computation of the Groebner fan, │ │ │ (4) computation of a single Groebner cone. │ │ │ Since Gfan only knows polynomial rings with coefficients being elements of a field, the ideal is specified by giving a set of polynomials in the polynomial ring Q[x_1,...,x_n]. That is, by using Q instead of Z when specifying the ring. The ideal MUST BE HOMOGENEOUS (in a positive grading) for computation of the Groebner fan. Non-homogeneous ideals are allowed for the other computations if the specified weight vectors are positive. │ │ │ @@ -521,21 +521,21 @@ │ │ │ --groebnerCone: │ │ │ Asks the program to compute a single Groebner cone containing the specified vector in its relative interior. The output is stored as a fan. The input order is: Ring ideal vector. │ │ │ -m: │ │ │ For the operations taking a vector as input, read in a list of vectors instead, and perform the operation for each vector in the list. │ │ │ -g: │ │ │ Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if the usual --groebnerFan is too slow. │ │ │ │ │ │ -using temporary file /tmp/M2-16975-0/256 │ │ │ +using temporary file /tmp/M2-22520-0/256 │ │ │ │ │ │ i6 : QQ[x,y]; │ │ │ │ │ │ i7 : gfan {x,y}; │ │ │ - -- running: /usr/bin/gfan _bases < /tmp/M2-16975-0/258 │ │ │ + -- running: /usr/bin/gfan _bases < /tmp/M2-22520-0/258 │ │ │ Q[x1,x2] │ │ │ {{ │ │ │ x2, │ │ │ x1} │ │ │ } │ │ │ -using temporary file /tmp/M2-16975-0/258 │ │ │ +using temporary file /tmp/M2-22520-0/258 │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/gfanInterface/html/___Installation_spand_sp__Configuration_spof_spgfan__Interface.html │ │ │ @@ -109,15 +109,15 @@ │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : loadPackage("gfanInterface", Configuration => { "keepfiles" => true, "verbose" => true}, Reload => true);
    │ │ │   -- warning: reloading gfanInterface; recreate instances of types from this package
    │ │ │ - -- running: /usr/bin/gfan gfan --help < /tmp/M2-16975-0/172
    │ │ │ + -- running: /usr/bin/gfan gfan --help < /tmp/M2-22520-0/172
    │ │ │  This is a program for computing all reduced Groebner bases of a polynomial ideal. It takes the ring and a generating set for the ideal as input. By default the enumeration is done by an almost memoryless reverse search. If the ideal is symmetric the symmetry option is useful and enumeration will be done up to symmetry using a breadth first search. The program needs a starting Groebner basis to do its computations. If the -g option is not specified it will compute one using Buchberger's algorithm.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if it takes too much time to compute the starting (standard degree lexicographic) Groebner basis and the input is already a Groebner basis.
    │ │ │  
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup.
    │ │ │ @@ -128,16 +128,16 @@
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-16975-0/172
    │ │ │ - -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-16975-0/174
    │ │ │ +using temporary file /tmp/M2-22520-0/172
    │ │ │ + -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-22520-0/174
    │ │ │  This program computes a reduced lexicographic Groebner basis of the polynomial ideal given as input. The default behavior is to use Buchberger's algorithm. The ordering of the variables is $a>b>c...$ (assuming that the ring is Q[a,b,c,...]).
    │ │ │  Options:
    │ │ │  -w:
    │ │ │   Compute a Groebner basis with respect to a degree lexicographic order with $a>b>c...$ instead. The degrees are given by a weight vector which is read from the input after the generating set has been read.
    │ │ │  
    │ │ │  -r:
    │ │ │   Use the reverse lexicographic order (or the reverse lexicographic order as a tie breaker if -w is used). The input must be homogeneous if the pure reverse lexicographic order is chosen. Ignored if -W is used.
    │ │ │ @@ -146,69 +146,69 @@
    │ │ │   Do a Groebner walk. The input must be a minimal Groebner basis. If -W is used -w is ignored.
    │ │ │  
    │ │ │  -g:
    │ │ │   Do a generic Groebner walk. The input must be homogeneous and must be a minimal Groebner basis with respect to the reverse lexicographic term order. The target term order is always lexicographic. The -W option must be used.
    │ │ │  
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │ -using temporary file /tmp/M2-16975-0/174
    │ │ │ - -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-16975-0/176
    │ │ │ +using temporary file /tmp/M2-22520-0/174
    │ │ │ + -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-22520-0/176
    │ │ │  This program takes a marked Groebner basis of an ideal I and a set of polynomials on its input and tests if the polynomial set is contained in I by applying the division algorithm for each element. The output is 1 for true and 0 for false.
    │ │ │  Options:
    │ │ │  --remainder:
    │ │ │   Tell the program to output the remainders of the divisions rather than outputting 0 or 1.
    │ │ │  --multiplier:
    │ │ │   Reads in a polynomial that will be multiplied to the polynomial to be divided before doing the division.
    │ │ │ -using temporary file /tmp/M2-16975-0/176
    │ │ │ - -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-16975-0/178
    │ │ │ +using temporary file /tmp/M2-22520-0/176
    │ │ │ + -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-22520-0/178
    │ │ │  This program takes two polyhedral fans and computes their common refinement.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the first input file.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the second input file.
    │ │ │  --stable:
    │ │ │   Compute the stable intersection.
    │ │ │ -using temporary file /tmp/M2-16975-0/178
    │ │ │ - -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-16975-0/180
    │ │ │ +using temporary file /tmp/M2-22520-0/178
    │ │ │ + -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-22520-0/180
    │ │ │  This program takes a polyhedral fan and a vector and computes the link of the polyhedral fan around that vertex. The link will have lineality space dimension equal to the dimension of the relative open polyhedral cone of the original fan containing the vector.
    │ │ │  Options:
    │ │ │  -i value:
    │ │ │   Specify the name of the input file.
    │ │ │  --symmetry:
    │ │ │   Reads in a fan stored with symmetry. The generators of the symmetry group must be given on the standard input.
    │ │ │  
    │ │ │  --star:
    │ │ │   Computes the star instead. The star is defined as the smallest polyhedral fan containing all cones of the original fan containing the vector.
    │ │ │ -using temporary file /tmp/M2-16975-0/180
    │ │ │ - -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-16975-0/182
    │ │ │ +using temporary file /tmp/M2-22520-0/180
    │ │ │ + -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-22520-0/182
    │ │ │  This program takes two polyhedral fans and computes their product.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the first input file.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the second input file.
    │ │ │ -using temporary file /tmp/M2-16975-0/182
    │ │ │ - -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-16975-0/184
    │ │ │ +using temporary file /tmp/M2-22520-0/182
    │ │ │ + -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-22520-0/184
    │ │ │  This program computes a Groebner cone. Three different cases are handled. The input may be a marked reduced Groebner basis in which case its Groebner cone is computed. The input may be just a marked minimal basis in which case the cone computed is not a Groebner cone in the usual sense but smaller. (These cones are described in [Fukuda, Jensen, Lauritzen, Thomas]). The third possible case is that the Groebner cone is possibly lower dimensional and given by a pair of Groebner bases as it is useful to do for tropical varieties, see option --pair. The facets of the cone can be read off in section FACETS and the equations in section IMPLIED_EQUATIONS.
    │ │ │  Options:
    │ │ │  --restrict:
    │ │ │   Add an inequality for each coordinate, so that the the cone is restricted to the non-negative orthant.
    │ │ │  --pair:
    │ │ │   The Groebner cone is given by a pair of compatible Groebner bases. The first basis is for the initial ideal and the second for the ideal itself. See the tropical section of the manual.
    │ │ │  --asfan:
    │ │ │   Writes the cone as a polyhedral fan with all its faces instead. In this way the extreme rays of the cone are also computed.
    │ │ │  --vectorinput:
    │ │ │   Compute a cone given list of inequalities rather than a Groebner cone. The input is an integer which specifies the dimension of the ambient space, a list of inequalities given as vectors and a list of equations.
    │ │ │ -using temporary file /tmp/M2-16975-0/184
    │ │ │ - -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-16975-0/186
    │ │ │ +using temporary file /tmp/M2-22520-0/184
    │ │ │ + -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-22520-0/186
    │ │ │  This program computes the homogeneity space of a list of polynomials - as a cone. Thus generators for the homogeneity space are found in the section LINEALITY_SPACE. If you wish the homogeneity space of an ideal you should first compute a set of homogeneous generators and call the program on these. A reduced Groebner basis will always suffice for this purpose.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16975-0/186
    │ │ │ - -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-16975-0/188
    │ │ │ +using temporary file /tmp/M2-22520-0/186
    │ │ │ + -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-22520-0/188
    │ │ │  This program homogenises a list of polynomials by introducing an extra variable. The name of the variable to be introduced is read from the input after the list of polynomials. Without the -w option the homogenisation is done with respect to total degree.
    │ │ │  Example:
    │ │ │  Input:
    │ │ │  Q[x,y]{y-1}
    │ │ │  z
    │ │ │  Output:
    │ │ │  Q[x,y,z]{y-z}
    │ │ │ @@ -216,30 +216,30 @@
    │ │ │  -i:
    │ │ │   Treat input as an ideal. This will make the program compute the homogenisation of the input ideal. This is done by computing a degree Groebner basis and homogenising it.
    │ │ │  -w:
    │ │ │   Specify a homogenisation vector. The length of the vector must be the same as the number of variables in the ring. The vector is read from the input after the list of polynomials.
    │ │ │  
    │ │ │  -H:
    │ │ │   Let the name of the new variable be H rather than reading in a name from the input.
    │ │ │ -using temporary file /tmp/M2-16975-0/188
    │ │ │ - -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-16975-0/190
    │ │ │ +using temporary file /tmp/M2-22520-0/188
    │ │ │ + -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-22520-0/190
    │ │ │  This program converts a list of polynomials to a list of their initial forms with respect to the vector given after the list.
    │ │ │  Options:
    │ │ │  --ideal:
    │ │ │   Treat input as an ideal. This will make the program compute the initial ideal of the ideal generated by the input polynomials. The computation is done by computing a Groebner basis with respect to the given vector. The vector must be positive or the input polynomials must be homogeneous in a positive grading. None of these conditions are checked by the program.
    │ │ │  
    │ │ │  --pair:
    │ │ │   Produce a pair of polynomial lists. Used together with --ideal this option will also write a compatible reduced Groebner basis for the input ideal to the output. This is useful for finding the Groebner cone of a non-monomial initial ideal.
    │ │ │  
    │ │ │  --mark:
    │ │ │   If the --pair option is and the --ideal option is not used this option will still make sure that the second output basis is marked consistently with the vector.
    │ │ │  --list:
    │ │ │   Read in a list of vectors instead of a single vector and produce a list of polynomial sets as output.
    │ │ │ -using temporary file /tmp/M2-16975-0/190
    │ │ │ - -- running: /usr/bin/gfan _interactive --help < /tmp/M2-16975-0/192
    │ │ │ +using temporary file /tmp/M2-22520-0/190
    │ │ │ + -- running: /usr/bin/gfan _interactive --help < /tmp/M2-22520-0/192
    │ │ │  This is a program for doing interactive walks in the Groebner fan of an ideal. The input is a Groebner basis defining the starting Groebner cone of the walk. The program will list all flippable facets of the Groebner cone and ask the user to choose one. The user types in the index (number) of the facet in the list. The program will walk through the selected facet and display the new Groebner basis and a list of new facet normals for the user to choose from. Since the program reads the user's choices through the the standard input it is recommended not to redirect the standard input for this program.
    │ │ │  Options:
    │ │ │  -L:
    │ │ │   Latex mode. The program will try to show the current Groebner basis in a readable form by invoking LaTeX and xdvi.
    │ │ │  
    │ │ │  -x:
    │ │ │   Exit immediately.
    │ │ │ @@ -254,57 +254,57 @@
    │ │ │   Tell the program to list the defining set of inequalities of the non-restricted Groebner cone as a set of vectors after having listed the current Groebner basis.
    │ │ │  
    │ │ │  -W:
    │ │ │   Print weight vector. This will make the program print an interior vector of the current Groebner cone and a relative interior point for each flippable facet of the current Groebner cone.
    │ │ │  
    │ │ │  --tropical:
    │ │ │   Traverse a tropical variety interactively.
    │ │ │ -using temporary file /tmp/M2-16975-0/192
    │ │ │ - -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-16975-0/194
    │ │ │ +using temporary file /tmp/M2-22520-0/192
    │ │ │ + -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-22520-0/194
    │ │ │  This program checks if a set of marked polynomials is a Groebner basis with respect to its marking. First it is checked if the markings are consistent with respect to a positive vector. Then Buchberger's S-criterion is checked. The output is boolean value.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16975-0/194
    │ │ │ - -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-16975-0/196
    │ │ │ +using temporary file /tmp/M2-22520-0/194
    │ │ │ + -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-22520-0/196
    │ │ │  Takes an ideal $I$ and computes the Krull dimension of R/I where R is the polynomial ring. This is done by first computing a Groebner basis.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tell the program that the input is already a reduced Groebner basis.
    │ │ │ -using temporary file /tmp/M2-16975-0/196
    │ │ │ - -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-16975-0/198
    │ │ │ +using temporary file /tmp/M2-22520-0/196
    │ │ │ + -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-22520-0/198
    │ │ │  This program computes the lattice ideal of a lattice. The input is a list of generators for the lattice.
    │ │ │  Options:
    │ │ │  -t:
    │ │ │   Compute the toric ideal of the matrix whose rows are given on the input instead.
    │ │ │  --convert:
    │ │ │   Does not do any computation, but just converts the vectors to binomials.
    │ │ │ -using temporary file /tmp/M2-16975-0/198
    │ │ │ - -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-16975-0/200
    │ │ │ +using temporary file /tmp/M2-22520-0/198
    │ │ │ + -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-22520-0/200
    │ │ │  This program converts a list of polynomials to a list of their leading terms.
    │ │ │  Options:
    │ │ │  -m:
    │ │ │   Do the same thing for a list of polynomial sets. That is, output the set of sets of leading terms.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16975-0/200
    │ │ │ - -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-16975-0/202
    │ │ │ +using temporary file /tmp/M2-22520-0/200
    │ │ │ + -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-22520-0/202
    │ │ │  This program marks a set of polynomials with respect to the vector given at the end of the input, meaning that the largest terms are moved to the front. In case of a tie the lexicographic term order with $a>b>c...$ is used to break it.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16975-0/202
    │ │ │ - -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-16975-0/204
    │ │ │ +using temporary file /tmp/M2-22520-0/202
    │ │ │ + -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-22520-0/204
    │ │ │  This is a program for computing the normal fan of the Minkowski sum of the Newton polytopes of a list of polynomials.
    │ │ │  Options:
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup.
    │ │ │  
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --nocones:
    │ │ │   Tell the program to not list cones in the output.
    │ │ │ -using temporary file /tmp/M2-16975-0/204
    │ │ │ - -- running: /usr/bin/gfan _minors --help < /tmp/M2-16975-0/206
    │ │ │ +using temporary file /tmp/M2-22520-0/204
    │ │ │ + -- running: /usr/bin/gfan _minors --help < /tmp/M2-22520-0/206
    │ │ │  This program will generate the r*r minors of a d*n matrix of indeterminates.
    │ │ │  Options:
    │ │ │  -r value:
    │ │ │   Specify r.
    │ │ │  -d value:
    │ │ │   Specify d.
    │ │ │  -n value:
    │ │ │ @@ -319,16 +319,16 @@
    │ │ │   Do nothing but produce symmetry generators for the Pluecker ideal.
    │ │ │  --symmetry:
    │ │ │   Produces a list of generators for the group of symmetries keeping the set of minors fixed. (Only without --names).
    │ │ │  --parametrize:
    │ │ │   Parametrize the set of d times n matrices of Barvinok rank less than or equal to r-1 by a list of tropical polynomials.
    │ │ │  --ultrametric:
    │ │ │   Produce tropical equations cutting out the ultrametrics.
    │ │ │ -using temporary file /tmp/M2-16975-0/206
    │ │ │ - -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-16975-0/208
    │ │ │ +using temporary file /tmp/M2-22520-0/206
    │ │ │ + -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-22520-0/208
    │ │ │  This program computes the mixed volume of the Newton polytopes of a list of polynomials. The ring is specified on the input. After this follows the list of polynomials.
    │ │ │  Options:
    │ │ │  --vectorinput:
    │ │ │   Read in a list of point configurations instead of a polynomial ring and a list of polynomials.
    │ │ │  --cyclic value:
    │ │ │   Use cyclic-n example instead of reading input.
    │ │ │  --noon value:
    │ │ │ @@ -339,44 +339,44 @@
    │ │ │   Use Katsura-n example instead of reading input.
    │ │ │  --gaukwa value:
    │ │ │   Use Gaukwa-n example instead of reading input.
    │ │ │  --eco value:
    │ │ │   Use Eco-n example instead of reading input.
    │ │ │  -j value:
    │ │ │   Number of threads
    │ │ │ -using temporary file /tmp/M2-16975-0/208
    │ │ │ - -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-16975-0/210
    │ │ │ +using temporary file /tmp/M2-22520-0/208
    │ │ │ + -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-22520-0/210
    │ │ │  This program computes the union of a list of polynomial sets given as input. The polynomials must all belong to the same ring. The ring is specified on the input. After this follows the list of polynomial sets.
    │ │ │  Options:
    │ │ │  -s:
    │ │ │   Sort output by degree.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16975-0/210
    │ │ │ - -- running: /usr/bin/gfan _render --help < /tmp/M2-16975-0/212
    │ │ │ +using temporary file /tmp/M2-22520-0/210
    │ │ │ + -- running: /usr/bin/gfan _render --help < /tmp/M2-22520-0/212
    │ │ │  This program renders a Groebner fan as an xfig file. To be more precise, the input is the list of all reduced Groebner bases of an ideal. The output is a drawing of the Groebner fan intersected with a triangle. The corners of the triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. If there are more than three variables in the ring these coordinates are extended with zeros. It is possible to shift the 1 entry cyclic with the option --shiftVariables.
    │ │ │  Options:
    │ │ │  -L:
    │ │ │   Make the triangle larger so that the shape of the Groebner region appears.
    │ │ │  --shiftVariables value:
    │ │ │   Shift the positions of the variables in the drawing. For example with the value equal to 1 the corners will be right: (0,1,0,0,...), left: (0,0,1,0,...) and top: (0,0,0,1,...). The shifting is done modulo the number of variables in the polynomial ring. The default value is 0.
    │ │ │ -using temporary file /tmp/M2-16975-0/212
    │ │ │ - -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-16975-0/214
    │ │ │ +using temporary file /tmp/M2-22520-0/212
    │ │ │ + -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-22520-0/214
    │ │ │  This program renders a staircase diagram of a monomial initial ideal to an xfig file. The input is a Groebner basis of a (not necessarily monomial) polynomial ideal. The initial ideal is given by the leading terms in the Groebner basis. Using the -m option it is possible to render more than one staircase diagram. The program only works for ideals in a polynomial ring with three variables.
    │ │ │  Options:
    │ │ │  -m:
    │ │ │   Read multiple ideals from the input. The ideals are given as a list of lists of polynomials. For each polynomial list in the list a staircase diagram is drawn.
    │ │ │  
    │ │ │  -d value:
    │ │ │   Specifies the number of boxes being shown along each axis. Be sure that this number is large enough to give a correct picture of the standard monomials. The default value is 8.
    │ │ │  
    │ │ │  -w value:
    │ │ │   Width. Specifies the number of staircase diagrams per row in the xfig file. The default value is 5.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16975-0/214
    │ │ │ - -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-16975-0/216
    │ │ │ +using temporary file /tmp/M2-22520-0/214
    │ │ │ + -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-22520-0/216
    │ │ │  This program computes the resultant fan as defined in "Computing Tropical Resultants" by Jensen and Yu. The input is a polynomial ring followed by polynomials, whose coefficients are ignored. The output is the fan of coefficients such that the input system has a tropical solution.
    │ │ │  Options:
    │ │ │  --codimension:
    │ │ │   Compute only the codimension of the resultant fan and return.
    │ │ │  
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program DOES NOT checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry.
    │ │ │ @@ -389,25 +389,25 @@
    │ │ │  
    │ │ │  --vectorinput:
    │ │ │   Read in a list of point configurations instead of a polynomial ring and a list of polynomials.
    │ │ │  
    │ │ │  --projection:
    │ │ │   Use the projection method to compute the resultant fan. This works only if the resultant fan is a hypersurface. If this option is combined with --special, then the output fan lives in the subspace of the non-specialized coordinates.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16975-0/216
    │ │ │ - -- running: /usr/bin/gfan _saturation --help < /tmp/M2-16975-0/218
    │ │ │ +using temporary file /tmp/M2-22520-0/216
    │ │ │ + -- running: /usr/bin/gfan _saturation --help < /tmp/M2-22520-0/218
    │ │ │  This program computes the saturation of the input ideal with the product of the variables x_1,...,x_n. The ideal does not have to be homogeneous.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Tell the program that the input is a homogeneous ideal (with homogeneous generators).
    │ │ │  
    │ │ │  --noideal:
    │ │ │   Do not treat input as an ideal but just factor out common monomial factors of the input polynomials.
    │ │ │ -using temporary file /tmp/M2-16975-0/218
    │ │ │ - -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-16975-0/220
    │ │ │ +using temporary file /tmp/M2-22520-0/218
    │ │ │ + -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-22520-0/220
    │ │ │  This program computes the secondary fan of a vector configuration. The configuration is given as an ordered list of vectors. In order to compute the secondary fan of a point configuration an additional coordinate of ones must be added. For example {(1,0),(1,1),(1,2),(1,3)}.
    │ │ │  Options:
    │ │ │  --unimodular:
    │ │ │   Use heuristics to search for unimodular triangulation rather than computing the complete secondary fan
    │ │ │  --scale value:
    │ │ │   Assuming that the first coordinate of each vector is 1, this option will take the polytope in the 1 plane and scale it. The point configuration will be all lattice points in that scaled polytope. The polytope must have maximal dimension. When this option is used the vector configuration must have full rank. This option may be removed in the future.
    │ │ │  --restrictingfan value:
    │ │ │ @@ -416,70 +416,70 @@
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry.
    │ │ │  
    │ │ │  --nocones:
    │ │ │   Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-16975-0/220
    │ │ │ - -- running: /usr/bin/gfan _stats --help < /tmp/M2-16975-0/222
    │ │ │ +using temporary file /tmp/M2-22520-0/220
    │ │ │ + -- running: /usr/bin/gfan _stats --help < /tmp/M2-22520-0/222
    │ │ │  This program takes a list of reduced Groebner bases for the same ideal and computes various statistics. The following information is listed: the number of bases in the input, the number of variables, the dimension of the homogeneity space, the maximal total degree of any polynomial in the input and the minimal total degree of any basis in the input, the maximal number of polynomials and terms in a basis in the input.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16975-0/222
    │ │ │ - -- running: /usr/bin/gfan _substitute --help < /tmp/M2-16975-0/224
    │ │ │ +using temporary file /tmp/M2-22520-0/222
    │ │ │ + -- running: /usr/bin/gfan _substitute --help < /tmp/M2-22520-0/224
    │ │ │  This program changes the variable names of a polynomial ring. The input is a polynomial ring, a polynomial set in the ring and a new polynomial ring with the same coefficient field but different variable names. The output is the polynomial set written with the variable names of the second polynomial ring.
    │ │ │  Example:
    │ │ │  Input:
    │ │ │  Q[a,b,c,d]{2a-3b,c+d}Q[b,a,c,x]
    │ │ │  Output:
    │ │ │  Q[b,a,c,x]{2*b-3*a,c+x}
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16975-0/224
    │ │ │ - -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-16975-0/226
    │ │ │ +using temporary file /tmp/M2-22520-0/224
    │ │ │ + -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-22520-0/226
    │ │ │  This program converts ASCII math to TeX math. The data-type is specified by the options.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Add a header to the output. Using this option the output will be LaTeXable right away.
    │ │ │  --polynomialset_:
    │ │ │   The data to be converted is a list of polynomials.
    │ │ │  --polynomialsetlist_:
    │ │ │   The data to be converted is a list of lists of polynomials.
    │ │ │ -using temporary file /tmp/M2-16975-0/226
    │ │ │ - -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-16975-0/228
    │ │ │ +using temporary file /tmp/M2-22520-0/226
    │ │ │ + -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-22520-0/228
    │ │ │  This program takes a list of reduced Groebner bases and produces the fan of all faces of these. In this way by giving the complete list of reduced Groebner bases, the Groebner fan can be computed as a polyhedral complex. The option --restrict lets the user choose between computing the Groebner fan or the restricted Groebner fan.
    │ │ │  Options:
    │ │ │  --restrict:
    │ │ │   Add an inequality for each coordinate, so that the the cones are restricted to the non-negative orthant.
    │ │ │  --symmetry:
    │ │ │   Tell the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ring. The output is grouped according to these symmetries. Only one representative for each orbit is needed on the input.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16975-0/228
    │ │ │ - -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-16975-0/230
    │ │ │ +using temporary file /tmp/M2-22520-0/228
    │ │ │ + -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-22520-0/230
    │ │ │  This program computes a tropical basis for an ideal defining a tropical curve. Defining a tropical curve means that the Krull dimension of R/I is at most 1 + the dimension of the homogeneity space of I where R is the polynomial ring. The input is a generating set for the ideal. If the input is not homogeneous option -h must be used.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Homogenise the input before computing a tropical basis and dehomogenise the output. This is needed if the input generators are not already homogeneous.
    │ │ │ -using temporary file /tmp/M2-16975-0/230
    │ │ │ - -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-16975-0/232
    │ │ │ +using temporary file /tmp/M2-22520-0/230
    │ │ │ + -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-22520-0/232
    │ │ │  This program takes a marked reduced Groebner basis for a homogeneous ideal and computes the tropical variety of the ideal as a subfan of the Groebner fan. The program is slow but works for any homogeneous ideal. If you know that your ideal is prime over the complex numbers or you simply know that its tropical variety is pure and connected in codimension one then use gfan_tropicalstartingcone and gfan_tropicaltraverse instead.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16975-0/232
    │ │ │ - -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-16975-0/234
    │ │ │ +using temporary file /tmp/M2-22520-0/232
    │ │ │ + -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-22520-0/234
    │ │ │  This program evaluates a tropical polynomial function in a given set of points.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16975-0/234
    │ │ │ - -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-16975-0/236
    │ │ │ +using temporary file /tmp/M2-22520-0/234
    │ │ │ + -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-22520-0/236
    │ │ │  This program takes a polynomial and tropicalizes it. The output is piecewise linear function represented by a fan whose cones are the linear regions. Each ray of the fan gets the value of the tropical function assigned to it. In other words this program computes the normal fan of the Newton polytope of the input polynomial with additional information.Options:
    │ │ │  --exponents:
    │ │ │   Tell program to read a list of exponent vectors instead.
    │ │ │ -using temporary file /tmp/M2-16975-0/236
    │ │ │ - -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-16975-0/238
    │ │ │ +using temporary file /tmp/M2-22520-0/236
    │ │ │ + -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-22520-0/238
    │ │ │  This program computes the tropical hypersurface defined by a principal ideal. The input is the polynomial ring followed by a set containing just a generator of the ideal.Options:
    │ │ │ -using temporary file /tmp/M2-16975-0/238
    │ │ │ - -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-16975-0/240
    │ │ │ +using temporary file /tmp/M2-22520-0/238
    │ │ │ + -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-22520-0/240
    │ │ │  This program computes the set theoretical intersection of a set of tropical hypersurfaces (or to be precise, their common refinement as a fan). The input is a list of polynomials with each polynomial defining a hypersurface. Considering tropical hypersurfaces as fans, the intersection can be computed as the common refinement of these. Thus the output is a fan whose support is the intersection of the tropical hypersurfaces.
    │ │ │  Options:
    │ │ │  --tropicalbasistest:
    │ │ │   This option will test that the input polynomials for a tropical basis of the ideal they generate by computing the tropical prevariety of the input polynomials and then refine each cone with the Groebner fan and testing whether each cone in the refinement has an associated monomial free initial ideal. If so, then we have a tropical basis and 1 is written as output. If not, then a zero is written to the output together with a vector in the tropical prevariety but not in the variety. The actual check is done on a homogenization of the input ideal, but this does not affect the result. (This option replaces the -t option from earlier gfan versions.)
    │ │ │  
    │ │ │  --tplane:
    │ │ │   This option intersects the resulting fan with the plane x_0=-1, where x_0 is the first variable. To simplify the implementation the output is actually the common refinement with the non-negative half space. This means that "stuff at infinity" (where x_0=0) is not removed.
    │ │ │ @@ -491,16 +491,16 @@
    │ │ │   Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used.
    │ │ │  --restrict:
    │ │ │   Restrict the computation to a full-dimensional cone given by a list of marked polynomials. The cone is the closure of all weight vectors choosing these marked terms.
    │ │ │  --stable:
    │ │ │   Find the stable intersection of the input polynomials using tropical intersection theory. This can be slow. Most other options are ignored.
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │ -using temporary file /tmp/M2-16975-0/240
    │ │ │ - -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-16975-0/242
    │ │ │ +using temporary file /tmp/M2-22520-0/240
    │ │ │ + -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-22520-0/242
    │ │ │  This program is part of the Puiseux lifting algorithm implemented in Gfan and Singular. The Singular part of the implementation can be found in:
    │ │ │  
    │ │ │  Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig:
    │ │ │   tropical.lib. A SINGULAR 3.0 library for computations in tropical geometry, 2007 
    │ │ │  
    │ │ │  See also
    │ │ │  
    │ │ │ @@ -525,48 +525,48 @@
    │ │ │  Options:
    │ │ │  --noMult:
    │ │ │   Disable the multiplicity computation.
    │ │ │  -n value:
    │ │ │   Number of variables that should have negative weight.
    │ │ │  -c:
    │ │ │   Only output a list of vectors being the possible choices.
    │ │ │ -using temporary file /tmp/M2-16975-0/242
    │ │ │ - -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-16975-0/244
    │ │ │ +using temporary file /tmp/M2-22520-0/242
    │ │ │ + -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-22520-0/244
    │ │ │  This program generates tropical equations for a tropical linear space in the Speyer sense given the tropical Pluecker coordinates as input.
    │ │ │  Options:
    │ │ │  -d value:
    │ │ │   Specify d.
    │ │ │  -n value:
    │ │ │   Specify n.
    │ │ │  --trees:
    │ │ │   list the boundary trees (assumes d=3)
    │ │ │ -using temporary file /tmp/M2-16975-0/244
    │ │ │ - -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-16975-0/246
    │ │ │ +using temporary file /tmp/M2-22520-0/244
    │ │ │ + -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-22520-0/246
    │ │ │  This program computes the multiplicity of a tropical cone given a marked reduced Groebner basis for its initial ideal.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16975-0/246
    │ │ │ - -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-16975-0/248
    │ │ │ +using temporary file /tmp/M2-22520-0/246
    │ │ │ + -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-22520-0/248
    │ │ │  This program will compute the tropical rank of matrix given as input. Tropical addition is MAXIMUM.
    │ │ │  Options:
    │ │ │  --kapranov:
    │ │ │   Compute Kapranov rank instead of tropical rank.
    │ │ │  --determinant:
    │ │ │   Compute the tropical determinant instead.
    │ │ │ -using temporary file /tmp/M2-16975-0/248
    │ │ │ - -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-16975-0/250
    │ │ │ +using temporary file /tmp/M2-22520-0/248
    │ │ │ + -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-22520-0/250
    │ │ │  This program computes a starting pair of marked reduced Groebner bases to be used as input for gfan_tropicaltraverse. The input is a homogeneous ideal whose tropical variety is a pure d-dimensional polyhedral complex.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tell the program that the input is already a reduced Groebner basis.
    │ │ │  -d:
    │ │ │   Output dimension information to standard error.
    │ │ │  --stable:
    │ │ │   Find starting cone in the stable intersection or, equivalently, pretend that the coefficients are genereric.
    │ │ │ -using temporary file /tmp/M2-16975-0/250
    │ │ │ - -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-16975-0/252
    │ │ │ +using temporary file /tmp/M2-22520-0/250
    │ │ │ + -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-22520-0/252
    │ │ │  This program computes a polyhedral fan representation of the tropical variety of a homogeneous prime ideal $I$. Let $d$ be the Krull dimension of $I$ and let $\omega$ be a relative interior point of $d$-dimensional Groebner cone contained in the tropical variety. The input for this program is a pair of marked reduced Groebner bases with respect to the term order represented by $\omega$, tie-broken in some way. The first one is for the initial ideal $in_\omega(I)$ the second one for $I$ itself. The pair is the starting point for a traversal of the $d$-dimensional Groebner cones contained in the tropical variety. If the ideal is not prime but with the tropical variety still being pure $d$-dimensional the program will only compute a codimension $1$ connected component of the tropical variety.
    │ │ │  Options:
    │ │ │  --symmetry:
    │ │ │   Do computations up to symmetry and group the output accordingly. If this option is used the program will read in a list of generators for a symmetry group after the pair of Groebner bases have been read. Two advantages of using this option is that the output is nicely grouped and that the computation can be done faster.
    │ │ │  --symsigns:
    │ │ │   Specify for each generator of the symmetry group an element of ${-1,+1}^n$ which by its multiplication on the variables together with the permutation will keep the ideal fixed. The vectors are given as the rows of a matrix.
    │ │ │  --nocones:
    │ │ │ @@ -574,24 +574,24 @@
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --stable:
    │ │ │   Traverse the stable intersection or, equivalently, pretend that the coefficients are genereric.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-16975-0/252
    │ │ │ - -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-16975-0/254
    │ │ │ +using temporary file /tmp/M2-22520-0/252
    │ │ │ + -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-22520-0/254
    │ │ │  This program computes the tropical Weil divisor of piecewise linear (or tropical rational) function on a tropical k-cycle. See the Gfan manual for more information.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the Polymake input file containing the k-cycle.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the Polymake input file containing the piecewise linear function.
    │ │ │ -using temporary file /tmp/M2-16975-0/254
    │ │ │ - -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-16975-0/256
    │ │ │ +using temporary file /tmp/M2-22520-0/254
    │ │ │ + -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-22520-0/256
    │ │ │  This program is an experimental implementation of Groebner bases for ideals in Z[x_1,...,x_n].
    │ │ │  Several operations are supported by specifying the appropriate option:
    │ │ │   (1) computation of the reduced Groebner basis with respect to a given vector (tiebroken lexicographically),
    │ │ │   (2) computation of an initial ideal,
    │ │ │   (3) computation of the Groebner fan,
    │ │ │   (4) computation of a single Groebner cone.
    │ │ │  Since Gfan only knows polynomial rings with coefficients being elements of a field, the ideal is specified by giving a set of polynomials in the polynomial ring Q[x_1,...,x_n]. That is, by using Q instead of Z when specifying the ring. The ideal MUST BE HOMOGENEOUS (in a positive grading) for computation of the Groebner fan. Non-homogeneous ideals are allowed for the other computations if the specified weight vectors are positive.
    │ │ │ @@ -611,32 +611,32 @@
    │ │ │  --groebnerCone:
    │ │ │   Asks the program to compute a single Groebner cone containing the specified vector in its relative interior. The output is stored as a fan. The input order is: Ring ideal vector.
    │ │ │  -m:
    │ │ │   For the operations taking a vector as input, read in a list of vectors instead, and perform the operation for each vector in the list.
    │ │ │  -g:
    │ │ │   Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if the usual --groebnerFan is too slow.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16975-0/256
    │ │ │ +using temporary file /tmp/M2-22520-0/256 │ │ │
    │ │ │
    i6 : QQ[x,y];
    │ │ │
    │ │ │
    i7 : gfan {x,y};
    │ │ │ - -- running: /usr/bin/gfan _bases < /tmp/M2-16975-0/258
    │ │ │ + -- running: /usr/bin/gfan _bases < /tmp/M2-22520-0/258
    │ │ │  Q[x1,x2]
    │ │ │  {{
    │ │ │  x2,
    │ │ │  x1}
    │ │ │  }
    │ │ │ -using temporary file /tmp/M2-16975-0/258
    │ │ │ +using temporary file /tmp/M2-22520-0/258 │ │ │
    │ │ │
    │ │ │

    Finally, if you want to be able to render Groebner fans and monomial staircases to .png files, you should install fig2dev. If it is installed in a non-standard location, then you may specify its path using programPaths.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -43,15 +43,15 @@ │ │ │ │ If you would like to see the input and output files used to communicate with │ │ │ │ gfan you can set the "keepfiles" configuration option to true. If "verbose" is │ │ │ │ set to true, gfanInterface will output the names of the temporary files used. │ │ │ │ i5 : loadPackage("gfanInterface", Configuration => { "keepfiles" => true, │ │ │ │ "verbose" => true}, Reload => true); │ │ │ │ -- warning: reloading gfanInterface; recreate instances of types from this │ │ │ │ package │ │ │ │ - -- running: /usr/bin/gfan gfan --help < /tmp/M2-16975-0/172 │ │ │ │ + -- running: /usr/bin/gfan gfan --help < /tmp/M2-22520-0/172 │ │ │ │ This is a program for computing all reduced Groebner bases of a polynomial │ │ │ │ ideal. It takes the ring and a generating set for the ideal as input. By │ │ │ │ default the enumeration is done by an almost memoryless reverse search. If the │ │ │ │ ideal is symmetric the symmetry option is useful and enumeration will be done │ │ │ │ up to symmetry using a breadth first search. The program needs a starting │ │ │ │ Groebner basis to do its computations. If the -g option is not specified it │ │ │ │ will compute one using Buchberger's algorithm. │ │ │ │ @@ -81,16 +81,16 @@ │ │ │ │ With this option you can specify how many variables to treat as parameters │ │ │ │ instead of variables. This makes it possible to do computations where the │ │ │ │ coefficient field is the field of rational functions in the parameters. │ │ │ │ --interrupt value: │ │ │ │ Interrupt the enumeration after a specified number of facets have been │ │ │ │ computed (works for usual symmetric traversals, but may not work in general for │ │ │ │ non-symmetric traversals or for traversals restricted to fans). │ │ │ │ -using temporary file /tmp/M2-16975-0/172 │ │ │ │ - -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-16975-0/174 │ │ │ │ +using temporary file /tmp/M2-22520-0/172 │ │ │ │ + -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-22520-0/174 │ │ │ │ This program computes a reduced lexicographic Groebner basis of the polynomial │ │ │ │ ideal given as input. The default behavior is to use Buchberger's algorithm. │ │ │ │ The ordering of the variables is $a>b>c...$ (assuming that the ring is Q │ │ │ │ [a,b,c,...]). │ │ │ │ Options: │ │ │ │ -w: │ │ │ │ Compute a Groebner basis with respect to a degree lexicographic order with │ │ │ │ @@ -111,63 +111,63 @@ │ │ │ │ minimal Groebner basis with respect to the reverse lexicographic term order. │ │ │ │ The target term order is always lexicographic. The -W option must be used. │ │ │ │ │ │ │ │ --parameters value: │ │ │ │ With this option you can specify how many variables to treat as parameters │ │ │ │ instead of variables. This makes it possible to do computations where the │ │ │ │ coefficient field is the field of rational functions in the parameters. │ │ │ │ -using temporary file /tmp/M2-16975-0/174 │ │ │ │ - -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-16975-0/176 │ │ │ │ +using temporary file /tmp/M2-22520-0/174 │ │ │ │ + -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-22520-0/176 │ │ │ │ This program takes a marked Groebner basis of an ideal I and a set of │ │ │ │ polynomials on its input and tests if the polynomial set is contained in I by │ │ │ │ applying the division algorithm for each element. The output is 1 for true and │ │ │ │ 0 for false. │ │ │ │ Options: │ │ │ │ --remainder: │ │ │ │ Tell the program to output the remainders of the divisions rather than │ │ │ │ outputting 0 or 1. │ │ │ │ --multiplier: │ │ │ │ Reads in a polynomial that will be multiplied to the polynomial to be divided │ │ │ │ before doing the division. │ │ │ │ -using temporary file /tmp/M2-16975-0/176 │ │ │ │ - -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-16975-0/178 │ │ │ │ +using temporary file /tmp/M2-22520-0/176 │ │ │ │ + -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-22520-0/178 │ │ │ │ This program takes two polyhedral fans and computes their common refinement. │ │ │ │ Options: │ │ │ │ -i1 value: │ │ │ │ Specify the name of the first input file. │ │ │ │ -i2 value: │ │ │ │ Specify the name of the second input file. │ │ │ │ --stable: │ │ │ │ Compute the stable intersection. │ │ │ │ -using temporary file /tmp/M2-16975-0/178 │ │ │ │ - -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-16975-0/180 │ │ │ │ +using temporary file /tmp/M2-22520-0/178 │ │ │ │ + -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-22520-0/180 │ │ │ │ This program takes a polyhedral fan and a vector and computes the link of the │ │ │ │ polyhedral fan around that vertex. The link will have lineality space dimension │ │ │ │ equal to the dimension of the relative open polyhedral cone of the original fan │ │ │ │ containing the vector. │ │ │ │ Options: │ │ │ │ -i value: │ │ │ │ Specify the name of the input file. │ │ │ │ --symmetry: │ │ │ │ Reads in a fan stored with symmetry. The generators of the symmetry group must │ │ │ │ be given on the standard input. │ │ │ │ │ │ │ │ --star: │ │ │ │ Computes the star instead. The star is defined as the smallest polyhedral fan │ │ │ │ containing all cones of the original fan containing the vector. │ │ │ │ -using temporary file /tmp/M2-16975-0/180 │ │ │ │ - -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-16975-0/182 │ │ │ │ +using temporary file /tmp/M2-22520-0/180 │ │ │ │ + -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-22520-0/182 │ │ │ │ This program takes two polyhedral fans and computes their product. │ │ │ │ Options: │ │ │ │ -i1 value: │ │ │ │ Specify the name of the first input file. │ │ │ │ -i2 value: │ │ │ │ Specify the name of the second input file. │ │ │ │ -using temporary file /tmp/M2-16975-0/182 │ │ │ │ - -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-16975-0/184 │ │ │ │ +using temporary file /tmp/M2-22520-0/182 │ │ │ │ + -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-22520-0/184 │ │ │ │ This program computes a Groebner cone. Three different cases are handled. The │ │ │ │ input may be a marked reduced Groebner basis in which case its Groebner cone is │ │ │ │ computed. The input may be just a marked minimal basis in which case the cone │ │ │ │ computed is not a Groebner cone in the usual sense but smaller. (These cones │ │ │ │ are described in [Fukuda, Jensen, Lauritzen, Thomas]). The third possible case │ │ │ │ is that the Groebner cone is possibly lower dimensional and given by a pair of │ │ │ │ Groebner bases as it is useful to do for tropical varieties, see option --pair. │ │ │ │ @@ -184,24 +184,24 @@ │ │ │ │ --asfan: │ │ │ │ Writes the cone as a polyhedral fan with all its faces instead. In this way │ │ │ │ the extreme rays of the cone are also computed. │ │ │ │ --vectorinput: │ │ │ │ Compute a cone given list of inequalities rather than a Groebner cone. The │ │ │ │ input is an integer which specifies the dimension of the ambient space, a list │ │ │ │ of inequalities given as vectors and a list of equations. │ │ │ │ -using temporary file /tmp/M2-16975-0/184 │ │ │ │ - -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-16975-0/186 │ │ │ │ +using temporary file /tmp/M2-22520-0/184 │ │ │ │ + -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-22520-0/186 │ │ │ │ This program computes the homogeneity space of a list of polynomials - as a │ │ │ │ cone. Thus generators for the homogeneity space are found in the section │ │ │ │ LINEALITY_SPACE. If you wish the homogeneity space of an ideal you should first │ │ │ │ compute a set of homogeneous generators and call the program on these. A │ │ │ │ reduced Groebner basis will always suffice for this purpose. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16975-0/186 │ │ │ │ - -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-16975-0/188 │ │ │ │ +using temporary file /tmp/M2-22520-0/186 │ │ │ │ + -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-22520-0/188 │ │ │ │ This program homogenises a list of polynomials by introducing an extra │ │ │ │ variable. The name of the variable to be introduced is read from the input │ │ │ │ after the list of polynomials. Without the -w option the homogenisation is done │ │ │ │ with respect to total degree. │ │ │ │ Example: │ │ │ │ Input: │ │ │ │ Q[x,y]{y-1} │ │ │ │ @@ -217,16 +217,16 @@ │ │ │ │ Specify a homogenisation vector. The length of the vector must be the same as │ │ │ │ the number of variables in the ring. The vector is read from the input after │ │ │ │ the list of polynomials. │ │ │ │ │ │ │ │ -H: │ │ │ │ Let the name of the new variable be H rather than reading in a name from the │ │ │ │ input. │ │ │ │ -using temporary file /tmp/M2-16975-0/188 │ │ │ │ - -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-16975-0/190 │ │ │ │ +using temporary file /tmp/M2-22520-0/188 │ │ │ │ + -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-22520-0/190 │ │ │ │ This program converts a list of polynomials to a list of their initial forms │ │ │ │ with respect to the vector given after the list. │ │ │ │ Options: │ │ │ │ --ideal: │ │ │ │ Treat input as an ideal. This will make the program compute the initial ideal │ │ │ │ of the ideal generated by the input polynomials. The computation is done by │ │ │ │ computing a Groebner basis with respect to the given vector. The vector must be │ │ │ │ @@ -242,16 +242,16 @@ │ │ │ │ --mark: │ │ │ │ If the --pair option is and the --ideal option is not used this option will │ │ │ │ still make sure that the second output basis is marked consistently with the │ │ │ │ vector. │ │ │ │ --list: │ │ │ │ Read in a list of vectors instead of a single vector and produce a list of │ │ │ │ polynomial sets as output. │ │ │ │ -using temporary file /tmp/M2-16975-0/190 │ │ │ │ - -- running: /usr/bin/gfan _interactive --help < /tmp/M2-16975-0/192 │ │ │ │ +using temporary file /tmp/M2-22520-0/190 │ │ │ │ + -- running: /usr/bin/gfan _interactive --help < /tmp/M2-22520-0/192 │ │ │ │ This is a program for doing interactive walks in the Groebner fan of an ideal. │ │ │ │ The input is a Groebner basis defining the starting Groebner cone of the walk. │ │ │ │ The program will list all flippable facets of the Groebner cone and ask the │ │ │ │ user to choose one. The user types in the index (number) of the facet in the │ │ │ │ list. The program will walk through the selected facet and display the new │ │ │ │ Groebner basis and a list of new facet normals for the user to choose from. │ │ │ │ Since the program reads the user's choices through the the standard input it is │ │ │ │ @@ -281,54 +281,54 @@ │ │ │ │ -W: │ │ │ │ Print weight vector. This will make the program print an interior vector of │ │ │ │ the current Groebner cone and a relative interior point for each flippable │ │ │ │ facet of the current Groebner cone. │ │ │ │ │ │ │ │ --tropical: │ │ │ │ Traverse a tropical variety interactively. │ │ │ │ -using temporary file /tmp/M2-16975-0/192 │ │ │ │ - -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-16975-0/194 │ │ │ │ +using temporary file /tmp/M2-22520-0/192 │ │ │ │ + -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-22520-0/194 │ │ │ │ This program checks if a set of marked polynomials is a Groebner basis with │ │ │ │ respect to its marking. First it is checked if the markings are consistent with │ │ │ │ respect to a positive vector. Then Buchberger's S-criterion is checked. The │ │ │ │ output is boolean value. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16975-0/194 │ │ │ │ - -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-16975-0/196 │ │ │ │ +using temporary file /tmp/M2-22520-0/194 │ │ │ │ + -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-22520-0/196 │ │ │ │ Takes an ideal $I$ and computes the Krull dimension of R/I where R is the │ │ │ │ polynomial ring. This is done by first computing a Groebner basis. │ │ │ │ Options: │ │ │ │ -g: │ │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ │ -using temporary file /tmp/M2-16975-0/196 │ │ │ │ - -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-16975-0/198 │ │ │ │ +using temporary file /tmp/M2-22520-0/196 │ │ │ │ + -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-22520-0/198 │ │ │ │ This program computes the lattice ideal of a lattice. The input is a list of │ │ │ │ generators for the lattice. │ │ │ │ Options: │ │ │ │ -t: │ │ │ │ Compute the toric ideal of the matrix whose rows are given on the input │ │ │ │ instead. │ │ │ │ --convert: │ │ │ │ Does not do any computation, but just converts the vectors to binomials. │ │ │ │ -using temporary file /tmp/M2-16975-0/198 │ │ │ │ - -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-16975-0/200 │ │ │ │ +using temporary file /tmp/M2-22520-0/198 │ │ │ │ + -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-22520-0/200 │ │ │ │ This program converts a list of polynomials to a list of their leading terms. │ │ │ │ Options: │ │ │ │ -m: │ │ │ │ Do the same thing for a list of polynomial sets. That is, output the set of │ │ │ │ sets of leading terms. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16975-0/200 │ │ │ │ - -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-16975-0/202 │ │ │ │ +using temporary file /tmp/M2-22520-0/200 │ │ │ │ + -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-22520-0/202 │ │ │ │ This program marks a set of polynomials with respect to the vector given at the │ │ │ │ end of the input, meaning that the largest terms are moved to the front. In │ │ │ │ case of a tie the lexicographic term order with $a>b>c...$ is used to break it. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16975-0/202 │ │ │ │ - -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-16975-0/204 │ │ │ │ +using temporary file /tmp/M2-22520-0/202 │ │ │ │ + -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-22520-0/204 │ │ │ │ This is a program for computing the normal fan of the Minkowski sum of the │ │ │ │ Newton polytopes of a list of polynomials. │ │ │ │ Options: │ │ │ │ --symmetry: │ │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of │ │ │ │ $S_n$) after having read in the ideal. The program checks that the ideal stays │ │ │ │ fixed when permuting the variables with respect to elements in the group. The │ │ │ │ @@ -338,16 +338,16 @@ │ │ │ │ --disableSymmetryTest: │ │ │ │ When using --symmetry this option will disable the check that the group read │ │ │ │ off from the input actually is a symmetry group with respect to the input │ │ │ │ ideal. │ │ │ │ │ │ │ │ --nocones: │ │ │ │ Tell the program to not list cones in the output. │ │ │ │ -using temporary file /tmp/M2-16975-0/204 │ │ │ │ - -- running: /usr/bin/gfan _minors --help < /tmp/M2-16975-0/206 │ │ │ │ +using temporary file /tmp/M2-22520-0/204 │ │ │ │ + -- running: /usr/bin/gfan _minors --help < /tmp/M2-22520-0/206 │ │ │ │ This program will generate the r*r minors of a d*n matrix of indeterminates. │ │ │ │ Options: │ │ │ │ -r value: │ │ │ │ Specify r. │ │ │ │ -d value: │ │ │ │ Specify d. │ │ │ │ -n value: │ │ │ │ @@ -365,16 +365,16 @@ │ │ │ │ Produces a list of generators for the group of symmetries keeping the set of │ │ │ │ minors fixed. (Only without --names). │ │ │ │ --parametrize: │ │ │ │ Parametrize the set of d times n matrices of Barvinok rank less than or equal │ │ │ │ to r-1 by a list of tropical polynomials. │ │ │ │ --ultrametric: │ │ │ │ Produce tropical equations cutting out the ultrametrics. │ │ │ │ -using temporary file /tmp/M2-16975-0/206 │ │ │ │ - -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-16975-0/208 │ │ │ │ +using temporary file /tmp/M2-22520-0/206 │ │ │ │ + -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-22520-0/208 │ │ │ │ This program computes the mixed volume of the Newton polytopes of a list of │ │ │ │ polynomials. The ring is specified on the input. After this follows the list of │ │ │ │ polynomials. │ │ │ │ Options: │ │ │ │ --vectorinput: │ │ │ │ Read in a list of point configurations instead of a polynomial ring and a list │ │ │ │ of polynomials. │ │ │ │ @@ -388,25 +388,25 @@ │ │ │ │ Use Katsura-n example instead of reading input. │ │ │ │ --gaukwa value: │ │ │ │ Use Gaukwa-n example instead of reading input. │ │ │ │ --eco value: │ │ │ │ Use Eco-n example instead of reading input. │ │ │ │ -j value: │ │ │ │ Number of threads │ │ │ │ -using temporary file /tmp/M2-16975-0/208 │ │ │ │ - -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-16975-0/210 │ │ │ │ +using temporary file /tmp/M2-22520-0/208 │ │ │ │ + -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-22520-0/210 │ │ │ │ This program computes the union of a list of polynomial sets given as input. │ │ │ │ The polynomials must all belong to the same ring. The ring is specified on the │ │ │ │ input. After this follows the list of polynomial sets. │ │ │ │ Options: │ │ │ │ -s: │ │ │ │ Sort output by degree. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16975-0/210 │ │ │ │ - -- running: /usr/bin/gfan _render --help < /tmp/M2-16975-0/212 │ │ │ │ +using temporary file /tmp/M2-22520-0/210 │ │ │ │ + -- running: /usr/bin/gfan _render --help < /tmp/M2-22520-0/212 │ │ │ │ This program renders a Groebner fan as an xfig file. To be more precise, the │ │ │ │ input is the list of all reduced Groebner bases of an ideal. The output is a │ │ │ │ drawing of the Groebner fan intersected with a triangle. The corners of the │ │ │ │ triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. │ │ │ │ If there are more than three variables in the ring these coordinates are │ │ │ │ extended with zeros. It is possible to shift the 1 entry cyclic with the option │ │ │ │ --shiftVariables. │ │ │ │ @@ -414,16 +414,16 @@ │ │ │ │ -L: │ │ │ │ Make the triangle larger so that the shape of the Groebner region appears. │ │ │ │ --shiftVariables value: │ │ │ │ Shift the positions of the variables in the drawing. For example with the │ │ │ │ value equal to 1 the corners will be right: (0,1,0,0,...), left: (0,0,1,0,...) │ │ │ │ and top: (0,0,0,1,...). The shifting is done modulo the number of variables in │ │ │ │ the polynomial ring. The default value is 0. │ │ │ │ -using temporary file /tmp/M2-16975-0/212 │ │ │ │ - -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-16975-0/214 │ │ │ │ +using temporary file /tmp/M2-22520-0/212 │ │ │ │ + -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-22520-0/214 │ │ │ │ This program renders a staircase diagram of a monomial initial ideal to an xfig │ │ │ │ file. The input is a Groebner basis of a (not necessarily monomial) polynomial │ │ │ │ ideal. The initial ideal is given by the leading terms in the Groebner basis. │ │ │ │ Using the -m option it is possible to render more than one staircase diagram. │ │ │ │ The program only works for ideals in a polynomial ring with three variables. │ │ │ │ Options: │ │ │ │ -m: │ │ │ │ @@ -436,16 +436,16 @@ │ │ │ │ number is large enough to give a correct picture of the standard monomials. The │ │ │ │ default value is 8. │ │ │ │ │ │ │ │ -w value: │ │ │ │ Width. Specifies the number of staircase diagrams per row in the xfig file. │ │ │ │ The default value is 5. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16975-0/214 │ │ │ │ - -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-16975-0/216 │ │ │ │ +using temporary file /tmp/M2-22520-0/214 │ │ │ │ + -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-22520-0/216 │ │ │ │ This program computes the resultant fan as defined in "Computing Tropical │ │ │ │ Resultants" by Jensen and Yu. The input is a polynomial ring followed by │ │ │ │ polynomials, whose coefficients are ignored. The output is the fan of │ │ │ │ coefficients such that the input system has a tropical solution. │ │ │ │ Options: │ │ │ │ --codimension: │ │ │ │ Compute only the codimension of the resultant fan and return. │ │ │ │ @@ -473,28 +473,28 @@ │ │ │ │ of polynomials. │ │ │ │ │ │ │ │ --projection: │ │ │ │ Use the projection method to compute the resultant fan. This works only if the │ │ │ │ resultant fan is a hypersurface. If this option is combined with --special, │ │ │ │ then the output fan lives in the subspace of the non-specialized coordinates. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16975-0/216 │ │ │ │ - -- running: /usr/bin/gfan _saturation --help < /tmp/M2-16975-0/218 │ │ │ │ +using temporary file /tmp/M2-22520-0/216 │ │ │ │ + -- running: /usr/bin/gfan _saturation --help < /tmp/M2-22520-0/218 │ │ │ │ This program computes the saturation of the input ideal with the product of the │ │ │ │ variables x_1,...,x_n. The ideal does not have to be homogeneous. │ │ │ │ Options: │ │ │ │ -h: │ │ │ │ Tell the program that the input is a homogeneous ideal (with homogeneous │ │ │ │ generators). │ │ │ │ │ │ │ │ --noideal: │ │ │ │ Do not treat input as an ideal but just factor out common monomial factors of │ │ │ │ the input polynomials. │ │ │ │ -using temporary file /tmp/M2-16975-0/218 │ │ │ │ - -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-16975-0/220 │ │ │ │ +using temporary file /tmp/M2-22520-0/218 │ │ │ │ + -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-22520-0/220 │ │ │ │ This program computes the secondary fan of a vector configuration. The │ │ │ │ configuration is given as an ordered list of vectors. In order to compute the │ │ │ │ secondary fan of a point configuration an additional coordinate of ones must be │ │ │ │ added. For example {(1,0),(1,1),(1,2),(1,3)}. │ │ │ │ Options: │ │ │ │ --unimodular: │ │ │ │ Use heuristics to search for unimodular triangulation rather than computing │ │ │ │ @@ -523,103 +523,103 @@ │ │ │ │ Tells the program not to output the CONES and MAXIMAL_CONES sections, but │ │ │ │ still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is │ │ │ │ used. │ │ │ │ --interrupt value: │ │ │ │ Interrupt the enumeration after a specified number of facets have been │ │ │ │ computed (works for usual symmetric traversals, but may not work in general for │ │ │ │ non-symmetric traversals or for traversals restricted to fans). │ │ │ │ -using temporary file /tmp/M2-16975-0/220 │ │ │ │ - -- running: /usr/bin/gfan _stats --help < /tmp/M2-16975-0/222 │ │ │ │ +using temporary file /tmp/M2-22520-0/220 │ │ │ │ + -- running: /usr/bin/gfan _stats --help < /tmp/M2-22520-0/222 │ │ │ │ This program takes a list of reduced Groebner bases for the same ideal and │ │ │ │ computes various statistics. The following information is listed: the number of │ │ │ │ bases in the input, the number of variables, the dimension of the homogeneity │ │ │ │ space, the maximal total degree of any polynomial in the input and the minimal │ │ │ │ total degree of any basis in the input, the maximal number of polynomials and │ │ │ │ terms in a basis in the input. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16975-0/222 │ │ │ │ - -- running: /usr/bin/gfan _substitute --help < /tmp/M2-16975-0/224 │ │ │ │ +using temporary file /tmp/M2-22520-0/222 │ │ │ │ + -- running: /usr/bin/gfan _substitute --help < /tmp/M2-22520-0/224 │ │ │ │ This program changes the variable names of a polynomial ring. The input is a │ │ │ │ polynomial ring, a polynomial set in the ring and a new polynomial ring with │ │ │ │ the same coefficient field but different variable names. The output is the │ │ │ │ polynomial set written with the variable names of the second polynomial ring. │ │ │ │ Example: │ │ │ │ Input: │ │ │ │ Q[a,b,c,d]{2a-3b,c+d}Q[b,a,c,x] │ │ │ │ Output: │ │ │ │ Q[b,a,c,x]{2*b-3*a,c+x} │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16975-0/224 │ │ │ │ - -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-16975-0/226 │ │ │ │ +using temporary file /tmp/M2-22520-0/224 │ │ │ │ + -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-22520-0/226 │ │ │ │ This program converts ASCII math to TeX math. The data-type is specified by the │ │ │ │ options. │ │ │ │ Options: │ │ │ │ -h: │ │ │ │ Add a header to the output. Using this option the output will be LaTeXable │ │ │ │ right away. │ │ │ │ --polynomialset_: │ │ │ │ The data to be converted is a list of polynomials. │ │ │ │ --polynomialsetlist_: │ │ │ │ The data to be converted is a list of lists of polynomials. │ │ │ │ -using temporary file /tmp/M2-16975-0/226 │ │ │ │ - -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-16975-0/228 │ │ │ │ +using temporary file /tmp/M2-22520-0/226 │ │ │ │ + -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-22520-0/228 │ │ │ │ This program takes a list of reduced Groebner bases and produces the fan of all │ │ │ │ faces of these. In this way by giving the complete list of reduced Groebner │ │ │ │ bases, the Groebner fan can be computed as a polyhedral complex. The option -- │ │ │ │ restrict lets the user choose between computing the Groebner fan or the │ │ │ │ restricted Groebner fan. │ │ │ │ Options: │ │ │ │ --restrict: │ │ │ │ Add an inequality for each coordinate, so that the the cones are restricted to │ │ │ │ the non-negative orthant. │ │ │ │ --symmetry: │ │ │ │ Tell the program to read in generators for a group of symmetries (subgroup of │ │ │ │ $S_n$) after having read in the ring. The output is grouped according to these │ │ │ │ symmetries. Only one representative for each orbit is needed on the input. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16975-0/228 │ │ │ │ - -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-16975-0/230 │ │ │ │ +using temporary file /tmp/M2-22520-0/228 │ │ │ │ + -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-22520-0/230 │ │ │ │ This program computes a tropical basis for an ideal defining a tropical curve. │ │ │ │ Defining a tropical curve means that the Krull dimension of R/I is at most 1 + │ │ │ │ the dimension of the homogeneity space of I where R is the polynomial ring. The │ │ │ │ input is a generating set for the ideal. If the input is not homogeneous option │ │ │ │ -h must be used. │ │ │ │ Options: │ │ │ │ -h: │ │ │ │ Homogenise the input before computing a tropical basis and dehomogenise the │ │ │ │ output. This is needed if the input generators are not already homogeneous. │ │ │ │ -using temporary file /tmp/M2-16975-0/230 │ │ │ │ - -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-16975-0/232 │ │ │ │ +using temporary file /tmp/M2-22520-0/230 │ │ │ │ + -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-22520-0/232 │ │ │ │ This program takes a marked reduced Groebner basis for a homogeneous ideal and │ │ │ │ computes the tropical variety of the ideal as a subfan of the Groebner fan. The │ │ │ │ program is slow but works for any homogeneous ideal. If you know that your │ │ │ │ ideal is prime over the complex numbers or you simply know that its tropical │ │ │ │ variety is pure and connected in codimension one then use │ │ │ │ gfan_tropicalstartingcone and gfan_tropicaltraverse instead. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16975-0/232 │ │ │ │ - -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-16975-0/234 │ │ │ │ +using temporary file /tmp/M2-22520-0/232 │ │ │ │ + -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-22520-0/234 │ │ │ │ This program evaluates a tropical polynomial function in a given set of points. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16975-0/234 │ │ │ │ - -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-16975-0/236 │ │ │ │ +using temporary file /tmp/M2-22520-0/234 │ │ │ │ + -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-22520-0/236 │ │ │ │ This program takes a polynomial and tropicalizes it. The output is piecewise │ │ │ │ linear function represented by a fan whose cones are the linear regions. Each │ │ │ │ ray of the fan gets the value of the tropical function assigned to it. In other │ │ │ │ words this program computes the normal fan of the Newton polytope of the input │ │ │ │ polynomial with additional information.Options: │ │ │ │ --exponents: │ │ │ │ Tell program to read a list of exponent vectors instead. │ │ │ │ -using temporary file /tmp/M2-16975-0/236 │ │ │ │ - -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-16975-0/238 │ │ │ │ +using temporary file /tmp/M2-22520-0/236 │ │ │ │ + -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-22520-0/238 │ │ │ │ This program computes the tropical hypersurface defined by a principal ideal. │ │ │ │ The input is the polynomial ring followed by a set containing just a generator │ │ │ │ of the ideal.Options: │ │ │ │ -using temporary file /tmp/M2-16975-0/238 │ │ │ │ - -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-16975-0/240 │ │ │ │ +using temporary file /tmp/M2-22520-0/238 │ │ │ │ + -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-22520-0/240 │ │ │ │ This program computes the set theoretical intersection of a set of tropical │ │ │ │ hypersurfaces (or to be precise, their common refinement as a fan). The input │ │ │ │ is a list of polynomials with each polynomial defining a hypersurface. │ │ │ │ Considering tropical hypersurfaces as fans, the intersection can be computed as │ │ │ │ the common refinement of these. Thus the output is a fan whose support is the │ │ │ │ intersection of the tropical hypersurfaces. │ │ │ │ Options: │ │ │ │ @@ -656,16 +656,16 @@ │ │ │ │ --stable: │ │ │ │ Find the stable intersection of the input polynomials using tropical │ │ │ │ intersection theory. This can be slow. Most other options are ignored. │ │ │ │ --parameters value: │ │ │ │ With this option you can specify how many variables to treat as parameters │ │ │ │ instead of variables. This makes it possible to do computations where the │ │ │ │ coefficient field is the field of rational functions in the parameters. │ │ │ │ -using temporary file /tmp/M2-16975-0/240 │ │ │ │ - -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-16975-0/242 │ │ │ │ +using temporary file /tmp/M2-22520-0/240 │ │ │ │ + -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-22520-0/242 │ │ │ │ This program is part of the Puiseux lifting algorithm implemented in Gfan and │ │ │ │ Singular. The Singular part of the implementation can be found in: │ │ │ │ │ │ │ │ Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig: │ │ │ │ tropical.lib. A SINGULAR 3.0 library for computations in tropical geometry, │ │ │ │ 2007 │ │ │ │ │ │ │ │ @@ -693,54 +693,54 @@ │ │ │ │ Options: │ │ │ │ --noMult: │ │ │ │ Disable the multiplicity computation. │ │ │ │ -n value: │ │ │ │ Number of variables that should have negative weight. │ │ │ │ -c: │ │ │ │ Only output a list of vectors being the possible choices. │ │ │ │ -using temporary file /tmp/M2-16975-0/242 │ │ │ │ - -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-16975-0/244 │ │ │ │ +using temporary file /tmp/M2-22520-0/242 │ │ │ │ + -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-22520-0/244 │ │ │ │ This program generates tropical equations for a tropical linear space in the │ │ │ │ Speyer sense given the tropical Pluecker coordinates as input. │ │ │ │ Options: │ │ │ │ -d value: │ │ │ │ Specify d. │ │ │ │ -n value: │ │ │ │ Specify n. │ │ │ │ --trees: │ │ │ │ list the boundary trees (assumes d=3) │ │ │ │ -using temporary file /tmp/M2-16975-0/244 │ │ │ │ - -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-16975-0/246 │ │ │ │ +using temporary file /tmp/M2-22520-0/244 │ │ │ │ + -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-22520-0/246 │ │ │ │ This program computes the multiplicity of a tropical cone given a marked │ │ │ │ reduced Groebner basis for its initial ideal. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16975-0/246 │ │ │ │ - -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-16975-0/248 │ │ │ │ +using temporary file /tmp/M2-22520-0/246 │ │ │ │ + -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-22520-0/248 │ │ │ │ This program will compute the tropical rank of matrix given as input. Tropical │ │ │ │ addition is MAXIMUM. │ │ │ │ Options: │ │ │ │ --kapranov: │ │ │ │ Compute Kapranov rank instead of tropical rank. │ │ │ │ --determinant: │ │ │ │ Compute the tropical determinant instead. │ │ │ │ -using temporary file /tmp/M2-16975-0/248 │ │ │ │ - -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-16975-0/250 │ │ │ │ +using temporary file /tmp/M2-22520-0/248 │ │ │ │ + -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-22520-0/250 │ │ │ │ This program computes a starting pair of marked reduced Groebner bases to be │ │ │ │ used as input for gfan_tropicaltraverse. The input is a homogeneous ideal whose │ │ │ │ tropical variety is a pure d-dimensional polyhedral complex. │ │ │ │ Options: │ │ │ │ -g: │ │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ │ -d: │ │ │ │ Output dimension information to standard error. │ │ │ │ --stable: │ │ │ │ Find starting cone in the stable intersection or, equivalently, pretend that │ │ │ │ the coefficients are genereric. │ │ │ │ -using temporary file /tmp/M2-16975-0/250 │ │ │ │ - -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-16975-0/252 │ │ │ │ +using temporary file /tmp/M2-22520-0/250 │ │ │ │ + -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-22520-0/252 │ │ │ │ This program computes a polyhedral fan representation of the tropical variety │ │ │ │ of a homogeneous prime ideal $I$. Let $d$ be the Krull dimension of $I$ and let │ │ │ │ $\omega$ be a relative interior point of $d$-dimensional Groebner cone │ │ │ │ contained in the tropical variety. The input for this program is a pair of │ │ │ │ marked reduced Groebner bases with respect to the term order represented by │ │ │ │ $\omega$, tie-broken in some way. The first one is for the initial ideal │ │ │ │ $in_\omega(I)$ the second one for $I$ itself. The pair is the starting point │ │ │ │ @@ -770,27 +770,27 @@ │ │ │ │ --stable: │ │ │ │ Traverse the stable intersection or, equivalently, pretend that the │ │ │ │ coefficients are genereric. │ │ │ │ --interrupt value: │ │ │ │ Interrupt the enumeration after a specified number of facets have been │ │ │ │ computed (works for usual symmetric traversals, but may not work in general for │ │ │ │ non-symmetric traversals or for traversals restricted to fans). │ │ │ │ -using temporary file /tmp/M2-16975-0/252 │ │ │ │ - -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-16975-0/254 │ │ │ │ +using temporary file /tmp/M2-22520-0/252 │ │ │ │ + -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-22520-0/254 │ │ │ │ This program computes the tropical Weil divisor of piecewise linear (or │ │ │ │ tropical rational) function on a tropical k-cycle. See the Gfan manual for more │ │ │ │ information. │ │ │ │ Options: │ │ │ │ -i1 value: │ │ │ │ Specify the name of the Polymake input file containing the k-cycle. │ │ │ │ -i2 value: │ │ │ │ Specify the name of the Polymake input file containing the piecewise linear │ │ │ │ function. │ │ │ │ -using temporary file /tmp/M2-16975-0/254 │ │ │ │ - -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-16975-0/256 │ │ │ │ +using temporary file /tmp/M2-22520-0/254 │ │ │ │ + -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-22520-0/256 │ │ │ │ This program is an experimental implementation of Groebner bases for ideals in │ │ │ │ Z[x_1,...,x_n]. │ │ │ │ Several operations are supported by specifying the appropriate option: │ │ │ │ (1) computation of the reduced Groebner basis with respect to a given vector │ │ │ │ (tiebroken lexicographically), │ │ │ │ (2) computation of an initial ideal, │ │ │ │ (3) computation of the Groebner fan, │ │ │ │ @@ -825,23 +825,23 @@ │ │ │ │ For the operations taking a vector as input, read in a list of vectors │ │ │ │ instead, and perform the operation for each vector in the list. │ │ │ │ -g: │ │ │ │ Tells the program that the input is already a Groebner basis (with the initial │ │ │ │ term of each polynomial being the first ones listed). Use this option if the │ │ │ │ usual --groebnerFan is too slow. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16975-0/256 │ │ │ │ +using temporary file /tmp/M2-22520-0/256 │ │ │ │ i6 : QQ[x,y]; │ │ │ │ i7 : gfan {x,y}; │ │ │ │ - -- running: /usr/bin/gfan _bases < /tmp/M2-16975-0/258 │ │ │ │ + -- running: /usr/bin/gfan _bases < /tmp/M2-22520-0/258 │ │ │ │ Q[x1,x2] │ │ │ │ {{ │ │ │ │ x2, │ │ │ │ x1} │ │ │ │ } │ │ │ │ -using temporary file /tmp/M2-16975-0/258 │ │ │ │ +using temporary file /tmp/M2-22520-0/258 │ │ │ │ Finally, if you want to be able to render Groebner fans and monomial staircases │ │ │ │ to .png files, you should install fig2dev. If it is installed in a non-standard │ │ │ │ location, then you may specify its path using _p_r_o_g_r_a_m_P_a_t_h_s. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/gfanInterface.m2:2630:0. │ │ ├── ./usr/share/info/AInfinity.info.gz │ │ │ ├── AInfinity.info │ │ │ │ @@ -6133,16 +6133,16 @@ │ │ │ │ 00017f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017f70: 2b0a 7c69 3320 3a20 656c 6170 7365 6454 +.|i3 : elapsedT │ │ │ │ 00017f80: 696d 6520 6275 726b 6552 6573 6f6c 7574 ime burkeResolut │ │ │ │ 00017f90: 696f 6e28 4d2c 2037 2c20 4368 6563 6b20 ion(M, 7, Check │ │ │ │ 00017fa0: 3d3e 2066 616c 7365 2920 2020 2020 2020 => false) │ │ │ │ -00017fb0: 2020 2020 7c0a 7c20 2d2d 2032 2e30 3138 |.| -- 2.018 │ │ │ │ -00017fc0: 3035 7320 656c 6170 7365 6420 2020 2020 05s elapsed │ │ │ │ +00017fb0: 2020 2020 7c0a 7c20 2d2d 2031 2e33 3735 |.| -- 1.375 │ │ │ │ +00017fc0: 3437 7320 656c 6170 7365 6420 2020 2020 47s elapsed │ │ │ │ 00017fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ff0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00018000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018030: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ @@ -6176,15 +6176,15 @@ │ │ │ │ 000181f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018210: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ 00018220: 656c 6170 7365 6454 696d 6520 6275 726b elapsedTime burk │ │ │ │ 00018230: 6552 6573 6f6c 7574 696f 6e28 4d2c 2037 eResolution(M, 7 │ │ │ │ 00018240: 2c20 4368 6563 6b20 3d3e 2074 7275 6529 , Check => true) │ │ │ │ 00018250: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00018260: 2d2d 2032 2e33 3631 3335 7320 656c 6170 -- 2.36135s elap │ │ │ │ +00018260: 2d2d 2031 2e37 3336 3536 7320 656c 6170 -- 1.73656s elap │ │ │ │ 00018270: 7365 6420 2020 2020 2020 2020 2020 2020 sed │ │ │ │ 00018280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000182b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/AdjunctionForSurfaces.info.gz │ │ │ ├── AdjunctionForSurfaces.info │ │ │ │ @@ -741,16 +741,16 @@ │ │ │ │ 00002e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00002e70: 7c69 3130 203a 2065 6c61 7073 6564 5469 |i10 : elapsedTi │ │ │ │ 00002e80: 6d65 2066 493d 7265 7320 4920 2020 2020 me fI=res I │ │ │ │ 00002e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002eb0: 2020 207c 0a7c 202d 2d20 2e30 3231 3636 |.| -- .02166 │ │ │ │ -00002ec0: 3731 7320 656c 6170 7365 6420 2020 2020 71s elapsed │ │ │ │ +00002eb0: 2020 207c 0a7c 202d 2d20 2e30 3237 3633 |.| -- .02763 │ │ │ │ +00002ec0: 3536 7320 656c 6170 7365 6420 2020 2020 56s elapsed │ │ │ │ 00002ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002ef0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00002f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ @@ -1596,15 +1596,15 @@ │ │ │ │ 000063b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000063c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000063d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000063e0: 7c69 3135 203a 2065 6c61 7073 6564 5469 |i15 : elapsedTi │ │ │ │ 000063f0: 6d65 2062 6574 7469 2849 273d 7472 696d me betti(I'=trim │ │ │ │ 00006400: 206b 6572 2070 6869 2920 2020 2020 2020 ker phi) │ │ │ │ 00006410: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -00006420: 2e35 3835 3435 3573 2065 6c61 7073 6564 .585455s elapsed │ │ │ │ +00006420: 2e35 3732 3738 3173 2065 6c61 7073 6564 .572781s elapsed │ │ │ │ 00006430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006450: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00006460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00006490: 0a7c 2020 2020 2020 2020 2020 2020 2030 .| 0 │ │ │ │ @@ -1651,15 +1651,15 @@ │ │ │ │ 00006720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006750: 2d2d 2d2b 0a7c 6931 3720 3a20 656c 6170 ---+.|i17 : elap │ │ │ │ 00006760: 7365 6454 696d 6520 6261 7365 5074 733d sedTime basePts= │ │ │ │ 00006770: 7072 696d 6172 7944 6563 6f6d 706f 7369 primaryDecomposi │ │ │ │ 00006780: 7469 6f6e 2069 6465 616c 2048 3b20 7c0a tion ideal H; |. │ │ │ │ -00006790: 7c20 2d2d 2035 2e37 3936 3235 7320 656c | -- 5.79625s el │ │ │ │ +00006790: 7c20 2d2d 2035 2e31 3835 3735 7320 656c | -- 5.18575s el │ │ │ │ 000067a0: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 000067b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000067c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 000067d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000067e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000067f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006800: 2d2d 2d2d 2b0a 7c69 3138 203a 2074 616c ----+.|i18 : tal │ │ │ │ @@ -2608,15 +2608,15 @@ │ │ │ │ 0000a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 0000a320: 3134 203a 2065 6c61 7073 6564 5469 6d65 14 : elapsedTime │ │ │ │ 0000a330: 2073 7562 2849 2c48 2920 2020 2020 2020 sub(I,H) │ │ │ │ 0000a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a350: 2020 2020 2020 207c 0a7c 202d 2d20 2e30 |.| -- .0 │ │ │ │ -0000a360: 3133 3537 3633 7320 656c 6170 7365 6420 135763s elapsed │ │ │ │ +0000a360: 3136 3632 3133 7320 656c 6170 7365 6420 166213s elapsed │ │ │ │ 0000a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a390: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a3c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0000a3d0: 6f31 3420 3d20 6964 6561 6c20 2830 2c20 o14 = ideal (0, │ │ │ │ @@ -2648,15 +2648,15 @@ │ │ │ │ 0000a570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a5a0: 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 656c -----+.|i16 : el │ │ │ │ 0000a5b0: 6170 7365 6454 696d 6520 6265 7474 6928 apsedTime betti( │ │ │ │ 0000a5c0: 4927 3d74 7269 6d20 6b65 7220 7068 6929 I'=trim ker phi) │ │ │ │ 0000a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a5e0: 7c0a 7c20 2d2d 202e 3035 3439 3531 3373 |.| -- .0549513s │ │ │ │ +0000a5e0: 7c0a 7c20 2d2d 202e 3036 3533 3634 3373 |.| -- .0653643s │ │ │ │ 0000a5f0: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ 0000a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a610: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a650: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ @@ -2700,15 +2700,15 @@ │ │ │ │ 0000a8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000a8e0: 0a7c 6931 3820 3a20 656c 6170 7365 6454 .|i18 : elapsedT │ │ │ │ 0000a8f0: 696d 6520 6261 7365 5074 733d 7072 696d ime basePts=prim │ │ │ │ 0000a900: 6172 7944 6563 6f6d 706f 7369 7469 6f6e aryDecomposition │ │ │ │ 0000a910: 2069 6465 616c 2048 3b20 7c0a 7c20 2d2d ideal H; |.| -- │ │ │ │ -0000a920: 2032 2e31 3232 3573 2065 6c61 7073 6564 2.1225s elapsed │ │ │ │ +0000a920: 2031 2e35 3433 7320 656c 6170 7365 6420 1.543s elapsed │ │ │ │ 0000a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a950: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0000a960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a990: 2b0a 7c69 3139 203a 2074 616c 6c79 2061 +.|i19 : tally a │ │ ├── ./usr/share/info/BGG.info.gz │ │ │ ├── BGG.info │ │ │ │ @@ -4277,1075 +4277,1073 @@ │ │ │ │ 00010b40: 696f 6e73 206f 6620 7468 6520 7072 6f6a ions of the proj │ │ │ │ 00010b50: 6563 7469 7665 2073 7061 6365 7320 6672 ective spaces fr │ │ │ │ 00010b60: 6f6d 2077 686f 7365 0a70 726f 6475 6374 om whose.product │ │ │ │ 00010b70: 2077 6520 6172 6520 7072 6f6a 6563 7469 we are projecti │ │ │ │ 00010b80: 6e67 2e29 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ng.)..+--------- │ │ │ │ 00010b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00010bc0: 3132 203a 2041 203d 206b 6b5b 612c 625d 12 : A = kk[a,b] │ │ │ │ +00010bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00010bc0: 3220 3a20 4120 3d20 6b6b 5b61 2c62 5d20 2 : A = kk[a,b] │ │ │ │ 00010bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010bf0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00010bf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00010c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010c20: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00010c30: 3132 203d 2041 2020 2020 2020 2020 2020 12 = A │ │ │ │ +00010c20: 2020 2020 2020 2020 207c 0a7c 6f31 3220 |.|o12 │ │ │ │ +00010c30: 3d20 4120 2020 2020 2020 2020 2020 2020 = A │ │ │ │ 00010c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010c60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00010c60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00010c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010c90: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00010ca0: 3132 203a 2050 6f6c 796e 6f6d 6961 6c52 12 : PolynomialR │ │ │ │ -00010cb0: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ -00010cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010cd0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00010c90: 2020 2020 2020 207c 0a7c 6f31 3220 3a20 |.|o12 : │ │ │ │ +00010ca0: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ +00010cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010cc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00010cd0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00010ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00010d10: 3133 203a 204d 203d 2072 616e 646f 6d28 13 : M = random( │ │ │ │ -00010d20: 415e 342c 2041 5e7b 343a 2d31 7d29 2020 A^4, A^{4:-1}) │ │ │ │ -00010d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010d40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00010d00: 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 4d20 -----+.|i13 : M │ │ │ │ +00010d10: 3d20 7261 6e64 6f6d 2841 5e34 2c20 415e = random(A^4, A^ │ │ │ │ +00010d20: 7b34 3a2d 317d 2920 2020 2020 2020 2020 {4:-1}) │ │ │ │ +00010d30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00010d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010d70: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00010d80: 3133 203d 207c 2032 3461 2d33 3662 2020 13 = | 24a-36b │ │ │ │ -00010d90: 2d38 612d 3232 6220 2033 3461 2b31 3962 -8a-22b 34a+19b │ │ │ │ -00010da0: 2020 2d32 3861 2d34 3762 207c 2020 2020 -28a-47b | │ │ │ │ -00010db0: 2020 2020 7c0a 7c20 2020 2020 207c 202d |.| | - │ │ │ │ -00010dc0: 3330 612d 3239 6220 2d32 3961 2d32 3462 30a-29b -29a-24b │ │ │ │ -00010dd0: 202d 3437 612d 3339 6220 3338 612b 3262 -47a-39b 38a+2b │ │ │ │ -00010de0: 2020 207c 2020 2020 2020 2020 7c0a 7c20 | |.| │ │ │ │ -00010df0: 2020 2020 207c 2031 3961 2b31 3962 2020 | 19a+19b │ │ │ │ -00010e00: 2d33 3861 2d31 3662 202d 3138 612d 3133 -38a-16b -18a-13 │ │ │ │ -00010e10: 6220 3136 612b 3232 6220 207c 2020 2020 b 16a+22b | │ │ │ │ -00010e20: 2020 2020 7c0a 7c20 2020 2020 207c 202d |.| | - │ │ │ │ -00010e30: 3130 612d 3239 6220 3339 612b 3231 6220 10a-29b 39a+21b │ │ │ │ -00010e40: 202d 3433 612d 3135 6220 3435 612d 3334 -43a-15b 45a-34 │ │ │ │ -00010e50: 6220 207c 2020 2020 2020 2020 7c0a 7c20 b | |.| │ │ │ │ +00010d70: 2020 207c 0a7c 6f31 3320 3d20 7c20 3234 |.|o13 = | 24 │ │ │ │ +00010d80: 612d 3336 6220 202d 3861 2d32 3262 2020 a-36b -8a-22b │ │ │ │ +00010d90: 3334 612b 3139 6220 202d 3238 612d 3437 34a+19b -28a-47 │ │ │ │ +00010da0: 6220 7c20 2020 2020 2020 7c0a 7c20 2020 b | |.| │ │ │ │ +00010db0: 2020 207c 202d 3330 612d 3239 6220 2d32 | -30a-29b -2 │ │ │ │ +00010dc0: 3961 2d32 3462 202d 3437 612d 3339 6220 9a-24b -47a-39b │ │ │ │ +00010dd0: 3338 612b 3262 2020 207c 2020 2020 2020 38a+2b | │ │ │ │ +00010de0: 207c 0a7c 2020 2020 2020 7c20 3139 612b |.| | 19a+ │ │ │ │ +00010df0: 3139 6220 202d 3338 612d 3136 6220 2d31 19b -38a-16b -1 │ │ │ │ +00010e00: 3861 2d31 3362 2031 3661 2b32 3262 2020 8a-13b 16a+22b │ │ │ │ +00010e10: 7c20 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +00010e20: 207c 202d 3130 612d 3239 6220 3339 612b | -10a-29b 39a+ │ │ │ │ +00010e30: 3231 6220 202d 3433 612d 3135 6220 3435 21b -43a-15b 45 │ │ │ │ +00010e40: 612d 3334 6220 207c 2020 2020 2020 207c a-34b | | │ │ │ │ +00010e50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00010e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010e90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00010ea0: 2020 2020 2034 2020 2020 2020 3420 2020 4 4 │ │ │ │ -00010eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010ec0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00010ed0: 3133 203a 204d 6174 7269 7820 4120 203c 13 : Matrix A < │ │ │ │ -00010ee0: 2d2d 2041 2020 2020 2020 2020 2020 2020 -- A │ │ │ │ -00010ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010f00: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00010e80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00010e90: 2020 2020 2020 2034 2020 2020 2020 3420 4 4 │ │ │ │ +00010ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010eb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00010ec0: 6f31 3320 3a20 4d61 7472 6978 2041 2020 o13 : Matrix A │ │ │ │ +00010ed0: 3c2d 2d20 4120 2020 2020 2020 2020 2020 <-- A │ │ │ │ +00010ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010ef0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00010f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00010f40: 3134 203a 2074 696d 6520 6265 7474 6920 14 : time betti │ │ │ │ -00010f50: 2846 203d 2070 7572 6552 6573 6f6c 7574 (F = pureResolut │ │ │ │ -00010f60: 696f 6e28 4d2c 7b30 2c32 2c34 7d29 2920 ion(M,{0,2,4})) │ │ │ │ -00010f70: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00010f80: 302e 3434 3737 3339 7320 2863 7075 293b 0.447739s (cpu); │ │ │ │ -00010f90: 2030 2e33 3637 3033 3673 2028 7468 7265 0.367036s (thre │ │ │ │ -00010fa0: 6164 293b 2030 7320 2867 6329 7c0a 7c20 ad); 0s (gc)|.| │ │ │ │ +00010f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00010f30: 3420 3a20 7469 6d65 2062 6574 7469 2028 4 : time betti ( │ │ │ │ +00010f40: 4620 3d20 7075 7265 5265 736f 6c75 7469 F = pureResoluti │ │ │ │ +00010f50: 6f6e 284d 2c7b 302c 322c 347d 2929 2020 on(M,{0,2,4})) │ │ │ │ +00010f60: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ +00010f70: 3531 3035 3932 7320 2863 7075 293b 2030 510592s (cpu); 0 │ │ │ │ +00010f80: 2e34 3138 3332 7320 2874 6872 6561 6429 .41832s (thread) │ │ │ │ +00010f90: 3b20 3073 2028 6763 297c 0a7c 2020 2020 ; 0s (gc)|.| │ │ │ │ +00010fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010fe0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00010ff0: 2020 2020 3020 3120 3220 2020 2020 2020 0 1 2 │ │ │ │ -00011000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011010: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00011020: 3134 203d 2074 6f74 616c 3a20 3320 3620 14 = total: 3 6 │ │ │ │ -00011030: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00011040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011050: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00011060: 2030 3a20 3320 2e20 2e20 2020 2020 2020 0: 3 . . │ │ │ │ -00011070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011080: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00011090: 2020 2020 2020 2020 2031 3a20 2e20 3620 1: . 6 │ │ │ │ -000110a0: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -000110b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000110c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000110d0: 2032 3a20 2e20 2e20 3320 2020 2020 2020 2: . . 3 │ │ │ │ -000110e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000110f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00010fd0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010fe0: 3020 3120 3220 2020 2020 2020 2020 2020 0 1 2 │ │ │ │ +00010ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011000: 2020 2020 2020 207c 0a7c 6f31 3420 3d20 |.|o14 = │ │ │ │ +00011010: 746f 7461 6c3a 2033 2036 2033 2020 2020 total: 3 6 3 │ │ │ │ +00011020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011030: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00011040: 7c20 2020 2020 2020 2020 2030 3a20 3320 | 0: 3 │ │ │ │ +00011050: 2e20 2e20 2020 2020 2020 2020 2020 2020 . . │ │ │ │ +00011060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011070: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00011080: 2020 313a 202e 2036 202e 2020 2020 2020 1: . 6 . │ │ │ │ +00011090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000110a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000110b0: 2020 2020 2020 2020 2032 3a20 2e20 2e20 2: . . │ │ │ │ +000110c0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000110d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000110e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000110f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011130: 2020 2020 7c0a 7c6f 3134 203a 2042 6574 |.|o14 : Bet │ │ │ │ -00011140: 7469 5461 6c6c 7920 2020 2020 2020 2020 tiTally │ │ │ │ -00011150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011160: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00011110: 2020 2020 2020 2020 2020 7c0a 7c6f 3134 |.|o14 │ │ │ │ +00011120: 203a 2042 6574 7469 5461 6c6c 7920 2020 : BettiTally │ │ │ │ +00011130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011150: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00011160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000111a0: 2d2d 2d2d 2b0a 0a57 6974 6820 7468 6520 ----+..With the │ │ │ │ -000111b0: 666f 726d 2070 7572 6552 6573 6f6c 7574 form pureResolut │ │ │ │ -000111c0: 696f 6e28 702c 712c 4429 2077 6520 6361 ion(p,q,D) we ca │ │ │ │ -000111d0: 6e20 6469 7265 6374 6c79 2063 7265 6174 n directly creat │ │ │ │ -000111e0: 6520 7468 6520 7369 7475 6174 696f 6e20 e the situation │ │ │ │ -000111f0: 6f66 0a70 7572 6552 6573 6f6c 7574 696f of.pureResolutio │ │ │ │ -00011200: 6e28 4d2c 4429 2077 6865 7265 204d 2069 n(M,D) where M i │ │ │ │ -00011210: 7320 6765 6e65 7269 6320 7072 6f64 7563 s generic produc │ │ │ │ -00011220: 7428 6d5f 692b 3129 2078 2023 442d 312b t(m_i+1) x #D-1+ │ │ │ │ -00011230: 7375 6d28 6d5f 6929 206d 6174 7269 7820 sum(m_i) matrix │ │ │ │ -00011240: 6f66 0a6c 696e 6561 7220 666f 726d 7320 of.linear forms │ │ │ │ -00011250: 6465 6669 6e65 6420 6f76 6572 2061 2072 defined over a r │ │ │ │ -00011260: 696e 6720 7769 7468 2070 726f 6475 6374 ing with product │ │ │ │ -00011270: 286d 5f69 2b31 2920 2a20 2344 2d31 2b73 (m_i+1) * #D-1+s │ │ │ │ -00011280: 756d 286d 5f69 2920 7661 7269 6162 6c65 um(m_i) variable │ │ │ │ -00011290: 730a 6f66 2063 6861 7261 6374 6572 6973 s.of characteris │ │ │ │ -000112a0: 7469 6320 702c 2063 7265 6174 6564 2062 tic p, created b │ │ │ │ -000112b0: 7920 7468 6520 7363 7269 7074 2e20 466f y the script. Fo │ │ │ │ -000112c0: 7220 6120 6769 7665 6e20 6e75 6d62 6572 r a given number │ │ │ │ -000112d0: 206f 6620 7661 7269 6162 6c65 7320 696e of variables in │ │ │ │ -000112e0: 0a41 2074 6869 7320 7275 6e73 206d 7563 .A this runs muc │ │ │ │ -000112f0: 6820 6661 7374 6572 2074 6861 6e20 7461 h faster than ta │ │ │ │ -00011300: 6b69 6e67 2061 2072 616e 646f 6d20 6d61 king a random ma │ │ │ │ -00011310: 7472 6978 204d 2e0a 0a2b 2d2d 2d2d 2d2d trix M...+------ │ │ │ │ +00011180: 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6974 6820 --------+..With │ │ │ │ +00011190: 7468 6520 666f 726d 2070 7572 6552 6573 the form pureRes │ │ │ │ +000111a0: 6f6c 7574 696f 6e28 702c 712c 4429 2077 olution(p,q,D) w │ │ │ │ +000111b0: 6520 6361 6e20 6469 7265 6374 6c79 2063 e can directly c │ │ │ │ +000111c0: 7265 6174 6520 7468 6520 7369 7475 6174 reate the situat │ │ │ │ +000111d0: 696f 6e20 6f66 0a70 7572 6552 6573 6f6c ion of.pureResol │ │ │ │ +000111e0: 7574 696f 6e28 4d2c 4429 2077 6865 7265 ution(M,D) where │ │ │ │ +000111f0: 204d 2069 7320 6765 6e65 7269 6320 7072 M is generic pr │ │ │ │ +00011200: 6f64 7563 7428 6d5f 692b 3129 2078 2023 oduct(m_i+1) x # │ │ │ │ +00011210: 442d 312b 7375 6d28 6d5f 6929 206d 6174 D-1+sum(m_i) mat │ │ │ │ +00011220: 7269 7820 6f66 0a6c 696e 6561 7220 666f rix of.linear fo │ │ │ │ +00011230: 726d 7320 6465 6669 6e65 6420 6f76 6572 rms defined over │ │ │ │ +00011240: 2061 2072 696e 6720 7769 7468 2070 726f a ring with pro │ │ │ │ +00011250: 6475 6374 286d 5f69 2b31 2920 2a20 2344 duct(m_i+1) * #D │ │ │ │ +00011260: 2d31 2b73 756d 286d 5f69 2920 7661 7269 -1+sum(m_i) vari │ │ │ │ +00011270: 6162 6c65 730a 6f66 2063 6861 7261 6374 ables.of charact │ │ │ │ +00011280: 6572 6973 7469 6320 702c 2063 7265 6174 eristic p, creat │ │ │ │ +00011290: 6564 2062 7920 7468 6520 7363 7269 7074 ed by the script │ │ │ │ +000112a0: 2e20 466f 7220 6120 6769 7665 6e20 6e75 . For a given nu │ │ │ │ +000112b0: 6d62 6572 206f 6620 7661 7269 6162 6c65 mber of variable │ │ │ │ +000112c0: 7320 696e 0a41 2074 6869 7320 7275 6e73 s in.A this runs │ │ │ │ +000112d0: 206d 7563 6820 6661 7374 6572 2074 6861 much faster tha │ │ │ │ +000112e0: 6e20 7461 6b69 6e67 2061 2072 616e 646f n taking a rando │ │ │ │ +000112f0: 6d20 6d61 7472 6978 204d 2e0a 0a2b 2d2d m matrix M...+-- │ │ │ │ +00011300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00011350: 0a7c 6931 3520 3a20 7469 6d65 2062 6574 .|i15 : time bet │ │ │ │ -00011360: 7469 2028 4620 3d20 7075 7265 5265 736f ti (F = pureReso │ │ │ │ -00011370: 6c75 7469 6f6e 2831 312c 342c 7b30 2c32 lution(11,4,{0,2 │ │ │ │ -00011380: 2c34 7d29 2920 207c 0a7c 202d 2d20 7573 ,4})) |.| -- us │ │ │ │ -00011390: 6564 2030 2e34 3830 3138 3573 2028 6370 ed 0.480185s (cp │ │ │ │ -000113a0: 7529 3b20 302e 3430 3335 3037 7320 2874 u); 0.403507s (t │ │ │ │ -000113b0: 6872 6561 6429 3b20 3073 2028 6763 297c hread); 0s (gc)| │ │ │ │ -000113c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000113d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000113e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000113f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00011400: 2020 2020 2020 2030 2031 2032 2020 2020 0 1 2 │ │ │ │ -00011410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011420: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00011430: 0a7c 6f31 3520 3d20 746f 7461 6c3a 2033 .|o15 = total: 3 │ │ │ │ -00011440: 2036 2033 2020 2020 2020 2020 2020 2020 6 3 │ │ │ │ -00011450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011460: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00011470: 2020 2020 303a 2033 202e 202e 2020 2020 0: 3 . . │ │ │ │ -00011480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011490: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000114a0: 0a7c 2020 2020 2020 2020 2020 313a 202e .| 1: . │ │ │ │ -000114b0: 2036 202e 2020 2020 2020 2020 2020 2020 6 . │ │ │ │ -000114c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000114d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000114e0: 2020 2020 323a 202e 202e 2033 2020 2020 2: . . 3 │ │ │ │ -000114f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00011510: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00011520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011540: 2020 2020 2020 207c 0a7c 6f31 3520 3a20 |.|o15 : │ │ │ │ -00011550: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ -00011560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011570: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00011580: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00011590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000115a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000115b0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 -------+.|i16 : │ │ │ │ -000115c0: 7269 6e67 2046 2020 2020 2020 2020 2020 ring F │ │ │ │ -000115d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000115e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000115f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00011600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011620: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00011630: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ -00011640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011650: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00011660: 0a7c 6f31 3620 3d20 2d2d 5b61 202e 2e61 .|o16 = --[a ..a │ │ │ │ -00011670: 2020 5d20 2020 2020 2020 2020 2020 2020 ] │ │ │ │ -00011680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011690: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000116a0: 3131 2020 3020 2020 3135 2020 2020 2020 11 0 15 │ │ │ │ -000116b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000116c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000116d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000116e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000116f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011700: 2020 2020 2020 207c 0a7c 6f31 3620 3a20 |.|o16 : │ │ │ │ -00011710: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ -00011720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00011740: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00011750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011770: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ -00011780: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -00011790: 202a 6e6f 7465 2064 6972 6563 7449 6d61 *note directIma │ │ │ │ -000117a0: 6765 436f 6d70 6c65 783a 2064 6972 6563 geComplex: direc │ │ │ │ -000117b0: 7449 6d61 6765 436f 6d70 6c65 782c 202d tImageComplex, - │ │ │ │ -000117c0: 2d20 6469 7265 6374 2069 6d61 6765 2063 - direct image c │ │ │ │ -000117d0: 6f6d 706c 6578 0a20 202a 202a 6e6f 7465 omplex. * *note │ │ │ │ -000117e0: 2075 6e69 7665 7273 616c 4578 7465 6e73 universalExtens │ │ │ │ -000117f0: 696f 6e3a 2075 6e69 7665 7273 616c 4578 ion: universalEx │ │ │ │ -00011800: 7465 6e73 696f 6e2c 202d 2d20 556e 6976 tension, -- Univ │ │ │ │ -00011810: 6572 7361 6c20 6578 7465 6e73 696f 6e20 ersal extension │ │ │ │ -00011820: 6f66 0a20 2020 2076 6563 746f 7220 6275 of. vector bu │ │ │ │ -00011830: 6e64 6c65 7320 6f6e 2050 5e31 0a0a 5761 ndles on P^1..Wa │ │ │ │ -00011840: 7973 2074 6f20 7573 6520 7075 7265 5265 ys to use pureRe │ │ │ │ -00011850: 736f 6c75 7469 6f6e 3a0a 3d3d 3d3d 3d3d solution:.====== │ │ │ │ -00011860: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00011870: 3d3d 3d3d 3d0a 0a20 202a 2022 7075 7265 =====.. * "pure │ │ │ │ -00011880: 5265 736f 6c75 7469 6f6e 284d 6174 7269 Resolution(Matri │ │ │ │ -00011890: 782c 4c69 7374 2922 0a20 202a 2022 7075 x,List)". * "pu │ │ │ │ -000118a0: 7265 5265 736f 6c75 7469 6f6e 2852 696e reResolution(Rin │ │ │ │ -000118b0: 672c 4c69 7374 2922 0a20 202a 2022 7075 g,List)". * "pu │ │ │ │ -000118c0: 7265 5265 736f 6c75 7469 6f6e 285a 5a2c reResolution(ZZ, │ │ │ │ -000118d0: 4c69 7374 2922 0a20 202a 2022 7075 7265 List)". * "pure │ │ │ │ -000118e0: 5265 736f 6c75 7469 6f6e 285a 5a2c 5a5a Resolution(ZZ,ZZ │ │ │ │ -000118f0: 2c4c 6973 7429 220a 0a46 6f72 2074 6865 ,List)"..For the │ │ │ │ -00011900: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00011910: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00011920: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00011930: 2070 7572 6552 6573 6f6c 7574 696f 6e3a pureResolution: │ │ │ │ -00011940: 2070 7572 6552 6573 6f6c 7574 696f 6e2c pureResolution, │ │ │ │ -00011950: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ -00011960: 6f64 2066 756e 6374 696f 6e3a 0a28 4d61 od function:.(Ma │ │ │ │ -00011970: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ -00011980: 6446 756e 6374 696f 6e2c 2e0a 0a2d 2d2d dFunction,...--- │ │ │ │ +00011330: 2d2d 2d2b 0a7c 6931 3520 3a20 7469 6d65 ---+.|i15 : time │ │ │ │ +00011340: 2062 6574 7469 2028 4620 3d20 7075 7265 betti (F = pure │ │ │ │ +00011350: 5265 736f 6c75 7469 6f6e 2831 312c 342c Resolution(11,4, │ │ │ │ +00011360: 7b30 2c32 2c34 7d29 2920 207c 0a7c 202d {0,2,4})) |.| - │ │ │ │ +00011370: 2d20 7573 6564 2030 2e35 3631 3731 3173 - used 0.561711s │ │ │ │ +00011380: 2028 6370 7529 3b20 302e 3437 3832 3931 (cpu); 0.478291 │ │ │ │ +00011390: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +000113a0: 6763 297c 0a7c 2020 2020 2020 2020 2020 gc)|.| │ │ │ │ +000113b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000113c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000113d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000113e0: 2020 2020 2020 2020 2020 2030 2031 2032 0 1 2 │ │ │ │ +000113f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011410: 2020 207c 0a7c 6f31 3520 3d20 746f 7461 |.|o15 = tota │ │ │ │ +00011420: 6c3a 2033 2036 2033 2020 2020 2020 2020 l: 3 6 3 │ │ │ │ +00011430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011440: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00011450: 2020 2020 2020 2020 303a 2033 202e 202e 0: 3 . . │ │ │ │ +00011460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011480: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00011490: 313a 202e 2036 202e 2020 2020 2020 2020 1: . 6 . │ │ │ │ +000114a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000114b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000114c0: 2020 2020 2020 2020 323a 202e 202e 2033 2: . . 3 │ │ │ │ +000114d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000114e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000114f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00011500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011520: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00011530: 3520 3a20 4265 7474 6954 616c 6c79 2020 5 : BettiTally │ │ │ │ +00011540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011560: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00011570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +000115a0: 3620 3a20 7269 6e67 2046 2020 2020 2020 6 : ring F │ │ │ │ +000115b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000115c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000115d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000115e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000115f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011600: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00011610: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00011620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011640: 2020 207c 0a7c 6f31 3620 3d20 2d2d 5b61 |.|o16 = --[a │ │ │ │ +00011650: 202e 2e61 2020 5d20 2020 2020 2020 2020 ..a ] │ │ │ │ +00011660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011670: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00011680: 2020 2020 3131 2020 3020 2020 3135 2020 11 0 15 │ │ │ │ +00011690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000116a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000116b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000116c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000116d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000116e0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000116f0: 3620 3a20 506f 6c79 6e6f 6d69 616c 5269 6 : PolynomialRi │ │ │ │ +00011700: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +00011710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011720: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00011730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ +00011760: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +00011770: 0a20 202a 202a 6e6f 7465 2064 6972 6563 . * *note direc │ │ │ │ +00011780: 7449 6d61 6765 436f 6d70 6c65 783a 2064 tImageComplex: d │ │ │ │ +00011790: 6972 6563 7449 6d61 6765 436f 6d70 6c65 irectImageComple │ │ │ │ +000117a0: 782c 202d 2d20 6469 7265 6374 2069 6d61 x, -- direct ima │ │ │ │ +000117b0: 6765 2063 6f6d 706c 6578 0a20 202a 202a ge complex. * * │ │ │ │ +000117c0: 6e6f 7465 2075 6e69 7665 7273 616c 4578 note universalEx │ │ │ │ +000117d0: 7465 6e73 696f 6e3a 2075 6e69 7665 7273 tension: univers │ │ │ │ +000117e0: 616c 4578 7465 6e73 696f 6e2c 202d 2d20 alExtension, -- │ │ │ │ +000117f0: 556e 6976 6572 7361 6c20 6578 7465 6e73 Universal extens │ │ │ │ +00011800: 696f 6e20 6f66 0a20 2020 2076 6563 746f ion of. vecto │ │ │ │ +00011810: 7220 6275 6e64 6c65 7320 6f6e 2050 5e31 r bundles on P^1 │ │ │ │ +00011820: 0a0a 5761 7973 2074 6f20 7573 6520 7075 ..Ways to use pu │ │ │ │ +00011830: 7265 5265 736f 6c75 7469 6f6e 3a0a 3d3d reResolution:.== │ │ │ │ +00011840: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00011850: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ +00011860: 7075 7265 5265 736f 6c75 7469 6f6e 284d pureResolution(M │ │ │ │ +00011870: 6174 7269 782c 4c69 7374 2922 0a20 202a atrix,List)". * │ │ │ │ +00011880: 2022 7075 7265 5265 736f 6c75 7469 6f6e "pureResolution │ │ │ │ +00011890: 2852 696e 672c 4c69 7374 2922 0a20 202a (Ring,List)". * │ │ │ │ +000118a0: 2022 7075 7265 5265 736f 6c75 7469 6f6e "pureResolution │ │ │ │ +000118b0: 285a 5a2c 4c69 7374 2922 0a20 202a 2022 (ZZ,List)". * " │ │ │ │ +000118c0: 7075 7265 5265 736f 6c75 7469 6f6e 285a pureResolution(Z │ │ │ │ +000118d0: 5a2c 5a5a 2c4c 6973 7429 220a 0a46 6f72 Z,ZZ,List)"..For │ │ │ │ +000118e0: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +000118f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00011900: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +00011910: 6e6f 7465 2070 7572 6552 6573 6f6c 7574 note pureResolut │ │ │ │ +00011920: 696f 6e3a 2070 7572 6552 6573 6f6c 7574 ion: pureResolut │ │ │ │ +00011930: 696f 6e2c 2069 7320 6120 2a6e 6f74 6520 ion, is a *note │ │ │ │ +00011940: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ +00011950: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +00011960: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +00011970: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ +00011980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000119a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000119b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000119c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000119d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -000119e0: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -000119f0: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -00011a00: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -00011a10: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -00011a20: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -00011a30: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -00011a40: 6765 732f 4247 472e 6d32 3a31 3232 360a ges/BGG.m2:1226. │ │ │ │ -00011a50: 3a30 2e0a 1f0a 4669 6c65 3a20 4247 472e :0....File: BGG. │ │ │ │ -00011a60: 696e 666f 2c20 4e6f 6465 3a20 5265 6775 info, Node: Regu │ │ │ │ -00011a70: 6c61 7269 7479 2c20 4e65 7874 3a20 7379 larity, Next: sy │ │ │ │ -00011a80: 6d45 7874 2c20 5072 6576 3a20 7075 7265 mExt, Prev: pure │ │ │ │ -00011a90: 5265 736f 6c75 7469 6f6e 2c20 5570 3a20 Resolution, Up: │ │ │ │ -00011aa0: 546f 700a 0a52 6567 756c 6172 6974 7920 Top..Regularity │ │ │ │ -00011ab0: 2d2d 204f 7074 696f 6e20 666f 7220 6469 -- Option for di │ │ │ │ -00011ac0: 7265 6374 496d 6167 6543 6f6d 706c 6578 rectImageComplex │ │ │ │ -00011ad0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ -00011ae0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00011af0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4361 ************..Ca │ │ │ │ -00011b00: 7665 6174 0a3d 3d3d 3d3d 3d0a 0a43 7572 veat.======..Cur │ │ │ │ -00011b10: 7265 6e74 6c79 206e 6f74 2073 7570 706f rently not suppo │ │ │ │ -00011b20: 7274 6564 0a0a 4675 6e63 7469 6f6e 7320 rted..Functions │ │ │ │ -00011b30: 7769 7468 206f 7074 696f 6e61 6c20 6172 with optional ar │ │ │ │ -00011b40: 6775 6d65 6e74 206e 616d 6564 2052 6567 gument named Reg │ │ │ │ -00011b50: 756c 6172 6974 793a 0a3d 3d3d 3d3d 3d3d ularity:.======= │ │ │ │ -00011b60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00011b70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00011b80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -00011b90: 2022 6469 7265 6374 496d 6167 6543 6f6d "directImageCom │ │ │ │ -00011ba0: 706c 6578 282e 2e2e 2c52 6567 756c 6172 plex(...,Regular │ │ │ │ -00011bb0: 6974 793d 3e2e 2e2e 2922 202d 2d20 7365 ity=>...)" -- se │ │ │ │ -00011bc0: 6520 2a6e 6f74 6520 6469 7265 6374 496d e *note directIm │ │ │ │ -00011bd0: 6167 6543 6f6d 706c 6578 3a0a 2020 2020 ageComplex:. │ │ │ │ -00011be0: 6469 7265 6374 496d 6167 6543 6f6d 706c directImageCompl │ │ │ │ -00011bf0: 6578 2c20 2d2d 2064 6972 6563 7420 696d ex, -- direct im │ │ │ │ -00011c00: 6167 6520 636f 6d70 6c65 780a 0a46 6f72 age complex..For │ │ │ │ -00011c10: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -00011c20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00011c30: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -00011c40: 6e6f 7465 2052 6567 756c 6172 6974 793a note Regularity: │ │ │ │ -00011c50: 2028 5265 6775 6c61 7269 7479 2954 6f70 (Regularity)Top │ │ │ │ -00011c60: 2c20 6973 2061 202a 6e6f 7465 2073 796d , is a *note sym │ │ │ │ -00011c70: 626f 6c3a 0a28 4d61 6361 756c 6179 3244 bol:.(Macaulay2D │ │ │ │ -00011c80: 6f63 2953 796d 626f 6c2c 2e0a 0a2d 2d2d oc)Symbol,...--- │ │ │ │ +000119c0: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +000119d0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +000119e0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +000119f0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +00011a00: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +00011a10: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +00011a20: 6163 6b61 6765 732f 4247 472e 6d32 3a31 ackages/BGG.m2:1 │ │ │ │ +00011a30: 3232 360a 3a30 2e0a 1f0a 4669 6c65 3a20 226.:0....File: │ │ │ │ +00011a40: 4247 472e 696e 666f 2c20 4e6f 6465 3a20 BGG.info, Node: │ │ │ │ +00011a50: 5265 6775 6c61 7269 7479 2c20 4e65 7874 Regularity, Next │ │ │ │ +00011a60: 3a20 7379 6d45 7874 2c20 5072 6576 3a20 : symExt, Prev: │ │ │ │ +00011a70: 7075 7265 5265 736f 6c75 7469 6f6e 2c20 pureResolution, │ │ │ │ +00011a80: 5570 3a20 546f 700a 0a52 6567 756c 6172 Up: Top..Regular │ │ │ │ +00011a90: 6974 7920 2d2d 204f 7074 696f 6e20 666f ity -- Option fo │ │ │ │ +00011aa0: 7220 6469 7265 6374 496d 6167 6543 6f6d r directImageCom │ │ │ │ +00011ab0: 706c 6578 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a plex.*********** │ │ │ │ +00011ac0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00011ad0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00011ae0: 0a0a 4361 7665 6174 0a3d 3d3d 3d3d 3d0a ..Caveat.======. │ │ │ │ +00011af0: 0a43 7572 7265 6e74 6c79 206e 6f74 2073 .Currently not s │ │ │ │ +00011b00: 7570 706f 7274 6564 0a0a 4675 6e63 7469 upported..Functi │ │ │ │ +00011b10: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ +00011b20: 6c20 6172 6775 6d65 6e74 206e 616d 6564 l argument named │ │ │ │ +00011b30: 2052 6567 756c 6172 6974 793a 0a3d 3d3d Regularity:.=== │ │ │ │ +00011b40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00011b50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00011b60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00011b70: 0a20 202a 2022 6469 7265 6374 496d 6167 . * "directImag │ │ │ │ +00011b80: 6543 6f6d 706c 6578 282e 2e2e 2c52 6567 eComplex(...,Reg │ │ │ │ +00011b90: 756c 6172 6974 793d 3e2e 2e2e 2922 202d ularity=>...)" - │ │ │ │ +00011ba0: 2d20 7365 6520 2a6e 6f74 6520 6469 7265 - see *note dire │ │ │ │ +00011bb0: 6374 496d 6167 6543 6f6d 706c 6578 3a0a ctImageComplex:. │ │ │ │ +00011bc0: 2020 2020 6469 7265 6374 496d 6167 6543 directImageC │ │ │ │ +00011bd0: 6f6d 706c 6578 2c20 2d2d 2064 6972 6563 omplex, -- direc │ │ │ │ +00011be0: 7420 696d 6167 6520 636f 6d70 6c65 780a t image complex. │ │ │ │ +00011bf0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +00011c00: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +00011c10: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +00011c20: 6374 202a 6e6f 7465 2052 6567 756c 6172 ct *note Regular │ │ │ │ +00011c30: 6974 793a 2028 5265 6775 6c61 7269 7479 ity: (Regularity │ │ │ │ +00011c40: 2954 6f70 2c20 6973 2061 202a 6e6f 7465 )Top, is a *note │ │ │ │ +00011c50: 2073 796d 626f 6c3a 0a28 4d61 6361 756c symbol:.(Macaul │ │ │ │ +00011c60: 6179 3244 6f63 2953 796d 626f 6c2c 2e0a ay2Doc)Symbol,.. │ │ │ │ +00011c70: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ +00011c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -00011ce0: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -00011cf0: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -00011d00: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -00011d10: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -00011d20: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -00011d30: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -00011d40: 6765 732f 4247 472e 6d32 3a38 3831 3a0a ges/BGG.m2:881:. │ │ │ │ -00011d50: 302e 0a1f 0a46 696c 653a 2042 4747 2e69 0....File: BGG.i │ │ │ │ -00011d60: 6e66 6f2c 204e 6f64 653a 2073 796d 4578 nfo, Node: symEx │ │ │ │ -00011d70: 742c 204e 6578 743a 2074 6174 6552 6573 t, Next: tateRes │ │ │ │ -00011d80: 6f6c 7574 696f 6e2c 2050 7265 763a 2052 olution, Prev: R │ │ │ │ -00011d90: 6567 756c 6172 6974 792c 2055 703a 2054 egularity, Up: T │ │ │ │ -00011da0: 6f70 0a0a 7379 6d45 7874 202d 2d20 7468 op..symExt -- th │ │ │ │ -00011db0: 6520 6669 7273 7420 6469 6666 6572 656e e first differen │ │ │ │ -00011dc0: 7469 616c 206f 6620 7468 6520 636f 6d70 tial of the comp │ │ │ │ -00011dd0: 6c65 7820 5228 4d29 0a2a 2a2a 2a2a 2a2a lex R(M).******* │ │ │ │ +00011cc0: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +00011cd0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +00011ce0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +00011cf0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +00011d00: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +00011d10: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +00011d20: 6163 6b61 6765 732f 4247 472e 6d32 3a38 ackages/BGG.m2:8 │ │ │ │ +00011d30: 3831 3a0a 302e 0a1f 0a46 696c 653a 2042 81:.0....File: B │ │ │ │ +00011d40: 4747 2e69 6e66 6f2c 204e 6f64 653a 2073 GG.info, Node: s │ │ │ │ +00011d50: 796d 4578 742c 204e 6578 743a 2074 6174 ymExt, Next: tat │ │ │ │ +00011d60: 6552 6573 6f6c 7574 696f 6e2c 2050 7265 eResolution, Pre │ │ │ │ +00011d70: 763a 2052 6567 756c 6172 6974 792c 2055 v: Regularity, U │ │ │ │ +00011d80: 703a 2054 6f70 0a0a 7379 6d45 7874 202d p: Top..symExt - │ │ │ │ +00011d90: 2d20 7468 6520 6669 7273 7420 6469 6666 - the first diff │ │ │ │ +00011da0: 6572 656e 7469 616c 206f 6620 7468 6520 erential of the │ │ │ │ +00011db0: 636f 6d70 6c65 7820 5228 4d29 0a2a 2a2a complex R(M).*** │ │ │ │ +00011dc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00011dd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00011de0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00011df0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00011e00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ -00011e10: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -00011e20: 2020 2073 796d 4578 7428 6d2c 4529 0a20 symExt(m,E). │ │ │ │ -00011e30: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -00011e40: 202a 206d 2c20 6120 2a6e 6f74 6520 6d61 * m, a *note ma │ │ │ │ -00011e50: 7472 6978 3a20 284d 6163 6175 6c61 7932 trix: (Macaulay2 │ │ │ │ -00011e60: 446f 6329 4d61 7472 6978 2c2c 2061 2070 Doc)Matrix,, a p │ │ │ │ -00011e70: 7265 7365 6e74 6174 696f 6e20 6d61 7472 resentation matr │ │ │ │ -00011e80: 6978 2066 6f72 2061 0a20 2020 2020 2020 ix for a. │ │ │ │ -00011e90: 2070 6f73 6974 6976 656c 7920 6772 6164 positively grad │ │ │ │ -00011ea0: 6564 206d 6f64 756c 6520 4d20 6f76 6572 ed module M over │ │ │ │ -00011eb0: 2061 2070 6f6c 796e 6f6d 6961 6c20 7269 a polynomial ri │ │ │ │ -00011ec0: 6e67 0a20 2020 2020 202a 2045 2c20 6120 ng. * E, a │ │ │ │ -00011ed0: 2a6e 6f74 6520 706f 6c79 6e6f 6d69 616c *note polynomial │ │ │ │ -00011ee0: 2072 696e 673a 2028 4d61 6361 756c 6179 ring: (Macaulay │ │ │ │ -00011ef0: 3244 6f63 2950 6f6c 796e 6f6d 6961 6c52 2Doc)PolynomialR │ │ │ │ -00011f00: 696e 672c 2c20 6578 7465 7269 6f72 0a20 ing,, exterior. │ │ │ │ -00011f10: 2020 2020 2020 2061 6c67 6562 7261 0a20 algebra. │ │ │ │ -00011f20: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -00011f30: 2020 2a20 6120 2a6e 6f74 6520 6d61 7472 * a *note matr │ │ │ │ -00011f40: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ -00011f50: 6329 4d61 7472 6978 2c2c 2061 206d 6174 c)Matrix,, a mat │ │ │ │ -00011f60: 7269 7820 7265 7072 6573 656e 7469 6e67 rix representing │ │ │ │ -00011f70: 2074 6865 206d 6170 0a20 2020 2020 2020 the map. │ │ │ │ -00011f80: 204d 5f31 202a 2a20 6f6d 6567 615f 4520 M_1 ** omega_E │ │ │ │ -00011f90: 3c2d 2d20 4d5f 3020 2a2a 206f 6d65 6761 <-- M_0 ** omega │ │ │ │ -00011fa0: 5f45 0a0a 4465 7363 7269 7074 696f 6e0a _E..Description. │ │ │ │ -00011fb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ -00011fc0: 7320 6675 6e63 7469 6f6e 2074 616b 6573 s function takes │ │ │ │ -00011fd0: 2061 7320 696e 7075 7420 6120 6d61 7472 as input a matr │ │ │ │ -00011fe0: 6978 206d 2077 6974 6820 6c69 6e65 6172 ix m with linear │ │ │ │ -00011ff0: 2065 6e74 7269 6573 2c20 7768 6963 6820 entries, which │ │ │ │ -00012000: 7765 2074 6869 6e6b 206f 660a 6173 2061 we think of.as a │ │ │ │ -00012010: 2070 7265 7365 6e74 6174 696f 6e20 6d61 presentation ma │ │ │ │ -00012020: 7472 6978 2066 6f72 2061 2070 6f73 6974 trix for a posit │ │ │ │ -00012030: 6976 656c 7920 6772 6164 6564 2053 2d6d ively graded S-m │ │ │ │ -00012040: 6f64 756c 6520 4d20 6d61 7472 6978 2072 odule M matrix r │ │ │ │ -00012050: 6570 7265 7365 6e74 696e 670a 7468 6520 epresenting.the │ │ │ │ -00012060: 6d61 7020 4d5f 3120 2a2a 206f 6d65 6761 map M_1 ** omega │ │ │ │ -00012070: 5f45 203c 2d2d 204d 5f30 202a 2a20 6f6d _E <-- M_0 ** om │ │ │ │ -00012080: 6567 615f 4520 7768 6963 6820 6973 2074 ega_E which is t │ │ │ │ -00012090: 6865 2066 6972 7374 2064 6966 6665 7265 he first differe │ │ │ │ -000120a0: 6e74 6961 6c20 6f66 0a74 6865 2063 6f6d ntial of.the com │ │ │ │ -000120b0: 706c 6578 2052 284d 292e 0a2b 2d2d 2d2d plex R(M)..+---- │ │ │ │ +00011df0: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ +00011e00: 2020 2020 2020 2073 796d 4578 7428 6d2c symExt(m, │ │ │ │ +00011e10: 4529 0a20 202a 2049 6e70 7574 733a 0a20 E). * Inputs:. │ │ │ │ +00011e20: 2020 2020 202a 206d 2c20 6120 2a6e 6f74 * m, a *not │ │ │ │ +00011e30: 6520 6d61 7472 6978 3a20 284d 6163 6175 e matrix: (Macau │ │ │ │ +00011e40: 6c61 7932 446f 6329 4d61 7472 6978 2c2c lay2Doc)Matrix,, │ │ │ │ +00011e50: 2061 2070 7265 7365 6e74 6174 696f 6e20 a presentation │ │ │ │ +00011e60: 6d61 7472 6978 2066 6f72 2061 0a20 2020 matrix for a. │ │ │ │ +00011e70: 2020 2020 2070 6f73 6974 6976 656c 7920 positively │ │ │ │ +00011e80: 6772 6164 6564 206d 6f64 756c 6520 4d20 graded module M │ │ │ │ +00011e90: 6f76 6572 2061 2070 6f6c 796e 6f6d 6961 over a polynomia │ │ │ │ +00011ea0: 6c20 7269 6e67 0a20 2020 2020 202a 2045 l ring. * E │ │ │ │ +00011eb0: 2c20 6120 2a6e 6f74 6520 706f 6c79 6e6f , a *note polyno │ │ │ │ +00011ec0: 6d69 616c 2072 696e 673a 2028 4d61 6361 mial ring: (Maca │ │ │ │ +00011ed0: 756c 6179 3244 6f63 2950 6f6c 796e 6f6d ulay2Doc)Polynom │ │ │ │ +00011ee0: 6961 6c52 696e 672c 2c20 6578 7465 7269 ialRing,, exteri │ │ │ │ +00011ef0: 6f72 0a20 2020 2020 2020 2061 6c67 6562 or. algeb │ │ │ │ +00011f00: 7261 0a20 202a 204f 7574 7075 7473 3a0a ra. * Outputs:. │ │ │ │ +00011f10: 2020 2020 2020 2a20 6120 2a6e 6f74 6520 * a *note │ │ │ │ +00011f20: 6d61 7472 6978 3a20 284d 6163 6175 6c61 matrix: (Macaula │ │ │ │ +00011f30: 7932 446f 6329 4d61 7472 6978 2c2c 2061 y2Doc)Matrix,, a │ │ │ │ +00011f40: 206d 6174 7269 7820 7265 7072 6573 656e matrix represen │ │ │ │ +00011f50: 7469 6e67 2074 6865 206d 6170 0a20 2020 ting the map. │ │ │ │ +00011f60: 2020 2020 204d 5f31 202a 2a20 6f6d 6567 M_1 ** omeg │ │ │ │ +00011f70: 615f 4520 3c2d 2d20 4d5f 3020 2a2a 206f a_E <-- M_0 ** o │ │ │ │ +00011f80: 6d65 6761 5f45 0a0a 4465 7363 7269 7074 mega_E..Descript │ │ │ │ +00011f90: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +00011fa0: 0a54 6869 7320 6675 6e63 7469 6f6e 2074 .This function t │ │ │ │ +00011fb0: 616b 6573 2061 7320 696e 7075 7420 6120 akes as input a │ │ │ │ +00011fc0: 6d61 7472 6978 206d 2077 6974 6820 6c69 matrix m with li │ │ │ │ +00011fd0: 6e65 6172 2065 6e74 7269 6573 2c20 7768 near entries, wh │ │ │ │ +00011fe0: 6963 6820 7765 2074 6869 6e6b 206f 660a ich we think of. │ │ │ │ +00011ff0: 6173 2061 2070 7265 7365 6e74 6174 696f as a presentatio │ │ │ │ +00012000: 6e20 6d61 7472 6978 2066 6f72 2061 2070 n matrix for a p │ │ │ │ +00012010: 6f73 6974 6976 656c 7920 6772 6164 6564 ositively graded │ │ │ │ +00012020: 2053 2d6d 6f64 756c 6520 4d20 6d61 7472 S-module M matr │ │ │ │ +00012030: 6978 2072 6570 7265 7365 6e74 696e 670a ix representing. │ │ │ │ +00012040: 7468 6520 6d61 7020 4d5f 3120 2a2a 206f the map M_1 ** o │ │ │ │ +00012050: 6d65 6761 5f45 203c 2d2d 204d 5f30 202a mega_E <-- M_0 * │ │ │ │ +00012060: 2a20 6f6d 6567 615f 4520 7768 6963 6820 * omega_E which │ │ │ │ +00012070: 6973 2074 6865 2066 6972 7374 2064 6966 is the first dif │ │ │ │ +00012080: 6665 7265 6e74 6961 6c20 6f66 0a74 6865 ferential of.the │ │ │ │ +00012090: 2063 6f6d 706c 6578 2052 284d 292e 0a2b complex R(M)..+ │ │ │ │ +000120a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000120b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000120c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000120d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000120e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000120f0: 0a7c 6931 203a 2053 203d 205a 5a2f 3332 .|i1 : S = ZZ/32 │ │ │ │ -00012100: 3030 335b 785f 302e 2e78 5f32 5d3b 2020 003[x_0..x_2]; │ │ │ │ -00012110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012120: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00012130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00012160: 203a 2045 203d 205a 5a2f 3332 3030 335b : E = ZZ/32003[ │ │ │ │ -00012170: 655f 302e 2e65 5f32 2c20 536b 6577 436f e_0..e_2, SkewCo │ │ │ │ -00012180: 6d6d 7574 6174 6976 653d 3e74 7275 655d mmutative=>true] │ │ │ │ -00012190: 3b7c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ;|.+------------ │ │ │ │ -000121a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000121b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000121c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 204d -------+.|i3 : M │ │ │ │ -000121d0: 203d 2063 6f6b 6572 206d 6174 7269 7820 = coker matrix │ │ │ │ -000121e0: 7b7b 785f 305e 322c 2078 5f31 5e32 7d7d {{x_0^2, x_1^2}} │ │ │ │ -000121f0: 3b20 2020 2020 2020 2020 2020 207c 0a2b ; |.+ │ │ │ │ +000120d0: 2d2d 2d2b 0a7c 6931 203a 2053 203d 205a ---+.|i1 : S = Z │ │ │ │ +000120e0: 5a2f 3332 3030 335b 785f 302e 2e78 5f32 Z/32003[x_0..x_2 │ │ │ │ +000120f0: 5d3b 2020 2020 2020 2020 2020 2020 2020 ]; │ │ │ │ +00012100: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00012110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00012140: 0a7c 6932 203a 2045 203d 205a 5a2f 3332 .|i2 : E = ZZ/32 │ │ │ │ +00012150: 3030 335b 655f 302e 2e65 5f32 2c20 536b 003[e_0..e_2, Sk │ │ │ │ +00012160: 6577 436f 6d6d 7574 6174 6976 653d 3e74 ewCommutative=>t │ │ │ │ +00012170: 7275 655d 3b7c 0a2b 2d2d 2d2d 2d2d 2d2d rue];|.+-------- │ │ │ │ +00012180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000121a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +000121b0: 203a 204d 203d 2063 6f6b 6572 206d 6174 : M = coker mat │ │ │ │ +000121c0: 7269 7820 7b7b 785f 305e 322c 2078 5f31 rix {{x_0^2, x_1 │ │ │ │ +000121d0: 5e32 7d7d 3b20 2020 2020 2020 2020 2020 ^2}}; │ │ │ │ +000121e0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000121f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012230: 2d2d 2d2b 0a7c 6934 203a 206d 203d 2070 ---+.|i4 : m = p │ │ │ │ -00012240: 7265 7365 6e74 6174 696f 6e20 7472 756e resentation trun │ │ │ │ -00012250: 6361 7465 2872 6567 756c 6172 6974 7920 cate(regularity │ │ │ │ -00012260: 4d2c 4d29 3b20 2020 207c 0a7c 2020 2020 M,M); |.| │ │ │ │ +00012210: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 206d -------+.|i4 : m │ │ │ │ +00012220: 203d 2070 7265 7365 6e74 6174 696f 6e20 = presentation │ │ │ │ +00012230: 7472 756e 6361 7465 2872 6567 756c 6172 truncate(regular │ │ │ │ +00012240: 6974 7920 4d2c 4d29 3b20 2020 207c 0a7c ity M,M); |.| │ │ │ │ +00012250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000122a0: 0a7c 2020 2020 2020 2020 2020 2020 2034 .| 4 │ │ │ │ -000122b0: 2020 2020 2020 3820 2020 2020 2020 2020 8 │ │ │ │ -000122c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000122d0: 2020 2020 207c 0a7c 6f34 203a 204d 6174 |.|o4 : Mat │ │ │ │ -000122e0: 7269 7820 5320 203c 2d2d 2053 2020 2020 rix S <-- S │ │ │ │ -000122f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012300: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00012280: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00012290: 2020 2034 2020 2020 2020 3820 2020 2020 4 8 │ │ │ │ +000122a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000122b0: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ +000122c0: 204d 6174 7269 7820 5320 203c 2d2d 2053 Matrix S <-- S │ │ │ │ +000122d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000122e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000122f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00012300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012340: 2d2b 0a7c 6935 203a 2073 796d 4578 7428 -+.|i5 : symExt( │ │ │ │ -00012350: 6d2c 4529 2020 2020 2020 2020 2020 2020 m,E) │ │ │ │ +00012320: 2d2d 2d2d 2d2b 0a7c 6935 203a 2073 796d -----+.|i5 : sym │ │ │ │ +00012330: 4578 7428 6d2c 4529 2020 2020 2020 2020 Ext(m,E) │ │ │ │ +00012340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012350: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00012360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012370: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00012370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000123a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000123b0: 6f35 203d 207b 2d31 7d20 7c20 655f 3220 o5 = {-1} | e_2 │ │ │ │ -000123c0: 3020 2020 3020 2020 3020 2020 7c20 2020 0 0 0 | │ │ │ │ -000123d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000123e0: 2020 207c 0a7c 2020 2020 207b 2d31 7d20 |.| {-1} │ │ │ │ -000123f0: 7c20 655f 3120 655f 3220 3020 2020 3020 | e_1 e_2 0 0 │ │ │ │ -00012400: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00012410: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00012420: 207b 2d31 7d20 7c20 655f 3020 3020 2020 {-1} | e_0 0 │ │ │ │ -00012430: 655f 3220 3020 2020 7c20 2020 2020 2020 e_2 0 | │ │ │ │ -00012440: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00012450: 0a7c 2020 2020 207b 2d31 7d20 7c20 3020 .| {-1} | 0 │ │ │ │ -00012460: 2020 655f 3020 655f 3120 655f 3220 7c20 e_0 e_1 e_2 | │ │ │ │ +00012390: 207c 0a7c 6f35 203d 207b 2d31 7d20 7c20 |.|o5 = {-1} | │ │ │ │ +000123a0: 655f 3220 3020 2020 3020 2020 3020 2020 e_2 0 0 0 │ │ │ │ +000123b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000123c0: 2020 2020 2020 207c 0a7c 2020 2020 207b |.| { │ │ │ │ +000123d0: 2d31 7d20 7c20 655f 3120 655f 3220 3020 -1} | e_1 e_2 0 │ │ │ │ +000123e0: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +000123f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00012400: 2020 2020 207b 2d31 7d20 7c20 655f 3020 {-1} | e_0 │ │ │ │ +00012410: 3020 2020 655f 3220 3020 2020 7c20 2020 0 e_2 0 | │ │ │ │ +00012420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012430: 2020 207c 0a7c 2020 2020 207b 2d31 7d20 |.| {-1} │ │ │ │ +00012440: 7c20 3020 2020 655f 3020 655f 3120 655f | 0 e_0 e_1 e_ │ │ │ │ +00012450: 3220 7c20 2020 2020 2020 2020 2020 2020 2 | │ │ │ │ +00012460: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00012470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012480: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00012490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000124a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000124b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000124c0: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ -000124d0: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -000124e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000124f0: 207c 0a7c 6f35 203a 204d 6174 7269 7820 |.|o5 : Matrix │ │ │ │ -00012500: 4520 203c 2d2d 2045 2020 2020 2020 2020 E <-- E │ │ │ │ -00012510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012520: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00012480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012490: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000124a0: 0a7c 2020 2020 2020 2020 2020 2020 2034 .| 4 │ │ │ │ +000124b0: 2020 2020 2020 3420 2020 2020 2020 2020 4 │ │ │ │ +000124c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000124d0: 2020 2020 207c 0a7c 6f35 203a 204d 6174 |.|o5 : Mat │ │ │ │ +000124e0: 7269 7820 4520 203c 2d2d 2045 2020 2020 rix E <-- E │ │ │ │ +000124f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012500: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00012510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00012560: 4361 7665 6174 0a3d 3d3d 3d3d 3d0a 0a54 Caveat.======..T │ │ │ │ -00012570: 6869 7320 6675 6e63 7469 6f6e 2069 7320 his function is │ │ │ │ -00012580: 6120 7175 6963 6b2d 616e 642d 6469 7274 a quick-and-dirt │ │ │ │ -00012590: 7920 746f 6f6c 2077 6869 6368 2072 6571 y tool which req │ │ │ │ -000125a0: 7569 7265 7320 6c69 7474 6c65 2063 6f6d uires little com │ │ │ │ -000125b0: 7075 7461 7469 6f6e 2e0a 486f 7765 7665 putation..Howeve │ │ │ │ -000125c0: 7220 6966 2069 7420 6973 2063 616c 6c65 r if it is calle │ │ │ │ -000125d0: 6420 6f6e 2074 776f 2073 7563 6365 7373 d on two success │ │ │ │ -000125e0: 6976 6520 7472 756e 6361 7469 6f6e 7320 ive truncations │ │ │ │ -000125f0: 6f66 2061 206d 6f64 756c 652c 2074 6865 of a module, the │ │ │ │ -00012600: 6e20 7468 650a 6d61 7073 2069 7420 7072 n the.maps it pr │ │ │ │ -00012610: 6f64 7563 6573 206d 6179 204e 4f54 2063 oduces may NOT c │ │ │ │ -00012620: 6f6d 706f 7365 2074 6f20 7a65 726f 2062 ompose to zero b │ │ │ │ -00012630: 6563 6175 7365 2074 6865 2063 686f 6963 ecause the choic │ │ │ │ -00012640: 6520 6f66 2062 6173 6573 2069 7320 6e6f e of bases is no │ │ │ │ -00012650: 740a 636f 6e73 6973 7465 6e74 2e0a 0a53 t.consistent...S │ │ │ │ -00012660: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -00012670: 0a0a 2020 2a20 2a6e 6f74 6520 6267 673a .. * *note bgg: │ │ │ │ -00012680: 2062 6767 2c20 2d2d 2074 6865 2069 7468 bgg, -- the ith │ │ │ │ -00012690: 2064 6966 6665 7265 6e74 6961 6c20 6f66 differential of │ │ │ │ -000126a0: 2074 6865 2063 6f6d 706c 6578 2052 284d the complex R(M │ │ │ │ -000126b0: 290a 0a57 6179 7320 746f 2075 7365 2073 )..Ways to use s │ │ │ │ -000126c0: 796d 4578 743a 0a3d 3d3d 3d3d 3d3d 3d3d ymExt:.========= │ │ │ │ -000126d0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -000126e0: 2273 796d 4578 7428 4d61 7472 6978 2c50 "symExt(Matrix,P │ │ │ │ -000126f0: 6f6c 796e 6f6d 6961 6c52 696e 6729 220a olynomialRing)". │ │ │ │ -00012700: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -00012710: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -00012720: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -00012730: 6374 202a 6e6f 7465 2073 796d 4578 743a ct *note symExt: │ │ │ │ -00012740: 2073 796d 4578 742c 2069 7320 6120 2a6e symExt, is a *n │ │ │ │ -00012750: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -00012760: 696f 6e3a 0a28 4d61 6361 756c 6179 3244 ion:.(Macaulay2D │ │ │ │ -00012770: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -00012780: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ +00012540: 2d2b 0a0a 4361 7665 6174 0a3d 3d3d 3d3d -+..Caveat.===== │ │ │ │ +00012550: 3d0a 0a54 6869 7320 6675 6e63 7469 6f6e =..This function │ │ │ │ +00012560: 2069 7320 6120 7175 6963 6b2d 616e 642d is a quick-and- │ │ │ │ +00012570: 6469 7274 7920 746f 6f6c 2077 6869 6368 dirty tool which │ │ │ │ +00012580: 2072 6571 7569 7265 7320 6c69 7474 6c65 requires little │ │ │ │ +00012590: 2063 6f6d 7075 7461 7469 6f6e 2e0a 486f computation..Ho │ │ │ │ +000125a0: 7765 7665 7220 6966 2069 7420 6973 2063 wever if it is c │ │ │ │ +000125b0: 616c 6c65 6420 6f6e 2074 776f 2073 7563 alled on two suc │ │ │ │ +000125c0: 6365 7373 6976 6520 7472 756e 6361 7469 cessive truncati │ │ │ │ +000125d0: 6f6e 7320 6f66 2061 206d 6f64 756c 652c ons of a module, │ │ │ │ +000125e0: 2074 6865 6e20 7468 650a 6d61 7073 2069 then the.maps i │ │ │ │ +000125f0: 7420 7072 6f64 7563 6573 206d 6179 204e t produces may N │ │ │ │ +00012600: 4f54 2063 6f6d 706f 7365 2074 6f20 7a65 OT compose to ze │ │ │ │ +00012610: 726f 2062 6563 6175 7365 2074 6865 2063 ro because the c │ │ │ │ +00012620: 686f 6963 6520 6f66 2062 6173 6573 2069 hoice of bases i │ │ │ │ +00012630: 7320 6e6f 740a 636f 6e73 6973 7465 6e74 s not.consistent │ │ │ │ +00012640: 2e0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d ...See also.==== │ │ │ │ +00012650: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +00012660: 6267 673a 2062 6767 2c20 2d2d 2074 6865 bgg: bgg, -- the │ │ │ │ +00012670: 2069 7468 2064 6966 6665 7265 6e74 6961 ith differentia │ │ │ │ +00012680: 6c20 6f66 2074 6865 2063 6f6d 706c 6578 l of the complex │ │ │ │ +00012690: 2052 284d 290a 0a57 6179 7320 746f 2075 R(M)..Ways to u │ │ │ │ +000126a0: 7365 2073 796d 4578 743a 0a3d 3d3d 3d3d se symExt:.===== │ │ │ │ +000126b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +000126c0: 2020 2a20 2273 796d 4578 7428 4d61 7472 * "symExt(Matr │ │ │ │ +000126d0: 6978 2c50 6f6c 796e 6f6d 6961 6c52 696e ix,PolynomialRin │ │ │ │ +000126e0: 6729 220a 0a46 6f72 2074 6865 2070 726f g)"..For the pro │ │ │ │ +000126f0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +00012700: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +00012710: 6f62 6a65 6374 202a 6e6f 7465 2073 796d object *note sym │ │ │ │ +00012720: 4578 743a 2073 796d 4578 742c 2069 7320 Ext: symExt, is │ │ │ │ +00012730: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ +00012740: 756e 6374 696f 6e3a 0a28 4d61 6361 756c unction:.(Macaul │ │ │ │ +00012750: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ +00012760: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ +00012770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000127a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000127b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000127c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000127d0: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -000127e0: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -000127f0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -00012800: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -00012810: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -00012820: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -00012830: 7932 2f70 6163 6b61 6765 732f 4247 472e y2/packages/BGG. │ │ │ │ -00012840: 6d32 3a36 3937 3a0a 302e 0a1f 0a46 696c m2:697:.0....Fil │ │ │ │ -00012850: 653a 2042 4747 2e69 6e66 6f2c 204e 6f64 e: BGG.info, Nod │ │ │ │ -00012860: 653a 2074 6174 6552 6573 6f6c 7574 696f e: tateResolutio │ │ │ │ -00012870: 6e2c 204e 6578 743a 2075 6e69 7665 7273 n, Next: univers │ │ │ │ -00012880: 616c 4578 7465 6e73 696f 6e2c 2050 7265 alExtension, Pre │ │ │ │ -00012890: 763a 2073 796d 4578 742c 2055 703a 2054 v: symExt, Up: T │ │ │ │ -000128a0: 6f70 0a0a 7461 7465 5265 736f 6c75 7469 op..tateResoluti │ │ │ │ -000128b0: 6f6e 202d 2d20 6669 6e69 7465 2070 6965 on -- finite pie │ │ │ │ -000128c0: 6365 206f 6620 7468 6520 5461 7465 2072 ce of the Tate r │ │ │ │ -000128d0: 6573 6f6c 7574 696f 6e0a 2a2a 2a2a 2a2a esolution.****** │ │ │ │ +000127b0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +000127c0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +000127d0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +000127e0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +000127f0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +00012800: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +00012810: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +00012820: 4247 472e 6d32 3a36 3937 3a0a 302e 0a1f BGG.m2:697:.0... │ │ │ │ +00012830: 0a46 696c 653a 2042 4747 2e69 6e66 6f2c .File: BGG.info, │ │ │ │ +00012840: 204e 6f64 653a 2074 6174 6552 6573 6f6c Node: tateResol │ │ │ │ +00012850: 7574 696f 6e2c 204e 6578 743a 2075 6e69 ution, Next: uni │ │ │ │ +00012860: 7665 7273 616c 4578 7465 6e73 696f 6e2c versalExtension, │ │ │ │ +00012870: 2050 7265 763a 2073 796d 4578 742c 2055 Prev: symExt, U │ │ │ │ +00012880: 703a 2054 6f70 0a0a 7461 7465 5265 736f p: Top..tateReso │ │ │ │ +00012890: 6c75 7469 6f6e 202d 2d20 6669 6e69 7465 lution -- finite │ │ │ │ +000128a0: 2070 6965 6365 206f 6620 7468 6520 5461 piece of the Ta │ │ │ │ +000128b0: 7465 2072 6573 6f6c 7574 696f 6e0a 2a2a te resolution.** │ │ │ │ +000128c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000128d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000128e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000128f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00012900: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -00012910: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -00012920: 2020 2020 2074 6174 6552 6573 6f6c 7574 tateResolut │ │ │ │ -00012930: 696f 6e28 6d2c 452c 6c2c 6829 0a20 202a ion(m,E,l,h). * │ │ │ │ -00012940: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -00012950: 206d 2c20 6120 2a6e 6f74 6520 6d61 7472 m, a *note matr │ │ │ │ -00012960: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ -00012970: 6329 4d61 7472 6978 2c2c 2061 2070 7265 c)Matrix,, a pre │ │ │ │ -00012980: 7365 6e74 6174 696f 6e20 6d61 7472 6978 sentation matrix │ │ │ │ -00012990: 2066 6f72 2061 0a20 2020 2020 2020 206d for a. m │ │ │ │ -000129a0: 6f64 756c 650a 2020 2020 2020 2a20 452c odule. * E, │ │ │ │ -000129b0: 2061 202a 6e6f 7465 2070 6f6c 796e 6f6d a *note polynom │ │ │ │ -000129c0: 6961 6c20 7269 6e67 3a20 284d 6163 6175 ial ring: (Macau │ │ │ │ -000129d0: 6c61 7932 446f 6329 506f 6c79 6e6f 6d69 lay2Doc)Polynomi │ │ │ │ -000129e0: 616c 5269 6e67 2c2c 2065 7874 6572 696f alRing,, exterio │ │ │ │ -000129f0: 720a 2020 2020 2020 2020 616c 6765 6272 r. algebr │ │ │ │ -00012a00: 610a 2020 2020 2020 2a20 6c2c 2061 6e20 a. * l, an │ │ │ │ -00012a10: 2a6e 6f74 6520 696e 7465 6765 723a 2028 *note integer: ( │ │ │ │ -00012a20: 4d61 6361 756c 6179 3244 6f63 295a 5a2c Macaulay2Doc)ZZ, │ │ │ │ -00012a30: 2c20 6c6f 7765 7220 636f 686f 6d6f 6c6f , lower cohomolo │ │ │ │ -00012a40: 6769 6361 6c20 6465 6772 6565 0a20 2020 gical degree. │ │ │ │ -00012a50: 2020 202a 2068 2c20 616e 202a 6e6f 7465 * h, an *note │ │ │ │ -00012a60: 2069 6e74 6567 6572 3a20 284d 6163 6175 integer: (Macau │ │ │ │ -00012a70: 6c61 7932 446f 6329 5a5a 2c2c 2075 7070 lay2Doc)ZZ,, upp │ │ │ │ -00012a80: 6572 2062 6f75 6e64 206f 6e20 7468 650a er bound on the. │ │ │ │ -00012a90: 2020 2020 2020 2020 636f 686f 6d6f 6c6f cohomolo │ │ │ │ -00012aa0: 6769 6361 6c20 6465 6772 6565 0a20 202a gical degree. * │ │ │ │ -00012ab0: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -00012ac0: 2a20 6120 2a6e 6f74 6520 636f 6d70 6c65 * a *note comple │ │ │ │ -00012ad0: 783a 2028 436f 6d70 6c65 7865 7329 436f x: (Complexes)Co │ │ │ │ -00012ae0: 6d70 6c65 782c 2c20 6120 6669 6e69 7465 mplex,, a finite │ │ │ │ -00012af0: 2070 6965 6365 206f 6620 7468 6520 5461 piece of the Ta │ │ │ │ -00012b00: 7465 0a20 2020 2020 2020 2072 6573 6f6c te. resol │ │ │ │ -00012b10: 7574 696f 6e0a 0a44 6573 6372 6970 7469 ution..Descripti │ │ │ │ -00012b20: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -00012b30: 5468 6973 2066 756e 6374 696f 6e20 7461 This function ta │ │ │ │ -00012b40: 6b65 7320 6173 2069 6e70 7574 2061 2070 kes as input a p │ │ │ │ -00012b50: 7265 7365 6e74 6174 696f 6e20 6d61 7472 resentation matr │ │ │ │ -00012b60: 6978 206d 206f 6620 6120 6669 6e69 7465 ix m of a finite │ │ │ │ -00012b70: 6c79 2067 656e 6572 6174 6564 0a67 7261 ly generated.gra │ │ │ │ -00012b80: 6465 6420 532d 6d6f 6475 6c65 204d 2061 ded S-module M a │ │ │ │ -00012b90: 6e20 6578 7465 7269 6f72 2061 6c67 6562 n exterior algeb │ │ │ │ -00012ba0: 7261 2045 2061 6e64 2074 776f 2069 6e74 ra E and two int │ │ │ │ -00012bb0: 6567 6572 7320 6c20 616e 6420 682e 2049 egers l and h. I │ │ │ │ -00012bc0: 6620 7220 6973 2074 6865 0a72 6567 756c f r is the.regul │ │ │ │ -00012bd0: 6172 6974 7920 6f66 204d 2c20 7468 656e arity of M, then │ │ │ │ -00012be0: 2074 6869 7320 6675 6e63 7469 6f6e 2063 this function c │ │ │ │ -00012bf0: 6f6d 7075 7465 7320 7468 6520 7069 6563 omputes the piec │ │ │ │ -00012c00: 6520 6f66 2074 6865 2054 6174 6520 7265 e of the Tate re │ │ │ │ -00012c10: 736f 6c75 7469 6f6e 0a66 726f 6d20 636f solution.from co │ │ │ │ -00012c20: 686f 6d6f 6c6f 6769 6361 6c20 6465 6772 homological degr │ │ │ │ -00012c30: 6565 206c 2074 6f20 636f 686f 6d6f 6c6f ee l to cohomolo │ │ │ │ -00012c40: 6769 6361 6c20 6465 6772 6565 206d 6178 gical degree max │ │ │ │ -00012c50: 2872 2b32 2c68 292e 2046 6f72 2069 6e73 (r+2,h). For ins │ │ │ │ -00012c60: 7461 6e63 652c 0a66 6f72 2074 6865 2068 tance,.for the h │ │ │ │ -00012c70: 6f6d 6f67 656e 656f 7573 2063 6f6f 7264 omogeneous coord │ │ │ │ -00012c80: 696e 6174 6520 7269 6e67 206f 6620 6120 inate ring of a │ │ │ │ -00012c90: 706f 696e 7420 696e 2074 6865 2070 726f point in the pro │ │ │ │ -00012ca0: 6a65 6374 6976 6520 706c 616e 653a 0a2b jective plane:.+ │ │ │ │ +000128f0: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ +00012900: 0a20 2020 2020 2020 2074 6174 6552 6573 . tateRes │ │ │ │ +00012910: 6f6c 7574 696f 6e28 6d2c 452c 6c2c 6829 olution(m,E,l,h) │ │ │ │ +00012920: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +00012930: 2020 202a 206d 2c20 6120 2a6e 6f74 6520 * m, a *note │ │ │ │ +00012940: 6d61 7472 6978 3a20 284d 6163 6175 6c61 matrix: (Macaula │ │ │ │ +00012950: 7932 446f 6329 4d61 7472 6978 2c2c 2061 y2Doc)Matrix,, a │ │ │ │ +00012960: 2070 7265 7365 6e74 6174 696f 6e20 6d61 presentation ma │ │ │ │ +00012970: 7472 6978 2066 6f72 2061 0a20 2020 2020 trix for a. │ │ │ │ +00012980: 2020 206d 6f64 756c 650a 2020 2020 2020 module. │ │ │ │ +00012990: 2a20 452c 2061 202a 6e6f 7465 2070 6f6c * E, a *note pol │ │ │ │ +000129a0: 796e 6f6d 6961 6c20 7269 6e67 3a20 284d ynomial ring: (M │ │ │ │ +000129b0: 6163 6175 6c61 7932 446f 6329 506f 6c79 acaulay2Doc)Poly │ │ │ │ +000129c0: 6e6f 6d69 616c 5269 6e67 2c2c 2065 7874 nomialRing,, ext │ │ │ │ +000129d0: 6572 696f 720a 2020 2020 2020 2020 616c erior. al │ │ │ │ +000129e0: 6765 6272 610a 2020 2020 2020 2a20 6c2c gebra. * l, │ │ │ │ +000129f0: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ +00012a00: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ +00012a10: 295a 5a2c 2c20 6c6f 7765 7220 636f 686f )ZZ,, lower coho │ │ │ │ +00012a20: 6d6f 6c6f 6769 6361 6c20 6465 6772 6565 mological degree │ │ │ │ +00012a30: 0a20 2020 2020 202a 2068 2c20 616e 202a . * h, an * │ │ │ │ +00012a40: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ +00012a50: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ +00012a60: 2075 7070 6572 2062 6f75 6e64 206f 6e20 upper bound on │ │ │ │ +00012a70: 7468 650a 2020 2020 2020 2020 636f 686f the. coho │ │ │ │ +00012a80: 6d6f 6c6f 6769 6361 6c20 6465 6772 6565 mological degree │ │ │ │ +00012a90: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +00012aa0: 2020 2020 2a20 6120 2a6e 6f74 6520 636f * a *note co │ │ │ │ +00012ab0: 6d70 6c65 783a 2028 436f 6d70 6c65 7865 mplex: (Complexe │ │ │ │ +00012ac0: 7329 436f 6d70 6c65 782c 2c20 6120 6669 s)Complex,, a fi │ │ │ │ +00012ad0: 6e69 7465 2070 6965 6365 206f 6620 7468 nite piece of th │ │ │ │ +00012ae0: 6520 5461 7465 0a20 2020 2020 2020 2072 e Tate. r │ │ │ │ +00012af0: 6573 6f6c 7574 696f 6e0a 0a44 6573 6372 esolution..Descr │ │ │ │ +00012b00: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +00012b10: 3d3d 0a0a 5468 6973 2066 756e 6374 696f ==..This functio │ │ │ │ +00012b20: 6e20 7461 6b65 7320 6173 2069 6e70 7574 n takes as input │ │ │ │ +00012b30: 2061 2070 7265 7365 6e74 6174 696f 6e20 a presentation │ │ │ │ +00012b40: 6d61 7472 6978 206d 206f 6620 6120 6669 matrix m of a fi │ │ │ │ +00012b50: 6e69 7465 6c79 2067 656e 6572 6174 6564 nitely generated │ │ │ │ +00012b60: 0a67 7261 6465 6420 532d 6d6f 6475 6c65 .graded S-module │ │ │ │ +00012b70: 204d 2061 6e20 6578 7465 7269 6f72 2061 M an exterior a │ │ │ │ +00012b80: 6c67 6562 7261 2045 2061 6e64 2074 776f lgebra E and two │ │ │ │ +00012b90: 2069 6e74 6567 6572 7320 6c20 616e 6420 integers l and │ │ │ │ +00012ba0: 682e 2049 6620 7220 6973 2074 6865 0a72 h. If r is the.r │ │ │ │ +00012bb0: 6567 756c 6172 6974 7920 6f66 204d 2c20 egularity of M, │ │ │ │ +00012bc0: 7468 656e 2074 6869 7320 6675 6e63 7469 then this functi │ │ │ │ +00012bd0: 6f6e 2063 6f6d 7075 7465 7320 7468 6520 on computes the │ │ │ │ +00012be0: 7069 6563 6520 6f66 2074 6865 2054 6174 piece of the Tat │ │ │ │ +00012bf0: 6520 7265 736f 6c75 7469 6f6e 0a66 726f e resolution.fro │ │ │ │ +00012c00: 6d20 636f 686f 6d6f 6c6f 6769 6361 6c20 m cohomological │ │ │ │ +00012c10: 6465 6772 6565 206c 2074 6f20 636f 686f degree l to coho │ │ │ │ +00012c20: 6d6f 6c6f 6769 6361 6c20 6465 6772 6565 mological degree │ │ │ │ +00012c30: 206d 6178 2872 2b32 2c68 292e 2046 6f72 max(r+2,h). For │ │ │ │ +00012c40: 2069 6e73 7461 6e63 652c 0a66 6f72 2074 instance,.for t │ │ │ │ +00012c50: 6865 2068 6f6d 6f67 656e 656f 7573 2063 he homogeneous c │ │ │ │ +00012c60: 6f6f 7264 696e 6174 6520 7269 6e67 206f oordinate ring o │ │ │ │ +00012c70: 6620 6120 706f 696e 7420 696e 2074 6865 f a point in the │ │ │ │ +00012c80: 2070 726f 6a65 6374 6976 6520 706c 616e projective plan │ │ │ │ +00012c90: 653a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d e:.+------------ │ │ │ │ +00012ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012ce0: 2d2d 2d2b 0a7c 6931 203a 2053 203d 205a ---+.|i1 : S = Z │ │ │ │ -00012cf0: 5a2f 3332 3030 335b 785f 302e 2e78 5f32 Z/32003[x_0..x_2 │ │ │ │ -00012d00: 5d3b 2020 2020 2020 2020 2020 2020 2020 ]; │ │ │ │ -00012d10: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00012cc0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2053 -------+.|i1 : S │ │ │ │ +00012cd0: 203d 205a 5a2f 3332 3030 335b 785f 302e = ZZ/32003[x_0. │ │ │ │ +00012ce0: 2e78 5f32 5d3b 2020 2020 2020 2020 2020 .x_2]; │ │ │ │ +00012cf0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00012d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00012d50: 0a7c 6932 203a 2045 203d 205a 5a2f 3332 .|i2 : E = ZZ/32 │ │ │ │ -00012d60: 3030 335b 655f 302e 2e65 5f32 2c20 536b 003[e_0..e_2, Sk │ │ │ │ -00012d70: 6577 436f 6d6d 7574 6174 6976 653d 3e74 ewCommutative=>t │ │ │ │ -00012d80: 7275 655d 3b7c 0a2b 2d2d 2d2d 2d2d 2d2d rue];|.+-------- │ │ │ │ -00012d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -00012dc0: 203a 206d 203d 206d 6174 7269 787b 7b78 : m = matrix{{x │ │ │ │ -00012dd0: 5f30 2c78 5f31 7d7d 3b20 2020 2020 2020 _0,x_1}}; │ │ │ │ +00012d30: 2d2d 2d2b 0a7c 6932 203a 2045 203d 205a ---+.|i2 : E = Z │ │ │ │ +00012d40: 5a2f 3332 3030 335b 655f 302e 2e65 5f32 Z/32003[e_0..e_2 │ │ │ │ +00012d50: 2c20 536b 6577 436f 6d6d 7574 6174 6976 , SkewCommutativ │ │ │ │ +00012d60: 653d 3e74 7275 655d 3b7c 0a2b 2d2d 2d2d e=>true];|.+---- │ │ │ │ +00012d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00012da0: 0a7c 6933 203a 206d 203d 206d 6174 7269 .|i3 : m = matri │ │ │ │ +00012db0: 787b 7b78 5f30 2c78 5f31 7d7d 3b20 2020 x{{x_0,x_1}}; │ │ │ │ +00012dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012dd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00012de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012df0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00012e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012e20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00012e30: 2020 2020 2020 2031 2020 2020 2020 3220 1 2 │ │ │ │ -00012e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012e50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00012e60: 6f33 203a 204d 6174 7269 7820 5320 203c o3 : Matrix S < │ │ │ │ -00012e70: 2d2d 2053 2020 2020 2020 2020 2020 2020 -- S │ │ │ │ -00012e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012e90: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00012ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012ec0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -00012ed0: 2072 6567 756c 6172 6974 7920 636f 6b65 regularity coke │ │ │ │ -00012ee0: 7220 6d20 2020 2020 2020 2020 2020 2020 r m │ │ │ │ -00012ef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00012f00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00012f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012f30: 2020 2020 207c 0a7c 6f34 203d 2030 2020 |.|o4 = 0 │ │ │ │ -00012f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012f60: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00012df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012e00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00012e10: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +00012e20: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00012e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012e40: 207c 0a7c 6f33 203a 204d 6174 7269 7820 |.|o3 : Matrix │ │ │ │ +00012e50: 5320 203c 2d2d 2053 2020 2020 2020 2020 S <-- S │ │ │ │ +00012e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012e70: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00012e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00012eb0: 6934 203a 2072 6567 756c 6172 6974 7920 i4 : regularity │ │ │ │ +00012ec0: 636f 6b65 7220 6d20 2020 2020 2020 2020 coker m │ │ │ │ +00012ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012ee0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00012ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012f10: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ +00012f20: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00012f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012f40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00012f50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00012f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012fa0: 2d2b 0a7c 6935 203a 2054 203d 2074 6174 -+.|i5 : T = tat │ │ │ │ -00012fb0: 6552 6573 6f6c 7574 696f 6e28 6d2c 452c eResolution(m,E, │ │ │ │ -00012fc0: 2d32 2c34 2920 2020 2020 2020 2020 2020 -2,4) │ │ │ │ -00012fd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00012f80: 2d2d 2d2d 2d2b 0a7c 6935 203a 2054 203d -----+.|i5 : T = │ │ │ │ +00012f90: 2074 6174 6552 6573 6f6c 7574 696f 6e28 tateResolution( │ │ │ │ +00012fa0: 6d2c 452c 2d32 2c34 2920 2020 2020 2020 m,E,-2,4) │ │ │ │ +00012fb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00012fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013000: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00012ff0: 207c 0a7c 2020 2020 2020 3120 2020 2020 |.| 1 │ │ │ │ +00013000: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ 00013010: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00013020: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00013030: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00013040: 3120 207c 0a7c 6f35 203d 2045 2020 3c2d 1 |.|o5 = E <- │ │ │ │ -00013050: 2d20 4520 203c 2d2d 2045 2020 3c2d 2d20 - E <-- E <-- │ │ │ │ -00013060: 4520 203c 2d2d 2045 2020 3c2d 2d20 4520 E <-- E <-- E │ │ │ │ -00013070: 203c 2d2d 2045 2020 207c 0a7c 2020 2020 <-- E |.| │ │ │ │ +00013020: 2020 2020 3120 207c 0a7c 6f35 203d 2045 1 |.|o5 = E │ │ │ │ +00013030: 2020 3c2d 2d20 4520 203c 2d2d 2045 2020 <-- E <-- E │ │ │ │ +00013040: 3c2d 2d20 4520 203c 2d2d 2045 2020 3c2d <-- E <-- E <- │ │ │ │ +00013050: 2d20 4520 203c 2d2d 2045 2020 207c 0a7c - E <-- E |.| │ │ │ │ +00013060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000130a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000130b0: 0a7c 2020 2020 2030 2020 2020 2020 3120 .| 0 1 │ │ │ │ -000130c0: 2020 2020 2032 2020 2020 2020 3320 2020 2 3 │ │ │ │ -000130d0: 2020 2034 2020 2020 2020 3520 2020 2020 4 5 │ │ │ │ -000130e0: 2036 2020 207c 0a7c 2020 2020 2020 2020 6 |.| │ │ │ │ -000130f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013110: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ -00013120: 203a 2043 6f6d 706c 6578 2020 2020 2020 : Complex │ │ │ │ -00013130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013150: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00013160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013180: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2062 -------+.|i6 : b │ │ │ │ -00013190: 6574 7469 2054 2020 2020 2020 2020 2020 etti T │ │ │ │ -000131a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000131b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013090: 2020 207c 0a7c 2020 2020 2030 2020 2020 |.| 0 │ │ │ │ +000130a0: 2020 3120 2020 2020 2032 2020 2020 2020 1 2 │ │ │ │ +000130b0: 3320 2020 2020 2034 2020 2020 2020 3520 3 4 5 │ │ │ │ +000130c0: 2020 2020 2036 2020 207c 0a7c 2020 2020 6 |.| │ │ │ │ +000130d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000130e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000130f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00013100: 0a7c 6f35 203a 2043 6f6d 706c 6578 2020 .|o5 : Complex │ │ │ │ +00013110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013130: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00013140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 -----------+.|i6 │ │ │ │ +00013170: 203a 2062 6574 7469 2054 2020 2020 2020 : betti T │ │ │ │ +00013180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000131a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000131b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000131c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000131d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000131e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000131f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00013200: 2020 3020 3120 3220 3320 3420 3520 3620 0 1 2 3 4 5 6 │ │ │ │ -00013210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013220: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ -00013230: 2074 6f74 616c 3a20 3120 3120 3120 3120 total: 1 1 1 1 │ │ │ │ -00013240: 3120 3120 3120 2020 2020 2020 2020 2020 1 1 1 │ │ │ │ -00013250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00013260: 0a7c 2020 2020 2020 2020 2d34 3a20 3120 .| -4: 1 │ │ │ │ -00013270: 3120 3120 3120 3120 3120 3120 2020 2020 1 1 1 1 1 1 │ │ │ │ +000131d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000131e0: 2020 2020 2020 3020 3120 3220 3320 3420 0 1 2 3 4 │ │ │ │ +000131f0: 3520 3620 2020 2020 2020 2020 2020 2020 5 6 │ │ │ │ +00013200: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013210: 6f36 203d 2074 6f74 616c 3a20 3120 3120 o6 = total: 1 1 │ │ │ │ +00013220: 3120 3120 3120 3120 3120 2020 2020 2020 1 1 1 1 1 │ │ │ │ +00013230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013240: 2020 207c 0a7c 2020 2020 2020 2020 2d34 |.| -4 │ │ │ │ +00013250: 3a20 3120 3120 3120 3120 3120 3120 3120 : 1 1 1 1 1 1 1 │ │ │ │ +00013260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013270: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00013280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013290: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000132a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000132b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000132c0: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ -000132d0: 203a 2042 6574 7469 5461 6c6c 7920 2020 : BettiTally │ │ │ │ -000132e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000132f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013300: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00013310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013330: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2054 -------+.|i7 : T │ │ │ │ -00013340: 2e64 645f 3120 2020 2020 2020 2020 2020 .dd_1 │ │ │ │ -00013350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000132a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000132b0: 0a7c 6f36 203a 2042 6574 7469 5461 6c6c .|o6 : BettiTall │ │ │ │ +000132c0: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ +000132d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000132e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000132f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ +00013320: 203a 2054 2e64 645f 3120 2020 2020 2020 : T.dd_1 │ │ │ │ +00013330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013350: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000133a0: 2020 207c 0a7c 6f37 203d 207b 2d34 7d20 |.|o7 = {-4} │ │ │ │ -000133b0: 7c20 655f 3220 7c20 2020 2020 2020 2020 | e_2 | │ │ │ │ +00013380: 2020 2020 2020 207c 0a7c 6f37 203d 207b |.|o7 = { │ │ │ │ +00013390: 2d34 7d20 7c20 655f 3220 7c20 2020 2020 -4} | e_2 | │ │ │ │ +000133a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000133b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000133c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000133d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000133d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000133e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000133f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013400: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00013410: 0a7c 2020 2020 2020 2020 2020 2020 2031 .| 1 │ │ │ │ -00013420: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ -00013430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013440: 2020 2020 207c 0a7c 6f37 203a 204d 6174 |.|o7 : Mat │ │ │ │ -00013450: 7269 7820 4520 203c 2d2d 2045 2020 2020 rix E <-- E │ │ │ │ -00013460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013470: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000133f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013400: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00013410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013420: 2020 2020 2020 2020 207c 0a7c 6f37 203a |.|o7 : │ │ │ │ +00013430: 204d 6174 7269 7820 4520 203c 2d2d 2045 Matrix E <-- E │ │ │ │ +00013440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013450: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00013460: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00013470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000134a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000134b0: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ -000134c0: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -000134d0: 2073 796d 4578 743a 2073 796d 4578 742c symExt: symExt, │ │ │ │ -000134e0: 202d 2d20 7468 6520 6669 7273 7420 6469 -- the first di │ │ │ │ -000134f0: 6666 6572 656e 7469 616c 206f 6620 7468 fferential of th │ │ │ │ -00013500: 6520 636f 6d70 6c65 7820 5228 4d29 0a0a e complex R(M).. │ │ │ │ -00013510: 5761 7973 2074 6f20 7573 6520 7461 7465 Ways to use tate │ │ │ │ -00013520: 5265 736f 6c75 7469 6f6e 3a0a 3d3d 3d3d Resolution:.==== │ │ │ │ -00013530: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00013540: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7461 =======.. * "ta │ │ │ │ -00013550: 7465 5265 736f 6c75 7469 6f6e 284d 6174 teResolution(Mat │ │ │ │ -00013560: 7269 782c 506f 6c79 6e6f 6d69 616c 5269 rix,PolynomialRi │ │ │ │ -00013570: 6e67 2c5a 5a2c 5a5a 2922 0a0a 466f 7220 ng,ZZ,ZZ)"..For │ │ │ │ -00013580: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -00013590: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000135a0: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -000135b0: 6f74 6520 7461 7465 5265 736f 6c75 7469 ote tateResoluti │ │ │ │ -000135c0: 6f6e 3a20 7461 7465 5265 736f 6c75 7469 on: tateResoluti │ │ │ │ -000135d0: 6f6e 2c20 6973 2061 202a 6e6f 7465 206d on, is a *note m │ │ │ │ -000135e0: 6574 686f 6420 6675 6e63 7469 6f6e 3a0a ethod function:. │ │ │ │ -000135f0: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ -00013600: 7468 6f64 4675 6e63 7469 6f6e 2c2e 0a0a thodFunction,... │ │ │ │ +00013490: 2d2d 2d2d 2d2b 0a0a 5365 6520 616c 736f -----+..See also │ │ │ │ +000134a0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +000134b0: 6e6f 7465 2073 796d 4578 743a 2073 796d note symExt: sym │ │ │ │ +000134c0: 4578 742c 202d 2d20 7468 6520 6669 7273 Ext, -- the firs │ │ │ │ +000134d0: 7420 6469 6666 6572 656e 7469 616c 206f t differential o │ │ │ │ +000134e0: 6620 7468 6520 636f 6d70 6c65 7820 5228 f the complex R( │ │ │ │ +000134f0: 4d29 0a0a 5761 7973 2074 6f20 7573 6520 M)..Ways to use │ │ │ │ +00013500: 7461 7465 5265 736f 6c75 7469 6f6e 3a0a tateResolution:. │ │ │ │ +00013510: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00013520: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +00013530: 2022 7461 7465 5265 736f 6c75 7469 6f6e "tateResolution │ │ │ │ +00013540: 284d 6174 7269 782c 506f 6c79 6e6f 6d69 (Matrix,Polynomi │ │ │ │ +00013550: 616c 5269 6e67 2c5a 5a2c 5a5a 2922 0a0a alRing,ZZ,ZZ)".. │ │ │ │ +00013560: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +00013570: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +00013580: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +00013590: 7420 2a6e 6f74 6520 7461 7465 5265 736f t *note tateReso │ │ │ │ +000135a0: 6c75 7469 6f6e 3a20 7461 7465 5265 736f lution: tateReso │ │ │ │ +000135b0: 6c75 7469 6f6e 2c20 6973 2061 202a 6e6f lution, is a *no │ │ │ │ +000135c0: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +000135d0: 6f6e 3a0a 284d 6163 6175 6c61 7932 446f on:.(Macaulay2Do │ │ │ │ +000135e0: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ +000135f0: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ +00013600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -00013660: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -00013670: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -00013680: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -00013690: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -000136a0: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -000136b0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -000136c0: 636b 6167 6573 2f42 4747 2e6d 323a 3735 ckages/BGG.m2:75 │ │ │ │ -000136d0: 333a 0a30 2e0a 1f0a 4669 6c65 3a20 4247 3:.0....File: BG │ │ │ │ -000136e0: 472e 696e 666f 2c20 4e6f 6465 3a20 756e G.info, Node: un │ │ │ │ -000136f0: 6976 6572 7361 6c45 7874 656e 7369 6f6e iversalExtension │ │ │ │ -00013700: 2c20 5072 6576 3a20 7461 7465 5265 736f , Prev: tateReso │ │ │ │ -00013710: 6c75 7469 6f6e 2c20 5570 3a20 546f 700a lution, Up: Top. │ │ │ │ -00013720: 0a75 6e69 7665 7273 616c 4578 7465 6e73 .universalExtens │ │ │ │ -00013730: 696f 6e20 2d2d 2055 6e69 7665 7273 616c ion -- Universal │ │ │ │ -00013740: 2065 7874 656e 7369 6f6e 206f 6620 7665 extension of ve │ │ │ │ -00013750: 6374 6f72 2062 756e 646c 6573 206f 6e20 ctor bundles on │ │ │ │ -00013760: 505e 310a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a P^1.************ │ │ │ │ +00013640: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +00013650: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +00013660: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +00013670: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +00013680: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +00013690: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +000136a0: 322f 7061 636b 6167 6573 2f42 4747 2e6d 2/packages/BGG.m │ │ │ │ +000136b0: 323a 3735 333a 0a30 2e0a 1f0a 4669 6c65 2:753:.0....File │ │ │ │ +000136c0: 3a20 4247 472e 696e 666f 2c20 4e6f 6465 : BGG.info, Node │ │ │ │ +000136d0: 3a20 756e 6976 6572 7361 6c45 7874 656e : universalExten │ │ │ │ +000136e0: 7369 6f6e 2c20 5072 6576 3a20 7461 7465 sion, Prev: tate │ │ │ │ +000136f0: 5265 736f 6c75 7469 6f6e 2c20 5570 3a20 Resolution, Up: │ │ │ │ +00013700: 546f 700a 0a75 6e69 7665 7273 616c 4578 Top..universalEx │ │ │ │ +00013710: 7465 6e73 696f 6e20 2d2d 2055 6e69 7665 tension -- Unive │ │ │ │ +00013720: 7273 616c 2065 7874 656e 7369 6f6e 206f rsal extension o │ │ │ │ +00013730: 6620 7665 6374 6f72 2062 756e 646c 6573 f vector bundles │ │ │ │ +00013740: 206f 6e20 505e 310a 2a2a 2a2a 2a2a 2a2a on P^1.******** │ │ │ │ +00013750: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00013760: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00013770: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00013780: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00013790: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000137a0: 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 6167 ******.. * Usag │ │ │ │ -000137b0: 653a 200a 2020 2020 2020 2020 4520 3d20 e: . E = │ │ │ │ -000137c0: 756e 6976 6572 7361 6c45 7874 656e 7369 universalExtensi │ │ │ │ -000137d0: 6f6e 284c 612c 204c 6229 0a20 202a 2049 on(La, Lb). * I │ │ │ │ -000137e0: 6e70 7574 733a 0a20 2020 2020 202a 204c nputs:. * L │ │ │ │ -000137f0: 612c 2061 202a 6e6f 7465 206c 6973 743a a, a *note list: │ │ │ │ -00013800: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ -00013810: 6973 742c 2c20 6f66 2069 6e74 6567 6572 ist,, of integer │ │ │ │ -00013820: 730a 2020 2020 2020 2a20 4c62 2c20 6120 s. * Lb, a │ │ │ │ -00013830: 2a6e 6f74 6520 6c69 7374 3a20 284d 6163 *note list: (Mac │ │ │ │ -00013840: 6175 6c61 7932 446f 6329 4c69 7374 2c2c aulay2Doc)List,, │ │ │ │ -00013850: 206f 6620 696e 7465 6765 7273 0a20 202a of integers. * │ │ │ │ -00013860: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -00013870: 2a20 452c 2061 202a 6e6f 7465 206d 6f64 * E, a *note mod │ │ │ │ -00013880: 756c 653a 2028 4d61 6361 756c 6179 3244 ule: (Macaulay2D │ │ │ │ -00013890: 6f63 294d 6f64 756c 652c 2c20 7265 7072 oc)Module,, repr │ │ │ │ -000138a0: 6573 656e 7469 6e67 2074 6865 2065 7874 esenting the ext │ │ │ │ -000138b0: 656e 7369 6f6e 0a0a 4465 7363 7269 7074 ension..Descript │ │ │ │ -000138c0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -000138d0: 0a45 7665 7279 2076 6563 746f 7220 6275 .Every vector bu │ │ │ │ -000138e0: 6e64 6c65 2045 206f 6e20 245c 5050 5e31 ndle E on $\PP^1 │ │ │ │ -000138f0: 2420 7370 6c69 7473 2061 7320 6120 7375 $ splits as a su │ │ │ │ -00013900: 6d20 6f66 206c 696e 6520 6275 6e64 6c65 m of line bundle │ │ │ │ -00013910: 7320 4f4f 2861 5f69 292e 2049 6620 4c61 s OO(a_i). If La │ │ │ │ -00013920: 0a69 7320 6120 6c69 7374 206f 6620 696e .is a list of in │ │ │ │ -00013930: 7465 6765 7273 2c20 7765 2077 7269 7465 tegers, we write │ │ │ │ -00013940: 2045 284c 6129 2066 6f72 2074 6865 2064 E(La) for the d │ │ │ │ -00013950: 6972 6563 7420 7375 6d20 6f66 2074 6865 irect sum of the │ │ │ │ -00013960: 206c 696e 6520 6275 6e64 6c65 0a4f 4f28 line bundle.OO( │ │ │ │ -00013970: 4c61 5f69 292e 2020 4769 7665 6e20 7477 La_i). Given tw │ │ │ │ -00013980: 6f20 7375 6368 2062 756e 646c 6573 2073 o such bundles s │ │ │ │ -00013990: 7065 6369 6669 6564 2062 7920 7468 6520 pecified by the │ │ │ │ -000139a0: 6c69 7374 7320 4c61 2061 6e64 204c 6220 lists La and Lb │ │ │ │ -000139b0: 7468 6973 2073 6372 6970 740a 636f 6e73 this script.cons │ │ │ │ -000139c0: 7472 7563 7473 2061 206d 6f64 756c 6520 tructs a module │ │ │ │ -000139d0: 7265 7072 6573 656e 7469 6e67 2074 6865 representing the │ │ │ │ -000139e0: 2075 6e69 7665 7273 616c 2065 7874 656e universal exten │ │ │ │ -000139f0: 7369 6f6e 206f 6620 4528 4c62 2920 6279 sion of E(Lb) by │ │ │ │ -00013a00: 2045 284c 6129 2e20 4974 0a69 7320 6465 E(La). It.is de │ │ │ │ -00013a10: 6669 6e65 6420 6f6e 2074 6865 2070 726f fined on the pro │ │ │ │ -00013a20: 6475 6374 2076 6172 6965 7479 2045 7874 duct variety Ext │ │ │ │ -00013a30: 5e31 2845 284c 6129 2c20 4528 4c62 2929 ^1(E(La), E(Lb)) │ │ │ │ -00013a40: 2078 2024 5c50 505e 3124 2c20 616e 640a x $\PP^1$, and. │ │ │ │ -00013a50: 7265 7072 6573 656e 7465 6420 6865 7265 represented here │ │ │ │ -00013a60: 2062 7920 6120 6772 6164 6564 206d 6f64 by a graded mod │ │ │ │ -00013a70: 756c 6520 6f76 6572 2074 6865 2063 6f6f ule over the coo │ │ │ │ -00013a80: 7264 696e 6174 6520 7269 6e67 2053 203d rdinate ring S = │ │ │ │ -00013a90: 2041 5b79 5f30 2c79 5f31 5d20 6f66 0a74 A[y_0,y_1] of.t │ │ │ │ -00013aa0: 6869 7320 7661 7269 6574 793b 2068 6572 his variety; her │ │ │ │ -00013ab0: 6520 4120 6973 2074 6865 2063 6f6f 7264 e A is the coord │ │ │ │ -00013ac0: 696e 6174 6520 7269 6e67 206f 6620 4578 inate ring of Ex │ │ │ │ -00013ad0: 745e 3128 4528 4c61 292c 2045 284c 6229 t^1(E(La), E(Lb) │ │ │ │ -00013ae0: 292c 2077 6869 6368 2069 7320 610a 706f ), which is a.po │ │ │ │ -00013af0: 6c79 6e6f 6d69 616c 2072 696e 672e 0a0a lynomial ring... │ │ │ │ -00013b00: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00013780: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +00013790: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +000137a0: 4520 3d20 756e 6976 6572 7361 6c45 7874 E = universalExt │ │ │ │ +000137b0: 656e 7369 6f6e 284c 612c 204c 6229 0a20 ension(La, Lb). │ │ │ │ +000137c0: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +000137d0: 202a 204c 612c 2061 202a 6e6f 7465 206c * La, a *note l │ │ │ │ +000137e0: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ +000137f0: 6f63 294c 6973 742c 2c20 6f66 2069 6e74 oc)List,, of int │ │ │ │ +00013800: 6567 6572 730a 2020 2020 2020 2a20 4c62 egers. * Lb │ │ │ │ +00013810: 2c20 6120 2a6e 6f74 6520 6c69 7374 3a20 , a *note list: │ │ │ │ +00013820: 284d 6163 6175 6c61 7932 446f 6329 4c69 (Macaulay2Doc)Li │ │ │ │ +00013830: 7374 2c2c 206f 6620 696e 7465 6765 7273 st,, of integers │ │ │ │ +00013840: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +00013850: 2020 2020 2a20 452c 2061 202a 6e6f 7465 * E, a *note │ │ │ │ +00013860: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ +00013870: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ +00013880: 7265 7072 6573 656e 7469 6e67 2074 6865 representing the │ │ │ │ +00013890: 2065 7874 656e 7369 6f6e 0a0a 4465 7363 extension..Desc │ │ │ │ +000138a0: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +000138b0: 3d3d 3d0a 0a45 7665 7279 2076 6563 746f ===..Every vecto │ │ │ │ +000138c0: 7220 6275 6e64 6c65 2045 206f 6e20 245c r bundle E on $\ │ │ │ │ +000138d0: 5050 5e31 2420 7370 6c69 7473 2061 7320 PP^1$ splits as │ │ │ │ +000138e0: 6120 7375 6d20 6f66 206c 696e 6520 6275 a sum of line bu │ │ │ │ +000138f0: 6e64 6c65 7320 4f4f 2861 5f69 292e 2049 ndles OO(a_i). I │ │ │ │ +00013900: 6620 4c61 0a69 7320 6120 6c69 7374 206f f La.is a list o │ │ │ │ +00013910: 6620 696e 7465 6765 7273 2c20 7765 2077 f integers, we w │ │ │ │ +00013920: 7269 7465 2045 284c 6129 2066 6f72 2074 rite E(La) for t │ │ │ │ +00013930: 6865 2064 6972 6563 7420 7375 6d20 6f66 he direct sum of │ │ │ │ +00013940: 2074 6865 206c 696e 6520 6275 6e64 6c65 the line bundle │ │ │ │ +00013950: 0a4f 4f28 4c61 5f69 292e 2020 4769 7665 .OO(La_i). Give │ │ │ │ +00013960: 6e20 7477 6f20 7375 6368 2062 756e 646c n two such bundl │ │ │ │ +00013970: 6573 2073 7065 6369 6669 6564 2062 7920 es specified by │ │ │ │ +00013980: 7468 6520 6c69 7374 7320 4c61 2061 6e64 the lists La and │ │ │ │ +00013990: 204c 6220 7468 6973 2073 6372 6970 740a Lb this script. │ │ │ │ +000139a0: 636f 6e73 7472 7563 7473 2061 206d 6f64 constructs a mod │ │ │ │ +000139b0: 756c 6520 7265 7072 6573 656e 7469 6e67 ule representing │ │ │ │ +000139c0: 2074 6865 2075 6e69 7665 7273 616c 2065 the universal e │ │ │ │ +000139d0: 7874 656e 7369 6f6e 206f 6620 4528 4c62 xtension of E(Lb │ │ │ │ +000139e0: 2920 6279 2045 284c 6129 2e20 4974 0a69 ) by E(La). It.i │ │ │ │ +000139f0: 7320 6465 6669 6e65 6420 6f6e 2074 6865 s defined on the │ │ │ │ +00013a00: 2070 726f 6475 6374 2076 6172 6965 7479 product variety │ │ │ │ +00013a10: 2045 7874 5e31 2845 284c 6129 2c20 4528 Ext^1(E(La), E( │ │ │ │ +00013a20: 4c62 2929 2078 2024 5c50 505e 3124 2c20 Lb)) x $\PP^1$, │ │ │ │ +00013a30: 616e 640a 7265 7072 6573 656e 7465 6420 and.represented │ │ │ │ +00013a40: 6865 7265 2062 7920 6120 6772 6164 6564 here by a graded │ │ │ │ +00013a50: 206d 6f64 756c 6520 6f76 6572 2074 6865 module over the │ │ │ │ +00013a60: 2063 6f6f 7264 696e 6174 6520 7269 6e67 coordinate ring │ │ │ │ +00013a70: 2053 203d 2041 5b79 5f30 2c79 5f31 5d20 S = A[y_0,y_1] │ │ │ │ +00013a80: 6f66 0a74 6869 7320 7661 7269 6574 793b of.this variety; │ │ │ │ +00013a90: 2068 6572 6520 4120 6973 2074 6865 2063 here A is the c │ │ │ │ +00013aa0: 6f6f 7264 696e 6174 6520 7269 6e67 206f oordinate ring o │ │ │ │ +00013ab0: 6620 4578 745e 3128 4528 4c61 292c 2045 f Ext^1(E(La), E │ │ │ │ +00013ac0: 284c 6229 292c 2077 6869 6368 2069 7320 (Lb)), which is │ │ │ │ +00013ad0: 610a 706f 6c79 6e6f 6d69 616c 2072 696e a.polynomial rin │ │ │ │ +00013ae0: 672e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d g...+----------- │ │ │ │ +00013af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00013b50: 7c69 3120 3a20 4d20 3d20 756e 6976 6572 |i1 : M = univer │ │ │ │ -00013b60: 7361 6c45 7874 656e 7369 6f6e 287b 2d32 salExtension({-2 │ │ │ │ -00013b70: 7d2c 207b 327d 2920 2020 2020 2020 2020 }, {2}) │ │ │ │ -00013b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013b90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013ba0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00013b30: 2d2d 2b0a 7c69 3120 3a20 4d20 3d20 756e --+.|i1 : M = un │ │ │ │ +00013b40: 6976 6572 7361 6c45 7874 656e 7369 6f6e iversalExtension │ │ │ │ +00013b50: 287b 2d32 7d2c 207b 327d 2920 2020 2020 ({-2}, {2}) │ │ │ │ +00013b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013be0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013bf0: 7c6f 3120 3d20 636f 6b65 726e 656c 207b |o1 = cokernel { │ │ │ │ -00013c00: 322c 2030 7d20 7c20 785f 3020 785f 3120 2, 0} | x_0 x_1 │ │ │ │ -00013c10: 785f 3220 7c20 2020 2020 2020 2020 2020 x_2 | │ │ │ │ -00013c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013c40: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -00013c50: 312c 2031 7d20 7c20 795f 3020 3020 2020 1, 1} | y_0 0 │ │ │ │ -00013c60: 3020 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ -00013c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013c90: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -00013ca0: 312c 2031 7d20 7c20 795f 3120 795f 3020 1, 1} | y_1 y_0 │ │ │ │ -00013cb0: 3020 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ -00013cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013cd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013ce0: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -00013cf0: 312c 2031 7d20 7c20 3020 2020 795f 3120 1, 1} | 0 y_1 │ │ │ │ -00013d00: 795f 3020 7c20 2020 2020 2020 2020 2020 y_0 | │ │ │ │ -00013d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013d20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013d30: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -00013d40: 312c 2031 7d20 7c20 3020 2020 3020 2020 1, 1} | 0 0 │ │ │ │ -00013d50: 795f 3120 7c20 2020 2020 2020 2020 2020 y_1 | │ │ │ │ -00013d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013d70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013d80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00013bd0: 2020 7c0a 7c6f 3120 3d20 636f 6b65 726e |.|o1 = cokern │ │ │ │ +00013be0: 656c 207b 322c 2030 7d20 7c20 785f 3020 el {2, 0} | x_0 │ │ │ │ +00013bf0: 785f 3120 785f 3220 7c20 2020 2020 2020 x_1 x_2 | │ │ │ │ +00013c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013c20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013c30: 2020 207b 312c 2031 7d20 7c20 795f 3020 {1, 1} | y_0 │ │ │ │ +00013c40: 3020 2020 3020 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ +00013c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013c70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013c80: 2020 207b 312c 2031 7d20 7c20 795f 3120 {1, 1} | y_1 │ │ │ │ +00013c90: 795f 3020 3020 2020 7c20 2020 2020 2020 y_0 0 | │ │ │ │ +00013ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013cc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013cd0: 2020 207b 312c 2031 7d20 7c20 3020 2020 {1, 1} | 0 │ │ │ │ +00013ce0: 795f 3120 795f 3020 7c20 2020 2020 2020 y_1 y_0 | │ │ │ │ +00013cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013d10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013d20: 2020 207b 312c 2031 7d20 7c20 3020 2020 {1, 1} | 0 │ │ │ │ +00013d30: 3020 2020 795f 3120 7c20 2020 2020 2020 0 y_1 | │ │ │ │ +00013d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013d60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013dc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013dd0: 7c20 2020 2020 205a 5a20 2020 2020 2020 | ZZ │ │ │ │ -00013de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e00: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ -00013e10: 2020 2035 2020 2020 2020 2020 2020 7c0a 5 |. │ │ │ │ -00013e20: 7c6f 3120 3a20 2d2d 2d5b 7820 2e2e 7820 |o1 : ---[x ..x │ │ │ │ -00013e30: 5d5b 7920 2e2e 7920 5d2d 6d6f 6475 6c65 ][y ..y ]-module │ │ │ │ -00013e40: 2c20 7175 6f74 6965 6e74 206f 6620 282d , quotient of (- │ │ │ │ -00013e50: 2d2d 5b78 202e 2e78 205d 5b79 202e 2e79 --[x ..x ][y ..y │ │ │ │ -00013e60: 205d 2920 2020 2020 2020 2020 2020 7c0a ]) |. │ │ │ │ -00013e70: 7c20 2020 2020 3130 3120 2030 2020 2032 | 101 0 2 │ │ │ │ -00013e80: 2020 2030 2020 2031 2020 2020 2020 2020 0 1 │ │ │ │ -00013e90: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00013ea0: 3031 2020 3020 2020 3220 2020 3020 2020 01 0 2 0 │ │ │ │ -00013eb0: 3120 2020 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ -00013ec0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00013db0: 2020 7c0a 7c20 2020 2020 205a 5a20 2020 |.| ZZ │ │ │ │ +00013dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013de0: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00013df0: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ +00013e00: 2020 7c0a 7c6f 3120 3a20 2d2d 2d5b 7820 |.|o1 : ---[x │ │ │ │ +00013e10: 2e2e 7820 5d5b 7920 2e2e 7920 5d2d 6d6f ..x ][y ..y ]-mo │ │ │ │ +00013e20: 6475 6c65 2c20 7175 6f74 6965 6e74 206f dule, quotient o │ │ │ │ +00013e30: 6620 282d 2d2d 5b78 202e 2e78 205d 5b79 f (---[x ..x ][y │ │ │ │ +00013e40: 202e 2e79 205d 2920 2020 2020 2020 2020 ..y ]) │ │ │ │ +00013e50: 2020 7c0a 7c20 2020 2020 3130 3120 2030 |.| 101 0 │ │ │ │ +00013e60: 2020 2032 2020 2030 2020 2031 2020 2020 2 0 1 │ │ │ │ +00013e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013e80: 2020 2031 3031 2020 3020 2020 3220 2020 101 0 2 │ │ │ │ +00013e90: 3020 2020 3120 2020 2020 2020 2020 2020 0 1 │ │ │ │ +00013ea0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00013eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00013f10: 7c69 3220 3a20 4d20 3d20 756e 6976 6572 |i2 : M = univer │ │ │ │ -00013f20: 7361 6c45 7874 656e 7369 6f6e 287b 2d32 salExtension({-2 │ │ │ │ -00013f30: 2c2d 337d 2c20 7b32 2c33 7d29 2020 2020 ,-3}, {2,3}) │ │ │ │ -00013f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013f50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013f60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00013ef0: 2d2d 2b0a 7c69 3220 3a20 4d20 3d20 756e --+.|i2 : M = un │ │ │ │ +00013f00: 6976 6572 7361 6c45 7874 656e 7369 6f6e iversalExtension │ │ │ │ +00013f10: 287b 2d32 2c2d 337d 2c20 7b32 2c33 7d29 ({-2,-3}, {2,3}) │ │ │ │ +00013f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013f40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013fa0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013fb0: 7c6f 3220 3d20 636f 6b65 726e 656c 207b |o2 = cokernel { │ │ │ │ -00013fc0: 322c 2030 7d20 7c20 785f 3079 5f31 2078 2, 0} | x_0y_1 x │ │ │ │ -00013fd0: 5f31 795f 3120 785f 3279 5f31 2078 5f33 _1y_1 x_2y_1 x_3 │ │ │ │ -00013fe0: 795f 3120 785f 3479 5f31 2078 5f35 795f y_1 x_4y_1 x_5y_ │ │ │ │ -00013ff0: 3120 785f 3679 5f31 2020 2020 2020 7c0a 1 x_6y_1 |. │ │ │ │ -00014000: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -00014010: 332c 2030 7d20 7c20 785f 3920 2020 2078 3, 0} | x_9 x │ │ │ │ -00014020: 5f31 3020 2020 785f 3131 2020 2078 5f31 _10 x_11 x_1 │ │ │ │ -00014030: 3220 2020 785f 3133 2020 2078 5f31 3420 2 x_13 x_14 │ │ │ │ -00014040: 2020 785f 3135 2020 2020 2020 2020 7c0a x_15 |. │ │ │ │ -00014050: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -00014060: 322c 2031 7d20 7c20 795f 3020 2020 2030 2, 1} | y_0 0 │ │ │ │ -00014070: 2020 2020 2020 3020 2020 2020 2030 2020 0 0 │ │ │ │ -00014080: 2020 2020 3020 2020 2020 2030 2020 2020 0 0 │ │ │ │ -00014090: 2020 3020 2020 2020 2020 2020 2020 7c0a 0 |. │ │ │ │ -000140a0: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -000140b0: 322c 2031 7d20 7c20 795f 3120 2020 2079 2, 1} | y_1 y │ │ │ │ -000140c0: 5f30 2020 2020 3020 2020 2020 2030 2020 _0 0 0 │ │ │ │ -000140d0: 2020 2020 3020 2020 2020 2030 2020 2020 0 0 │ │ │ │ -000140e0: 2020 3020 2020 2020 2020 2020 2020 7c0a 0 |. │ │ │ │ -000140f0: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -00014100: 322c 2031 7d20 7c20 3020 2020 2020 2079 2, 1} | 0 y │ │ │ │ -00014110: 5f31 2020 2020 795f 3020 2020 2030 2020 _1 y_0 0 │ │ │ │ -00014120: 2020 2020 3020 2020 2020 2030 2020 2020 0 0 │ │ │ │ -00014130: 2020 3020 2020 2020 2020 2020 2020 7c0a 0 |. │ │ │ │ -00014140: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -00014150: 322c 2031 7d20 7c20 3020 2020 2020 2030 2, 1} | 0 0 │ │ │ │ -00014160: 2020 2020 2020 795f 3120 2020 2079 5f30 y_1 y_0 │ │ │ │ -00014170: 2020 2020 3020 2020 2020 2030 2020 2020 0 0 │ │ │ │ -00014180: 2020 3020 2020 2020 2020 2020 2020 7c0a 0 |. │ │ │ │ -00014190: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -000141a0: 322c 2031 7d20 7c20 3020 2020 2020 2030 2, 1} | 0 0 │ │ │ │ -000141b0: 2020 2020 2020 3020 2020 2020 2079 5f31 0 y_1 │ │ │ │ -000141c0: 2020 2020 3020 2020 2020 2030 2020 2020 0 0 │ │ │ │ -000141d0: 2020 3020 2020 2020 2020 2020 2020 7c0a 0 |. │ │ │ │ -000141e0: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -000141f0: 322c 2031 7d20 7c20 3020 2020 2020 2030 2, 1} | 0 0 │ │ │ │ -00014200: 2020 2020 2020 3020 2020 2020 2030 2020 0 0 │ │ │ │ -00014210: 2020 2020 795f 3020 2020 2030 2020 2020 y_0 0 │ │ │ │ -00014220: 2020 3020 2020 2020 2020 2020 2020 7c0a 0 |. │ │ │ │ -00014230: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -00014240: 322c 2031 7d20 7c20 3020 2020 2020 2030 2, 1} | 0 0 │ │ │ │ -00014250: 2020 2020 2020 3020 2020 2020 2030 2020 0 0 │ │ │ │ -00014260: 2020 2020 795f 3120 2020 2079 5f30 2020 y_1 y_0 │ │ │ │ -00014270: 2020 3020 2020 2020 2020 2020 2020 7c0a 0 |. │ │ │ │ -00014280: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -00014290: 322c 2031 7d20 7c20 3020 2020 2020 2030 2, 1} | 0 0 │ │ │ │ -000142a0: 2020 2020 2020 3020 2020 2020 2030 2020 0 0 │ │ │ │ -000142b0: 2020 2020 3020 2020 2020 2079 5f31 2020 0 y_1 │ │ │ │ -000142c0: 2020 795f 3020 2020 2020 2020 2020 7c0a y_0 |. │ │ │ │ -000142d0: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -000142e0: 322c 2031 7d20 7c20 3020 2020 2020 2030 2, 1} | 0 0 │ │ │ │ -000142f0: 2020 2020 2020 3020 2020 2020 2030 2020 0 0 │ │ │ │ -00014300: 2020 2020 3020 2020 2020 2030 2020 2020 0 0 │ │ │ │ -00014310: 2020 795f 3120 2020 2020 2020 2020 7c0a y_1 |. │ │ │ │ -00014320: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -00014330: 322c 2031 7d20 7c20 3020 2020 2020 2030 2, 1} | 0 0 │ │ │ │ -00014340: 2020 2020 2020 3020 2020 2020 2030 2020 0 0 │ │ │ │ -00014350: 2020 2020 3020 2020 2020 2030 2020 2020 0 0 │ │ │ │ -00014360: 2020 3020 2020 2020 2020 2020 2020 7c0a 0 |. │ │ │ │ -00014370: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -00014380: 322c 2031 7d20 7c20 3020 2020 2020 2030 2, 1} | 0 0 │ │ │ │ -00014390: 2020 2020 2020 3020 2020 2020 2030 2020 0 0 │ │ │ │ -000143a0: 2020 2020 3020 2020 2020 2030 2020 2020 0 0 │ │ │ │ -000143b0: 2020 3020 2020 2020 2020 2020 2020 7c0a 0 |. │ │ │ │ -000143c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00013f90: 2020 7c0a 7c6f 3220 3d20 636f 6b65 726e |.|o2 = cokern │ │ │ │ +00013fa0: 656c 207b 322c 2030 7d20 7c20 785f 3079 el {2, 0} | x_0y │ │ │ │ +00013fb0: 5f31 2078 5f31 795f 3120 785f 3279 5f31 _1 x_1y_1 x_2y_1 │ │ │ │ +00013fc0: 2078 5f33 795f 3120 785f 3479 5f31 2078 x_3y_1 x_4y_1 x │ │ │ │ +00013fd0: 5f35 795f 3120 785f 3679 5f31 2020 2020 _5y_1 x_6y_1 │ │ │ │ +00013fe0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013ff0: 2020 207b 332c 2030 7d20 7c20 785f 3920 {3, 0} | x_9 │ │ │ │ +00014000: 2020 2078 5f31 3020 2020 785f 3131 2020 x_10 x_11 │ │ │ │ +00014010: 2078 5f31 3220 2020 785f 3133 2020 2078 x_12 x_13 x │ │ │ │ +00014020: 5f31 3420 2020 785f 3135 2020 2020 2020 _14 x_15 │ │ │ │ +00014030: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014040: 2020 207b 322c 2031 7d20 7c20 795f 3020 {2, 1} | y_0 │ │ │ │ +00014050: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ +00014060: 2030 2020 2020 2020 3020 2020 2020 2030 0 0 0 │ │ │ │ +00014070: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00014080: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014090: 2020 207b 322c 2031 7d20 7c20 795f 3120 {2, 1} | y_1 │ │ │ │ +000140a0: 2020 2079 5f30 2020 2020 3020 2020 2020 y_0 0 │ │ │ │ +000140b0: 2030 2020 2020 2020 3020 2020 2020 2030 0 0 0 │ │ │ │ +000140c0: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +000140d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000140e0: 2020 207b 322c 2031 7d20 7c20 3020 2020 {2, 1} | 0 │ │ │ │ +000140f0: 2020 2079 5f31 2020 2020 795f 3020 2020 y_1 y_0 │ │ │ │ +00014100: 2030 2020 2020 2020 3020 2020 2020 2030 0 0 0 │ │ │ │ +00014110: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00014120: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014130: 2020 207b 322c 2031 7d20 7c20 3020 2020 {2, 1} | 0 │ │ │ │ +00014140: 2020 2030 2020 2020 2020 795f 3120 2020 0 y_1 │ │ │ │ +00014150: 2079 5f30 2020 2020 3020 2020 2020 2030 y_0 0 0 │ │ │ │ +00014160: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00014170: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014180: 2020 207b 322c 2031 7d20 7c20 3020 2020 {2, 1} | 0 │ │ │ │ +00014190: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ +000141a0: 2079 5f31 2020 2020 3020 2020 2020 2030 y_1 0 0 │ │ │ │ +000141b0: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +000141c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000141d0: 2020 207b 322c 2031 7d20 7c20 3020 2020 {2, 1} | 0 │ │ │ │ +000141e0: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ +000141f0: 2030 2020 2020 2020 795f 3020 2020 2030 0 y_0 0 │ │ │ │ +00014200: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00014210: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014220: 2020 207b 322c 2031 7d20 7c20 3020 2020 {2, 1} | 0 │ │ │ │ +00014230: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ +00014240: 2030 2020 2020 2020 795f 3120 2020 2079 0 y_1 y │ │ │ │ +00014250: 5f30 2020 2020 3020 2020 2020 2020 2020 _0 0 │ │ │ │ +00014260: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014270: 2020 207b 322c 2031 7d20 7c20 3020 2020 {2, 1} | 0 │ │ │ │ +00014280: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ +00014290: 2030 2020 2020 2020 3020 2020 2020 2079 0 0 y │ │ │ │ +000142a0: 5f31 2020 2020 795f 3020 2020 2020 2020 _1 y_0 │ │ │ │ +000142b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000142c0: 2020 207b 322c 2031 7d20 7c20 3020 2020 {2, 1} | 0 │ │ │ │ +000142d0: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ +000142e0: 2030 2020 2020 2020 3020 2020 2020 2030 0 0 0 │ │ │ │ +000142f0: 2020 2020 2020 795f 3120 2020 2020 2020 y_1 │ │ │ │ +00014300: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014310: 2020 207b 322c 2031 7d20 7c20 3020 2020 {2, 1} | 0 │ │ │ │ +00014320: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ +00014330: 2030 2020 2020 2020 3020 2020 2020 2030 0 0 0 │ │ │ │ +00014340: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00014350: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014360: 2020 207b 322c 2031 7d20 7c20 3020 2020 {2, 1} | 0 │ │ │ │ +00014370: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ +00014380: 2030 2020 2020 2020 3020 2020 2020 2030 0 0 0 │ │ │ │ +00014390: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +000143a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000143b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000143c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000143d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000143e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000143f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014400: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014410: 7c20 2020 2020 205a 5a20 2020 2020 2020 | ZZ │ │ │ │ -00014420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014440: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ -00014450: 2020 2020 2031 3320 2020 2020 2020 7c0a 13 |. │ │ │ │ -00014460: 7c6f 3220 3a20 2d2d 2d5b 7820 2e2e 7820 |o2 : ---[x ..x │ │ │ │ -00014470: 205d 5b79 202e 2e79 205d 2d6d 6f64 756c ][y ..y ]-modul │ │ │ │ -00014480: 652c 2071 756f 7469 656e 7420 6f66 2028 e, quotient of ( │ │ │ │ -00014490: 2d2d 2d5b 7820 2e2e 7820 205d 5b79 202e ---[x ..x ][y . │ │ │ │ -000144a0: 2e79 205d 2920 2020 2020 2020 2020 7c0a .y ]) |. │ │ │ │ -000144b0: 7c20 2020 2020 3130 3120 2030 2020 2031 | 101 0 1 │ │ │ │ -000144c0: 3720 2020 3020 2020 3120 2020 2020 2020 7 0 1 │ │ │ │ -000144d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000144e0: 3130 3120 2030 2020 2031 3720 2020 3020 101 0 17 0 │ │ │ │ -000144f0: 2020 3120 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ -00014500: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +000143f0: 2020 7c0a 7c20 2020 2020 205a 5a20 2020 |.| ZZ │ │ │ │ +00014400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014420: 2020 2020 205a 5a20 2020 2020 2020 2020 ZZ │ │ │ │ +00014430: 2020 2020 2020 2020 2031 3320 2020 2020 13 │ │ │ │ +00014440: 2020 7c0a 7c6f 3220 3a20 2d2d 2d5b 7820 |.|o2 : ---[x │ │ │ │ +00014450: 2e2e 7820 205d 5b79 202e 2e79 205d 2d6d ..x ][y ..y ]-m │ │ │ │ +00014460: 6f64 756c 652c 2071 756f 7469 656e 7420 odule, quotient │ │ │ │ +00014470: 6f66 2028 2d2d 2d5b 7820 2e2e 7820 205d of (---[x ..x ] │ │ │ │ +00014480: 5b79 202e 2e79 205d 2920 2020 2020 2020 [y ..y ]) │ │ │ │ +00014490: 2020 7c0a 7c20 2020 2020 3130 3120 2030 |.| 101 0 │ │ │ │ +000144a0: 2020 2031 3720 2020 3020 2020 3120 2020 17 0 1 │ │ │ │ +000144b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000144c0: 2020 2020 3130 3120 2030 2020 2031 3720 101 0 17 │ │ │ │ +000144d0: 2020 3020 2020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +000144e0: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ +000144f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00014550: 7c78 5f37 795f 3120 785f 3879 5f31 207c |x_7y_1 x_8y_1 | │ │ │ │ +00014530: 2d2d 7c0a 7c78 5f37 795f 3120 785f 3879 --|.|x_7y_1 x_8y │ │ │ │ +00014540: 5f31 207c 2020 2020 2020 2020 2020 2020 _1 | │ │ │ │ +00014550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014590: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000145a0: 7c78 5f31 3620 2020 785f 3137 2020 207c |x_16 x_17 | │ │ │ │ +00014580: 2020 7c0a 7c78 5f31 3620 2020 785f 3137 |.|x_16 x_17 │ │ │ │ +00014590: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000145a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000145d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000145e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000145f0: 7c30 2020 2020 2020 3020 2020 2020 207c |0 0 | │ │ │ │ +000145d0: 2020 7c0a 7c30 2020 2020 2020 3020 2020 |.|0 0 │ │ │ │ +000145e0: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000145f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014630: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014640: 7c30 2020 2020 2020 3020 2020 2020 207c |0 0 | │ │ │ │ +00014620: 2020 7c0a 7c30 2020 2020 2020 3020 2020 |.|0 0 │ │ │ │ +00014630: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00014640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014680: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014690: 7c30 2020 2020 2020 3020 2020 2020 207c |0 0 | │ │ │ │ +00014670: 2020 7c0a 7c30 2020 2020 2020 3020 2020 |.|0 0 │ │ │ │ +00014680: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00014690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000146a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000146b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000146c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000146d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000146e0: 7c30 2020 2020 2020 3020 2020 2020 207c |0 0 | │ │ │ │ +000146c0: 2020 7c0a 7c30 2020 2020 2020 3020 2020 |.|0 0 │ │ │ │ +000146d0: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000146e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000146f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014720: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014730: 7c30 2020 2020 2020 3020 2020 2020 207c |0 0 | │ │ │ │ +00014710: 2020 7c0a 7c30 2020 2020 2020 3020 2020 |.|0 0 │ │ │ │ +00014720: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00014730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014770: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014780: 7c30 2020 2020 2020 3020 2020 2020 207c |0 0 | │ │ │ │ +00014760: 2020 7c0a 7c30 2020 2020 2020 3020 2020 |.|0 0 │ │ │ │ +00014770: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00014780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000147b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000147c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000147d0: 7c30 2020 2020 2020 3020 2020 2020 207c |0 0 | │ │ │ │ +000147b0: 2020 7c0a 7c30 2020 2020 2020 3020 2020 |.|0 0 │ │ │ │ +000147c0: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000147d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014810: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014820: 7c30 2020 2020 2020 3020 2020 2020 207c |0 0 | │ │ │ │ +00014800: 2020 7c0a 7c30 2020 2020 2020 3020 2020 |.|0 0 │ │ │ │ +00014810: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00014820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014860: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014870: 7c79 5f30 2020 2020 3020 2020 2020 207c |y_0 0 | │ │ │ │ +00014850: 2020 7c0a 7c79 5f30 2020 2020 3020 2020 |.|y_0 0 │ │ │ │ +00014860: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00014870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000148a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000148b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000148c0: 7c79 5f31 2020 2020 795f 3020 2020 207c |y_1 y_0 | │ │ │ │ +000148a0: 2020 7c0a 7c79 5f31 2020 2020 795f 3020 |.|y_1 y_0 │ │ │ │ +000148b0: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000148c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000148d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000148e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000148f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014900: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014910: 7c30 2020 2020 2020 795f 3120 2020 207c |0 y_1 | │ │ │ │ +000148f0: 2020 7c0a 7c30 2020 2020 2020 795f 3120 |.|0 y_1 │ │ │ │ +00014900: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00014910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014950: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014960: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00014940: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00014950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000149a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000149b0: 0a49 7420 6973 2069 6e74 6572 6573 7469 .It is interesti │ │ │ │ -000149c0: 6e67 2074 6f20 636f 6e73 6964 6572 2074 ng to consider t │ │ │ │ -000149d0: 6865 206c 6f63 6920 696e 2045 7874 2077 he loci in Ext w │ │ │ │ -000149e0: 6865 7265 2074 6865 2065 7874 656e 7369 here the extensi │ │ │ │ -000149f0: 6f6e 2068 6173 2061 0a70 6172 7469 6375 on has a.particu │ │ │ │ -00014a00: 6c61 7220 7370 6c69 7474 696e 6720 7479 lar splitting ty │ │ │ │ -00014a10: 7065 2e20 5365 6520 7468 6520 646f 6375 pe. See the docu │ │ │ │ -00014a20: 6d65 6e74 6174 696f 6e20 666f 7220 6469 mentation for di │ │ │ │ -00014a30: 7265 6374 496d 6167 6543 6f6d 706c 6578 rectImageComplex │ │ │ │ -00014a40: 2066 6f72 2061 0a63 6f6e 6a65 6374 7572 for a.conjectur │ │ │ │ -00014a50: 6520 6162 6f75 7420 7468 6520 6571 7561 e about the equa │ │ │ │ -00014a60: 7469 6f6e 7320 6f66 2074 6865 7365 2076 tions of these v │ │ │ │ -00014a70: 6172 6965 7469 6573 2e0a 0a53 6565 2061 arieties...See a │ │ │ │ -00014a80: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -00014a90: 2a20 2a6e 6f74 6520 6469 7265 6374 496d * *note directIm │ │ │ │ -00014aa0: 6167 6543 6f6d 706c 6578 3a20 6469 7265 ageComplex: dire │ │ │ │ -00014ab0: 6374 496d 6167 6543 6f6d 706c 6578 2c20 ctImageComplex, │ │ │ │ -00014ac0: 2d2d 2064 6972 6563 7420 696d 6167 6520 -- direct image │ │ │ │ -00014ad0: 636f 6d70 6c65 780a 0a57 6179 7320 746f complex..Ways to │ │ │ │ -00014ae0: 2075 7365 2075 6e69 7665 7273 616c 4578 use universalEx │ │ │ │ -00014af0: 7465 6e73 696f 6e3a 0a3d 3d3d 3d3d 3d3d tension:.======= │ │ │ │ -00014b00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00014b10: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2275 ========.. * "u │ │ │ │ -00014b20: 6e69 7665 7273 616c 4578 7465 6e73 696f niversalExtensio │ │ │ │ -00014b30: 6e28 4c69 7374 2c4c 6973 7429 220a 0a46 n(List,List)"..F │ │ │ │ -00014b40: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -00014b50: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -00014b60: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00014b70: 202a 6e6f 7465 2075 6e69 7665 7273 616c *note universal │ │ │ │ -00014b80: 4578 7465 6e73 696f 6e3a 2075 6e69 7665 Extension: unive │ │ │ │ -00014b90: 7273 616c 4578 7465 6e73 696f 6e2c 2069 rsalExtension, i │ │ │ │ -00014ba0: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ -00014bb0: 0a66 756e 6374 696f 6e3a 2028 4d61 6361 .function: (Maca │ │ │ │ -00014bc0: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -00014bd0: 756e 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d unction,...----- │ │ │ │ +00014990: 2d2d 2b0a 0a49 7420 6973 2069 6e74 6572 --+..It is inter │ │ │ │ +000149a0: 6573 7469 6e67 2074 6f20 636f 6e73 6964 esting to consid │ │ │ │ +000149b0: 6572 2074 6865 206c 6f63 6920 696e 2045 er the loci in E │ │ │ │ +000149c0: 7874 2077 6865 7265 2074 6865 2065 7874 xt where the ext │ │ │ │ +000149d0: 656e 7369 6f6e 2068 6173 2061 0a70 6172 ension has a.par │ │ │ │ +000149e0: 7469 6375 6c61 7220 7370 6c69 7474 696e ticular splittin │ │ │ │ +000149f0: 6720 7479 7065 2e20 5365 6520 7468 6520 g type. See the │ │ │ │ +00014a00: 646f 6375 6d65 6e74 6174 696f 6e20 666f documentation fo │ │ │ │ +00014a10: 7220 6469 7265 6374 496d 6167 6543 6f6d r directImageCom │ │ │ │ +00014a20: 706c 6578 2066 6f72 2061 0a63 6f6e 6a65 plex for a.conje │ │ │ │ +00014a30: 6374 7572 6520 6162 6f75 7420 7468 6520 cture about the │ │ │ │ +00014a40: 6571 7561 7469 6f6e 7320 6f66 2074 6865 equations of the │ │ │ │ +00014a50: 7365 2076 6172 6965 7469 6573 2e0a 0a53 se varieties...S │ │ │ │ +00014a60: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +00014a70: 0a0a 2020 2a20 2a6e 6f74 6520 6469 7265 .. * *note dire │ │ │ │ +00014a80: 6374 496d 6167 6543 6f6d 706c 6578 3a20 ctImageComplex: │ │ │ │ +00014a90: 6469 7265 6374 496d 6167 6543 6f6d 706c directImageCompl │ │ │ │ +00014aa0: 6578 2c20 2d2d 2064 6972 6563 7420 696d ex, -- direct im │ │ │ │ +00014ab0: 6167 6520 636f 6d70 6c65 780a 0a57 6179 age complex..Way │ │ │ │ +00014ac0: 7320 746f 2075 7365 2075 6e69 7665 7273 s to use univers │ │ │ │ +00014ad0: 616c 4578 7465 6e73 696f 6e3a 0a3d 3d3d alExtension:.=== │ │ │ │ +00014ae0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00014af0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +00014b00: 2a20 2275 6e69 7665 7273 616c 4578 7465 * "universalExte │ │ │ │ +00014b10: 6e73 696f 6e28 4c69 7374 2c4c 6973 7429 nsion(List,List) │ │ │ │ +00014b20: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +00014b30: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00014b40: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00014b50: 6a65 6374 202a 6e6f 7465 2075 6e69 7665 ject *note unive │ │ │ │ +00014b60: 7273 616c 4578 7465 6e73 696f 6e3a 2075 rsalExtension: u │ │ │ │ +00014b70: 6e69 7665 7273 616c 4578 7465 6e73 696f niversalExtensio │ │ │ │ +00014b80: 6e2c 2069 7320 6120 2a6e 6f74 6520 6d65 n, is a *note me │ │ │ │ +00014b90: 7468 6f64 0a66 756e 6374 696f 6e3a 2028 thod.function: ( │ │ │ │ +00014ba0: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ +00014bb0: 686f 6446 756e 6374 696f 6e2c 2e0a 0a2d hodFunction,...- │ │ │ │ +00014bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014c20: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -00014c30: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -00014c40: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -00014c50: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -00014c60: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -00014c70: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -00014c80: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -00014c90: 732f 4247 472e 6d32 3a31 3131 330a 3a30 s/BGG.m2:1113.:0 │ │ │ │ -00014ca0: 2e0a 1f0a 5461 6720 5461 626c 653a 0a4e ....Tag Table:.N │ │ │ │ -00014cb0: 6f64 653a 2054 6f70 7f32 3339 0a4e 6f64 ode: Top.239.Nod │ │ │ │ -00014cc0: 653a 2062 6569 6c69 6e73 6f6e 7f35 3938 e: beilinson.598 │ │ │ │ -00014cd0: 300a 4e6f 6465 3a20 6267 677f 3138 3236 0.Node: bgg.1826 │ │ │ │ -00014ce0: 320a 4e6f 6465 3a20 636f 686f 6d6f 6c6f 2.Node: cohomolo │ │ │ │ -00014cf0: 6779 5461 626c 657f 3230 3736 380a 4e6f gyTable.20768.No │ │ │ │ -00014d00: 6465 3a20 6469 7265 6374 496d 6167 6543 de: directImageC │ │ │ │ -00014d10: 6f6d 706c 6578 7f33 3030 3037 0a4e 6f64 omplex.30007.Nod │ │ │ │ -00014d20: 653a 2064 6972 6563 7449 6d61 6765 436f e: directImageCo │ │ │ │ -00014d30: 6d70 6c65 785f 6c70 436f 6d70 6c65 785f mplex_lpComplex_ │ │ │ │ -00014d40: 7270 7f33 3134 3033 0a4e 6f64 653a 2064 rp.31403.Node: d │ │ │ │ -00014d50: 6972 6563 7449 6d61 6765 436f 6d70 6c65 irectImageComple │ │ │ │ -00014d60: 785f 6c70 4d61 7472 6978 5f72 707f 3337 x_lpMatrix_rp.37 │ │ │ │ -00014d70: 3839 310a 4e6f 6465 3a20 6469 7265 6374 891.Node: direct │ │ │ │ -00014d80: 496d 6167 6543 6f6d 706c 6578 5f6c 704d ImageComplex_lpM │ │ │ │ -00014d90: 6f64 756c 655f 7270 7f34 3433 3539 0a4e odule_rp.44359.N │ │ │ │ -00014da0: 6f64 653a 2045 7874 6572 696f 727f 3537 ode: Exterior.57 │ │ │ │ -00014db0: 3537 350a 4e6f 6465 3a20 7072 6f6a 6563 575.Node: projec │ │ │ │ -00014dc0: 7469 7665 5072 6f64 7563 747f 3538 3231 tiveProduct.5821 │ │ │ │ -00014dd0: 310a 4e6f 6465 3a20 7075 7265 5265 736f 1.Node: pureReso │ │ │ │ -00014de0: 6c75 7469 6f6e 7f35 3937 3435 0a4e 6f64 lution.59745.Nod │ │ │ │ -00014df0: 653a 2052 6567 756c 6172 6974 797f 3732 e: Regularity.72 │ │ │ │ -00014e00: 3237 360a 4e6f 6465 3a20 7379 6d45 7874 276.Node: symExt │ │ │ │ -00014e10: 7f37 3330 3433 0a4e 6f64 653a 2074 6174 .73043.Node: tat │ │ │ │ -00014e20: 6552 6573 6f6c 7574 696f 6e7f 3735 3835 eResolution.7585 │ │ │ │ -00014e30: 310a 4e6f 6465 3a20 756e 6976 6572 7361 1.Node: universa │ │ │ │ -00014e40: 6c45 7874 656e 7369 6f6e 7f37 3935 3734 lExtension.79574 │ │ │ │ -00014e50: 0a1f 0a45 6e64 2054 6167 2054 6162 6c65 ...End Tag Table │ │ │ │ -00014e60: 0a . │ │ │ │ +00014c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +00014c10: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +00014c20: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +00014c30: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +00014c40: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +00014c50: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +00014c60: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +00014c70: 6b61 6765 732f 4247 472e 6d32 3a31 3131 kages/BGG.m2:111 │ │ │ │ +00014c80: 330a 3a30 2e0a 1f0a 5461 6720 5461 626c 3.:0....Tag Tabl │ │ │ │ +00014c90: 653a 0a4e 6f64 653a 2054 6f70 7f32 3339 e:.Node: Top.239 │ │ │ │ +00014ca0: 0a4e 6f64 653a 2062 6569 6c69 6e73 6f6e .Node: beilinson │ │ │ │ +00014cb0: 7f35 3938 300a 4e6f 6465 3a20 6267 677f .5980.Node: bgg. │ │ │ │ +00014cc0: 3138 3236 320a 4e6f 6465 3a20 636f 686f 18262.Node: coho │ │ │ │ +00014cd0: 6d6f 6c6f 6779 5461 626c 657f 3230 3736 mologyTable.2076 │ │ │ │ +00014ce0: 380a 4e6f 6465 3a20 6469 7265 6374 496d 8.Node: directIm │ │ │ │ +00014cf0: 6167 6543 6f6d 706c 6578 7f33 3030 3037 ageComplex.30007 │ │ │ │ +00014d00: 0a4e 6f64 653a 2064 6972 6563 7449 6d61 .Node: directIma │ │ │ │ +00014d10: 6765 436f 6d70 6c65 785f 6c70 436f 6d70 geComplex_lpComp │ │ │ │ +00014d20: 6c65 785f 7270 7f33 3134 3033 0a4e 6f64 lex_rp.31403.Nod │ │ │ │ +00014d30: 653a 2064 6972 6563 7449 6d61 6765 436f e: directImageCo │ │ │ │ +00014d40: 6d70 6c65 785f 6c70 4d61 7472 6978 5f72 mplex_lpMatrix_r │ │ │ │ +00014d50: 707f 3337 3839 310a 4e6f 6465 3a20 6469 p.37891.Node: di │ │ │ │ +00014d60: 7265 6374 496d 6167 6543 6f6d 706c 6578 rectImageComplex │ │ │ │ +00014d70: 5f6c 704d 6f64 756c 655f 7270 7f34 3433 _lpModule_rp.443 │ │ │ │ +00014d80: 3539 0a4e 6f64 653a 2045 7874 6572 696f 59.Node: Exterio │ │ │ │ +00014d90: 727f 3537 3537 350a 4e6f 6465 3a20 7072 r.57575.Node: pr │ │ │ │ +00014da0: 6f6a 6563 7469 7665 5072 6f64 7563 747f ojectiveProduct. │ │ │ │ +00014db0: 3538 3231 310a 4e6f 6465 3a20 7075 7265 58211.Node: pure │ │ │ │ +00014dc0: 5265 736f 6c75 7469 6f6e 7f35 3937 3435 Resolution.59745 │ │ │ │ +00014dd0: 0a4e 6f64 653a 2052 6567 756c 6172 6974 .Node: Regularit │ │ │ │ +00014de0: 797f 3732 3234 380a 4e6f 6465 3a20 7379 y.72248.Node: sy │ │ │ │ +00014df0: 6d45 7874 7f37 3330 3135 0a4e 6f64 653a mExt.73015.Node: │ │ │ │ +00014e00: 2074 6174 6552 6573 6f6c 7574 696f 6e7f tateResolution. │ │ │ │ +00014e10: 3735 3832 330a 4e6f 6465 3a20 756e 6976 75823.Node: univ │ │ │ │ +00014e20: 6572 7361 6c45 7874 656e 7369 6f6e 7f37 ersalExtension.7 │ │ │ │ +00014e30: 3935 3436 0a1f 0a45 6e64 2054 6167 2054 9546...End Tag T │ │ │ │ +00014e40: 6162 6c65 0a able. │ │ ├── ./usr/share/info/Benchmark.info.gz │ │ │ ├── Benchmark.info │ │ │ │ @@ -200,71 +200,76 @@ │ │ │ │ 00000c70: 2d2d 2d2d 2b0a 7c69 3120 3a20 7275 6e42 ----+.|i1 : runB │ │ │ │ 00000c80: 656e 6368 6d61 726b 7320 2272 6573 3339 enchmarks "res39 │ │ │ │ 00000c90: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ 00000ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000cc0: 2020 2020 7c0a 7c2d 2d20 6265 6769 6e6e |.|-- beginn │ │ │ │ 00000cd0: 696e 6720 636f 6d70 7574 6174 696f 6e20 ing computation │ │ │ │ -00000ce0: 4672 6920 4e6f 7620 3134 2031 373a 3331 Fri Nov 14 17:31 │ │ │ │ -00000cf0: 3a31 3120 5554 4320 3230 3235 2020 2020 :11 UTC 2025 │ │ │ │ +00000ce0: 4672 6920 4e6f 7620 3231 2031 303a 3435 Fri Nov 21 10:45 │ │ │ │ +00000cf0: 3a35 3020 5554 4320 3230 3235 2020 2020 :50 UTC 2025 │ │ │ │ 00000d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000d10: 2020 2020 7c0a 7c2d 2d20 4c69 6e75 7820 |.|-- Linux │ │ │ │ -00000d20: 7362 7569 6c64 2036 2e31 322e 3438 2b64 sbuild 6.12.48+d │ │ │ │ -00000d30: 6562 3133 2d61 6d64 3634 2023 3120 534d eb13-amd64 #1 SM │ │ │ │ -00000d40: 5020 5052 4545 4d50 545f 4459 4e41 4d49 P PREEMPT_DYNAMI │ │ │ │ -00000d50: 4320 4465 6269 616e 2036 2e31 322e 3438 C Debian 6.12.48 │ │ │ │ -00000d60: 2d31 2020 7c0a 7c2d 2d20 414d 4420 4550 -1 |.|-- AMD EP │ │ │ │ -00000d70: 5943 2037 3730 3250 2036 342d 436f 7265 YC 7702P 64-Core │ │ │ │ -00000d80: 2050 726f 6365 7373 6f72 2020 4175 7468 Processor Auth │ │ │ │ -00000d90: 656e 7469 6341 4d44 2020 6370 7520 4d48 enticAMD cpu MH │ │ │ │ -00000da0: 7a20 3139 3936 2e32 3530 2020 2020 2020 z 1996.250 │ │ │ │ +00000d20: 7362 7569 6c64 2036 2e31 322e 3537 2b64 sbuild 6.12.57+d │ │ │ │ +00000d30: 6562 3133 2d63 6c6f 7564 2d61 6d64 3634 eb13-cloud-amd64 │ │ │ │ +00000d40: 2023 3120 534d 5020 5052 4545 4d50 545f #1 SMP PREEMPT_ │ │ │ │ +00000d50: 4459 4e41 4d49 4320 4465 6269 616e 2020 DYNAMIC Debian │ │ │ │ +00000d60: 2020 2020 7c0a 7c2d 2d20 496e 7465 6c20 |.|-- Intel │ │ │ │ +00000d70: 5865 6f6e 2050 726f 6365 7373 6f72 2028 Xeon Processor ( │ │ │ │ +00000d80: 536b 796c 616b 652c 2049 4252 5329 2020 Skylake, IBRS) │ │ │ │ +00000d90: 4765 6e75 696e 6549 6e74 656c 2020 6370 GenuineIntel cp │ │ │ │ +00000da0: 7520 4d48 7a20 3230 3939 2e39 3938 2020 u MHz 2099.998 │ │ │ │ 00000db0: 2020 2020 7c0a 7c2d 2d20 4d61 6361 756c |.|-- Macaul │ │ │ │ 00000dc0: 6179 3220 312e 3235 2e31 312c 2063 6f6d ay2 1.25.11, com │ │ │ │ 00000dd0: 7069 6c65 6420 7769 7468 2067 6363 2031 piled with gcc 1 │ │ │ │ 00000de0: 352e 322e 3020 2020 2020 2020 2020 2020 5.2.0 │ │ │ │ 00000df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000e00: 2020 2020 7c0a 7c2d 2d20 7265 7333 393a |.|-- res39: │ │ │ │ 00000e10: 2072 6573 206f 6620 6120 6765 6e65 7269 res of a generi │ │ │ │ 00000e20: 6320 3320 6279 2039 206d 6174 7269 7820 c 3 by 9 matrix │ │ │ │ -00000e30: 6f76 6572 205a 5a2f 3130 313a 202e 3131 over ZZ/101: .11 │ │ │ │ -00000e40: 3535 3235 2073 6563 6f6e 6473 2020 2020 5525 seconds │ │ │ │ +00000e30: 6f76 6572 205a 5a2f 3130 313a 202e 3135 over ZZ/101: .15 │ │ │ │ +00000e40: 3731 3136 2073 6563 6f6e 6473 2020 2020 7116 seconds │ │ │ │ 00000e50: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ 00000e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000ea0: 2d2d 2d2d 7c0a 7c28 3230 3235 2d30 392d ----|.|(2025-09- │ │ │ │ -00000eb0: 3230 2920 7838 365f 3634 2047 4e55 2f4c 20) x86_64 GNU/L │ │ │ │ -00000ec0: 696e 7578 2020 2020 2020 2020 2020 2020 inux │ │ │ │ +00000ea0: 2d2d 2d2d 7c0a 7c36 2e31 322e 3537 2d31 ----|.|6.12.57-1 │ │ │ │ +00000eb0: 2028 3230 3235 2d31 312d 3035 2920 7838 (2025-11-05) x8 │ │ │ │ +00000ec0: 365f 3634 2047 4e55 2f4c 696e 7578 2020 6_64 GNU/Linux │ │ │ │ 00000ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00000ef0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00000f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000f40: 2d2d 2d2d 2b0a 0a46 6f72 2074 6865 2070 ----+..For the p │ │ │ │ -00000f50: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00000f60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00000f70: 6520 6f62 6a65 6374 202a 6e6f 7465 2072 e object *note r │ │ │ │ -00000f80: 756e 4265 6e63 686d 6172 6b73 3a20 7275 unBenchmarks: ru │ │ │ │ -00000f90: 6e42 656e 6368 6d61 726b 732c 2069 7320 nBenchmarks, is │ │ │ │ -00000fa0: 6120 2a6e 6f74 6520 636f 6d6d 616e 643a a *note command: │ │ │ │ -00000fb0: 0a28 4d61 6361 756c 6179 3244 6f63 2943 .(Macaulay2Doc)C │ │ │ │ -00000fc0: 6f6d 6d61 6e64 2c2e 0a0a 2d2d 2d2d 2d2d ommand,...------ │ │ │ │ -00000fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00001000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00001010: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -00001020: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -00001030: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -00001040: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -00001050: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -00001060: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -00001070: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -00001080: 2f42 656e 6368 6d61 726b 2e0a 6d32 3a32 /Benchmark..m2:2 │ │ │ │ -00001090: 3937 3a30 2e0a 1f0a 5461 6720 5461 626c 97:0....Tag Tabl │ │ │ │ -000010a0: 653a 0a4e 6f64 653a 2054 6f70 7f32 3334 e:.Node: Top.234 │ │ │ │ -000010b0: 0a4e 6f64 653a 2072 756e 4265 6e63 686d .Node: runBenchm │ │ │ │ -000010c0: 6172 6b73 7f32 3033 350a 1f0a 456e 6420 arks.2035...End │ │ │ │ -000010d0: 5461 6720 5461 626c 650a Tag Table. │ │ │ │ +00000ef0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00000f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00000f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00000f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00000f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00000f40: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00000f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00000f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00000f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00000f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00000f90: 2d2d 2d2d 2b0a 0a46 6f72 2074 6865 2070 ----+..For the p │ │ │ │ +00000fa0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00000fb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00000fc0: 6520 6f62 6a65 6374 202a 6e6f 7465 2072 e object *note r │ │ │ │ +00000fd0: 756e 4265 6e63 686d 6172 6b73 3a20 7275 unBenchmarks: ru │ │ │ │ +00000fe0: 6e42 656e 6368 6d61 726b 732c 2069 7320 nBenchmarks, is │ │ │ │ +00000ff0: 6120 2a6e 6f74 6520 636f 6d6d 616e 643a a *note command: │ │ │ │ +00001000: 0a28 4d61 6361 756c 6179 3244 6f63 2943 .(Macaulay2Doc)C │ │ │ │ +00001010: 6f6d 6d61 6e64 2c2e 0a0a 2d2d 2d2d 2d2d ommand,...------ │ │ │ │ +00001020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00001030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00001040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00001050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00001060: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00001070: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00001080: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00001090: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +000010a0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +000010b0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +000010c0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +000010d0: 2f42 656e 6368 6d61 726b 2e0a 6d32 3a32 /Benchmark..m2:2 │ │ │ │ +000010e0: 3937 3a30 2e0a 1f0a 5461 6720 5461 626c 97:0....Tag Tabl │ │ │ │ +000010f0: 653a 0a4e 6f64 653a 2054 6f70 7f32 3334 e:.Node: Top.234 │ │ │ │ +00001100: 0a4e 6f64 653a 2072 756e 4265 6e63 686d .Node: runBenchm │ │ │ │ +00001110: 6172 6b73 7f32 3033 350a 1f0a 456e 6420 arks.2035...End │ │ │ │ +00001120: 5461 6720 5461 626c 650a Tag Table. │ │ ├── ./usr/share/info/Bertini.info.gz │ │ │ ├── Bertini.info │ │ │ │ @@ -2253,16 +2253,16 @@ │ │ │ │ 00008cc0: 616c 206e 756d 6265 720a 2020 2020 2020 al number. │ │ │ │ 00008cd0: 2020 6f72 2072 616e 646f 6d20 636f 6d70 or random comp │ │ │ │ 00008ce0: 6c65 7820 6e75 6d62 6572 0a20 2020 2020 lex number. │ │ │ │ 00008cf0: 202a 202a 6e6f 7465 2054 6f70 4469 7265 * *note TopDire │ │ │ │ 00008d00: 6374 6f72 793a 2054 6f70 4469 7265 6374 ctory: TopDirect │ │ │ │ 00008d10: 6f72 792c 203d 3e20 2e2e 2e2c 2064 6566 ory, => ..., def │ │ │ │ 00008d20: 6175 6c74 2076 616c 7565 0a20 2020 2020 ault value. │ │ │ │ -00008d30: 2020 2022 2f74 6d70 2f4d 322d 3238 3638 "/tmp/M2-2868 │ │ │ │ -00008d40: 372d 302f 3022 2c20 4f70 7469 6f6e 2074 7-0/0", Option t │ │ │ │ +00008d30: 2020 2022 2f74 6d70 2f4d 322d 3430 3939 "/tmp/M2-4099 │ │ │ │ +00008d40: 382d 302f 3022 2c20 4f70 7469 6f6e 2074 8-0/0", Option t │ │ │ │ 00008d50: 6f20 6368 616e 6765 2064 6972 6563 746f o change directo │ │ │ │ 00008d60: 7279 2066 6f72 2066 696c 6520 7374 6f72 ry for file stor │ │ │ │ 00008d70: 6167 652e 0a20 2020 2020 202a 202a 6e6f age.. * *no │ │ │ │ 00008d80: 7465 2056 6572 626f 7365 3a20 6265 7274 te Verbose: bert │ │ │ │ 00008d90: 696e 6954 7261 636b 486f 6d6f 746f 7079 iniTrackHomotopy │ │ │ │ 00008da0: 5f6c 705f 7064 5f70 645f 7064 5f63 6d56 _lp_pd_pd_pd_cmV │ │ │ │ 00008db0: 6572 626f 7365 3d3e 5f70 645f 7064 5f70 erbose=>_pd_pd_p │ │ │ │ @@ -4971,15 +4971,15 @@ │ │ │ │ 000136a0: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ 000136b0: 2064 6566 6175 6c74 2076 616c 7565 207b default value { │ │ │ │ 000136c0: 7d2c 200a 2020 2020 2020 2a20 2a6e 6f74 }, . * *not │ │ │ │ 000136d0: 6520 546f 7044 6972 6563 746f 7279 3a20 e TopDirectory: │ │ │ │ 000136e0: 546f 7044 6972 6563 746f 7279 2c20 3d3e TopDirectory, => │ │ │ │ 000136f0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ 00013700: 6c75 650a 2020 2020 2020 2020 222f 746d lue. "/tm │ │ │ │ -00013710: 702f 4d32 2d32 3836 3837 2d30 2f30 222c p/M2-28687-0/0", │ │ │ │ +00013710: 702f 4d32 2d34 3039 3938 2d30 2f30 222c p/M2-40998-0/0", │ │ │ │ 00013720: 204f 7074 696f 6e20 746f 2063 6861 6e67 Option to chang │ │ │ │ 00013730: 6520 6469 7265 6374 6f72 7920 666f 7220 e directory for │ │ │ │ 00013740: 6669 6c65 2073 746f 7261 6765 2e0a 2020 file storage.. │ │ │ │ 00013750: 2020 2020 2a20 2a6e 6f74 6520 5665 7262 * *note Verb │ │ │ │ 00013760: 6f73 653a 2062 6572 7469 6e69 5472 6163 ose: bertiniTrac │ │ │ │ 00013770: 6b48 6f6d 6f74 6f70 795f 6c70 5f70 645f kHomotopy_lp_pd_ │ │ │ │ 00013780: 7064 5f70 645f 636d 5665 7262 6f73 653d pd_pd_cmVerbose= │ │ │ │ @@ -5472,16 +5472,16 @@ │ │ │ │ 000155f0: 6561 6c20 6e75 6d62 6572 0a20 2020 2020 eal number. │ │ │ │ 00015600: 2020 206f 7220 7261 6e64 6f6d 2063 6f6d or random com │ │ │ │ 00015610: 706c 6578 206e 756d 6265 720a 2020 2020 plex number. │ │ │ │ 00015620: 2020 2a20 2a6e 6f74 6520 546f 7044 6972 * *note TopDir │ │ │ │ 00015630: 6563 746f 7279 3a20 546f 7044 6972 6563 ectory: TopDirec │ │ │ │ 00015640: 746f 7279 2c20 3d3e 202e 2e2e 2c20 6465 tory, => ..., de │ │ │ │ 00015650: 6661 756c 7420 7661 6c75 650a 2020 2020 fault value. │ │ │ │ -00015660: 2020 2020 222f 746d 702f 4d32 2d32 3836 "/tmp/M2-286 │ │ │ │ -00015670: 3837 2d30 2f30 222c 204f 7074 696f 6e20 87-0/0", Option │ │ │ │ +00015660: 2020 2020 222f 746d 702f 4d32 2d34 3039 "/tmp/M2-409 │ │ │ │ +00015670: 3938 2d30 2f30 222c 204f 7074 696f 6e20 98-0/0", Option │ │ │ │ 00015680: 746f 2063 6861 6e67 6520 6469 7265 6374 to change direct │ │ │ │ 00015690: 6f72 7920 666f 7220 6669 6c65 2073 746f ory for file sto │ │ │ │ 000156a0: 7261 6765 2e0a 2020 2020 2020 2a20 5573 rage.. * Us │ │ │ │ 000156b0: 6552 6567 656e 6572 6174 696f 6e20 286d eRegeneration (m │ │ │ │ 000156c0: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ 000156d0: 7469 6f6e 2920 3d3e 202e 2e2e 2c20 6465 tion) => ..., de │ │ │ │ 000156e0: 6661 756c 7420 7661 6c75 6520 2d31 2c20 fault value -1, │ │ ├── ./usr/share/info/BettiCharacters.info.gz │ │ │ ├── BettiCharacters.info │ │ │ │ @@ -12972,15 +12972,15 @@ │ │ │ │ 00032ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00032ad0: 0a7c 6939 203a 2065 6c61 7073 6564 5469 .|i9 : elapsedTi │ │ │ │ 00032ae0: 6d65 2063 203d 2063 6861 7261 6374 6572 me c = character │ │ │ │ 00032af0: 2041 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ 00032b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00032b20: 0a7c 202d 2d20 2e34 3730 3738 3573 2065 .| -- .470785s e │ │ │ │ +00032b20: 0a7c 202d 2d20 2e34 3233 3634 3673 2065 .| -- .423646s e │ │ │ │ 00032b30: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 00032b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00032b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00032b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -14183,15 +14183,15 @@ │ │ │ │ 00037660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037680: 2b0a 7c69 3720 3a20 656c 6170 7365 6454 +.|i7 : elapsedT │ │ │ │ 00037690: 696d 6520 633d 6368 6172 6163 7465 7220 ime c=character │ │ │ │ 000376a0: 4120 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ 000376b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000376c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000376d0: 7c0a 7c20 2d2d 202e 3339 3139 3939 7320 |.| -- .391999s │ │ │ │ +000376d0: 7c0a 7c20 2d2d 202e 3434 3835 3433 7320 |.| -- .448543s │ │ │ │ 000376e0: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 000376f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037720: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00037730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -15614,16 +15614,16 @@ │ │ │ │ 0003cfd0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 0003cfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d010: 2d2b 0a7c 6932 3020 3a20 656c 6170 7365 -+.|i20 : elapse │ │ │ │ 0003d020: 6454 696d 6520 6131 203d 2063 6861 7261 dTime a1 = chara │ │ │ │ 0003d030: 6374 6572 2041 3120 2020 2020 2020 2020 cter A1 │ │ │ │ -0003d040: 2020 2020 2020 7c0a 7c20 2d2d 202e 3735 |.| -- .75 │ │ │ │ -0003d050: 3034 3539 7320 656c 6170 7365 6420 2020 0459s elapsed │ │ │ │ +0003d040: 2020 2020 2020 7c0a 7c20 2d2d 202e 3736 |.| -- .76 │ │ │ │ +0003d050: 3232 3734 7320 656c 6170 7365 6420 2020 2274s elapsed │ │ │ │ 0003d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d070: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0003d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d0b0: 7c0a 7c6f 3230 203d 2043 6861 7261 6374 |.|o20 = Charact │ │ │ │ 0003d0c0: 6572 206f 7665 7220 5220 2020 2020 2020 er over R │ │ │ │ @@ -15654,15 +15654,15 @@ │ │ │ │ 0003d250: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ 0003d260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 0003d290: 6932 3120 3a20 656c 6170 7365 6454 696d i21 : elapsedTim │ │ │ │ 0003d2a0: 6520 6132 203d 2063 6861 7261 6374 6572 e a2 = character │ │ │ │ 0003d2b0: 2041 3220 2020 2020 2020 2020 2020 2020 A2 │ │ │ │ -0003d2c0: 2020 7c0a 7c20 2d2d 2033 342e 3031 3035 |.| -- 34.0105 │ │ │ │ +0003d2c0: 2020 7c0a 7c20 2d2d 2032 372e 3831 3031 |.| -- 27.8101 │ │ │ │ 0003d2d0: 7320 656c 6170 7365 6420 2020 2020 2020 s elapsed │ │ │ │ 0003d2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d2f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0003d300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d320: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 0003d330: 3231 203d 2043 6861 7261 6374 6572 206f 21 = Character o │ │ │ │ @@ -16112,16 +16112,16 @@ │ │ │ │ 0003eef0: 6f33 3120 3a20 4163 7469 6f6e 4f6e 4772 o31 : ActionOnGr │ │ │ │ 0003ef00: 6164 6564 4d6f 6475 6c65 2020 2020 2020 adedModule │ │ │ │ 0003ef10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0003ef20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ef30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 0003ef40: 6933 3220 3a20 656c 6170 7365 6454 696d i32 : elapsedTim │ │ │ │ 0003ef50: 6520 6220 3d20 6368 6172 6163 7465 7228 e b = character( │ │ │ │ -0003ef60: 422c 3231 297c 0a7c 202d 2d20 3134 2e30 B,21)|.| -- 14.0 │ │ │ │ -0003ef70: 3833 3473 2065 6c61 7073 6564 2020 2020 834s elapsed │ │ │ │ +0003ef60: 422c 3231 297c 0a7c 202d 2d20 3132 2e32 B,21)|.| -- 12.2 │ │ │ │ +0003ef70: 3833 3173 2065 6c61 7073 6564 2020 2020 831s elapsed │ │ │ │ 0003ef80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0003ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003efb0: 2020 2020 207c 0a7c 6f33 3220 3d20 4368 |.|o32 = Ch │ │ │ │ 0003efc0: 6172 6163 7465 7220 6f76 6572 2052 2020 aracter over R │ │ │ │ 0003efd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0003efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/Bruns.info.gz │ │ │ ├── Bruns.info │ │ │ │ @@ -1095,17 +1095,17 @@ │ │ │ │ 00004460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00004480: 6932 3320 3a20 7469 6d65 206a 3d62 7275 i23 : time j=bru │ │ │ │ 00004490: 6e73 2046 2e64 645f 333b 2020 2020 2020 ns F.dd_3; │ │ │ │ 000044a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000044b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000044c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000044d0: 202d 2d20 7573 6564 2030 2e32 3332 3833 -- used 0.23283 │ │ │ │ -000044e0: 3773 2028 6370 7529 3b20 302e 3137 3938 7s (cpu); 0.1798 │ │ │ │ -000044f0: 3036 7320 2874 6872 6561 6429 3b20 3073 06s (thread); 0s │ │ │ │ +000044d0: 202d 2d20 7573 6564 2030 2e32 3836 3939 -- used 0.28699 │ │ │ │ +000044e0: 3573 2028 6370 7529 3b20 302e 3231 3632 5s (cpu); 0.2162 │ │ │ │ +000044f0: 3534 7320 2874 6872 6561 6429 3b20 3073 54s (thread); 0s │ │ │ │ 00004500: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00004510: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00004520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004560: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ ├── ./usr/share/info/CellularResolutions.info.gz │ │ │ ├── CellularResolutions.info │ │ │ │ @@ -984,26 +984,26 @@ │ │ │ │ 00003d70: 2843 656c 6c20 6f66 2064 696d 656e 7369 (Cell of dimensi │ │ │ │ 00003d80: 6f6e 2031 2077 6974 6820 6c61 6265 6c7c on 1 with label| │ │ │ │ 00003d90: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ 00003da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00003de0: 0a7c 2020 2020 2020 312c 2031 292c 2028 .| 1, 1), ( │ │ │ │ -00003df0: 4365 6c6c 206f 6620 6469 6d65 6e73 696f Cell of dimensio │ │ │ │ -00003e00: 6e20 3120 7769 7468 206c 6162 656c 2031 n 1 with label 1 │ │ │ │ -00003e10: 2c20 2d31 292c 2028 4365 6c6c 206f 6620 , -1), (Cell of │ │ │ │ -00003e20: 6469 6d65 6e73 696f 6e20 3120 2020 207c dimension 1 | │ │ │ │ +00003de0: 0a7c 2020 2020 2020 312c 202d 3129 2c20 .| 1, -1), │ │ │ │ +00003df0: 2843 656c 6c20 6f66 2064 696d 656e 7369 (Cell of dimensi │ │ │ │ +00003e00: 6f6e 2031 2077 6974 6820 6c61 6265 6c20 on 1 with label │ │ │ │ +00003e10: 312c 202d 3129 2c20 2843 656c 6c20 6f66 1, -1), (Cell of │ │ │ │ +00003e20: 2064 696d 656e 7369 6f6e 2031 2020 207c dimension 1 | │ │ │ │ 00003e30: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ 00003e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ 00003e80: 0a7c 2020 2020 2020 7769 7468 206c 6162 .| with lab │ │ │ │ -00003e90: 656c 2031 2c20 2d31 297d 2020 2020 2020 el 1, -1)} │ │ │ │ +00003e90: 656c 2031 2c20 3129 7d20 2020 2020 2020 el 1, 1)} │ │ │ │ 00003ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003ec0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00003ed0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00003ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -2973,27 +2973,27 @@ │ │ │ │ 0000b9c0: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ 0000b9d0: 2048 6173 6854 6162 6c65 7b30 203d 3e20 HashTable{0 => │ │ │ │ 0000b9e0: 7b78 202c 2078 2079 2c20 7820 7920 2c20 {x , x y, x y , │ │ │ │ 0000b9f0: 7820 7920 2c20 782a 7920 2c20 7820 7d20 x y , x*y , x } │ │ │ │ 0000ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ba10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ba30: 2020 3520 3320 2020 3520 3420 2020 3420 5 3 5 4 4 │ │ │ │ -0000ba40: 3220 2020 3420 3420 2020 3520 2020 2033 2 4 4 5 3 │ │ │ │ -0000ba50: 2033 2020 2035 2032 2020 2032 2034 2020 3 5 2 2 4 │ │ │ │ -0000ba60: 2035 2033 2020 2020 207c 0a7c 2020 2020 5 3 |.| │ │ │ │ +0000ba30: 2020 3220 3420 2020 3520 3320 2020 3520 2 4 5 3 5 │ │ │ │ +0000ba40: 3420 2020 3520 2020 2035 2032 2020 2035 4 5 5 2 5 │ │ │ │ +0000ba50: 2033 2020 2035 2034 2020 2034 2032 2020 3 5 4 4 2 │ │ │ │ +0000ba60: 2034 2034 2020 2020 207c 0a7c 2020 2020 4 4 |.| │ │ │ │ 0000ba70: 2020 2020 2020 2020 2020 2031 203d 3e20 1 => │ │ │ │ 0000ba80: 7b78 2079 202c 2078 2079 202c 2078 2079 {x y , x y , x y │ │ │ │ -0000ba90: 202c 2078 2079 202c 2078 2079 2c20 7820 , x y , x y, x │ │ │ │ +0000ba90: 202c 2078 2079 2c20 7820 7920 2c20 7820 , x y, x y , x │ │ │ │ 0000baa0: 7920 2c20 7820 7920 2c20 7820 7920 2c20 y , x y , x y , │ │ │ │ 0000bab0: 7820 7920 2c20 2020 207c 0a7c 2020 2020 x y , |.| │ │ │ │ 0000bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bad0: 2020 3520 3420 2020 3520 3320 2020 3520 5 4 5 3 5 │ │ │ │ -0000bae0: 3420 2020 3520 3220 2020 3520 3420 2020 4 5 2 5 4 │ │ │ │ -0000baf0: 3520 3320 2020 3520 3420 2020 3520 3220 5 3 5 4 5 2 │ │ │ │ +0000bad0: 2020 3520 3220 2020 3520 3420 2020 3520 5 2 5 4 5 │ │ │ │ +0000bae0: 3320 2020 3520 3420 2020 3520 3220 2020 3 5 4 5 2 │ │ │ │ +0000baf0: 3520 3420 2020 3520 3320 2020 3520 3420 5 4 5 3 5 4 │ │ │ │ 0000bb00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000bb10: 2020 2020 2020 2020 2020 2032 203d 3e20 2 => │ │ │ │ 0000bb20: 7b78 2079 202c 2078 2079 202c 2078 2079 {x y , x y , x y │ │ │ │ 0000bb30: 202c 2078 2079 202c 2078 2079 202c 2078 , x y , x y , x │ │ │ │ 0000bb40: 2079 202c 2078 2079 202c 2078 2079 207d y , x y , x y } │ │ │ │ 0000bb50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000bb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -3011,21 +3011,21 @@ │ │ │ │ 0000bc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bc40: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ 0000bc50: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ 0000bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bc90: 2020 2020 2020 2020 207c 0a7c 2035 2034 |.| 5 4 │ │ │ │ -0000bca0: 2020 2035 2020 2020 3520 3220 2020 2020 5 5 2 │ │ │ │ +0000bc90: 2020 2020 2020 2020 207c 0a7c 2035 2020 |.| 5 │ │ │ │ +0000bca0: 2020 3320 3320 2020 3520 3220 2020 2020 3 3 5 2 │ │ │ │ 0000bcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bce0: 2020 2020 2020 2020 207c 0a7c 7820 7920 |.|x y │ │ │ │ -0000bcf0: 2c20 7820 792c 2078 2079 207d 2020 2020 , x y, x y } │ │ │ │ +0000bce0: 2020 2020 2020 2020 207c 0a7c 7820 792c |.|x y, │ │ │ │ +0000bcf0: 2078 2079 202c 2078 2079 207d 2020 2020 x y , x y } │ │ │ │ 0000bd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd30: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0000bd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -4011,17 +4011,17 @@ │ │ │ │ 0000faa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fab0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0000fac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000faf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -0000fb10: 7769 7468 206c 6162 656c 207a 2c20 4365 with label z, Ce │ │ │ │ +0000fb10: 7769 7468 206c 6162 656c 2078 2c20 4365 with label x, Ce │ │ │ │ 0000fb20: 6c6c 206f 6620 6469 6d65 6e73 696f 6e20 ll of dimension │ │ │ │ -0000fb30: 3020 7769 7468 206c 6162 656c 2078 7d7d 0 with label x}} │ │ │ │ +0000fb30: 3020 7769 7468 206c 6162 656c 207a 7d7d 0 with label z}} │ │ │ │ 0000fb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fb50: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0000fb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a2b -------------+.+ │ │ │ │ @@ -4290,25 +4290,25 @@ │ │ │ │ 00010c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c50: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ 00010c60: 3d20 7b43 656c 6c20 6f66 2064 696d 656e = {Cell of dimen │ │ │ │ 00010c70: 7369 6f6e 2030 2077 6974 6820 6c61 6265 sion 0 with labe │ │ │ │ -00010c80: 6c20 792c 2043 656c 6c20 6f66 2064 696d l y, Cell of dim │ │ │ │ +00010c80: 6c20 782c 2043 656c 6c20 6f66 2064 696d l x, Cell of dim │ │ │ │ 00010c90: 656e 7369 6f6e 2030 2077 6974 6820 6c61 ension 0 with la │ │ │ │ -00010ca0: 6265 6c20 782c 2020 2020 7c0a 7c20 2020 bel x, |.| │ │ │ │ +00010ca0: 6265 6c20 7a2c 2020 2020 7c0a 7c20 2020 bel z, |.| │ │ │ │ 00010cb0: 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d -------------- │ │ │ │ 00010cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 ----------|.| │ │ │ │ 00010d00: 2020 4365 6c6c 206f 6620 6469 6d65 6e73 Cell of dimens │ │ │ │ 00010d10: 696f 6e20 3020 7769 7468 206c 6162 656c ion 0 with label │ │ │ │ -00010d20: 207a 7d20 2020 2020 2020 2020 2020 2020 z} │ │ │ │ +00010d20: 2079 7d20 2020 2020 2020 2020 2020 2020 y} │ │ │ │ 00010d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00010d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d90: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ @@ -6321,22 +6321,22 @@ │ │ │ │ 00018b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00018b20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00018b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018b60: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00018b70: 2020 2020 3420 3520 2020 3220 2020 2020 4 5 2 │ │ │ │ -00018b80: 2020 2032 2020 2020 3420 3420 2020 2035 2 4 4 5 │ │ │ │ -00018b90: 2033 2020 2020 3520 3420 2020 3320 3520 3 5 4 3 5 │ │ │ │ +00018b70: 2020 2020 3520 3320 2020 2035 2034 2020 5 3 5 4 │ │ │ │ +00018b80: 2033 2035 2020 2020 3420 3520 2020 3220 3 5 4 5 2 │ │ │ │ +00018b90: 2020 2020 2020 2032 2020 2020 3420 3420 2 4 4 │ │ │ │ 00018ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018bb0: 2020 2020 207c 0a7c 6f35 203d 207b 7820 |.|o5 = {x │ │ │ │ -00018bc0: 7920 2c20 7820 792a 7a2c 2078 2a79 207a y , x y*z, x*y z │ │ │ │ -00018bd0: 2c20 7820 7920 7a2c 2078 2079 207a 2c20 , x y z, x y z, │ │ │ │ -00018be0: 7820 7920 2c20 7820 7920 7a7d 2020 2020 x y , x y z} │ │ │ │ +00018bc0: 7920 7a2c 2078 2079 202c 2078 2079 207a y z, x y , x y z │ │ │ │ +00018bd0: 2c20 7820 7920 2c20 7820 792a 7a2c 2078 , x y , x y*z, x │ │ │ │ +00018be0: 2a79 207a 2c20 7820 7920 7a7d 2020 2020 *y z, x y z} │ │ │ │ 00018bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00018c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c40: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ 00018c50: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ @@ -8240,21 +8240,21 @@ │ │ │ │ 000202f0: 6c4c 6162 656c 2863 2920 2020 2020 2020 lLabel(c) │ │ │ │ 00020300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020310: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020360: 2020 7c0a 7c20 2020 2020 2020 2032 2020 |.| 2 │ │ │ │ -00020370: 2020 2020 3220 2020 3220 2020 2020 2020 2 2 │ │ │ │ +00020360: 2020 7c0a 7c20 2020 2020 2020 2020 2032 |.| 2 │ │ │ │ +00020370: 2020 2032 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ 00020380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203b0: 2020 7c0a 7c6f 3133 203d 207b 6120 622c |.|o13 = {a b, │ │ │ │ -000203c0: 2062 2a63 202c 2062 202c 2061 2a63 7d20 b*c , b , a*c} │ │ │ │ +000203b0: 2020 7c0a 7c6f 3133 203d 207b 622a 6320 |.|o13 = {b*c │ │ │ │ +000203c0: 2c20 6220 2c20 612a 632c 2061 2062 7d20 , b , a*c, a b} │ │ │ │ 000203d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020400: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -8275,22 +8275,22 @@ │ │ │ │ 00020520: 6c4c 6162 656c 2863 2920 2020 2020 2020 lLabel(c) │ │ │ │ 00020530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020540: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020590: 2020 7c0a 7c20 2020 2020 2020 2032 2020 |.| 2 │ │ │ │ -000205a0: 2032 2020 2032 2032 2020 2032 2032 2020 2 2 2 2 2 │ │ │ │ -000205b0: 2020 2020 2032 2020 2020 2032 2020 2020 2 2 │ │ │ │ +00020590: 2020 7c0a 7c20 2020 2020 2020 2032 2032 |.| 2 2 │ │ │ │ +000205a0: 2020 2020 2020 2032 2020 2020 2032 2020 2 2 │ │ │ │ +000205b0: 2020 3220 2020 3220 2020 3220 3220 2020 2 2 2 2 │ │ │ │ 000205c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000205d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000205e0: 2020 7c0a 7c6f 3134 203d 207b 6120 622a |.|o14 = {a b* │ │ │ │ -000205f0: 6320 2c20 6120 6220 2c20 6220 6320 2c20 c , a b , b c , │ │ │ │ -00020600: 612a 622a 6320 2c20 612a 6220 637d 2020 a*b*c , a*b c} │ │ │ │ +000205e0: 2020 7c0a 7c6f 3134 203d 207b 6220 6320 |.|o14 = {b c │ │ │ │ +000205f0: 2c20 612a 622a 6320 2c20 612a 6220 632c , a*b*c , a*b c, │ │ │ │ +00020600: 2061 2062 2a63 202c 2061 2062 207d 2020 a b*c , a b } │ │ │ │ 00020610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020630: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/ChainComplexExtras.info.gz │ │ │ ├── ChainComplexExtras.info │ │ │ │ @@ -4819,16 +4819,16 @@ │ │ │ │ 00012d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00012d50: 3133 203a 2074 696d 6520 6d20 3d20 6d69 13 : time m = mi │ │ │ │ 00012d60: 6e69 6d69 7a65 2028 455b 315d 293b 2020 nimize (E[1]); │ │ │ │ 00012d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012d80: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00012d90: 302e 3237 3337 3032 7320 2863 7075 293b 0.273702s (cpu); │ │ │ │ -00012da0: 2030 2e32 3133 3536 3973 2028 7468 7265 0.213569s (thre │ │ │ │ +00012d90: 302e 3335 3433 3832 7320 2863 7075 293b 0.354382s (cpu); │ │ │ │ +00012da0: 2030 2e32 3730 3437 3473 2028 7468 7265 0.270474s (thre │ │ │ │ 00012db0: 6164 293b 2030 7320 2867 6329 7c0a 2b2d ad); 0s (gc)|.+- │ │ │ │ 00012dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012df0: 2d2d 2d2d 2b0a 7c69 3134 203a 2069 7351 ----+.|i14 : isQ │ │ │ │ 00012e00: 7561 7369 4973 6f6d 6f72 7068 6973 6d20 uasiIsomorphism │ │ │ │ 00012e10: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ @@ -6579,33 +6579,33 @@ │ │ │ │ 00019b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00019b40: 3820 3a20 7469 6d65 206d 203d 2072 6573 8 : time m = res │ │ │ │ 00019b50: 6f6c 7574 696f 6e4f 6643 6861 696e 436f olutionOfChainCo │ │ │ │ 00019b60: 6d70 6c65 7820 433b 2020 2020 2020 2020 mplex C; │ │ │ │ 00019b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019b80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00019b90: 2d2d 2075 7365 6420 302e 3039 3437 3737 -- used 0.094777 │ │ │ │ -00019ba0: 3473 2028 6370 7529 3b20 302e 3039 3437 4s (cpu); 0.0947 │ │ │ │ -00019bb0: 3737 3173 2028 7468 7265 6164 293b 2030 771s (thread); 0 │ │ │ │ -00019bc0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +00019b90: 2d2d 2075 7365 6420 302e 3130 3636 3735 -- used 0.106675 │ │ │ │ +00019ba0: 7320 2863 7075 293b 2030 2e31 3036 3637 s (cpu); 0.10667 │ │ │ │ +00019bb0: 3873 2028 7468 7265 6164 293b 2030 7320 8s (thread); 0s │ │ │ │ +00019bc0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00019bd0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 00019be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00019c30: 3920 3a20 7469 6d65 206e 203d 2063 6172 9 : time n = car │ │ │ │ 00019c40: 7461 6e45 696c 656e 6265 7267 5265 736f tanEilenbergReso │ │ │ │ 00019c50: 6c75 7469 6f6e 2043 3b20 2020 2020 2020 lution C; │ │ │ │ 00019c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00019c80: 2d2d 2075 7365 6420 302e 3231 3532 3432 -- used 0.215242 │ │ │ │ -00019c90: 7320 2863 7075 293b 2030 2e31 3734 3238 s (cpu); 0.17428 │ │ │ │ -00019ca0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00019cb0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +00019c80: 2d2d 2075 7365 6420 302e 3236 3036 3337 -- used 0.260637 │ │ │ │ +00019c90: 7320 2863 7075 293b 2030 2e31 3736 3339 s (cpu); 0.17639 │ │ │ │ +00019ca0: 3373 2028 7468 7265 6164 293b 2030 7320 3s (thread); 0s │ │ │ │ +00019cb0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00019cc0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 00019cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00019d20: 3130 203a 2062 6574 7469 2073 6f75 7263 10 : betti sourc │ │ ├── ./usr/share/info/CharacteristicClasses.info.gz │ │ │ ├── CharacteristicClasses.info │ │ │ │ @@ -1215,18 +1215,18 @@ │ │ │ │ 00004be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004bf0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ 00004c00: 2074 696d 6520 4353 4d20 5520 2020 2020 time CSM U │ │ │ │ 00004c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004c40: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -00004c50: 7573 6564 2030 2e32 3332 3737 7320 2863 used 0.23277s (c │ │ │ │ -00004c60: 7075 293b 2030 2e31 3534 3631 7320 2874 pu); 0.15461s (t │ │ │ │ -00004c70: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ -00004c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004c50: 7573 6564 2030 2e32 3938 3130 3773 2028 used 0.298107s ( │ │ │ │ +00004c60: 6370 7529 3b20 302e 3139 3834 3532 7320 cpu); 0.198452s │ │ │ │ +00004c70: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +00004c80: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00004c90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00004ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004ce0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00004cf0: 2020 2037 2020 2020 2020 3620 2020 2020 7 6 │ │ │ │ @@ -1300,16 +1300,16 @@ │ │ │ │ 00005130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00005140: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ 00005150: 2074 696d 6520 4353 4d28 552c 4368 6563 time CSM(U,Chec │ │ │ │ 00005160: 6b53 6d6f 6f74 683d 3e66 616c 7365 2920 kSmooth=>false) │ │ │ │ 00005170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005190: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -000051a0: 7573 6564 2030 2e33 3539 3132 3473 2028 used 0.359124s ( │ │ │ │ -000051b0: 6370 7529 3b20 302e 3239 3135 3238 7320 cpu); 0.291528s │ │ │ │ +000051a0: 7573 6564 2030 2e34 3633 3736 3573 2028 used 0.463765s ( │ │ │ │ +000051b0: 6370 7529 3b20 302e 3336 3236 3735 7320 cpu); 0.362675s │ │ │ │ 000051c0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 000051d0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000051e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000051f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4341,18 +4341,18 @@ │ │ │ │ 00010f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f60: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ 00010f70: 2074 696d 6520 4353 4d28 492c 436f 6d70 time CSM(I,Comp │ │ │ │ 00010f80: 4d65 7468 6f64 3d3e 5072 6f6a 6563 7469 Method=>Projecti │ │ │ │ 00010f90: 7665 4465 6772 6565 2920 2020 2020 2020 veDegree) │ │ │ │ 00010fa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00010fb0: 2d2d 2075 7365 6420 302e 3632 3839 3531 -- used 0.628951 │ │ │ │ -00010fc0: 7320 2863 7075 293b 2030 2e33 3036 3237 s (cpu); 0.30627 │ │ │ │ -00010fd0: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ -00010fe0: 2867 6329 2020 2020 2020 2020 2020 207c (gc) | │ │ │ │ +00010fb0: 2d2d 2075 7365 6420 312e 3335 3439 3373 -- used 1.35493s │ │ │ │ +00010fc0: 2028 6370 7529 3b20 302e 3430 3830 3335 (cpu); 0.408035 │ │ │ │ +00010fd0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00010fe0: 6763 2920 2020 2020 2020 2020 2020 207c gc) | │ │ │ │ 00010ff0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011030: 2020 7c0a 7c20 2020 2020 2020 3520 2020 |.| 5 │ │ │ │ 00011040: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ 00011050: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ @@ -4400,16 +4400,16 @@ │ │ │ │ 000112f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011310: 2d2d 2d2b 0a7c 6936 203a 2074 696d 6520 ---+.|i6 : time │ │ │ │ 00011320: 4353 4d28 492c 436f 6d70 4d65 7468 6f64 CSM(I,CompMethod │ │ │ │ 00011330: 3d3e 506e 5265 7369 6475 616c 2920 2020 =>PnResidual) │ │ │ │ 00011340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011350: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00011360: 6420 322e 3237 3532 3973 2028 6370 7529 d 2.27529s (cpu) │ │ │ │ -00011370: 3b20 312e 3837 3834 3373 2028 7468 7265 ; 1.87843s (thre │ │ │ │ +00011360: 6420 322e 3439 3630 3173 2028 6370 7529 d 2.49601s (cpu) │ │ │ │ +00011370: 3b20 322e 3135 3135 3373 2028 7468 7265 ; 2.15153s (thre │ │ │ │ 00011380: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00011390: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000113a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000113e0: 2020 2020 2020 3520 2020 2020 2034 2020 5 4 │ │ │ │ @@ -4488,17 +4488,17 @@ │ │ │ │ 00011870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011890: 2d2d 2b0a 7c69 3130 203a 2074 696d 6520 --+.|i10 : time │ │ │ │ 000118a0: 4353 4d28 4b2c 436f 6d70 4d65 7468 6f64 CSM(K,CompMethod │ │ │ │ 000118b0: 3d3e 5072 6f6a 6563 7469 7665 4465 6772 =>ProjectiveDegr │ │ │ │ 000118c0: 6565 2920 2020 2020 2020 2020 2020 2020 ee) │ │ │ │ 000118d0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -000118e0: 2030 2e32 3737 3838 3573 2028 6370 7529 0.277885s (cpu) │ │ │ │ -000118f0: 3b20 302e 3230 3430 3373 2028 7468 7265 ; 0.20403s (thre │ │ │ │ -00011900: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +000118e0: 2030 2e33 3634 3032 3273 2028 6370 7529 0.364022s (cpu) │ │ │ │ +000118f0: 3b20 302e 3235 3038 3335 7320 2874 6872 ; 0.250835s (thr │ │ │ │ +00011900: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00011910: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00011920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011950: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00011960: 2020 2020 2020 3320 2020 2020 3220 2020 3 2 │ │ │ │ 00011970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4546,18 +4546,18 @@ │ │ │ │ 00011c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00011c40: 3131 203a 2074 696d 6520 4353 4d28 4b2c 11 : time CSM(K, │ │ │ │ 00011c50: 436f 6d70 4d65 7468 6f64 3d3e 506e 5265 CompMethod=>PnRe │ │ │ │ 00011c60: 7369 6475 616c 2920 2020 2020 2020 2020 sidual) │ │ │ │ 00011c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00011c80: 0a7c 202d 2d20 7573 6564 2030 2e30 3831 .| -- used 0.081 │ │ │ │ -00011c90: 3931 3534 7320 2863 7075 293b 2030 2e30 9154s (cpu); 0.0 │ │ │ │ -00011ca0: 3831 3932 3332 7320 2874 6872 6561 6429 819232s (thread) │ │ │ │ -00011cb0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00011c80: 0a7c 202d 2d20 7573 6564 2030 2e31 3038 .| -- used 0.108 │ │ │ │ +00011c90: 3330 3373 2028 6370 7529 3b20 302e 3130 303s (cpu); 0.10 │ │ │ │ +00011ca0: 3833 3037 7320 2874 6872 6561 6429 3b20 8307s (thread); │ │ │ │ +00011cb0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 00011cc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00011d10: 3320 2020 2020 3220 2020 2020 2020 2020 3 2 │ │ │ │ 00011d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5543,16 +5543,16 @@ │ │ │ │ 00015a60: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00015a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015a90: 2d2d 2d2d 2d2d 2b0a 7c69 3135 203a 2074 ------+.|i15 : t │ │ │ │ 00015aa0: 696d 6520 6373 6d4b 3d43 534d 2841 2c4b ime csmK=CSM(A,K │ │ │ │ 00015ab0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00015ac0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015ad0: 202d 2d20 7573 6564 2030 2e36 3630 3035 -- used 0.66005 │ │ │ │ -00015ae0: 7320 2863 7075 293b 2030 2e33 3836 3930 s (cpu); 0.38690 │ │ │ │ +00015ad0: 202d 2d20 7573 6564 2031 2e34 3931 3733 -- used 1.49173 │ │ │ │ +00015ae0: 7320 2863 7075 293b 2030 2e34 3338 3638 s (cpu); 0.43868 │ │ │ │ 00015af0: 3573 2028 7468 7265 6164 293b 2030 7320 5s (thread); 0s │ │ │ │ 00015b00: 2867 6329 7c0a 7c20 2020 2020 2020 2020 (gc)|.| │ │ │ │ 00015b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015b30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00015b40: 2020 2020 2020 3220 3220 2020 2020 3220 2 2 2 │ │ │ │ 00015b50: 2020 2020 2020 2020 3220 2020 2032 2020 2 2 │ │ │ │ @@ -5721,17 +5721,17 @@ │ │ │ │ 00016580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000165a0: 2d2d 2d2d 2d2d 2b0a 7c69 3232 203a 2074 ------+.|i22 : t │ │ │ │ 000165b0: 696d 6520 4353 4d28 412c 4b2c 6d29 2020 ime CSM(A,K,m) │ │ │ │ 000165c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000165d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000165e0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000165f0: 302e 3039 3135 3831 3973 2028 6370 7529 0.0915819s (cpu) │ │ │ │ -00016600: 3b20 302e 3036 3030 3634 3273 2028 7468 ; 0.0600642s (th │ │ │ │ -00016610: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +000165f0: 302e 3132 3734 3832 7320 2863 7075 293b 0.127482s (cpu); │ │ │ │ +00016600: 2030 2e30 3830 3838 3633 7320 2874 6872 0.0808863s (thr │ │ │ │ +00016610: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00016620: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016660: 7c0a 7c20 2020 2020 2020 2032 2032 2020 |.| 2 2 │ │ │ │ 00016670: 2020 2032 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ 00016680: 2020 3220 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ @@ -6691,16 +6691,16 @@ │ │ │ │ 0001a220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a230: 2d2d 2b0a 7c69 3420 3a20 7469 6d65 2045 --+.|i4 : time E │ │ │ │ 0001a240: 756c 6572 2849 2c49 6e70 7574 4973 536d uler(I,InputIsSm │ │ │ │ 0001a250: 6f6f 7468 3d3e 7472 7565 2920 2020 2020 ooth=>true) │ │ │ │ 0001a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a280: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -0001a290: 3037 3836 3232 3373 2028 6370 7529 3b20 0786223s (cpu); │ │ │ │ -0001a2a0: 302e 3033 3539 3036 3973 2028 7468 7265 0.0359069s (thre │ │ │ │ +0001a290: 3039 3135 3235 3173 2028 6370 7529 3b20 0915251s (cpu); │ │ │ │ +0001a2a0: 302e 3034 3831 3438 3273 2028 7468 7265 0.0481482s (thre │ │ │ │ 0001a2b0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 0001a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a2d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -6716,16 +6716,16 @@ │ │ │ │ 0001a3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a3c0: 2d2d 2b0a 7c69 3520 3a20 7469 6d65 2045 --+.|i5 : time E │ │ │ │ 0001a3d0: 756c 6572 2049 2020 2020 2020 2020 2020 uler I │ │ │ │ 0001a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a410: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -0001a420: 3235 3639 3636 7320 2863 7075 293b 2030 256966s (cpu); 0 │ │ │ │ -0001a430: 2e31 3532 3633 3673 2028 7468 7265 6164 .152636s (thread │ │ │ │ +0001a420: 3332 3739 3537 7320 2863 7075 293b 2030 327957s (cpu); 0 │ │ │ │ +0001a430: 2e31 3834 3436 3873 2028 7468 7265 6164 .184468s (thread │ │ │ │ 0001a440: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 0001a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a460: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -6919,16 +6919,16 @@ │ │ │ │ 0001b060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b080: 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a 2074 ------+.|i10 : t │ │ │ │ 0001b090: 696d 6520 4575 6c65 7228 4a2c 4d65 7468 ime Euler(J,Meth │ │ │ │ 0001b0a0: 6f64 3d3e 4469 7265 6374 436f 6d70 6c65 od=>DirectComple │ │ │ │ 0001b0b0: 7465 496e 7429 2020 2020 2020 2020 2020 teInt) │ │ │ │ 0001b0c0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -0001b0d0: 2075 7365 6420 302e 3133 3336 3731 7320 used 0.133671s │ │ │ │ -0001b0e0: 2863 7075 293b 2030 2e30 3734 3832 3937 (cpu); 0.0748297 │ │ │ │ +0001b0d0: 2075 7365 6420 302e 3232 3230 3231 7320 used 0.222021s │ │ │ │ +0001b0e0: 2863 7075 293b 2030 2e30 3938 3031 3737 (cpu); 0.0980177 │ │ │ │ 0001b0f0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 0001b100: 6763 2920 2020 2020 2020 2020 2020 7c0a gc) |. │ │ │ │ 0001b110: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b150: 2020 7c0a 7c6f 3130 203d 2032 2020 2020 |.|o10 = 2 │ │ │ │ @@ -6940,17 +6940,17 @@ │ │ │ │ 0001b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 ----------+.|i11 │ │ │ │ 0001b1e0: 203a 2074 696d 6520 4575 6c65 7228 4a2c : time Euler(J, │ │ │ │ 0001b1f0: 4d65 7468 6f64 3d3e 4469 7265 6374 436f Method=>DirectCo │ │ │ │ 0001b200: 6d70 6c65 7465 496e 742c 496e 6473 4f66 mpleteInt,IndsOf │ │ │ │ 0001b210: 536d 6f6f 7468 3d3e 7b30 2c31 7d29 7c0a Smooth=>{0,1})|. │ │ │ │ -0001b220: 7c20 2d2d 2075 7365 6420 302e 3232 3439 | -- used 0.2249 │ │ │ │ -0001b230: 3533 7320 2863 7075 293b 2030 2e31 3032 53s (cpu); 0.102 │ │ │ │ -0001b240: 3936 3773 2028 7468 7265 6164 293b 2030 967s (thread); 0 │ │ │ │ +0001b220: 7c20 2d2d 2075 7365 6420 302e 3238 3438 | -- used 0.2848 │ │ │ │ +0001b230: 3436 7320 2863 7075 293b 2030 2e31 3037 46s (cpu); 0.107 │ │ │ │ +0001b240: 3530 3973 2028 7468 7265 6164 293b 2030 509s (thread); 0 │ │ │ │ 0001b250: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 0001b260: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b2a0: 2020 2020 2020 7c0a 7c6f 3131 203d 2032 |.|o11 = 2 │ │ │ │ 0001b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -7511,4725 +7511,4723 @@ │ │ │ │ 0001d560: 6f6d 6d61 6e64 2063 6f6d 7075 7465 7320 ommand computes │ │ │ │ 0001d570: 7468 6520 4575 6c65 7220 6368 6172 6163 the Euler charac │ │ │ │ 0001d580: 7465 7269 7374 6963 206f 6620 6120 636f teristic of a co │ │ │ │ 0001d590: 6d70 6c65 7820 6166 6669 6e65 2076 6172 mplex affine var │ │ │ │ 0001d5a0: 6965 7479 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d iety...+-------- │ │ │ │ 0001d5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001d5e0: 0a7c 6931 203a 206b 6b3d 5a5a 2f33 3237 .|i1 : kk=ZZ/327 │ │ │ │ -0001d5f0: 3439 3b20 2020 2020 2020 2020 2020 2020 49; │ │ │ │ +0001d5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0001d5e0: 7c69 3120 3a20 6b6b 3d5a 5a2f 3332 3734 |i1 : kk=ZZ/3274 │ │ │ │ +0001d5f0: 393b 2020 2020 2020 2020 2020 2020 2020 9; │ │ │ │ 0001d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d610: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001d610: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0001d620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d650: 2d2d 2d2b 0a7c 6932 203a 2052 3d6b 6b5b ---+.|i2 : R=kk[ │ │ │ │ -0001d660: 785f 312e 2e78 5f33 5d20 2020 2020 2020 x_1..x_3] │ │ │ │ +0001d650: 2b0a 7c69 3220 3a20 523d 6b6b 5b78 5f31 +.|i2 : R=kk[x_1 │ │ │ │ +0001d660: 2e2e 785f 335d 2020 2020 2020 2020 2020 ..x_3] │ │ │ │ 0001d670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d680: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001d680: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001d690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d6c0: 2020 2020 2020 207c 0a7c 6f32 203d 2052 |.|o2 = R │ │ │ │ +0001d6c0: 2020 7c0a 7c6f 3220 3d20 5220 2020 2020 |.|o2 = R │ │ │ │ 0001d6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d700: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001d6f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001d700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d730: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -0001d740: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ -0001d750: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -0001d760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d770: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001d730: 2020 2020 7c0a 7c6f 3220 3a20 506f 6c79 |.|o2 : Poly │ │ │ │ +0001d740: 6e6f 6d69 616c 5269 6e67 2020 2020 2020 nomialRing │ │ │ │ +0001d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d760: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001d770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001d7b0: 0a7c 6933 203a 2049 3d69 6465 616c 2878 .|i3 : I=ideal(x │ │ │ │ -0001d7c0: 5f31 5e32 2b78 5f32 5e32 2b78 5f33 5e32 _1^2+x_2^2+x_3^2 │ │ │ │ -0001d7d0: 2d31 2920 2020 2020 2020 2020 2020 2020 -1) │ │ │ │ -0001d7e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001d7a0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 493d ------+.|i3 : I= │ │ │ │ +0001d7b0: 6964 6561 6c28 785f 315e 322b 785f 325e ideal(x_1^2+x_2^ │ │ │ │ +0001d7c0: 322b 785f 335e 322d 3129 2020 2020 2020 2+x_3^2-1) │ │ │ │ +0001d7d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001d7e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d820: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001d830: 2020 3220 2020 2032 2020 2020 3220 2020 2 2 2 │ │ │ │ +0001d810: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001d820: 2020 2020 2020 2032 2020 2020 3220 2020 2 2 │ │ │ │ +0001d830: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d850: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001d860: 6f33 203d 2069 6465 616c 2878 2020 2b20 o3 = ideal(x + │ │ │ │ -0001d870: 7820 202b 2078 2020 2d20 3129 2020 2020 x + x - 1) │ │ │ │ -0001d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d890: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001d8a0: 2020 2020 2020 3120 2020 2032 2020 2020 1 2 │ │ │ │ -0001d8b0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0001d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d8d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001d850: 207c 0a7c 6f33 203d 2069 6465 616c 2878 |.|o3 = ideal(x │ │ │ │ +0001d860: 2020 2b20 7820 202b 2078 2020 2d20 3129 + x + x - 1) │ │ │ │ +0001d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d880: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001d890: 2020 2020 2020 2020 2031 2020 2020 3220 1 2 │ │ │ │ +0001d8a0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0001d8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d8c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d900: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -0001d910: 203a 2049 6465 616c 206f 6620 5220 2020 : Ideal of R │ │ │ │ +0001d8f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0001d900: 3320 3a20 4964 6561 6c20 6f66 2052 2020 3 : Ideal of R │ │ │ │ +0001d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d940: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001d930: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001d940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001d980: 0a7c 6934 203a 2074 696d 6520 4575 6c65 .|i4 : time Eule │ │ │ │ -0001d990: 7241 6666 696e 6520 4920 2020 2020 2020 rAffine I │ │ │ │ -0001d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d9b0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -0001d9c0: 7573 6564 2030 2e30 3630 3336 3833 7320 used 0.0603683s │ │ │ │ -0001d9d0: 2863 7075 293b 2030 2e30 3535 3038 3331 (cpu); 0.0550831 │ │ │ │ -0001d9e0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -0001d9f0: 6763 297c 0a7c 2020 2020 2020 2020 2020 gc)|.| │ │ │ │ +0001d960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0001d970: 7c69 3420 3a20 7469 6d65 2045 756c 6572 |i4 : time Euler │ │ │ │ +0001d980: 4166 6669 6e65 2049 2020 2020 2020 2020 Affine I │ │ │ │ +0001d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d9a0: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ +0001d9b0: 6564 2030 2e30 3835 3432 3431 7320 2863 ed 0.0854241s (c │ │ │ │ +0001d9c0: 7075 293b 2030 2e30 3637 3133 3273 2028 pu); 0.067132s ( │ │ │ │ +0001d9d0: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +0001d9e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001d9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001da00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001da30: 6f34 203d 2032 2020 2020 2020 2020 2020 o4 = 2 │ │ │ │ +0001da10: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ +0001da20: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001da30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001da40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001da50: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001da60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001da70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001da80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001da90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001daa0: 2d2b 0a0a 4f62 7365 7276 6520 7468 6174 -+..Observe that │ │ │ │ -0001dab0: 2074 6865 2061 6c67 6f72 6974 686d 2069 the algorithm i │ │ │ │ -0001dac0: 7320 6120 7072 6f62 6162 696c 6973 7469 s a probabilisti │ │ │ │ -0001dad0: 6320 616c 676f 7269 7468 6d20 616e 6420 c algorithm and │ │ │ │ -0001dae0: 6d61 7920 6769 7665 2061 2077 726f 6e67 may give a wrong │ │ │ │ -0001daf0: 0a61 6e73 7765 7220 7769 7468 2061 2073 .answer with a s │ │ │ │ -0001db00: 6d61 6c6c 2062 7574 206e 6f6e 7a65 726f mall but nonzero │ │ │ │ -0001db10: 2070 726f 6261 6269 6c69 7479 2e20 5265 probability. Re │ │ │ │ -0001db20: 6164 206d 6f72 6520 756e 6465 7220 2a6e ad more under *n │ │ │ │ -0001db30: 6f74 650a 7072 6f62 6162 696c 6973 7469 ote.probabilisti │ │ │ │ -0001db40: 6320 616c 676f 7269 7468 6d3a 2070 726f c algorithm: pro │ │ │ │ -0001db50: 6261 6269 6c69 7374 6963 2061 6c67 6f72 babilistic algor │ │ │ │ -0001db60: 6974 686d 2c2e 0a0a 5761 7973 2074 6f20 ithm,...Ways to │ │ │ │ -0001db70: 7573 6520 4575 6c65 7241 6666 696e 653a use EulerAffine: │ │ │ │ -0001db80: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0001db90: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -0001dba0: 4575 6c65 7241 6666 696e 6528 4964 6561 EulerAffine(Idea │ │ │ │ -0001dbb0: 6c29 220a 0a46 6f72 2074 6865 2070 726f l)"..For the pro │ │ │ │ -0001dbc0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0001dbd0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0001dbe0: 6f62 6a65 6374 202a 6e6f 7465 2045 756c object *note Eul │ │ │ │ -0001dbf0: 6572 4166 6669 6e65 3a20 4575 6c65 7241 erAffine: EulerA │ │ │ │ -0001dc00: 6666 696e 652c 2069 7320 6120 2a6e 6f74 ffine, is a *not │ │ │ │ -0001dc10: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ -0001dc20: 6e3a 0a28 4d61 6361 756c 6179 3244 6f63 n:.(Macaulay2Doc │ │ │ │ -0001dc30: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ -0001dc40: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +0001da80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4f62 -----------+..Ob │ │ │ │ +0001da90: 7365 7276 6520 7468 6174 2074 6865 2061 serve that the a │ │ │ │ +0001daa0: 6c67 6f72 6974 686d 2069 7320 6120 7072 lgorithm is a pr │ │ │ │ +0001dab0: 6f62 6162 696c 6973 7469 6320 616c 676f obabilistic algo │ │ │ │ +0001dac0: 7269 7468 6d20 616e 6420 6d61 7920 6769 rithm and may gi │ │ │ │ +0001dad0: 7665 2061 2077 726f 6e67 0a61 6e73 7765 ve a wrong.answe │ │ │ │ +0001dae0: 7220 7769 7468 2061 2073 6d61 6c6c 2062 r with a small b │ │ │ │ +0001daf0: 7574 206e 6f6e 7a65 726f 2070 726f 6261 ut nonzero proba │ │ │ │ +0001db00: 6269 6c69 7479 2e20 5265 6164 206d 6f72 bility. Read mor │ │ │ │ +0001db10: 6520 756e 6465 7220 2a6e 6f74 650a 7072 e under *note.pr │ │ │ │ +0001db20: 6f62 6162 696c 6973 7469 6320 616c 676f obabilistic algo │ │ │ │ +0001db30: 7269 7468 6d3a 2070 726f 6261 6269 6c69 rithm: probabili │ │ │ │ +0001db40: 7374 6963 2061 6c67 6f72 6974 686d 2c2e stic algorithm,. │ │ │ │ +0001db50: 0a0a 5761 7973 2074 6f20 7573 6520 4575 ..Ways to use Eu │ │ │ │ +0001db60: 6c65 7241 6666 696e 653a 0a3d 3d3d 3d3d lerAffine:.===== │ │ │ │ +0001db70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001db80: 3d3d 3d0a 0a20 202a 2022 4575 6c65 7241 ===.. * "EulerA │ │ │ │ +0001db90: 6666 696e 6528 4964 6561 6c29 220a 0a46 ffine(Ideal)"..F │ │ │ │ +0001dba0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +0001dbb0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +0001dbc0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +0001dbd0: 202a 6e6f 7465 2045 756c 6572 4166 6669 *note EulerAffi │ │ │ │ +0001dbe0: 6e65 3a20 4575 6c65 7241 6666 696e 652c ne: EulerAffine, │ │ │ │ +0001dbf0: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ +0001dc00: 6f64 2066 756e 6374 696f 6e3a 0a28 4d61 od function:.(Ma │ │ │ │ +0001dc10: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ +0001dc20: 6446 756e 6374 696f 6e2c 2e0a 0a2d 2d2d dFunction,...--- │ │ │ │ +0001dc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dc90: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -0001dca0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -0001dcb0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -0001dcc0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -0001dcd0: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -0001dce0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -0001dcf0: 2f70 6163 6b61 6765 732f 0a43 6861 7261 /packages/.Chara │ │ │ │ -0001dd00: 6374 6572 6973 7469 6343 6c61 7373 6573 cteristicClasses │ │ │ │ -0001dd10: 2e6d 323a 3235 3431 3a30 2e0a 1f0a 4669 .m2:2541:0....Fi │ │ │ │ -0001dd20: 6c65 3a20 4368 6172 6163 7465 7269 7374 le: Characterist │ │ │ │ -0001dd30: 6963 436c 6173 7365 732e 696e 666f 2c20 icClasses.info, │ │ │ │ -0001dd40: 4e6f 6465 3a20 496e 6473 4f66 536d 6f6f Node: IndsOfSmoo │ │ │ │ -0001dd50: 7468 2c20 4e65 7874 3a20 496e 7075 7449 th, Next: InputI │ │ │ │ -0001dd60: 7353 6d6f 6f74 682c 2050 7265 763a 2045 sSmooth, Prev: E │ │ │ │ -0001dd70: 756c 6572 4166 6669 6e65 2c20 5570 3a20 ulerAffine, Up: │ │ │ │ -0001dd80: 546f 700a 0a49 6e64 734f 6653 6d6f 6f74 Top..IndsOfSmoot │ │ │ │ -0001dd90: 680a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a h.************.. │ │ │ │ -0001dda0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -0001ddb0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 7074 =======..The opt │ │ │ │ -0001ddc0: 696f 6e20 496e 6473 4f66 536d 6f6f 7468 ion IndsOfSmooth │ │ │ │ -0001ddd0: 2069 7320 6f6e 6c79 2075 7365 6420 6279 is only used by │ │ │ │ -0001dde0: 2074 6865 2063 6f6d 6d61 6e64 7320 2a6e the commands *n │ │ │ │ -0001ddf0: 6f74 6520 4353 4d3a 2043 534d 2c2c 2061 ote CSM: CSM,, a │ │ │ │ -0001de00: 6e64 202a 6e6f 7465 0a45 756c 6572 3a20 nd *note.Euler: │ │ │ │ -0001de10: 4575 6c65 722c 2069 6e20 636f 6d62 696e Euler, in combin │ │ │ │ -0001de20: 6174 696f 6e20 7769 7468 2074 6865 206f ation with the o │ │ │ │ -0001de30: 7074 696f 6e20 4d65 7468 6f64 3d3e 4469 ption Method=>Di │ │ │ │ -0001de40: 7265 6374 436f 6d70 6c65 7449 6e74 2e20 rectCompletInt. │ │ │ │ -0001de50: 5768 656e 0a75 7365 6420 7468 6973 206f When.used this o │ │ │ │ -0001de60: 7074 696f 6e20 6d61 7920 616c 6c6f 7720 ption may allow │ │ │ │ -0001de70: 7468 6520 7573 6572 2074 6f20 7370 6565 the user to spee │ │ │ │ -0001de80: 6420 7570 2074 6865 2063 6f6d 7075 7461 d up the computa │ │ │ │ -0001de90: 7469 6f6e 2062 7920 7465 6c6c 696e 670a tion by telling. │ │ │ │ -0001dea0: 6769 7669 6e67 2074 6865 206d 6574 686f giving the metho │ │ │ │ -0001deb0: 6420 6120 6c69 7374 206f 6620 696e 6469 d a list of indi │ │ │ │ -0001dec0: 6365 7320 666f 7220 7468 6520 6765 6e65 ces for the gene │ │ │ │ -0001ded0: 7261 746f 7273 206f 6620 7468 6520 696e rators of the in │ │ │ │ -0001dee0: 7075 7420 6964 6561 6c20 7468 6174 2c0a put ideal that,. │ │ │ │ -0001def0: 7768 656e 2074 616b 656e 2074 6f67 6574 when taken toget │ │ │ │ -0001df00: 6865 722c 2064 6566 696e 6520 6120 736d her, define a sm │ │ │ │ -0001df10: 6f6f 7468 2073 7562 7363 6865 6d65 206f ooth subscheme o │ │ │ │ -0001df20: 6620 7468 6520 616d 6269 656e 7420 7370 f the ambient sp │ │ │ │ -0001df30: 6163 652e 2054 6869 730a 6f70 7469 6f6e ace. This.option │ │ │ │ -0001df40: 2077 696c 6c20 6265 2069 676e 6f72 6564 will be ignored │ │ │ │ -0001df50: 206f 7468 6572 7769 7365 2e0a 0a2b 2d2d otherwise...+-- │ │ │ │ +0001dc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +0001dc80: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +0001dc90: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +0001dca0: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +0001dcb0: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +0001dcc0: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +0001dcd0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +0001dce0: 6765 732f 0a43 6861 7261 6374 6572 6973 ges/.Characteris │ │ │ │ +0001dcf0: 7469 6343 6c61 7373 6573 2e6d 323a 3235 ticClasses.m2:25 │ │ │ │ +0001dd00: 3431 3a30 2e0a 1f0a 4669 6c65 3a20 4368 41:0....File: Ch │ │ │ │ +0001dd10: 6172 6163 7465 7269 7374 6963 436c 6173 aracteristicClas │ │ │ │ +0001dd20: 7365 732e 696e 666f 2c20 4e6f 6465 3a20 ses.info, Node: │ │ │ │ +0001dd30: 496e 6473 4f66 536d 6f6f 7468 2c20 4e65 IndsOfSmooth, Ne │ │ │ │ +0001dd40: 7874 3a20 496e 7075 7449 7353 6d6f 6f74 xt: InputIsSmoot │ │ │ │ +0001dd50: 682c 2050 7265 763a 2045 756c 6572 4166 h, Prev: EulerAf │ │ │ │ +0001dd60: 6669 6e65 2c20 5570 3a20 546f 700a 0a49 fine, Up: Top..I │ │ │ │ +0001dd70: 6e64 734f 6653 6d6f 6f74 680a 2a2a 2a2a ndsOfSmooth.**** │ │ │ │ +0001dd80: 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 ********..Descri │ │ │ │ +0001dd90: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +0001dda0: 3d0a 0a54 6865 206f 7074 696f 6e20 496e =..The option In │ │ │ │ +0001ddb0: 6473 4f66 536d 6f6f 7468 2069 7320 6f6e dsOfSmooth is on │ │ │ │ +0001ddc0: 6c79 2075 7365 6420 6279 2074 6865 2063 ly used by the c │ │ │ │ +0001ddd0: 6f6d 6d61 6e64 7320 2a6e 6f74 6520 4353 ommands *note CS │ │ │ │ +0001dde0: 4d3a 2043 534d 2c2c 2061 6e64 202a 6e6f M: CSM,, and *no │ │ │ │ +0001ddf0: 7465 0a45 756c 6572 3a20 4575 6c65 722c te.Euler: Euler, │ │ │ │ +0001de00: 2069 6e20 636f 6d62 696e 6174 696f 6e20 in combination │ │ │ │ +0001de10: 7769 7468 2074 6865 206f 7074 696f 6e20 with the option │ │ │ │ +0001de20: 4d65 7468 6f64 3d3e 4469 7265 6374 436f Method=>DirectCo │ │ │ │ +0001de30: 6d70 6c65 7449 6e74 2e20 5768 656e 0a75 mpletInt. When.u │ │ │ │ +0001de40: 7365 6420 7468 6973 206f 7074 696f 6e20 sed this option │ │ │ │ +0001de50: 6d61 7920 616c 6c6f 7720 7468 6520 7573 may allow the us │ │ │ │ +0001de60: 6572 2074 6f20 7370 6565 6420 7570 2074 er to speed up t │ │ │ │ +0001de70: 6865 2063 6f6d 7075 7461 7469 6f6e 2062 he computation b │ │ │ │ +0001de80: 7920 7465 6c6c 696e 670a 6769 7669 6e67 y telling.giving │ │ │ │ +0001de90: 2074 6865 206d 6574 686f 6420 6120 6c69 the method a li │ │ │ │ +0001dea0: 7374 206f 6620 696e 6469 6365 7320 666f st of indices fo │ │ │ │ +0001deb0: 7220 7468 6520 6765 6e65 7261 746f 7273 r the generators │ │ │ │ +0001dec0: 206f 6620 7468 6520 696e 7075 7420 6964 of the input id │ │ │ │ +0001ded0: 6561 6c20 7468 6174 2c0a 7768 656e 2074 eal that,.when t │ │ │ │ +0001dee0: 616b 656e 2074 6f67 6574 6865 722c 2064 aken together, d │ │ │ │ +0001def0: 6566 696e 6520 6120 736d 6f6f 7468 2073 efine a smooth s │ │ │ │ +0001df00: 7562 7363 6865 6d65 206f 6620 7468 6520 ubscheme of the │ │ │ │ +0001df10: 616d 6269 656e 7420 7370 6163 652e 2054 ambient space. T │ │ │ │ +0001df20: 6869 730a 6f70 7469 6f6e 2077 696c 6c20 his.option will │ │ │ │ +0001df30: 6265 2069 676e 6f72 6564 206f 7468 6572 be ignored other │ │ │ │ +0001df40: 7769 7365 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d wise...+-------- │ │ │ │ +0001df50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001df60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001df70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001df80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001df90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfa0: 2d2d 2b0a 7c69 3120 3a20 5220 3d20 4d75 --+.|i1 : R = Mu │ │ │ │ -0001dfb0: 6c74 6950 726f 6a43 6f6f 7264 5269 6e67 ltiProjCoordRing │ │ │ │ -0001dfc0: 287b 322c 327d 2920 2020 2020 2020 2020 ({2,2}) │ │ │ │ -0001dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dfe0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001df80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0001df90: 3120 3a20 5220 3d20 4d75 6c74 6950 726f 1 : R = MultiPro │ │ │ │ +0001dfa0: 6a43 6f6f 7264 5269 6e67 287b 322c 327d jCoordRing({2,2} │ │ │ │ +0001dfb0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0001dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001dfd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e030: 7c0a 7c6f 3120 3d20 5220 2020 2020 2020 |.|o1 = R │ │ │ │ +0001e010: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +0001e020: 3d20 5220 2020 2020 2020 2020 2020 2020 = R │ │ │ │ +0001e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e070: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001e060: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e0c0: 7c6f 3120 3a20 506f 6c79 6e6f 6d69 616c |o1 : Polynomial │ │ │ │ -0001e0d0: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ -0001e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e100: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001e0a0: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +0001e0b0: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ +0001e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001e0f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001e100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001e150: 3220 3a20 493d 6964 6561 6c28 525f 302a 2 : I=ideal(R_0* │ │ │ │ -0001e160: 525f 312a 525f 332d 525f 305e 322a 525f R_1*R_3-R_0^2*R_ │ │ │ │ -0001e170: 332c 7261 6e64 6f6d 287b 302c 317d 2c52 3,random({0,1},R │ │ │ │ -0001e180: 292c 7261 6e64 6f6d 287b 312c 327d 2c52 ),random({1,2},R │ │ │ │ -0001e190: 2929 3b7c 0a7c 2020 2020 2020 2020 2020 ));|.| │ │ │ │ +0001e130: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 493d ------+.|i2 : I= │ │ │ │ +0001e140: 6964 6561 6c28 525f 302a 525f 312a 525f ideal(R_0*R_1*R_ │ │ │ │ +0001e150: 332d 525f 305e 322a 525f 332c 7261 6e64 3-R_0^2*R_3,rand │ │ │ │ +0001e160: 6f6d 287b 302c 317d 2c52 292c 7261 6e64 om({0,1},R),rand │ │ │ │ +0001e170: 6f6d 287b 312c 327d 2c52 2929 3b7c 0a7c om({1,2},R));|.| │ │ │ │ +0001e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -0001e1e0: 3a20 4964 6561 6c20 6f66 2052 2020 2020 : Ideal of R │ │ │ │ +0001e1c0: 2020 2020 7c0a 7c6f 3220 3a20 4964 6561 |.|o2 : Idea │ │ │ │ +0001e1d0: 6c20 6f66 2052 2020 2020 2020 2020 2020 l of R │ │ │ │ +0001e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e220: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001e200: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001e210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e260: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ -0001e270: 7469 6d65 2043 534d 2849 2c4d 6574 686f time CSM(I,Metho │ │ │ │ -0001e280: 643d 3e44 6972 6563 7443 6f6d 706c 6574 d=>DirectComplet │ │ │ │ -0001e290: 496e 7429 2020 2020 2020 2020 2020 2020 Int) │ │ │ │ -0001e2a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001e2b0: 0a7c 202d 2d20 7573 6564 2032 2e32 3638 .| -- used 2.268 │ │ │ │ -0001e2c0: 3537 7320 2863 7075 293b 2031 2e31 3631 57s (cpu); 1.161 │ │ │ │ -0001e2d0: 3936 7320 2874 6872 6561 6429 3b20 3073 96s (thread); 0s │ │ │ │ -0001e2e0: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ -0001e2f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001e250: 2d2d 2b0a 7c69 3320 3a20 7469 6d65 2043 --+.|i3 : time C │ │ │ │ +0001e260: 534d 2849 2c4d 6574 686f 643d 3e44 6972 SM(I,Method=>Dir │ │ │ │ +0001e270: 6563 7443 6f6d 706c 6574 496e 7429 2020 ectCompletInt) │ │ │ │ +0001e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e290: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ +0001e2a0: 7573 6564 2037 2e30 3037 3333 7320 2863 used 7.00733s (c │ │ │ │ +0001e2b0: 7075 293b 2031 2e34 3131 3036 7320 2874 pu); 1.41106s (t │ │ │ │ +0001e2c0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +0001e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e2e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e330: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001e340: 2020 2020 2020 2032 2032 2020 2020 2032 2 2 2 │ │ │ │ -0001e350: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -0001e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e380: 2020 2020 7c0a 7c6f 3320 3d20 3268 2068 |.|o3 = 2h h │ │ │ │ -0001e390: 2020 2b20 3268 2068 2020 2b20 3568 2068 + 2h h + 5h h │ │ │ │ +0001e320: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001e330: 2032 2032 2020 2020 2032 2020 2020 2020 2 2 2 │ │ │ │ +0001e340: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e360: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e370: 7c6f 3320 3d20 3268 2068 2020 2b20 3268 |o3 = 2h h + 2h │ │ │ │ +0001e380: 2068 2020 2b20 3568 2068 2020 2020 2020 h + 5h h │ │ │ │ +0001e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e3c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001e3d0: 2020 2020 2031 2032 2020 2020 2031 2032 1 2 1 2 │ │ │ │ -0001e3e0: 2020 2020 2031 2032 2020 2020 2020 2020 1 2 │ │ │ │ -0001e3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e3b0: 2020 2020 207c 0a7c 2020 2020 2020 2031 |.| 1 │ │ │ │ +0001e3c0: 2032 2020 2020 2031 2032 2020 2020 2031 2 1 2 1 │ │ │ │ +0001e3d0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001e3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e3f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0001e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e410: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e450: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001e460: 205a 5a5b 6820 2e2e 6820 5d20 2020 2020 ZZ[h ..h ] │ │ │ │ +0001e440: 2020 207c 0a7c 2020 2020 205a 5a5b 6820 |.| ZZ[h │ │ │ │ +0001e450: 2e2e 6820 5d20 2020 2020 2020 2020 2020 ..h ] │ │ │ │ +0001e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e4a0: 7c0a 7c20 2020 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ -0001e4b0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001e480: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001e490: 2020 2020 2020 3120 2020 3220 2020 2020 1 2 │ │ │ │ +0001e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e4e0: 2020 2020 2020 207c 0a7c 6f33 203a 202d |.|o3 : - │ │ │ │ -0001e4f0: 2d2d 2d2d 2d2d 2d2d 2d20 2020 2020 2020 --------- │ │ │ │ +0001e4d0: 207c 0a7c 6f33 203a 202d 2d2d 2d2d 2d2d |.|o3 : ------- │ │ │ │ +0001e4e0: 2d2d 2d20 2020 2020 2020 2020 2020 2020 --- │ │ │ │ +0001e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e520: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e530: 7c20 2020 2020 2020 2033 2020 2033 2020 | 3 3 │ │ │ │ +0001e510: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001e520: 2020 2033 2020 2033 2020 2020 2020 2020 3 3 │ │ │ │ +0001e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e570: 2020 2020 207c 0a7c 2020 2020 2020 2868 |.| (h │ │ │ │ -0001e580: 202c 2068 2029 2020 2020 2020 2020 2020 , h ) │ │ │ │ +0001e550: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001e560: 0a7c 2020 2020 2020 2868 202c 2068 2029 .| (h , h ) │ │ │ │ +0001e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e5b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001e5c0: 2020 2020 2020 2031 2020 2032 2020 2020 1 2 │ │ │ │ +0001e5a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001e5b0: 2031 2020 2032 2020 2020 2020 2020 2020 1 2 │ │ │ │ +0001e5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e600: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001e5e0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001e5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e640: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ -0001e650: 3a20 7469 6d65 2043 534d 2849 2c4d 6574 : time CSM(I,Met │ │ │ │ -0001e660: 686f 643d 3e44 6972 6563 7443 6f6d 706c hod=>DirectCompl │ │ │ │ -0001e670: 6574 496e 742c 496e 6473 4f66 536d 6f6f etInt,IndsOfSmoo │ │ │ │ -0001e680: 7468 3d3e 7b31 2c32 7d29 2020 2020 2020 th=>{1,2}) │ │ │ │ -0001e690: 207c 0a7c 202d 2d20 7573 6564 2032 2e38 |.| -- used 2.8 │ │ │ │ -0001e6a0: 3539 3834 7320 2863 7075 293b 2031 2e32 5984s (cpu); 1.2 │ │ │ │ -0001e6b0: 3337 3736 7320 2874 6872 6561 6429 3b20 3776s (thread); │ │ │ │ -0001e6c0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ -0001e6d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001e630: 2d2d 2d2d 2b0a 7c69 3420 3a20 7469 6d65 ----+.|i4 : time │ │ │ │ +0001e640: 2043 534d 2849 2c4d 6574 686f 643d 3e44 CSM(I,Method=>D │ │ │ │ +0001e650: 6972 6563 7443 6f6d 706c 6574 496e 742c irectCompletInt, │ │ │ │ +0001e660: 496e 6473 4f66 536d 6f6f 7468 3d3e 7b31 IndsOfSmooth=>{1 │ │ │ │ +0001e670: 2c32 7d29 2020 2020 2020 207c 0a7c 202d ,2}) |.| - │ │ │ │ +0001e680: 2d20 7573 6564 2037 2e30 3935 3036 7320 - used 7.09506s │ │ │ │ +0001e690: 2863 7075 293b 2031 2e34 3837 3433 7320 (cpu); 1.48743s │ │ │ │ +0001e6a0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +0001e6b0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0001e6c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001e6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e710: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001e720: 0a7c 2020 2020 2020 2032 2032 2020 2020 .| 2 2 │ │ │ │ -0001e730: 2032 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +0001e700: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001e710: 2020 2032 2032 2020 2020 2032 2020 2020 2 2 2 │ │ │ │ +0001e720: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0001e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e760: 2020 2020 2020 7c0a 7c6f 3420 3d20 3268 |.|o4 = 2h │ │ │ │ -0001e770: 2068 2020 2b20 3268 2068 2020 2b20 3568 h + 2h h + 5h │ │ │ │ -0001e780: 2068 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ -0001e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e7a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001e7b0: 2020 2020 2020 2031 2032 2020 2020 2031 1 2 1 │ │ │ │ -0001e7c0: 2032 2020 2020 2031 2032 2020 2020 2020 2 1 2 │ │ │ │ -0001e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e7f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001e750: 7c0a 7c6f 3420 3d20 3268 2068 2020 2b20 |.|o4 = 2h h + │ │ │ │ +0001e760: 3268 2068 2020 2b20 3568 2068 2020 2020 2h h + 5h h │ │ │ │ +0001e770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e790: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001e7a0: 2031 2032 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ +0001e7b0: 2031 2032 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ +0001e7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e7d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e7e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001e7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e830: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001e840: 2020 205a 5a5b 6820 2e2e 6820 5d20 2020 ZZ[h ..h ] │ │ │ │ +0001e820: 2020 2020 207c 0a7c 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ +0001e830: 6820 2e2e 6820 5d20 2020 2020 2020 2020 h ..h ] │ │ │ │ +0001e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e880: 2020 7c0a 7c20 2020 2020 2020 2020 3120 |.| 1 │ │ │ │ -0001e890: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001e860: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001e870: 2020 2020 2020 2020 3120 2020 3220 2020 1 2 │ │ │ │ +0001e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e8c0: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ -0001e8d0: 202d 2d2d 2d2d 2d2d 2d2d 2d20 2020 2020 ---------- │ │ │ │ +0001e8b0: 2020 207c 0a7c 6f34 203a 202d 2d2d 2d2d |.|o4 : ----- │ │ │ │ +0001e8c0: 2d2d 2d2d 2d20 2020 2020 2020 2020 2020 ----- │ │ │ │ +0001e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e910: 7c0a 7c20 2020 2020 2020 2033 2020 2033 |.| 3 3 │ │ │ │ +0001e8f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001e900: 2020 2020 2033 2020 2033 2020 2020 2020 3 3 │ │ │ │ +0001e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e950: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001e960: 2868 202c 2068 2029 2020 2020 2020 2020 (h , h ) │ │ │ │ +0001e940: 207c 0a7c 2020 2020 2020 2868 202c 2068 |.| (h , h │ │ │ │ +0001e950: 2029 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0001e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e990: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e9a0: 7c20 2020 2020 2020 2031 2020 2032 2020 | 1 2 │ │ │ │ +0001e980: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001e990: 2020 2031 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ +0001e9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e9e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001e9c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001e9d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001e9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ea00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ea10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ea20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 ------------+..F │ │ │ │ -0001ea30: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ -0001ea40: 7469 6f6e 616c 2061 7267 756d 656e 7420 tional argument │ │ │ │ -0001ea50: 6e61 6d65 6420 496e 6473 4f66 536d 6f6f named IndsOfSmoo │ │ │ │ -0001ea60: 7468 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d th:.============ │ │ │ │ +0001ea10: 2d2d 2d2d 2d2d 2b0a 0a46 756e 6374 696f ------+..Functio │ │ │ │ +0001ea20: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ +0001ea30: 2061 7267 756d 656e 7420 6e61 6d65 6420 argument named │ │ │ │ +0001ea40: 496e 6473 4f66 536d 6f6f 7468 3a0a 3d3d IndsOfSmooth:.== │ │ │ │ +0001ea50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001ea60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 0001ea70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001ea80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001ea90: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2243 ========.. * "C │ │ │ │ -0001eaa0: 534d 282e 2e2e 2c49 6e64 734f 6653 6d6f SM(...,IndsOfSmo │ │ │ │ -0001eab0: 6f74 683d 3e2e 2e2e 2922 202d 2d20 7365 oth=>...)" -- se │ │ │ │ -0001eac0: 6520 2a6e 6f74 6520 4353 4d3a 2043 534d e *note CSM: CSM │ │ │ │ -0001ead0: 2c20 2d2d 2054 6865 0a20 2020 2043 6865 , -- The. Che │ │ │ │ -0001eae0: 726e 2d53 6368 7761 7274 7a2d 4d61 6350 rn-Schwartz-MacP │ │ │ │ -0001eaf0: 6865 7273 6f6e 2063 6c61 7373 0a20 202a herson class. * │ │ │ │ -0001eb00: 2045 756c 6572 282e 2e2e 2c49 6e64 734f Euler(...,IndsO │ │ │ │ -0001eb10: 6653 6d6f 6f74 683d 3e2e 2e2e 2920 286d fSmooth=>...) (m │ │ │ │ -0001eb20: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ -0001eb30: 7469 6f6e 290a 0a46 6f72 2074 6865 2070 tion)..For the p │ │ │ │ -0001eb40: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -0001eb50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -0001eb60: 6520 6f62 6a65 6374 202a 6e6f 7465 2049 e object *note I │ │ │ │ -0001eb70: 6e64 734f 6653 6d6f 6f74 683a 2049 6e64 ndsOfSmooth: Ind │ │ │ │ -0001eb80: 734f 6653 6d6f 6f74 682c 2069 7320 6120 sOfSmooth, is a │ │ │ │ -0001eb90: 2a6e 6f74 6520 7379 6d62 6f6c 3a0a 284d *note symbol:.(M │ │ │ │ -0001eba0: 6163 6175 6c61 7932 446f 6329 5379 6d62 acaulay2Doc)Symb │ │ │ │ -0001ebb0: 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ol,...---------- │ │ │ │ +0001ea80: 3d3d 0a0a 2020 2a20 2243 534d 282e 2e2e ==.. * "CSM(... │ │ │ │ +0001ea90: 2c49 6e64 734f 6653 6d6f 6f74 683d 3e2e ,IndsOfSmooth=>. │ │ │ │ +0001eaa0: 2e2e 2922 202d 2d20 7365 6520 2a6e 6f74 ..)" -- see *not │ │ │ │ +0001eab0: 6520 4353 4d3a 2043 534d 2c20 2d2d 2054 e CSM: CSM, -- T │ │ │ │ +0001eac0: 6865 0a20 2020 2043 6865 726e 2d53 6368 he. Chern-Sch │ │ │ │ +0001ead0: 7761 7274 7a2d 4d61 6350 6865 7273 6f6e wartz-MacPherson │ │ │ │ +0001eae0: 2063 6c61 7373 0a20 202a 2045 756c 6572 class. * Euler │ │ │ │ +0001eaf0: 282e 2e2e 2c49 6e64 734f 6653 6d6f 6f74 (...,IndsOfSmoot │ │ │ │ +0001eb00: 683d 3e2e 2e2e 2920 286d 6973 7369 6e67 h=>...) (missing │ │ │ │ +0001eb10: 2064 6f63 756d 656e 7461 7469 6f6e 290a documentation). │ │ │ │ +0001eb20: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +0001eb30: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +0001eb40: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +0001eb50: 6374 202a 6e6f 7465 2049 6e64 734f 6653 ct *note IndsOfS │ │ │ │ +0001eb60: 6d6f 6f74 683a 2049 6e64 734f 6653 6d6f mooth: IndsOfSmo │ │ │ │ +0001eb70: 6f74 682c 2069 7320 6120 2a6e 6f74 6520 oth, is a *note │ │ │ │ +0001eb80: 7379 6d62 6f6c 3a0a 284d 6163 6175 6c61 symbol:.(Macaula │ │ │ │ +0001eb90: 7932 446f 6329 5379 6d62 6f6c 2c2e 0a0a y2Doc)Symbol,... │ │ │ │ +0001eba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ebb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ebc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ebd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ebe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ebf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ec00: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0001ec10: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0001ec20: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0001ec30: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0001ec40: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0001ec50: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0001ec60: 6179 322f 7061 636b 6167 6573 2f0a 4368 ay2/packages/.Ch │ │ │ │ -0001ec70: 6172 6163 7465 7269 7374 6963 436c 6173 aracteristicClas │ │ │ │ -0001ec80: 7365 732e 6d32 3a32 3438 323a 302e 0a1f ses.m2:2482:0... │ │ │ │ -0001ec90: 0a46 696c 653a 2043 6861 7261 6374 6572 .File: Character │ │ │ │ -0001eca0: 6973 7469 6343 6c61 7373 6573 2e69 6e66 isticClasses.inf │ │ │ │ -0001ecb0: 6f2c 204e 6f64 653a 2049 6e70 7574 4973 o, Node: InputIs │ │ │ │ -0001ecc0: 536d 6f6f 7468 2c20 4e65 7874 3a20 6973 Smooth, Next: is │ │ │ │ -0001ecd0: 4d75 6c74 6948 6f6d 6f67 656e 656f 7573 MultiHomogeneous │ │ │ │ -0001ece0: 2c20 5072 6576 3a20 496e 6473 4f66 536d , Prev: IndsOfSm │ │ │ │ -0001ecf0: 6f6f 7468 2c20 5570 3a20 546f 700a 0a49 ooth, Up: Top..I │ │ │ │ -0001ed00: 6e70 7574 4973 536d 6f6f 7468 0a2a 2a2a nputIsSmooth.*** │ │ │ │ -0001ed10: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 **********..Desc │ │ │ │ -0001ed20: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -0001ed30: 3d3d 3d0a 0a54 6865 206f 7074 696f 6e20 ===..The option │ │ │ │ -0001ed40: 496e 7075 7449 7353 6d6f 6f74 6820 6973 InputIsSmooth is │ │ │ │ -0001ed50: 206f 6e6c 7920 7573 6564 2062 7920 7468 only used by th │ │ │ │ -0001ed60: 6520 636f 6d6d 616e 6473 202a 6e6f 7465 e commands *note │ │ │ │ -0001ed70: 2043 534d 3a20 4353 4d2c 2c20 616e 640a CSM: CSM,, and. │ │ │ │ -0001ed80: 2a6e 6f74 6520 4575 6c65 723a 2045 756c *note Euler: Eul │ │ │ │ -0001ed90: 6572 2c2e 2049 6620 7468 6520 696e 7075 er,. If the inpu │ │ │ │ -0001eda0: 7420 6964 6561 6c20 6973 206b 6e6f 776e t ideal is known │ │ │ │ -0001edb0: 2074 6f20 6465 6669 6e65 2061 2073 6d6f to define a smo │ │ │ │ -0001edc0: 6f74 6820 7375 6273 6368 656d 650a 7365 oth subscheme.se │ │ │ │ -0001edd0: 7474 696e 6720 7468 6973 206f 7074 696f tting this optio │ │ │ │ -0001ede0: 6e20 746f 2074 7275 6520 7769 6c6c 2073 n to true will s │ │ │ │ -0001edf0: 7065 6564 2075 7020 636f 6d70 7574 6174 peed up computat │ │ │ │ -0001ee00: 696f 6e73 2028 6974 2069 7320 7365 7420 ions (it is set │ │ │ │ -0001ee10: 746f 2066 616c 7365 2062 790a 6465 6661 to false by.defa │ │ │ │ -0001ee20: 756c 7429 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d ult)...+-------- │ │ │ │ +0001ebe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +0001ebf0: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +0001ec00: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +0001ec10: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +0001ec20: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +0001ec30: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +0001ec40: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +0001ec50: 636b 6167 6573 2f0a 4368 6172 6163 7465 ckages/.Characte │ │ │ │ +0001ec60: 7269 7374 6963 436c 6173 7365 732e 6d32 risticClasses.m2 │ │ │ │ +0001ec70: 3a32 3438 323a 302e 0a1f 0a46 696c 653a :2482:0....File: │ │ │ │ +0001ec80: 2043 6861 7261 6374 6572 6973 7469 6343 CharacteristicC │ │ │ │ +0001ec90: 6c61 7373 6573 2e69 6e66 6f2c 204e 6f64 lasses.info, Nod │ │ │ │ +0001eca0: 653a 2049 6e70 7574 4973 536d 6f6f 7468 e: InputIsSmooth │ │ │ │ +0001ecb0: 2c20 4e65 7874 3a20 6973 4d75 6c74 6948 , Next: isMultiH │ │ │ │ +0001ecc0: 6f6d 6f67 656e 656f 7573 2c20 5072 6576 omogeneous, Prev │ │ │ │ +0001ecd0: 3a20 496e 6473 4f66 536d 6f6f 7468 2c20 : IndsOfSmooth, │ │ │ │ +0001ece0: 5570 3a20 546f 700a 0a49 6e70 7574 4973 Up: Top..InputIs │ │ │ │ +0001ecf0: 536d 6f6f 7468 0a2a 2a2a 2a2a 2a2a 2a2a Smooth.********* │ │ │ │ +0001ed00: 2a2a 2a2a 0a0a 4465 7363 7269 7074 696f ****..Descriptio │ │ │ │ +0001ed10: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 n.===========..T │ │ │ │ +0001ed20: 6865 206f 7074 696f 6e20 496e 7075 7449 he option InputI │ │ │ │ +0001ed30: 7353 6d6f 6f74 6820 6973 206f 6e6c 7920 sSmooth is only │ │ │ │ +0001ed40: 7573 6564 2062 7920 7468 6520 636f 6d6d used by the comm │ │ │ │ +0001ed50: 616e 6473 202a 6e6f 7465 2043 534d 3a20 ands *note CSM: │ │ │ │ +0001ed60: 4353 4d2c 2c20 616e 640a 2a6e 6f74 6520 CSM,, and.*note │ │ │ │ +0001ed70: 4575 6c65 723a 2045 756c 6572 2c2e 2049 Euler: Euler,. I │ │ │ │ +0001ed80: 6620 7468 6520 696e 7075 7420 6964 6561 f the input idea │ │ │ │ +0001ed90: 6c20 6973 206b 6e6f 776e 2074 6f20 6465 l is known to de │ │ │ │ +0001eda0: 6669 6e65 2061 2073 6d6f 6f74 6820 7375 fine a smooth su │ │ │ │ +0001edb0: 6273 6368 656d 650a 7365 7474 696e 6720 bscheme.setting │ │ │ │ +0001edc0: 7468 6973 206f 7074 696f 6e20 746f 2074 this option to t │ │ │ │ +0001edd0: 7275 6520 7769 6c6c 2073 7065 6564 2075 rue will speed u │ │ │ │ +0001ede0: 7020 636f 6d70 7574 6174 696f 6e73 2028 p computations ( │ │ │ │ +0001edf0: 6974 2069 7320 7365 7420 746f 2066 616c it is set to fal │ │ │ │ +0001ee00: 7365 2062 790a 6465 6661 756c 7429 2e0a se by.default).. │ │ │ │ +0001ee10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001ee20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ee30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ee40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ee50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001ee60: 0a7c 6931 203a 2052 203d 205a 5a2f 3332 .|i1 : R = ZZ/32 │ │ │ │ -0001ee70: 3734 395b 785f 302e 2e78 5f34 5d3b 2020 749[x_0..x_4]; │ │ │ │ -0001ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ee90: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001ee40: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +0001ee50: 2052 203d 205a 5a2f 3332 3734 395b 785f R = ZZ/32749[x_ │ │ │ │ +0001ee60: 302e 2e78 5f34 5d3b 2020 2020 2020 2020 0..x_4]; │ │ │ │ +0001ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ee80: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001ee90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eed0: 2d2d 2d2b 0a7c 6932 203a 2049 3d69 6465 ---+.|i2 : I=ide │ │ │ │ -0001eee0: 616c 2872 616e 646f 6d28 322c 5229 2c72 al(random(2,R),r │ │ │ │ -0001eef0: 616e 646f 6d28 322c 5229 2c72 616e 646f andom(2,R),rando │ │ │ │ -0001ef00: 6d28 312c 5229 293b 2020 2020 207c 0a7c m(1,R)); |.| │ │ │ │ +0001eeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001eec0: 6932 203a 2049 3d69 6465 616c 2872 616e i2 : I=ideal(ran │ │ │ │ +0001eed0: 646f 6d28 322c 5229 2c72 616e 646f 6d28 dom(2,R),random( │ │ │ │ +0001eee0: 322c 5229 2c72 616e 646f 6d28 312c 5229 2,R),random(1,R) │ │ │ │ +0001eef0: 293b 2020 2020 207c 0a7c 2020 2020 2020 ); |.| │ │ │ │ +0001ef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef40: 2020 2020 2020 207c 0a7c 6f32 203a 2049 |.|o2 : I │ │ │ │ -0001ef50: 6465 616c 206f 6620 5220 2020 2020 2020 deal of R │ │ │ │ -0001ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef80: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001ef30: 207c 0a7c 6f32 203a 2049 6465 616c 206f |.|o2 : Ideal o │ │ │ │ +0001ef40: 6620 5220 2020 2020 2020 2020 2020 2020 f R │ │ │ │ +0001ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ef60: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001ef70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ef80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ef90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001efa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001efb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -0001efc0: 203a 2074 696d 6520 4353 4d20 4920 2020 : time CSM I │ │ │ │ -0001efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eff0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -0001f000: 2030 2e36 3538 3336 3873 2028 6370 7529 0.658368s (cpu) │ │ │ │ -0001f010: 3b20 302e 3339 3639 3132 7320 2874 6872 ; 0.396912s (thr │ │ │ │ -0001f020: 6561 6429 3b20 3073 2028 6763 2920 207c ead); 0s (gc) | │ │ │ │ -0001f030: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001efa0: 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 696d -----+.|i3 : tim │ │ │ │ +0001efb0: 6520 4353 4d20 4920 2020 2020 2020 2020 e CSM I │ │ │ │ +0001efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001efd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001efe0: 0a7c 202d 2d20 7573 6564 2031 2e30 3930 .| -- used 1.090 │ │ │ │ +0001eff0: 3834 7320 2863 7075 293b 2030 2e35 3239 84s (cpu); 0.529 │ │ │ │ +0001f000: 3536 3273 2028 7468 7265 6164 293b 2030 562s (thread); 0 │ │ │ │ +0001f010: 7320 2867 6329 2020 207c 0a7c 2020 2020 s (gc) |.| │ │ │ │ +0001f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f060: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001f070: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0001f080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f0a0: 2020 207c 0a7c 6f33 203d 2034 6820 2020 |.|o3 = 4h │ │ │ │ +0001f050: 2020 207c 0a7c 2020 2020 2020 2033 2020 |.| 3 │ │ │ │ +0001f060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f080: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f090: 6f33 203d 2034 6820 2020 2020 2020 2020 o3 = 4h │ │ │ │ +0001f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f0d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001f0e0: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ +0001f0c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001f0d0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0001f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f110: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001f100: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f150: 207c 0a7c 2020 2020 205a 5a5b 6820 5d20 |.| ZZ[h ] │ │ │ │ +0001f130: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001f140: 2020 205a 5a5b 6820 5d20 2020 2020 2020 ZZ[h ] │ │ │ │ +0001f150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f180: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001f190: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ -0001f1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1c0: 2020 2020 207c 0a7c 6f33 203a 202d 2d2d |.|o3 : --- │ │ │ │ -0001f1d0: 2d2d 2d20 2020 2020 2020 2020 2020 2020 --- │ │ │ │ -0001f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001f200: 0a7c 2020 2020 2020 2020 3520 2020 2020 .| 5 │ │ │ │ +0001f170: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001f180: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0001f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f1a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f1b0: 0a7c 6f33 203a 202d 2d2d 2d2d 2d20 2020 .|o3 : ------ │ │ │ │ +0001f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f1e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001f1f0: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ +0001f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f230: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001f240: 2020 2068 2020 2020 2020 2020 2020 2020 h │ │ │ │ -0001f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f270: 2020 207c 0a7c 2020 2020 2020 2020 3120 |.| 1 │ │ │ │ +0001f220: 2020 207c 0a7c 2020 2020 2020 2068 2020 |.| h │ │ │ │ +0001f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f250: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f260: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +0001f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2a0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001f290: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001f2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f2e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2074 -------+.|i4 : t │ │ │ │ -0001f2f0: 696d 6520 4353 4d28 492c 496e 7075 7449 ime CSM(I,InputI │ │ │ │ -0001f300: 7353 6d6f 6f74 683d 3e74 7275 6529 2020 sSmooth=>true) │ │ │ │ -0001f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f320: 207c 0a7c 202d 2d20 7573 6564 2030 2e30 |.| -- used 0.0 │ │ │ │ -0001f330: 3436 3432 3131 7320 2863 7075 293b 2030 464211s (cpu); 0 │ │ │ │ -0001f340: 2e30 3332 3733 3436 7320 2874 6872 6561 .0327346s (threa │ │ │ │ -0001f350: 6429 3b20 3073 2028 6763 297c 0a7c 2020 d); 0s (gc)|.| │ │ │ │ +0001f2d0: 2d2b 0a7c 6934 203a 2074 696d 6520 4353 -+.|i4 : time CS │ │ │ │ +0001f2e0: 4d28 492c 496e 7075 7449 7353 6d6f 6f74 M(I,InputIsSmoot │ │ │ │ +0001f2f0: 683d 3e74 7275 6529 2020 2020 2020 2020 h=>true) │ │ │ │ +0001f300: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +0001f310: 2d20 7573 6564 2030 2e30 3732 3436 3638 - used 0.0724668 │ │ │ │ +0001f320: 7320 2863 7075 293b 2030 2e30 3434 3036 s (cpu); 0.04406 │ │ │ │ +0001f330: 3635 7320 2874 6872 6561 6429 3b20 3073 65s (thread); 0s │ │ │ │ +0001f340: 2028 6763 297c 0a7c 2020 2020 2020 2020 (gc)|.| │ │ │ │ +0001f350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f390: 2020 2020 207c 0a7c 2020 2020 2020 2033 |.| 3 │ │ │ │ +0001f370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f380: 0a7c 2020 2020 2020 2033 2020 2020 2020 .| 3 │ │ │ │ +0001f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f3c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001f3d0: 0a7c 6f34 203d 2034 6820 2020 2020 2020 .|o4 = 4h │ │ │ │ +0001f3b0: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ +0001f3c0: 2034 6820 2020 2020 2020 2020 2020 2020 4h │ │ │ │ +0001f3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f400: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001f410: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0001f420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f3f0: 2020 207c 0a7c 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ +0001f400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f420: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001f430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f440: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f470: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001f480: 2020 2020 205a 5a5b 6820 5d20 2020 2020 ZZ[h ] │ │ │ │ +0001f460: 2020 2020 2020 207c 0a7c 2020 2020 205a |.| Z │ │ │ │ +0001f470: 5a5b 6820 5d20 2020 2020 2020 2020 2020 Z[h ] │ │ │ │ +0001f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001f4c0: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0001f4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4f0: 207c 0a7c 6f34 203a 202d 2d2d 2d2d 2d20 |.|o4 : ------ │ │ │ │ +0001f4a0: 207c 0a7c 2020 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ +0001f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f4d0: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +0001f4e0: 203a 202d 2d2d 2d2d 2d20 2020 2020 2020 : ------ │ │ │ │ +0001f4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f520: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001f530: 2020 2020 2020 3520 2020 2020 2020 2020 5 │ │ │ │ -0001f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f560: 2020 2020 207c 0a7c 2020 2020 2020 2068 |.| h │ │ │ │ +0001f510: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001f520: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +0001f530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f540: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f550: 0a7c 2020 2020 2020 2068 2020 2020 2020 .| h │ │ │ │ +0001f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001f5a0: 0a7c 2020 2020 2020 2020 3120 2020 2020 .| 1 │ │ │ │ +0001f580: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001f590: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ +0001f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f5d0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001f5c0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001f5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f610: 2d2d 2d2b 0a0a 4e6f 7465 2074 6861 7420 ---+..Note that │ │ │ │ -0001f620: 6f6e 6520 636f 756c 642c 2065 7175 6976 one could, equiv │ │ │ │ -0001f630: 616c 656e 746c 792c 2075 7365 2074 6865 alently, use the │ │ │ │ -0001f640: 2063 6f6d 6d61 6e64 202a 6e6f 7465 2043 command *note C │ │ │ │ -0001f650: 6865 726e 3a20 4368 6572 6e2c 2069 6e73 hern: Chern, ins │ │ │ │ -0001f660: 7465 6164 0a69 6e20 7468 6973 2063 6173 tead.in this cas │ │ │ │ -0001f670: 652e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d e...+----------- │ │ │ │ +0001f5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +0001f600: 4e6f 7465 2074 6861 7420 6f6e 6520 636f Note that one co │ │ │ │ +0001f610: 756c 642c 2065 7175 6976 616c 656e 746c uld, equivalentl │ │ │ │ +0001f620: 792c 2075 7365 2074 6865 2063 6f6d 6d61 y, use the comma │ │ │ │ +0001f630: 6e64 202a 6e6f 7465 2043 6865 726e 3a20 nd *note Chern: │ │ │ │ +0001f640: 4368 6572 6e2c 2069 6e73 7465 6164 0a69 Chern, instead.i │ │ │ │ +0001f650: 6e20 7468 6973 2063 6173 652e 0a0a 2b2d n this case...+- │ │ │ │ +0001f660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001f6b0: 3520 3a20 7469 6d65 2043 6865 726e 2049 5 : time Chern I │ │ │ │ -0001f6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f6e0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -0001f6f0: 6420 302e 3033 3830 3232 3873 2028 6370 d 0.0380228s (cp │ │ │ │ -0001f700: 7529 3b20 302e 3033 3431 3539 3973 2028 u); 0.0341599s ( │ │ │ │ -0001f710: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ -0001f720: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f690: 2d2d 2d2d 2d2b 0a7c 6935 203a 2074 696d -----+.|i5 : tim │ │ │ │ +0001f6a0: 6520 4368 6572 6e20 4920 2020 2020 2020 e Chern I │ │ │ │ +0001f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f6c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001f6d0: 7c20 2d2d 2075 7365 6420 302e 3036 3933 | -- used 0.0693 │ │ │ │ +0001f6e0: 3231 7320 2863 7075 293b 2030 2e30 3632 21s (cpu); 0.062 │ │ │ │ +0001f6f0: 3239 3734 7320 2874 6872 6561 6429 3b20 2974s (thread); │ │ │ │ +0001f700: 3073 2028 6763 297c 0a7c 2020 2020 2020 0s (gc)|.| │ │ │ │ +0001f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f750: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001f760: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ -0001f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f790: 2020 2020 7c0a 7c6f 3520 3d20 3468 2020 |.|o5 = 4h │ │ │ │ +0001f740: 7c0a 7c20 2020 2020 2020 3320 2020 2020 |.| 3 │ │ │ │ +0001f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f770: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ +0001f780: 2034 6820 2020 2020 2020 2020 2020 2020 4h │ │ │ │ +0001f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001f7d0: 7c20 2020 2020 2020 3120 2020 2020 2020 | 1 │ │ │ │ -0001f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f7b0: 2020 7c0a 7c20 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ +0001f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f7e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0001f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f800: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f840: 2020 7c0a 7c20 2020 2020 5a5a 5b68 205d |.| ZZ[h ] │ │ │ │ -0001f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f870: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001f880: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -0001f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8b0: 2020 2020 2020 7c0a 7c6f 3520 3a20 2d2d |.|o5 : -- │ │ │ │ -0001f8c0: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ -0001f8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f820: 2020 2020 7c0a 7c20 2020 2020 5a5a 5b68 |.| ZZ[h │ │ │ │ +0001f830: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +0001f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f850: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f860: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ +0001f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f890: 2020 2020 2020 7c0a 7c6f 3520 3a20 2d2d |.|o5 : -- │ │ │ │ +0001f8a0: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ +0001f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f8c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f8d0: 0a7c 2020 2020 2020 2020 3520 2020 2020 .| 5 │ │ │ │ 0001f8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8f0: 7c0a 7c20 2020 2020 2020 2035 2020 2020 |.| 5 │ │ │ │ -0001f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f920: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001f930: 2020 2020 6820 2020 2020 2020 2020 2020 h │ │ │ │ -0001f940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f900: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001f910: 2020 6820 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0001f920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f940: 207c 0a7c 2020 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ 0001f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f960: 2020 2020 7c0a 7c20 2020 2020 2020 2031 |.| 1 │ │ │ │ -0001f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f990: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001f9a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0001f9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f9d0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 756e 6374 --------+..Funct │ │ │ │ -0001f9e0: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ -0001f9f0: 616c 2061 7267 756d 656e 7420 6e61 6d65 al argument name │ │ │ │ -0001fa00: 6420 496e 7075 7449 7353 6d6f 6f74 683a d InputIsSmooth: │ │ │ │ -0001fa10: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0001fa20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001fa30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001fa40: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2243 534d ======.. * "CSM │ │ │ │ -0001fa50: 282e 2e2e 2c49 6e70 7574 4973 536d 6f6f (...,InputIsSmoo │ │ │ │ -0001fa60: 7468 3d3e 2e2e 2e29 2220 2d2d 2073 6565 th=>...)" -- see │ │ │ │ -0001fa70: 202a 6e6f 7465 2043 534d 3a20 4353 4d2c *note CSM: CSM, │ │ │ │ -0001fa80: 202d 2d20 5468 650a 2020 2020 4368 6572 -- The. Cher │ │ │ │ -0001fa90: 6e2d 5363 6877 6172 747a 2d4d 6163 5068 n-Schwartz-MacPh │ │ │ │ -0001faa0: 6572 736f 6e20 636c 6173 730a 2020 2a20 erson class. * │ │ │ │ -0001fab0: 4575 6c65 7228 2e2e 2e2c 496e 7075 7449 Euler(...,InputI │ │ │ │ -0001fac0: 7353 6d6f 6f74 683d 3e2e 2e2e 2920 286d sSmooth=>...) (m │ │ │ │ -0001fad0: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ -0001fae0: 7469 6f6e 290a 0a46 6f72 2074 6865 2070 tion)..For the p │ │ │ │ -0001faf0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -0001fb00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -0001fb10: 6520 6f62 6a65 6374 202a 6e6f 7465 2049 e object *note I │ │ │ │ -0001fb20: 6e70 7574 4973 536d 6f6f 7468 3a20 496e nputIsSmooth: In │ │ │ │ -0001fb30: 7075 7449 7353 6d6f 6f74 682c 2069 7320 putIsSmooth, is │ │ │ │ -0001fb40: 6120 2a6e 6f74 6520 7379 6d62 6f6c 3a0a a *note symbol:. │ │ │ │ -0001fb50: 284d 6163 6175 6c61 7932 446f 6329 5379 (Macaulay2Doc)Sy │ │ │ │ -0001fb60: 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d mbol,...-------- │ │ │ │ +0001f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f970: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001f980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f9b0: 2d2d 2d2b 0a0a 4675 6e63 7469 6f6e 7320 ---+..Functions │ │ │ │ +0001f9c0: 7769 7468 206f 7074 696f 6e61 6c20 6172 with optional ar │ │ │ │ +0001f9d0: 6775 6d65 6e74 206e 616d 6564 2049 6e70 gument named Inp │ │ │ │ +0001f9e0: 7574 4973 536d 6f6f 7468 3a0a 3d3d 3d3d utIsSmooth:.==== │ │ │ │ +0001f9f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001fa00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001fa10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001fa20: 3d0a 0a20 202a 2022 4353 4d28 2e2e 2e2c =.. * "CSM(..., │ │ │ │ +0001fa30: 496e 7075 7449 7353 6d6f 6f74 683d 3e2e InputIsSmooth=>. │ │ │ │ +0001fa40: 2e2e 2922 202d 2d20 7365 6520 2a6e 6f74 ..)" -- see *not │ │ │ │ +0001fa50: 6520 4353 4d3a 2043 534d 2c20 2d2d 2054 e CSM: CSM, -- T │ │ │ │ +0001fa60: 6865 0a20 2020 2043 6865 726e 2d53 6368 he. Chern-Sch │ │ │ │ +0001fa70: 7761 7274 7a2d 4d61 6350 6865 7273 6f6e wartz-MacPherson │ │ │ │ +0001fa80: 2063 6c61 7373 0a20 202a 2045 756c 6572 class. * Euler │ │ │ │ +0001fa90: 282e 2e2e 2c49 6e70 7574 4973 536d 6f6f (...,InputIsSmoo │ │ │ │ +0001faa0: 7468 3d3e 2e2e 2e29 2028 6d69 7373 696e th=>...) (missin │ │ │ │ +0001fab0: 6720 646f 6375 6d65 6e74 6174 696f 6e29 g documentation) │ │ │ │ +0001fac0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0001fad0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0001fae0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0001faf0: 6563 7420 2a6e 6f74 6520 496e 7075 7449 ect *note InputI │ │ │ │ +0001fb00: 7353 6d6f 6f74 683a 2049 6e70 7574 4973 sSmooth: InputIs │ │ │ │ +0001fb10: 536d 6f6f 7468 2c20 6973 2061 202a 6e6f Smooth, is a *no │ │ │ │ +0001fb20: 7465 2073 796d 626f 6c3a 0a28 4d61 6361 te symbol:.(Maca │ │ │ │ +0001fb30: 756c 6179 3244 6f63 2953 796d 626f 6c2c ulay2Doc)Symbol, │ │ │ │ +0001fb40: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +0001fb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001fb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fbb0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -0001fbc0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -0001fbd0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -0001fbe0: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -0001fbf0: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -0001fc00: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -0001fc10: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ -0001fc20: 4368 6172 6163 7465 7269 7374 6963 436c CharacteristicCl │ │ │ │ -0001fc30: 6173 7365 732e 6d32 3a32 3530 303a 302e asses.m2:2500:0. │ │ │ │ -0001fc40: 0a1f 0a46 696c 653a 2043 6861 7261 6374 ...File: Charact │ │ │ │ -0001fc50: 6572 6973 7469 6343 6c61 7373 6573 2e69 eristicClasses.i │ │ │ │ -0001fc60: 6e66 6f2c 204e 6f64 653a 2069 734d 756c nfo, Node: isMul │ │ │ │ -0001fc70: 7469 486f 6d6f 6765 6e65 6f75 732c 204e tiHomogeneous, N │ │ │ │ -0001fc80: 6578 743a 204d 6574 686f 642c 2050 7265 ext: Method, Pre │ │ │ │ -0001fc90: 763a 2049 6e70 7574 4973 536d 6f6f 7468 v: InputIsSmooth │ │ │ │ -0001fca0: 2c20 5570 3a20 546f 700a 0a69 734d 756c , Up: Top..isMul │ │ │ │ -0001fcb0: 7469 486f 6d6f 6765 6e65 6f75 7320 2d2d tiHomogeneous -- │ │ │ │ -0001fcc0: 2043 6865 636b 7320 6966 2061 6e20 6964 Checks if an id │ │ │ │ -0001fcd0: 6561 6c20 6973 2068 6f6d 6f67 656e 656f eal is homogeneo │ │ │ │ -0001fce0: 7573 2077 6974 6820 7265 7370 6563 7420 us with respect │ │ │ │ -0001fcf0: 746f 2074 6865 2067 7261 6469 6e67 206f to the grading o │ │ │ │ -0001fd00: 6e20 6974 7320 7269 6e67 2028 692e 652e n its ring (i.e. │ │ │ │ -0001fd10: 206d 756c 7469 2d68 6f6d 6f67 656e 656f multi-homogeneo │ │ │ │ -0001fd20: 7573 2069 6e20 7468 6520 6d75 6c74 692d us in the multi- │ │ │ │ -0001fd30: 6772 6164 6564 2063 6173 6529 0a2a 2a2a graded case).*** │ │ │ │ +0001fb90: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +0001fba0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +0001fbb0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +0001fbc0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +0001fbd0: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +0001fbe0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +0001fbf0: 2f70 6163 6b61 6765 732f 0a43 6861 7261 /packages/.Chara │ │ │ │ +0001fc00: 6374 6572 6973 7469 6343 6c61 7373 6573 cteristicClasses │ │ │ │ +0001fc10: 2e6d 323a 3235 3030 3a30 2e0a 1f0a 4669 .m2:2500:0....Fi │ │ │ │ +0001fc20: 6c65 3a20 4368 6172 6163 7465 7269 7374 le: Characterist │ │ │ │ +0001fc30: 6963 436c 6173 7365 732e 696e 666f 2c20 icClasses.info, │ │ │ │ +0001fc40: 4e6f 6465 3a20 6973 4d75 6c74 6948 6f6d Node: isMultiHom │ │ │ │ +0001fc50: 6f67 656e 656f 7573 2c20 4e65 7874 3a20 ogeneous, Next: │ │ │ │ +0001fc60: 4d65 7468 6f64 2c20 5072 6576 3a20 496e Method, Prev: In │ │ │ │ +0001fc70: 7075 7449 7353 6d6f 6f74 682c 2055 703a putIsSmooth, Up: │ │ │ │ +0001fc80: 2054 6f70 0a0a 6973 4d75 6c74 6948 6f6d Top..isMultiHom │ │ │ │ +0001fc90: 6f67 656e 656f 7573 202d 2d20 4368 6563 ogeneous -- Chec │ │ │ │ +0001fca0: 6b73 2069 6620 616e 2069 6465 616c 2069 ks if an ideal i │ │ │ │ +0001fcb0: 7320 686f 6d6f 6765 6e65 6f75 7320 7769 s homogeneous wi │ │ │ │ +0001fcc0: 7468 2072 6573 7065 6374 2074 6f20 7468 th respect to th │ │ │ │ +0001fcd0: 6520 6772 6164 696e 6720 6f6e 2069 7473 e grading on its │ │ │ │ +0001fce0: 2072 696e 6720 2869 2e65 2e20 6d75 6c74 ring (i.e. mult │ │ │ │ +0001fcf0: 692d 686f 6d6f 6765 6e65 6f75 7320 696e i-homogeneous in │ │ │ │ +0001fd00: 2074 6865 206d 756c 7469 2d67 7261 6465 the multi-grade │ │ │ │ +0001fd10: 6420 6361 7365 290a 2a2a 2a2a 2a2a 2a2a d case).******** │ │ │ │ +0001fd20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001fd30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fd40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fd50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fd60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fd70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fd80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fd90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fda0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fdb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fdc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -0001fdd0: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -0001fde0: 2020 2020 6973 4d75 6c74 6948 6f6d 6f67 isMultiHomog │ │ │ │ -0001fdf0: 656e 656f 7573 2049 0a20 2020 2020 2020 eneous I. │ │ │ │ -0001fe00: 2069 734d 756c 7469 486f 6d6f 6765 6e65 isMultiHomogene │ │ │ │ -0001fe10: 6f75 7320 660a 2020 2a20 496e 7075 7473 ous f. * Inputs │ │ │ │ -0001fe20: 3a0a 2020 2020 2020 2a20 492c 2061 6e20 :. * I, an │ │ │ │ -0001fe30: 2a6e 6f74 6520 6964 6561 6c3a 2028 4d61 *note ideal: (Ma │ │ │ │ -0001fe40: 6361 756c 6179 3244 6f63 2949 6465 616c caulay2Doc)Ideal │ │ │ │ -0001fe50: 2c2c 2061 6e20 6964 6561 6c20 696e 2061 ,, an ideal in a │ │ │ │ -0001fe60: 2067 7261 6465 6420 6f72 0a20 2020 2020 graded or. │ │ │ │ -0001fe70: 2020 206d 756c 7469 2d67 7261 6465 6420 multi-graded │ │ │ │ -0001fe80: 7269 6e67 0a20 2020 2020 202a 2066 2c20 ring. * f, │ │ │ │ -0001fe90: 6120 2a6e 6f74 6520 7269 6e67 2065 6c65 a *note ring ele │ │ │ │ -0001fea0: 6d65 6e74 3a20 284d 6163 6175 6c61 7932 ment: (Macaulay2 │ │ │ │ -0001feb0: 446f 6329 5269 6e67 456c 656d 656e 742c Doc)RingElement, │ │ │ │ -0001fec0: 2c20 6120 656c 656d 656e 7420 696e 2061 , a element in a │ │ │ │ -0001fed0: 0a20 2020 2020 2020 2067 7261 6465 6420 . graded │ │ │ │ -0001fee0: 6f72 206d 756c 7469 2d67 7261 6465 6420 or multi-graded │ │ │ │ -0001fef0: 7269 6e67 0a20 202a 204f 7574 7075 7473 ring. * Outputs │ │ │ │ -0001ff00: 3a0a 2020 2020 2020 2a20 6120 2a6e 6f74 :. * a *not │ │ │ │ -0001ff10: 6520 426f 6f6c 6561 6e20 7661 6c75 653a e Boolean value: │ │ │ │ -0001ff20: 2028 4d61 6361 756c 6179 3244 6f63 2942 (Macaulay2Doc)B │ │ │ │ -0001ff30: 6f6f 6c65 616e 2c2c 200a 0a44 6573 6372 oolean,, ..Descr │ │ │ │ -0001ff40: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -0001ff50: 3d3d 0a0a 5465 7374 7320 6966 2074 6865 ==..Tests if the │ │ │ │ -0001ff60: 2069 6e70 7574 2049 6465 616c 206f 7220 input Ideal or │ │ │ │ -0001ff70: 5269 6e67 456c 656d 656e 7420 6973 2048 RingElement is H │ │ │ │ -0001ff80: 6f6d 6f67 656e 656f 7573 2077 6974 6820 omogeneous with │ │ │ │ -0001ff90: 7265 7370 6563 7420 746f 2074 6865 0a67 respect to the.g │ │ │ │ -0001ffa0: 7261 6469 6e67 206f 6e20 7468 6520 7269 rading on the ri │ │ │ │ -0001ffb0: 6e67 2e20 486f 6d6f 6765 6e65 6f75 7320 ng. Homogeneous │ │ │ │ -0001ffc0: 696e 7075 7420 6973 2072 6571 7569 7265 input is require │ │ │ │ -0001ffd0: 6420 666f 7220 616c 6c20 6d65 7468 6f64 d for all method │ │ │ │ -0001ffe0: 7320 746f 2063 6f6d 7075 7465 0a63 6861 s to compute.cha │ │ │ │ -0001fff0: 7261 6374 6572 6973 7469 6320 636c 6173 racteristic clas │ │ │ │ -00020000: 7365 732e 0a0a 5468 6973 206d 6574 686f ses...This metho │ │ │ │ -00020010: 6420 776f 726b 7320 666f 7220 6964 6561 d works for idea │ │ │ │ -00020020: 6c73 2069 6e20 7468 6520 6772 6164 6564 ls in the graded │ │ │ │ -00020030: 2063 6f6f 7264 696e 6174 6520 7269 6e67 coordinate ring │ │ │ │ -00020040: 7320 6f66 2074 6f72 6963 2076 6172 6965 s of toric varie │ │ │ │ -00020050: 7469 6573 2c0a 616e 6420 6865 6e63 6520 ties,.and hence │ │ │ │ -00020060: 666f 7220 7072 6f64 7563 7473 206f 6620 for products of │ │ │ │ -00020070: 7072 6f6a 6563 7469 7665 2073 7061 6365 projective space │ │ │ │ -00020080: 732e 2054 6865 7365 2063 616e 2062 6520 s. These can be │ │ │ │ -00020090: 6372 6561 7465 6420 6469 7265 6374 6c79 created directly │ │ │ │ -000200a0: 2c20 6f72 0a75 7369 6e67 206d 6574 686f , or.using metho │ │ │ │ -000200b0: 6473 2074 6865 202a 6e6f 7465 204d 756c ds the *note Mul │ │ │ │ -000200c0: 7469 5072 6f6a 436f 6f72 6452 696e 673a tiProjCoordRing: │ │ │ │ -000200d0: 204d 756c 7469 5072 6f6a 436f 6f72 6452 MultiProjCoordR │ │ │ │ -000200e0: 696e 672c 206d 6574 686f 6420 6f66 2074 ing, method of t │ │ │ │ -000200f0: 6869 730a 7061 636b 6167 652c 206f 7220 his.package, or │ │ │ │ -00020100: 7769 7468 206d 6574 686f 6473 2066 726f with methods fro │ │ │ │ -00020110: 6d20 7468 6520 4e6f 726d 616c 546f 7269 m the NormalTori │ │ │ │ -00020120: 6356 6172 6965 7469 6573 2050 6163 6b61 cVarieties Packa │ │ │ │ -00020130: 6765 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ge...+---------- │ │ │ │ +0001fda0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ +0001fdb0: 7361 6765 3a20 0a20 2020 2020 2020 2069 sage: . i │ │ │ │ +0001fdc0: 734d 756c 7469 486f 6d6f 6765 6e65 6f75 sMultiHomogeneou │ │ │ │ +0001fdd0: 7320 490a 2020 2020 2020 2020 6973 4d75 s I. isMu │ │ │ │ +0001fde0: 6c74 6948 6f6d 6f67 656e 656f 7573 2066 ltiHomogeneous f │ │ │ │ +0001fdf0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +0001fe00: 2020 202a 2049 2c20 616e 202a 6e6f 7465 * I, an *note │ │ │ │ +0001fe10: 2069 6465 616c 3a20 284d 6163 6175 6c61 ideal: (Macaula │ │ │ │ +0001fe20: 7932 446f 6329 4964 6561 6c2c 2c20 616e y2Doc)Ideal,, an │ │ │ │ +0001fe30: 2069 6465 616c 2069 6e20 6120 6772 6164 ideal in a grad │ │ │ │ +0001fe40: 6564 206f 720a 2020 2020 2020 2020 6d75 ed or. mu │ │ │ │ +0001fe50: 6c74 692d 6772 6164 6564 2072 696e 670a lti-graded ring. │ │ │ │ +0001fe60: 2020 2020 2020 2a20 662c 2061 202a 6e6f * f, a *no │ │ │ │ +0001fe70: 7465 2072 696e 6720 656c 656d 656e 743a te ring element: │ │ │ │ +0001fe80: 2028 4d61 6361 756c 6179 3244 6f63 2952 (Macaulay2Doc)R │ │ │ │ +0001fe90: 696e 6745 6c65 6d65 6e74 2c2c 2061 2065 ingElement,, a e │ │ │ │ +0001fea0: 6c65 6d65 6e74 2069 6e20 610a 2020 2020 lement in a. │ │ │ │ +0001feb0: 2020 2020 6772 6164 6564 206f 7220 6d75 graded or mu │ │ │ │ +0001fec0: 6c74 692d 6772 6164 6564 2072 696e 670a lti-graded ring. │ │ │ │ +0001fed0: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +0001fee0: 2020 202a 2061 202a 6e6f 7465 2042 6f6f * a *note Boo │ │ │ │ +0001fef0: 6c65 616e 2076 616c 7565 3a20 284d 6163 lean value: (Mac │ │ │ │ +0001ff00: 6175 6c61 7932 446f 6329 426f 6f6c 6561 aulay2Doc)Boolea │ │ │ │ +0001ff10: 6e2c 2c20 0a0a 4465 7363 7269 7074 696f n,, ..Descriptio │ │ │ │ +0001ff20: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 n.===========..T │ │ │ │ +0001ff30: 6573 7473 2069 6620 7468 6520 696e 7075 ests if the inpu │ │ │ │ +0001ff40: 7420 4964 6561 6c20 6f72 2052 696e 6745 t Ideal or RingE │ │ │ │ +0001ff50: 6c65 6d65 6e74 2069 7320 486f 6d6f 6765 lement is Homoge │ │ │ │ +0001ff60: 6e65 6f75 7320 7769 7468 2072 6573 7065 neous with respe │ │ │ │ +0001ff70: 6374 2074 6f20 7468 650a 6772 6164 696e ct to the.gradin │ │ │ │ +0001ff80: 6720 6f6e 2074 6865 2072 696e 672e 2048 g on the ring. H │ │ │ │ +0001ff90: 6f6d 6f67 656e 656f 7573 2069 6e70 7574 omogeneous input │ │ │ │ +0001ffa0: 2069 7320 7265 7175 6972 6564 2066 6f72 is required for │ │ │ │ +0001ffb0: 2061 6c6c 206d 6574 686f 6473 2074 6f20 all methods to │ │ │ │ +0001ffc0: 636f 6d70 7574 650a 6368 6172 6163 7465 compute.characte │ │ │ │ +0001ffd0: 7269 7374 6963 2063 6c61 7373 6573 2e0a ristic classes.. │ │ │ │ +0001ffe0: 0a54 6869 7320 6d65 7468 6f64 2077 6f72 .This method wor │ │ │ │ +0001fff0: 6b73 2066 6f72 2069 6465 616c 7320 696e ks for ideals in │ │ │ │ +00020000: 2074 6865 2067 7261 6465 6420 636f 6f72 the graded coor │ │ │ │ +00020010: 6469 6e61 7465 2072 696e 6773 206f 6620 dinate rings of │ │ │ │ +00020020: 746f 7269 6320 7661 7269 6574 6965 732c toric varieties, │ │ │ │ +00020030: 0a61 6e64 2068 656e 6365 2066 6f72 2070 .and hence for p │ │ │ │ +00020040: 726f 6475 6374 7320 6f66 2070 726f 6a65 roducts of proje │ │ │ │ +00020050: 6374 6976 6520 7370 6163 6573 2e20 5468 ctive spaces. Th │ │ │ │ +00020060: 6573 6520 6361 6e20 6265 2063 7265 6174 ese can be creat │ │ │ │ +00020070: 6564 2064 6972 6563 746c 792c 206f 720a ed directly, or. │ │ │ │ +00020080: 7573 696e 6720 6d65 7468 6f64 7320 7468 using methods th │ │ │ │ +00020090: 6520 2a6e 6f74 6520 4d75 6c74 6950 726f e *note MultiPro │ │ │ │ +000200a0: 6a43 6f6f 7264 5269 6e67 3a20 4d75 6c74 jCoordRing: Mult │ │ │ │ +000200b0: 6950 726f 6a43 6f6f 7264 5269 6e67 2c20 iProjCoordRing, │ │ │ │ +000200c0: 6d65 7468 6f64 206f 6620 7468 6973 0a70 method of this.p │ │ │ │ +000200d0: 6163 6b61 6765 2c20 6f72 2077 6974 6820 ackage, or with │ │ │ │ +000200e0: 6d65 7468 6f64 7320 6672 6f6d 2074 6865 methods from the │ │ │ │ +000200f0: 204e 6f72 6d61 6c54 6f72 6963 5661 7269 NormalToricVari │ │ │ │ +00020100: 6574 6965 7320 5061 636b 6167 652e 0a0a eties Package... │ │ │ │ +00020110: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00020120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020170: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 3d4d -----+.|i1 : R=M │ │ │ │ -00020180: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ -00020190: 6728 7b31 2c32 2c31 7d29 2020 2020 2020 g({1,2,1}) │ │ │ │ +00020150: 2b0a 7c69 3120 3a20 523d 4d75 6c74 6950 +.|i1 : R=MultiP │ │ │ │ +00020160: 726f 6a43 6f6f 7264 5269 6e67 287b 312c rojCoordRing({1, │ │ │ │ +00020170: 322c 317d 2920 2020 2020 2020 2020 2020 2,1}) │ │ │ │ +00020180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020190: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000201a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000201b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000201b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000201c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000201d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000201d0: 2020 2020 7c0a 7c6f 3120 3d20 5220 2020 |.|o1 = R │ │ │ │ 000201e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000201f0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -00020200: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -00020210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000201f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020210: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00020220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020230: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00020230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020270: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020280: 6f31 203a 2050 6f6c 796e 6f6d 6961 6c52 o1 : PolynomialR │ │ │ │ -00020290: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ -000202a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000202b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000202c0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -000202d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000202e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000202f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020300: 2d2b 0a7c 6932 203a 2078 3d67 656e 7328 -+.|i2 : x=gens( │ │ │ │ -00020310: 5229 2020 2020 2020 2020 2020 2020 2020 R) │ │ │ │ -00020320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020250: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +00020260: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ +00020270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020290: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000202a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000202b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000202c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000202d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000202e0: 3220 3a20 783d 6765 6e73 2852 2920 2020 2 : x=gens(R) │ │ │ │ +000202f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020310: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020320: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020340: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020380: 2020 2020 207c 0a7c 6f32 203d 207b 7820 |.|o2 = {x │ │ │ │ -00020390: 2c20 7820 2c20 7820 2c20 7820 2c20 7820 , x , x , x , x │ │ │ │ -000203a0: 2c20 7820 2c20 7820 7d20 2020 2020 2020 , x , x } │ │ │ │ -000203b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000203d0: 2030 2020 2031 2020 2032 2020 2033 2020 0 1 2 3 │ │ │ │ -000203e0: 2034 2020 2035 2020 2036 2020 2020 2020 4 5 6 │ │ │ │ +00020360: 7c0a 7c6f 3220 3d20 7b78 202c 2078 202c |.|o2 = {x , x , │ │ │ │ +00020370: 2078 202c 2078 202c 2078 202c 2078 202c x , x , x , x , │ │ │ │ +00020380: 2078 207d 2020 2020 2020 2020 2020 2020 x } │ │ │ │ +00020390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000203a0: 2020 7c0a 7c20 2020 2020 2020 3020 2020 |.| 0 │ │ │ │ +000203b0: 3120 2020 3220 2020 3320 2020 3420 2020 1 2 3 4 │ │ │ │ +000203c0: 3520 2020 3620 2020 2020 2020 2020 2020 5 6 │ │ │ │ +000203d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000203e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000203f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020400: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00020400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020440: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00020450: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ -00020460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020480: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00020420: 2020 2020 2020 7c0a 7c6f 3220 3a20 4c69 |.|o2 : Li │ │ │ │ +00020430: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +00020440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020460: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00020470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000204d0: 0a7c 6933 203a 2049 3d69 6465 616c 2878 .|i3 : I=ideal(x │ │ │ │ -000204e0: 5f30 5e32 2a78 5f33 2d78 5f31 2a78 5f30 _0^2*x_3-x_1*x_0 │ │ │ │ -000204f0: 2a78 5f34 2c78 5f36 5e33 2920 2020 2020 *x_4,x_6^3) │ │ │ │ +000204a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ +000204b0: 3a20 493d 6964 6561 6c28 785f 305e 322a : I=ideal(x_0^2* │ │ │ │ +000204c0: 785f 332d 785f 312a 785f 302a 785f 342c x_3-x_1*x_0*x_4, │ │ │ │ +000204d0: 785f 365e 3329 2020 2020 2020 2020 2020 x_6^3) │ │ │ │ +000204e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000204f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020510: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00020520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020550: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00020560: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00020570: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00020580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020590: 2020 2020 207c 0a7c 6f33 203d 2069 6465 |.|o3 = ide │ │ │ │ -000205a0: 616c 2028 7820 7820 202d 2078 2078 2078 al (x x - x x x │ │ │ │ -000205b0: 202c 2078 2029 2020 2020 2020 2020 2020 , x ) │ │ │ │ -000205c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000205d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000205e0: 2020 2020 2020 2030 2033 2020 2020 3020 0 3 0 │ │ │ │ -000205f0: 3120 3420 2020 3620 2020 2020 2020 2020 1 4 6 │ │ │ │ +00020510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020520: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020530: 7c20 2020 2020 2020 2020 2020 2020 3220 | 2 │ │ │ │ +00020540: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +00020550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020570: 7c0a 7c6f 3320 3d20 6964 6561 6c20 2878 |.|o3 = ideal (x │ │ │ │ +00020580: 2078 2020 2d20 7820 7820 7820 2c20 7820 x - x x x , x │ │ │ │ +00020590: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +000205a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000205b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000205c0: 2020 3020 3320 2020 2030 2031 2034 2020 0 3 0 1 4 │ │ │ │ +000205d0: 2036 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +000205e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000205f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00020600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020610: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00020610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020650: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -00020660: 203a 2049 6465 616c 206f 6620 5220 2020 : Ideal of R │ │ │ │ -00020670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020690: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00020630: 2020 2020 2020 7c0a 7c6f 3320 3a20 4964 |.|o3 : Id │ │ │ │ +00020640: 6561 6c20 6f66 2052 2020 2020 2020 2020 eal of R │ │ │ │ +00020650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020670: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00020680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000206a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000206b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000206c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000206d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000206e0: 0a7c 6934 203a 2069 734d 756c 7469 486f .|i4 : isMultiHo │ │ │ │ -000206f0: 6d6f 6765 6e65 6f75 7320 4920 2020 2020 mogeneous I │ │ │ │ +000206b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ +000206c0: 3a20 6973 4d75 6c74 6948 6f6d 6f67 656e : isMultiHomogen │ │ │ │ +000206d0: 656f 7573 2049 2020 2020 2020 2020 2020 eous I │ │ │ │ +000206e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000206f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00020700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020720: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00020730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020730: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020740: 7c6f 3420 3d20 7472 7565 2020 2020 2020 |o4 = true │ │ │ │ 00020750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020760: 2020 207c 0a7c 6f34 203d 2074 7275 6520 |.|o4 = true │ │ │ │ +00020760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000207a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00020780: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00020790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000207a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000207b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000207c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000207d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000207e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2069 -------+.|i5 : i │ │ │ │ -000207f0: 734d 756c 7469 486f 6d6f 6765 6e65 6f75 sMultiHomogeneou │ │ │ │ -00020800: 7320 6964 6561 6c28 785f 302a 785f 332d s ideal(x_0*x_3- │ │ │ │ -00020810: 785f 312a 785f 302a 785f 342c 785f 365e x_1*x_0*x_4,x_6^ │ │ │ │ -00020820: 3329 2020 2020 2020 207c 0a7c 496e 7075 3) |.|Inpu │ │ │ │ -00020830: 7420 7465 726d 2062 656c 6f77 2069 7320 t term below is │ │ │ │ -00020840: 6e6f 7420 686f 6d6f 6765 6e65 6f75 7320 not homogeneous │ │ │ │ -00020850: 7769 7468 2072 6573 7065 6374 2074 6f20 with respect to │ │ │ │ -00020860: 7468 6520 6772 6164 696e 677c 0a7c 2d20 the grading|.|- │ │ │ │ -00020870: 7820 7820 7820 202b 2078 2078 2020 2020 x x x + x x │ │ │ │ -00020880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000208a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000208b0: 2020 2030 2031 2034 2020 2020 3020 3320 0 1 4 0 3 │ │ │ │ -000208c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000207c0: 2d2d 2b0a 7c69 3520 3a20 6973 4d75 6c74 --+.|i5 : isMult │ │ │ │ +000207d0: 6948 6f6d 6f67 656e 656f 7573 2069 6465 iHomogeneous ide │ │ │ │ +000207e0: 616c 2878 5f30 2a78 5f33 2d78 5f31 2a78 al(x_0*x_3-x_1*x │ │ │ │ +000207f0: 5f30 2a78 5f34 2c78 5f36 5e33 2920 2020 _0*x_4,x_6^3) │ │ │ │ +00020800: 2020 2020 7c0a 7c49 6e70 7574 2074 6572 |.|Input ter │ │ │ │ +00020810: 6d20 6265 6c6f 7720 6973 206e 6f74 2068 m below is not h │ │ │ │ +00020820: 6f6d 6f67 656e 656f 7573 2077 6974 6820 omogeneous with │ │ │ │ +00020830: 7265 7370 6563 7420 746f 2074 6865 2067 respect to the g │ │ │ │ +00020840: 7261 6469 6e67 7c0a 7c2d 2078 2078 2078 rading|.|- x x x │ │ │ │ +00020850: 2020 2b20 7820 7820 2020 2020 2020 2020 + x x │ │ │ │ +00020860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020880: 2020 2020 2020 2020 7c0a 7c20 2020 3020 |.| 0 │ │ │ │ +00020890: 3120 3420 2020 2030 2033 2020 2020 2020 1 4 0 3 │ │ │ │ +000208a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000208b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000208c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 000208d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000208e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000208f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00020900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000208e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000208f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020900: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00020910: 3520 3d20 6661 6c73 6520 2020 2020 2020 5 = false │ │ │ │ 00020920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020930: 207c 0a7c 6f35 203d 2066 616c 7365 2020 |.|o5 = false │ │ │ │ -00020940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020970: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00020930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020940: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020950: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00020960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209b0: 2d2d 2d2d 2d2b 0a0a 4e6f 7465 2074 6861 -----+..Note tha │ │ │ │ -000209c0: 7420 666f 7220 616e 2069 6465 616c 2074 t for an ideal t │ │ │ │ -000209d0: 6f20 6265 206d 756c 7469 2d68 6f6d 6f67 o be multi-homog │ │ │ │ -000209e0: 656e 656f 7573 2074 6865 2064 6567 7265 eneous the degre │ │ │ │ -000209f0: 6520 7665 6374 6f72 206f 6620 616c 6c0a e vector of all. │ │ │ │ -00020a00: 6d6f 6e6f 6d69 616c 7320 696e 2061 2067 monomials in a g │ │ │ │ -00020a10: 6976 656e 2067 656e 6572 6174 6f72 206d iven generator m │ │ │ │ -00020a20: 7573 7420 6265 2074 6865 2073 616d 652e ust be the same. │ │ │ │ -00020a30: 0a0a 5761 7973 2074 6f20 7573 6520 6973 ..Ways to use is │ │ │ │ -00020a40: 4d75 6c74 6948 6f6d 6f67 656e 656f 7573 MultiHomogeneous │ │ │ │ -00020a50: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -00020a60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00020a70: 3d0a 0a20 202a 2022 6973 4d75 6c74 6948 =.. * "isMultiH │ │ │ │ -00020a80: 6f6d 6f67 656e 656f 7573 2849 6465 616c omogeneous(Ideal │ │ │ │ -00020a90: 2922 0a20 202a 2022 6973 4d75 6c74 6948 )". * "isMultiH │ │ │ │ -00020aa0: 6f6d 6f67 656e 656f 7573 2852 696e 6745 omogeneous(RingE │ │ │ │ -00020ab0: 6c65 6d65 6e74 2922 0a0a 466f 7220 7468 lement)"..For th │ │ │ │ -00020ac0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -00020ad0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00020ae0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -00020af0: 6520 6973 4d75 6c74 6948 6f6d 6f67 656e e isMultiHomogen │ │ │ │ -00020b00: 656f 7573 3a20 6973 4d75 6c74 6948 6f6d eous: isMultiHom │ │ │ │ -00020b10: 6f67 656e 656f 7573 2c20 6973 2061 202a ogeneous, is a * │ │ │ │ -00020b20: 6e6f 7465 206d 6574 686f 640a 6675 6e63 note method.func │ │ │ │ -00020b30: 7469 6f6e 3a20 284d 6163 6175 6c61 7932 tion: (Macaulay2 │ │ │ │ -00020b40: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ -00020b50: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ +00020990: 2b0a 0a4e 6f74 6520 7468 6174 2066 6f72 +..Note that for │ │ │ │ +000209a0: 2061 6e20 6964 6561 6c20 746f 2062 6520 an ideal to be │ │ │ │ +000209b0: 6d75 6c74 692d 686f 6d6f 6765 6e65 6f75 multi-homogeneou │ │ │ │ +000209c0: 7320 7468 6520 6465 6772 6565 2076 6563 s the degree vec │ │ │ │ +000209d0: 746f 7220 6f66 2061 6c6c 0a6d 6f6e 6f6d tor of all.monom │ │ │ │ +000209e0: 6961 6c73 2069 6e20 6120 6769 7665 6e20 ials in a given │ │ │ │ +000209f0: 6765 6e65 7261 746f 7220 6d75 7374 2062 generator must b │ │ │ │ +00020a00: 6520 7468 6520 7361 6d65 2e0a 0a57 6179 e the same...Way │ │ │ │ +00020a10: 7320 746f 2075 7365 2069 734d 756c 7469 s to use isMulti │ │ │ │ +00020a20: 486f 6d6f 6765 6e65 6f75 733a 0a3d 3d3d Homogeneous:.=== │ │ │ │ +00020a30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00020a40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +00020a50: 2a20 2269 734d 756c 7469 486f 6d6f 6765 * "isMultiHomoge │ │ │ │ +00020a60: 6e65 6f75 7328 4964 6561 6c29 220a 2020 neous(Ideal)". │ │ │ │ +00020a70: 2a20 2269 734d 756c 7469 486f 6d6f 6765 * "isMultiHomoge │ │ │ │ +00020a80: 6e65 6f75 7328 5269 6e67 456c 656d 656e neous(RingElemen │ │ │ │ +00020a90: 7429 220a 0a46 6f72 2074 6865 2070 726f t)"..For the pro │ │ │ │ +00020aa0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +00020ab0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +00020ac0: 6f62 6a65 6374 202a 6e6f 7465 2069 734d object *note isM │ │ │ │ +00020ad0: 756c 7469 486f 6d6f 6765 6e65 6f75 733a ultiHomogeneous: │ │ │ │ +00020ae0: 2069 734d 756c 7469 486f 6d6f 6765 6e65 isMultiHomogene │ │ │ │ +00020af0: 6f75 732c 2069 7320 6120 2a6e 6f74 6520 ous, is a *note │ │ │ │ +00020b00: 6d65 7468 6f64 0a66 756e 6374 696f 6e3a method.function: │ │ │ │ +00020b10: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +00020b20: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +00020b30: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ +00020b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020ba0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -00020bb0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -00020bc0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -00020bd0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -00020be0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -00020bf0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -00020c00: 6179 322f 7061 636b 6167 6573 2f0a 4368 ay2/packages/.Ch │ │ │ │ -00020c10: 6172 6163 7465 7269 7374 6963 436c 6173 aracteristicClas │ │ │ │ -00020c20: 7365 732e 6d32 3a32 3031 323a 302e 0a1f ses.m2:2012:0... │ │ │ │ -00020c30: 0a46 696c 653a 2043 6861 7261 6374 6572 .File: Character │ │ │ │ -00020c40: 6973 7469 6343 6c61 7373 6573 2e69 6e66 isticClasses.inf │ │ │ │ -00020c50: 6f2c 204e 6f64 653a 204d 6574 686f 642c o, Node: Method, │ │ │ │ -00020c60: 204e 6578 743a 204d 756c 7469 5072 6f6a Next: MultiProj │ │ │ │ -00020c70: 436f 6f72 6452 696e 672c 2050 7265 763a CoordRing, Prev: │ │ │ │ -00020c80: 2069 734d 756c 7469 486f 6d6f 6765 6e65 isMultiHomogene │ │ │ │ -00020c90: 6f75 732c 2055 703a 2054 6f70 0a0a 4d65 ous, Up: Top..Me │ │ │ │ -00020ca0: 7468 6f64 0a2a 2a2a 2a2a 2a0a 0a44 6573 thod.******..Des │ │ │ │ -00020cb0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00020cc0: 3d3d 3d3d 0a0a 5468 6520 6f70 7469 6f6e ====..The option │ │ │ │ -00020cd0: 204d 6574 686f 6420 6973 206f 6e6c 7920 Method is only │ │ │ │ -00020ce0: 7573 6564 2062 7920 7468 6520 636f 6d6d used by the comm │ │ │ │ -00020cf0: 616e 6473 202a 6e6f 7465 2043 534d 3a20 ands *note CSM: │ │ │ │ -00020d00: 4353 4d2c 2061 6e64 202a 6e6f 7465 2045 CSM, and *note E │ │ │ │ -00020d10: 756c 6572 3a0a 4575 6c65 722c 2061 6e64 uler:.Euler, and │ │ │ │ -00020d20: 206f 6e6c 7920 696e 2063 6f6d 6269 6e61 only in combina │ │ │ │ -00020d30: 7469 6f6e 2077 6974 6820 2a6e 6f74 6520 tion with *note │ │ │ │ -00020d40: 436f 6d70 4d65 7468 6f64 3a0a 436f 6d70 CompMethod:.Comp │ │ │ │ -00020d50: 4d65 7468 6f64 2c3d 3e50 726f 6a65 6374 Method,=>Project │ │ │ │ -00020d60: 6976 6544 6567 7265 652e 2054 6865 204d iveDegree. The M │ │ │ │ -00020d70: 6574 686f 6420 496e 636c 7573 696f 6e45 ethod InclusionE │ │ │ │ -00020d80: 7863 6c75 7369 6f6e 2077 696c 6c20 616c xclusion will al │ │ │ │ -00020d90: 7761 7973 2062 650a 7573 6564 2077 6974 ways be.used wit │ │ │ │ -00020da0: 6820 2a6e 6f74 6520 436f 6d70 4d65 7468 h *note CompMeth │ │ │ │ -00020db0: 6f64 3a20 436f 6d70 4d65 7468 6f64 2c20 od: CompMethod, │ │ │ │ -00020dc0: 506e 5265 7369 6475 616c 206f 7220 6265 PnResidual or be │ │ │ │ -00020dd0: 7274 696e 692e 2057 6865 6e20 7468 6520 rtini. When the │ │ │ │ -00020de0: 696e 7075 740a 6964 6561 6c20 6973 2061 input.ideal is a │ │ │ │ -00020df0: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ -00020e00: 6563 7469 6f6e 206f 6e65 206d 6179 2c20 ection one may, │ │ │ │ -00020e10: 706f 7465 6e74 6961 6c6c 792c 2073 7065 potentially, spe │ │ │ │ -00020e20: 6564 2075 7020 7468 6520 636f 6d70 7574 ed up the comput │ │ │ │ -00020e30: 6174 696f 6e0a 6279 2073 6574 7469 6e67 ation.by setting │ │ │ │ -00020e40: 204d 6574 686f 643d 3e20 4469 7265 6374 Method=> Direct │ │ │ │ -00020e50: 436f 6d70 6c65 7465 496e 742e 2054 6865 CompleteInt. The │ │ │ │ -00020e60: 206f 7074 696f 6e20 4d65 7468 6f64 2069 option Method i │ │ │ │ -00020e70: 7320 6f6e 6c79 2075 7365 6420 6279 2074 s only used by t │ │ │ │ -00020e80: 6865 0a63 6f6d 6d61 6e64 7320 2a6e 6f74 he.commands *not │ │ │ │ -00020e90: 6520 4353 4d3a 2043 534d 2c20 616e 6420 e CSM: CSM, and │ │ │ │ -00020ea0: 2a6e 6f74 6520 4575 6c65 723a 2045 756c *note Euler: Eul │ │ │ │ -00020eb0: 6572 2c20 616e 6420 6f6e 6c79 2069 6e20 er, and only in │ │ │ │ -00020ec0: 636f 6d62 696e 6174 696f 6e20 7769 7468 combination with │ │ │ │ -00020ed0: 0a2a 6e6f 7465 2043 6f6d 704d 6574 686f .*note CompMetho │ │ │ │ -00020ee0: 643a 2043 6f6d 704d 6574 686f 642c 3d3e d: CompMethod,=> │ │ │ │ -00020ef0: 5072 6f6a 6563 7469 7665 4465 6772 6565 ProjectiveDegree │ │ │ │ -00020f00: 2e20 5468 6520 4d65 7468 6f64 2049 6e63 . The Method Inc │ │ │ │ -00020f10: 6c75 7369 6f6e 4578 636c 7573 696f 6e0a lusionExclusion. │ │ │ │ -00020f20: 7769 6c6c 2061 6c77 6179 7320 6265 2075 will always be u │ │ │ │ -00020f30: 7365 6420 7769 7468 202a 6e6f 7465 2043 sed with *note C │ │ │ │ -00020f40: 6f6d 704d 6574 686f 643a 2043 6f6d 704d ompMethod: CompM │ │ │ │ -00020f50: 6574 686f 642c 2050 6e52 6573 6964 7561 ethod, PnResidua │ │ │ │ -00020f60: 6c20 6f72 2062 6572 7469 6e69 2e0a 0a2b l or bertini...+ │ │ │ │ +00020b80: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +00020b90: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +00020ba0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +00020bb0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +00020bc0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +00020bd0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +00020be0: 6163 6b61 6765 732f 0a43 6861 7261 6374 ackages/.Charact │ │ │ │ +00020bf0: 6572 6973 7469 6343 6c61 7373 6573 2e6d eristicClasses.m │ │ │ │ +00020c00: 323a 3230 3132 3a30 2e0a 1f0a 4669 6c65 2:2012:0....File │ │ │ │ +00020c10: 3a20 4368 6172 6163 7465 7269 7374 6963 : Characteristic │ │ │ │ +00020c20: 436c 6173 7365 732e 696e 666f 2c20 4e6f Classes.info, No │ │ │ │ +00020c30: 6465 3a20 4d65 7468 6f64 2c20 4e65 7874 de: Method, Next │ │ │ │ +00020c40: 3a20 4d75 6c74 6950 726f 6a43 6f6f 7264 : MultiProjCoord │ │ │ │ +00020c50: 5269 6e67 2c20 5072 6576 3a20 6973 4d75 Ring, Prev: isMu │ │ │ │ +00020c60: 6c74 6948 6f6d 6f67 656e 656f 7573 2c20 ltiHomogeneous, │ │ │ │ +00020c70: 5570 3a20 546f 700a 0a4d 6574 686f 640a Up: Top..Method. │ │ │ │ +00020c80: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ +00020c90: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +00020ca0: 0a54 6865 206f 7074 696f 6e20 4d65 7468 .The option Meth │ │ │ │ +00020cb0: 6f64 2069 7320 6f6e 6c79 2075 7365 6420 od is only used │ │ │ │ +00020cc0: 6279 2074 6865 2063 6f6d 6d61 6e64 7320 by the commands │ │ │ │ +00020cd0: 2a6e 6f74 6520 4353 4d3a 2043 534d 2c20 *note CSM: CSM, │ │ │ │ +00020ce0: 616e 6420 2a6e 6f74 6520 4575 6c65 723a and *note Euler: │ │ │ │ +00020cf0: 0a45 756c 6572 2c20 616e 6420 6f6e 6c79 .Euler, and only │ │ │ │ +00020d00: 2069 6e20 636f 6d62 696e 6174 696f 6e20 in combination │ │ │ │ +00020d10: 7769 7468 202a 6e6f 7465 2043 6f6d 704d with *note CompM │ │ │ │ +00020d20: 6574 686f 643a 0a43 6f6d 704d 6574 686f ethod:.CompMetho │ │ │ │ +00020d30: 642c 3d3e 5072 6f6a 6563 7469 7665 4465 d,=>ProjectiveDe │ │ │ │ +00020d40: 6772 6565 2e20 5468 6520 4d65 7468 6f64 gree. The Method │ │ │ │ +00020d50: 2049 6e63 6c75 7369 6f6e 4578 636c 7573 InclusionExclus │ │ │ │ +00020d60: 696f 6e20 7769 6c6c 2061 6c77 6179 7320 ion will always │ │ │ │ +00020d70: 6265 0a75 7365 6420 7769 7468 202a 6e6f be.used with *no │ │ │ │ +00020d80: 7465 2043 6f6d 704d 6574 686f 643a 2043 te CompMethod: C │ │ │ │ +00020d90: 6f6d 704d 6574 686f 642c 2050 6e52 6573 ompMethod, PnRes │ │ │ │ +00020da0: 6964 7561 6c20 6f72 2062 6572 7469 6e69 idual or bertini │ │ │ │ +00020db0: 2e20 5768 656e 2074 6865 2069 6e70 7574 . When the input │ │ │ │ +00020dc0: 0a69 6465 616c 2069 7320 6120 636f 6d70 .ideal is a comp │ │ │ │ +00020dd0: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ +00020de0: 6e20 6f6e 6520 6d61 792c 2070 6f74 656e n one may, poten │ │ │ │ +00020df0: 7469 616c 6c79 2c20 7370 6565 6420 7570 tially, speed up │ │ │ │ +00020e00: 2074 6865 2063 6f6d 7075 7461 7469 6f6e the computation │ │ │ │ +00020e10: 0a62 7920 7365 7474 696e 6720 4d65 7468 .by setting Meth │ │ │ │ +00020e20: 6f64 3d3e 2044 6972 6563 7443 6f6d 706c od=> DirectCompl │ │ │ │ +00020e30: 6574 6549 6e74 2e20 5468 6520 6f70 7469 eteInt. The opti │ │ │ │ +00020e40: 6f6e 204d 6574 686f 6420 6973 206f 6e6c on Method is onl │ │ │ │ +00020e50: 7920 7573 6564 2062 7920 7468 650a 636f y used by the.co │ │ │ │ +00020e60: 6d6d 616e 6473 202a 6e6f 7465 2043 534d mmands *note CSM │ │ │ │ +00020e70: 3a20 4353 4d2c 2061 6e64 202a 6e6f 7465 : CSM, and *note │ │ │ │ +00020e80: 2045 756c 6572 3a20 4575 6c65 722c 2061 Euler: Euler, a │ │ │ │ +00020e90: 6e64 206f 6e6c 7920 696e 2063 6f6d 6269 nd only in combi │ │ │ │ +00020ea0: 6e61 7469 6f6e 2077 6974 680a 2a6e 6f74 nation with.*not │ │ │ │ +00020eb0: 6520 436f 6d70 4d65 7468 6f64 3a20 436f e CompMethod: Co │ │ │ │ +00020ec0: 6d70 4d65 7468 6f64 2c3d 3e50 726f 6a65 mpMethod,=>Proje │ │ │ │ +00020ed0: 6374 6976 6544 6567 7265 652e 2054 6865 ctiveDegree. The │ │ │ │ +00020ee0: 204d 6574 686f 6420 496e 636c 7573 696f Method Inclusio │ │ │ │ +00020ef0: 6e45 7863 6c75 7369 6f6e 0a77 696c 6c20 nExclusion.will │ │ │ │ +00020f00: 616c 7761 7973 2062 6520 7573 6564 2077 always be used w │ │ │ │ +00020f10: 6974 6820 2a6e 6f74 6520 436f 6d70 4d65 ith *note CompMe │ │ │ │ +00020f20: 7468 6f64 3a20 436f 6d70 4d65 7468 6f64 thod: CompMethod │ │ │ │ +00020f30: 2c20 506e 5265 7369 6475 616c 206f 7220 , PnResidual or │ │ │ │ +00020f40: 6265 7274 696e 692e 0a0a 2b2d 2d2d 2d2d bertini...+----- │ │ │ │ +00020f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020fa0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00020fb0: 5220 3d20 5a5a 2f33 3237 3439 5b78 5f30 R = ZZ/32749[x_0 │ │ │ │ -00020fc0: 2e2e 785f 365d 2020 2020 2020 2020 2020 ..x_6] │ │ │ │ +00020f80: 2d2d 2d2b 0a7c 6931 203a 2052 203d 205a ---+.|i1 : R = Z │ │ │ │ +00020f90: 5a2f 3332 3734 395b 785f 302e 2e78 5f36 Z/32749[x_0..x_6 │ │ │ │ +00020fa0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +00020fb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020fc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020fe0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00020ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021010: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00021020: 7c6f 3120 3d20 5220 2020 2020 2020 2020 |o1 = R │ │ │ │ -00021030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020ff0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ +00021000: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00021010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021030: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00021040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021050: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00021060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021090: 2020 2020 7c0a 7c6f 3120 3a20 506f 6c79 |.|o1 : Poly │ │ │ │ -000210a0: 6e6f 6d69 616c 5269 6e67 2020 2020 2020 nomialRing │ │ │ │ -000210b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000210d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -000210e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000210f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021100: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ -00021110: 3a20 493d 6964 6561 6c28 7261 6e64 6f6d : I=ideal(random │ │ │ │ -00021120: 2832 2c52 292c 7261 6e64 6f6d 2831 2c52 (2,R),random(1,R │ │ │ │ -00021130: 292c 525f 302a 525f 312a 525f 362d 525f ),R_0*R_1*R_6-R_ │ │ │ │ -00021140: 305e 3329 3b7c 0a7c 2020 2020 2020 2020 0^3);|.| │ │ │ │ -00021150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021070: 0a7c 6f31 203a 2050 6f6c 796e 6f6d 6961 .|o1 : Polynomia │ │ │ │ +00021080: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ +00021090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000210a0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000210b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210e0: 2d2d 2d2d 2d2b 0a7c 6932 203a 2049 3d69 -----+.|i2 : I=i │ │ │ │ +000210f0: 6465 616c 2872 616e 646f 6d28 322c 5229 deal(random(2,R) │ │ │ │ +00021100: 2c72 616e 646f 6d28 312c 5229 2c52 5f30 ,random(1,R),R_0 │ │ │ │ +00021110: 2a52 5f31 2a52 5f36 2d52 5f30 5e33 293b *R_1*R_6-R_0^3); │ │ │ │ +00021120: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021150: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00021160: 203a 2049 6465 616c 206f 6620 5220 2020 : Ideal of R │ │ │ │ 00021170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021180: 7c0a 7c6f 3220 3a20 4964 6561 6c20 6f66 |.|o2 : Ideal of │ │ │ │ -00021190: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -000211a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000211b0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00021180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021190: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000211a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000211b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000211c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000211d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000211e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000211f0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 7469 ------+.|i3 : ti │ │ │ │ -00021200: 6d65 2043 534d 2049 2020 2020 2020 2020 me CSM I │ │ │ │ -00021210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021230: 207c 0a7c 202d 2d20 7573 6564 2031 2e36 |.| -- used 1.6 │ │ │ │ -00021240: 3133 3931 7320 2863 7075 293b 2030 2e39 1391s (cpu); 0.9 │ │ │ │ -00021250: 3230 3235 3273 2028 7468 7265 6164 293b 20252s (thread); │ │ │ │ -00021260: 2030 7320 2867 6329 2020 2020 7c0a 7c20 0s (gc) |.| │ │ │ │ +000211d0: 2d2b 0a7c 6933 203a 2074 696d 6520 4353 -+.|i3 : time CS │ │ │ │ +000211e0: 4d20 4920 2020 2020 2020 2020 2020 2020 M I │ │ │ │ +000211f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021200: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00021210: 2d2d 2075 7365 6420 342e 3037 3733 3273 -- used 4.07732s │ │ │ │ +00021220: 2028 6370 7529 3b20 312e 3138 3336 3273 (cpu); 1.18362s │ │ │ │ +00021230: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ +00021240: 6329 2020 2020 207c 0a7c 2020 2020 2020 c) |.| │ │ │ │ +00021250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000212b0: 2020 3520 2020 2020 2034 2020 2020 2033 5 4 3 │ │ │ │ -000212c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212e0: 2020 7c0a 7c6f 3320 3d20 3132 6820 202b |.|o3 = 12h + │ │ │ │ -000212f0: 2031 3068 2020 2b20 3668 2020 2020 2020 10h + 6h │ │ │ │ -00021300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021310: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00021320: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ -00021330: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +00021280: 2020 7c0a 7c20 2020 2020 2020 2035 2020 |.| 5 │ │ │ │ +00021290: 2020 2020 3420 2020 2020 3320 2020 2020 4 3 │ │ │ │ +000212a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000212b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000212c0: 6f33 203d 2031 3268 2020 2b20 3130 6820 o3 = 12h + 10h │ │ │ │ +000212d0: 202b 2036 6820 2020 2020 2020 2020 2020 + 6h │ │ │ │ +000212e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000212f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00021300: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00021310: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00021320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021330: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00021340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021350: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00021360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021360: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021370: 7c20 2020 2020 5a5a 5b68 205d 2020 2020 | ZZ[h ] │ │ │ │ 00021380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021390: 2020 207c 0a7c 2020 2020 205a 5a5b 6820 |.| ZZ[h │ │ │ │ -000213a0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ -000213b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000213d0: 7c20 2020 2020 2020 2020 3120 2020 2020 | 1 │ │ │ │ -000213e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021400: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ -00021410: 202d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------ │ │ │ │ -00021420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000213a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000213b0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +000213c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000213d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000213e0: 2020 2020 7c0a 7c6f 3320 3a20 2d2d 2d2d |.|o3 : ---- │ │ │ │ +000213f0: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +00021400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021420: 0a7c 2020 2020 2020 2020 3720 2020 2020 .| 7 │ │ │ │ 00021430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021440: 2020 2020 7c0a 7c20 2020 2020 2020 2037 |.| 7 │ │ │ │ -00021450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021480: 0a7c 2020 2020 2020 2068 2020 2020 2020 .| h │ │ │ │ -00021490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000214c0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ -000214d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00021500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021530: 2b0a 7c69 3420 3a20 7469 6d65 2043 534d +.|i4 : time CSM │ │ │ │ -00021540: 2849 2c4d 6574 686f 643d 3e44 6972 6563 (I,Method=>Direc │ │ │ │ -00021550: 7443 6f6d 706c 6574 6549 6e74 2920 2020 tCompleteInt) │ │ │ │ -00021560: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00021570: 2d20 7573 6564 2030 2e34 3833 3131 3273 - used 0.483112s │ │ │ │ -00021580: 2028 6370 7529 3b20 302e 3231 3438 3734 (cpu); 0.214874 │ │ │ │ -00021590: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -000215a0: 6763 2920 2020 7c0a 7c20 2020 2020 2020 gc) |.| │ │ │ │ -000215b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215e0: 207c 0a7c 2020 2020 2020 2020 3520 2020 |.| 5 │ │ │ │ -000215f0: 2020 2034 2020 2020 2033 2020 2020 2020 4 3 │ │ │ │ -00021600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021610: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00021620: 3420 3d20 3132 6820 202b 2031 3068 2020 4 = 12h + 10h │ │ │ │ -00021630: 2b20 3668 2020 2020 2020 2020 2020 2020 + 6h │ │ │ │ -00021640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021650: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00021660: 2020 3120 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ +00021440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021450: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00021460: 2020 2020 6820 2020 2020 2020 2020 2020 h │ │ │ │ +00021470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021490: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000214a0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000214b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000214c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000214d0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +000214e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000214f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +00021510: 203a 2074 696d 6520 4353 4d28 492c 4d65 : time CSM(I,Me │ │ │ │ +00021520: 7468 6f64 3d3e 4469 7265 6374 436f 6d70 thod=>DirectComp │ │ │ │ +00021530: 6c65 7465 496e 7429 2020 2020 2020 2020 leteInt) │ │ │ │ +00021540: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ +00021550: 6420 302e 3933 3231 3973 2028 6370 7529 d 0.93219s (cpu) │ │ │ │ +00021560: 3b20 302e 3238 3537 3137 7320 2874 6872 ; 0.285717s (thr │ │ │ │ +00021570: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +00021580: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000215a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000215b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000215c0: 2020 2020 2020 2035 2020 2020 2020 3420 5 4 │ │ │ │ +000215d0: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ +000215e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000215f0: 2020 2020 2020 207c 0a7c 6f34 203d 2031 |.|o4 = 1 │ │ │ │ +00021600: 3268 2020 2b20 3130 6820 202b 2036 6820 2h + 10h + 6h │ │ │ │ +00021610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021630: 2020 7c0a 7c20 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ +00021640: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00021650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021660: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00021670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021690: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000216a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000216b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000216c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000216d0: 2020 2020 205a 5a5b 6820 5d20 2020 2020 ZZ[h ] │ │ │ │ -000216e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000216a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000216b0: 5a5a 5b68 205d 2020 2020 2020 2020 2020 ZZ[h ] │ │ │ │ +000216c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000216d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000216e0: 2020 207c 0a7c 2020 2020 2020 2020 2031 |.| 1 │ │ │ │ 000216f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021700: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00021710: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ -00021720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021710: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021720: 7c6f 3420 3a20 2d2d 2d2d 2d2d 2020 2020 |o4 : ------ │ │ │ │ 00021730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021740: 2020 207c 0a7c 6f34 203a 202d 2d2d 2d2d |.|o4 : ----- │ │ │ │ -00021750: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ -00021760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021770: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00021780: 7c20 2020 2020 2020 2037 2020 2020 2020 | 7 │ │ │ │ -00021790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021750: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00021760: 2020 2020 3720 2020 2020 2020 2020 2020 7 │ │ │ │ +00021770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021790: 2020 2020 7c0a 7c20 2020 2020 2020 6820 |.| h │ │ │ │ 000217a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000217c0: 2020 2068 2020 2020 2020 2020 2020 2020 h │ │ │ │ -000217d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000217b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000217c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000217d0: 0a7c 2020 2020 2020 2020 3120 2020 2020 .| 1 │ │ │ │ 000217e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217f0: 2020 2020 7c0a 7c20 2020 2020 2020 2031 |.| 1 │ │ │ │ -00021800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021820: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021830: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00021840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021860: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6865 ----------+..Whe │ │ │ │ -00021870: 6e20 7573 696e 6720 7468 6520 4469 7265 n using the Dire │ │ │ │ -00021880: 6374 436f 6d70 6c65 7465 496e 7420 6d65 ctCompleteInt me │ │ │ │ -00021890: 7468 6f64 206f 6e65 206d 6179 2070 6f74 thod one may pot │ │ │ │ -000218a0: 656e 7469 616c 6c79 2066 7572 7468 6572 entially further │ │ │ │ -000218b0: 2073 7065 6564 2075 700a 636f 6d70 7574 speed up.comput │ │ │ │ -000218c0: 6174 696f 6e20 7469 6d65 2062 7920 7370 ation time by sp │ │ │ │ -000218d0: 6563 6966 7969 6e67 2077 6861 7420 7375 ecifying what su │ │ │ │ -000218e0: 6273 6574 206f 6620 7468 6520 6765 6e65 bset of the gene │ │ │ │ -000218f0: 7261 746f 7273 206f 6620 7468 6520 696e rators of the in │ │ │ │ -00021900: 7075 7420 6964 6561 6c0a 6465 6669 6e65 put ideal.define │ │ │ │ -00021910: 2061 2073 6d6f 6f74 6820 7375 6273 6368 a smooth subsch │ │ │ │ -00021920: 656d 6520 2869 6620 7468 6973 2069 7320 eme (if this is │ │ │ │ -00021930: 6b6e 6f77 6e29 2c20 7365 6520 2a6e 6f74 known), see *not │ │ │ │ -00021940: 6520 496e 6473 4f66 536d 6f6f 7468 3a0a e IndsOfSmooth:. │ │ │ │ -00021950: 496e 6473 4f66 536d 6f6f 7468 2c2e 0a0a IndsOfSmooth,... │ │ │ │ -00021960: 4675 6e63 7469 6f6e 7320 7769 7468 206f Functions with o │ │ │ │ -00021970: 7074 696f 6e61 6c20 6172 6775 6d65 6e74 ptional argument │ │ │ │ -00021980: 206e 616d 6564 204d 6574 686f 643a 0a3d named Method:.= │ │ │ │ -00021990: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000219a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000219b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ -000219c0: 202a 2022 4353 4d28 2e2e 2e2c 4d65 7468 * "CSM(...,Meth │ │ │ │ -000219d0: 6f64 3d3e 2e2e 2e29 2220 2d2d 2073 6565 od=>...)" -- see │ │ │ │ -000219e0: 202a 6e6f 7465 2043 534d 3a20 4353 4d2c *note CSM: CSM, │ │ │ │ -000219f0: 202d 2d20 5468 650a 2020 2020 4368 6572 -- The. Cher │ │ │ │ -00021a00: 6e2d 5363 6877 6172 747a 2d4d 6163 5068 n-Schwartz-MacPh │ │ │ │ -00021a10: 6572 736f 6e20 636c 6173 730a 2020 2a20 erson class. * │ │ │ │ -00021a20: 4575 6c65 7228 2e2e 2e2c 4d65 7468 6f64 Euler(...,Method │ │ │ │ -00021a30: 3d3e 2e2e 2e29 2028 6d69 7373 696e 6720 =>...) (missing │ │ │ │ -00021a40: 646f 6375 6d65 6e74 6174 696f 6e29 0a0a documentation).. │ │ │ │ -00021a50: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -00021a60: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -00021a70: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -00021a80: 7420 2a6e 6f74 6520 4d65 7468 6f64 3a20 t *note Method: │ │ │ │ -00021a90: 4d65 7468 6f64 2c20 6973 2061 202a 6e6f Method, is a *no │ │ │ │ -00021aa0: 7465 2073 796d 626f 6c3a 2028 4d61 6361 te symbol: (Maca │ │ │ │ -00021ab0: 756c 6179 3244 6f63 2953 796d 626f 6c2c ulay2Doc)Symbol, │ │ │ │ -00021ac0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +000217f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021800: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00021810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021840: 2d2d 2d2d 2d2b 0a0a 5768 656e 2075 7369 -----+..When usi │ │ │ │ +00021850: 6e67 2074 6865 2044 6972 6563 7443 6f6d ng the DirectCom │ │ │ │ +00021860: 706c 6574 6549 6e74 206d 6574 686f 6420 pleteInt method │ │ │ │ +00021870: 6f6e 6520 6d61 7920 706f 7465 6e74 6961 one may potentia │ │ │ │ +00021880: 6c6c 7920 6675 7274 6865 7220 7370 6565 lly further spee │ │ │ │ +00021890: 6420 7570 0a63 6f6d 7075 7461 7469 6f6e d up.computation │ │ │ │ +000218a0: 2074 696d 6520 6279 2073 7065 6369 6679 time by specify │ │ │ │ +000218b0: 696e 6720 7768 6174 2073 7562 7365 7420 ing what subset │ │ │ │ +000218c0: 6f66 2074 6865 2067 656e 6572 6174 6f72 of the generator │ │ │ │ +000218d0: 7320 6f66 2074 6865 2069 6e70 7574 2069 s of the input i │ │ │ │ +000218e0: 6465 616c 0a64 6566 696e 6520 6120 736d deal.define a sm │ │ │ │ +000218f0: 6f6f 7468 2073 7562 7363 6865 6d65 2028 ooth subscheme ( │ │ │ │ +00021900: 6966 2074 6869 7320 6973 206b 6e6f 776e if this is known │ │ │ │ +00021910: 292c 2073 6565 202a 6e6f 7465 2049 6e64 ), see *note Ind │ │ │ │ +00021920: 734f 6653 6d6f 6f74 683a 0a49 6e64 734f sOfSmooth:.IndsO │ │ │ │ +00021930: 6653 6d6f 6f74 682c 2e0a 0a46 756e 6374 fSmooth,...Funct │ │ │ │ +00021940: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ +00021950: 616c 2061 7267 756d 656e 7420 6e61 6d65 al argument name │ │ │ │ +00021960: 6420 4d65 7468 6f64 3a0a 3d3d 3d3d 3d3d d Method:.====== │ │ │ │ +00021970: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00021980: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00021990: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2243 ========.. * "C │ │ │ │ +000219a0: 534d 282e 2e2e 2c4d 6574 686f 643d 3e2e SM(...,Method=>. │ │ │ │ +000219b0: 2e2e 2922 202d 2d20 7365 6520 2a6e 6f74 ..)" -- see *not │ │ │ │ +000219c0: 6520 4353 4d3a 2043 534d 2c20 2d2d 2054 e CSM: CSM, -- T │ │ │ │ +000219d0: 6865 0a20 2020 2043 6865 726e 2d53 6368 he. Chern-Sch │ │ │ │ +000219e0: 7761 7274 7a2d 4d61 6350 6865 7273 6f6e wartz-MacPherson │ │ │ │ +000219f0: 2063 6c61 7373 0a20 202a 2045 756c 6572 class. * Euler │ │ │ │ +00021a00: 282e 2e2e 2c4d 6574 686f 643d 3e2e 2e2e (...,Method=>... │ │ │ │ +00021a10: 2920 286d 6973 7369 6e67 2064 6f63 756d ) (missing docum │ │ │ │ +00021a20: 656e 7461 7469 6f6e 290a 0a46 6f72 2074 entation)..For t │ │ │ │ +00021a30: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +00021a40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00021a50: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +00021a60: 7465 204d 6574 686f 643a 204d 6574 686f te Method: Metho │ │ │ │ +00021a70: 642c 2069 7320 6120 2a6e 6f74 6520 7379 d, is a *note sy │ │ │ │ +00021a80: 6d62 6f6c 3a20 284d 6163 6175 6c61 7932 mbol: (Macaulay2 │ │ │ │ +00021a90: 446f 6329 5379 6d62 6f6c 2c2e 0a0a 2d2d Doc)Symbol,...-- │ │ │ │ +00021aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b10: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -00021b20: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -00021b30: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -00021b40: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -00021b50: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -00021b60: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -00021b70: 2f70 6163 6b61 6765 732f 0a43 6861 7261 /packages/.Chara │ │ │ │ -00021b80: 6374 6572 6973 7469 6343 6c61 7373 6573 cteristicClasses │ │ │ │ -00021b90: 2e6d 323a 3234 3332 3a30 2e0a 1f0a 4669 .m2:2432:0....Fi │ │ │ │ -00021ba0: 6c65 3a20 4368 6172 6163 7465 7269 7374 le: Characterist │ │ │ │ -00021bb0: 6963 436c 6173 7365 732e 696e 666f 2c20 icClasses.info, │ │ │ │ -00021bc0: 4e6f 6465 3a20 4d75 6c74 6950 726f 6a43 Node: MultiProjC │ │ │ │ -00021bd0: 6f6f 7264 5269 6e67 2c20 4e65 7874 3a20 oordRing, Next: │ │ │ │ -00021be0: 4f75 7470 7574 2c20 5072 6576 3a20 4d65 Output, Prev: Me │ │ │ │ -00021bf0: 7468 6f64 2c20 5570 3a20 546f 700a 0a4d thod, Up: Top..M │ │ │ │ -00021c00: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ -00021c10: 6720 2d2d 2041 2071 7569 636b 2077 6179 g -- A quick way │ │ │ │ -00021c20: 2074 6f20 6275 696c 6420 7468 6520 636f to build the co │ │ │ │ -00021c30: 6f72 6469 6e61 7465 2072 696e 6720 6f66 ordinate ring of │ │ │ │ -00021c40: 2061 2070 726f 6475 6374 206f 6620 7072 a product of pr │ │ │ │ -00021c50: 6f6a 6563 7469 7665 2073 7061 6365 730a ojective spaces. │ │ │ │ +00021ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +00021af0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +00021b00: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +00021b10: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +00021b20: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +00021b30: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +00021b40: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +00021b50: 6167 6573 2f0a 4368 6172 6163 7465 7269 ages/.Characteri │ │ │ │ +00021b60: 7374 6963 436c 6173 7365 732e 6d32 3a32 sticClasses.m2:2 │ │ │ │ +00021b70: 3433 323a 302e 0a1f 0a46 696c 653a 2043 432:0....File: C │ │ │ │ +00021b80: 6861 7261 6374 6572 6973 7469 6343 6c61 haracteristicCla │ │ │ │ +00021b90: 7373 6573 2e69 6e66 6f2c 204e 6f64 653a sses.info, Node: │ │ │ │ +00021ba0: 204d 756c 7469 5072 6f6a 436f 6f72 6452 MultiProjCoordR │ │ │ │ +00021bb0: 696e 672c 204e 6578 743a 204f 7574 7075 ing, Next: Outpu │ │ │ │ +00021bc0: 742c 2050 7265 763a 204d 6574 686f 642c t, Prev: Method, │ │ │ │ +00021bd0: 2055 703a 2054 6f70 0a0a 4d75 6c74 6950 Up: Top..MultiP │ │ │ │ +00021be0: 726f 6a43 6f6f 7264 5269 6e67 202d 2d20 rojCoordRing -- │ │ │ │ +00021bf0: 4120 7175 6963 6b20 7761 7920 746f 2062 A quick way to b │ │ │ │ +00021c00: 7569 6c64 2074 6865 2063 6f6f 7264 696e uild the coordin │ │ │ │ +00021c10: 6174 6520 7269 6e67 206f 6620 6120 7072 ate ring of a pr │ │ │ │ +00021c20: 6f64 7563 7420 6f66 2070 726f 6a65 6374 oduct of project │ │ │ │ +00021c30: 6976 6520 7370 6163 6573 0a2a 2a2a 2a2a ive spaces.***** │ │ │ │ +00021c40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00021c50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00021c60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00021c70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00021c80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021c90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021ca0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021cb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021cc0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -00021cd0: 2020 2020 2020 4d75 6c74 6950 726f 6a43 MultiProjC │ │ │ │ -00021ce0: 6f6f 7264 5269 6e67 2044 696d 730a 2020 oordRing Dims. │ │ │ │ -00021cf0: 2020 2020 2020 4d75 6c74 6950 726f 6a43 MultiProjC │ │ │ │ -00021d00: 6f6f 7264 5269 6e67 2028 436f 6566 6652 oordRing (CoeffR │ │ │ │ -00021d10: 696e 672c 4469 6d73 290a 2020 2020 2020 ing,Dims). │ │ │ │ -00021d20: 2020 4d75 6c74 6950 726f 6a43 6f6f 7264 MultiProjCoord │ │ │ │ -00021d30: 5269 6e67 2028 7661 722c 4469 6d73 290a Ring (var,Dims). │ │ │ │ -00021d40: 2020 2020 2020 2020 4d75 6c74 6950 726f MultiPro │ │ │ │ -00021d50: 6a43 6f6f 7264 5269 6e67 2028 436f 6566 jCoordRing (Coef │ │ │ │ -00021d60: 6652 696e 672c 7661 722c 4469 6d73 290a fRing,var,Dims). │ │ │ │ -00021d70: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -00021d80: 2020 2a20 4469 6d73 2c20 6120 2a6e 6f74 * Dims, a *not │ │ │ │ -00021d90: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ -00021da0: 7932 446f 6329 4c69 7374 2c2c 2072 6570 y2Doc)List,, rep │ │ │ │ -00021db0: 7265 7365 6e74 696e 6720 7468 6520 6469 resenting the di │ │ │ │ -00021dc0: 6d65 6e73 696f 6e73 206f 660a 2020 2020 mensions of. │ │ │ │ -00021dd0: 2020 2020 7468 6520 7072 6f6a 6563 7469 the projecti │ │ │ │ -00021de0: 7665 2073 7061 6365 732c 2069 2e65 2e20 ve spaces, i.e. │ │ │ │ -00021df0: 7b6e 5f31 2c2e 2e2e 2c6e 5f6d 7d20 636f {n_1,...,n_m} co │ │ │ │ -00021e00: 7272 6573 706f 6e64 7320 746f 205c 5050 rresponds to \PP │ │ │ │ -00021e10: 5e7b 6e5f 317d 0a20 2020 2020 2020 2078 ^{n_1}. x │ │ │ │ -00021e20: 2e2e 2e2e 2078 205c 5050 5e7b 6e5f 6d7d .... x \PP^{n_m} │ │ │ │ -00021e30: 0a20 2020 2020 202a 2043 6f65 6666 5269 . * CoeffRi │ │ │ │ -00021e40: 6e67 2c20 6120 2a6e 6f74 6520 7269 6e67 ng, a *note ring │ │ │ │ -00021e50: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00021e60: 5269 6e67 2c2c 2074 6865 2063 6f65 6666 Ring,, the coeff │ │ │ │ -00021e70: 6963 6965 6e74 2072 696e 6720 6f66 0a20 icient ring of. │ │ │ │ -00021e80: 2020 2020 2020 2074 6865 2067 7261 6465 the grade │ │ │ │ -00021e90: 6420 706f 6c79 6e6f 6d69 616c 2072 696e d polynomial rin │ │ │ │ -00021ea0: 6720 746f 2062 6520 6275 696c 7420 6279 g to be built by │ │ │ │ -00021eb0: 2074 6865 206d 6574 686f 642c 2062 7920 the method, by │ │ │ │ -00021ec0: 6465 6661 756c 7420 7468 6973 0a20 2020 default this. │ │ │ │ -00021ed0: 2020 2020 2069 7320 5c5a 5a2f 3332 3734 is \ZZ/3274 │ │ │ │ -00021ee0: 390a 2020 2020 2020 2a20 7661 722c 2061 9. * var, a │ │ │ │ -00021ef0: 202a 6e6f 7465 2073 796d 626f 6c3a 2028 *note symbol: ( │ │ │ │ -00021f00: 4d61 6361 756c 6179 3244 6f63 2953 796d Macaulay2Doc)Sym │ │ │ │ -00021f10: 626f 6c2c 2c20 746f 2062 6520 7573 6564 bol,, to be used │ │ │ │ -00021f20: 2066 6f72 2074 6865 0a20 2020 2020 2020 for the. │ │ │ │ -00021f30: 2069 6e74 6572 6d65 6469 6174 6573 206f intermediates o │ │ │ │ -00021f40: 6620 7468 6520 6772 6164 6564 2070 6f6c f the graded pol │ │ │ │ -00021f50: 796e 6f6d 6961 6c20 7269 6e67 2074 6f20 ynomial ring to │ │ │ │ -00021f60: 6265 2062 7569 6c74 2062 7920 7468 6520 be built by the │ │ │ │ -00021f70: 6d65 7468 6f64 0a20 202a 204f 7574 7075 method. * Outpu │ │ │ │ -00021f80: 7473 3a0a 2020 2020 2020 2a20 6120 2a6e ts:. * a *n │ │ │ │ -00021f90: 6f74 6520 7269 6e67 3a20 284d 6163 6175 ote ring: (Macau │ │ │ │ -00021fa0: 6c61 7932 446f 6329 5269 6e67 2c2c 2074 lay2Doc)Ring,, t │ │ │ │ -00021fb0: 6865 2067 7261 6465 6420 636f 6f72 6469 he graded coordi │ │ │ │ -00021fc0: 6e61 7465 2072 696e 6720 6f66 2074 6865 nate ring of the │ │ │ │ -00021fd0: 0a20 2020 2020 2020 205c 5050 5e7b 6e5f . \PP^{n_ │ │ │ │ -00021fe0: 317d 2078 2e2e 2e2e 2078 205c 5050 5e7b 1} x.... x \PP^{ │ │ │ │ -00021ff0: 6e5f 6d7d 2077 6865 7265 207b 6e5f 312c n_m} where {n_1, │ │ │ │ -00022000: 2e2e 2e2c 6e5f 6d7d 2069 7320 7468 6520 ...,n_m} is the │ │ │ │ -00022010: 696e 7075 7420 6c69 7374 206f 660a 2020 input list of. │ │ │ │ -00022020: 2020 2020 2020 6469 6d65 6e73 696f 6e73 dimensions │ │ │ │ -00022030: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -00022040: 3d3d 3d3d 3d3d 3d3d 3d0a 0a43 6f6d 7075 =========..Compu │ │ │ │ -00022050: 7465 7320 7468 6520 6772 6164 6564 2063 tes the graded c │ │ │ │ -00022060: 6f6f 7264 696e 6174 6520 7269 6e67 206f oordinate ring o │ │ │ │ -00022070: 6620 7468 6520 5c50 505e 7b6e 5f31 7d20 f the \PP^{n_1} │ │ │ │ -00022080: 782e 2e2e 2e20 7820 5c50 505e 7b6e 5f6d x.... x \PP^{n_m │ │ │ │ -00022090: 7d20 7768 6572 650a 7b6e 5f31 2c2e 2e2e } where.{n_1,... │ │ │ │ -000220a0: 2c6e 5f6d 7d20 6973 2074 6865 2069 6e70 ,n_m} is the inp │ │ │ │ -000220b0: 7574 206c 6973 7420 6f66 2064 696d 656e ut list of dimen │ │ │ │ -000220c0: 7369 6f6e 732e 2054 6869 7320 6d65 7468 sions. This meth │ │ │ │ -000220d0: 6f64 2069 7320 7573 6564 2074 6f20 7175 od is used to qu │ │ │ │ -000220e0: 6963 6b6c 790a 6275 696c 6420 7468 6520 ickly.build the │ │ │ │ -000220f0: 636f 6f72 6469 6e61 7465 2072 696e 6720 coordinate ring │ │ │ │ -00022100: 6f66 2061 2070 726f 6475 6374 206f 6620 of a product of │ │ │ │ -00022110: 7072 6f6a 6563 7469 7665 2073 7061 6365 projective space │ │ │ │ -00022120: 7320 666f 7220 7573 6520 696e 0a63 6f6d s for use in.com │ │ │ │ -00022130: 7075 7461 7469 6f6e 732e 0a0a 2b2d 2d2d putations...+--- │ │ │ │ +00021c90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +00021ca0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +00021cb0: 204d 756c 7469 5072 6f6a 436f 6f72 6452 MultiProjCoordR │ │ │ │ +00021cc0: 696e 6720 4469 6d73 0a20 2020 2020 2020 ing Dims. │ │ │ │ +00021cd0: 204d 756c 7469 5072 6f6a 436f 6f72 6452 MultiProjCoordR │ │ │ │ +00021ce0: 696e 6720 2843 6f65 6666 5269 6e67 2c44 ing (CoeffRing,D │ │ │ │ +00021cf0: 696d 7329 0a20 2020 2020 2020 204d 756c ims). Mul │ │ │ │ +00021d00: 7469 5072 6f6a 436f 6f72 6452 696e 6720 tiProjCoordRing │ │ │ │ +00021d10: 2876 6172 2c44 696d 7329 0a20 2020 2020 (var,Dims). │ │ │ │ +00021d20: 2020 204d 756c 7469 5072 6f6a 436f 6f72 MultiProjCoor │ │ │ │ +00021d30: 6452 696e 6720 2843 6f65 6666 5269 6e67 dRing (CoeffRing │ │ │ │ +00021d40: 2c76 6172 2c44 696d 7329 0a20 202a 2049 ,var,Dims). * I │ │ │ │ +00021d50: 6e70 7574 733a 0a20 2020 2020 202a 2044 nputs:. * D │ │ │ │ +00021d60: 696d 732c 2061 202a 6e6f 7465 206c 6973 ims, a *note lis │ │ │ │ +00021d70: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ +00021d80: 294c 6973 742c 2c20 7265 7072 6573 656e )List,, represen │ │ │ │ +00021d90: 7469 6e67 2074 6865 2064 696d 656e 7369 ting the dimensi │ │ │ │ +00021da0: 6f6e 7320 6f66 0a20 2020 2020 2020 2074 ons of. t │ │ │ │ +00021db0: 6865 2070 726f 6a65 6374 6976 6520 7370 he projective sp │ │ │ │ +00021dc0: 6163 6573 2c20 692e 652e 207b 6e5f 312c aces, i.e. {n_1, │ │ │ │ +00021dd0: 2e2e 2e2c 6e5f 6d7d 2063 6f72 7265 7370 ...,n_m} corresp │ │ │ │ +00021de0: 6f6e 6473 2074 6f20 5c50 505e 7b6e 5f31 onds to \PP^{n_1 │ │ │ │ +00021df0: 7d0a 2020 2020 2020 2020 782e 2e2e 2e20 }. x.... │ │ │ │ +00021e00: 7820 5c50 505e 7b6e 5f6d 7d0a 2020 2020 x \PP^{n_m}. │ │ │ │ +00021e10: 2020 2a20 436f 6566 6652 696e 672c 2061 * CoeffRing, a │ │ │ │ +00021e20: 202a 6e6f 7465 2072 696e 673a 2028 4d61 *note ring: (Ma │ │ │ │ +00021e30: 6361 756c 6179 3244 6f63 2952 696e 672c caulay2Doc)Ring, │ │ │ │ +00021e40: 2c20 7468 6520 636f 6566 6669 6369 656e , the coefficien │ │ │ │ +00021e50: 7420 7269 6e67 206f 660a 2020 2020 2020 t ring of. │ │ │ │ +00021e60: 2020 7468 6520 6772 6164 6564 2070 6f6c the graded pol │ │ │ │ +00021e70: 796e 6f6d 6961 6c20 7269 6e67 2074 6f20 ynomial ring to │ │ │ │ +00021e80: 6265 2062 7569 6c74 2062 7920 7468 6520 be built by the │ │ │ │ +00021e90: 6d65 7468 6f64 2c20 6279 2064 6566 6175 method, by defau │ │ │ │ +00021ea0: 6c74 2074 6869 730a 2020 2020 2020 2020 lt this. │ │ │ │ +00021eb0: 6973 205c 5a5a 2f33 3237 3439 0a20 2020 is \ZZ/32749. │ │ │ │ +00021ec0: 2020 202a 2076 6172 2c20 6120 2a6e 6f74 * var, a *not │ │ │ │ +00021ed0: 6520 7379 6d62 6f6c 3a20 284d 6163 6175 e symbol: (Macau │ │ │ │ +00021ee0: 6c61 7932 446f 6329 5379 6d62 6f6c 2c2c lay2Doc)Symbol,, │ │ │ │ +00021ef0: 2074 6f20 6265 2075 7365 6420 666f 7220 to be used for │ │ │ │ +00021f00: 7468 650a 2020 2020 2020 2020 696e 7465 the. inte │ │ │ │ +00021f10: 726d 6564 6961 7465 7320 6f66 2074 6865 rmediates of the │ │ │ │ +00021f20: 2067 7261 6465 6420 706f 6c79 6e6f 6d69 graded polynomi │ │ │ │ +00021f30: 616c 2072 696e 6720 746f 2062 6520 6275 al ring to be bu │ │ │ │ +00021f40: 696c 7420 6279 2074 6865 206d 6574 686f ilt by the metho │ │ │ │ +00021f50: 640a 2020 2a20 4f75 7470 7574 733a 0a20 d. * Outputs:. │ │ │ │ +00021f60: 2020 2020 202a 2061 202a 6e6f 7465 2072 * a *note r │ │ │ │ +00021f70: 696e 673a 2028 4d61 6361 756c 6179 3244 ing: (Macaulay2D │ │ │ │ +00021f80: 6f63 2952 696e 672c 2c20 7468 6520 6772 oc)Ring,, the gr │ │ │ │ +00021f90: 6164 6564 2063 6f6f 7264 696e 6174 6520 aded coordinate │ │ │ │ +00021fa0: 7269 6e67 206f 6620 7468 650a 2020 2020 ring of the. │ │ │ │ +00021fb0: 2020 2020 5c50 505e 7b6e 5f31 7d20 782e \PP^{n_1} x. │ │ │ │ +00021fc0: 2e2e 2e20 7820 5c50 505e 7b6e 5f6d 7d20 ... x \PP^{n_m} │ │ │ │ +00021fd0: 7768 6572 6520 7b6e 5f31 2c2e 2e2e 2c6e where {n_1,...,n │ │ │ │ +00021fe0: 5f6d 7d20 6973 2074 6865 2069 6e70 7574 _m} is the input │ │ │ │ +00021ff0: 206c 6973 7420 6f66 0a20 2020 2020 2020 list of. │ │ │ │ +00022000: 2064 696d 656e 7369 6f6e 730a 0a44 6573 dimensions..Des │ │ │ │ +00022010: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +00022020: 3d3d 3d3d 0a0a 436f 6d70 7574 6573 2074 ====..Computes t │ │ │ │ +00022030: 6865 2067 7261 6465 6420 636f 6f72 6469 he graded coordi │ │ │ │ +00022040: 6e61 7465 2072 696e 6720 6f66 2074 6865 nate ring of the │ │ │ │ +00022050: 205c 5050 5e7b 6e5f 317d 2078 2e2e 2e2e \PP^{n_1} x.... │ │ │ │ +00022060: 2078 205c 5050 5e7b 6e5f 6d7d 2077 6865 x \PP^{n_m} whe │ │ │ │ +00022070: 7265 0a7b 6e5f 312c 2e2e 2e2c 6e5f 6d7d re.{n_1,...,n_m} │ │ │ │ +00022080: 2069 7320 7468 6520 696e 7075 7420 6c69 is the input li │ │ │ │ +00022090: 7374 206f 6620 6469 6d65 6e73 696f 6e73 st of dimensions │ │ │ │ +000220a0: 2e20 5468 6973 206d 6574 686f 6420 6973 . This method is │ │ │ │ +000220b0: 2075 7365 6420 746f 2071 7569 636b 6c79 used to quickly │ │ │ │ +000220c0: 0a62 7569 6c64 2074 6865 2063 6f6f 7264 .build the coord │ │ │ │ +000220d0: 696e 6174 6520 7269 6e67 206f 6620 6120 inate ring of a │ │ │ │ +000220e0: 7072 6f64 7563 7420 6f66 2070 726f 6a65 product of proje │ │ │ │ +000220f0: 6374 6976 6520 7370 6163 6573 2066 6f72 ctive spaces for │ │ │ │ +00022100: 2075 7365 2069 6e0a 636f 6d70 7574 6174 use in.computat │ │ │ │ +00022110: 696f 6e73 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d ions...+-------- │ │ │ │ +00022120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022180: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ -00022190: 3a20 533d 4d75 6c74 6950 726f 6a43 6f6f : S=MultiProjCoo │ │ │ │ -000221a0: 7264 5269 6e67 2851 512c 7379 6d62 6f6c rdRing(QQ,symbol │ │ │ │ -000221b0: 207a 2c7b 312c 332c 337d 2920 2020 2020 z,{1,3,3}) │ │ │ │ +00022160: 2d2d 2d2d 2d2b 0a7c 6931 203a 2053 3d4d -----+.|i1 : S=M │ │ │ │ +00022170: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ +00022180: 6728 5151 2c73 796d 626f 6c20 7a2c 7b31 g(QQ,symbol z,{1 │ │ │ │ +00022190: 2c33 2c33 7d29 2020 2020 2020 2020 2020 ,3,3}) │ │ │ │ +000221a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000221b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000221c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000221d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000221d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000221e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000221f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022200: 2020 2020 207c 0a7c 6f31 203d 2053 2020 |.|o1 = S │ │ │ │ 00022210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022220: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -00022230: 3d20 5320 2020 2020 2020 2020 2020 2020 = S │ │ │ │ +00022220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022250: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00022260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022270: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222c0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -000222d0: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ +000222a0: 2020 2020 207c 0a7c 6f31 203a 2050 6f6c |.|o1 : Pol │ │ │ │ +000222b0: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ +000222c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000222d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000222e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022310: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000222f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00022300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022360: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ -00022370: 3a20 6465 6772 6565 7320 5320 2020 2020 : degrees S │ │ │ │ +00022340: 2d2d 2d2d 2d2b 0a7c 6932 203a 2064 6567 -----+.|i2 : deg │ │ │ │ +00022350: 7265 6573 2053 2020 2020 2020 2020 2020 rees S │ │ │ │ +00022360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022390: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000223a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000223b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022400: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -00022410: 3d20 7b7b 312c 2030 2c20 307d 2c20 7b31 = {{1, 0, 0}, {1 │ │ │ │ -00022420: 2c20 302c 2030 7d2c 207b 302c 2031 2c20 , 0, 0}, {0, 1, │ │ │ │ -00022430: 307d 2c20 7b30 2c20 312c 2030 7d2c 207b 0}, {0, 1, 0}, { │ │ │ │ -00022440: 302c 2031 2c20 307d 2c20 7b30 2c20 312c 0, 1, 0}, {0, 1, │ │ │ │ -00022450: 2030 7d2c 207b 302c 2020 7c0a 7c20 2020 0}, {0, |.| │ │ │ │ -00022460: 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d -------------- │ │ │ │ +000223e0: 2020 2020 207c 0a7c 6f32 203d 207b 7b31 |.|o2 = {{1 │ │ │ │ +000223f0: 2c20 302c 2030 7d2c 207b 312c 2030 2c20 , 0, 0}, {1, 0, │ │ │ │ +00022400: 307d 2c20 7b30 2c20 312c 2030 7d2c 207b 0}, {0, 1, 0}, { │ │ │ │ +00022410: 302c 2031 2c20 307d 2c20 7b30 2c20 312c 0, 1, 0}, {0, 1, │ │ │ │ +00022420: 2030 7d2c 207b 302c 2031 2c20 307d 2c20 0}, {0, 1, 0}, │ │ │ │ +00022430: 7b30 2c20 207c 0a7c 2020 2020 202d 2d2d {0, |.| --- │ │ │ │ +00022440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000224a0: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 ----------|.| │ │ │ │ -000224b0: 2020 302c 2031 7d2c 207b 302c 2030 2c20 0, 1}, {0, 0, │ │ │ │ -000224c0: 317d 2c20 7b30 2c20 302c 2031 7d2c 207b 1}, {0, 0, 1}, { │ │ │ │ -000224d0: 302c 2030 2c20 317d 7d20 2020 2020 2020 0, 0, 1}} │ │ │ │ +00022480: 2d2d 2d2d 2d7c 0a7c 2020 2020 2030 2c20 -----|.| 0, │ │ │ │ +00022490: 317d 2c20 7b30 2c20 302c 2031 7d2c 207b 1}, {0, 0, 1}, { │ │ │ │ +000224a0: 302c 2030 2c20 317d 2c20 7b30 2c20 302c 0, 0, 1}, {0, 0, │ │ │ │ +000224b0: 2031 7d7d 2020 2020 2020 2020 2020 2020 1}} │ │ │ │ +000224c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000224d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000224e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000224f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000224f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022540: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -00022550: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +00022520: 2020 2020 207c 0a7c 6f32 203a 204c 6973 |.|o2 : Lis │ │ │ │ +00022530: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ +00022540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022590: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00022570: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00022580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000225a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000225b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000225c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000225d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000225e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ -000225f0: 3a20 523d 4d75 6c74 6950 726f 6a43 6f6f : R=MultiProjCoo │ │ │ │ -00022600: 7264 5269 6e67 207b 322c 337d 2020 2020 rdRing {2,3} │ │ │ │ -00022610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000225c0: 2d2d 2d2d 2d2b 0a7c 6933 203a 2052 3d4d -----+.|i3 : R=M │ │ │ │ +000225d0: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ +000225e0: 6720 7b32 2c33 7d20 2020 2020 2020 2020 g {2,3} │ │ │ │ +000225f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022610: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00022620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022630: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022660: 2020 2020 207c 0a7c 6f33 203d 2052 2020 |.|o3 = R │ │ │ │ 00022670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022680: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -00022690: 3d20 5220 2020 2020 2020 2020 2020 2020 = R │ │ │ │ +00022680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000226a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000226b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000226b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000226c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000226d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000226d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000226e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000226f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022720: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -00022730: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ +00022700: 2020 2020 207c 0a7c 6f33 203a 2050 6f6c |.|o3 : Pol │ │ │ │ +00022710: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ +00022720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022770: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00022750: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00022760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000227a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000227b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000227c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ -000227d0: 3a20 636f 6566 6669 6369 656e 7452 696e : coefficientRin │ │ │ │ -000227e0: 6720 5220 2020 2020 2020 2020 2020 2020 g R │ │ │ │ -000227f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000227a0: 2d2d 2d2d 2d2b 0a7c 6934 203a 2063 6f65 -----+.|i4 : coe │ │ │ │ +000227b0: 6666 6963 6965 6e74 5269 6e67 2052 2020 fficientRing R │ │ │ │ +000227c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000227d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000227e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000227f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00022800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022810: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022860: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00022870: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00022840: 2020 2020 207c 0a7c 2020 2020 2020 205a |.| Z │ │ │ │ +00022850: 5a20 2020 2020 2020 2020 2020 2020 2020 Z │ │ │ │ +00022860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228b0: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ -000228c0: 3d20 2d2d 2d2d 2d20 2020 2020 2020 2020 = ----- │ │ │ │ +00022890: 2020 2020 207c 0a7c 6f34 203d 202d 2d2d |.|o4 = --- │ │ │ │ +000228a0: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +000228b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000228c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000228d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022900: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00022910: 2020 3332 3734 3920 2020 2020 2020 2020 32749 │ │ │ │ +000228e0: 2020 2020 207c 0a7c 2020 2020 2033 3237 |.| 327 │ │ │ │ +000228f0: 3439 2020 2020 2020 2020 2020 2020 2020 49 │ │ │ │ +00022900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022930: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00022940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022950: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229a0: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ -000229b0: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ +00022980: 2020 2020 207c 0a7c 6f34 203a 2051 756f |.|o4 : Quo │ │ │ │ +00022990: 7469 656e 7452 696e 6720 2020 2020 2020 tientRing │ │ │ │ +000229a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000229b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229f0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000229d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000229e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000229f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -00022a50: 3a20 6465 7363 7269 6265 2052 2020 2020 : describe R │ │ │ │ +00022a20: 2d2d 2d2d 2d2b 0a7c 6935 203a 2064 6573 -----+.|i5 : des │ │ │ │ +00022a30: 6372 6962 6520 5220 2020 2020 2020 2020 cribe R │ │ │ │ +00022a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022a70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00022a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ae0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00022af0: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00022ac0: 2020 2020 207c 0a7c 2020 2020 2020 205a |.| Z │ │ │ │ +00022ad0: 5a20 2020 2020 2020 2020 2020 2020 2020 Z │ │ │ │ +00022ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b30: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -00022b40: 3d20 2d2d 2d2d 2d5b 7820 2e2e 7820 2c20 = -----[x ..x , │ │ │ │ -00022b50: 4465 6772 6565 7320 3d3e 207b 333a 7b31 Degrees => {3:{1 │ │ │ │ -00022b60: 7d2c 2034 3a7b 307d 7d2c 2048 6566 7420 }, 4:{0}}, Heft │ │ │ │ -00022b70: 3d3e 207b 323a 317d 5d20 2020 2020 2020 => {2:1}] │ │ │ │ -00022b80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00022b90: 2020 3332 3734 3920 2030 2020 2036 2020 32749 0 6 │ │ │ │ -00022ba0: 2020 2020 2020 2020 2020 2020 2020 7b30 {0 │ │ │ │ -00022bb0: 7d20 2020 207b 317d 2020 2020 2020 2020 } {1} │ │ │ │ -00022bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022bd0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00022b10: 2020 2020 207c 0a7c 6f35 203d 202d 2d2d |.|o5 = --- │ │ │ │ +00022b20: 2d2d 5b78 202e 2e78 202c 2044 6567 7265 --[x ..x , Degre │ │ │ │ +00022b30: 6573 203d 3e20 7b33 3a7b 317d 2c20 343a es => {3:{1}, 4: │ │ │ │ +00022b40: 7b30 7d7d 2c20 4865 6674 203d 3e20 7b32 {0}}, Heft => {2 │ │ │ │ +00022b50: 3a31 7d5d 2020 2020 2020 2020 2020 2020 :1}] │ │ │ │ +00022b60: 2020 2020 207c 0a7c 2020 2020 2033 3237 |.| 327 │ │ │ │ +00022b70: 3439 2020 3020 2020 3620 2020 2020 2020 49 0 6 │ │ │ │ +00022b80: 2020 2020 2020 2020 207b 307d 2020 2020 {0} │ │ │ │ +00022b90: 7b31 7d20 2020 2020 2020 2020 2020 2020 {1} │ │ │ │ +00022ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022bb0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00022bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ -00022c30: 3a20 413d 4368 6f77 5269 6e67 2052 2020 : A=ChowRing R │ │ │ │ +00022c00: 2d2d 2d2d 2d2b 0a7c 6936 203a 2041 3d43 -----+.|i6 : A=C │ │ │ │ +00022c10: 686f 7752 696e 6720 5220 2020 2020 2020 howRing R │ │ │ │ +00022c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022c50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00022c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022ca0: 2020 2020 207c 0a7c 6f36 203d 2041 2020 |.|o6 = A │ │ │ │ 00022cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022cc0: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -00022cd0: 3d20 4120 2020 2020 2020 2020 2020 2020 = A │ │ │ │ +00022cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022cf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00022d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d60: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -00022d70: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ +00022d40: 2020 2020 207c 0a7c 6f36 203a 2051 756f |.|o6 : Quo │ │ │ │ +00022d50: 7469 656e 7452 696e 6720 2020 2020 2020 tientRing │ │ │ │ +00022d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022db0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00022d90: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00022da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ -00022e10: 3a20 6465 7363 7269 6265 2041 2020 2020 : describe A │ │ │ │ +00022de0: 2d2d 2d2d 2d2b 0a7c 6937 203a 2064 6573 -----+.|i7 : des │ │ │ │ +00022df0: 6372 6962 6520 4120 2020 2020 2020 2020 cribe A │ │ │ │ +00022e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00022e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ea0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00022eb0: 2020 5a5a 5b68 202e 2e68 205d 2020 2020 ZZ[h ..h ] │ │ │ │ +00022e80: 2020 2020 207c 0a7c 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ +00022e90: 6820 2e2e 6820 5d20 2020 2020 2020 2020 h ..h ] │ │ │ │ +00022ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ef0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00022f00: 2020 2020 2020 3120 2020 3220 2020 2020 1 2 │ │ │ │ +00022ed0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022ee0: 2031 2020 2032 2020 2020 2020 2020 2020 1 2 │ │ │ │ +00022ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f40: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ -00022f50: 3d20 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 = ---------- │ │ │ │ +00022f20: 2020 2020 207c 0a7c 6f37 203d 202d 2d2d |.|o7 = --- │ │ │ │ +00022f30: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ +00022f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00022fa0: 2020 2020 2033 2020 2034 2020 2020 2020 3 4 │ │ │ │ +00022f70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022f80: 3320 2020 3420 2020 2020 2020 2020 2020 3 4 │ │ │ │ +00022f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022fe0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00022ff0: 2020 2028 6820 2c20 6820 2920 2020 2020 (h , h ) │ │ │ │ +00022fc0: 2020 2020 207c 0a7c 2020 2020 2020 2868 |.| (h │ │ │ │ +00022fd0: 202c 2068 2029 2020 2020 2020 2020 2020 , h ) │ │ │ │ +00022fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023030: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00023040: 2020 2020 2031 2020 2032 2020 2020 2020 1 2 │ │ │ │ +00023010: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023020: 3120 2020 3220 2020 2020 2020 2020 2020 1 2 │ │ │ │ +00023030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023080: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00023060: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00023070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000230a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000230b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000230c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000230d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 ----------+.|i8 │ │ │ │ -000230e0: 3a20 5365 6772 6528 412c 6964 6561 6c20 : Segre(A,ideal │ │ │ │ -000230f0: 7261 6e64 6f6d 287b 312c 317d 2c52 2929 random({1,1},R)) │ │ │ │ -00023100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000230b0: 2d2d 2d2d 2d2b 0a7c 6938 203a 2053 6567 -----+.|i8 : Seg │ │ │ │ +000230c0: 7265 2841 2c69 6465 616c 2072 616e 646f re(A,ideal rando │ │ │ │ +000230d0: 6d28 7b31 2c31 7d2c 5229 2920 2020 2020 m({1,1},R)) │ │ │ │ +000230e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000230f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023100: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00023110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023120: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00023120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023170: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00023180: 2020 2020 2032 2033 2020 2020 2032 2032 2 3 2 2 │ │ │ │ -00023190: 2020 2020 2020 2033 2020 2020 2032 2020 3 2 │ │ │ │ -000231a0: 2020 2020 2020 2032 2020 2020 3320 2020 2 3 │ │ │ │ -000231b0: 2032 2020 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ -000231c0: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ -000231d0: 3d20 3130 6820 6820 202d 2036 6820 6820 = 10h h - 6h h │ │ │ │ -000231e0: 202d 2034 6820 6820 202b 2033 6820 6820 - 4h h + 3h h │ │ │ │ -000231f0: 202b 2033 6820 6820 202b 2068 2020 2d20 + 3h h + h - │ │ │ │ -00023200: 6820 202d 2032 6820 6820 202d 2068 2020 h - 2h h - h │ │ │ │ -00023210: 2b20 6820 202b 2068 2020 7c0a 7c20 2020 + h + h |.| │ │ │ │ -00023220: 2020 2020 2031 2032 2020 2020 2031 2032 1 2 1 2 │ │ │ │ -00023230: 2020 2020 2031 2032 2020 2020 2031 2032 1 2 1 2 │ │ │ │ -00023240: 2020 2020 2031 2032 2020 2020 3220 2020 1 2 2 │ │ │ │ -00023250: 2031 2020 2020 2031 2032 2020 2020 3220 1 1 2 2 │ │ │ │ -00023260: 2020 2031 2020 2020 3220 7c0a 7c20 2020 1 2 |.| │ │ │ │ +00023150: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023160: 3220 3320 2020 2020 3220 3220 2020 2020 2 3 2 2 │ │ │ │ +00023170: 2020 3320 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ +00023180: 2020 3220 2020 2033 2020 2020 3220 2020 2 3 2 │ │ │ │ +00023190: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000231a0: 2020 2020 207c 0a7c 6f38 203d 2031 3068 |.|o8 = 10h │ │ │ │ +000231b0: 2068 2020 2d20 3668 2068 2020 2d20 3468 h - 6h h - 4h │ │ │ │ +000231c0: 2068 2020 2b20 3368 2068 2020 2b20 3368 h + 3h h + 3h │ │ │ │ +000231d0: 2068 2020 2b20 6820 202d 2068 2020 2d20 h + h - h - │ │ │ │ +000231e0: 3268 2068 2020 2d20 6820 202b 2068 2020 2h h - h + h │ │ │ │ +000231f0: 2b20 6820 207c 0a7c 2020 2020 2020 2020 + h |.| │ │ │ │ +00023200: 3120 3220 2020 2020 3120 3220 2020 2020 1 2 1 2 │ │ │ │ +00023210: 3120 3220 2020 2020 3120 3220 2020 2020 1 2 1 2 │ │ │ │ +00023220: 3120 3220 2020 2032 2020 2020 3120 2020 1 2 2 1 │ │ │ │ +00023230: 2020 3120 3220 2020 2032 2020 2020 3120 1 2 2 1 │ │ │ │ +00023240: 2020 2032 207c 0a7c 2020 2020 2020 2020 2 |.| │ │ │ │ +00023250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023290: 2020 2020 207c 0a7c 6f38 203a 2041 2020 |.|o8 : A │ │ │ │ 000232a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000232b0: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ -000232c0: 3a20 4120 2020 2020 2020 2020 2020 2020 : A │ │ │ │ +000232b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000232c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000232d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000232e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000232f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023300: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000232e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000232f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023350: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6179 ----------+..Way │ │ │ │ -00023360: 7320 746f 2075 7365 204d 756c 7469 5072 s to use MultiPr │ │ │ │ -00023370: 6f6a 436f 6f72 6452 696e 673a 0a3d 3d3d ojCoordRing:.=== │ │ │ │ -00023380: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00023390: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -000233a0: 2a20 224d 756c 7469 5072 6f6a 436f 6f72 * "MultiProjCoor │ │ │ │ -000233b0: 6452 696e 6728 4c69 7374 2922 0a20 202a dRing(List)". * │ │ │ │ -000233c0: 2022 4d75 6c74 6950 726f 6a43 6f6f 7264 "MultiProjCoord │ │ │ │ -000233d0: 5269 6e67 2852 696e 672c 4c69 7374 2922 Ring(Ring,List)" │ │ │ │ -000233e0: 0a20 202a 2022 4d75 6c74 6950 726f 6a43 . * "MultiProjC │ │ │ │ -000233f0: 6f6f 7264 5269 6e67 2852 696e 672c 5379 oordRing(Ring,Sy │ │ │ │ -00023400: 6d62 6f6c 2c4c 6973 7429 220a 2020 2a20 mbol,List)". * │ │ │ │ -00023410: 224d 756c 7469 5072 6f6a 436f 6f72 6452 "MultiProjCoordR │ │ │ │ -00023420: 696e 6728 5379 6d62 6f6c 2c4c 6973 7429 ing(Symbol,List) │ │ │ │ -00023430: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ -00023440: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -00023450: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -00023460: 6a65 6374 202a 6e6f 7465 204d 756c 7469 ject *note Multi │ │ │ │ -00023470: 5072 6f6a 436f 6f72 6452 696e 673a 204d ProjCoordRing: M │ │ │ │ -00023480: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ -00023490: 672c 2069 7320 6120 2a6e 6f74 6520 6d65 g, is a *note me │ │ │ │ -000234a0: 7468 6f64 0a66 756e 6374 696f 6e3a 2028 thod.function: ( │ │ │ │ -000234b0: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ -000234c0: 686f 6446 756e 6374 696f 6e2c 2e0a 0a2d hodFunction,...- │ │ │ │ +00023330: 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 6f20 -----+..Ways to │ │ │ │ +00023340: 7573 6520 4d75 6c74 6950 726f 6a43 6f6f use MultiProjCoo │ │ │ │ +00023350: 7264 5269 6e67 3a0a 3d3d 3d3d 3d3d 3d3d rdRing:.======== │ │ │ │ +00023360: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00023370: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 4d75 =======.. * "Mu │ │ │ │ +00023380: 6c74 6950 726f 6a43 6f6f 7264 5269 6e67 ltiProjCoordRing │ │ │ │ +00023390: 284c 6973 7429 220a 2020 2a20 224d 756c (List)". * "Mul │ │ │ │ +000233a0: 7469 5072 6f6a 436f 6f72 6452 696e 6728 tiProjCoordRing( │ │ │ │ +000233b0: 5269 6e67 2c4c 6973 7429 220a 2020 2a20 Ring,List)". * │ │ │ │ +000233c0: 224d 756c 7469 5072 6f6a 436f 6f72 6452 "MultiProjCoordR │ │ │ │ +000233d0: 696e 6728 5269 6e67 2c53 796d 626f 6c2c ing(Ring,Symbol, │ │ │ │ +000233e0: 4c69 7374 2922 0a20 202a 2022 4d75 6c74 List)". * "Mult │ │ │ │ +000233f0: 6950 726f 6a43 6f6f 7264 5269 6e67 2853 iProjCoordRing(S │ │ │ │ +00023400: 796d 626f 6c2c 4c69 7374 2922 0a0a 466f ymbol,List)"..Fo │ │ │ │ +00023410: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00023420: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00023430: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00023440: 2a6e 6f74 6520 4d75 6c74 6950 726f 6a43 *note MultiProjC │ │ │ │ +00023450: 6f6f 7264 5269 6e67 3a20 4d75 6c74 6950 oordRing: MultiP │ │ │ │ +00023460: 726f 6a43 6f6f 7264 5269 6e67 2c20 6973 rojCoordRing, is │ │ │ │ +00023470: 2061 202a 6e6f 7465 206d 6574 686f 640a a *note method. │ │ │ │ +00023480: 6675 6e63 7469 6f6e 3a20 284d 6163 6175 function: (Macau │ │ │ │ +00023490: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ +000234a0: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ +000234b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000234c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000234d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000234e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000234f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00023520: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00023530: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00023540: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -00023550: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -00023560: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -00023570: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -00023580: 6b61 6765 732f 0a43 6861 7261 6374 6572 kages/.Character │ │ │ │ -00023590: 6973 7469 6343 6c61 7373 6573 2e6d 323a isticClasses.m2: │ │ │ │ -000235a0: 3230 3530 3a30 2e0a 1f0a 4669 6c65 3a20 2050:0....File: │ │ │ │ -000235b0: 4368 6172 6163 7465 7269 7374 6963 436c CharacteristicCl │ │ │ │ -000235c0: 6173 7365 732e 696e 666f 2c20 4e6f 6465 asses.info, Node │ │ │ │ -000235d0: 3a20 4f75 7470 7574 2c20 4e65 7874 3a20 : Output, Next: │ │ │ │ -000235e0: 7072 6f62 6162 696c 6973 7469 6320 616c probabilistic al │ │ │ │ -000235f0: 676f 7269 7468 6d2c 2050 7265 763a 204d gorithm, Prev: M │ │ │ │ -00023600: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ -00023610: 672c 2055 703a 2054 6f70 0a0a 4f75 7470 g, Up: Top..Outp │ │ │ │ -00023620: 7574 0a2a 2a2a 2a2a 2a0a 0a44 6573 6372 ut.******..Descr │ │ │ │ -00023630: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -00023640: 3d3d 0a0a 5468 6520 6f70 7469 6f6e 204f ==..The option O │ │ │ │ -00023650: 7574 7075 7420 6973 206f 6e6c 7920 7573 utput is only us │ │ │ │ -00023660: 6564 2062 7920 7468 6520 636f 6d6d 616e ed by the comman │ │ │ │ -00023670: 6473 202a 6e6f 7465 2043 534d 3a20 4353 ds *note CSM: CS │ │ │ │ -00023680: 4d2c 2c20 2a6e 6f74 6520 5365 6772 653a M,, *note Segre: │ │ │ │ -00023690: 0a53 6567 7265 2c2c 202a 6e6f 7465 2043 .Segre,, *note C │ │ │ │ -000236a0: 6865 726e 3a20 4368 6572 6e2c 2061 6e64 hern: Chern, and │ │ │ │ -000236b0: 202a 6e6f 7465 2045 756c 6572 3a20 4575 *note Euler: Eu │ │ │ │ -000236c0: 6c65 722c 2074 6f20 7370 6563 6966 7920 ler, to specify │ │ │ │ -000236d0: 7468 6520 7479 7065 206f 660a 6f75 7470 the type of.outp │ │ │ │ -000236e0: 7574 2074 6f20 6265 2072 6574 7572 6e65 ut to be returne │ │ │ │ -000236f0: 6420 746f 2074 6865 2075 7365 642e 2054 d to the used. T │ │ │ │ -00023700: 6869 7320 6f70 7469 6f6e 2077 696c 6c20 his option will │ │ │ │ -00023710: 6265 2069 676e 6f72 6564 2077 6865 6e20 be ignored when │ │ │ │ -00023720: 7573 6564 2077 6974 680a 2a6e 6f74 6520 used with.*note │ │ │ │ -00023730: 436f 6d70 4d65 7468 6f64 3a20 436f 6d70 CompMethod: Comp │ │ │ │ -00023740: 4d65 7468 6f64 2c20 506e 5265 7369 6475 Method, PnResidu │ │ │ │ -00023750: 616c 206f 7220 6265 7274 696e 692e 2054 al or bertini. T │ │ │ │ -00023760: 6865 206f 7074 696f 6e20 7769 6c6c 2061 he option will a │ │ │ │ -00023770: 6c73 6f20 6265 0a69 676e 6f72 6520 7768 lso be.ignore wh │ │ │ │ -00023780: 656e 202a 6e6f 7465 204d 6574 686f 643a en *note Method: │ │ │ │ -00023790: 204d 6574 686f 642c 3d3e 4469 7265 6374 Method,=>Direct │ │ │ │ -000237a0: 436f 6d70 6c65 7465 496e 7420 6973 2075 CompleteInt is u │ │ │ │ -000237b0: 7365 642e 2054 6865 2064 6566 6175 6c74 sed. The default │ │ │ │ -000237c0: 0a6f 7574 7075 7420 666f 7220 616c 6c20 .output for all │ │ │ │ -000237d0: 7468 6573 6520 6d65 7468 6f64 7320 6973 these methods is │ │ │ │ -000237e0: 2043 686f 7752 696e 6745 6c65 6c6d 656e ChowRingElelmen │ │ │ │ -000237f0: 7420 7768 6963 6820 7769 6c6c 2072 6574 t which will ret │ │ │ │ -00023800: 7572 6e20 616e 2065 6c65 6d65 6e74 0a6f urn an element.o │ │ │ │ -00023810: 6620 7468 6520 6170 7072 6f70 7269 6174 f the appropriat │ │ │ │ -00023820: 6520 4368 6f77 2072 696e 672e 2041 6c6c e Chow ring. All │ │ │ │ -00023830: 206d 6574 686f 6473 2061 6c73 6f20 6861 methods also ha │ │ │ │ -00023840: 7665 2061 6e20 6f70 7469 6f6e 2048 6173 ve an option Has │ │ │ │ -00023850: 6846 6f72 6d20 7768 6963 680a 7265 7475 hForm which.retu │ │ │ │ -00023860: 726e 7320 6164 6469 7469 6f6e 616c 2069 rns additional i │ │ │ │ -00023870: 6e66 6f72 6d61 7469 6f6e 2063 6f6d 7075 nformation compu │ │ │ │ -00023880: 7465 6420 6279 2074 6865 206d 6574 686f ted by the metho │ │ │ │ -00023890: 6473 2064 7572 696e 6720 7468 6569 7220 ds during their │ │ │ │ -000238a0: 7374 616e 6461 7264 0a6f 7065 7261 7469 standard.operati │ │ │ │ -000238b0: 6f6e 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d on...+---------- │ │ │ │ +000234f0: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00023500: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00023510: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00023520: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00023530: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00023540: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00023550: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +00023560: 2f0a 4368 6172 6163 7465 7269 7374 6963 /.Characteristic │ │ │ │ +00023570: 436c 6173 7365 732e 6d32 3a32 3035 303a Classes.m2:2050: │ │ │ │ +00023580: 302e 0a1f 0a46 696c 653a 2043 6861 7261 0....File: Chara │ │ │ │ +00023590: 6374 6572 6973 7469 6343 6c61 7373 6573 cteristicClasses │ │ │ │ +000235a0: 2e69 6e66 6f2c 204e 6f64 653a 204f 7574 .info, Node: Out │ │ │ │ +000235b0: 7075 742c 204e 6578 743a 2070 726f 6261 put, Next: proba │ │ │ │ +000235c0: 6269 6c69 7374 6963 2061 6c67 6f72 6974 bilistic algorit │ │ │ │ +000235d0: 686d 2c20 5072 6576 3a20 4d75 6c74 6950 hm, Prev: MultiP │ │ │ │ +000235e0: 726f 6a43 6f6f 7264 5269 6e67 2c20 5570 rojCoordRing, Up │ │ │ │ +000235f0: 3a20 546f 700a 0a4f 7574 7075 740a 2a2a : Top..Output.** │ │ │ │ +00023600: 2a2a 2a2a 0a0a 4465 7363 7269 7074 696f ****..Descriptio │ │ │ │ +00023610: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 n.===========..T │ │ │ │ +00023620: 6865 206f 7074 696f 6e20 4f75 7470 7574 he option Output │ │ │ │ +00023630: 2069 7320 6f6e 6c79 2075 7365 6420 6279 is only used by │ │ │ │ +00023640: 2074 6865 2063 6f6d 6d61 6e64 7320 2a6e the commands *n │ │ │ │ +00023650: 6f74 6520 4353 4d3a 2043 534d 2c2c 202a ote CSM: CSM,, * │ │ │ │ +00023660: 6e6f 7465 2053 6567 7265 3a0a 5365 6772 note Segre:.Segr │ │ │ │ +00023670: 652c 2c20 2a6e 6f74 6520 4368 6572 6e3a e,, *note Chern: │ │ │ │ +00023680: 2043 6865 726e 2c20 616e 6420 2a6e 6f74 Chern, and *not │ │ │ │ +00023690: 6520 4575 6c65 723a 2045 756c 6572 2c20 e Euler: Euler, │ │ │ │ +000236a0: 746f 2073 7065 6369 6679 2074 6865 2074 to specify the t │ │ │ │ +000236b0: 7970 6520 6f66 0a6f 7574 7075 7420 746f ype of.output to │ │ │ │ +000236c0: 2062 6520 7265 7475 726e 6564 2074 6f20 be returned to │ │ │ │ +000236d0: 7468 6520 7573 6564 2e20 5468 6973 206f the used. This o │ │ │ │ +000236e0: 7074 696f 6e20 7769 6c6c 2062 6520 6967 ption will be ig │ │ │ │ +000236f0: 6e6f 7265 6420 7768 656e 2075 7365 6420 nored when used │ │ │ │ +00023700: 7769 7468 0a2a 6e6f 7465 2043 6f6d 704d with.*note CompM │ │ │ │ +00023710: 6574 686f 643a 2043 6f6d 704d 6574 686f ethod: CompMetho │ │ │ │ +00023720: 642c 2050 6e52 6573 6964 7561 6c20 6f72 d, PnResidual or │ │ │ │ +00023730: 2062 6572 7469 6e69 2e20 5468 6520 6f70 bertini. The op │ │ │ │ +00023740: 7469 6f6e 2077 696c 6c20 616c 736f 2062 tion will also b │ │ │ │ +00023750: 650a 6967 6e6f 7265 2077 6865 6e20 2a6e e.ignore when *n │ │ │ │ +00023760: 6f74 6520 4d65 7468 6f64 3a20 4d65 7468 ote Method: Meth │ │ │ │ +00023770: 6f64 2c3d 3e44 6972 6563 7443 6f6d 706c od,=>DirectCompl │ │ │ │ +00023780: 6574 6549 6e74 2069 7320 7573 6564 2e20 eteInt is used. │ │ │ │ +00023790: 5468 6520 6465 6661 756c 740a 6f75 7470 The default.outp │ │ │ │ +000237a0: 7574 2066 6f72 2061 6c6c 2074 6865 7365 ut for all these │ │ │ │ +000237b0: 206d 6574 686f 6473 2069 7320 4368 6f77 methods is Chow │ │ │ │ +000237c0: 5269 6e67 456c 656c 6d65 6e74 2077 6869 RingElelment whi │ │ │ │ +000237d0: 6368 2077 696c 6c20 7265 7475 726e 2061 ch will return a │ │ │ │ +000237e0: 6e20 656c 656d 656e 740a 6f66 2074 6865 n element.of the │ │ │ │ +000237f0: 2061 7070 726f 7072 6961 7465 2043 686f appropriate Cho │ │ │ │ +00023800: 7720 7269 6e67 2e20 416c 6c20 6d65 7468 w ring. All meth │ │ │ │ +00023810: 6f64 7320 616c 736f 2068 6176 6520 616e ods also have an │ │ │ │ +00023820: 206f 7074 696f 6e20 4861 7368 466f 726d option HashForm │ │ │ │ +00023830: 2077 6869 6368 0a72 6574 7572 6e73 2061 which.returns a │ │ │ │ +00023840: 6464 6974 696f 6e61 6c20 696e 666f 726d dditional inform │ │ │ │ +00023850: 6174 696f 6e20 636f 6d70 7574 6564 2062 ation computed b │ │ │ │ +00023860: 7920 7468 6520 6d65 7468 6f64 7320 6475 y the methods du │ │ │ │ +00023870: 7269 6e67 2074 6865 6972 2073 7461 6e64 ring their stand │ │ │ │ +00023880: 6172 640a 6f70 6572 6174 696f 6e2e 0a0a ard.operation... │ │ │ │ +00023890: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000238a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000238b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000238c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000238d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000238e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000238f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023900: 2d2d 2d2b 0a7c 6931 203a 2052 203d 205a ---+.|i1 : R = Z │ │ │ │ -00023910: 5a2f 3332 3734 395b 785f 302e 2e78 5f36 Z/32749[x_0..x_6 │ │ │ │ -00023920: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ -00023930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000238d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000238e0: 7c69 3120 3a20 5220 3d20 5a5a 2f33 3237 |i1 : R = ZZ/327 │ │ │ │ +000238f0: 3439 5b78 5f30 2e2e 785f 365d 2020 2020 49[x_0..x_6] │ │ │ │ +00023900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023930: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00023940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023950: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023980: 7c6f 3120 3d20 5220 2020 2020 2020 2020 |o1 = R │ │ │ │ 00023990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239a0: 2020 207c 0a7c 6f31 203d 2052 2020 2020 |.|o1 = R │ │ │ │ +000239a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000239c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000239d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000239e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000239f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a40: 2020 207c 0a7c 6f31 203a 2050 6f6c 796e |.|o1 : Polyn │ │ │ │ -00023a50: 6f6d 6961 6c52 696e 6720 2020 2020 2020 omialRing │ │ │ │ -00023a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a90: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00023a10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023a20: 7c6f 3120 3a20 506f 6c79 6e6f 6d69 616c |o1 : Polynomial │ │ │ │ +00023a30: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ +00023a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023a60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023a70: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00023a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ae0: 2d2d 2d2b 0a7c 6932 203a 2041 3d43 686f ---+.|i2 : A=Cho │ │ │ │ -00023af0: 7752 696e 6728 5229 2020 2020 2020 2020 wRing(R) │ │ │ │ -00023b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00023ac0: 7c69 3220 3a20 413d 4368 6f77 5269 6e67 |i2 : A=ChowRing │ │ │ │ +00023ad0: 2852 2920 2020 2020 2020 2020 2020 2020 (R) │ │ │ │ +00023ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023b00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023b10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00023b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023b50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023b60: 7c6f 3220 3d20 4120 2020 2020 2020 2020 |o2 = A │ │ │ │ 00023b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b80: 2020 207c 0a7c 6f32 203d 2041 2020 2020 |.|o2 = A │ │ │ │ +00023b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023ba0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023bb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00023bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023bd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c20: 2020 207c 0a7c 6f32 203a 2051 756f 7469 |.|o2 : Quoti │ │ │ │ -00023c30: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ -00023c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c70: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00023bf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023c00: 7c6f 3220 3a20 5175 6f74 6965 6e74 5269 |o2 : QuotientRi │ │ │ │ +00023c10: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +00023c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023c40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023c50: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00023c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023cc0: 2d2d 2d2b 0a7c 6933 203a 2049 3d69 6465 ---+.|i3 : I=ide │ │ │ │ -00023cd0: 616c 2872 616e 646f 6d28 322c 5229 2c52 al(random(2,R),R │ │ │ │ -00023ce0: 5f30 2a52 5f31 2a52 5f36 2d52 5f30 5e33 _0*R_1*R_6-R_0^3 │ │ │ │ -00023cf0: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ +00023c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00023ca0: 7c69 3320 3a20 493d 6964 6561 6c28 7261 |i3 : I=ideal(ra │ │ │ │ +00023cb0: 6e64 6f6d 2832 2c52 292c 525f 302a 525f ndom(2,R),R_0*R_ │ │ │ │ +00023cc0: 312a 525f 362d 525f 305e 3329 3b20 2020 1*R_6-R_0^3); │ │ │ │ +00023cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023ce0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023cf0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00023d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023d30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023d40: 7c6f 3320 3a20 4964 6561 6c20 6f66 2052 |o3 : Ideal of R │ │ │ │ 00023d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d60: 2020 207c 0a7c 6f33 203a 2049 6465 616c |.|o3 : Ideal │ │ │ │ -00023d70: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ -00023d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023db0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00023d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023d80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023d90: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00023da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e00: 2d2d 2d2b 0a7c 6934 203a 2063 736d 3d43 ---+.|i4 : csm=C │ │ │ │ -00023e10: 534d 2841 2c49 2c4f 7574 7075 743d 3e48 SM(A,I,Output=>H │ │ │ │ -00023e20: 6173 6846 6f72 6d29 2020 2020 2020 2020 ashForm) │ │ │ │ -00023e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00023de0: 7c69 3420 3a20 6373 6d3d 4353 4d28 412c |i4 : csm=CSM(A, │ │ │ │ +00023df0: 492c 4f75 7470 7574 3d3e 4861 7368 466f I,Output=>HashFo │ │ │ │ +00023e00: 726d 2920 2020 2020 2020 2020 2020 2020 rm) │ │ │ │ +00023e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023e20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023e30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00023e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ea0: 2020 207c 0a7c 6f34 203d 204d 7574 6162 |.|o4 = Mutab │ │ │ │ -00023eb0: 6c65 4861 7368 5461 626c 657b 2e2e 2e34 leHashTable{...4 │ │ │ │ -00023ec0: 2e2e 2e7d 2020 2020 2020 2020 2020 2020 ...} │ │ │ │ -00023ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023e70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023e80: 7c6f 3420 3d20 4d75 7461 626c 6548 6173 |o4 = MutableHas │ │ │ │ +00023e90: 6854 6162 6c65 7b2e 2e2e 342e 2e2e 7d20 hTable{...4...} │ │ │ │ +00023ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023ec0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023ed0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00023ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ef0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f40: 2020 207c 0a7c 6f34 203a 204d 7574 6162 |.|o4 : Mutab │ │ │ │ -00023f50: 6c65 4861 7368 5461 626c 6520 2020 2020 leHashTable │ │ │ │ -00023f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f90: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00023f10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023f20: 7c6f 3420 3a20 4d75 7461 626c 6548 6173 |o4 : MutableHas │ │ │ │ +00023f30: 6854 6162 6c65 2020 2020 2020 2020 2020 hTable │ │ │ │ +00023f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023f60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023f70: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00023f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023fe0: 2d2d 2d2b 0a7c 6935 203a 2070 6565 6b20 ---+.|i5 : peek │ │ │ │ -00023ff0: 6373 6d20 2020 2020 2020 2020 2020 2020 csm │ │ │ │ -00024000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00023fc0: 7c69 3520 3a20 7065 656b 2063 736d 2020 |i5 : peek csm │ │ │ │ +00023fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024000: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024010: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00024020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024030: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024050: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024060: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00024070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024080: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000240a0: 2020 2020 2020 2020 3620 2020 2020 2035 6 5 │ │ │ │ -000240b0: 2020 2020 2020 3420 2020 2020 2033 2020 4 3 │ │ │ │ -000240c0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000240d0: 2020 207c 0a7c 6f35 203d 204d 7574 6162 |.|o5 = Mutab │ │ │ │ -000240e0: 6c65 4861 7368 5461 626c 657b 7b30 2c20 leHashTable{{0, │ │ │ │ -000240f0: 317d 203d 3e20 3268 2020 2b20 3233 6820 1} => 2h + 23h │ │ │ │ -00024100: 202b 2033 3268 2020 2b20 3333 6820 202b + 32h + 33h + │ │ │ │ -00024110: 2031 3868 2020 2b20 3568 207d 2020 2020 18h + 5h } │ │ │ │ -00024120: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024140: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ -00024150: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00024160: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00024170: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024190: 2020 2020 2020 3620 2020 2020 2035 2020 6 5 │ │ │ │ -000241a0: 2020 2020 3420 2020 2020 2033 2020 2020 4 3 │ │ │ │ -000241b0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000241c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000241d0: 2020 2020 2020 2020 2020 2020 4353 4d20 CSM │ │ │ │ -000241e0: 3d3e 2031 3068 2020 2b20 3132 6820 202b => 10h + 12h + │ │ │ │ -000241f0: 2032 3268 2020 2b20 3136 6820 202b 2036 22h + 16h + 6 │ │ │ │ -00024200: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ -00024210: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024230: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00024240: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00024250: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00024260: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024280: 2020 2020 2036 2020 2020 2020 3520 2020 6 5 │ │ │ │ -00024290: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ -000242a0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000242b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000242c0: 2020 2020 2020 2020 2020 2020 7b30 7d20 {0} │ │ │ │ -000242d0: 3d3e 2036 6820 202b 2031 3868 2020 2b20 => 6h + 18h + │ │ │ │ -000242e0: 3236 6820 202b 2032 3268 2020 2b20 3130 26h + 22h + 10 │ │ │ │ -000242f0: 6820 202b 2032 6820 2020 2020 2020 2020 h + 2h │ │ │ │ -00024300: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024320: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00024330: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00024340: 2031 2020 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ -00024350: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024370: 2020 2020 2036 2020 2020 2020 3520 2020 6 5 │ │ │ │ -00024380: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ -00024390: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000243a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000243b0: 2020 2020 2020 2020 2020 2020 7b31 7d20 {1} │ │ │ │ -000243c0: 3d3e 2036 6820 202b 2031 3768 2020 2b20 => 6h + 17h + │ │ │ │ -000243d0: 3238 6820 202b 2032 3768 2020 2b20 3134 28h + 27h + 14 │ │ │ │ -000243e0: 6820 202b 2033 6820 2020 2020 2020 2020 h + 3h │ │ │ │ -000243f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024410: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00024420: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00024430: 2031 2020 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ -00024440: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00024080: 2020 2036 2020 2020 2020 3520 2020 2020 6 5 │ │ │ │ +00024090: 2034 2020 2020 2020 3320 2020 2020 2032 4 3 2 │ │ │ │ +000240a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000240b0: 7c6f 3520 3d20 4d75 7461 626c 6548 6173 |o5 = MutableHas │ │ │ │ +000240c0: 6854 6162 6c65 7b7b 302c 2031 7d20 3d3e hTable{{0, 1} => │ │ │ │ +000240d0: 2032 6820 202b 2032 3368 2020 2b20 3332 2h + 23h + 32 │ │ │ │ +000240e0: 6820 202b 2033 3368 2020 2b20 3138 6820 h + 33h + 18h │ │ │ │ +000240f0: 202b 2035 6820 7d20 2020 2020 2020 7c0a + 5h } |. │ │ │ │ +00024100: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024120: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024130: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ +00024140: 2020 2020 2031 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +00024150: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024170: 2036 2020 2020 2020 3520 2020 2020 2034 6 5 4 │ │ │ │ +00024180: 2020 2020 2020 3320 2020 2020 3220 2020 3 2 │ │ │ │ +00024190: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000241a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000241b0: 2020 2020 2020 2043 534d 203d 3e20 3130 CSM => 10 │ │ │ │ +000241c0: 6820 202b 2031 3268 2020 2b20 3232 6820 h + 12h + 22h │ │ │ │ +000241d0: 202b 2031 3668 2020 2b20 3668 2020 2020 + 16h + 6h │ │ │ │ +000241e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000241f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024210: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ +00024220: 2020 2020 2020 3120 2020 2020 3120 2020 1 1 │ │ │ │ +00024230: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024240: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024260: 3620 2020 2020 2035 2020 2020 2020 3420 6 5 4 │ │ │ │ +00024270: 2020 2020 2033 2020 2020 2020 3220 2020 3 2 │ │ │ │ +00024280: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024290: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000242a0: 2020 2020 2020 207b 307d 203d 3e20 3668 {0} => 6h │ │ │ │ +000242b0: 2020 2b20 3138 6820 202b 2032 3668 2020 + 18h + 26h │ │ │ │ +000242c0: 2b20 3232 6820 202b 2031 3068 2020 2b20 + 22h + 10h + │ │ │ │ +000242d0: 3268 2020 2020 2020 2020 2020 2020 7c0a 2h |. │ │ │ │ +000242e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000242f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024300: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +00024310: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00024320: 2020 3120 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +00024330: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024350: 3620 2020 2020 2035 2020 2020 2020 3420 6 5 4 │ │ │ │ +00024360: 2020 2020 2033 2020 2020 2020 3220 2020 3 2 │ │ │ │ +00024370: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024380: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024390: 2020 2020 2020 207b 317d 203d 3e20 3668 {1} => 6h │ │ │ │ +000243a0: 2020 2b20 3137 6820 202b 2032 3868 2020 + 17h + 28h │ │ │ │ +000243b0: 2b20 3237 6820 202b 2031 3468 2020 2b20 + 27h + 14h + │ │ │ │ +000243c0: 3368 2020 2020 2020 2020 2020 2020 7c0a 3h |. │ │ │ │ +000243d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000243e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000243f0: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +00024400: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00024410: 2020 3120 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +00024420: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00024430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024490: 2d2d 2d2b 0a7c 6936 203a 2043 534d 2841 ---+.|i6 : CSM(A │ │ │ │ -000244a0: 2c69 6465 616c 2049 5f30 293d 3d63 736d ,ideal I_0)==csm │ │ │ │ -000244b0: 237b 307d 2020 2020 2020 2020 2020 2020 #{0} │ │ │ │ -000244c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00024470: 7c69 3620 3a20 4353 4d28 412c 6964 6561 |i6 : CSM(A,idea │ │ │ │ +00024480: 6c20 495f 3029 3d3d 6373 6d23 7b30 7d20 l I_0)==csm#{0} │ │ │ │ +00024490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000244a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000244b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000244c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000244d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000244e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000244e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000244f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024500: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024510: 7c6f 3620 3d20 7472 7565 2020 2020 2020 |o6 = true │ │ │ │ 00024520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024530: 2020 207c 0a7c 6f36 203d 2074 7275 6520 |.|o6 = true │ │ │ │ +00024530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024580: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00024550: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024560: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00024570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000245a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000245b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000245c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000245d0: 2d2d 2d2b 0a7c 6937 203a 2043 534d 2841 ---+.|i7 : CSM(A │ │ │ │ -000245e0: 2c69 6465 616c 2849 5f30 2a49 5f31 2929 ,ideal(I_0*I_1)) │ │ │ │ -000245f0: 3d3d 6373 6d23 7b30 2c31 7d20 2020 2020 ==csm#{0,1} │ │ │ │ -00024600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000245a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000245b0: 7c69 3720 3a20 4353 4d28 412c 6964 6561 |i7 : CSM(A,idea │ │ │ │ +000245c0: 6c28 495f 302a 495f 3129 293d 3d63 736d l(I_0*I_1))==csm │ │ │ │ +000245d0: 237b 302c 317d 2020 2020 2020 2020 2020 #{0,1} │ │ │ │ +000245e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000245f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024600: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00024610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024620: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024640: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024650: 7c6f 3720 3d20 7472 7565 2020 2020 2020 |o7 = true │ │ │ │ 00024660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024670: 2020 207c 0a7c 6f37 203d 2074 7275 6520 |.|o7 = true │ │ │ │ +00024670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246c0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00024690: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000246a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000246b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000246c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000246d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000246e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000246f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024710: 2d2d 2d2b 0a7c 6938 203a 2063 3d43 6865 ---+.|i8 : c=Che │ │ │ │ -00024720: 726e 2820 492c 204f 7574 7075 743d 3e48 rn( I, Output=>H │ │ │ │ -00024730: 6173 6846 6f72 6d29 2020 2020 2020 2020 ashForm) │ │ │ │ -00024740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000246e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000246f0: 7c69 3820 3a20 633d 4368 6572 6e28 2049 |i8 : c=Chern( I │ │ │ │ +00024700: 2c20 4f75 7470 7574 3d3e 4861 7368 466f , Output=>HashFo │ │ │ │ +00024710: 726d 2920 2020 2020 2020 2020 2020 2020 rm) │ │ │ │ +00024720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024730: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024740: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00024750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024760: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247b0: 2020 207c 0a7c 6f38 203d 204d 7574 6162 |.|o8 = Mutab │ │ │ │ -000247c0: 6c65 4861 7368 5461 626c 657b 2e2e 2e36 leHashTable{...6 │ │ │ │ -000247d0: 2e2e 2e7d 2020 2020 2020 2020 2020 2020 ...} │ │ │ │ -000247e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024780: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024790: 7c6f 3820 3d20 4d75 7461 626c 6548 6173 |o8 = MutableHas │ │ │ │ +000247a0: 6854 6162 6c65 7b2e 2e2e 362e 2e2e 7d20 hTable{...6...} │ │ │ │ +000247b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000247c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000247d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000247e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000247f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024800: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024850: 2020 207c 0a7c 6f38 203a 204d 7574 6162 |.|o8 : Mutab │ │ │ │ -00024860: 6c65 4861 7368 5461 626c 6520 2020 2020 leHashTable │ │ │ │ -00024870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248a0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00024820: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024830: 7c6f 3820 3a20 4d75 7461 626c 6548 6173 |o8 : MutableHas │ │ │ │ +00024840: 6854 6162 6c65 2020 2020 2020 2020 2020 hTable │ │ │ │ +00024850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024870: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024880: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00024890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000248a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000248b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000248c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000248d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000248e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000248f0: 2d2d 2d2b 0a7c 6939 203a 2070 6565 6b20 ---+.|i9 : peek │ │ │ │ -00024900: 6320 2020 2020 2020 2020 2020 2020 2020 c │ │ │ │ -00024910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000248c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000248d0: 7c69 3920 3a20 7065 656b 2063 2020 2020 |i9 : peek c │ │ │ │ +000248e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000248f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024910: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024920: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00024930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024940: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024960: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024970: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00024980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024990: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000249a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249c0: 2020 3220 2020 2020 2033 2020 2020 2020 2 3 │ │ │ │ -000249d0: 3420 2020 2020 2020 3520 2020 2020 2020 4 5 │ │ │ │ -000249e0: 3620 207c 0a7c 6f39 203d 204d 7574 6162 6 |.|o9 = Mutab │ │ │ │ -000249f0: 6c65 4861 7368 5461 626c 657b 5365 6772 leHashTable{Segr │ │ │ │ -00024a00: 654c 6973 7420 3d3e 207b 302c 2030 2c20 eList => {0, 0, │ │ │ │ -00024a10: 3668 202c 202d 3330 6820 2c20 3131 3468 6h , -30h , 114h │ │ │ │ -00024a20: 202c 202d 3339 3068 202c 2031 3236 3668 , -390h , 1266h │ │ │ │ -00024a30: 207d 7d7c 0a7c 2020 2020 2020 2020 2020 }}|.| │ │ │ │ -00024a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a60: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00024a70: 3120 2020 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ -00024a80: 3120 207c 0a7c 2020 2020 2020 2020 2020 1 |.| │ │ │ │ -00024a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ab0: 3220 2020 2033 2020 2020 3420 2020 2035 2 3 4 5 │ │ │ │ -00024ac0: 2020 2020 3620 2020 2020 2020 2020 2020 6 │ │ │ │ -00024ad0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024ae0: 2020 2020 2020 2020 2020 2020 476c 6973 Glis │ │ │ │ -00024af0: 7420 3d3e 207b 312c 2033 6820 2c20 3368 t => {1, 3h , 3h │ │ │ │ -00024b00: 202c 2033 6820 2c20 3368 202c 2033 6820 , 3h , 3h , 3h │ │ │ │ -00024b10: 2c20 3368 207d 2020 2020 2020 2020 2020 , 3h } │ │ │ │ -00024b20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b40: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -00024b50: 3120 2020 2031 2020 2020 3120 2020 2031 1 1 1 1 │ │ │ │ -00024b60: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ -00024b70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b90: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ -00024ba0: 2020 3520 2020 2020 2020 3420 2020 2020 5 4 │ │ │ │ -00024bb0: 2033 2020 2020 2032 2020 2020 2020 2020 3 2 │ │ │ │ -00024bc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024bd0: 2020 2020 2020 2020 2020 2020 5365 6772 Segr │ │ │ │ -00024be0: 6520 3d3e 2031 3236 3668 2020 2d20 3339 e => 1266h - 39 │ │ │ │ -00024bf0: 3068 2020 2b20 3131 3468 2020 2d20 3330 0h + 114h - 30 │ │ │ │ -00024c00: 6820 202b 2036 6820 2020 2020 2020 2020 h + 6h │ │ │ │ -00024c10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024c30: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -00024c40: 2020 3120 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00024c50: 2031 2020 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ -00024c60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024c80: 2020 2020 2020 2020 3620 2020 2020 2035 6 5 │ │ │ │ -00024c90: 2020 2020 2020 3420 2020 2020 2033 2020 4 3 │ │ │ │ -00024ca0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00024cb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024cc0: 2020 2020 2020 2020 2020 2020 4368 6572 Cher │ │ │ │ -00024cd0: 6e20 3d3e 2039 3068 2020 2d20 3132 6820 n => 90h - 12h │ │ │ │ -00024ce0: 202b 2033 3068 2020 2b20 3132 6820 202b + 30h + 12h + │ │ │ │ -00024cf0: 2036 6820 2020 2020 2020 2020 2020 2020 6h │ │ │ │ -00024d00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d20: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ -00024d30: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00024d40: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00024d50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d70: 2020 2020 2036 2020 2020 2020 3520 2020 6 5 │ │ │ │ -00024d80: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ -00024d90: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00024da0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024db0: 2020 2020 2020 2020 2020 2020 4346 203d CF = │ │ │ │ -00024dc0: 3e20 3930 6820 202d 2031 3268 2020 2b20 > 90h - 12h + │ │ │ │ -00024dd0: 3330 6820 202b 2031 3268 2020 2b20 3668 30h + 12h + 6h │ │ │ │ +00024990: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000249a0: 2020 2020 3320 2020 2020 2034 2020 2020 3 4 │ │ │ │ +000249b0: 2020 2035 2020 2020 2020 2036 2020 7c0a 5 6 |. │ │ │ │ +000249c0: 7c6f 3920 3d20 4d75 7461 626c 6548 6173 |o9 = MutableHas │ │ │ │ +000249d0: 6854 6162 6c65 7b53 6567 7265 4c69 7374 hTable{SegreList │ │ │ │ +000249e0: 203d 3e20 7b30 2c20 302c 2036 6820 2c20 => {0, 0, 6h , │ │ │ │ +000249f0: 2d33 3068 202c 2031 3134 6820 2c20 2d33 -30h , 114h , -3 │ │ │ │ +00024a00: 3930 6820 2c20 3132 3636 6820 7d7d 7c0a 90h , 1266h }}|. │ │ │ │ +00024a10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024a30: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +00024a40: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00024a50: 2020 2031 2020 2020 2020 2031 2020 7c0a 1 1 |. │ │ │ │ +00024a60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024a80: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00024a90: 3320 2020 2034 2020 2020 3520 2020 2036 3 4 5 6 │ │ │ │ +00024aa0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024ab0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024ac0: 2020 2020 2020 2047 6c69 7374 203d 3e20 Glist => │ │ │ │ +00024ad0: 7b31 2c20 3368 202c 2033 6820 2c20 3368 {1, 3h , 3h , 3h │ │ │ │ +00024ae0: 202c 2033 6820 2c20 3368 202c 2033 6820 , 3h , 3h , 3h │ │ │ │ +00024af0: 7d20 2020 2020 2020 2020 2020 2020 7c0a } |. │ │ │ │ +00024b00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024b20: 2020 2020 2020 3120 2020 2031 2020 2020 1 1 │ │ │ │ +00024b30: 3120 2020 2031 2020 2020 3120 2020 2031 1 1 1 1 │ │ │ │ +00024b40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024b50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024b70: 2020 2020 2036 2020 2020 2020 2035 2020 6 5 │ │ │ │ +00024b80: 2020 2020 2034 2020 2020 2020 3320 2020 4 3 │ │ │ │ +00024b90: 2020 3220 2020 2020 2020 2020 2020 7c0a 2 |. │ │ │ │ +00024ba0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024bb0: 2020 2020 2020 2053 6567 7265 203d 3e20 Segre => │ │ │ │ +00024bc0: 3132 3636 6820 202d 2033 3930 6820 202b 1266h - 390h + │ │ │ │ +00024bd0: 2031 3134 6820 202d 2033 3068 2020 2b20 114h - 30h + │ │ │ │ +00024be0: 3668 2020 2020 2020 2020 2020 2020 7c0a 6h |. │ │ │ │ +00024bf0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024c10: 2020 2020 2031 2020 2020 2020 2031 2020 1 1 │ │ │ │ +00024c20: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00024c30: 2020 3120 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +00024c40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024c60: 2020 2036 2020 2020 2020 3520 2020 2020 6 5 │ │ │ │ +00024c70: 2034 2020 2020 2020 3320 2020 2020 3220 4 3 2 │ │ │ │ +00024c80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024c90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024ca0: 2020 2020 2020 2043 6865 726e 203d 3e20 Chern => │ │ │ │ +00024cb0: 3930 6820 202d 2031 3268 2020 2b20 3330 90h - 12h + 30 │ │ │ │ +00024cc0: 6820 202b 2031 3268 2020 2b20 3668 2020 h + 12h + 6h │ │ │ │ +00024cd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024ce0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024d00: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024d10: 2031 2020 2020 2020 3120 2020 2020 3120 1 1 1 │ │ │ │ +00024d20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024d30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024d50: 3620 2020 2020 2035 2020 2020 2020 3420 6 5 4 │ │ │ │ +00024d60: 2020 2020 2033 2020 2020 2032 2020 2020 3 2 │ │ │ │ +00024d70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024d80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024d90: 2020 2020 2020 2043 4620 3d3e 2039 3068 CF => 90h │ │ │ │ +00024da0: 2020 2d20 3132 6820 202b 2033 3068 2020 - 12h + 30h │ │ │ │ +00024db0: 2b20 3132 6820 202b 2036 6820 2020 2020 + 12h + 6h │ │ │ │ +00024dc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024dd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00024de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024df0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e10: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00024e20: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00024e30: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00024e40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e60: 2020 2036 2020 2020 2035 2020 2020 2034 6 5 4 │ │ │ │ -00024e70: 2020 2020 2033 2020 2020 2032 2020 2020 3 2 │ │ │ │ -00024e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024ea0: 2020 2020 2020 2020 2020 2020 4720 3d3e G => │ │ │ │ -00024eb0: 2033 6820 202b 2033 6820 202b 2033 6820 3h + 3h + 3h │ │ │ │ -00024ec0: 202b 2033 6820 202b 2033 6820 202b 2033 + 3h + 3h + 3 │ │ │ │ -00024ed0: 6820 202b 2031 2020 2020 2020 2020 2020 h + 1 │ │ │ │ -00024ee0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00024ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024f00: 2020 2031 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ -00024f10: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00024f20: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00024f30: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00024df0: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +00024e00: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00024e10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024e20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024e30: 2020 2020 2020 2020 2020 2020 2020 3620 6 │ │ │ │ +00024e40: 2020 2020 3520 2020 2020 3420 2020 2020 5 4 │ │ │ │ +00024e50: 3320 2020 2020 3220 2020 2020 2020 2020 3 2 │ │ │ │ +00024e60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024e70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024e80: 2020 2020 2020 2047 203d 3e20 3368 2020 G => 3h │ │ │ │ +00024e90: 2b20 3368 2020 2b20 3368 2020 2b20 3368 + 3h + 3h + 3h │ │ │ │ +00024ea0: 2020 2b20 3368 2020 2b20 3368 2020 2b20 + 3h + 3h + │ │ │ │ +00024eb0: 3120 2020 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +00024ec0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024ed0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +00024ee0: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024ef0: 3120 2020 2020 3120 2020 2020 3120 2020 1 1 1 │ │ │ │ +00024f00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024f10: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00024f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f80: 2d2d 2d2b 0a7c 6931 3020 3a20 7365 673d ---+.|i10 : seg= │ │ │ │ -00024f90: 5365 6772 6528 2049 2c20 4f75 7470 7574 Segre( I, Output │ │ │ │ -00024fa0: 3d3e 4861 7368 466f 726d 2920 2020 2020 =>HashForm) │ │ │ │ -00024fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00024f60: 7c69 3130 203a 2073 6567 3d53 6567 7265 |i10 : seg=Segre │ │ │ │ +00024f70: 2820 492c 204f 7574 7075 743d 3e48 6173 ( I, Output=>Has │ │ │ │ +00024f80: 6846 6f72 6d29 2020 2020 2020 2020 2020 hForm) │ │ │ │ +00024f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024fa0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024fb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00024fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024fd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025020: 2020 207c 0a7c 6f31 3020 3d20 4d75 7461 |.|o10 = Muta │ │ │ │ -00025030: 626c 6548 6173 6854 6162 6c65 7b2e 2e2e bleHashTable{... │ │ │ │ -00025040: 342e 2e2e 7d20 2020 2020 2020 2020 2020 4...} │ │ │ │ -00025050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024ff0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025000: 7c6f 3130 203d 204d 7574 6162 6c65 4861 |o10 = MutableHa │ │ │ │ +00025010: 7368 5461 626c 657b 2e2e 2e34 2e2e 2e7d shTable{...4...} │ │ │ │ +00025020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025040: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025050: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00025060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025070: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250c0: 2020 207c 0a7c 6f31 3020 3a20 4d75 7461 |.|o10 : Muta │ │ │ │ -000250d0: 626c 6548 6173 6854 6162 6c65 2020 2020 bleHashTable │ │ │ │ -000250e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025110: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00025090: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000250a0: 7c6f 3130 203a 204d 7574 6162 6c65 4861 |o10 : MutableHa │ │ │ │ +000250b0: 7368 5461 626c 6520 2020 2020 2020 2020 shTable │ │ │ │ +000250c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000250d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000250e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000250f0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00025100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025160: 2d2d 2d2b 0a7c 6931 3120 3a20 7065 656b ---+.|i11 : peek │ │ │ │ -00025170: 2073 6567 2020 2020 2020 2020 2020 2020 seg │ │ │ │ -00025180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00025140: 7c69 3131 203a 2070 6565 6b20 7365 6720 |i11 : peek seg │ │ │ │ +00025150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025180: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025190: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000251a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000251b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000251b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000251d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000251e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000251d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000251e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000251f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025200: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025230: 2020 2032 2020 2020 2020 3320 2020 2020 2 3 │ │ │ │ -00025240: 2034 2020 2020 2020 2035 2020 2020 2020 4 5 │ │ │ │ -00025250: 2020 207c 0a7c 6f31 3120 3d20 4d75 7461 |.|o11 = Muta │ │ │ │ -00025260: 626c 6548 6173 6854 6162 6c65 7b53 6567 bleHashTable{Seg │ │ │ │ -00025270: 7265 4c69 7374 203d 3e20 7b30 2c20 302c reList => {0, 0, │ │ │ │ -00025280: 2036 6820 2c20 2d33 3068 202c 2031 3134 6h , -30h , 114 │ │ │ │ -00025290: 6820 2c20 2d33 3930 6820 2c20 2020 2020 h , -390h , │ │ │ │ -000252a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000252b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000252c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000252d0: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -000252e0: 2031 2020 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -000252f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025320: 2032 2020 2020 3320 2020 2034 2020 2020 2 3 4 │ │ │ │ -00025330: 3520 2020 2036 2020 2020 2020 2020 2020 5 6 │ │ │ │ -00025340: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025350: 2020 2020 2020 2020 2020 2020 2047 6c69 Gli │ │ │ │ -00025360: 7374 203d 3e20 7b31 2c20 3368 202c 2033 st => {1, 3h , 3 │ │ │ │ -00025370: 6820 2c20 3368 202c 2033 6820 2c20 3368 h , 3h , 3h , 3h │ │ │ │ -00025380: 202c 2033 6820 7d20 2020 2020 2020 2020 , 3h } │ │ │ │ -00025390: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000253a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000253b0: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ -000253c0: 2031 2020 2020 3120 2020 2031 2020 2020 1 1 1 │ │ │ │ -000253d0: 3120 2020 2031 2020 2020 2020 2020 2020 1 1 │ │ │ │ -000253e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000253f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025400: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ -00025410: 2020 2035 2020 2020 2020 2034 2020 2020 5 4 │ │ │ │ -00025420: 2020 3320 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ -00025430: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025440: 2020 2020 2020 2020 2020 2020 2053 6567 Seg │ │ │ │ -00025450: 7265 203d 3e20 3132 3636 6820 202d 2033 re => 1266h - 3 │ │ │ │ -00025460: 3930 6820 202b 2031 3134 6820 202d 2033 90h + 114h - 3 │ │ │ │ -00025470: 3068 2020 2b20 3668 2020 2020 2020 2020 0h + 6h │ │ │ │ -00025480: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000254a0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -000254b0: 2020 2031 2020 2020 2020 2031 2020 2020 1 1 │ │ │ │ -000254c0: 2020 3120 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ -000254d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000254e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000254f0: 2020 2020 3620 2020 2020 3520 2020 2020 6 5 │ │ │ │ -00025500: 3420 2020 2020 3320 2020 2020 3220 2020 4 3 2 │ │ │ │ -00025510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025520: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025530: 2020 2020 2020 2020 2020 2020 2047 203d G = │ │ │ │ -00025540: 3e20 3368 2020 2b20 3368 2020 2b20 3368 > 3h + 3h + 3h │ │ │ │ -00025550: 2020 2b20 3368 2020 2b20 3368 2020 2b20 + 3h + 3h + │ │ │ │ -00025560: 3368 2020 2b20 3120 2020 2020 2020 2020 3h + 1 │ │ │ │ -00025570: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025590: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ -000255a0: 3120 2020 2020 3120 2020 2020 3120 2020 1 1 1 │ │ │ │ -000255b0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -000255c0: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +00025200: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00025210: 2020 2020 2033 2020 2020 2020 3420 2020 3 4 │ │ │ │ +00025220: 2020 2020 3520 2020 2020 2020 2020 7c0a 5 |. │ │ │ │ +00025230: 7c6f 3131 203d 204d 7574 6162 6c65 4861 |o11 = MutableHa │ │ │ │ +00025240: 7368 5461 626c 657b 5365 6772 654c 6973 shTable{SegreLis │ │ │ │ +00025250: 7420 3d3e 207b 302c 2030 2c20 3668 202c t => {0, 0, 6h , │ │ │ │ +00025260: 202d 3330 6820 2c20 3131 3468 202c 202d -30h , 114h , - │ │ │ │ +00025270: 3339 3068 202c 2020 2020 2020 2020 7c0a 390h , |. │ │ │ │ +00025280: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000252a0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +000252b0: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +000252c0: 2020 2020 3120 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +000252d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000252e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000252f0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00025300: 2033 2020 2020 3420 2020 2035 2020 2020 3 4 5 │ │ │ │ +00025310: 3620 2020 2020 2020 2020 2020 2020 7c0a 6 |. │ │ │ │ +00025320: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025330: 2020 2020 2020 2020 476c 6973 7420 3d3e Glist => │ │ │ │ +00025340: 207b 312c 2033 6820 2c20 3368 202c 2033 {1, 3h , 3h , 3 │ │ │ │ +00025350: 6820 2c20 3368 202c 2033 6820 2c20 3368 h , 3h , 3h , 3h │ │ │ │ +00025360: 207d 2020 2020 2020 2020 2020 2020 7c0a } |. │ │ │ │ +00025370: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025390: 2020 2020 2020 2031 2020 2020 3120 2020 1 1 │ │ │ │ +000253a0: 2031 2020 2020 3120 2020 2031 2020 2020 1 1 1 │ │ │ │ +000253b0: 3120 2020 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +000253c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000253d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000253e0: 2020 2020 2020 3620 2020 2020 2020 3520 6 5 │ │ │ │ +000253f0: 2020 2020 2020 3420 2020 2020 2033 2020 4 3 │ │ │ │ +00025400: 2020 2032 2020 2020 2020 2020 2020 7c0a 2 |. │ │ │ │ +00025410: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025420: 2020 2020 2020 2020 5365 6772 6520 3d3e Segre => │ │ │ │ +00025430: 2031 3236 3668 2020 2d20 3339 3068 2020 1266h - 390h │ │ │ │ +00025440: 2b20 3131 3468 2020 2d20 3330 6820 202b + 114h - 30h + │ │ │ │ +00025450: 2036 6820 2020 2020 2020 2020 2020 7c0a 6h |. │ │ │ │ +00025460: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025480: 2020 2020 2020 3120 2020 2020 2020 3120 1 1 │ │ │ │ +00025490: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +000254a0: 2020 2031 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +000254b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000254c0: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ +000254d0: 2020 2020 2035 2020 2020 2034 2020 2020 5 4 │ │ │ │ +000254e0: 2033 2020 2020 2032 2020 2020 2020 2020 3 2 │ │ │ │ +000254f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025500: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025510: 2020 2020 2020 2020 4720 3d3e 2033 6820 G => 3h │ │ │ │ +00025520: 202b 2033 6820 202b 2033 6820 202b 2033 + 3h + 3h + 3 │ │ │ │ +00025530: 6820 202b 2033 6820 202b 2033 6820 202b h + 3h + 3h + │ │ │ │ +00025540: 2031 2020 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +00025550: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025560: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00025570: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00025580: 2031 2020 2020 2031 2020 2020 2031 2020 1 1 1 │ │ │ │ +00025590: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000255a0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +000255b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000255c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000255d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000255e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000255f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025610: 2d2d 2d7c 0a7c 2020 2020 2036 2020 2020 ---|.| 6 │ │ │ │ +000255e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +000255f0: 7c20 2020 2020 3620 2020 2020 2020 2020 | 6 │ │ │ │ +00025600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025630: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025640: 7c31 3236 3668 207d 7d20 2020 2020 2020 |1266h }} │ │ │ │ 00025650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025660: 2020 207c 0a7c 3132 3636 6820 7d7d 2020 |.|1266h }} │ │ │ │ +00025660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025680: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025690: 7c20 2020 2020 3120 2020 2020 2020 2020 | 1 │ │ │ │ 000256a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000256b0: 2020 207c 0a7c 2020 2020 2031 2020 2020 |.| 1 │ │ │ │ +000256b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000256c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000256d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000256e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000256f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025700: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000256d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000256e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000256f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025750: 2d2d 2d2b 0a7c 6931 3220 3a20 6575 3d45 ---+.|i12 : eu=E │ │ │ │ -00025760: 756c 6572 2820 492c 204f 7574 7075 743d uler( I, Output= │ │ │ │ -00025770: 3e48 6173 6846 6f72 6d29 2020 2020 2020 >HashForm) │ │ │ │ -00025780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00025730: 7c69 3132 203a 2065 753d 4575 6c65 7228 |i12 : eu=Euler( │ │ │ │ +00025740: 2049 2c20 4f75 7470 7574 3d3e 4861 7368 I, Output=>Hash │ │ │ │ +00025750: 466f 726d 2920 2020 2020 2020 2020 2020 Form) │ │ │ │ +00025760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025770: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025780: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00025790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000257a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000257b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257f0: 2020 207c 0a7c 6f31 3220 3d20 4d75 7461 |.|o12 = Muta │ │ │ │ -00025800: 626c 6548 6173 6854 6162 6c65 7b2e 2e2e bleHashTable{... │ │ │ │ -00025810: 352e 2e2e 7d20 2020 2020 2020 2020 2020 5...} │ │ │ │ -00025820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000257c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000257d0: 7c6f 3132 203d 204d 7574 6162 6c65 4861 |o12 = MutableHa │ │ │ │ +000257e0: 7368 5461 626c 657b 2e2e 2e35 2e2e 2e7d shTable{...5...} │ │ │ │ +000257f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025810: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025820: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00025830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025840: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025890: 2020 207c 0a7c 6f31 3220 3a20 4d75 7461 |.|o12 : Muta │ │ │ │ -000258a0: 626c 6548 6173 6854 6162 6c65 2020 2020 bleHashTable │ │ │ │ -000258b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000258c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000258d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000258e0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00025860: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025870: 7c6f 3132 203a 204d 7574 6162 6c65 4861 |o12 : MutableHa │ │ │ │ +00025880: 7368 5461 626c 6520 2020 2020 2020 2020 shTable │ │ │ │ +00025890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000258a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000258b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000258c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000258d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000258e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000258f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025930: 2d2d 2d2b 0a7c 6931 3320 3a20 7065 656b ---+.|i13 : peek │ │ │ │ -00025940: 2065 7520 2020 2020 2020 2020 2020 2020 eu │ │ │ │ -00025950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00025910: 7c69 3133 203a 2070 6565 6b20 6575 2020 |i13 : peek eu │ │ │ │ +00025920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025950: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025960: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00025970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025980: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259d0: 2020 207c 0a7c 6f31 3320 3d20 4d75 7461 |.|o13 = Muta │ │ │ │ -000259e0: 626c 6548 6173 6854 6162 6c65 7b45 756c bleHashTable{Eul │ │ │ │ -000259f0: 6572 203d 3e20 3130 2020 2020 2020 2020 er => 10 │ │ │ │ -00025a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a10: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ -00025a20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a40: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ -00025a50: 3520 2020 2020 2034 2020 2020 2020 3320 5 4 3 │ │ │ │ -00025a60: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00025a70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025a80: 2020 2020 2020 2020 2020 2020 207b 302c {0, │ │ │ │ -00025a90: 2031 7d20 3d3e 2032 6820 202b 2032 3368 1} => 2h + 23h │ │ │ │ -00025aa0: 2020 2b20 3332 6820 202b 2033 3368 2020 + 32h + 33h │ │ │ │ -00025ab0: 2b20 3138 6820 202b 2035 6820 2020 2020 + 18h + 5h │ │ │ │ -00025ac0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ae0: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ -00025af0: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ -00025b00: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00025b10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b30: 2020 2020 2020 2036 2020 2020 2020 3520 6 5 │ │ │ │ -00025b40: 2020 2020 2034 2020 2020 2020 3320 2020 4 3 │ │ │ │ -00025b50: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00025b60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025b70: 2020 2020 2020 2020 2020 2020 2043 534d CSM │ │ │ │ -00025b80: 203d 3e20 3130 6820 202b 2031 3268 2020 => 10h + 12h │ │ │ │ -00025b90: 2b20 3232 6820 202b 2031 3668 2020 2b20 + 22h + 16h + │ │ │ │ -00025ba0: 3668 2020 2020 2020 2020 2020 2020 2020 6h │ │ │ │ -00025bb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025bd0: 2020 2020 2020 2031 2020 2020 2020 3120 1 1 │ │ │ │ -00025be0: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00025bf0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00025c00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c20: 2020 2020 2020 3620 2020 2020 2035 2020 6 5 │ │ │ │ -00025c30: 2020 2020 3420 2020 2020 2033 2020 2020 4 3 │ │ │ │ -00025c40: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00025c50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025c60: 2020 2020 2020 2020 2020 2020 207b 307d {0} │ │ │ │ -00025c70: 203d 3e20 3668 2020 2b20 3138 6820 202b => 6h + 18h + │ │ │ │ -00025c80: 2032 3668 2020 2b20 3232 6820 202b 2031 26h + 22h + 1 │ │ │ │ -00025c90: 3068 2020 2b20 3268 2020 2020 2020 2020 0h + 2h │ │ │ │ -00025ca0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025cc0: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00025cd0: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00025ce0: 2020 3120 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ -00025cf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d10: 2020 2020 2020 3620 2020 2020 2035 2020 6 5 │ │ │ │ -00025d20: 2020 2020 3420 2020 2020 2033 2020 2020 4 3 │ │ │ │ -00025d30: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00025d40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025d50: 2020 2020 2020 2020 2020 2020 207b 317d {1} │ │ │ │ -00025d60: 203d 3e20 3668 2020 2b20 3137 6820 202b => 6h + 17h + │ │ │ │ -00025d70: 2032 3868 2020 2b20 3237 6820 202b 2031 28h + 27h + 1 │ │ │ │ -00025d80: 3468 2020 2b20 3368 2020 2020 2020 2020 4h + 3h │ │ │ │ -00025d90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025db0: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00025dc0: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00025dd0: 2020 3120 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ -00025de0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000259a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000259b0: 7c6f 3133 203d 204d 7574 6162 6c65 4861 |o13 = MutableHa │ │ │ │ +000259c0: 7368 5461 626c 657b 4575 6c65 7220 3d3e shTable{Euler => │ │ │ │ +000259d0: 2031 3020 2020 2020 2020 2020 2020 2020 10 │ │ │ │ +000259e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000259f0: 2020 2020 2020 207d 2020 2020 2020 7c0a } |. │ │ │ │ +00025a00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025a20: 2020 2020 3620 2020 2020 2035 2020 2020 6 5 │ │ │ │ +00025a30: 2020 3420 2020 2020 2033 2020 2020 2020 4 3 │ │ │ │ +00025a40: 3220 2020 2020 2020 2020 2020 2020 7c0a 2 |. │ │ │ │ +00025a50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025a60: 2020 2020 2020 2020 7b30 2c20 317d 203d {0, 1} = │ │ │ │ +00025a70: 3e20 3268 2020 2b20 3233 6820 202b 2033 > 2h + 23h + 3 │ │ │ │ +00025a80: 3268 2020 2b20 3333 6820 202b 2031 3868 2h + 33h + 18h │ │ │ │ +00025a90: 2020 2b20 3568 2020 2020 2020 2020 7c0a + 5h |. │ │ │ │ +00025aa0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025ac0: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00025ad0: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00025ae0: 3120 2020 2020 3120 2020 2020 2020 7c0a 1 1 |. │ │ │ │ +00025af0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025b10: 2020 3620 2020 2020 2035 2020 2020 2020 6 5 │ │ │ │ +00025b20: 3420 2020 2020 2033 2020 2020 2032 2020 4 3 2 │ │ │ │ +00025b30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025b40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025b50: 2020 2020 2020 2020 4353 4d20 3d3e 2031 CSM => 1 │ │ │ │ +00025b60: 3068 2020 2b20 3132 6820 202b 2032 3268 0h + 12h + 22h │ │ │ │ +00025b70: 2020 2b20 3136 6820 202b 2036 6820 2020 + 16h + 6h │ │ │ │ +00025b80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025b90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025bb0: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00025bc0: 3120 2020 2020 2031 2020 2020 2031 2020 1 1 1 │ │ │ │ +00025bd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025be0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025c00: 2036 2020 2020 2020 3520 2020 2020 2034 6 5 4 │ │ │ │ +00025c10: 2020 2020 2020 3320 2020 2020 2032 2020 3 2 │ │ │ │ +00025c20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025c30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025c40: 2020 2020 2020 2020 7b30 7d20 3d3e 2036 {0} => 6 │ │ │ │ +00025c50: 6820 202b 2031 3868 2020 2b20 3236 6820 h + 18h + 26h │ │ │ │ +00025c60: 202b 2032 3268 2020 2b20 3130 6820 202b + 22h + 10h + │ │ │ │ +00025c70: 2032 6820 2020 2020 2020 2020 2020 7c0a 2h |. │ │ │ │ +00025c80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025ca0: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ +00025cb0: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00025cc0: 2020 2031 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +00025cd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025cf0: 2036 2020 2020 2020 3520 2020 2020 2034 6 5 4 │ │ │ │ +00025d00: 2020 2020 2020 3320 2020 2020 2032 2020 3 2 │ │ │ │ +00025d10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025d20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025d30: 2020 2020 2020 2020 7b31 7d20 3d3e 2036 {1} => 6 │ │ │ │ +00025d40: 6820 202b 2031 3768 2020 2b20 3238 6820 h + 17h + 28h │ │ │ │ +00025d50: 202b 2032 3768 2020 2b20 3134 6820 202b + 27h + 14h + │ │ │ │ +00025d60: 2033 6820 2020 2020 2020 2020 2020 7c0a 3h |. │ │ │ │ +00025d70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00025d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025d90: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ +00025da0: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00025db0: 2020 2031 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +00025dc0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00025dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025e30: 2d2d 2d2b 0a0a 5468 6520 4d75 7461 626c ---+..The Mutabl │ │ │ │ -00025e40: 6548 6173 6854 6162 6c65 2072 6574 7572 eHashTable retur │ │ │ │ -00025e50: 6e65 6420 7769 7468 2074 6865 206f 7074 ned with the opt │ │ │ │ -00025e60: 696f 6e20 4f75 7470 7574 3d3e 4861 7368 ion Output=>Hash │ │ │ │ -00025e70: 466f 726d 2063 6f6e 7461 696e 730a 6469 Form contains.di │ │ │ │ -00025e80: 6666 6572 656e 7420 696e 666f 726d 6174 fferent informat │ │ │ │ -00025e90: 696f 6e20 6465 7065 6e64 696e 6720 6f6e ion depending on │ │ │ │ -00025ea0: 2074 6865 206d 6574 686f 6420 7769 7468 the method with │ │ │ │ -00025eb0: 2077 6869 6368 2069 7420 6973 2075 7365 which it is use │ │ │ │ -00025ec0: 642e 0a41 6464 6974 696f 6e61 6c6c 7920 d..Additionally │ │ │ │ -00025ed0: 6966 2074 6865 206f 7074 696f 6e20 2a6e if the option *n │ │ │ │ -00025ee0: 6f74 6520 496e 7075 7449 7353 6d6f 6f74 ote InputIsSmoot │ │ │ │ -00025ef0: 683a 2049 6e70 7574 4973 536d 6f6f 7468 h: InputIsSmooth │ │ │ │ -00025f00: 2c20 6973 2075 7365 6420 7468 656e 2074 , is used then t │ │ │ │ -00025f10: 6865 0a68 6173 6820 7461 626c 6520 7265 he.hash table re │ │ │ │ -00025f20: 7475 726e 6564 2062 7920 7468 6520 6d65 turned by the me │ │ │ │ -00025f30: 7468 6f64 7320 4575 6c65 7220 616e 6420 thods Euler and │ │ │ │ -00025f40: 4353 4d20 7769 6c6c 2062 6520 7468 6520 CSM will be the │ │ │ │ -00025f50: 7361 6d65 2061 7320 7468 6174 0a72 6574 same as that.ret │ │ │ │ -00025f60: 7572 6e65 6420 6279 2043 6865 726e 2e20 urned by Chern. │ │ │ │ -00025f70: 5768 656e 2075 7369 6e67 2074 6865 202a When using the * │ │ │ │ -00025f80: 6e6f 7465 2043 534d 3a20 4353 4d2c 2020 note CSM: CSM, │ │ │ │ -00025f90: 636f 6d6d 616e 6420 696e 2074 6865 2064 command in the d │ │ │ │ -00025fa0: 6566 6175 6c74 0a63 6f6e 6669 6775 7261 efault.configura │ │ │ │ -00025fb0: 7469 6f6e 7320 2874 6861 7420 6973 202a tions (that is * │ │ │ │ -00025fc0: 6e6f 7465 204d 6574 686f 643a 204d 6574 note Method: Met │ │ │ │ -00025fd0: 686f 642c 3d3e 496e 636c 7573 696f 6e45 hod,=>InclusionE │ │ │ │ -00025fe0: 7863 6c75 7369 6f6e 2c20 2a6e 6f74 650a xclusion, *note. │ │ │ │ -00025ff0: 436f 6d70 4d65 7468 6f64 3a20 436f 6d70 CompMethod: Comp │ │ │ │ -00026000: 4d65 7468 6f64 2c3d 3e50 726f 6a65 6374 Method,=>Project │ │ │ │ -00026010: 6976 6544 6567 7265 6529 2074 6865 7265 iveDegree) there │ │ │ │ -00026020: 2069 7320 7468 6520 6164 6469 7469 6f6e is the addition │ │ │ │ -00026030: 616c 206f 7074 696f 6e20 746f 0a73 6574 al option to.set │ │ │ │ -00026040: 204f 7574 7075 743d 3e48 6173 6846 6f72 Output=>HashFor │ │ │ │ -00026050: 6d58 4c2e 2054 6869 7320 7265 7475 726e mXL. This return │ │ │ │ -00026060: 7320 616c 6c20 7468 6520 7573 7561 6c20 s all the usual │ │ │ │ -00026070: 696e 666f 726d 6174 696f 6e20 7468 6174 information that │ │ │ │ -00026080: 0a4f 7574 7075 743d 3e48 6173 6846 6f72 .Output=>HashFor │ │ │ │ -00026090: 6d20 776f 756c 6420 666f 7220 7468 6973 m would for this │ │ │ │ -000260a0: 2063 6f6e 6669 6775 7261 7469 6f6e 2077 configuration w │ │ │ │ -000260b0: 6974 6820 7468 6520 6164 6469 7469 6f6e ith the addition │ │ │ │ -000260c0: 206f 6620 7468 650a 7072 6f6a 6563 7469 of the.projecti │ │ │ │ -000260d0: 7665 2064 6567 7265 6573 2061 6e64 2053 ve degrees and S │ │ │ │ -000260e0: 6567 7265 2063 6c61 7373 6573 206f 6620 egre classes of │ │ │ │ -000260f0: 7369 6e67 756c 6172 6974 7920 7375 6273 singularity subs │ │ │ │ -00026100: 6368 656d 6573 2067 656e 6572 6174 6564 chemes generated │ │ │ │ -00026110: 2062 7920 7468 650a 6879 7065 7273 7572 by the.hypersur │ │ │ │ -00026120: 6661 6365 7320 636f 6e73 6964 6572 6564 faces considered │ │ │ │ -00026130: 2069 6e20 7468 6520 696e 636c 7573 696f in the inclusio │ │ │ │ -00026140: 6e2f 6578 636c 7573 696f 6e20 7072 6f63 n/exclusion proc │ │ │ │ -00026150: 6564 7572 652c 2074 6861 7420 6973 2069 edure, that is i │ │ │ │ -00026160: 6e0a 6669 6e64 696e 6720 7468 6520 4353 n.finding the CS │ │ │ │ -00026170: 4d20 636c 6173 7320 6f66 2061 6c6c 2068 M class of all h │ │ │ │ -00026180: 7970 6572 7375 7266 6163 6573 2067 656e ypersurfaces gen │ │ │ │ -00026190: 6572 6174 6564 2062 7920 7461 6b69 6e67 erated by taking │ │ │ │ -000261a0: 2061 2070 726f 6475 6374 206f 660a 736f a product of.so │ │ │ │ -000261b0: 6d65 2073 7562 7365 7473 206f 6620 6765 me subsets of ge │ │ │ │ -000261c0: 6e65 7261 746f 7273 206f 6620 7468 6520 nerators of the │ │ │ │ -000261d0: 696e 7075 7420 6964 6561 6c2e 204e 6f74 input ideal. Not │ │ │ │ -000261e0: 6520 7468 6174 2c20 7369 6e63 6520 7468 e that, since th │ │ │ │ -000261f0: 6520 4353 4d20 636c 6173 730a 6f66 2061 e CSM class.of a │ │ │ │ -00026200: 2073 7562 7363 6865 6d65 2065 7175 616c subscheme equal │ │ │ │ -00026210: 7320 7468 6520 4353 4d20 636c 6173 7320 s the CSM class │ │ │ │ -00026220: 6f66 2069 7473 2072 6564 7563 6564 2073 of its reduced s │ │ │ │ -00026230: 6368 656d 652c 206f 7220 6571 7569 7661 cheme, or equiva │ │ │ │ -00026240: 6c65 6e74 6c79 2066 6f72 0a75 7320 7468 lently for.us th │ │ │ │ -00026250: 6520 4353 4d20 636c 6173 7320 636f 7272 e CSM class corr │ │ │ │ -00026260: 6573 706f 6e64 696e 6720 746f 2061 6e20 esponding to an │ │ │ │ -00026270: 6964 6561 6c20 4920 6571 7561 6c73 2074 ideal I equals t │ │ │ │ -00026280: 6865 2043 534d 2063 6c61 7373 206f 6620 he CSM class of │ │ │ │ -00026290: 7468 650a 7261 6469 6361 6c20 6f66 2049 the.radical of I │ │ │ │ -000262a0: 2c20 7468 656e 2069 6e74 6572 6e61 6c6c , then internall │ │ │ │ -000262b0: 7920 7765 2061 6c77 6179 7320 776f 726b y we always work │ │ │ │ -000262c0: 2077 6974 6820 7261 6469 6361 6c20 6964 with radical id │ │ │ │ -000262d0: 6561 6c73 2028 666f 720a 6566 6669 6369 eals (for.effici │ │ │ │ -000262e0: 656e 6379 2072 6561 736f 6e73 292e 2048 ency reasons). H │ │ │ │ -000262f0: 656e 6365 2074 6865 2070 726f 6a65 6374 ence the project │ │ │ │ -00026300: 6976 6520 6465 6772 6565 7320 616e 6420 ive degrees and │ │ │ │ -00026310: 5365 6772 6520 636c 6173 7365 7320 636f Segre classes co │ │ │ │ -00026320: 6d70 7574 6564 0a69 6e74 6572 6e61 6c6c mputed.internall │ │ │ │ -00026330: 7920 7769 6c6c 2062 6520 7468 6f73 6520 y will be those │ │ │ │ -00026340: 6f66 2074 6865 2072 6164 6963 616c 206f of the radical o │ │ │ │ -00026350: 6620 616e 2069 6465 616c 2064 6566 696e f an ideal defin │ │ │ │ -00026360: 6564 2062 7920 6120 706f 6c79 6e6f 6d69 ed by a polynomi │ │ │ │ -00026370: 616c 0a77 6869 6368 2069 7320 6120 7072 al.which is a pr │ │ │ │ -00026380: 6f64 7563 7420 6f66 2073 6f6d 6520 7375 oduct of some su │ │ │ │ -00026390: 6273 6574 206f 6620 7468 6520 6765 6e65 bset of the gene │ │ │ │ -000263a0: 7261 746f 7273 2e20 5765 2069 6c6c 7573 rators. We illus │ │ │ │ -000263b0: 7472 6174 6520 7468 6973 2077 6974 6820 trate this with │ │ │ │ -000263c0: 616e 0a65 7861 6d70 6c65 2062 656c 6f77 an.example below │ │ │ │ -000263d0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +00025e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00025e10: 0a54 6865 204d 7574 6162 6c65 4861 7368 .The MutableHash │ │ │ │ +00025e20: 5461 626c 6520 7265 7475 726e 6564 2077 Table returned w │ │ │ │ +00025e30: 6974 6820 7468 6520 6f70 7469 6f6e 204f ith the option O │ │ │ │ +00025e40: 7574 7075 743d 3e48 6173 6846 6f72 6d20 utput=>HashForm │ │ │ │ +00025e50: 636f 6e74 6169 6e73 0a64 6966 6665 7265 contains.differe │ │ │ │ +00025e60: 6e74 2069 6e66 6f72 6d61 7469 6f6e 2064 nt information d │ │ │ │ +00025e70: 6570 656e 6469 6e67 206f 6e20 7468 6520 epending on the │ │ │ │ +00025e80: 6d65 7468 6f64 2077 6974 6820 7768 6963 method with whic │ │ │ │ +00025e90: 6820 6974 2069 7320 7573 6564 2e0a 4164 h it is used..Ad │ │ │ │ +00025ea0: 6469 7469 6f6e 616c 6c79 2069 6620 7468 ditionally if th │ │ │ │ +00025eb0: 6520 6f70 7469 6f6e 202a 6e6f 7465 2049 e option *note I │ │ │ │ +00025ec0: 6e70 7574 4973 536d 6f6f 7468 3a20 496e nputIsSmooth: In │ │ │ │ +00025ed0: 7075 7449 7353 6d6f 6f74 682c 2069 7320 putIsSmooth, is │ │ │ │ +00025ee0: 7573 6564 2074 6865 6e20 7468 650a 6861 used then the.ha │ │ │ │ +00025ef0: 7368 2074 6162 6c65 2072 6574 7572 6e65 sh table returne │ │ │ │ +00025f00: 6420 6279 2074 6865 206d 6574 686f 6473 d by the methods │ │ │ │ +00025f10: 2045 756c 6572 2061 6e64 2043 534d 2077 Euler and CSM w │ │ │ │ +00025f20: 696c 6c20 6265 2074 6865 2073 616d 6520 ill be the same │ │ │ │ +00025f30: 6173 2074 6861 740a 7265 7475 726e 6564 as that.returned │ │ │ │ +00025f40: 2062 7920 4368 6572 6e2e 2057 6865 6e20 by Chern. When │ │ │ │ +00025f50: 7573 696e 6720 7468 6520 2a6e 6f74 6520 using the *note │ │ │ │ +00025f60: 4353 4d3a 2043 534d 2c20 2063 6f6d 6d61 CSM: CSM, comma │ │ │ │ +00025f70: 6e64 2069 6e20 7468 6520 6465 6661 756c nd in the defaul │ │ │ │ +00025f80: 740a 636f 6e66 6967 7572 6174 696f 6e73 t.configurations │ │ │ │ +00025f90: 2028 7468 6174 2069 7320 2a6e 6f74 6520 (that is *note │ │ │ │ +00025fa0: 4d65 7468 6f64 3a20 4d65 7468 6f64 2c3d Method: Method,= │ │ │ │ +00025fb0: 3e49 6e63 6c75 7369 6f6e 4578 636c 7573 >InclusionExclus │ │ │ │ +00025fc0: 696f 6e2c 202a 6e6f 7465 0a43 6f6d 704d ion, *note.CompM │ │ │ │ +00025fd0: 6574 686f 643a 2043 6f6d 704d 6574 686f ethod: CompMetho │ │ │ │ +00025fe0: 642c 3d3e 5072 6f6a 6563 7469 7665 4465 d,=>ProjectiveDe │ │ │ │ +00025ff0: 6772 6565 2920 7468 6572 6520 6973 2074 gree) there is t │ │ │ │ +00026000: 6865 2061 6464 6974 696f 6e61 6c20 6f70 he additional op │ │ │ │ +00026010: 7469 6f6e 2074 6f0a 7365 7420 4f75 7470 tion to.set Outp │ │ │ │ +00026020: 7574 3d3e 4861 7368 466f 726d 584c 2e20 ut=>HashFormXL. │ │ │ │ +00026030: 5468 6973 2072 6574 7572 6e73 2061 6c6c This returns all │ │ │ │ +00026040: 2074 6865 2075 7375 616c 2069 6e66 6f72 the usual infor │ │ │ │ +00026050: 6d61 7469 6f6e 2074 6861 740a 4f75 7470 mation that.Outp │ │ │ │ +00026060: 7574 3d3e 4861 7368 466f 726d 2077 6f75 ut=>HashForm wou │ │ │ │ +00026070: 6c64 2066 6f72 2074 6869 7320 636f 6e66 ld for this conf │ │ │ │ +00026080: 6967 7572 6174 696f 6e20 7769 7468 2074 iguration with t │ │ │ │ +00026090: 6865 2061 6464 6974 696f 6e20 6f66 2074 he addition of t │ │ │ │ +000260a0: 6865 0a70 726f 6a65 6374 6976 6520 6465 he.projective de │ │ │ │ +000260b0: 6772 6565 7320 616e 6420 5365 6772 6520 grees and Segre │ │ │ │ +000260c0: 636c 6173 7365 7320 6f66 2073 696e 6775 classes of singu │ │ │ │ +000260d0: 6c61 7269 7479 2073 7562 7363 6865 6d65 larity subscheme │ │ │ │ +000260e0: 7320 6765 6e65 7261 7465 6420 6279 2074 s generated by t │ │ │ │ +000260f0: 6865 0a68 7970 6572 7375 7266 6163 6573 he.hypersurfaces │ │ │ │ +00026100: 2063 6f6e 7369 6465 7265 6420 696e 2074 considered in t │ │ │ │ +00026110: 6865 2069 6e63 6c75 7369 6f6e 2f65 7863 he inclusion/exc │ │ │ │ +00026120: 6c75 7369 6f6e 2070 726f 6365 6475 7265 lusion procedure │ │ │ │ +00026130: 2c20 7468 6174 2069 7320 696e 0a66 696e , that is in.fin │ │ │ │ +00026140: 6469 6e67 2074 6865 2043 534d 2063 6c61 ding the CSM cla │ │ │ │ +00026150: 7373 206f 6620 616c 6c20 6879 7065 7273 ss of all hypers │ │ │ │ +00026160: 7572 6661 6365 7320 6765 6e65 7261 7465 urfaces generate │ │ │ │ +00026170: 6420 6279 2074 616b 696e 6720 6120 7072 d by taking a pr │ │ │ │ +00026180: 6f64 7563 7420 6f66 0a73 6f6d 6520 7375 oduct of.some su │ │ │ │ +00026190: 6273 6574 7320 6f66 2067 656e 6572 6174 bsets of generat │ │ │ │ +000261a0: 6f72 7320 6f66 2074 6865 2069 6e70 7574 ors of the input │ │ │ │ +000261b0: 2069 6465 616c 2e20 4e6f 7465 2074 6861 ideal. Note tha │ │ │ │ +000261c0: 742c 2073 696e 6365 2074 6865 2043 534d t, since the CSM │ │ │ │ +000261d0: 2063 6c61 7373 0a6f 6620 6120 7375 6273 class.of a subs │ │ │ │ +000261e0: 6368 656d 6520 6571 7561 6c73 2074 6865 cheme equals the │ │ │ │ +000261f0: 2043 534d 2063 6c61 7373 206f 6620 6974 CSM class of it │ │ │ │ +00026200: 7320 7265 6475 6365 6420 7363 6865 6d65 s reduced scheme │ │ │ │ +00026210: 2c20 6f72 2065 7175 6976 616c 656e 746c , or equivalentl │ │ │ │ +00026220: 7920 666f 720a 7573 2074 6865 2043 534d y for.us the CSM │ │ │ │ +00026230: 2063 6c61 7373 2063 6f72 7265 7370 6f6e class correspon │ │ │ │ +00026240: 6469 6e67 2074 6f20 616e 2069 6465 616c ding to an ideal │ │ │ │ +00026250: 2049 2065 7175 616c 7320 7468 6520 4353 I equals the CS │ │ │ │ +00026260: 4d20 636c 6173 7320 6f66 2074 6865 0a72 M class of the.r │ │ │ │ +00026270: 6164 6963 616c 206f 6620 492c 2074 6865 adical of I, the │ │ │ │ +00026280: 6e20 696e 7465 726e 616c 6c79 2077 6520 n internally we │ │ │ │ +00026290: 616c 7761 7973 2077 6f72 6b20 7769 7468 always work with │ │ │ │ +000262a0: 2072 6164 6963 616c 2069 6465 616c 7320 radical ideals │ │ │ │ +000262b0: 2866 6f72 0a65 6666 6963 6965 6e63 7920 (for.efficiency │ │ │ │ +000262c0: 7265 6173 6f6e 7329 2e20 4865 6e63 6520 reasons). Hence │ │ │ │ +000262d0: 7468 6520 7072 6f6a 6563 7469 7665 2064 the projective d │ │ │ │ +000262e0: 6567 7265 6573 2061 6e64 2053 6567 7265 egrees and Segre │ │ │ │ +000262f0: 2063 6c61 7373 6573 2063 6f6d 7075 7465 classes compute │ │ │ │ +00026300: 640a 696e 7465 726e 616c 6c79 2077 696c d.internally wil │ │ │ │ +00026310: 6c20 6265 2074 686f 7365 206f 6620 7468 l be those of th │ │ │ │ +00026320: 6520 7261 6469 6361 6c20 6f66 2061 6e20 e radical of an │ │ │ │ +00026330: 6964 6561 6c20 6465 6669 6e65 6420 6279 ideal defined by │ │ │ │ +00026340: 2061 2070 6f6c 796e 6f6d 6961 6c0a 7768 a polynomial.wh │ │ │ │ +00026350: 6963 6820 6973 2061 2070 726f 6475 6374 ich is a product │ │ │ │ +00026360: 206f 6620 736f 6d65 2073 7562 7365 7420 of some subset │ │ │ │ +00026370: 6f66 2074 6865 2067 656e 6572 6174 6f72 of the generator │ │ │ │ +00026380: 732e 2057 6520 696c 6c75 7374 7261 7465 s. We illustrate │ │ │ │ +00026390: 2074 6869 7320 7769 7468 2061 6e0a 6578 this with an.ex │ │ │ │ +000263a0: 616d 706c 6520 6265 6c6f 772e 0a0a 2b2d ample below...+- │ │ │ │ +000263b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000263c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000263d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000263e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000263f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026420: 2d2b 0a7c 6931 3420 3a20 6373 6d58 4c68 -+.|i14 : csmXLh │ │ │ │ -00026430: 6173 683d 4353 4d28 412c 492c 4f75 7470 ash=CSM(A,I,Outp │ │ │ │ -00026440: 7574 3d3e 4861 7368 466f 726d 584c 2920 ut=>HashFormXL) │ │ │ │ +000263f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00026400: 3134 203a 2063 736d 584c 6861 7368 3d43 14 : csmXLhash=C │ │ │ │ +00026410: 534d 2841 2c49 2c4f 7574 7075 743d 3e48 SM(A,I,Output=>H │ │ │ │ +00026420: 6173 6846 6f72 6d58 4c29 2020 2020 2020 ashFormXL) │ │ │ │ +00026430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026440: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00026450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026470: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264c0: 207c 0a7c 6f31 3420 3d20 4d75 7461 626c |.|o14 = Mutabl │ │ │ │ -000264d0: 6548 6173 6854 6162 6c65 7b2e 2e2e 3130 eHashTable{...10 │ │ │ │ -000264e0: 2e2e 2e7d 2020 2020 2020 2020 2020 2020 ...} │ │ │ │ +00026490: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000264a0: 3134 203d 204d 7574 6162 6c65 4861 7368 14 = MutableHash │ │ │ │ +000264b0: 5461 626c 657b 2e2e 2e31 302e 2e2e 7d20 Table{...10...} │ │ │ │ +000264c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000264d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000264e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000264f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026510: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026560: 207c 0a7c 6f31 3420 3a20 4d75 7461 626c |.|o14 : Mutabl │ │ │ │ -00026570: 6548 6173 6854 6162 6c65 2020 2020 2020 eHashTable │ │ │ │ -00026580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000265a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000265b0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00026530: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00026540: 3134 203a 204d 7574 6162 6c65 4861 7368 14 : MutableHash │ │ │ │ +00026550: 5461 626c 6520 2020 2020 2020 2020 2020 Table │ │ │ │ +00026560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026580: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00026590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000265a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000265b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000265c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000265d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000265e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000265f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026600: 2d2b 0a7c 6931 3520 3a20 7065 656b 2063 -+.|i15 : peek c │ │ │ │ -00026610: 736d 584c 6861 7368 2020 2020 2020 2020 smXLhash │ │ │ │ -00026620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000265d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000265e0: 3135 203a 2070 6565 6b20 6373 6d58 4c68 15 : peek csmXLh │ │ │ │ +000265f0: 6173 6820 2020 2020 2020 2020 2020 2020 ash │ │ │ │ +00026600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026620: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00026630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026650: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266a0: 207c 0a7c 6f31 3520 3d20 4d75 7461 626c |.|o15 = Mutabl │ │ │ │ -000266b0: 6548 6173 6854 6162 6c65 7b47 284a 6163 eHashTable{G(Jac │ │ │ │ -000266c0: 6f62 6961 6e29 7b30 7d20 3d3e 2030 2020 obian){0} => 0 │ │ │ │ +00026670: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00026680: 3135 203d 204d 7574 6162 6c65 4861 7368 15 = MutableHash │ │ │ │ +00026690: 5461 626c 657b 4728 4a61 636f 6269 616e Table{G(Jacobian │ │ │ │ +000266a0: 297b 307d 203d 3e20 3020 2020 2020 2020 ){0} => 0 │ │ │ │ +000266b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000266c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000266d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026700: 2020 2020 2020 2020 2020 2053 6567 7265 Segre │ │ │ │ -00026710: 284a 6163 6f62 6961 6e29 7b30 7d20 3d3e (Jacobian){0} => │ │ │ │ -00026720: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000266e0: 2020 2020 2020 5365 6772 6528 4a61 636f Segre(Jaco │ │ │ │ +000266f0: 6269 616e 297b 307d 203d 3e20 3020 2020 bian){0} => 0 │ │ │ │ +00026700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026710: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00026720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026740: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026770: 2020 2020 2020 2020 3620 2020 2020 2020 6 │ │ │ │ -00026780: 3520 2020 2020 2020 3420 2020 2020 2020 5 4 │ │ │ │ -00026790: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000267a0: 2020 2020 2020 2020 2020 2053 6567 7265 Segre │ │ │ │ -000267b0: 284a 6163 6f62 6961 6e29 7b30 2c20 317d (Jacobian){0, 1} │ │ │ │ -000267c0: 203d 3e20 3339 3068 2020 2d20 3338 3668 => 390h - 386h │ │ │ │ -000267d0: 2020 2b20 3135 3068 2020 2d20 2020 2020 + 150h - │ │ │ │ -000267e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000267f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026810: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -00026820: 3120 2020 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ -00026830: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026860: 2020 2020 2020 2036 2020 2020 2020 3520 6 5 │ │ │ │ -00026870: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ -00026880: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026890: 2020 2020 2020 2020 2020 2053 6567 7265 Segre │ │ │ │ -000268a0: 284a 6163 6f62 6961 6e29 7b31 7d20 3d3e (Jacobian){1} => │ │ │ │ -000268b0: 202d 2031 3630 6820 202b 2033 3268 2020 - 160h + 32h │ │ │ │ -000268c0: 2d20 3468 2020 2b20 3268 2020 2020 2020 - 4h + 2h │ │ │ │ -000268d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000268e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000268f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026900: 2020 2020 2020 2031 2020 2020 2020 3120 1 1 │ │ │ │ -00026910: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00026920: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026950: 2020 2036 2020 2020 2020 3520 2020 2020 6 5 │ │ │ │ -00026960: 2034 2020 2020 2020 3320 2020 2020 2020 4 3 │ │ │ │ -00026970: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026980: 2020 2020 2020 2020 2020 2047 284a 6163 G(Jac │ │ │ │ -00026990: 6f62 6961 6e29 7b30 2c20 317d 203d 3e20 obian){0, 1} => │ │ │ │ -000269a0: 3130 6820 202b 2031 3068 2020 2b20 3130 10h + 10h + 10 │ │ │ │ -000269b0: 6820 202b 2031 3068 2020 2b20 2020 2020 h + 10h + │ │ │ │ -000269c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000269d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000269e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000269f0: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00026a00: 2031 2020 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ -00026a10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026750: 2020 2036 2020 2020 2020 2035 2020 2020 6 5 │ │ │ │ +00026760: 2020 2034 2020 2020 2020 2020 7c0a 7c20 4 |.| │ │ │ │ +00026770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026780: 2020 2020 2020 5365 6772 6528 4a61 636f Segre(Jaco │ │ │ │ +00026790: 6269 616e 297b 302c 2031 7d20 3d3e 2033 bian){0, 1} => 3 │ │ │ │ +000267a0: 3930 6820 202d 2033 3836 6820 202b 2031 90h - 386h + 1 │ │ │ │ +000267b0: 3530 6820 202d 2020 2020 2020 7c0a 7c20 50h - |.| │ │ │ │ +000267c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000267d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000267e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000267f0: 2020 2031 2020 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00026800: 2020 2031 2020 2020 2020 2020 7c0a 7c20 1 |.| │ │ │ │ +00026810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026840: 2020 3620 2020 2020 2035 2020 2020 2033 6 5 3 │ │ │ │ +00026850: 2020 2020 2032 2020 2020 2020 7c0a 7c20 2 |.| │ │ │ │ +00026860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026870: 2020 2020 2020 5365 6772 6528 4a61 636f Segre(Jaco │ │ │ │ +00026880: 6269 616e 297b 317d 203d 3e20 2d20 3136 bian){1} => - 16 │ │ │ │ +00026890: 3068 2020 2b20 3332 6820 202d 2034 6820 0h + 32h - 4h │ │ │ │ +000268a0: 202b 2032 6820 2020 2020 2020 7c0a 7c20 + 2h |.| │ │ │ │ +000268b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000268c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000268d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000268e0: 2020 3120 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ +000268f0: 2020 2020 2031 2020 2020 2020 7c0a 7c20 1 |.| │ │ │ │ +00026900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026920: 2020 2020 2020 2020 2020 2020 2020 3620 6 │ │ │ │ +00026930: 2020 2020 2035 2020 2020 2020 3420 2020 5 4 │ │ │ │ +00026940: 2020 2033 2020 2020 2020 2020 7c0a 7c20 3 |.| │ │ │ │ +00026950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026960: 2020 2020 2020 4728 4a61 636f 6269 616e G(Jacobian │ │ │ │ +00026970: 297b 302c 2031 7d20 3d3e 2031 3068 2020 ){0, 1} => 10h │ │ │ │ +00026980: 2b20 3130 6820 202b 2031 3068 2020 2b20 + 10h + 10h + │ │ │ │ +00026990: 3130 6820 202b 2020 2020 2020 7c0a 7c20 10h + |.| │ │ │ │ +000269a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000269b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000269c0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +000269d0: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +000269e0: 2020 2031 2020 2020 2020 2020 7c0a 7c20 1 |.| │ │ │ │ +000269f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026a10: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ 00026a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a30: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00026a30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00026a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026a70: 2020 2020 2020 2020 2020 2047 284a 6163 G(Jac │ │ │ │ -00026a80: 6f62 6961 6e29 7b31 7d20 3d3e 2032 6820 obian){1} => 2h │ │ │ │ -00026a90: 202b 2032 6820 202b 2031 2020 2020 2020 + 2h + 1 │ │ │ │ +00026a50: 2020 2020 2020 4728 4a61 636f 6269 616e G(Jacobian │ │ │ │ +00026a60: 297b 317d 203d 3e20 3268 2020 2b20 3268 ){1} => 2h + 2h │ │ │ │ +00026a70: 2020 2b20 3120 2020 2020 2020 2020 2020 + 1 │ │ │ │ +00026a80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00026a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ab0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ad0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00026ae0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +00026ab0: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ +00026ac0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00026ad0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00026ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b20: 2020 2020 2020 2036 2020 2020 2020 3520 6 5 │ │ │ │ -00026b30: 2020 2020 2034 2020 2020 2020 3320 2020 4 3 │ │ │ │ -00026b40: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026b50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026b60: 2020 2020 2020 2020 2020 207b 302c 2031 {0, 1 │ │ │ │ -00026b70: 7d20 3d3e 2032 6820 202b 2032 3368 2020 } => 2h + 23h │ │ │ │ -00026b80: 2b20 3332 6820 202b 2033 3368 2020 2b20 + 32h + 33h + │ │ │ │ -00026b90: 3138 6820 202b 2035 6820 2020 2020 2020 18h + 5h │ │ │ │ -00026ba0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026bc0: 2020 2020 2020 2031 2020 2020 2020 3120 1 1 │ │ │ │ -00026bd0: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00026be0: 2020 2031 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00026bf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c10: 2020 2020 2036 2020 2020 2020 3520 2020 6 5 │ │ │ │ -00026c20: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ -00026c30: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026c40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026c50: 2020 2020 2020 2020 2020 2043 534d 203d CSM = │ │ │ │ -00026c60: 3e20 3130 6820 202b 2031 3268 2020 2b20 > 10h + 12h + │ │ │ │ -00026c70: 3232 6820 202b 2031 3668 2020 2b20 3668 22h + 16h + 6h │ │ │ │ +00026b00: 2020 3620 2020 2020 2035 2020 2020 2020 6 5 │ │ │ │ +00026b10: 3420 2020 2020 2033 2020 2020 2020 3220 4 3 2 │ │ │ │ +00026b20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00026b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026b40: 2020 2020 2020 7b30 2c20 317d 203d 3e20 {0, 1} => │ │ │ │ +00026b50: 3268 2020 2b20 3233 6820 202b 2033 3268 2h + 23h + 32h │ │ │ │ +00026b60: 2020 2b20 3333 6820 202b 2031 3868 2020 + 33h + 18h │ │ │ │ +00026b70: 2b20 3568 2020 2020 2020 2020 7c0a 7c20 + 5h |.| │ │ │ │ +00026b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026ba0: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00026bb0: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +00026bc0: 2020 2020 3120 2020 2020 2020 7c0a 7c20 1 |.| │ │ │ │ +00026bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026bf0: 3620 2020 2020 2035 2020 2020 2020 3420 6 5 4 │ │ │ │ +00026c00: 2020 2020 2033 2020 2020 2032 2020 2020 3 2 │ │ │ │ +00026c10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00026c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026c30: 2020 2020 2020 4353 4d20 3d3e 2031 3068 CSM => 10h │ │ │ │ +00026c40: 2020 2b20 3132 6820 202b 2032 3268 2020 + 12h + 22h │ │ │ │ +00026c50: 2b20 3136 6820 202b 2036 6820 2020 2020 + 16h + 6h │ │ │ │ +00026c60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00026c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026cb0: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00026cc0: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00026cd0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00026ce0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d00: 2020 2020 3620 2020 2020 2035 2020 2020 6 5 │ │ │ │ -00026d10: 2020 3420 2020 2020 2033 2020 2020 2020 4 3 │ │ │ │ -00026d20: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026d30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026d40: 2020 2020 2020 2020 2020 207b 307d 203d {0} = │ │ │ │ -00026d50: 3e20 3668 2020 2b20 3138 6820 202b 2032 > 6h + 18h + 2 │ │ │ │ -00026d60: 3668 2020 2b20 3232 6820 202b 2031 3068 6h + 22h + 10h │ │ │ │ -00026d70: 2020 2b20 3268 2020 2020 2020 2020 2020 + 2h │ │ │ │ -00026d80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026da0: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00026db0: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00026dc0: 3120 2020 2020 3120 2020 2020 2020 2020 1 1 │ │ │ │ -00026dd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026df0: 2020 2020 3620 2020 2020 2035 2020 2020 6 5 │ │ │ │ -00026e00: 2020 3420 2020 2020 2033 2020 2020 2020 4 3 │ │ │ │ -00026e10: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026e20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026e30: 2020 2020 2020 2020 2020 207b 317d 203d {1} = │ │ │ │ -00026e40: 3e20 3668 2020 2b20 3137 6820 202b 2032 > 6h + 17h + 2 │ │ │ │ -00026e50: 3868 2020 2b20 3237 6820 202b 2031 3468 8h + 27h + 14h │ │ │ │ -00026e60: 2020 2b20 3368 2020 2020 2020 2020 2020 + 3h │ │ │ │ -00026e70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026e90: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00026ea0: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00026eb0: 3120 2020 2020 3120 2020 2020 2020 2020 1 1 │ │ │ │ -00026ec0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00026c90: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +00026ca0: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00026cb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00026cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026cd0: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ +00026ce0: 2020 2020 2020 3520 2020 2020 2034 2020 5 4 │ │ │ │ +00026cf0: 2020 2020 3320 2020 2020 2032 2020 2020 3 2 │ │ │ │ +00026d00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00026d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026d20: 2020 2020 2020 7b30 7d20 3d3e 2036 6820 {0} => 6h │ │ │ │ +00026d30: 202b 2031 3868 2020 2b20 3236 6820 202b + 18h + 26h + │ │ │ │ +00026d40: 2032 3268 2020 2b20 3130 6820 202b 2032 22h + 10h + 2 │ │ │ │ +00026d50: 6820 2020 2020 2020 2020 2020 7c0a 7c20 h |.| │ │ │ │ +00026d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026d70: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00026d80: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00026d90: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00026da0: 2031 2020 2020 2020 2020 2020 7c0a 7c20 1 |.| │ │ │ │ +00026db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026dc0: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ +00026dd0: 2020 2020 2020 3520 2020 2020 2034 2020 5 4 │ │ │ │ +00026de0: 2020 2020 3320 2020 2020 2032 2020 2020 3 2 │ │ │ │ +00026df0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00026e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026e10: 2020 2020 2020 7b31 7d20 3d3e 2036 6820 {1} => 6h │ │ │ │ +00026e20: 202b 2031 3768 2020 2b20 3238 6820 202b + 17h + 28h + │ │ │ │ +00026e30: 2032 3768 2020 2b20 3134 6820 202b 2033 27h + 14h + 3 │ │ │ │ +00026e40: 6820 2020 2020 2020 2020 2020 7c0a 7c20 h |.| │ │ │ │ +00026e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026e60: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00026e70: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00026e80: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00026e90: 2031 2020 2020 2020 2020 2020 7c0a 7c2d 1 |.|- │ │ │ │ +00026ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026f10: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00026f20: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ -00026f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00026ef0: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ +00026f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00026f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026f60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00026f90: 2020 3320 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ 00026fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026fb0: 207c 0a7c 2020 2033 2020 2020 2032 2020 |.| 3 2 │ │ │ │ +00026fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026fd0: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ +00026fe0: 3268 2020 2b20 3868 2020 2020 2020 2020 2h + 8h │ │ │ │ 00026ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027000: 207c 0a7c 3432 6820 202b 2038 6820 2020 |.|42h + 8h │ │ │ │ +00027000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027020: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00027030: 2020 3120 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ 00027040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027050: 207c 0a7c 2020 2031 2020 2020 2031 2020 |.| 1 1 │ │ │ │ +00027050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027070: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00027080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000270a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000270a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000270b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000270c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000270c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000270d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000270e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000270f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000270f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027110: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00027120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027140: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00027140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027160: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00027170: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00027180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027190: 207c 0a7c 2020 3220 2020 2020 2020 2020 |.| 2 │ │ │ │ +00027190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000271a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000271b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000271c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000271b0: 2020 2020 2020 2020 2020 2020 7c0a 7c38 |.|8 │ │ │ │ +000271c0: 6820 202b 2034 6820 202b 2031 2020 2020 h + 4h + 1 │ │ │ │ 000271d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000271e0: 207c 0a7c 3868 2020 2b20 3468 2020 2b20 |.|8h + 4h + │ │ │ │ -000271f0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00027200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000271e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000271f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027200: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00027210: 2031 2020 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ 00027220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027230: 207c 0a7c 2020 3120 2020 2020 3120 2020 |.| 1 1 │ │ │ │ +00027230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027280: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00027250: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00027260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000272a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000272b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000272c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000272d0: 2d2b 0a7c 6931 3620 3a20 4b3d 6964 6561 -+.|i16 : K=idea │ │ │ │ -000272e0: 6c20 495f 302a 495f 313b 2020 2020 2020 l I_0*I_1; │ │ │ │ -000272f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000272a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000272b0: 3136 203a 204b 3d69 6465 616c 2049 5f30 16 : K=ideal I_0 │ │ │ │ +000272c0: 2a49 5f31 3b20 2020 2020 2020 2020 2020 *I_1; │ │ │ │ +000272d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000272e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000272f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00027300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027320: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00027320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027340: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00027350: 3136 203a 2049 6465 616c 206f 6620 5220 16 : Ideal of R │ │ │ │ 00027360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027370: 207c 0a7c 6f31 3620 3a20 4964 6561 6c20 |.|o16 : Ideal │ │ │ │ -00027380: 6f66 2052 2020 2020 2020 2020 2020 2020 of R │ │ │ │ -00027390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273c0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00027370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027390: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000273a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000273b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000273c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000273d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000273e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000273f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027410: 2d2b 0a7c 6931 3720 3a20 4353 4d28 412c -+.|i17 : CSM(A, │ │ │ │ -00027420: 7261 6469 6361 6c20 4b29 3d3d 4353 4d28 radical K)==CSM( │ │ │ │ -00027430: 412c 4b29 2020 2020 2020 2020 2020 2020 A,K) │ │ │ │ +000273e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000273f0: 3137 203a 2043 534d 2841 2c72 6164 6963 17 : CSM(A,radic │ │ │ │ +00027400: 616c 204b 293d 3d43 534d 2841 2c4b 2920 al K)==CSM(A,K) │ │ │ │ +00027410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027430: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00027440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027460: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00027460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027480: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00027490: 3137 203d 2074 7275 6520 2020 2020 2020 17 = true │ │ │ │ 000274a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000274b0: 207c 0a7c 6f31 3720 3d20 7472 7565 2020 |.|o17 = true │ │ │ │ +000274b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000274c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000274d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000274e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000274f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027500: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000274d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000274e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000274f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027550: 2d2b 0a7c 6931 3820 3a20 4a3d 6964 6561 -+.|i18 : J=idea │ │ │ │ -00027560: 6c20 6a61 636f 6269 616e 2072 6164 6963 l jacobian radic │ │ │ │ -00027570: 616c 204b 3b20 2020 2020 2020 2020 2020 al K; │ │ │ │ +00027520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00027530: 3138 203a 204a 3d69 6465 616c 206a 6163 18 : J=ideal jac │ │ │ │ +00027540: 6f62 6961 6e20 7261 6469 6361 6c20 4b3b obian radical K; │ │ │ │ +00027550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027570: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00027580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000275a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000275a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000275b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000275c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000275d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000275c0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000275d0: 3138 203a 2049 6465 616c 206f 6620 5220 18 : Ideal of R │ │ │ │ 000275e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000275f0: 207c 0a7c 6f31 3820 3a20 4964 6561 6c20 |.|o18 : Ideal │ │ │ │ -00027600: 6f66 2052 2020 2020 2020 2020 2020 2020 of R │ │ │ │ -00027610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027640: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000275f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027610: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00027620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027690: 2d2b 0a7c 6931 3920 3a20 7365 674a 3d53 -+.|i19 : segJ=S │ │ │ │ -000276a0: 6567 7265 2841 2c4a 2c4f 7574 7075 743d egre(A,J,Output= │ │ │ │ -000276b0: 3e48 6173 6846 6f72 6d29 2020 2020 2020 >HashForm) │ │ │ │ +00027660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00027670: 3139 203a 2073 6567 4a3d 5365 6772 6528 19 : segJ=Segre( │ │ │ │ +00027680: 412c 4a2c 4f75 7470 7574 3d3e 4861 7368 A,J,Output=>Hash │ │ │ │ +00027690: 466f 726d 2920 2020 2020 2020 2020 2020 Form) │ │ │ │ +000276a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000276b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000276c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000276d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000276e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000276e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000276f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027730: 207c 0a7c 6f31 3920 3d20 4d75 7461 626c |.|o19 = Mutabl │ │ │ │ -00027740: 6548 6173 6854 6162 6c65 7b2e 2e2e 342e eHashTable{...4. │ │ │ │ -00027750: 2e2e 7d20 2020 2020 2020 2020 2020 2020 ..} │ │ │ │ +00027700: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00027710: 3139 203d 204d 7574 6162 6c65 4861 7368 19 = MutableHash │ │ │ │ +00027720: 5461 626c 657b 2e2e 2e34 2e2e 2e7d 2020 Table{...4...} │ │ │ │ +00027730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027750: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00027760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027780: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00027780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000277a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000277b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000277c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000277d0: 207c 0a7c 6f31 3920 3a20 4d75 7461 626c |.|o19 : Mutabl │ │ │ │ -000277e0: 6548 6173 6854 6162 6c65 2020 2020 2020 eHashTable │ │ │ │ -000277f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027820: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000277a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000277b0: 3139 203a 204d 7574 6162 6c65 4861 7368 19 : MutableHash │ │ │ │ +000277c0: 5461 626c 6520 2020 2020 2020 2020 2020 Table │ │ │ │ +000277d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000277e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000277f0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00027800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027870: 2d2b 0a7c 6932 3020 3a20 6373 6d58 4c68 -+.|i20 : csmXLh │ │ │ │ -00027880: 6173 6823 2822 4728 4a61 636f 6269 616e ash#("G(Jacobian │ │ │ │ -00027890: 2922 7c74 6f53 7472 696e 6728 7b30 2c31 )"|toString({0,1 │ │ │ │ -000278a0: 7d29 293d 3d73 6567 4a23 2247 2220 2020 }))==segJ#"G" │ │ │ │ +00027840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00027850: 3230 203a 2063 736d 584c 6861 7368 2328 20 : csmXLhash#( │ │ │ │ +00027860: 2247 284a 6163 6f62 6961 6e29 227c 746f "G(Jacobian)"|to │ │ │ │ +00027870: 5374 7269 6e67 287b 302c 317d 2929 3d3d String({0,1}))== │ │ │ │ +00027880: 7365 674a 2322 4722 2020 2020 2020 2020 segJ#"G" │ │ │ │ +00027890: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000278a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000278b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000278c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000278c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000278d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000278e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000278f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000278e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000278f0: 3230 203d 2074 7275 6520 2020 2020 2020 20 = true │ │ │ │ 00027900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027910: 207c 0a7c 6f32 3020 3d20 7472 7565 2020 |.|o20 = true │ │ │ │ +00027910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027960: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00027930: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00027940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000279a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000279b0: 2d2b 0a7c 6932 3120 3a20 6373 6d58 4c68 -+.|i21 : csmXLh │ │ │ │ -000279c0: 6173 6823 2822 5365 6772 6528 4a61 636f ash#("Segre(Jaco │ │ │ │ -000279d0: 6269 616e 2922 7c74 6f53 7472 696e 6728 bian)"|toString( │ │ │ │ -000279e0: 7b30 2c31 7d29 293d 3d73 6567 4a23 2253 {0,1}))==segJ#"S │ │ │ │ -000279f0: 6567 7265 2220 2020 2020 2020 2020 2020 egre" │ │ │ │ -00027a00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00027980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00027990: 3231 203a 2063 736d 584c 6861 7368 2328 21 : csmXLhash#( │ │ │ │ +000279a0: 2253 6567 7265 284a 6163 6f62 6961 6e29 "Segre(Jacobian) │ │ │ │ +000279b0: 227c 746f 5374 7269 6e67 287b 302c 317d "|toString({0,1} │ │ │ │ +000279c0: 2929 3d3d 7365 674a 2322 5365 6772 6522 ))==segJ#"Segre" │ │ │ │ +000279d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000279e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000279f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a20: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00027a30: 3231 203d 2074 7275 6520 2020 2020 2020 21 = true │ │ │ │ 00027a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a50: 207c 0a7c 6f32 3120 3d20 7472 7565 2020 |.|o21 = true │ │ │ │ +00027a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027aa0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00027a70: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00027a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027af0: 2d2b 0a0a 4675 6e63 7469 6f6e 7320 7769 -+..Functions wi │ │ │ │ -00027b00: 7468 206f 7074 696f 6e61 6c20 6172 6775 th optional argu │ │ │ │ -00027b10: 6d65 6e74 206e 616d 6564 204f 7574 7075 ment named Outpu │ │ │ │ -00027b20: 743a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d t:.============= │ │ │ │ -00027b30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00027b40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00027b50: 3d0a 0a20 202a 2022 4368 6572 6e28 2e2e =.. * "Chern(.. │ │ │ │ -00027b60: 2e2c 4f75 7470 7574 3d3e 2e2e 2e29 2220 .,Output=>...)" │ │ │ │ -00027b70: 2d2d 2073 6565 202a 6e6f 7465 2043 6865 -- see *note Che │ │ │ │ -00027b80: 726e 3a20 4368 6572 6e2c 202d 2d20 5468 rn: Chern, -- Th │ │ │ │ -00027b90: 6520 4368 6572 6e20 636c 6173 730a 2020 e Chern class. │ │ │ │ -00027ba0: 2a20 2243 534d 282e 2e2e 2c4f 7574 7075 * "CSM(...,Outpu │ │ │ │ -00027bb0: 743d 3e2e 2e2e 2922 202d 2d20 7365 6520 t=>...)" -- see │ │ │ │ -00027bc0: 2a6e 6f74 6520 4353 4d3a 2043 534d 2c20 *note CSM: CSM, │ │ │ │ -00027bd0: 2d2d 2054 6865 0a20 2020 2043 6865 726e -- The. Chern │ │ │ │ -00027be0: 2d53 6368 7761 7274 7a2d 4d61 6350 6865 -Schwartz-MacPhe │ │ │ │ -00027bf0: 7273 6f6e 2063 6c61 7373 0a20 202a 2022 rson class. * " │ │ │ │ -00027c00: 4575 6c65 7228 2e2e 2e2c 4f75 7470 7574 Euler(...,Output │ │ │ │ -00027c10: 3d3e 2e2e 2e29 2220 2d2d 2073 6565 202a =>...)" -- see * │ │ │ │ -00027c20: 6e6f 7465 2045 756c 6572 3a20 4575 6c65 note Euler: Eule │ │ │ │ -00027c30: 722c 202d 2d20 5468 6520 4575 6c65 720a r, -- The Euler. │ │ │ │ -00027c40: 2020 2020 4368 6172 6163 7465 7269 7374 Characterist │ │ │ │ -00027c50: 6963 0a20 202a 2022 5365 6772 6528 2e2e ic. * "Segre(.. │ │ │ │ -00027c60: 2e2c 4f75 7470 7574 3d3e 2e2e 2e29 2220 .,Output=>...)" │ │ │ │ -00027c70: 2d2d 2073 6565 202a 6e6f 7465 2053 6567 -- see *note Seg │ │ │ │ -00027c80: 7265 3a20 5365 6772 652c 202d 2d20 5468 re: Segre, -- Th │ │ │ │ -00027c90: 6520 5365 6772 6520 636c 6173 7320 6f66 e Segre class of │ │ │ │ -00027ca0: 2061 0a20 2020 2073 7562 7363 6865 6d65 a. subscheme │ │ │ │ -00027cb0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -00027cc0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -00027cd0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -00027ce0: 6563 7420 2a6e 6f74 6520 4f75 7470 7574 ect *note Output │ │ │ │ -00027cf0: 3a20 4f75 7470 7574 2c20 6973 2061 202a : Output, is a * │ │ │ │ -00027d00: 6e6f 7465 2073 796d 626f 6c3a 2028 4d61 note symbol: (Ma │ │ │ │ -00027d10: 6361 756c 6179 3244 6f63 2953 796d 626f caulay2Doc)Symbo │ │ │ │ -00027d20: 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d l,...----------- │ │ │ │ +00027ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 ------------+..F │ │ │ │ +00027ad0: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ +00027ae0: 7469 6f6e 616c 2061 7267 756d 656e 7420 tional argument │ │ │ │ +00027af0: 6e61 6d65 6420 4f75 7470 7574 3a0a 3d3d named Output:.== │ │ │ │ +00027b00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00027b10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00027b20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +00027b30: 2a20 2243 6865 726e 282e 2e2e 2c4f 7574 * "Chern(...,Out │ │ │ │ +00027b40: 7075 743d 3e2e 2e2e 2922 202d 2d20 7365 put=>...)" -- se │ │ │ │ +00027b50: 6520 2a6e 6f74 6520 4368 6572 6e3a 2043 e *note Chern: C │ │ │ │ +00027b60: 6865 726e 2c20 2d2d 2054 6865 2043 6865 hern, -- The Che │ │ │ │ +00027b70: 726e 2063 6c61 7373 0a20 202a 2022 4353 rn class. * "CS │ │ │ │ +00027b80: 4d28 2e2e 2e2c 4f75 7470 7574 3d3e 2e2e M(...,Output=>.. │ │ │ │ +00027b90: 2e29 2220 2d2d 2073 6565 202a 6e6f 7465 .)" -- see *note │ │ │ │ +00027ba0: 2043 534d 3a20 4353 4d2c 202d 2d20 5468 CSM: CSM, -- Th │ │ │ │ +00027bb0: 650a 2020 2020 4368 6572 6e2d 5363 6877 e. Chern-Schw │ │ │ │ +00027bc0: 6172 747a 2d4d 6163 5068 6572 736f 6e20 artz-MacPherson │ │ │ │ +00027bd0: 636c 6173 730a 2020 2a20 2245 756c 6572 class. * "Euler │ │ │ │ +00027be0: 282e 2e2e 2c4f 7574 7075 743d 3e2e 2e2e (...,Output=>... │ │ │ │ +00027bf0: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ +00027c00: 4575 6c65 723a 2045 756c 6572 2c20 2d2d Euler: Euler, -- │ │ │ │ +00027c10: 2054 6865 2045 756c 6572 0a20 2020 2043 The Euler. C │ │ │ │ +00027c20: 6861 7261 6374 6572 6973 7469 630a 2020 haracteristic. │ │ │ │ +00027c30: 2a20 2253 6567 7265 282e 2e2e 2c4f 7574 * "Segre(...,Out │ │ │ │ +00027c40: 7075 743d 3e2e 2e2e 2922 202d 2d20 7365 put=>...)" -- se │ │ │ │ +00027c50: 6520 2a6e 6f74 6520 5365 6772 653a 2053 e *note Segre: S │ │ │ │ +00027c60: 6567 7265 2c20 2d2d 2054 6865 2053 6567 egre, -- The Seg │ │ │ │ +00027c70: 7265 2063 6c61 7373 206f 6620 610a 2020 re class of a. │ │ │ │ +00027c80: 2020 7375 6273 6368 656d 650a 0a46 6f72 subscheme..For │ │ │ │ +00027c90: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +00027ca0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00027cb0: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +00027cc0: 6e6f 7465 204f 7574 7075 743a 204f 7574 note Output: Out │ │ │ │ +00027cd0: 7075 742c 2069 7320 6120 2a6e 6f74 6520 put, is a *note │ │ │ │ +00027ce0: 7379 6d62 6f6c 3a20 284d 6163 6175 6c61 symbol: (Macaula │ │ │ │ +00027cf0: 7932 446f 6329 5379 6d62 6f6c 2c2e 0a0a y2Doc)Symbol,... │ │ │ │ +00027d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d70: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -00027d80: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -00027d90: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -00027da0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -00027db0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -00027dc0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -00027dd0: 7932 2f70 6163 6b61 6765 732f 0a43 6861 y2/packages/.Cha │ │ │ │ -00027de0: 7261 6374 6572 6973 7469 6343 6c61 7373 racteristicClass │ │ │ │ -00027df0: 6573 2e6d 323a 3234 3639 3a30 2e0a 1f0a es.m2:2469:0.... │ │ │ │ -00027e00: 4669 6c65 3a20 4368 6172 6163 7465 7269 File: Characteri │ │ │ │ -00027e10: 7374 6963 436c 6173 7365 732e 696e 666f sticClasses.info │ │ │ │ -00027e20: 2c20 4e6f 6465 3a20 7072 6f62 6162 696c , Node: probabil │ │ │ │ -00027e30: 6973 7469 6320 616c 676f 7269 7468 6d2c istic algorithm, │ │ │ │ -00027e40: 204e 6578 743a 2053 6567 7265 2c20 5072 Next: Segre, Pr │ │ │ │ -00027e50: 6576 3a20 4f75 7470 7574 2c20 5570 3a20 ev: Output, Up: │ │ │ │ -00027e60: 546f 700a 0a70 726f 6261 6269 6c69 7374 Top..probabilist │ │ │ │ -00027e70: 6963 2061 6c67 6f72 6974 686d 0a2a 2a2a ic algorithm.*** │ │ │ │ -00027e80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00027e90: 2a2a 2a2a 0a0a 5468 6520 616c 676f 7269 ****..The algori │ │ │ │ -00027ea0: 7468 6d73 2075 7365 6420 666f 7220 7468 thms used for th │ │ │ │ -00027eb0: 6520 636f 6d70 7574 6174 696f 6e20 6f66 e computation of │ │ │ │ -00027ec0: 2063 6861 7261 6374 6572 6973 7469 6320 characteristic │ │ │ │ -00027ed0: 636c 6173 7365 7320 6172 650a 7072 6f62 classes are.prob │ │ │ │ -00027ee0: 6162 696c 6973 7469 632e 2054 6865 6f72 abilistic. Theor │ │ │ │ -00027ef0: 6574 6963 616c 6c79 2c20 7468 6579 2063 etically, they c │ │ │ │ -00027f00: 616c 6375 6c61 7465 2074 6865 2063 6c61 alculate the cla │ │ │ │ -00027f10: 7373 6573 2063 6f72 7265 6374 6c79 2066 sses correctly f │ │ │ │ -00027f20: 6f72 2061 0a67 656e 6572 616c 2063 686f or a.general cho │ │ │ │ -00027f30: 6963 6520 6f66 2063 6572 7461 696e 2070 ice of certain p │ │ │ │ -00027f40: 6f6c 796e 6f6d 6961 6c73 2e20 5468 6174 olynomials. That │ │ │ │ -00027f50: 2069 732c 2074 6865 7265 2069 7320 616e is, there is an │ │ │ │ -00027f60: 206f 7065 6e20 6465 6e73 6520 5a61 7269 open dense Zari │ │ │ │ -00027f70: 736b 690a 7365 7420 666f 7220 7768 6963 ski.set for whic │ │ │ │ -00027f80: 6820 7468 6520 616c 676f 7269 7468 6d20 h the algorithm │ │ │ │ -00027f90: 7969 656c 6473 2074 6865 2063 6f72 7265 yields the corre │ │ │ │ -00027fa0: 6374 2063 6c61 7373 2c20 692e 652e 2c20 ct class, i.e., │ │ │ │ -00027fb0: 7468 6520 636f 7272 6563 7420 636c 6173 the correct clas │ │ │ │ -00027fc0: 730a 6973 2063 616c 6375 6c61 7465 6420 s.is calculated │ │ │ │ -00027fd0: 7769 7468 2070 726f 6261 6269 6c69 7479 with probability │ │ │ │ -00027fe0: 2031 2e20 486f 7765 7665 722c 2073 696e 1. However, sin │ │ │ │ -00027ff0: 6365 2074 6865 2069 6d70 6c65 6d65 6e74 ce the implement │ │ │ │ -00028000: 6174 696f 6e20 776f 726b 7320 6f76 6572 ation works over │ │ │ │ -00028010: 0a61 2064 6973 6372 6574 6520 7072 6f62 .a discrete prob │ │ │ │ -00028020: 6162 696c 6974 7920 7370 6163 6520 7468 ability space th │ │ │ │ -00028030: 6572 6520 6973 2061 2076 6572 7920 736d ere is a very sm │ │ │ │ -00028040: 616c 6c2c 2062 7574 206e 6f6e 2d7a 6572 all, but non-zer │ │ │ │ -00028050: 6f2c 2070 726f 6261 6269 6c69 7479 0a6f o, probability.o │ │ │ │ -00028060: 6620 6e6f 7420 636f 6d70 7574 696e 6720 f not computing │ │ │ │ -00028070: 7468 6520 636f 7272 6563 7420 636c 6173 the correct clas │ │ │ │ -00028080: 732e 2053 6b65 7074 6963 616c 2075 7365 s. Skeptical use │ │ │ │ -00028090: 7273 2073 686f 756c 6420 7265 7065 6174 rs should repeat │ │ │ │ -000280a0: 2063 616c 6375 6c61 7469 6f6e 730a 7365 calculations.se │ │ │ │ -000280b0: 7665 7261 6c20 7469 6d65 7320 746f 2069 veral times to i │ │ │ │ -000280c0: 6e63 7265 6173 6520 7468 6520 7072 6f62 ncrease the prob │ │ │ │ -000280d0: 6162 696c 6974 7920 6f66 2063 6f6d 7075 ability of compu │ │ │ │ -000280e0: 7469 6e67 2074 6865 2063 6f72 7265 6374 ting the correct │ │ │ │ -000280f0: 2063 6c61 7373 2e0a 0a49 6e20 7468 6520 class...In the │ │ │ │ -00028100: 6361 7365 206f 6620 7468 6520 7379 6d62 case of the symb │ │ │ │ -00028110: 6f6c 6963 2069 6d70 6c65 6d65 6e74 6174 olic implementat │ │ │ │ -00028120: 696f 6e20 6f66 2074 6865 2050 726f 6a65 ion of the Proje │ │ │ │ -00028130: 6374 6976 6544 6567 7265 6520 6d65 7468 ctiveDegree meth │ │ │ │ -00028140: 6f64 0a70 7261 6374 6963 616c 2065 7870 od.practical exp │ │ │ │ -00028150: 6572 6965 6e63 6520 616e 6420 616c 676f erience and algo │ │ │ │ -00028160: 7269 7468 6d20 7465 7374 696e 6720 696e rithm testing in │ │ │ │ -00028170: 6469 6361 7465 2074 6861 7420 6120 6669 dicate that a fi │ │ │ │ -00028180: 6e69 7465 2066 6965 6c64 2077 6974 680a nite field with. │ │ │ │ -00028190: 6f76 6572 2032 3530 3030 2065 6c65 6d65 over 25000 eleme │ │ │ │ -000281a0: 6e74 7320 6973 206d 6f72 6520 7468 616e nts is more than │ │ │ │ -000281b0: 2073 7566 6669 6369 656e 7420 746f 2065 sufficient to e │ │ │ │ -000281c0: 7870 6563 7420 6120 636f 7272 6563 7420 xpect a correct │ │ │ │ -000281d0: 7265 7375 6c74 2077 6974 680a 6869 6768 result with.high │ │ │ │ -000281e0: 2070 726f 6261 6269 6c69 7479 2c20 692e probability, i. │ │ │ │ -000281f0: 652e 2075 7369 6e67 2074 6865 2066 696e e. using the fin │ │ │ │ -00028200: 6974 6520 6669 656c 6420 6b6b 3d5a 5a2f ite field kk=ZZ/ │ │ │ │ -00028210: 3235 3037 3320 7468 6520 6578 7065 7269 25073 the experi │ │ │ │ -00028220: 6d65 6e74 616c 0a63 6861 6e63 6520 6f66 mental.chance of │ │ │ │ -00028230: 2066 6169 6c75 7265 2077 6974 6820 7468 failure with th │ │ │ │ -00028240: 6520 5072 6f6a 6563 7469 7665 4465 6772 e ProjectiveDegr │ │ │ │ -00028250: 6565 2061 6c67 6f72 6974 686d 206f 6e20 ee algorithm on │ │ │ │ -00028260: 6120 7661 7269 6574 7920 6f66 2065 7861 a variety of exa │ │ │ │ -00028270: 6d70 6c65 730a 7761 7320 6c65 7373 2074 mples.was less t │ │ │ │ -00028280: 6861 6e20 312f 3230 3030 2e20 5573 696e han 1/2000. Usin │ │ │ │ -00028290: 6720 7468 6520 6669 6e69 7465 2066 6965 g the finite fie │ │ │ │ -000282a0: 6c64 206b 6b3d 5a5a 2f33 3237 3439 2072 ld kk=ZZ/32749 r │ │ │ │ -000282b0: 6573 756c 7465 6420 696e 206e 6f0a 6661 esulted in no.fa │ │ │ │ -000282c0: 696c 7572 6573 2069 6e20 6f76 6572 2031 ilures in over 1 │ │ │ │ -000282d0: 3030 3030 2061 7474 656d 7074 7320 6f66 0000 attempts of │ │ │ │ -000282e0: 2073 6576 6572 616c 2064 6966 6665 7265 several differe │ │ │ │ -000282f0: 6e74 2065 7861 6d70 6c65 732e 0a0a 5765 nt examples...We │ │ │ │ -00028300: 2069 6c6c 7573 7472 6174 6520 7468 6520 illustrate the │ │ │ │ -00028310: 7072 6f62 6162 696c 6973 7469 6320 6265 probabilistic be │ │ │ │ -00028320: 6861 7669 6f75 7220 7769 7468 2061 6e20 haviour with an │ │ │ │ -00028330: 6578 616d 706c 6520 7768 6572 6520 7468 example where th │ │ │ │ -00028340: 6520 6368 6f73 656e 0a72 616e 646f 6d20 e chosen.random │ │ │ │ -00028350: 7365 6564 206c 6561 6473 2074 6f20 6120 seed leads to a │ │ │ │ -00028360: 7772 6f6e 6720 7265 7375 6c74 2069 6e20 wrong result in │ │ │ │ -00028370: 7468 6520 6669 7273 7420 6361 6c63 756c the first calcul │ │ │ │ -00028380: 6174 696f 6e2e 0a0a 2b2d 2d2d 2d2d 2d2d ation...+------- │ │ │ │ -00028390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000283a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000283b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -000283c0: 2073 6574 5261 6e64 6f6d 5365 6564 2031 setRandomSeed 1 │ │ │ │ -000283d0: 3231 3b20 2020 2020 2020 2020 2020 2020 21; │ │ │ │ -000283e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000283f0: 2d2d 2073 6574 7469 6e67 2072 616e 646f -- setting rando │ │ │ │ -00028400: 6d20 7365 6564 2074 6f20 3132 3120 2020 m seed to 121 │ │ │ │ -00028410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00028420: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00028430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028450: 2d2d 2b0a 7c69 3220 3a20 5220 3d20 5151 --+.|i2 : R = QQ │ │ │ │ -00028460: 5b78 2c79 2c7a 2c77 5d20 2020 2020 2020 [x,y,z,w] │ │ │ │ +00027d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +00027d50: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +00027d60: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +00027d70: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +00027d80: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +00027d90: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +00027da0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +00027db0: 636b 6167 6573 2f0a 4368 6172 6163 7465 ckages/.Characte │ │ │ │ +00027dc0: 7269 7374 6963 436c 6173 7365 732e 6d32 risticClasses.m2 │ │ │ │ +00027dd0: 3a32 3436 393a 302e 0a1f 0a46 696c 653a :2469:0....File: │ │ │ │ +00027de0: 2043 6861 7261 6374 6572 6973 7469 6343 CharacteristicC │ │ │ │ +00027df0: 6c61 7373 6573 2e69 6e66 6f2c 204e 6f64 lasses.info, Nod │ │ │ │ +00027e00: 653a 2070 726f 6261 6269 6c69 7374 6963 e: probabilistic │ │ │ │ +00027e10: 2061 6c67 6f72 6974 686d 2c20 4e65 7874 algorithm, Next │ │ │ │ +00027e20: 3a20 5365 6772 652c 2050 7265 763a 204f : Segre, Prev: O │ │ │ │ +00027e30: 7574 7075 742c 2055 703a 2054 6f70 0a0a utput, Up: Top.. │ │ │ │ +00027e40: 7072 6f62 6162 696c 6973 7469 6320 616c probabilistic al │ │ │ │ +00027e50: 676f 7269 7468 6d0a 2a2a 2a2a 2a2a 2a2a gorithm.******** │ │ │ │ +00027e60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00027e70: 0a54 6865 2061 6c67 6f72 6974 686d 7320 .The algorithms │ │ │ │ +00027e80: 7573 6564 2066 6f72 2074 6865 2063 6f6d used for the com │ │ │ │ +00027e90: 7075 7461 7469 6f6e 206f 6620 6368 6172 putation of char │ │ │ │ +00027ea0: 6163 7465 7269 7374 6963 2063 6c61 7373 acteristic class │ │ │ │ +00027eb0: 6573 2061 7265 0a70 726f 6261 6269 6c69 es are.probabili │ │ │ │ +00027ec0: 7374 6963 2e20 5468 656f 7265 7469 6361 stic. Theoretica │ │ │ │ +00027ed0: 6c6c 792c 2074 6865 7920 6361 6c63 756c lly, they calcul │ │ │ │ +00027ee0: 6174 6520 7468 6520 636c 6173 7365 7320 ate the classes │ │ │ │ +00027ef0: 636f 7272 6563 746c 7920 666f 7220 610a correctly for a. │ │ │ │ +00027f00: 6765 6e65 7261 6c20 6368 6f69 6365 206f general choice o │ │ │ │ +00027f10: 6620 6365 7274 6169 6e20 706f 6c79 6e6f f certain polyno │ │ │ │ +00027f20: 6d69 616c 732e 2054 6861 7420 6973 2c20 mials. That is, │ │ │ │ +00027f30: 7468 6572 6520 6973 2061 6e20 6f70 656e there is an open │ │ │ │ +00027f40: 2064 656e 7365 205a 6172 6973 6b69 0a73 dense Zariski.s │ │ │ │ +00027f50: 6574 2066 6f72 2077 6869 6368 2074 6865 et for which the │ │ │ │ +00027f60: 2061 6c67 6f72 6974 686d 2079 6965 6c64 algorithm yield │ │ │ │ +00027f70: 7320 7468 6520 636f 7272 6563 7420 636c s the correct cl │ │ │ │ +00027f80: 6173 732c 2069 2e65 2e2c 2074 6865 2063 ass, i.e., the c │ │ │ │ +00027f90: 6f72 7265 6374 2063 6c61 7373 0a69 7320 orrect class.is │ │ │ │ +00027fa0: 6361 6c63 756c 6174 6564 2077 6974 6820 calculated with │ │ │ │ +00027fb0: 7072 6f62 6162 696c 6974 7920 312e 2048 probability 1. H │ │ │ │ +00027fc0: 6f77 6576 6572 2c20 7369 6e63 6520 7468 owever, since th │ │ │ │ +00027fd0: 6520 696d 706c 656d 656e 7461 7469 6f6e e implementation │ │ │ │ +00027fe0: 2077 6f72 6b73 206f 7665 720a 6120 6469 works over.a di │ │ │ │ +00027ff0: 7363 7265 7465 2070 726f 6261 6269 6c69 screte probabili │ │ │ │ +00028000: 7479 2073 7061 6365 2074 6865 7265 2069 ty space there i │ │ │ │ +00028010: 7320 6120 7665 7279 2073 6d61 6c6c 2c20 s a very small, │ │ │ │ +00028020: 6275 7420 6e6f 6e2d 7a65 726f 2c20 7072 but non-zero, pr │ │ │ │ +00028030: 6f62 6162 696c 6974 790a 6f66 206e 6f74 obability.of not │ │ │ │ +00028040: 2063 6f6d 7075 7469 6e67 2074 6865 2063 computing the c │ │ │ │ +00028050: 6f72 7265 6374 2063 6c61 7373 2e20 536b orrect class. Sk │ │ │ │ +00028060: 6570 7469 6361 6c20 7573 6572 7320 7368 eptical users sh │ │ │ │ +00028070: 6f75 6c64 2072 6570 6561 7420 6361 6c63 ould repeat calc │ │ │ │ +00028080: 756c 6174 696f 6e73 0a73 6576 6572 616c ulations.several │ │ │ │ +00028090: 2074 696d 6573 2074 6f20 696e 6372 6561 times to increa │ │ │ │ +000280a0: 7365 2074 6865 2070 726f 6261 6269 6c69 se the probabili │ │ │ │ +000280b0: 7479 206f 6620 636f 6d70 7574 696e 6720 ty of computing │ │ │ │ +000280c0: 7468 6520 636f 7272 6563 7420 636c 6173 the correct clas │ │ │ │ +000280d0: 732e 0a0a 496e 2074 6865 2063 6173 6520 s...In the case │ │ │ │ +000280e0: 6f66 2074 6865 2073 796d 626f 6c69 6320 of the symbolic │ │ │ │ +000280f0: 696d 706c 656d 656e 7461 7469 6f6e 206f implementation o │ │ │ │ +00028100: 6620 7468 6520 5072 6f6a 6563 7469 7665 f the Projective │ │ │ │ +00028110: 4465 6772 6565 206d 6574 686f 640a 7072 Degree method.pr │ │ │ │ +00028120: 6163 7469 6361 6c20 6578 7065 7269 656e actical experien │ │ │ │ +00028130: 6365 2061 6e64 2061 6c67 6f72 6974 686d ce and algorithm │ │ │ │ +00028140: 2074 6573 7469 6e67 2069 6e64 6963 6174 testing indicat │ │ │ │ +00028150: 6520 7468 6174 2061 2066 696e 6974 6520 e that a finite │ │ │ │ +00028160: 6669 656c 6420 7769 7468 0a6f 7665 7220 field with.over │ │ │ │ +00028170: 3235 3030 3020 656c 656d 656e 7473 2069 25000 elements i │ │ │ │ +00028180: 7320 6d6f 7265 2074 6861 6e20 7375 6666 s more than suff │ │ │ │ +00028190: 6963 6965 6e74 2074 6f20 6578 7065 6374 icient to expect │ │ │ │ +000281a0: 2061 2063 6f72 7265 6374 2072 6573 756c a correct resul │ │ │ │ +000281b0: 7420 7769 7468 0a68 6967 6820 7072 6f62 t with.high prob │ │ │ │ +000281c0: 6162 696c 6974 792c 2069 2e65 2e20 7573 ability, i.e. us │ │ │ │ +000281d0: 696e 6720 7468 6520 6669 6e69 7465 2066 ing the finite f │ │ │ │ +000281e0: 6965 6c64 206b 6b3d 5a5a 2f32 3530 3733 ield kk=ZZ/25073 │ │ │ │ +000281f0: 2074 6865 2065 7870 6572 696d 656e 7461 the experimenta │ │ │ │ +00028200: 6c0a 6368 616e 6365 206f 6620 6661 696c l.chance of fail │ │ │ │ +00028210: 7572 6520 7769 7468 2074 6865 2050 726f ure with the Pro │ │ │ │ +00028220: 6a65 6374 6976 6544 6567 7265 6520 616c jectiveDegree al │ │ │ │ +00028230: 676f 7269 7468 6d20 6f6e 2061 2076 6172 gorithm on a var │ │ │ │ +00028240: 6965 7479 206f 6620 6578 616d 706c 6573 iety of examples │ │ │ │ +00028250: 0a77 6173 206c 6573 7320 7468 616e 2031 .was less than 1 │ │ │ │ +00028260: 2f32 3030 302e 2055 7369 6e67 2074 6865 /2000. Using the │ │ │ │ +00028270: 2066 696e 6974 6520 6669 656c 6420 6b6b finite field kk │ │ │ │ +00028280: 3d5a 5a2f 3332 3734 3920 7265 7375 6c74 =ZZ/32749 result │ │ │ │ +00028290: 6564 2069 6e20 6e6f 0a66 6169 6c75 7265 ed in no.failure │ │ │ │ +000282a0: 7320 696e 206f 7665 7220 3130 3030 3020 s in over 10000 │ │ │ │ +000282b0: 6174 7465 6d70 7473 206f 6620 7365 7665 attempts of seve │ │ │ │ +000282c0: 7261 6c20 6469 6666 6572 656e 7420 6578 ral different ex │ │ │ │ +000282d0: 616d 706c 6573 2e0a 0a57 6520 696c 6c75 amples...We illu │ │ │ │ +000282e0: 7374 7261 7465 2074 6865 2070 726f 6261 strate the proba │ │ │ │ +000282f0: 6269 6c69 7374 6963 2062 6568 6176 696f bilistic behavio │ │ │ │ +00028300: 7572 2077 6974 6820 616e 2065 7861 6d70 ur with an examp │ │ │ │ +00028310: 6c65 2077 6865 7265 2074 6865 2063 686f le where the cho │ │ │ │ +00028320: 7365 6e0a 7261 6e64 6f6d 2073 6565 6420 sen.random seed │ │ │ │ +00028330: 6c65 6164 7320 746f 2061 2077 726f 6e67 leads to a wrong │ │ │ │ +00028340: 2072 6573 756c 7420 696e 2074 6865 2066 result in the f │ │ │ │ +00028350: 6972 7374 2063 616c 6375 6c61 7469 6f6e irst calculation │ │ │ │ +00028360: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +00028370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028390: 2d2d 2d2d 2b0a 7c69 3120 3a20 7365 7452 ----+.|i1 : setR │ │ │ │ +000283a0: 616e 646f 6d53 6565 6420 3132 313b 2020 andomSeed 121; │ │ │ │ +000283b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000283c0: 2020 2020 2020 207c 0a7c 202d 2d20 7365 |.| -- se │ │ │ │ +000283d0: 7474 696e 6720 7261 6e64 6f6d 2073 6565 tting random see │ │ │ │ +000283e0: 6420 746f 2031 3231 2020 2020 2020 2020 d to 121 │ │ │ │ +000283f0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00028400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00028430: 6932 203a 2052 203d 2051 515b 782c 792c i2 : R = QQ[x,y, │ │ │ │ +00028440: 7a2c 775d 2020 2020 2020 2020 2020 2020 z,w] │ │ │ │ +00028450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028460: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00028470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028480: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00028490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028490: 2020 207c 0a7c 6f32 203d 2052 2020 2020 |.|o2 = R │ │ │ │ 000284a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000284b0: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -000284c0: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +000284b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000284c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000284d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000284e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000284f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028510: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028520: 7c6f 3220 3a20 506f 6c79 6e6f 6d69 616c |o2 : Polynomial │ │ │ │ -00028530: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ -00028540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028550: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00028560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028580: 2d2d 2d2d 2b0a 7c69 3320 3a20 4920 3d20 ----+.|i3 : I = │ │ │ │ -00028590: 6d69 6e6f 7273 2832 2c6d 6174 7269 787b minors(2,matrix{ │ │ │ │ -000285a0: 7b78 2c79 2c7a 7d2c 7b79 2c7a 2c77 7d7d {x,y,z},{y,z,w}} │ │ │ │ -000285b0: 2920 2020 2020 207c 0a7c 2020 2020 2020 ) |.| │ │ │ │ -000285c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000285d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000285e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000285f0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -00028600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028610: 2020 2020 2032 2020 2020 2020 207c 0a7c 2 |.| │ │ │ │ -00028620: 6f33 203d 2069 6465 616c 2028 2d20 7920 o3 = ideal (- y │ │ │ │ -00028630: 202b 2078 2a7a 2c20 2d20 792a 7a20 2b20 + x*z, - y*z + │ │ │ │ -00028640: 782a 772c 202d 207a 2020 2b20 792a 7729 x*w, - z + y*w) │ │ │ │ -00028650: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00028660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000284e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000284f0: 2020 2020 2020 2020 207c 0a7c 6f32 203a |.|o2 : │ │ │ │ +00028500: 2050 6f6c 796e 6f6d 6961 6c52 696e 6720 PolynomialRing │ │ │ │ +00028510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028520: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00028530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00028560: 0a7c 6933 203a 2049 203d 206d 696e 6f72 .|i3 : I = minor │ │ │ │ +00028570: 7328 322c 6d61 7472 6978 7b7b 782c 792c s(2,matrix{{x,y, │ │ │ │ +00028580: 7a7d 2c7b 792c 7a2c 777d 7d29 2020 2020 z},{y,z,w}}) │ │ │ │ +00028590: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000285a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000285b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000285c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000285d0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000285e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000285f0: 3220 2020 2020 2020 7c0a 7c6f 3320 3d20 2 |.|o3 = │ │ │ │ +00028600: 6964 6561 6c20 282d 2079 2020 2b20 782a ideal (- y + x* │ │ │ │ +00028610: 7a2c 202d 2079 2a7a 202b 2078 2a77 2c20 z, - y*z + x*w, │ │ │ │ +00028620: 2d20 7a20 202b 2079 2a77 297c 0a7c 2020 - z + y*w)|.| │ │ │ │ +00028630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028650: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00028660: 7c6f 3320 3a20 4964 6561 6c20 6f66 2052 |o3 : Ideal of R │ │ │ │ 00028670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028680: 2020 207c 0a7c 6f33 203a 2049 6465 616c |.|o3 : Ideal │ │ │ │ -00028690: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ -000286a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000286b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -000286c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000286d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000286e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -000286f0: 2043 6865 726e 2028 492c 436f 6d70 4d65 Chern (I,CompMe │ │ │ │ -00028700: 7468 6f64 3d3e 506e 5265 7369 6475 616c thod=>PnResidual │ │ │ │ -00028710: 2920 2020 2020 2020 2020 2020 7c0a 7c20 ) |.| │ │ │ │ -00028720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00028750: 0a7c 2020 2020 2020 2033 2020 2020 2032 .| 3 2 │ │ │ │ -00028760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028690: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000286a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000286b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000286c0: 2d2d 2d2d 2b0a 7c69 3420 3a20 4368 6572 ----+.|i4 : Cher │ │ │ │ +000286d0: 6e20 2849 2c43 6f6d 704d 6574 686f 643d n (I,CompMethod= │ │ │ │ +000286e0: 3e50 6e52 6573 6964 7561 6c29 2020 2020 >PnResidual) │ │ │ │ +000286f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028720: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00028730: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ +00028740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028750: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00028760: 6f34 203d 2032 4820 202b 2033 4820 2020 o4 = 2H + 3H │ │ │ │ 00028770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028780: 2020 7c0a 7c6f 3420 3d20 3248 2020 2b20 |.|o4 = 2H + │ │ │ │ -00028790: 3348 2020 2020 2020 2020 2020 2020 2020 3H │ │ │ │ +00028780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028790: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000287a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000287b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000287c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000287b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000287c0: 2020 207c 0a7c 2020 2020 205a 5a5b 485d |.| ZZ[H] │ │ │ │ 000287d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000287e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000287f0: 5a5a 5b48 5d20 2020 2020 2020 2020 2020 ZZ[H] │ │ │ │ -00028800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028810: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ -00028820: 203a 202d 2d2d 2d2d 2020 2020 2020 2020 : ----- │ │ │ │ -00028830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028840: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028850: 7c20 2020 2020 2020 2034 2020 2020 2020 | 4 │ │ │ │ -00028860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000287e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000287f0: 2020 2020 2020 7c0a 7c6f 3420 3a20 2d2d |.|o4 : -- │ │ │ │ +00028800: 2d2d 2d20 2020 2020 2020 2020 2020 2020 --- │ │ │ │ +00028810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028820: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00028830: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ +00028840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028850: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00028860: 2020 2020 2020 4820 2020 2020 2020 2020 H │ │ │ │ 00028870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028880: 207c 0a7c 2020 2020 2020 2048 2020 2020 |.| H │ │ │ │ -00028890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000288a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000288b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -000288c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000288d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000288e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2043 -------+.|i5 : C │ │ │ │ -000288f0: 6865 726e 2028 492c 436f 6d70 4d65 7468 hern (I,CompMeth │ │ │ │ -00028900: 6f64 3d3e 506e 5265 7369 6475 616c 2920 od=>PnResidual) │ │ │ │ -00028910: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00028920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028940: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00028950: 2020 2020 2020 2033 2020 2020 2032 2020 3 2 │ │ │ │ -00028960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028880: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028890: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000288a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000288b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000288c0: 2d2d 2b0a 7c69 3520 3a20 4368 6572 6e20 --+.|i5 : Chern │ │ │ │ +000288d0: 2849 2c43 6f6d 704d 6574 686f 643d 3e50 (I,CompMethod=>P │ │ │ │ +000288e0: 6e52 6573 6964 7561 6c29 2020 2020 2020 nResidual) │ │ │ │ +000288f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028920: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028930: 2020 3320 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ +00028940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028950: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +00028960: 203d 2032 4820 202b 2033 4820 2020 2020 = 2H + 3H │ │ │ │ 00028970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028980: 7c0a 7c6f 3520 3d20 3248 2020 2b20 3348 |.|o5 = 2H + 3H │ │ │ │ -00028990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028980: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00028990: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000289a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000289b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000289c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000289b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000289c0: 207c 0a7c 2020 2020 205a 5a5b 485d 2020 |.| ZZ[H] │ │ │ │ 000289d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000289e0: 2020 2020 2020 7c0a 7c20 2020 2020 5a5a |.| ZZ │ │ │ │ -000289f0: 5b48 5d20 2020 2020 2020 2020 2020 2020 [H] │ │ │ │ -00028a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a10: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ -00028a20: 202d 2d2d 2d2d 2020 2020 2020 2020 2020 ----- │ │ │ │ -00028a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00028a50: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ -00028a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00028a80: 0a7c 2020 2020 2020 2048 2020 2020 2020 .| H │ │ │ │ -00028a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ab0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00028ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028ae0: 2d2d 2d2d 2d2b 0a7c 6936 203a 2043 6865 -----+.|i6 : Che │ │ │ │ -00028af0: 726e 2028 492c 436f 6d70 4d65 7468 6f64 rn (I,CompMethod │ │ │ │ -00028b00: 3d3e 506e 5265 7369 6475 616c 2920 2020 =>PnResidual) │ │ │ │ -00028b10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00028b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00028b50: 2020 2020 2033 2020 2020 2032 2020 2020 3 2 │ │ │ │ -00028b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028b80: 7c6f 3620 3d20 3248 2020 2b20 3348 2020 |o6 = 2H + 3H │ │ │ │ +000289e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000289f0: 2020 2020 7c0a 7c6f 3520 3a20 2d2d 2d2d |.|o5 : ---- │ │ │ │ +00028a00: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ +00028a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028a20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028a30: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00028a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028a50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00028a60: 2020 2020 4820 2020 2020 2020 2020 2020 H │ │ │ │ +00028a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028a80: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00028a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028ac0: 2b0a 7c69 3620 3a20 4368 6572 6e20 2849 +.|i6 : Chern (I │ │ │ │ +00028ad0: 2c43 6f6d 704d 6574 686f 643d 3e50 6e52 ,CompMethod=>PnR │ │ │ │ +00028ae0: 6573 6964 7561 6c29 2020 2020 2020 2020 esidual) │ │ │ │ +00028af0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00028b30: 3320 2020 2020 3220 2020 2020 2020 2020 3 2 │ │ │ │ +00028b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b50: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ +00028b60: 2032 4820 202b 2033 4820 2020 2020 2020 2H + 3H │ │ │ │ +00028b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00028b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028bb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00028bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028bb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028bc0: 0a7c 2020 2020 205a 5a5b 485d 2020 2020 .| ZZ[H] │ │ │ │ 00028bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028be0: 2020 2020 7c0a 7c20 2020 2020 5a5a 5b48 |.| ZZ[H │ │ │ │ -00028bf0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +00028be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028bf0: 2020 7c0a 7c6f 3620 3a20 2d2d 2d2d 2d20 |.|o6 : ----- │ │ │ │ 00028c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c10: 2020 2020 2020 207c 0a7c 6f36 203a 202d |.|o6 : - │ │ │ │ -00028c20: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ -00028c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00028c50: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ -00028c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00028c80: 2020 2020 2020 2048 2020 2020 2020 2020 H │ │ │ │ -00028c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028cb0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00028cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028ce0: 2d2d 2d2b 0a7c 6937 203a 2043 6865 726e ---+.|i7 : Chern │ │ │ │ -00028cf0: 2849 2c43 6f6d 704d 6574 686f 643d 3e50 (I,CompMethod=>P │ │ │ │ -00028d00: 726f 6a65 6374 6976 6544 6567 7265 6529 rojectiveDegree) │ │ │ │ -00028d10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00028d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00028d50: 2020 2033 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ -00028d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d70: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00028d80: 3720 3d20 3268 2020 2b20 3368 2020 2020 7 = 2h + 3h │ │ │ │ -00028d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00028db0: 0a7c 2020 2020 2020 2031 2020 2020 2031 .| 1 1 │ │ │ │ +00028c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028c20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028c30: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00028c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028c50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028c60: 2020 4820 2020 2020 2020 2020 2020 2020 H │ │ │ │ +00028c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028c80: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00028c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00028cc0: 7c69 3720 3a20 4368 6572 6e28 492c 436f |i7 : Chern(I,Co │ │ │ │ +00028cd0: 6d70 4d65 7468 6f64 3d3e 5072 6f6a 6563 mpMethod=>Projec │ │ │ │ +00028ce0: 7469 7665 4465 6772 6565 2920 2020 2020 tiveDegree) │ │ │ │ +00028cf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028d20: 2020 2020 7c0a 7c20 2020 2020 2020 3320 |.| 3 │ │ │ │ +00028d30: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00028d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028d50: 2020 2020 2020 207c 0a7c 6f37 203d 2032 |.|o7 = 2 │ │ │ │ +00028d60: 6820 202b 2033 6820 2020 2020 2020 2020 h + 3h │ │ │ │ +00028d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028d80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00028d90: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00028da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028db0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00028dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028de0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00028df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028df0: 7c0a 7c20 2020 2020 5a5a 5b68 205d 2020 |.| ZZ[h ] │ │ │ │ 00028e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e10: 2020 2020 207c 0a7c 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ -00028e20: 6820 5d20 2020 2020 2020 2020 2020 2020 h ] │ │ │ │ +00028e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e20: 2020 207c 0a7c 2020 2020 2020 2020 2031 |.| 1 │ │ │ │ 00028e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00028e50: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ -00028e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e70: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ -00028e80: 203a 202d 2d2d 2d2d 2d20 2020 2020 2020 : ------ │ │ │ │ -00028e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ea0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028eb0: 7c20 2020 2020 2020 2034 2020 2020 2020 | 4 │ │ │ │ -00028ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e50: 2020 2020 2020 7c0a 7c6f 3720 3a20 2d2d |.|o7 : -- │ │ │ │ +00028e60: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ +00028e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00028e90: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ +00028ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028eb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00028ec0: 2020 2020 2020 6820 2020 2020 2020 2020 h │ │ │ │ 00028ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ee0: 207c 0a7c 2020 2020 2020 2068 2020 2020 |.| h │ │ │ │ -00028ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028ee0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028ef0: 0a7c 2020 2020 2020 2020 3120 2020 2020 .| 1 │ │ │ │ 00028f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f10: 2020 2020 7c0a 7c20 2020 2020 2020 2031 |.| 1 │ │ │ │ -00028f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f40: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00028f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028f20: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00028f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028f50: 2d2d 2d2d 2d2b 0a2d 2d2d 2d2d 2d2d 2d2d -----+.--------- │ │ │ │ 00028f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 2d2d 2d2d ----------+.---- │ │ │ │ +00028f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -00028fd0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -00028fe0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -00028ff0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -00029000: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -00029010: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -00029020: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -00029030: 6573 2f0a 4368 6172 6163 7465 7269 7374 es/.Characterist │ │ │ │ -00029040: 6963 436c 6173 7365 732e 6d32 3a32 3337 icClasses.m2:237 │ │ │ │ -00029050: 383a 302e 0a1f 0a46 696c 653a 2043 6861 8:0....File: Cha │ │ │ │ -00029060: 7261 6374 6572 6973 7469 6343 6c61 7373 racteristicClass │ │ │ │ -00029070: 6573 2e69 6e66 6f2c 204e 6f64 653a 2053 es.info, Node: S │ │ │ │ -00029080: 6567 7265 2c20 4e65 7874 3a20 546f 7269 egre, Next: Tori │ │ │ │ -00029090: 6343 686f 7752 696e 672c 2050 7265 763a cChowRing, Prev: │ │ │ │ -000290a0: 2070 726f 6261 6269 6c69 7374 6963 2061 probabilistic a │ │ │ │ -000290b0: 6c67 6f72 6974 686d 2c20 5570 3a20 546f lgorithm, Up: To │ │ │ │ -000290c0: 700a 0a53 6567 7265 202d 2d20 5468 6520 p..Segre -- The │ │ │ │ -000290d0: 5365 6772 6520 636c 6173 7320 6f66 2061 Segre class of a │ │ │ │ -000290e0: 2073 7562 7363 6865 6d65 0a2a 2a2a 2a2a subscheme.***** │ │ │ │ -000290f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00029100: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00029110: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ -00029120: 2020 2020 2020 2020 5365 6772 6520 490a Segre I. │ │ │ │ -00029130: 2020 2020 2020 2020 5365 6772 6528 412c Segre(A, │ │ │ │ -00029140: 4929 0a20 2020 2020 2020 2053 6567 7265 I). Segre │ │ │ │ -00029150: 2858 2c4a 290a 2020 2020 2020 2020 5365 (X,J). Se │ │ │ │ -00029160: 6772 6528 4368 2c58 2c4a 290a 2020 2a20 gre(Ch,X,J). * │ │ │ │ -00029170: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -00029180: 492c 2061 6e20 2a6e 6f74 6520 6964 6561 I, an *note idea │ │ │ │ -00029190: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ -000291a0: 2949 6465 616c 2c2c 2061 206d 756c 7469 )Ideal,, a multi │ │ │ │ -000291b0: 2d68 6f6d 6f67 656e 656f 7573 2069 6465 -homogeneous ide │ │ │ │ -000291c0: 616c 2069 6e20 610a 2020 2020 2020 2020 al in a. │ │ │ │ -000291d0: 6772 6164 6564 2070 6f6c 796e 6f6d 6961 graded polynomia │ │ │ │ -000291e0: 6c20 7269 6e67 206f 7665 7220 6120 6669 l ring over a fi │ │ │ │ -000291f0: 656c 6420 6465 6669 6e69 6e67 2061 2063 eld defining a c │ │ │ │ -00029200: 6c6f 7365 6420 7375 6273 6368 656d 6520 losed subscheme │ │ │ │ -00029210: 5620 6f66 0a20 2020 2020 2020 205c 5050 V of. \PP │ │ │ │ -00029220: 5e7b 6e5f 317d 782e 2e2e 785c 5050 5e7b ^{n_1}x...x\PP^{ │ │ │ │ -00029230: 6e5f 6d7d 0a20 2020 2020 202a 2041 2c20 n_m}. * A, │ │ │ │ -00029240: 6120 2a6e 6f74 6520 7175 6f74 6965 6e74 a *note quotient │ │ │ │ -00029250: 2072 696e 673a 2028 4d61 6361 756c 6179 ring: (Macaulay │ │ │ │ -00029260: 3244 6f63 2951 756f 7469 656e 7452 696e 2Doc)QuotientRin │ │ │ │ -00029270: 672c 2c0a 2020 2020 2020 2020 413d 5c5a g,,. A=\Z │ │ │ │ -00029280: 5a5b 685f 312c 2e2e 2e2c 685f 6d5d 2f28 Z[h_1,...,h_m]/( │ │ │ │ -00029290: 685f 315e 7b6e 5f31 2b31 7d2c 2e2e 2e2c h_1^{n_1+1},..., │ │ │ │ -000292a0: 685f 6d5e 7b6e 5f6d 2b31 7d29 2071 756f h_m^{n_m+1}) quo │ │ │ │ -000292b0: 7469 656e 7420 7269 6e67 0a20 2020 2020 tient ring. │ │ │ │ -000292c0: 2020 2072 6570 7265 7365 6e74 696e 6720 representing │ │ │ │ -000292d0: 7468 6520 4368 6f77 2072 696e 6720 6f66 the Chow ring of │ │ │ │ -000292e0: 205c 5050 5e7b 6e5f 317d 782e 2e2e 785c \PP^{n_1}x...x\ │ │ │ │ -000292f0: 5050 5e7b 6e5f 6d7d 2c20 7468 6973 2072 PP^{n_m}, this r │ │ │ │ -00029300: 696e 6720 7368 6f75 6c64 0a20 2020 2020 ing should. │ │ │ │ -00029310: 2020 2062 6520 6275 696c 7420 7573 696e be built usin │ │ │ │ -00029320: 6720 7468 6520 2a6e 6f74 6520 4368 6f77 g the *note Chow │ │ │ │ -00029330: 5269 6e67 3a20 4368 6f77 5269 6e67 2c20 Ring: ChowRing, │ │ │ │ -00029340: 636f 6d6d 616e 640a 2020 2020 2020 2a20 command. * │ │ │ │ -00029350: 4a2c 2061 6e20 2a6e 6f74 6520 6964 6561 J, an *note idea │ │ │ │ -00029360: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ -00029370: 2949 6465 616c 2c2c 2069 6e20 7468 6520 )Ideal,, in the │ │ │ │ -00029380: 6772 6164 6564 2070 6f6c 796e 6f6d 6961 graded polynomia │ │ │ │ -00029390: 6c20 7269 6e67 0a20 2020 2020 2020 2077 l ring. w │ │ │ │ -000293a0: 6869 6368 2069 7320 636f 6f72 6469 6e61 hich is coordina │ │ │ │ -000293b0: 7465 2072 696e 6720 6f66 2074 6865 204e te ring of the N │ │ │ │ -000293c0: 6f72 6d61 6c20 546f 7269 6320 5661 7269 ormal Toric Vari │ │ │ │ -000293d0: 6574 7920 580a 2020 2020 2020 2a20 582c ety X. * X, │ │ │ │ -000293e0: 2061 202a 6e6f 7465 206e 6f72 6d61 6c20 a *note normal │ │ │ │ -000293f0: 746f 7269 6320 7661 7269 6574 793a 0a20 toric variety:. │ │ │ │ -00029400: 2020 2020 2020 2028 4e6f 726d 616c 546f (NormalTo │ │ │ │ -00029410: 7269 6356 6172 6965 7469 6573 294e 6f72 ricVarieties)Nor │ │ │ │ -00029420: 6d61 6c54 6f72 6963 5661 7269 6574 792c malToricVariety, │ │ │ │ -00029430: 2c20 7768 6963 6820 6973 2074 6865 2061 , which is the a │ │ │ │ -00029440: 6d62 6965 6e74 2073 7061 6365 0a20 2020 mbient space. │ │ │ │ -00029450: 2020 2020 2077 6869 6368 2063 6f6e 7461 which conta │ │ │ │ -00029460: 696e 7320 5628 4a29 0a20 2020 2020 202a ins V(J). * │ │ │ │ -00029470: 2043 682c 2061 202a 6e6f 7465 2071 756f Ch, a *note quo │ │ │ │ -00029480: 7469 656e 7420 7269 6e67 3a20 284d 6163 tient ring: (Mac │ │ │ │ -00029490: 6175 6c61 7932 446f 6329 5175 6f74 6965 aulay2Doc)Quotie │ │ │ │ -000294a0: 6e74 5269 6e67 2c2c 2074 6865 2043 686f ntRing,, the Cho │ │ │ │ -000294b0: 7720 7269 6e67 0a20 2020 2020 2020 206f w ring. o │ │ │ │ -000294c0: 6620 7468 6520 746f 7269 6320 7661 7269 f the toric vari │ │ │ │ -000294d0: 6574 7920 582c 2043 683d 2872 696e 6720 ety X, Ch=(ring │ │ │ │ -000294e0: 4a29 2f28 5352 2b4c 5229 2077 6865 7265 J)/(SR+LR) where │ │ │ │ -000294f0: 2053 5220 6973 2074 6865 0a20 2020 2020 SR is the. │ │ │ │ -00029500: 2020 2053 7461 6e6c 6579 2d52 6569 736e Stanley-Reisn │ │ │ │ -00029510: 6572 2069 6465 616c 206f 6620 7468 6520 er ideal of the │ │ │ │ -00029520: 6661 6e20 6465 6669 6e69 6e67 2058 2061 fan defining X a │ │ │ │ -00029530: 6e64 204c 5220 6973 2074 6865 206c 696e nd LR is the lin │ │ │ │ -00029540: 6561 720a 2020 2020 2020 2020 7265 6c61 ear. rela │ │ │ │ -00029550: 7469 6f6e 7320 6964 6561 6c2c 2074 6869 tions ideal, thi │ │ │ │ -00029560: 7320 7269 6e67 2073 686f 756c 6420 6265 s ring should be │ │ │ │ -00029570: 2062 7569 6c74 2075 7369 6e67 2074 6865 built using the │ │ │ │ -00029580: 202a 6e6f 7465 0a20 2020 2020 2020 2054 *note. T │ │ │ │ -00029590: 6f72 6963 4368 6f77 5269 6e67 3a20 546f oricChowRing: To │ │ │ │ -000295a0: 7269 6343 686f 7752 696e 672c 2063 6f6d ricChowRing, com │ │ │ │ -000295b0: 6d61 6e64 0a20 202a 202a 6e6f 7465 204f mand. * *note O │ │ │ │ -000295c0: 7074 696f 6e61 6c20 696e 7075 7473 3a20 ptional inputs: │ │ │ │ -000295d0: 284d 6163 6175 6c61 7932 446f 6329 7573 (Macaulay2Doc)us │ │ │ │ -000295e0: 696e 6720 6675 6e63 7469 6f6e 7320 7769 ing functions wi │ │ │ │ -000295f0: 7468 206f 7074 696f 6e61 6c20 696e 7075 th optional inpu │ │ │ │ -00029600: 7473 2c3a 0a20 2020 2020 202a 2043 6f6d ts,:. * Com │ │ │ │ -00029610: 704d 6574 686f 6420 286d 6973 7369 6e67 pMethod (missing │ │ │ │ -00029620: 2064 6f63 756d 656e 7461 7469 6f6e 2920 documentation) │ │ │ │ -00029630: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ -00029640: 7661 6c75 650a 2020 2020 2020 2020 5072 value. Pr │ │ │ │ -00029650: 6f6a 6563 7469 7665 4465 6772 6565 2c20 ojectiveDegree, │ │ │ │ -00029660: 5072 6f6a 6563 7469 7665 4465 6772 6565 ProjectiveDegree │ │ │ │ -00029670: 2c20 7468 6973 2061 6c67 6f72 6974 686d , this algorithm │ │ │ │ -00029680: 206d 6179 2062 6520 7573 6564 2066 6f72 may be used for │ │ │ │ -00029690: 0a20 2020 2020 2020 2073 7562 7363 6865 . subsche │ │ │ │ -000296a0: 6d65 7320 6f66 2061 6e79 2061 7070 6c69 mes of any appli │ │ │ │ -000296b0: 6361 626c 6520 746f 7269 6320 7661 7269 cable toric vari │ │ │ │ -000296c0: 6574 7920 2874 6869 7320 6d61 7920 6265 ety (this may be │ │ │ │ -000296d0: 2063 6865 636b 6564 2075 7369 6e67 0a20 checked using. │ │ │ │ -000296e0: 2020 2020 2020 2074 6865 202a 6e6f 7465 the *note │ │ │ │ -000296f0: 2043 6865 636b 546f 7269 6356 6172 6965 CheckToricVarie │ │ │ │ -00029700: 7479 5661 6c69 643a 2043 6865 636b 546f tyValid: CheckTo │ │ │ │ -00029710: 7269 6356 6172 6965 7479 5661 6c69 642c ricVarietyValid, │ │ │ │ -00029720: 2063 6f6d 6d61 6e64 290a 2020 2020 2020 command). │ │ │ │ -00029730: 2a20 436f 6d70 4d65 7468 6f64 2028 6d69 * CompMethod (mi │ │ │ │ -00029740: 7373 696e 6720 646f 6375 6d65 6e74 6174 ssing documentat │ │ │ │ -00029750: 696f 6e29 203d 3e20 2e2e 2e2c 2064 6566 ion) => ..., def │ │ │ │ -00029760: 6175 6c74 2076 616c 7565 0a20 2020 2020 ault value. │ │ │ │ -00029770: 2020 2050 726f 6a65 6374 6976 6544 6567 ProjectiveDeg │ │ │ │ -00029780: 7265 652c 2050 6e52 6573 6964 7561 6c2c ree, PnResidual, │ │ │ │ -00029790: 2074 6869 7320 616c 676f 7269 7468 6d20 this algorithm │ │ │ │ -000297a0: 6d61 7920 6265 2075 7365 6420 666f 7220 may be used for │ │ │ │ -000297b0: 7375 6273 6368 656d 6573 0a20 2020 2020 subschemes. │ │ │ │ -000297c0: 2020 206f 6620 5c50 505e 6e20 6f6e 6c79 of \PP^n only │ │ │ │ -000297d0: 0a20 2020 2020 202a 204f 7574 7075 7420 . * Output │ │ │ │ -000297e0: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ -000297f0: 7661 6c75 6520 4368 6f77 5269 6e67 456c value ChowRingEl │ │ │ │ -00029800: 656d 656e 742c 2043 686f 7752 696e 6745 ement, ChowRingE │ │ │ │ -00029810: 6c65 6d65 6e74 2c20 7265 7475 726e 730a lement, returns. │ │ │ │ -00029820: 2020 2020 2020 2020 6120 5269 6e67 456c a RingEl │ │ │ │ -00029830: 656d 656e 7420 696e 2074 6865 2043 686f ement in the Cho │ │ │ │ -00029840: 7720 7269 6e67 206f 6620 7468 6520 6170 w ring of the ap │ │ │ │ -00029850: 7072 6f70 7269 6174 6520 616d 6269 656e propriate ambien │ │ │ │ -00029860: 7420 7370 6163 650a 2020 2020 2020 2a20 t space. * │ │ │ │ -00029870: 4f75 7470 7574 203d 3e20 2e2e 2e2c 2064 Output => ..., d │ │ │ │ -00029880: 6566 6175 6c74 2076 616c 7565 2043 686f efault value Cho │ │ │ │ -00029890: 7752 696e 6745 6c65 6d65 6e74 2c20 4861 wRingElement, Ha │ │ │ │ -000298a0: 7368 466f 726d 2c20 4861 7368 466f 726d shForm, HashForm │ │ │ │ -000298b0: 0a20 2020 2020 2020 2072 6574 7572 6e73 . returns │ │ │ │ -000298c0: 2061 204d 7574 6162 6c65 4861 7368 5461 a MutableHashTa │ │ │ │ -000298d0: 626c 6520 636f 6e74 6169 6e69 6e67 2074 ble containing t │ │ │ │ -000298e0: 6865 2066 6f6c 6c6f 7769 6e67 206b 6579 he following key │ │ │ │ -000298f0: 733a 2022 4722 2028 7468 650a 2020 2020 s: "G" (the. │ │ │ │ -00029900: 2020 2020 706f 6c79 6e6f 6d69 616c 2077 polynomial w │ │ │ │ -00029910: 6974 6820 636f 6566 6669 6369 656e 7473 ith coefficients │ │ │ │ -00029920: 206f 6620 7468 6520 6879 7065 7270 6c61 of the hyperpla │ │ │ │ -00029930: 6e65 2063 6c61 7373 6573 2072 6570 7265 ne classes repre │ │ │ │ -00029940: 7365 6e74 696e 6720 7468 650a 2020 2020 senting the. │ │ │ │ -00029950: 2020 2020 7072 6f6a 6563 7469 7665 2064 projective d │ │ │ │ -00029960: 6567 7265 6573 292c 2022 476c 6973 7422 egrees), "Glist" │ │ │ │ -00029970: 2028 7468 6520 6c69 7374 2066 6f72 6d20 (the list form │ │ │ │ -00029980: 6f66 2022 4722 2920 2c20 2253 6567 7265 of "G") , "Segre │ │ │ │ -00029990: 2220 2874 6865 0a20 2020 2020 2020 2074 " (the. t │ │ │ │ -000299a0: 6f74 616c 2053 6567 7265 2063 6c61 7373 otal Segre class │ │ │ │ -000299b0: 206f 6620 7468 6520 696e 7075 7429 2c22 of the input)," │ │ │ │ -000299c0: 5365 6772 654c 6973 7422 2028 7468 6520 SegreList" (the │ │ │ │ -000299d0: 6c69 7374 2066 6f72 6d20 6f66 2022 5365 list form of "Se │ │ │ │ -000299e0: 6772 6522 290a 2020 2a20 4f75 7470 7574 gre"). * Output │ │ │ │ -000299f0: 733a 0a20 2020 2020 202a 2061 202a 6e6f s:. * a *no │ │ │ │ -00029a00: 7465 2072 696e 6720 656c 656d 656e 743a te ring element: │ │ │ │ -00029a10: 2028 4d61 6361 756c 6179 3244 6f63 2952 (Macaulay2Doc)R │ │ │ │ -00029a20: 696e 6745 6c65 6d65 6e74 2c2c 2074 6865 ingElement,, the │ │ │ │ -00029a30: 2070 7573 6866 6f72 7761 7264 206f 660a pushforward of. │ │ │ │ -00029a40: 2020 2020 2020 2020 7468 6520 746f 7461 the tota │ │ │ │ -00029a50: 6c20 5365 6772 6520 636c 6173 7320 6f66 l Segre class of │ │ │ │ -00029a60: 2074 6865 2073 6368 656d 6520 5620 6465 the scheme V de │ │ │ │ -00029a70: 6669 6e65 6420 6279 2074 6865 2069 6e70 fined by the inp │ │ │ │ -00029a80: 7574 2069 6465 616c 2074 6f20 7468 650a ut ideal to the. │ │ │ │ -00029a90: 2020 2020 2020 2020 6170 7072 6f70 7269 appropri │ │ │ │ -00029aa0: 6174 6520 4368 6f77 2072 696e 670a 0a44 ate Chow ring..D │ │ │ │ -00029ab0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -00029ac0: 3d3d 3d3d 3d3d 0a0a 466f 7220 6120 7375 ======..For a su │ │ │ │ -00029ad0: 6273 6368 656d 6520 5620 6f66 2061 6e20 bscheme V of an │ │ │ │ -00029ae0: 6170 706c 6963 6162 6c65 2074 6f72 6963 applicable toric │ │ │ │ -00029af0: 2076 6172 6965 7479 2058 2074 6869 7320 variety X this │ │ │ │ -00029b00: 636f 6d6d 616e 6420 636f 6d70 7574 6573 command computes │ │ │ │ -00029b10: 2074 6865 0a70 7573 682d 666f 7277 6172 the.push-forwar │ │ │ │ -00029b20: 6420 6f66 2074 6865 2074 6f74 616c 2053 d of the total S │ │ │ │ -00029b30: 6567 7265 2063 6c61 7373 2073 2856 2c58 egre class s(V,X │ │ │ │ -00029b40: 2920 6f66 2056 2069 6e20 5820 746f 2074 ) of V in X to t │ │ │ │ -00029b50: 6865 2043 686f 7720 7269 6e67 206f 6620 he Chow ring of │ │ │ │ -00029b60: 582e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d X...+----------- │ │ │ │ -00029b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029b90: 2d2d 2b0a 7c69 3120 3a20 7365 7452 616e --+.|i1 : setRan │ │ │ │ -00029ba0: 646f 6d53 6565 6420 3732 3b20 2020 2020 domSeed 72; │ │ │ │ -00029bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029bc0: 2020 7c0a 7c20 2d2d 2073 6574 7469 6e67 |.| -- setting │ │ │ │ -00029bd0: 2072 616e 646f 6d20 7365 6564 2074 6f20 random seed to │ │ │ │ -00029be0: 3732 2020 2020 2020 2020 2020 2020 2020 72 │ │ │ │ -00029bf0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00029c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029c20: 2d2d 2b0a 7c69 3220 3a20 5220 3d20 5a5a --+.|i2 : R = ZZ │ │ │ │ -00029c30: 2f33 3237 3439 5b77 2c79 2c7a 5d20 2020 /32749[w,y,z] │ │ │ │ +00028fa0: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ +00028fb0: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ +00028fc0: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ +00028fd0: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ +00028fe0: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ +00028ff0: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ +00029000: 6c61 7932 2f70 6163 6b61 6765 732f 0a43 lay2/packages/.C │ │ │ │ +00029010: 6861 7261 6374 6572 6973 7469 6343 6c61 haracteristicCla │ │ │ │ +00029020: 7373 6573 2e6d 323a 3233 3738 3a30 2e0a sses.m2:2378:0.. │ │ │ │ +00029030: 1f0a 4669 6c65 3a20 4368 6172 6163 7465 ..File: Characte │ │ │ │ +00029040: 7269 7374 6963 436c 6173 7365 732e 696e risticClasses.in │ │ │ │ +00029050: 666f 2c20 4e6f 6465 3a20 5365 6772 652c fo, Node: Segre, │ │ │ │ +00029060: 204e 6578 743a 2054 6f72 6963 4368 6f77 Next: ToricChow │ │ │ │ +00029070: 5269 6e67 2c20 5072 6576 3a20 7072 6f62 Ring, Prev: prob │ │ │ │ +00029080: 6162 696c 6973 7469 6320 616c 676f 7269 abilistic algori │ │ │ │ +00029090: 7468 6d2c 2055 703a 2054 6f70 0a0a 5365 thm, Up: Top..Se │ │ │ │ +000290a0: 6772 6520 2d2d 2054 6865 2053 6567 7265 gre -- The Segre │ │ │ │ +000290b0: 2063 6c61 7373 206f 6620 6120 7375 6273 class of a subs │ │ │ │ +000290c0: 6368 656d 650a 2a2a 2a2a 2a2a 2a2a 2a2a cheme.********** │ │ │ │ +000290d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000290e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ +000290f0: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ +00029100: 2020 2053 6567 7265 2049 0a20 2020 2020 Segre I. │ │ │ │ +00029110: 2020 2053 6567 7265 2841 2c49 290a 2020 Segre(A,I). │ │ │ │ +00029120: 2020 2020 2020 5365 6772 6528 582c 4a29 Segre(X,J) │ │ │ │ +00029130: 0a20 2020 2020 2020 2053 6567 7265 2843 . Segre(C │ │ │ │ +00029140: 682c 582c 4a29 0a20 202a 2049 6e70 7574 h,X,J). * Input │ │ │ │ +00029150: 733a 0a20 2020 2020 202a 2049 2c20 616e s:. * I, an │ │ │ │ +00029160: 202a 6e6f 7465 2069 6465 616c 3a20 284d *note ideal: (M │ │ │ │ +00029170: 6163 6175 6c61 7932 446f 6329 4964 6561 acaulay2Doc)Idea │ │ │ │ +00029180: 6c2c 2c20 6120 6d75 6c74 692d 686f 6d6f l,, a multi-homo │ │ │ │ +00029190: 6765 6e65 6f75 7320 6964 6561 6c20 696e geneous ideal in │ │ │ │ +000291a0: 2061 0a20 2020 2020 2020 2067 7261 6465 a. grade │ │ │ │ +000291b0: 6420 706f 6c79 6e6f 6d69 616c 2072 696e d polynomial rin │ │ │ │ +000291c0: 6720 6f76 6572 2061 2066 6965 6c64 2064 g over a field d │ │ │ │ +000291d0: 6566 696e 696e 6720 6120 636c 6f73 6564 efining a closed │ │ │ │ +000291e0: 2073 7562 7363 6865 6d65 2056 206f 660a subscheme V of. │ │ │ │ +000291f0: 2020 2020 2020 2020 5c50 505e 7b6e 5f31 \PP^{n_1 │ │ │ │ +00029200: 7d78 2e2e 2e78 5c50 505e 7b6e 5f6d 7d0a }x...x\PP^{n_m}. │ │ │ │ +00029210: 2020 2020 2020 2a20 412c 2061 202a 6e6f * A, a *no │ │ │ │ +00029220: 7465 2071 756f 7469 656e 7420 7269 6e67 te quotient ring │ │ │ │ +00029230: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00029240: 5175 6f74 6965 6e74 5269 6e67 2c2c 0a20 QuotientRing,,. │ │ │ │ +00029250: 2020 2020 2020 2041 3d5c 5a5a 5b68 5f31 A=\ZZ[h_1 │ │ │ │ +00029260: 2c2e 2e2e 2c68 5f6d 5d2f 2868 5f31 5e7b ,...,h_m]/(h_1^{ │ │ │ │ +00029270: 6e5f 312b 317d 2c2e 2e2e 2c68 5f6d 5e7b n_1+1},...,h_m^{ │ │ │ │ +00029280: 6e5f 6d2b 317d 2920 7175 6f74 6965 6e74 n_m+1}) quotient │ │ │ │ +00029290: 2072 696e 670a 2020 2020 2020 2020 7265 ring. re │ │ │ │ +000292a0: 7072 6573 656e 7469 6e67 2074 6865 2043 presenting the C │ │ │ │ +000292b0: 686f 7720 7269 6e67 206f 6620 5c50 505e how ring of \PP^ │ │ │ │ +000292c0: 7b6e 5f31 7d78 2e2e 2e78 5c50 505e 7b6e {n_1}x...x\PP^{n │ │ │ │ +000292d0: 5f6d 7d2c 2074 6869 7320 7269 6e67 2073 _m}, this ring s │ │ │ │ +000292e0: 686f 756c 640a 2020 2020 2020 2020 6265 hould. be │ │ │ │ +000292f0: 2062 7569 6c74 2075 7369 6e67 2074 6865 built using the │ │ │ │ +00029300: 202a 6e6f 7465 2043 686f 7752 696e 673a *note ChowRing: │ │ │ │ +00029310: 2043 686f 7752 696e 672c 2063 6f6d 6d61 ChowRing, comma │ │ │ │ +00029320: 6e64 0a20 2020 2020 202a 204a 2c20 616e nd. * J, an │ │ │ │ +00029330: 202a 6e6f 7465 2069 6465 616c 3a20 284d *note ideal: (M │ │ │ │ +00029340: 6163 6175 6c61 7932 446f 6329 4964 6561 acaulay2Doc)Idea │ │ │ │ +00029350: 6c2c 2c20 696e 2074 6865 2067 7261 6465 l,, in the grade │ │ │ │ +00029360: 6420 706f 6c79 6e6f 6d69 616c 2072 696e d polynomial rin │ │ │ │ +00029370: 670a 2020 2020 2020 2020 7768 6963 6820 g. which │ │ │ │ +00029380: 6973 2063 6f6f 7264 696e 6174 6520 7269 is coordinate ri │ │ │ │ +00029390: 6e67 206f 6620 7468 6520 4e6f 726d 616c ng of the Normal │ │ │ │ +000293a0: 2054 6f72 6963 2056 6172 6965 7479 2058 Toric Variety X │ │ │ │ +000293b0: 0a20 2020 2020 202a 2058 2c20 6120 2a6e . * X, a *n │ │ │ │ +000293c0: 6f74 6520 6e6f 726d 616c 2074 6f72 6963 ote normal toric │ │ │ │ +000293d0: 2076 6172 6965 7479 3a0a 2020 2020 2020 variety:. │ │ │ │ +000293e0: 2020 284e 6f72 6d61 6c54 6f72 6963 5661 (NormalToricVa │ │ │ │ +000293f0: 7269 6574 6965 7329 4e6f 726d 616c 546f rieties)NormalTo │ │ │ │ +00029400: 7269 6356 6172 6965 7479 2c2c 2077 6869 ricVariety,, whi │ │ │ │ +00029410: 6368 2069 7320 7468 6520 616d 6269 656e ch is the ambien │ │ │ │ +00029420: 7420 7370 6163 650a 2020 2020 2020 2020 t space. │ │ │ │ +00029430: 7768 6963 6820 636f 6e74 6169 6e73 2056 which contains V │ │ │ │ +00029440: 284a 290a 2020 2020 2020 2a20 4368 2c20 (J). * Ch, │ │ │ │ +00029450: 6120 2a6e 6f74 6520 7175 6f74 6965 6e74 a *note quotient │ │ │ │ +00029460: 2072 696e 673a 2028 4d61 6361 756c 6179 ring: (Macaulay │ │ │ │ +00029470: 3244 6f63 2951 756f 7469 656e 7452 696e 2Doc)QuotientRin │ │ │ │ +00029480: 672c 2c20 7468 6520 4368 6f77 2072 696e g,, the Chow rin │ │ │ │ +00029490: 670a 2020 2020 2020 2020 6f66 2074 6865 g. of the │ │ │ │ +000294a0: 2074 6f72 6963 2076 6172 6965 7479 2058 toric variety X │ │ │ │ +000294b0: 2c20 4368 3d28 7269 6e67 204a 292f 2853 , Ch=(ring J)/(S │ │ │ │ +000294c0: 522b 4c52 2920 7768 6572 6520 5352 2069 R+LR) where SR i │ │ │ │ +000294d0: 7320 7468 650a 2020 2020 2020 2020 5374 s the. St │ │ │ │ +000294e0: 616e 6c65 792d 5265 6973 6e65 7220 6964 anley-Reisner id │ │ │ │ +000294f0: 6561 6c20 6f66 2074 6865 2066 616e 2064 eal of the fan d │ │ │ │ +00029500: 6566 696e 696e 6720 5820 616e 6420 4c52 efining X and LR │ │ │ │ +00029510: 2069 7320 7468 6520 6c69 6e65 6172 0a20 is the linear. │ │ │ │ +00029520: 2020 2020 2020 2072 656c 6174 696f 6e73 relations │ │ │ │ +00029530: 2069 6465 616c 2c20 7468 6973 2072 696e ideal, this rin │ │ │ │ +00029540: 6720 7368 6f75 6c64 2062 6520 6275 696c g should be buil │ │ │ │ +00029550: 7420 7573 696e 6720 7468 6520 2a6e 6f74 t using the *not │ │ │ │ +00029560: 650a 2020 2020 2020 2020 546f 7269 6343 e. ToricC │ │ │ │ +00029570: 686f 7752 696e 673a 2054 6f72 6963 4368 howRing: ToricCh │ │ │ │ +00029580: 6f77 5269 6e67 2c20 636f 6d6d 616e 640a owRing, command. │ │ │ │ +00029590: 2020 2a20 2a6e 6f74 6520 4f70 7469 6f6e * *note Option │ │ │ │ +000295a0: 616c 2069 6e70 7574 733a 2028 4d61 6361 al inputs: (Maca │ │ │ │ +000295b0: 756c 6179 3244 6f63 2975 7369 6e67 2066 ulay2Doc)using f │ │ │ │ +000295c0: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ +000295d0: 7469 6f6e 616c 2069 6e70 7574 732c 3a0a tional inputs,:. │ │ │ │ +000295e0: 2020 2020 2020 2a20 436f 6d70 4d65 7468 * CompMeth │ │ │ │ +000295f0: 6f64 2028 6d69 7373 696e 6720 646f 6375 od (missing docu │ │ │ │ +00029600: 6d65 6e74 6174 696f 6e29 203d 3e20 2e2e mentation) => .. │ │ │ │ +00029610: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ +00029620: 0a20 2020 2020 2020 2050 726f 6a65 6374 . Project │ │ │ │ +00029630: 6976 6544 6567 7265 652c 2050 726f 6a65 iveDegree, Proje │ │ │ │ +00029640: 6374 6976 6544 6567 7265 652c 2074 6869 ctiveDegree, thi │ │ │ │ +00029650: 7320 616c 676f 7269 7468 6d20 6d61 7920 s algorithm may │ │ │ │ +00029660: 6265 2075 7365 6420 666f 720a 2020 2020 be used for. │ │ │ │ +00029670: 2020 2020 7375 6273 6368 656d 6573 206f subschemes o │ │ │ │ +00029680: 6620 616e 7920 6170 706c 6963 6162 6c65 f any applicable │ │ │ │ +00029690: 2074 6f72 6963 2076 6172 6965 7479 2028 toric variety ( │ │ │ │ +000296a0: 7468 6973 206d 6179 2062 6520 6368 6563 this may be chec │ │ │ │ +000296b0: 6b65 6420 7573 696e 670a 2020 2020 2020 ked using. │ │ │ │ +000296c0: 2020 7468 6520 2a6e 6f74 6520 4368 6563 the *note Chec │ │ │ │ +000296d0: 6b54 6f72 6963 5661 7269 6574 7956 616c kToricVarietyVal │ │ │ │ +000296e0: 6964 3a20 4368 6563 6b54 6f72 6963 5661 id: CheckToricVa │ │ │ │ +000296f0: 7269 6574 7956 616c 6964 2c20 636f 6d6d rietyValid, comm │ │ │ │ +00029700: 616e 6429 0a20 2020 2020 202a 2043 6f6d and). * Com │ │ │ │ +00029710: 704d 6574 686f 6420 286d 6973 7369 6e67 pMethod (missing │ │ │ │ +00029720: 2064 6f63 756d 656e 7461 7469 6f6e 2920 documentation) │ │ │ │ +00029730: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +00029740: 7661 6c75 650a 2020 2020 2020 2020 5072 value. Pr │ │ │ │ +00029750: 6f6a 6563 7469 7665 4465 6772 6565 2c20 ojectiveDegree, │ │ │ │ +00029760: 506e 5265 7369 6475 616c 2c20 7468 6973 PnResidual, this │ │ │ │ +00029770: 2061 6c67 6f72 6974 686d 206d 6179 2062 algorithm may b │ │ │ │ +00029780: 6520 7573 6564 2066 6f72 2073 7562 7363 e used for subsc │ │ │ │ +00029790: 6865 6d65 730a 2020 2020 2020 2020 6f66 hemes. of │ │ │ │ +000297a0: 205c 5050 5e6e 206f 6e6c 790a 2020 2020 \PP^n only. │ │ │ │ +000297b0: 2020 2a20 4f75 7470 7574 203d 3e20 2e2e * Output => .. │ │ │ │ +000297c0: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ +000297d0: 2043 686f 7752 696e 6745 6c65 6d65 6e74 ChowRingElement │ │ │ │ +000297e0: 2c20 4368 6f77 5269 6e67 456c 656d 656e , ChowRingElemen │ │ │ │ +000297f0: 742c 2072 6574 7572 6e73 0a20 2020 2020 t, returns. │ │ │ │ +00029800: 2020 2061 2052 696e 6745 6c65 6d65 6e74 a RingElement │ │ │ │ +00029810: 2069 6e20 7468 6520 4368 6f77 2072 696e in the Chow rin │ │ │ │ +00029820: 6720 6f66 2074 6865 2061 7070 726f 7072 g of the appropr │ │ │ │ +00029830: 6961 7465 2061 6d62 6965 6e74 2073 7061 iate ambient spa │ │ │ │ +00029840: 6365 0a20 2020 2020 202a 204f 7574 7075 ce. * Outpu │ │ │ │ +00029850: 7420 3d3e 202e 2e2e 2c20 6465 6661 756c t => ..., defaul │ │ │ │ +00029860: 7420 7661 6c75 6520 4368 6f77 5269 6e67 t value ChowRing │ │ │ │ +00029870: 456c 656d 656e 742c 2048 6173 6846 6f72 Element, HashFor │ │ │ │ +00029880: 6d2c 2048 6173 6846 6f72 6d0a 2020 2020 m, HashForm. │ │ │ │ +00029890: 2020 2020 7265 7475 726e 7320 6120 4d75 returns a Mu │ │ │ │ +000298a0: 7461 626c 6548 6173 6854 6162 6c65 2063 tableHashTable c │ │ │ │ +000298b0: 6f6e 7461 696e 696e 6720 7468 6520 666f ontaining the fo │ │ │ │ +000298c0: 6c6c 6f77 696e 6720 6b65 7973 3a20 2247 llowing keys: "G │ │ │ │ +000298d0: 2220 2874 6865 0a20 2020 2020 2020 2070 " (the. p │ │ │ │ +000298e0: 6f6c 796e 6f6d 6961 6c20 7769 7468 2063 olynomial with c │ │ │ │ +000298f0: 6f65 6666 6963 6965 6e74 7320 6f66 2074 oefficients of t │ │ │ │ +00029900: 6865 2068 7970 6572 706c 616e 6520 636c he hyperplane cl │ │ │ │ +00029910: 6173 7365 7320 7265 7072 6573 656e 7469 asses representi │ │ │ │ +00029920: 6e67 2074 6865 0a20 2020 2020 2020 2070 ng the. p │ │ │ │ +00029930: 726f 6a65 6374 6976 6520 6465 6772 6565 rojective degree │ │ │ │ +00029940: 7329 2c20 2247 6c69 7374 2220 2874 6865 s), "Glist" (the │ │ │ │ +00029950: 206c 6973 7420 666f 726d 206f 6620 2247 list form of "G │ │ │ │ +00029960: 2229 202c 2022 5365 6772 6522 2028 7468 ") , "Segre" (th │ │ │ │ +00029970: 650a 2020 2020 2020 2020 746f 7461 6c20 e. total │ │ │ │ +00029980: 5365 6772 6520 636c 6173 7320 6f66 2074 Segre class of t │ │ │ │ +00029990: 6865 2069 6e70 7574 292c 2253 6567 7265 he input),"Segre │ │ │ │ +000299a0: 4c69 7374 2220 2874 6865 206c 6973 7420 List" (the list │ │ │ │ +000299b0: 666f 726d 206f 6620 2253 6567 7265 2229 form of "Segre") │ │ │ │ +000299c0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +000299d0: 2020 2020 2a20 6120 2a6e 6f74 6520 7269 * a *note ri │ │ │ │ +000299e0: 6e67 2065 6c65 6d65 6e74 3a20 284d 6163 ng element: (Mac │ │ │ │ +000299f0: 6175 6c61 7932 446f 6329 5269 6e67 456c aulay2Doc)RingEl │ │ │ │ +00029a00: 656d 656e 742c 2c20 7468 6520 7075 7368 ement,, the push │ │ │ │ +00029a10: 666f 7277 6172 6420 6f66 0a20 2020 2020 forward of. │ │ │ │ +00029a20: 2020 2074 6865 2074 6f74 616c 2053 6567 the total Seg │ │ │ │ +00029a30: 7265 2063 6c61 7373 206f 6620 7468 6520 re class of the │ │ │ │ +00029a40: 7363 6865 6d65 2056 2064 6566 696e 6564 scheme V defined │ │ │ │ +00029a50: 2062 7920 7468 6520 696e 7075 7420 6964 by the input id │ │ │ │ +00029a60: 6561 6c20 746f 2074 6865 0a20 2020 2020 eal to the. │ │ │ │ +00029a70: 2020 2061 7070 726f 7072 6961 7465 2043 appropriate C │ │ │ │ +00029a80: 686f 7720 7269 6e67 0a0a 4465 7363 7269 how ring..Descri │ │ │ │ +00029a90: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +00029aa0: 3d0a 0a46 6f72 2061 2073 7562 7363 6865 =..For a subsche │ │ │ │ +00029ab0: 6d65 2056 206f 6620 616e 2061 7070 6c69 me V of an appli │ │ │ │ +00029ac0: 6361 626c 6520 746f 7269 6320 7661 7269 cable toric vari │ │ │ │ +00029ad0: 6574 7920 5820 7468 6973 2063 6f6d 6d61 ety X this comma │ │ │ │ +00029ae0: 6e64 2063 6f6d 7075 7465 7320 7468 650a nd computes the. │ │ │ │ +00029af0: 7075 7368 2d66 6f72 7761 7264 206f 6620 push-forward of │ │ │ │ +00029b00: 7468 6520 746f 7461 6c20 5365 6772 6520 the total Segre │ │ │ │ +00029b10: 636c 6173 7320 7328 562c 5829 206f 6620 class s(V,X) of │ │ │ │ +00029b20: 5620 696e 2058 2074 6f20 7468 6520 4368 V in X to the Ch │ │ │ │ +00029b30: 6f77 2072 696e 6720 6f66 2058 2e0a 0a2b ow ring of X...+ │ │ │ │ +00029b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00029b70: 6931 203a 2073 6574 5261 6e64 6f6d 5365 i1 : setRandomSe │ │ │ │ +00029b80: 6564 2037 323b 2020 2020 2020 2020 2020 ed 72; │ │ │ │ +00029b90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029ba0: 202d 2d20 7365 7474 696e 6720 7261 6e64 -- setting rand │ │ │ │ +00029bb0: 6f6d 2073 6565 6420 746f 2037 3220 2020 om seed to 72 │ │ │ │ +00029bc0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00029bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00029c00: 6932 203a 2052 203d 205a 5a2f 3332 3734 i2 : R = ZZ/3274 │ │ │ │ +00029c10: 395b 772c 792c 7a5d 2020 2020 2020 2020 9[w,y,z] │ │ │ │ +00029c20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029c50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00029c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029c50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029c60: 6f32 203d 2052 2020 2020 2020 2020 2020 o2 = R │ │ │ │ 00029c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029c80: 2020 7c0a 7c6f 3220 3d20 5220 2020 2020 |.|o2 = R │ │ │ │ +00029c80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00029c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029cb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00029cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ce0: 2020 7c0a 7c6f 3220 3a20 506f 6c79 6e6f |.|o2 : Polyno │ │ │ │ -00029cf0: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ -00029d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d10: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00029d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029d40: 2d2d 2b0a 7c69 3320 3a20 5365 6772 6528 --+.|i3 : Segre( │ │ │ │ -00029d50: 6964 6561 6c28 772a 7929 2c43 6f6d 704d ideal(w*y),CompM │ │ │ │ -00029d60: 6574 686f 643d 3e50 6e52 6573 6964 7561 ethod=>PnResidua │ │ │ │ -00029d70: 6c29 7c0a 7c20 2020 2020 2020 2020 2020 l)|.| │ │ │ │ -00029d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029cb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029cc0: 6f32 203a 2050 6f6c 796e 6f6d 6961 6c52 o2 : PolynomialR │ │ │ │ +00029cd0: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +00029ce0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00029cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00029d20: 6933 203a 2053 6567 7265 2869 6465 616c i3 : Segre(ideal │ │ │ │ +00029d30: 2877 2a79 292c 436f 6d70 4d65 7468 6f64 (w*y),CompMethod │ │ │ │ +00029d40: 3d3e 506e 5265 7369 6475 616c 297c 0a7c =>PnResidual)|.| │ │ │ │ +00029d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029d70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029d80: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00029d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029da0: 2020 7c0a 7c20 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ -00029db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029da0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029db0: 6f33 203d 202d 2034 4820 202b 2032 4820 o3 = - 4H + 2H │ │ │ │ 00029dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029dd0: 2020 7c0a 7c6f 3320 3d20 2d20 3448 2020 |.|o3 = - 4H │ │ │ │ -00029de0: 2b20 3248 2020 2020 2020 2020 2020 2020 + 2H │ │ │ │ +00029dd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00029e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029e00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029e10: 2020 2020 205a 5a5b 485d 2020 2020 2020 ZZ[H] │ │ │ │ 00029e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e30: 2020 7c0a 7c20 2020 2020 5a5a 5b48 5d20 |.| ZZ[H] │ │ │ │ -00029e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029e30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029e40: 6f33 203a 202d 2d2d 2d2d 2020 2020 2020 o3 : ----- │ │ │ │ 00029e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e60: 2020 7c0a 7c6f 3320 3a20 2d2d 2d2d 2d20 |.|o3 : ----- │ │ │ │ -00029e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029e60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029e70: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ 00029e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e90: 2020 7c0a 7c20 2020 2020 2020 2033 2020 |.| 3 │ │ │ │ -00029ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029e90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029ea0: 2020 2020 2020 2048 2020 2020 2020 2020 H │ │ │ │ 00029eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ec0: 2020 7c0a 7c20 2020 2020 2020 4820 2020 |.| H │ │ │ │ -00029ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ef0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00029f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029f20: 2d2d 2b0a 7c69 3420 3a20 413d 4368 6f77 --+.|i4 : A=Chow │ │ │ │ -00029f30: 5269 6e67 2852 2920 2020 2020 2020 2020 Ring(R) │ │ │ │ +00029ec0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00029ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00029f00: 6934 203a 2041 3d43 686f 7752 696e 6728 i4 : A=ChowRing( │ │ │ │ +00029f10: 5229 2020 2020 2020 2020 2020 2020 2020 R) │ │ │ │ +00029f20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00029f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029f50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029f60: 6f34 203d 2041 2020 2020 2020 2020 2020 o4 = A │ │ │ │ 00029f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f80: 2020 7c0a 7c6f 3420 3d20 4120 2020 2020 |.|o4 = A │ │ │ │ +00029f80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00029f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029fb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00029fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029fe0: 2020 7c0a 7c6f 3420 3a20 5175 6f74 6965 |.|o4 : Quotie │ │ │ │ -00029ff0: 6e74 5269 6e67 2020 2020 2020 2020 2020 ntRing │ │ │ │ -0002a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a010: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -0002a020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a040: 2d2d 2b0a 7c69 3520 3a20 5365 6772 6528 --+.|i5 : Segre( │ │ │ │ -0002a050: 412c 6964 6561 6c28 775e 322a 792c 772a A,ideal(w^2*y,w* │ │ │ │ -0002a060: 795e 3229 2920 2020 2020 2020 2020 2020 y^2)) │ │ │ │ -0002a070: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029fb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029fc0: 6f34 203a 2051 756f 7469 656e 7452 696e o4 : QuotientRin │ │ │ │ +00029fd0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +00029fe0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00029ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0002a020: 6935 203a 2053 6567 7265 2841 2c69 6465 i5 : Segre(A,ide │ │ │ │ +0002a030: 616c 2877 5e32 2a79 2c77 2a79 5e32 2929 al(w^2*y,w*y^2)) │ │ │ │ +0002a040: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002a050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a070: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002a080: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 0002a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0a0: 2020 7c0a 7c20 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ -0002a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a0a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002a0b0: 6f35 203d 202d 2033 6820 202b 2032 6820 o5 = - 3h + 2h │ │ │ │ 0002a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0d0: 2020 7c0a 7c6f 3520 3d20 2d20 3368 2020 |.|o5 = - 3h │ │ │ │ -0002a0e0: 2b20 3268 2020 2020 2020 2020 2020 2020 + 2h │ │ │ │ +0002a0d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002a0e0: 2020 2020 2020 2020 2031 2020 2020 2031 1 1 │ │ │ │ 0002a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a100: 2020 7c0a 7c20 2020 2020 2020 2020 3120 |.| 1 │ │ │ │ -0002a110: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ +0002a100: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a130: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a130: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002a140: 6f35 203a 2041 2020 2020 2020 2020 2020 o5 : A │ │ │ │ 0002a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a160: 2020 7c0a 7c6f 3520 3a20 4120 2020 2020 |.|o5 : A │ │ │ │ -0002a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a190: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -0002a1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a1c0: 2d2d 2b0a 0a4e 6f77 2063 6f6e 7369 6465 --+..Now conside │ │ │ │ -0002a1d0: 7220 616e 2065 7861 6d70 6c65 2069 6e20 r an example in │ │ │ │ -0002a1e0: 5c50 505e 3220 5c74 696d 6573 205c 5050 \PP^2 \times \PP │ │ │ │ -0002a1f0: 5e32 2c20 6966 2077 6520 696e 7075 7420 ^2, if we input │ │ │ │ -0002a200: 7468 6520 4368 6f77 2072 696e 6720 4120 the Chow ring A │ │ │ │ -0002a210: 7468 650a 6f75 7470 7574 2077 696c 6c20 the.output will │ │ │ │ -0002a220: 6265 2072 6574 7572 6e65 6420 696e 2074 be returned in t │ │ │ │ -0002a230: 6865 2073 616d 6520 7269 6e67 2e20 546f he same ring. To │ │ │ │ -0002a240: 2065 6e73 7572 6520 7072 6f70 6572 2066 ensure proper f │ │ │ │ -0002a250: 756e 6374 696f 6e20 6f66 2074 6865 0a6d unction of the.m │ │ │ │ -0002a260: 6574 686f 6473 2077 6520 6275 696c 6420 ethods we build │ │ │ │ -0002a270: 7468 6520 4368 6f77 2072 696e 6720 7573 the Chow ring us │ │ │ │ -0002a280: 696e 6720 7468 6520 2a6e 6f74 6520 4368 ing the *note Ch │ │ │ │ -0002a290: 6f77 5269 6e67 3a20 4368 6f77 5269 6e67 owRing: ChowRing │ │ │ │ -0002a2a0: 2c20 636f 6d6d 616e 642e 2057 650a 6d61 , command. We.ma │ │ │ │ -0002a2b0: 7920 616c 736f 2072 6574 7572 6e20 6120 y also return a │ │ │ │ -0002a2c0: 4d75 7461 626c 6548 6173 6854 6162 6c65 MutableHashTable │ │ │ │ -0002a2d0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +0002a160: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002a170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +0002a1a0: 4e6f 7720 636f 6e73 6964 6572 2061 6e20 Now consider an │ │ │ │ +0002a1b0: 6578 616d 706c 6520 696e 205c 5050 5e32 example in \PP^2 │ │ │ │ +0002a1c0: 205c 7469 6d65 7320 5c50 505e 322c 2069 \times \PP^2, i │ │ │ │ +0002a1d0: 6620 7765 2069 6e70 7574 2074 6865 2043 f we input the C │ │ │ │ +0002a1e0: 686f 7720 7269 6e67 2041 2074 6865 0a6f how ring A the.o │ │ │ │ +0002a1f0: 7574 7075 7420 7769 6c6c 2062 6520 7265 utput will be re │ │ │ │ +0002a200: 7475 726e 6564 2069 6e20 7468 6520 7361 turned in the sa │ │ │ │ +0002a210: 6d65 2072 696e 672e 2054 6f20 656e 7375 me ring. To ensu │ │ │ │ +0002a220: 7265 2070 726f 7065 7220 6675 6e63 7469 re proper functi │ │ │ │ +0002a230: 6f6e 206f 6620 7468 650a 6d65 7468 6f64 on of the.method │ │ │ │ +0002a240: 7320 7765 2062 7569 6c64 2074 6865 2043 s we build the C │ │ │ │ +0002a250: 686f 7720 7269 6e67 2075 7369 6e67 2074 how ring using t │ │ │ │ +0002a260: 6865 202a 6e6f 7465 2043 686f 7752 696e he *note ChowRin │ │ │ │ +0002a270: 673a 2043 686f 7752 696e 672c 2063 6f6d g: ChowRing, com │ │ │ │ +0002a280: 6d61 6e64 2e20 5765 0a6d 6179 2061 6c73 mand. We.may als │ │ │ │ +0002a290: 6f20 7265 7475 726e 2061 204d 7574 6162 o return a Mutab │ │ │ │ +0002a2a0: 6c65 4861 7368 5461 626c 652e 0a0a 2b2d leHashTable...+- │ │ │ │ +0002a2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a320: 2d2b 0a7c 6936 203a 2052 3d4d 756c 7469 -+.|i6 : R=Multi │ │ │ │ -0002a330: 5072 6f6a 436f 6f72 6452 696e 6728 7b32 ProjCoordRing({2 │ │ │ │ -0002a340: 2c32 7d29 2020 2020 2020 2020 2020 2020 ,2}) │ │ │ │ +0002a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002a300: 3620 3a20 523d 4d75 6c74 6950 726f 6a43 6 : R=MultiProjC │ │ │ │ +0002a310: 6f6f 7264 5269 6e67 287b 322c 327d 2920 oordRing({2,2}) │ │ │ │ +0002a320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a340: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a370: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a390: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002a3a0: 3620 3d20 5220 2020 2020 2020 2020 2020 6 = R │ │ │ │ 0002a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3c0: 207c 0a7c 6f36 203d 2052 2020 2020 2020 |.|o6 = R │ │ │ │ +0002a3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a3e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a410: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a460: 207c 0a7c 6f36 203a 2050 6f6c 796e 6f6d |.|o6 : Polynom │ │ │ │ -0002a470: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ -0002a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4b0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002a430: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002a440: 3620 3a20 506f 6c79 6e6f 6d69 616c 5269 6 : PolynomialRi │ │ │ │ +0002a450: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +0002a460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a480: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002a490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a500: 2d2b 0a7c 6937 203a 2072 3d67 656e 7320 -+.|i7 : r=gens │ │ │ │ -0002a510: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -0002a520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002a4e0: 3720 3a20 723d 6765 6e73 2052 2020 2020 7 : r=gens R │ │ │ │ +0002a4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a520: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002a530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a550: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a5a0: 207c 0a7c 6f37 203d 207b 7820 2c20 7820 |.|o7 = {x , x │ │ │ │ -0002a5b0: 2c20 7820 2c20 7820 2c20 7820 2c20 7820 , x , x , x , x │ │ │ │ -0002a5c0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ -0002a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a5f0: 207c 0a7c 2020 2020 2020 2030 2020 2031 |.| 0 1 │ │ │ │ -0002a600: 2020 2032 2020 2033 2020 2034 2020 2035 2 3 4 5 │ │ │ │ -0002a610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a570: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002a580: 3720 3d20 7b78 202c 2078 202c 2078 202c 7 = {x , x , x , │ │ │ │ +0002a590: 2078 202c 2078 202c 2078 207d 2020 2020 x , x , x } │ │ │ │ +0002a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a5c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002a5d0: 2020 2020 2020 3020 2020 3120 2020 3220 0 1 2 │ │ │ │ +0002a5e0: 2020 3320 2020 3420 2020 3520 2020 2020 3 4 5 │ │ │ │ +0002a5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a610: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a640: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a660: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002a670: 3720 3a20 4c69 7374 2020 2020 2020 2020 7 : List │ │ │ │ 0002a680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a690: 207c 0a7c 6f37 203a 204c 6973 7420 2020 |.|o7 : List │ │ │ │ +0002a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a6e0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002a6b0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002a6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a730: 2d2b 0a7c 6938 203a 2041 3d43 686f 7752 -+.|i8 : A=ChowR │ │ │ │ -0002a740: 696e 6728 5229 2020 2020 2020 2020 2020 ing(R) │ │ │ │ -0002a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002a710: 3820 3a20 413d 4368 6f77 5269 6e67 2852 8 : A=ChowRing(R │ │ │ │ +0002a720: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0002a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a750: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a780: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a7a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002a7b0: 3820 3d20 4120 2020 2020 2020 2020 2020 8 = A │ │ │ │ 0002a7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a7d0: 207c 0a7c 6f38 203d 2041 2020 2020 2020 |.|o8 = A │ │ │ │ +0002a7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a7f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a820: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a840: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002a850: 3820 3a20 5175 6f74 6965 6e74 5269 6e67 8 : QuotientRing │ │ │ │ 0002a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a870: 207c 0a7c 6f38 203a 2051 756f 7469 656e |.|o8 : Quotien │ │ │ │ -0002a880: 7452 696e 6720 2020 2020 2020 2020 2020 tRing │ │ │ │ -0002a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8c0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a890: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002a8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a910: 2d2b 0a7c 6939 203a 2049 3d69 6465 616c -+.|i9 : I=ideal │ │ │ │ -0002a920: 2872 5f30 5e32 2a72 5f33 2d72 5f34 2a72 (r_0^2*r_3-r_4*r │ │ │ │ -0002a930: 5f31 2a72 5f32 2c72 5f32 5e32 2a72 5f35 _1*r_2,r_2^2*r_5 │ │ │ │ -0002a940: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0002a8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002a8f0: 3920 3a20 493d 6964 6561 6c28 725f 305e 9 : I=ideal(r_0^ │ │ │ │ +0002a900: 322a 725f 332d 725f 342a 725f 312a 725f 2*r_3-r_4*r_1*r_ │ │ │ │ +0002a910: 322c 725f 325e 322a 725f 3529 2020 2020 2,r_2^2*r_5) │ │ │ │ +0002a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a930: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a960: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a9b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002a9c0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002a9d0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa00: 207c 0a7c 6f39 203d 2069 6465 616c 2028 |.|o9 = ideal ( │ │ │ │ -0002aa10: 7820 7820 202d 2078 2078 2078 202c 2078 x x - x x x , x │ │ │ │ -0002aa20: 2078 2029 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ -0002aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002aa60: 2030 2033 2020 2020 3120 3220 3420 2020 0 3 1 2 4 │ │ │ │ -0002aa70: 3220 3520 2020 2020 2020 2020 2020 2020 2 5 │ │ │ │ +0002a980: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002a990: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0002a9a0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0002a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a9d0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002a9e0: 3920 3d20 6964 6561 6c20 2878 2078 2020 9 = ideal (x x │ │ │ │ +0002a9f0: 2d20 7820 7820 7820 2c20 7820 7820 2920 - x x x , x x ) │ │ │ │ +0002aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aa20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002aa30: 2020 2020 2020 2020 2020 2020 3020 3320 0 3 │ │ │ │ +0002aa40: 2020 2031 2032 2034 2020 2032 2035 2020 1 2 4 2 5 │ │ │ │ +0002aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aa70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aaa0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002aaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aac0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002aad0: 3920 3a20 4964 6561 6c20 6f66 2052 2020 9 : Ideal of R │ │ │ │ 0002aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aaf0: 207c 0a7c 6f39 203a 2049 6465 616c 206f |.|o9 : Ideal o │ │ │ │ -0002ab00: 6620 5220 2020 2020 2020 2020 2020 2020 f R │ │ │ │ -0002ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab40: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ab10: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002ab20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ab30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ab40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ab50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ab60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ab70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ab80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ab90: 2d2b 0a7c 6931 3020 3a20 5365 6772 6520 -+.|i10 : Segre │ │ │ │ -0002aba0: 4920 2020 2020 2020 2020 2020 2020 2020 I │ │ │ │ -0002abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ab60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002ab70: 3130 203a 2053 6567 7265 2049 2020 2020 10 : Segre I │ │ │ │ +0002ab80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ab90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002abb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002abc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002abd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002abe0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002abe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac30: 207c 0a7c 2020 2020 2020 2020 2032 2032 |.| 2 2 │ │ │ │ -0002ac40: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -0002ac50: 2032 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ -0002ac60: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0002ac70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac80: 207c 0a7c 6f31 3020 3d20 3732 6820 6820 |.|o10 = 72h h │ │ │ │ -0002ac90: 202d 2032 3468 2068 2020 2d20 3132 6820 - 24h h - 12h │ │ │ │ -0002aca0: 6820 202b 2034 6820 202b 2034 6820 6820 h + 4h + 4h h │ │ │ │ -0002acb0: 202b 2068 2020 2020 2020 2020 2020 2020 + h │ │ │ │ -0002acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002acd0: 207c 0a7c 2020 2020 2020 2020 2031 2032 |.| 1 2 │ │ │ │ -0002ace0: 2020 2020 2020 3120 3220 2020 2020 2031 1 2 1 │ │ │ │ -0002acf0: 2032 2020 2020 2031 2020 2020 2031 2032 2 1 1 2 │ │ │ │ -0002ad00: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0002ac00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002ac10: 2020 2020 2020 2020 3220 3220 2020 2020 2 2 │ │ │ │ +0002ac20: 2032 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +0002ac30: 2020 3220 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ +0002ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ac50: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002ac60: 3130 203d 2037 3268 2068 2020 2d20 3234 10 = 72h h - 24 │ │ │ │ +0002ac70: 6820 6820 202d 2031 3268 2068 2020 2b20 h h - 12h h + │ │ │ │ +0002ac80: 3468 2020 2b20 3468 2068 2020 2b20 6820 4h + 4h h + h │ │ │ │ +0002ac90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aca0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002acb0: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ +0002acc0: 2031 2032 2020 2020 2020 3120 3220 2020 1 2 1 2 │ │ │ │ +0002acd0: 2020 3120 2020 2020 3120 3220 2020 2032 1 1 2 2 │ │ │ │ +0002ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002acf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002ad00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ad10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002ad20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ad40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002ad50: 2020 2020 205a 5a5b 6820 2e2e 6820 5d20 ZZ[h ..h ] │ │ │ │ 0002ad60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad70: 207c 0a7c 2020 2020 2020 5a5a 5b68 202e |.| ZZ[h . │ │ │ │ -0002ad80: 2e68 205d 2020 2020 2020 2020 2020 2020 .h ] │ │ │ │ -0002ad90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ad70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ad80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ad90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002ada0: 2020 2020 2020 2020 2031 2020 2032 2020 1 2 │ │ │ │ 0002adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002adc0: 207c 0a7c 2020 2020 2020 2020 2020 3120 |.| 1 │ │ │ │ -0002add0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002adf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ade0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002adf0: 3130 203a 202d 2d2d 2d2d 2d2d 2d2d 2d20 10 : ---------- │ │ │ │ 0002ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae10: 207c 0a7c 6f31 3020 3a20 2d2d 2d2d 2d2d |.|o10 : ------ │ │ │ │ -0002ae20: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ -0002ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002ae40: 2020 2020 2020 2020 3320 2020 3320 2020 3 3 │ │ │ │ 0002ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae60: 207c 0a7c 2020 2020 2020 2020 2033 2020 |.| 3 │ │ │ │ -0002ae70: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0002ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002ae90: 2020 2020 2020 2868 202c 2068 2029 2020 (h , h ) │ │ │ │ 0002aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aeb0: 207c 0a7c 2020 2020 2020 2028 6820 2c20 |.| (h , │ │ │ │ -0002aec0: 6820 2920 2020 2020 2020 2020 2020 2020 h ) │ │ │ │ -0002aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aed0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002aee0: 2020 2020 2020 2020 3120 2020 3220 2020 1 2 │ │ │ │ 0002aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af00: 207c 0a7c 2020 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ -0002af10: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af50: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002af20: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002af30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002af40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002af50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002af60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002af80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002af90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002afa0: 2d2b 0a7c 6931 3120 3a20 7331 3d53 6567 -+.|i11 : s1=Seg │ │ │ │ -0002afb0: 7265 2841 2c49 2920 2020 2020 2020 2020 re(A,I) │ │ │ │ -0002afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002af80: 3131 203a 2073 313d 5365 6772 6528 412c 11 : s1=Segre(A, │ │ │ │ +0002af90: 4929 2020 2020 2020 2020 2020 2020 2020 I) │ │ │ │ +0002afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002afc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aff0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b040: 207c 0a7c 2020 2020 2020 2020 2032 2032 |.| 2 2 │ │ │ │ -0002b050: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -0002b060: 2032 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ -0002b070: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0002b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b090: 207c 0a7c 6f31 3120 3d20 3732 6820 6820 |.|o11 = 72h h │ │ │ │ -0002b0a0: 202d 2032 3468 2068 2020 2d20 3132 6820 - 24h h - 12h │ │ │ │ -0002b0b0: 6820 202b 2034 6820 202b 2034 6820 6820 h + 4h + 4h h │ │ │ │ -0002b0c0: 202b 2068 2020 2020 2020 2020 2020 2020 + h │ │ │ │ -0002b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b0e0: 207c 0a7c 2020 2020 2020 2020 2031 2032 |.| 1 2 │ │ │ │ -0002b0f0: 2020 2020 2020 3120 3220 2020 2020 2031 1 2 1 │ │ │ │ -0002b100: 2032 2020 2020 2031 2020 2020 2031 2032 2 1 1 2 │ │ │ │ -0002b110: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0002b010: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b020: 2020 2020 2020 2020 3220 3220 2020 2020 2 2 │ │ │ │ +0002b030: 2032 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +0002b040: 2020 3220 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ +0002b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b060: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002b070: 3131 203d 2037 3268 2068 2020 2d20 3234 11 = 72h h - 24 │ │ │ │ +0002b080: 6820 6820 202d 2031 3268 2068 2020 2b20 h h - 12h h + │ │ │ │ +0002b090: 3468 2020 2b20 3468 2068 2020 2b20 6820 4h + 4h h + h │ │ │ │ +0002b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b0b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b0c0: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ +0002b0d0: 2031 2032 2020 2020 2020 3120 3220 2020 1 2 1 2 │ │ │ │ +0002b0e0: 2020 3120 2020 2020 3120 3220 2020 2032 1 1 2 2 │ │ │ │ +0002b0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b100: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b130: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b150: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002b160: 3131 203a 2041 2020 2020 2020 2020 2020 11 : A │ │ │ │ 0002b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b180: 207c 0a7c 6f31 3120 3a20 4120 2020 2020 |.|o11 : A │ │ │ │ +0002b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002b1a0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b220: 2d2b 0a7c 6931 3220 3a20 5365 6748 6173 -+.|i12 : SegHas │ │ │ │ -0002b230: 683d 5365 6772 6528 412c 492c 4f75 7470 h=Segre(A,I,Outp │ │ │ │ -0002b240: 7574 3d3e 4861 7368 466f 726d 2920 2020 ut=>HashForm) │ │ │ │ +0002b1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002b200: 3132 203a 2053 6567 4861 7368 3d53 6567 12 : SegHash=Seg │ │ │ │ +0002b210: 7265 2841 2c49 2c4f 7574 7075 743d 3e48 re(A,I,Output=>H │ │ │ │ +0002b220: 6173 6846 6f72 6d29 2020 2020 2020 2020 ashForm) │ │ │ │ +0002b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b240: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b270: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2c0: 207c 0a7c 6f31 3220 3d20 4d75 7461 626c |.|o12 = Mutabl │ │ │ │ -0002b2d0: 6548 6173 6854 6162 6c65 7b2e 2e2e 342e eHashTable{...4. │ │ │ │ -0002b2e0: 2e2e 7d20 2020 2020 2020 2020 2020 2020 ..} │ │ │ │ +0002b290: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002b2a0: 3132 203d 204d 7574 6162 6c65 4861 7368 12 = MutableHash │ │ │ │ +0002b2b0: 5461 626c 657b 2e2e 2e34 2e2e 2e7d 2020 Table{...4...} │ │ │ │ +0002b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b2e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b310: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b360: 207c 0a7c 6f31 3220 3a20 4d75 7461 626c |.|o12 : Mutabl │ │ │ │ -0002b370: 6548 6173 6854 6162 6c65 2020 2020 2020 eHashTable │ │ │ │ -0002b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3b0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002b330: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002b340: 3132 203a 204d 7574 6162 6c65 4861 7368 12 : MutableHash │ │ │ │ +0002b350: 5461 626c 6520 2020 2020 2020 2020 2020 Table │ │ │ │ +0002b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b380: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002b390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b400: 2d2b 0a7c 6931 3320 3a20 7065 656b 2053 -+.|i13 : peek S │ │ │ │ -0002b410: 6567 4861 7368 2020 2020 2020 2020 2020 egHash │ │ │ │ -0002b420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002b3e0: 3133 203a 2070 6565 6b20 5365 6748 6173 13 : peek SegHas │ │ │ │ +0002b3f0: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0002b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b420: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b450: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4a0: 207c 0a7c 6f31 3320 3d20 4d75 7461 626c |.|o13 = Mutabl │ │ │ │ -0002b4b0: 6548 6173 6854 6162 6c65 7b47 203d 3e20 eHashTable{G => │ │ │ │ -0002b4c0: 3268 2020 2b20 6820 202b 2031 2020 2020 2h + h + 1 │ │ │ │ +0002b470: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002b480: 3133 203d 204d 7574 6162 6c65 4861 7368 13 = MutableHash │ │ │ │ +0002b490: 5461 626c 657b 4720 3d3e 2032 6820 202b Table{G => 2h + │ │ │ │ +0002b4a0: 2068 2020 2b20 3120 2020 2020 2020 2020 h + 1 │ │ │ │ +0002b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b4c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b4e0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +0002b4f0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0002b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b510: 2020 3120 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ +0002b510: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b540: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002b550: 2020 2020 2020 2020 2020 2047 6c69 7374 Glist │ │ │ │ -0002b560: 203d 3e20 7b31 2c20 3268 2020 2b20 6820 => {1, 2h + h │ │ │ │ -0002b570: 2c20 302c 2030 2c20 307d 2020 2020 2020 , 0, 0, 0} │ │ │ │ +0002b530: 2020 2020 2020 476c 6973 7420 3d3e 207b Glist => { │ │ │ │ +0002b540: 312c 2032 6820 202b 2068 202c 2030 2c20 1, 2h + h , 0, │ │ │ │ +0002b550: 302c 2030 7d20 2020 2020 2020 2020 2020 0, 0} │ │ │ │ +0002b560: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b590: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b590: 2020 2020 2031 2020 2020 3220 2020 2020 1 2 │ │ │ │ 0002b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5b0: 2020 2020 2020 2020 2020 3120 2020 2032 1 2 │ │ │ │ +0002b5b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b610: 2032 2020 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ -0002b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b630: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002b640: 2020 2020 2020 2020 2020 2053 6567 7265 Segre │ │ │ │ -0002b650: 4c69 7374 203d 3e20 7b30 2c20 302c 2034 List => {0, 0, 4 │ │ │ │ -0002b660: 6820 202b 2034 6820 6820 202b 2068 202c h + 4h h + h , │ │ │ │ -0002b670: 202d 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ -0002b680: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b6b0: 2031 2020 2020 2031 2032 2020 2020 3220 1 1 2 2 │ │ │ │ +0002b5e0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0002b5f0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0002b600: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b620: 2020 2020 2020 5365 6772 654c 6973 7420 SegreList │ │ │ │ +0002b630: 3d3e 207b 302c 2030 2c20 3468 2020 2b20 => {0, 0, 4h + │ │ │ │ +0002b640: 3468 2068 2020 2b20 6820 2c20 2d20 2020 4h h + h , - │ │ │ │ +0002b650: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b680: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +0002b690: 2020 3120 3220 2020 2032 2020 2020 2020 1 2 2 │ │ │ │ +0002b6a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b6d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002b6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b6f0: 2020 2020 2020 2032 2032 2020 2020 2020 2 2 │ │ │ │ -0002b700: 3220 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -0002b710: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002b720: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002b730: 2020 2020 2020 2020 2020 2053 6567 7265 Segre │ │ │ │ -0002b740: 203d 3e20 3732 6820 6820 202d 2032 3468 => 72h h - 24h │ │ │ │ -0002b750: 2068 2020 2d20 3132 6820 6820 202b 2034 h - 12h h + 4 │ │ │ │ -0002b760: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ -0002b770: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b790: 2020 2020 2020 2031 2032 2020 2020 2020 1 2 │ │ │ │ -0002b7a0: 3120 3220 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ -0002b7b0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0002b7c0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0002b6d0: 2020 3220 3220 2020 2020 2032 2020 2020 2 2 2 │ │ │ │ +0002b6e0: 2020 2020 2020 3220 2020 2020 3220 2020 2 2 │ │ │ │ +0002b6f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b710: 2020 2020 2020 5365 6772 6520 3d3e 2037 Segre => 7 │ │ │ │ +0002b720: 3268 2068 2020 2d20 3234 6820 6820 202d 2h h - 24h h - │ │ │ │ +0002b730: 2031 3268 2068 2020 2b20 3468 2020 2020 12h h + 4h │ │ │ │ +0002b740: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b770: 2020 3120 3220 2020 2020 2031 2032 2020 1 2 1 2 │ │ │ │ +0002b780: 2020 2020 3120 3220 2020 2020 3120 2020 1 2 1 │ │ │ │ +0002b790: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +0002b7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b810: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0002b820: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ -0002b830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0002b7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b800: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ +0002b810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b830: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002b840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b860: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b880: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b8b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b8d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002b8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b900: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b950: 207c 0a7c 2020 2032 2020 2020 2020 2020 |.| 2 │ │ │ │ -0002b960: 2020 3220 2020 2020 3220 3220 2020 2020 2 2 2 │ │ │ │ -0002b970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b9a0: 207c 0a7c 3234 6820 6820 202d 2031 3268 |.|24h h - 12h │ │ │ │ -0002b9b0: 2068 202c 2037 3268 2068 207d 2020 2020 h , 72h h } │ │ │ │ -0002b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b9f0: 207c 0a7c 2020 2031 2032 2020 2020 2020 |.| 1 2 │ │ │ │ -0002ba00: 3120 3220 2020 2020 3120 3220 2020 2020 1 2 1 2 │ │ │ │ -0002ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b920: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b930: 2020 3220 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ +0002b940: 2020 2032 2032 2020 2020 2020 2020 2020 2 2 │ │ │ │ +0002b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b970: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ +0002b980: 3468 2068 2020 2d20 3132 6820 6820 2c20 4h h - 12h h , │ │ │ │ +0002b990: 3732 6820 6820 7d20 2020 2020 2020 2020 72h h } │ │ │ │ +0002b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b9c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b9d0: 2020 3120 3220 2020 2020 2031 2032 2020 1 2 1 2 │ │ │ │ +0002b9e0: 2020 2031 2032 2020 2020 2020 2020 2020 1 2 │ │ │ │ +0002b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002ba20: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ 0002ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba40: 207c 0a7c 2020 2020 2020 2020 2020 2032 |.| 2 │ │ │ │ +0002ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ba50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba60: 2020 2020 2020 2020 2020 2020 7c0a 7c2b |.|+ │ │ │ │ +0002ba70: 2034 6820 6820 202b 2068 2020 2020 2020 4h h + h │ │ │ │ 0002ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba90: 207c 0a7c 2b20 3468 2068 2020 2b20 6820 |.|+ 4h h + h │ │ │ │ +0002ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002baa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bab0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002bac0: 2020 2031 2032 2020 2020 3220 2020 2020 1 2 2 │ │ │ │ 0002bad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bae0: 207c 0a7c 2020 2020 3120 3220 2020 2032 |.| 1 2 2 │ │ │ │ +0002bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002baf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb30: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002bb00: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002bb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bb80: 2d2b 0a7c 6931 3420 3a20 7331 3d3d 5365 -+.|i14 : s1==Se │ │ │ │ -0002bb90: 6748 6173 6823 2253 6567 7265 2220 2020 gHash#"Segre" │ │ │ │ -0002bba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002bb60: 3134 203a 2073 313d 3d53 6567 4861 7368 14 : s1==SegHash │ │ │ │ +0002bb70: 2322 5365 6772 6522 2020 2020 2020 2020 #"Segre" │ │ │ │ +0002bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bba0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002bbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bbd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bbf0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002bc00: 3134 203d 2074 7275 6520 2020 2020 2020 14 = true │ │ │ │ 0002bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc20: 207c 0a7c 6f31 3420 3d20 7472 7565 2020 |.|o14 = true │ │ │ │ +0002bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc70: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002bc40: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002bc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bcc0: 2d2b 0a0a 496e 2074 6865 2063 6173 6520 -+..In the case │ │ │ │ -0002bcd0: 7768 6572 6520 7468 6520 616d 6269 656e where the ambien │ │ │ │ -0002bce0: 7420 7370 6163 6520 6973 2061 2074 6f72 t space is a tor │ │ │ │ -0002bcf0: 6963 2076 6172 6965 7479 2077 6869 6368 ic variety which │ │ │ │ -0002bd00: 2069 7320 6e6f 7420 6120 7072 6f64 7563 is not a produc │ │ │ │ -0002bd10: 740a 6f66 2070 726f 6a65 6374 6976 6520 t.of projective │ │ │ │ -0002bd20: 7370 6163 6573 2077 6520 6d75 7374 206c spaces we must l │ │ │ │ -0002bd30: 6f61 6420 7468 6520 4e6f 726d 616c 546f oad the NormalTo │ │ │ │ -0002bd40: 7269 6356 6172 6965 7469 6573 2070 6163 ricVarieties pac │ │ │ │ -0002bd50: 6b61 6765 2061 6e64 206d 7573 740a 616c kage and must.al │ │ │ │ -0002bd60: 736f 2069 6e70 7574 2074 6865 2074 6f72 so input the tor │ │ │ │ -0002bd70: 6963 2076 6172 6965 7479 2e20 4966 2074 ic variety. If t │ │ │ │ -0002bd80: 6865 2074 6f72 6963 2076 6172 6965 7479 he toric variety │ │ │ │ -0002bd90: 2069 7320 6120 7072 6f64 7563 7420 6f66 is a product of │ │ │ │ -0002bda0: 2070 726f 6a65 6374 6976 650a 7370 6163 projective.spac │ │ │ │ -0002bdb0: 6520 6974 2069 7320 7265 636f 6d6d 656e e it is recommen │ │ │ │ -0002bdc0: 6465 6420 746f 2075 7365 2074 6865 2066 ded to use the f │ │ │ │ -0002bdd0: 6f72 6d20 6162 6f76 6520 7261 7468 6572 orm above rather │ │ │ │ -0002bde0: 2074 6861 6e20 696e 7075 7474 696e 6720 than inputting │ │ │ │ -0002bdf0: 7468 6520 746f 7269 630a 7661 7269 6574 the toric.variet │ │ │ │ -0002be00: 7920 666f 7220 6566 6669 6369 656e 6379 y for efficiency │ │ │ │ -0002be10: 2072 6561 736f 6e73 2e0a 0a2b 2d2d 2d2d reasons...+---- │ │ │ │ +0002bc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a49 ------------+..I │ │ │ │ +0002bca0: 6e20 7468 6520 6361 7365 2077 6865 7265 n the case where │ │ │ │ +0002bcb0: 2074 6865 2061 6d62 6965 6e74 2073 7061 the ambient spa │ │ │ │ +0002bcc0: 6365 2069 7320 6120 746f 7269 6320 7661 ce is a toric va │ │ │ │ +0002bcd0: 7269 6574 7920 7768 6963 6820 6973 206e riety which is n │ │ │ │ +0002bce0: 6f74 2061 2070 726f 6475 6374 0a6f 6620 ot a product.of │ │ │ │ +0002bcf0: 7072 6f6a 6563 7469 7665 2073 7061 6365 projective space │ │ │ │ +0002bd00: 7320 7765 206d 7573 7420 6c6f 6164 2074 s we must load t │ │ │ │ +0002bd10: 6865 204e 6f72 6d61 6c54 6f72 6963 5661 he NormalToricVa │ │ │ │ +0002bd20: 7269 6574 6965 7320 7061 636b 6167 6520 rieties package │ │ │ │ +0002bd30: 616e 6420 6d75 7374 0a61 6c73 6f20 696e and must.also in │ │ │ │ +0002bd40: 7075 7420 7468 6520 746f 7269 6320 7661 put the toric va │ │ │ │ +0002bd50: 7269 6574 792e 2049 6620 7468 6520 746f riety. If the to │ │ │ │ +0002bd60: 7269 6320 7661 7269 6574 7920 6973 2061 ric variety is a │ │ │ │ +0002bd70: 2070 726f 6475 6374 206f 6620 7072 6f6a product of proj │ │ │ │ +0002bd80: 6563 7469 7665 0a73 7061 6365 2069 7420 ective.space it │ │ │ │ +0002bd90: 6973 2072 6563 6f6d 6d65 6e64 6564 2074 is recommended t │ │ │ │ +0002bda0: 6f20 7573 6520 7468 6520 666f 726d 2061 o use the form a │ │ │ │ +0002bdb0: 626f 7665 2072 6174 6865 7220 7468 616e bove rather than │ │ │ │ +0002bdc0: 2069 6e70 7574 7469 6e67 2074 6865 2074 inputting the t │ │ │ │ +0002bdd0: 6f72 6963 0a76 6172 6965 7479 2066 6f72 oric.variety for │ │ │ │ +0002bde0: 2065 6666 6963 6965 6e63 7920 7265 6173 efficiency reas │ │ │ │ +0002bdf0: 6f6e 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ons...+--------- │ │ │ │ +0002be00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002be10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002be20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002be30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002be40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002be50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002be60: 2d2d 2d2d 2b0a 7c69 3135 203a 206e 6565 ----+.|i15 : nee │ │ │ │ -0002be70: 6473 5061 636b 6167 6520 224e 6f72 6d61 dsPackage "Norma │ │ │ │ -0002be80: 6c54 6f72 6963 5661 7269 6574 6965 7322 lToricVarieties" │ │ │ │ +0002be30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002be40: 0a7c 6931 3520 3a20 6e65 6564 7350 6163 .|i15 : needsPac │ │ │ │ +0002be50: 6b61 6765 2022 4e6f 726d 616c 546f 7269 kage "NormalTori │ │ │ │ +0002be60: 6356 6172 6965 7469 6573 2220 2020 2020 cVarieties" │ │ │ │ +0002be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002be80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0002be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bea0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002beb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bef0: 2020 2020 2020 2020 2020 7c0a 7c6f 3135 |.|o15 │ │ │ │ -0002bf00: 203d 204e 6f72 6d61 6c54 6f72 6963 5661 = NormalToricVa │ │ │ │ -0002bf10: 7269 6574 6965 7320 2020 2020 2020 2020 rieties │ │ │ │ -0002bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bed0: 2020 2020 207c 0a7c 6f31 3520 3d20 4e6f |.|o15 = No │ │ │ │ +0002bee0: 726d 616c 546f 7269 6356 6172 6965 7469 rmalToricVarieti │ │ │ │ +0002bef0: 6573 2020 2020 2020 2020 2020 2020 2020 es │ │ │ │ +0002bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf60: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0002bf70: 3520 3a20 5061 636b 6167 6520 2020 2020 5 : Package │ │ │ │ 0002bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf90: 7c0a 7c6f 3135 203a 2050 6163 6b61 6765 |.|o15 : Package │ │ │ │ +0002bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bfd0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002bfb0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002bfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bfd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c020: 2d2d 2d2d 2d2d 2b0a 7c69 3136 203a 2052 ------+.|i16 : R │ │ │ │ -0002c030: 686f 203d 207b 7b31 2c30 2c30 7d2c 7b30 ho = {{1,0,0},{0 │ │ │ │ -0002c040: 2c31 2c30 7d2c 7b30 2c30 2c31 7d2c 7b2d ,1,0},{0,0,1},{- │ │ │ │ -0002c050: 312c 2d31 2c30 7d2c 7b30 2c30 2c2d 317d 1,-1,0},{0,0,-1} │ │ │ │ -0002c060: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ -0002c070: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c000: 2d2b 0a7c 6931 3620 3a20 5268 6f20 3d20 -+.|i16 : Rho = │ │ │ │ +0002c010: 7b7b 312c 302c 307d 2c7b 302c 312c 307d {{1,0,0},{0,1,0} │ │ │ │ +0002c020: 2c7b 302c 302c 317d 2c7b 2d31 2c2d 312c ,{0,0,1},{-1,-1, │ │ │ │ +0002c030: 307d 2c7b 302c 302c 2d31 7d7d 2020 2020 0},{0,0,-1}} │ │ │ │ +0002c040: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002c050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0002c0c0: 3136 203d 207b 7b31 2c20 302c 2030 7d2c 16 = {{1, 0, 0}, │ │ │ │ -0002c0d0: 207b 302c 2031 2c20 307d 2c20 7b30 2c20 {0, 1, 0}, {0, │ │ │ │ -0002c0e0: 302c 2031 7d2c 207b 2d31 2c20 2d31 2c20 0, 1}, {-1, -1, │ │ │ │ -0002c0f0: 307d 2c20 7b30 2c20 302c 202d 317d 7d20 0}, {0, 0, -1}} │ │ │ │ -0002c100: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c090: 2020 2020 2020 207c 0a7c 6f31 3620 3d20 |.|o16 = │ │ │ │ +0002c0a0: 7b7b 312c 2030 2c20 307d 2c20 7b30 2c20 {{1, 0, 0}, {0, │ │ │ │ +0002c0b0: 312c 2030 7d2c 207b 302c 2030 2c20 317d 1, 0}, {0, 0, 1} │ │ │ │ +0002c0c0: 2c20 7b2d 312c 202d 312c 2030 7d2c 207b , {-1, -1, 0}, { │ │ │ │ +0002c0d0: 302c 2030 2c20 2d31 7d7d 2020 2020 2020 0, 0, -1}} │ │ │ │ +0002c0e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c120: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002c130: 6f31 3620 3a20 4c69 7374 2020 2020 2020 o16 : List │ │ │ │ 0002c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c150: 2020 7c0a 7c6f 3136 203a 204c 6973 7420 |.|o16 : List │ │ │ │ +0002c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c190: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002c170: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002c180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c1e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3137 203a --------+.|i17 : │ │ │ │ -0002c1f0: 2053 6967 6d61 203d 207b 7b30 2c31 2c32 Sigma = {{0,1,2 │ │ │ │ -0002c200: 7d2c 7b31 2c32 2c33 7d2c 7b30 2c32 2c33 },{1,2,3},{0,2,3 │ │ │ │ -0002c210: 7d2c 7b30 2c31 2c34 7d2c 7b31 2c33 2c34 },{0,1,4},{1,3,4 │ │ │ │ -0002c220: 7d2c 7b30 2c33 2c34 7d7d 2020 2020 2020 },{0,3,4}} │ │ │ │ -0002c230: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c1c0: 2d2d 2d2b 0a7c 6931 3720 3a20 5369 676d ---+.|i17 : Sigm │ │ │ │ +0002c1d0: 6120 3d20 7b7b 302c 312c 327d 2c7b 312c a = {{0,1,2},{1, │ │ │ │ +0002c1e0: 322c 337d 2c7b 302c 322c 337d 2c7b 302c 2,3},{0,2,3},{0, │ │ │ │ +0002c1f0: 312c 347d 2c7b 312c 332c 347d 2c7b 302c 1,4},{1,3,4},{0, │ │ │ │ +0002c200: 332c 347d 7d20 2020 2020 2020 2020 7c0a 3,4}} |. │ │ │ │ +0002c210: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c270: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002c280: 7c6f 3137 203d 207b 7b30 2c20 312c 2032 |o17 = {{0, 1, 2 │ │ │ │ -0002c290: 7d2c 207b 312c 2032 2c20 337d 2c20 7b30 }, {1, 2, 3}, {0 │ │ │ │ -0002c2a0: 2c20 322c 2033 7d2c 207b 302c 2031 2c20 , 2, 3}, {0, 1, │ │ │ │ -0002c2b0: 347d 2c20 7b31 2c20 332c 2034 7d2c 207b 4}, {1, 3, 4}, { │ │ │ │ -0002c2c0: 302c 2033 2c20 347d 7d7c 0a7c 2020 2020 0, 3, 4}}|.| │ │ │ │ +0002c250: 2020 2020 2020 2020 207c 0a7c 6f31 3720 |.|o17 │ │ │ │ +0002c260: 3d20 7b7b 302c 2031 2c20 327d 2c20 7b31 = {{0, 1, 2}, {1 │ │ │ │ +0002c270: 2c20 322c 2033 7d2c 207b 302c 2032 2c20 , 2, 3}, {0, 2, │ │ │ │ +0002c280: 337d 2c20 7b30 2c20 312c 2034 7d2c 207b 3}, {0, 1, 4}, { │ │ │ │ +0002c290: 312c 2033 2c20 347d 2c20 7b30 2c20 332c 1, 3, 4}, {0, 3, │ │ │ │ +0002c2a0: 2034 7d7d 7c0a 7c20 2020 2020 2020 2020 4}}|.| │ │ │ │ +0002c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c2e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c2f0: 0a7c 6f31 3720 3a20 4c69 7374 2020 2020 .|o17 : List │ │ │ │ 0002c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c310: 2020 2020 7c0a 7c6f 3137 203a 204c 6973 |.|o17 : Lis │ │ │ │ -0002c320: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -0002c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002c360: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c330: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002c340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3138 ----------+.|i18 │ │ │ │ -0002c3b0: 203a 2058 203d 206e 6f72 6d61 6c54 6f72 : X = normalTor │ │ │ │ -0002c3c0: 6963 5661 7269 6574 7928 5268 6f2c 5369 icVariety(Rho,Si │ │ │ │ -0002c3d0: 676d 612c 436f 6566 6669 6369 656e 7452 gma,CoefficientR │ │ │ │ -0002c3e0: 696e 6720 3d3e 5a5a 2f33 3237 3439 2920 ing =>ZZ/32749) │ │ │ │ -0002c3f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c380: 2d2d 2d2d 2d2b 0a7c 6931 3820 3a20 5820 -----+.|i18 : X │ │ │ │ +0002c390: 3d20 6e6f 726d 616c 546f 7269 6356 6172 = normalToricVar │ │ │ │ +0002c3a0: 6965 7479 2852 686f 2c53 6967 6d61 2c43 iety(Rho,Sigma,C │ │ │ │ +0002c3b0: 6f65 6666 6963 6965 6e74 5269 6e67 203d oefficientRing = │ │ │ │ +0002c3c0: 3e5a 5a2f 3332 3734 3929 2020 2020 2020 >ZZ/32749) │ │ │ │ +0002c3d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c410: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0002c420: 3820 3d20 5820 2020 2020 2020 2020 2020 8 = X │ │ │ │ 0002c430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c440: 7c0a 7c6f 3138 203d 2058 2020 2020 2020 |.|o18 = X │ │ │ │ +0002c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c460: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0002c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c480: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c4d0: 2020 2020 2020 7c0a 7c6f 3138 203a 204e |.|o18 : N │ │ │ │ -0002c4e0: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ -0002c4f0: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ -0002c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c520: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002c4b0: 207c 0a7c 6f31 3820 3a20 4e6f 726d 616c |.|o18 : Normal │ │ │ │ +0002c4c0: 546f 7269 6356 6172 6965 7479 2020 2020 ToricVariety │ │ │ │ +0002c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c4f0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002c500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002c570: 3139 203a 2043 6865 636b 546f 7269 6356 19 : CheckToricV │ │ │ │ -0002c580: 6172 6965 7479 5661 6c69 6428 5829 2020 arietyValid(X) │ │ │ │ -0002c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c540: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3920 3a20 -------+.|i19 : │ │ │ │ +0002c550: 4368 6563 6b54 6f72 6963 5661 7269 6574 CheckToricVariet │ │ │ │ +0002c560: 7956 616c 6964 2858 2920 2020 2020 2020 yValid(X) │ │ │ │ +0002c570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c590: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c5b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c5d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002c5e0: 6f31 3920 3d20 7472 7565 2020 2020 2020 o19 = true │ │ │ │ 0002c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c600: 2020 7c0a 7c6f 3139 203d 2074 7275 6520 |.|o19 = true │ │ │ │ +0002c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c640: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002c620: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002c630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c690: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a --------+.|i20 : │ │ │ │ -0002c6a0: 2052 3d72 696e 6728 5829 2020 2020 2020 R=ring(X) │ │ │ │ -0002c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c670: 2d2d 2d2b 0a7c 6932 3020 3a20 523d 7269 ---+.|i20 : R=ri │ │ │ │ +0002c680: 6e67 2858 2920 2020 2020 2020 2020 2020 ng(X) │ │ │ │ +0002c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c6b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002c6c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c6e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c720: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002c730: 7c6f 3230 203d 2052 2020 2020 2020 2020 |o20 = R │ │ │ │ +0002c700: 2020 2020 2020 2020 207c 0a7c 6f32 3020 |.|o20 │ │ │ │ +0002c710: 3d20 5220 2020 2020 2020 2020 2020 2020 = R │ │ │ │ +0002c720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c750: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0002c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c770: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7c0: 2020 2020 7c0a 7c6f 3230 203a 2050 6f6c |.|o20 : Pol │ │ │ │ -0002c7d0: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ -0002c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c800: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002c810: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002c790: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c7a0: 0a7c 6f32 3020 3a20 506f 6c79 6e6f 6d69 .|o20 : Polynomi │ │ │ │ +0002c7b0: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ +0002c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c7e0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002c7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c850: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3231 ----------+.|i21 │ │ │ │ -0002c860: 203a 2049 3d69 6465 616c 2852 5f30 5e34 : I=ideal(R_0^4 │ │ │ │ -0002c870: 2a52 5f31 2c52 5f30 2a52 5f33 2a52 5f34 *R_1,R_0*R_3*R_4 │ │ │ │ -0002c880: 2a52 5f32 2d52 5f32 5e32 2a52 5f30 5e32 *R_2-R_2^2*R_0^2 │ │ │ │ -0002c890: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0002c8a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c830: 2d2d 2d2d 2d2b 0a7c 6932 3120 3a20 493d -----+.|i21 : I= │ │ │ │ +0002c840: 6964 6561 6c28 525f 305e 342a 525f 312c ideal(R_0^4*R_1, │ │ │ │ +0002c850: 525f 302a 525f 332a 525f 342a 525f 322d R_0*R_3*R_4*R_2- │ │ │ │ +0002c860: 525f 325e 322a 525f 305e 3229 2020 2020 R_2^2*R_0^2) │ │ │ │ +0002c870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c880: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c8f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002c900: 2034 2020 2020 2020 2032 2032 2020 2020 4 2 2 │ │ │ │ -0002c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c930: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -0002c940: 3120 3d20 6964 6561 6c20 2878 2078 202c 1 = ideal (x x , │ │ │ │ -0002c950: 202d 2078 2078 2020 2b20 7820 7820 7820 - x x + x x x │ │ │ │ -0002c960: 7820 2920 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ -0002c970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c980: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002c990: 2020 2020 2020 2030 2031 2020 2020 2030 0 1 0 │ │ │ │ -0002c9a0: 2032 2020 2020 3020 3220 3320 3420 2020 2 0 2 3 4 │ │ │ │ +0002c8c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002c8d0: 2020 2020 2020 2020 2020 2020 3420 2020 4 │ │ │ │ +0002c8e0: 2020 2020 3220 3220 2020 2020 2020 2020 2 2 │ │ │ │ +0002c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c910: 2020 2020 2020 7c0a 7c6f 3231 203d 2069 |.|o21 = i │ │ │ │ +0002c920: 6465 616c 2028 7820 7820 2c20 2d20 7820 deal (x x , - x │ │ │ │ +0002c930: 7820 202b 2078 2078 2078 2078 2029 2020 x + x x x x ) │ │ │ │ +0002c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c960: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c970: 2020 3020 3120 2020 2020 3020 3220 2020 0 1 0 2 │ │ │ │ +0002c980: 2030 2032 2033 2034 2020 2020 2020 2020 0 2 3 4 │ │ │ │ +0002c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c9a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c9d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca10: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0002ca20: 3231 203a 2049 6465 616c 206f 6620 5220 21 : Ideal of R │ │ │ │ +0002c9f0: 2020 2020 2020 207c 0a7c 6f32 3120 3a20 |.|o21 : │ │ │ │ +0002ca00: 4964 6561 6c20 6f66 2052 2020 2020 2020 Ideal of R │ │ │ │ +0002ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002ca40: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002ca50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ca60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ca70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ca80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ca90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002caa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cab0: 2d2d 2b0a 7c69 3232 203a 2053 6567 7265 --+.|i22 : Segre │ │ │ │ -0002cac0: 2858 2c49 2920 2020 2020 2020 2020 2020 (X,I) │ │ │ │ -0002cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ca80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0002ca90: 6932 3220 3a20 5365 6772 6528 582c 4929 i22 : Segre(X,I) │ │ │ │ +0002caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cad0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 0002cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002caf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0002cb50: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -0002cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb90: 2020 207c 0a7c 6f32 3220 3d20 2d20 3732 |.|o22 = - 72 │ │ │ │ -0002cba0: 7820 7820 202b 2033 7820 202b 2038 7820 x x + 3x + 8x │ │ │ │ -0002cbb0: 7820 202b 2078 2020 2020 2020 2020 2020 x + x │ │ │ │ -0002cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cbd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002cbe0: 7c20 2020 2020 2020 2020 2020 3320 3420 | 3 4 │ │ │ │ -0002cbf0: 2020 2020 3320 2020 2020 3320 3420 2020 3 3 4 │ │ │ │ -0002cc00: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0002cb20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002cb30: 2032 2020 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ +0002cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cb60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002cb70: 7c6f 3232 203d 202d 2037 3278 2078 2020 |o22 = - 72x x │ │ │ │ +0002cb80: 2b20 3378 2020 2b20 3878 2078 2020 2b20 + 3x + 8x x + │ │ │ │ +0002cb90: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ +0002cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cbb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002cbc0: 2020 2020 2020 2033 2034 2020 2020 2033 3 4 3 │ │ │ │ +0002cbd0: 2020 2020 2033 2034 2020 2020 3320 2020 3 4 3 │ │ │ │ +0002cbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cc00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0002cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002cc80: 2020 2020 2020 2020 2020 2020 205a 5a5b ZZ[ │ │ │ │ -0002cc90: 7820 2e2e 7820 5d20 2020 2020 2020 2020 x ..x ] │ │ │ │ +0002cc40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cc50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002cc60: 2020 2020 2020 2020 5a5a 5b78 202e 2e78 ZZ[x ..x │ │ │ │ +0002cc70: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +0002cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cc90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0002cca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ccb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002ccc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002ccd0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -0002cce0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0002ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd00: 2020 2020 2020 2020 2020 7c0a 7c6f 3232 |.|o22 │ │ │ │ -0002cd10: 203a 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d : ------------- │ │ │ │ -0002cd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 ------------ │ │ │ │ -0002cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd50: 2020 2020 207c 0a7c 2020 2020 2020 2878 |.| (x │ │ │ │ -0002cd60: 2078 202c 2078 2078 2078 202c 2078 2020 x , x x x , x │ │ │ │ -0002cd70: 2d20 7820 2c20 7820 202d 2078 202c 2078 - x , x - x , x │ │ │ │ -0002cd80: 2020 2d20 7820 2920 2020 2020 2020 2020 - x ) │ │ │ │ -0002cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cda0: 7c0a 7c20 2020 2020 2020 2032 2034 2020 |.| 2 4 │ │ │ │ -0002cdb0: 2030 2031 2033 2020 2030 2020 2020 3320 0 1 3 0 3 │ │ │ │ -0002cdc0: 2020 3120 2020 2033 2020 2032 2020 2020 1 3 2 │ │ │ │ -0002cdd0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0002cde0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002ccb0: 2020 2020 2020 2030 2020 2034 2020 2020 0 4 │ │ │ │ +0002ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cce0: 2020 2020 207c 0a7c 6f32 3220 3a20 2d2d |.|o22 : -- │ │ │ │ +0002ccf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cd10: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ +0002cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cd30: 7c0a 7c20 2020 2020 2028 7820 7820 2c20 |.| (x x , │ │ │ │ +0002cd40: 7820 7820 7820 2c20 7820 202d 2078 202c x x x , x - x , │ │ │ │ +0002cd50: 2078 2020 2d20 7820 2c20 7820 202d 2078 x - x , x - x │ │ │ │ +0002cd60: 2029 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0002cd70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002cd80: 2020 2020 2020 3220 3420 2020 3020 3120 2 4 0 1 │ │ │ │ +0002cd90: 3320 2020 3020 2020 2033 2020 2031 2020 3 0 3 1 │ │ │ │ +0002cda0: 2020 3320 2020 3220 2020 2034 2020 2020 3 2 4 │ │ │ │ +0002cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cdc0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002cdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ce00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ce10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ce20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ce30: 2d2d 2d2d 2d2d 2b0a 7c69 3233 203a 2043 ------+.|i23 : C │ │ │ │ -0002ce40: 683d 546f 7269 6343 686f 7752 696e 6728 h=ToricChowRing( │ │ │ │ -0002ce50: 5829 2020 2020 2020 2020 2020 2020 2020 X) │ │ │ │ +0002ce10: 2d2b 0a7c 6932 3320 3a20 4368 3d54 6f72 -+.|i23 : Ch=Tor │ │ │ │ +0002ce20: 6963 4368 6f77 5269 6e67 2858 2920 2020 icChowRing(X) │ │ │ │ +0002ce30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ce50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ce80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002ce80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ceb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cec0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0002ced0: 3233 203d 2043 6820 2020 2020 2020 2020 23 = Ch │ │ │ │ +0002cea0: 2020 2020 2020 207c 0a7c 6f32 3320 3d20 |.|o23 = │ │ │ │ +0002ceb0: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ +0002cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cef0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf60: 2020 7c0a 7c6f 3233 203a 2051 756f 7469 |.|o23 : Quoti │ │ │ │ -0002cf70: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ -0002cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cfa0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002cf30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002cf40: 6f32 3320 3a20 5175 6f74 6965 6e74 5269 o23 : QuotientRi │ │ │ │ +0002cf50: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +0002cf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cf80: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002cf90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cfd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cff0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3234 203a --------+.|i24 : │ │ │ │ -0002d000: 2073 333d 5365 6772 6528 4368 2c58 2c49 s3=Segre(Ch,X,I │ │ │ │ -0002d010: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0002d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cfd0: 2d2d 2d2b 0a7c 6932 3420 3a20 7333 3d53 ---+.|i24 : s3=S │ │ │ │ +0002cfe0: 6567 7265 2843 682c 582c 4929 2020 2020 egre(Ch,X,I) │ │ │ │ +0002cff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d010: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002d020: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d040: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d080: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002d090: 7c20 2020 2020 2020 2020 2020 3220 2020 | 2 │ │ │ │ -0002d0a0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0002d0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0d0: 2020 2020 2020 2020 207c 0a7c 6f32 3420 |.|o24 │ │ │ │ -0002d0e0: 3d20 2d20 3732 7820 7820 202b 2033 7820 = - 72x x + 3x │ │ │ │ -0002d0f0: 202b 2038 7820 7820 202b 2078 2020 2020 + 8x x + x │ │ │ │ -0002d100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d120: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002d130: 2020 3320 3420 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ -0002d140: 3320 3420 2020 2033 2020 2020 2020 2020 3 4 3 │ │ │ │ +0002d060: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002d070: 2020 2020 2020 2032 2020 2020 2020 2032 2 2 │ │ │ │ +0002d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d0b0: 2020 2020 7c0a 7c6f 3234 203d 202d 2037 |.|o24 = - 7 │ │ │ │ +0002d0c0: 3278 2078 2020 2b20 3378 2020 2b20 3878 2x x + 3x + 8x │ │ │ │ +0002d0d0: 2078 2020 2b20 7820 2020 2020 2020 2020 x + x │ │ │ │ +0002d0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d0f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d100: 0a7c 2020 2020 2020 2020 2020 2033 2034 .| 3 4 │ │ │ │ +0002d110: 2020 2020 2033 2020 2020 2033 2034 2020 3 3 4 │ │ │ │ +0002d120: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0002d130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d140: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0002d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d160: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002d170: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d190: 2020 2020 207c 0a7c 6f32 3420 3a20 4368 |.|o24 : Ch │ │ │ │ 0002d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d1b0: 2020 2020 2020 2020 2020 7c0a 7c6f 3234 |.|o24 │ │ │ │ -0002d1c0: 203a 2043 6820 2020 2020 2020 2020 2020 : Ch │ │ │ │ +0002d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d200: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002d1e0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002d1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d250: 2b0a 0a41 6c6c 2074 6865 2065 7861 6d70 +..All the examp │ │ │ │ -0002d260: 6c65 7320 7765 7265 2064 6f6e 6520 7573 les were done us │ │ │ │ -0002d270: 696e 6720 7379 6d62 6f6c 6963 2063 6f6d ing symbolic com │ │ │ │ -0002d280: 7075 7461 7469 6f6e 7320 7769 7468 2047 putations with G │ │ │ │ -0002d290: 725c 226f 626e 6572 2062 6173 6573 2e0a r\"obner bases.. │ │ │ │ -0002d2a0: 4368 616e 6769 6e67 2074 6865 206f 7074 Changing the opt │ │ │ │ -0002d2b0: 696f 6e20 2a6e 6f74 6520 436f 6d70 4d65 ion *note CompMe │ │ │ │ -0002d2c0: 7468 6f64 3a20 436f 6d70 4d65 7468 6f64 thod: CompMethod │ │ │ │ -0002d2d0: 2c20 746f 2062 6572 7469 6e69 2077 696c , to bertini wil │ │ │ │ -0002d2e0: 6c20 646f 2074 6865 206d 6169 6e0a 636f l do the main.co │ │ │ │ -0002d2f0: 6d70 7574 6174 696f 6e73 206e 756d 6572 mputations numer │ │ │ │ -0002d300: 6963 616c 6c79 2c20 7072 6f76 6964 6564 ically, provided │ │ │ │ -0002d310: 2042 6572 7469 6e69 2069 7320 202a 6e6f Bertini is *no │ │ │ │ -0002d320: 7465 2069 6e73 7461 6c6c 6564 2061 6e64 te installed and │ │ │ │ -0002d330: 2063 6f6e 6669 6775 7265 643a 0a63 6f6e configured:.con │ │ │ │ -0002d340: 6669 6775 7269 6e67 2042 6572 7469 6e69 figuring Bertini │ │ │ │ -0002d350: 2c2e 204e 6f74 6520 7468 6174 2074 6865 ,. Note that the │ │ │ │ -0002d360: 2062 6572 7469 6e69 206f 7074 696f 6e20 bertini option │ │ │ │ -0002d370: 6973 206f 6e6c 7920 6176 6169 6c61 626c is only availabl │ │ │ │ -0002d380: 6520 666f 720a 7375 6273 6368 656d 6573 e for.subschemes │ │ │ │ -0002d390: 206f 6620 5c50 505e 6e2e 0a0a 4f62 7365 of \PP^n...Obse │ │ │ │ -0002d3a0: 7276 6520 7468 6174 2074 6865 2061 6c67 rve that the alg │ │ │ │ -0002d3b0: 6f72 6974 686d 2069 7320 6120 7072 6f62 orithm is a prob │ │ │ │ -0002d3c0: 6162 696c 6973 7469 6320 616c 676f 7269 abilistic algori │ │ │ │ -0002d3d0: 7468 6d20 616e 6420 6d61 7920 6769 7665 thm and may give │ │ │ │ -0002d3e0: 2061 2077 726f 6e67 0a61 6e73 7765 7220 a wrong.answer │ │ │ │ -0002d3f0: 7769 7468 2061 2073 6d61 6c6c 2062 7574 with a small but │ │ │ │ -0002d400: 206e 6f6e 7a65 726f 2070 726f 6261 6269 nonzero probabi │ │ │ │ -0002d410: 6c69 7479 2e20 5265 6164 206d 6f72 6520 lity. Read more │ │ │ │ -0002d420: 756e 6465 7220 2a6e 6f74 650a 7072 6f62 under *note.prob │ │ │ │ -0002d430: 6162 696c 6973 7469 6320 616c 676f 7269 abilistic algori │ │ │ │ -0002d440: 7468 6d3a 2070 726f 6261 6269 6c69 7374 thm: probabilist │ │ │ │ -0002d450: 6963 2061 6c67 6f72 6974 686d 2c2e 0a0a ic algorithm,... │ │ │ │ -0002d460: 5761 7973 2074 6f20 7573 6520 5365 6772 Ways to use Segr │ │ │ │ -0002d470: 653a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d e:.============= │ │ │ │ -0002d480: 3d3d 3d3d 3d0a 0a20 202a 2022 5365 6772 =====.. * "Segr │ │ │ │ -0002d490: 6528 4964 6561 6c29 220a 2020 2a20 2253 e(Ideal)". * "S │ │ │ │ -0002d4a0: 6567 7265 2849 6465 616c 2c53 796d 626f egre(Ideal,Symbo │ │ │ │ -0002d4b0: 6c29 220a 2020 2a20 2253 6567 7265 2851 l)". * "Segre(Q │ │ │ │ -0002d4c0: 756f 7469 656e 7452 696e 672c 4964 6561 uotientRing,Idea │ │ │ │ -0002d4d0: 6c29 220a 0a46 6f72 2074 6865 2070 726f l)"..For the pro │ │ │ │ -0002d4e0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0002d4f0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0002d500: 6f62 6a65 6374 202a 6e6f 7465 2053 6567 object *note Seg │ │ │ │ -0002d510: 7265 3a20 5365 6772 652c 2069 7320 6120 re: Segre, is a │ │ │ │ -0002d520: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ -0002d530: 6374 696f 6e20 7769 7468 206f 7074 696f ction with optio │ │ │ │ -0002d540: 6e73 3a0a 284d 6163 6175 6c61 7932 446f ns:.(Macaulay2Do │ │ │ │ -0002d550: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -0002d560: 5769 7468 4f70 7469 6f6e 732c 2e0a 0a2d WithOptions,...- │ │ │ │ +0002d220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 416c -----------+..Al │ │ │ │ +0002d230: 6c20 7468 6520 6578 616d 706c 6573 2077 l the examples w │ │ │ │ +0002d240: 6572 6520 646f 6e65 2075 7369 6e67 2073 ere done using s │ │ │ │ +0002d250: 796d 626f 6c69 6320 636f 6d70 7574 6174 ymbolic computat │ │ │ │ +0002d260: 696f 6e73 2077 6974 6820 4772 5c22 6f62 ions with Gr\"ob │ │ │ │ +0002d270: 6e65 7220 6261 7365 732e 0a43 6861 6e67 ner bases..Chang │ │ │ │ +0002d280: 696e 6720 7468 6520 6f70 7469 6f6e 202a ing the option * │ │ │ │ +0002d290: 6e6f 7465 2043 6f6d 704d 6574 686f 643a note CompMethod: │ │ │ │ +0002d2a0: 2043 6f6d 704d 6574 686f 642c 2074 6f20 CompMethod, to │ │ │ │ +0002d2b0: 6265 7274 696e 6920 7769 6c6c 2064 6f20 bertini will do │ │ │ │ +0002d2c0: 7468 6520 6d61 696e 0a63 6f6d 7075 7461 the main.computa │ │ │ │ +0002d2d0: 7469 6f6e 7320 6e75 6d65 7269 6361 6c6c tions numericall │ │ │ │ +0002d2e0: 792c 2070 726f 7669 6465 6420 4265 7274 y, provided Bert │ │ │ │ +0002d2f0: 696e 6920 6973 2020 2a6e 6f74 6520 696e ini is *note in │ │ │ │ +0002d300: 7374 616c 6c65 6420 616e 6420 636f 6e66 stalled and conf │ │ │ │ +0002d310: 6967 7572 6564 3a0a 636f 6e66 6967 7572 igured:.configur │ │ │ │ +0002d320: 696e 6720 4265 7274 696e 692c 2e20 4e6f ing Bertini,. No │ │ │ │ +0002d330: 7465 2074 6861 7420 7468 6520 6265 7274 te that the bert │ │ │ │ +0002d340: 696e 6920 6f70 7469 6f6e 2069 7320 6f6e ini option is on │ │ │ │ +0002d350: 6c79 2061 7661 696c 6162 6c65 2066 6f72 ly available for │ │ │ │ +0002d360: 0a73 7562 7363 6865 6d65 7320 6f66 205c .subschemes of \ │ │ │ │ +0002d370: 5050 5e6e 2e0a 0a4f 6273 6572 7665 2074 PP^n...Observe t │ │ │ │ +0002d380: 6861 7420 7468 6520 616c 676f 7269 7468 hat the algorith │ │ │ │ +0002d390: 6d20 6973 2061 2070 726f 6261 6269 6c69 m is a probabili │ │ │ │ +0002d3a0: 7374 6963 2061 6c67 6f72 6974 686d 2061 stic algorithm a │ │ │ │ +0002d3b0: 6e64 206d 6179 2067 6976 6520 6120 7772 nd may give a wr │ │ │ │ +0002d3c0: 6f6e 670a 616e 7377 6572 2077 6974 6820 ong.answer with │ │ │ │ +0002d3d0: 6120 736d 616c 6c20 6275 7420 6e6f 6e7a a small but nonz │ │ │ │ +0002d3e0: 6572 6f20 7072 6f62 6162 696c 6974 792e ero probability. │ │ │ │ +0002d3f0: 2052 6561 6420 6d6f 7265 2075 6e64 6572 Read more under │ │ │ │ +0002d400: 202a 6e6f 7465 0a70 726f 6261 6269 6c69 *note.probabili │ │ │ │ +0002d410: 7374 6963 2061 6c67 6f72 6974 686d 3a20 stic algorithm: │ │ │ │ +0002d420: 7072 6f62 6162 696c 6973 7469 6320 616c probabilistic al │ │ │ │ +0002d430: 676f 7269 7468 6d2c 2e0a 0a57 6179 7320 gorithm,...Ways │ │ │ │ +0002d440: 746f 2075 7365 2053 6567 7265 3a0a 3d3d to use Segre:.== │ │ │ │ +0002d450: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0002d460: 0a0a 2020 2a20 2253 6567 7265 2849 6465 .. * "Segre(Ide │ │ │ │ +0002d470: 616c 2922 0a20 202a 2022 5365 6772 6528 al)". * "Segre( │ │ │ │ +0002d480: 4964 6561 6c2c 5379 6d62 6f6c 2922 0a20 Ideal,Symbol)". │ │ │ │ +0002d490: 202a 2022 5365 6772 6528 5175 6f74 6965 * "Segre(Quotie │ │ │ │ +0002d4a0: 6e74 5269 6e67 2c49 6465 616c 2922 0a0a ntRing,Ideal)".. │ │ │ │ +0002d4b0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +0002d4c0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +0002d4d0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +0002d4e0: 7420 2a6e 6f74 6520 5365 6772 653a 2053 t *note Segre: S │ │ │ │ +0002d4f0: 6567 7265 2c20 6973 2061 202a 6e6f 7465 egre, is a *note │ │ │ │ +0002d500: 206d 6574 686f 6420 6675 6e63 7469 6f6e method function │ │ │ │ +0002d510: 2077 6974 6820 6f70 7469 6f6e 733a 0a28 with options:.( │ │ │ │ +0002d520: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ +0002d530: 686f 6446 756e 6374 696f 6e57 6974 684f hodFunctionWithO │ │ │ │ +0002d540: 7074 696f 6e73 2c2e 0a0a 2d2d 2d2d 2d2d ptions,...------ │ │ │ │ +0002d550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -0002d5c0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -0002d5d0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -0002d5e0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -0002d5f0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -0002d600: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -0002d610: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -0002d620: 6b61 6765 732f 0a43 6861 7261 6374 6572 kages/.Character │ │ │ │ -0002d630: 6973 7469 6343 6c61 7373 6573 2e6d 323a isticClasses.m2: │ │ │ │ -0002d640: 3137 3633 3a30 2e0a 1f0a 4669 6c65 3a20 1763:0....File: │ │ │ │ -0002d650: 4368 6172 6163 7465 7269 7374 6963 436c CharacteristicCl │ │ │ │ -0002d660: 6173 7365 732e 696e 666f 2c20 4e6f 6465 asses.info, Node │ │ │ │ -0002d670: 3a20 546f 7269 6343 686f 7752 696e 672c : ToricChowRing, │ │ │ │ -0002d680: 2050 7265 763a 2053 6567 7265 2c20 5570 Prev: Segre, Up │ │ │ │ -0002d690: 3a20 546f 700a 0a54 6f72 6963 4368 6f77 : Top..ToricChow │ │ │ │ -0002d6a0: 5269 6e67 202d 2d20 436f 6d70 7574 6573 Ring -- Computes │ │ │ │ -0002d6b0: 2074 6865 2043 686f 7720 7269 6e67 206f the Chow ring o │ │ │ │ -0002d6c0: 6620 6120 6e6f 726d 616c 2074 6f72 6963 f a normal toric │ │ │ │ -0002d6d0: 2076 6172 6965 7479 0a2a 2a2a 2a2a 2a2a variety.******* │ │ │ │ +0002d590: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +0002d5a0: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +0002d5b0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +0002d5c0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +0002d5d0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +0002d5e0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +0002d5f0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +0002d600: 2f0a 4368 6172 6163 7465 7269 7374 6963 /.Characteristic │ │ │ │ +0002d610: 436c 6173 7365 732e 6d32 3a31 3736 333a Classes.m2:1763: │ │ │ │ +0002d620: 302e 0a1f 0a46 696c 653a 2043 6861 7261 0....File: Chara │ │ │ │ +0002d630: 6374 6572 6973 7469 6343 6c61 7373 6573 cteristicClasses │ │ │ │ +0002d640: 2e69 6e66 6f2c 204e 6f64 653a 2054 6f72 .info, Node: Tor │ │ │ │ +0002d650: 6963 4368 6f77 5269 6e67 2c20 5072 6576 icChowRing, Prev │ │ │ │ +0002d660: 3a20 5365 6772 652c 2055 703a 2054 6f70 : Segre, Up: Top │ │ │ │ +0002d670: 0a0a 546f 7269 6343 686f 7752 696e 6720 ..ToricChowRing │ │ │ │ +0002d680: 2d2d 2043 6f6d 7075 7465 7320 7468 6520 -- Computes the │ │ │ │ +0002d690: 4368 6f77 2072 696e 6720 6f66 2061 206e Chow ring of a n │ │ │ │ +0002d6a0: 6f72 6d61 6c20 746f 7269 6320 7661 7269 ormal toric vari │ │ │ │ +0002d6b0: 6574 790a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ety.************ │ │ │ │ +0002d6c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002d6d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002d6e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002d6f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002d700: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002d710: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -0002d720: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -0002d730: 546f 7269 6343 686f 7752 696e 6720 580a ToricChowRing X. │ │ │ │ -0002d740: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -0002d750: 2020 2a20 522c 2061 202a 6e6f 7465 206e * R, a *note n │ │ │ │ -0002d760: 6f72 6d61 6c20 746f 7269 6320 7661 7269 ormal toric vari │ │ │ │ -0002d770: 6574 793a 0a20 2020 2020 2020 2028 4e6f ety:. (No │ │ │ │ -0002d780: 726d 616c 546f 7269 6356 6172 6965 7469 rmalToricVarieti │ │ │ │ -0002d790: 6573 294e 6f72 6d61 6c54 6f72 6963 5661 es)NormalToricVa │ │ │ │ -0002d7a0: 7269 6574 792c 2c20 4120 6e6f 726d 616c riety,, A normal │ │ │ │ -0002d7b0: 2074 6f72 6963 2076 6172 6965 7479 0a20 toric variety. │ │ │ │ -0002d7c0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -0002d7d0: 2020 2a20 6120 2a6e 6f74 6520 7175 6f74 * a *note quot │ │ │ │ -0002d7e0: 6965 6e74 2072 696e 673a 2028 4d61 6361 ient ring: (Maca │ │ │ │ -0002d7f0: 756c 6179 3244 6f63 2951 756f 7469 656e ulay2Doc)Quotien │ │ │ │ -0002d800: 7452 696e 672c 2c20 0a0a 4465 7363 7269 tRing,, ..Descri │ │ │ │ -0002d810: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -0002d820: 3d0a 0a4c 6574 2058 2062 6520 6120 746f =..Let X be a to │ │ │ │ -0002d830: 7269 6320 7661 7269 6574 7920 7769 7468 ric variety with │ │ │ │ -0002d840: 2074 6f74 616c 2063 6f6f 7264 696e 6174 total coordinat │ │ │ │ -0002d850: 6520 7269 6e67 2028 436f 7820 7269 6e67 e ring (Cox ring │ │ │ │ -0002d860: 2920 522e 2054 6869 7320 6d65 7468 6f64 ) R. This method │ │ │ │ -0002d870: 0a63 6f6d 7075 7465 7320 7468 6520 4368 .computes the Ch │ │ │ │ -0002d880: 6f77 2072 696e 6720 2043 686f 7720 7269 ow ring Chow ri │ │ │ │ -0002d890: 6e67 2043 683d 522f 2853 522b 4c52 2920 ng Ch=R/(SR+LR) │ │ │ │ -0002d8a0: 6f66 2058 3b20 6865 7265 2053 5220 6973 of X; here SR is │ │ │ │ -0002d8b0: 2074 6865 0a53 7461 6e6c 6579 2d52 6569 the.Stanley-Rei │ │ │ │ -0002d8c0: 736e 6572 2069 6465 616c 206f 6620 7468 sner ideal of th │ │ │ │ -0002d8d0: 6520 636f 7272 6573 706f 6e64 696e 6720 e corresponding │ │ │ │ -0002d8e0: 6661 6e20 616e 6420 4c52 2069 7320 7468 fan and LR is th │ │ │ │ -0002d8f0: 6520 6964 6561 6c20 6f66 206c 696e 6561 e ideal of linea │ │ │ │ -0002d900: 720a 7265 6c61 7469 6f6e 7320 616d 6f75 r.relations amou │ │ │ │ -0002d910: 6e74 2074 6865 2072 6179 732e 2049 7420 nt the rays. It │ │ │ │ -0002d920: 6973 206e 6565 6465 6420 666f 7220 696e is needed for in │ │ │ │ -0002d930: 7075 7420 696e 746f 2074 6865 206d 6574 put into the met │ │ │ │ -0002d940: 686f 6473 202a 6e6f 7465 2053 6567 7265 hods *note Segre │ │ │ │ -0002d950: 3a0a 5365 6772 652c 2c20 2a6e 6f74 6520 :.Segre,, *note │ │ │ │ -0002d960: 4368 6572 6e3a 2043 6865 726e 2c20 616e Chern: Chern, an │ │ │ │ -0002d970: 6420 2a6e 6f74 6520 4353 4d3a 2043 534d d *note CSM: CSM │ │ │ │ -0002d980: 2c20 696e 2074 6865 2063 6173 6573 2077 , in the cases w │ │ │ │ -0002d990: 6865 7265 2061 2074 6f72 6963 0a76 6172 here a toric.var │ │ │ │ -0002d9a0: 6965 7479 2069 7320 616c 736f 2069 6e70 iety is also inp │ │ │ │ -0002d9b0: 7574 2074 6f20 656e 7375 7265 2074 6861 ut to ensure tha │ │ │ │ -0002d9c0: 7420 7468 6573 6520 6d65 7468 6f64 7320 t these methods │ │ │ │ -0002d9d0: 7265 7475 726e 2072 6573 756c 7473 2069 return results i │ │ │ │ -0002d9e0: 6e20 7468 6520 7361 6d65 0a72 696e 672e n the same.ring. │ │ │ │ -0002d9f0: 2057 6520 6769 7665 2061 6e20 6578 616d We give an exam │ │ │ │ -0002da00: 706c 6520 6f66 2074 6865 2075 7365 206f ple of the use o │ │ │ │ -0002da10: 6620 7468 6973 206d 6574 686f 6420 746f f this method to │ │ │ │ -0002da20: 2077 6f72 6b20 7769 7468 2065 6c65 6d65 work with eleme │ │ │ │ -0002da30: 6e74 7320 6f66 2074 6865 0a43 686f 7720 nts of the.Chow │ │ │ │ -0002da40: 7269 6e67 206f 6620 6120 746f 7269 6320 ring of a toric │ │ │ │ -0002da50: 7661 7269 6574 790a 0a2b 2d2d 2d2d 2d2d variety..+------ │ │ │ │ +0002d6f0: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ +0002d700: 3a20 0a20 2020 2020 2020 2054 6f72 6963 : . Toric │ │ │ │ +0002d710: 4368 6f77 5269 6e67 2058 0a20 202a 2049 ChowRing X. * I │ │ │ │ +0002d720: 6e70 7574 733a 0a20 2020 2020 202a 2052 nputs:. * R │ │ │ │ +0002d730: 2c20 6120 2a6e 6f74 6520 6e6f 726d 616c , a *note normal │ │ │ │ +0002d740: 2074 6f72 6963 2076 6172 6965 7479 3a0a toric variety:. │ │ │ │ +0002d750: 2020 2020 2020 2020 284e 6f72 6d61 6c54 (NormalT │ │ │ │ +0002d760: 6f72 6963 5661 7269 6574 6965 7329 4e6f oricVarieties)No │ │ │ │ +0002d770: 726d 616c 546f 7269 6356 6172 6965 7479 rmalToricVariety │ │ │ │ +0002d780: 2c2c 2041 206e 6f72 6d61 6c20 746f 7269 ,, A normal tori │ │ │ │ +0002d790: 6320 7661 7269 6574 790a 2020 2a20 4f75 c variety. * Ou │ │ │ │ +0002d7a0: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ +0002d7b0: 202a 6e6f 7465 2071 756f 7469 656e 7420 *note quotient │ │ │ │ +0002d7c0: 7269 6e67 3a20 284d 6163 6175 6c61 7932 ring: (Macaulay2 │ │ │ │ +0002d7d0: 446f 6329 5175 6f74 6965 6e74 5269 6e67 Doc)QuotientRing │ │ │ │ +0002d7e0: 2c2c 200a 0a44 6573 6372 6970 7469 6f6e ,, ..Description │ │ │ │ +0002d7f0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4c65 .===========..Le │ │ │ │ +0002d800: 7420 5820 6265 2061 2074 6f72 6963 2076 t X be a toric v │ │ │ │ +0002d810: 6172 6965 7479 2077 6974 6820 746f 7461 ariety with tota │ │ │ │ +0002d820: 6c20 636f 6f72 6469 6e61 7465 2072 696e l coordinate rin │ │ │ │ +0002d830: 6720 2843 6f78 2072 696e 6729 2052 2e20 g (Cox ring) R. │ │ │ │ +0002d840: 5468 6973 206d 6574 686f 640a 636f 6d70 This method.comp │ │ │ │ +0002d850: 7574 6573 2074 6865 2043 686f 7720 7269 utes the Chow ri │ │ │ │ +0002d860: 6e67 2020 4368 6f77 2072 696e 6720 4368 ng Chow ring Ch │ │ │ │ +0002d870: 3d52 2f28 5352 2b4c 5229 206f 6620 583b =R/(SR+LR) of X; │ │ │ │ +0002d880: 2068 6572 6520 5352 2069 7320 7468 650a here SR is the. │ │ │ │ +0002d890: 5374 616e 6c65 792d 5265 6973 6e65 7220 Stanley-Reisner │ │ │ │ +0002d8a0: 6964 6561 6c20 6f66 2074 6865 2063 6f72 ideal of the cor │ │ │ │ +0002d8b0: 7265 7370 6f6e 6469 6e67 2066 616e 2061 responding fan a │ │ │ │ +0002d8c0: 6e64 204c 5220 6973 2074 6865 2069 6465 nd LR is the ide │ │ │ │ +0002d8d0: 616c 206f 6620 6c69 6e65 6172 0a72 656c al of linear.rel │ │ │ │ +0002d8e0: 6174 696f 6e73 2061 6d6f 756e 7420 7468 ations amount th │ │ │ │ +0002d8f0: 6520 7261 7973 2e20 4974 2069 7320 6e65 e rays. It is ne │ │ │ │ +0002d900: 6564 6564 2066 6f72 2069 6e70 7574 2069 eded for input i │ │ │ │ +0002d910: 6e74 6f20 7468 6520 6d65 7468 6f64 7320 nto the methods │ │ │ │ +0002d920: 2a6e 6f74 6520 5365 6772 653a 0a53 6567 *note Segre:.Seg │ │ │ │ +0002d930: 7265 2c2c 202a 6e6f 7465 2043 6865 726e re,, *note Chern │ │ │ │ +0002d940: 3a20 4368 6572 6e2c 2061 6e64 202a 6e6f : Chern, and *no │ │ │ │ +0002d950: 7465 2043 534d 3a20 4353 4d2c 2069 6e20 te CSM: CSM, in │ │ │ │ +0002d960: 7468 6520 6361 7365 7320 7768 6572 6520 the cases where │ │ │ │ +0002d970: 6120 746f 7269 630a 7661 7269 6574 7920 a toric.variety │ │ │ │ +0002d980: 6973 2061 6c73 6f20 696e 7075 7420 746f is also input to │ │ │ │ +0002d990: 2065 6e73 7572 6520 7468 6174 2074 6865 ensure that the │ │ │ │ +0002d9a0: 7365 206d 6574 686f 6473 2072 6574 7572 se methods retur │ │ │ │ +0002d9b0: 6e20 7265 7375 6c74 7320 696e 2074 6865 n results in the │ │ │ │ +0002d9c0: 2073 616d 650a 7269 6e67 2e20 5765 2067 same.ring. We g │ │ │ │ +0002d9d0: 6976 6520 616e 2065 7861 6d70 6c65 206f ive an example o │ │ │ │ +0002d9e0: 6620 7468 6520 7573 6520 6f66 2074 6869 f the use of thi │ │ │ │ +0002d9f0: 7320 6d65 7468 6f64 2074 6f20 776f 726b s method to work │ │ │ │ +0002da00: 2077 6974 6820 656c 656d 656e 7473 206f with elements o │ │ │ │ +0002da10: 6620 7468 650a 4368 6f77 2072 696e 6720 f the.Chow ring │ │ │ │ +0002da20: 6f66 2061 2074 6f72 6963 2076 6172 6965 of a toric varie │ │ │ │ +0002da30: 7479 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ty..+----------- │ │ │ │ +0002da40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002da50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002da60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002da70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002da80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002da90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002daa0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 206e -------+.|i1 : n │ │ │ │ -0002dab0: 6565 6473 5061 636b 6167 6520 224e 6f72 eedsPackage "Nor │ │ │ │ -0002dac0: 6d61 6c54 6f72 6963 5661 7269 6574 6965 malToricVarietie │ │ │ │ -0002dad0: 7322 2020 2020 2020 2020 2020 2020 2020 s" │ │ │ │ +0002da80: 2d2d 2b0a 7c69 3120 3a20 6e65 6564 7350 --+.|i1 : needsP │ │ │ │ +0002da90: 6163 6b61 6765 2022 4e6f 726d 616c 546f ackage "NormalTo │ │ │ │ +0002daa0: 7269 6356 6172 6965 7469 6573 2220 2020 ricVarieties" │ │ │ │ +0002dab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dad0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002daf0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002daf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002db00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db40: 2020 2020 2020 207c 0a7c 6f31 203d 204e |.|o1 = N │ │ │ │ -0002db50: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ -0002db60: 6965 7320 2020 2020 2020 2020 2020 2020 ies │ │ │ │ -0002db70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002db20: 2020 7c0a 7c6f 3120 3d20 4e6f 726d 616c |.|o1 = Normal │ │ │ │ +0002db30: 546f 7269 6356 6172 6965 7469 6573 2020 ToricVarieties │ │ │ │ +0002db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002db70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002db90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbe0: 2020 2020 2020 207c 0a7c 6f31 203a 2050 |.|o1 : P │ │ │ │ -0002dbf0: 6163 6b61 6765 2020 2020 2020 2020 2020 ackage │ │ │ │ +0002dbc0: 2020 7c0a 7c6f 3120 3a20 5061 636b 6167 |.|o1 : Packag │ │ │ │ +0002dbd0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +0002dbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc30: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002dc10: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002dc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002dc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002dc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dc80: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2052 -------+.|i2 : R │ │ │ │ -0002dc90: 686f 203d 207b 7b31 2c30 2c30 7d2c 7b30 ho = {{1,0,0},{0 │ │ │ │ -0002dca0: 2c31 2c30 7d2c 7b30 2c30 2c31 7d2c 7b2d ,1,0},{0,0,1},{- │ │ │ │ -0002dcb0: 312c 2d31 2c30 7d2c 7b30 2c30 2c2d 317d 1,-1,0},{0,0,-1} │ │ │ │ -0002dcc0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ -0002dcd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002dc60: 2d2d 2b0a 7c69 3220 3a20 5268 6f20 3d20 --+.|i2 : Rho = │ │ │ │ +0002dc70: 7b7b 312c 302c 307d 2c7b 302c 312c 307d {{1,0,0},{0,1,0} │ │ │ │ +0002dc80: 2c7b 302c 302c 317d 2c7b 2d31 2c2d 312c ,{0,0,1},{-1,-1, │ │ │ │ +0002dc90: 307d 2c7b 302c 302c 2d31 7d7d 2020 2020 0},{0,0,-1}} │ │ │ │ +0002dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dcb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd20: 2020 2020 2020 207c 0a7c 6f32 203d 207b |.|o2 = { │ │ │ │ -0002dd30: 7b31 2c20 302c 2030 7d2c 207b 302c 2031 {1, 0, 0}, {0, 1 │ │ │ │ -0002dd40: 2c20 307d 2c20 7b30 2c20 302c 2031 7d2c , 0}, {0, 0, 1}, │ │ │ │ -0002dd50: 207b 2d31 2c20 2d31 2c20 307d 2c20 7b30 {-1, -1, 0}, {0 │ │ │ │ -0002dd60: 2c20 302c 202d 317d 7d20 2020 2020 2020 , 0, -1}} │ │ │ │ -0002dd70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002dd00: 2020 7c0a 7c6f 3220 3d20 7b7b 312c 2030 |.|o2 = {{1, 0 │ │ │ │ +0002dd10: 2c20 307d 2c20 7b30 2c20 312c 2030 7d2c , 0}, {0, 1, 0}, │ │ │ │ +0002dd20: 207b 302c 2030 2c20 317d 2c20 7b2d 312c {0, 0, 1}, {-1, │ │ │ │ +0002dd30: 202d 312c 2030 7d2c 207b 302c 2030 2c20 -1, 0}, {0, 0, │ │ │ │ +0002dd40: 2d31 7d7d 2020 2020 2020 2020 2020 2020 -1}} │ │ │ │ +0002dd50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dda0: 2020 7c0a 7c6f 3220 3a20 4c69 7374 2020 |.|o2 : List │ │ │ │ 0002ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ddc0: 2020 2020 2020 207c 0a7c 6f32 203a 204c |.|o2 : L │ │ │ │ -0002ddd0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +0002ddc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de10: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002ddf0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002de00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002de10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002de20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002de30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de60: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2053 -------+.|i3 : S │ │ │ │ -0002de70: 6967 6d61 203d 207b 7b30 2c31 2c32 7d2c igma = {{0,1,2}, │ │ │ │ -0002de80: 7b31 2c32 2c33 7d2c 7b30 2c32 2c33 7d2c {1,2,3},{0,2,3}, │ │ │ │ -0002de90: 7b30 2c31 2c34 7d2c 7b31 2c33 2c34 7d2c {0,1,4},{1,3,4}, │ │ │ │ -0002dea0: 7b30 2c33 2c34 7d7d 2020 2020 2020 2020 {0,3,4}} │ │ │ │ -0002deb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002de40: 2d2d 2b0a 7c69 3320 3a20 5369 676d 6120 --+.|i3 : Sigma │ │ │ │ +0002de50: 3d20 7b7b 302c 312c 327d 2c7b 312c 322c = {{0,1,2},{1,2, │ │ │ │ +0002de60: 337d 2c7b 302c 322c 337d 2c7b 302c 312c 3},{0,2,3},{0,1, │ │ │ │ +0002de70: 347d 2c7b 312c 332c 347d 2c7b 302c 332c 4},{1,3,4},{0,3, │ │ │ │ +0002de80: 347d 7d20 2020 2020 2020 2020 2020 2020 4}} │ │ │ │ +0002de90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002deb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df00: 2020 2020 2020 207c 0a7c 6f33 203d 207b |.|o3 = { │ │ │ │ -0002df10: 7b30 2c20 312c 2032 7d2c 207b 312c 2032 {0, 1, 2}, {1, 2 │ │ │ │ -0002df20: 2c20 337d 2c20 7b30 2c20 322c 2033 7d2c , 3}, {0, 2, 3}, │ │ │ │ -0002df30: 207b 302c 2031 2c20 347d 2c20 7b31 2c20 {0, 1, 4}, {1, │ │ │ │ -0002df40: 332c 2034 7d2c 207b 302c 2033 2c20 347d 3, 4}, {0, 3, 4} │ │ │ │ -0002df50: 7d20 2020 2020 207c 0a7c 2020 2020 2020 } |.| │ │ │ │ +0002dee0: 2020 7c0a 7c6f 3320 3d20 7b7b 302c 2031 |.|o3 = {{0, 1 │ │ │ │ +0002def0: 2c20 327d 2c20 7b31 2c20 322c 2033 7d2c , 2}, {1, 2, 3}, │ │ │ │ +0002df00: 207b 302c 2032 2c20 337d 2c20 7b30 2c20 {0, 2, 3}, {0, │ │ │ │ +0002df10: 312c 2034 7d2c 207b 312c 2033 2c20 347d 1, 4}, {1, 3, 4} │ │ │ │ +0002df20: 2c20 7b30 2c20 332c 2034 7d7d 2020 2020 , {0, 3, 4}} │ │ │ │ +0002df30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002df80: 2020 7c0a 7c6f 3320 3a20 4c69 7374 2020 |.|o3 : List │ │ │ │ 0002df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dfa0: 2020 2020 2020 207c 0a7c 6f33 203a 204c |.|o3 : L │ │ │ │ -0002dfb0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +0002dfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dff0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002dfd0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002dfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e040: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2058 -------+.|i4 : X │ │ │ │ -0002e050: 203d 206e 6f72 6d61 6c54 6f72 6963 5661 = normalToricVa │ │ │ │ -0002e060: 7269 6574 7928 5268 6f2c 5369 676d 612c riety(Rho,Sigma, │ │ │ │ -0002e070: 436f 6566 6669 6369 656e 7452 696e 6720 CoefficientRing │ │ │ │ -0002e080: 3d3e 5a5a 2f33 3237 3439 2920 2020 2020 =>ZZ/32749) │ │ │ │ -0002e090: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e020: 2d2d 2b0a 7c69 3420 3a20 5820 3d20 6e6f --+.|i4 : X = no │ │ │ │ +0002e030: 726d 616c 546f 7269 6356 6172 6965 7479 rmalToricVariety │ │ │ │ +0002e040: 2852 686f 2c53 6967 6d61 2c43 6f65 6666 (Rho,Sigma,Coeff │ │ │ │ +0002e050: 6963 6965 6e74 5269 6e67 203d 3e5a 5a2f icientRing =>ZZ/ │ │ │ │ +0002e060: 3332 3734 3929 2020 2020 2020 2020 2020 32749) │ │ │ │ +0002e070: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e0c0: 2020 7c0a 7c6f 3420 3d20 5820 2020 2020 |.|o4 = X │ │ │ │ 0002e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e0e0: 2020 2020 2020 207c 0a7c 6f34 203d 2058 |.|o4 = X │ │ │ │ +0002e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e110: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e130: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e180: 2020 2020 2020 207c 0a7c 6f34 203a 204e |.|o4 : N │ │ │ │ -0002e190: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ -0002e1a0: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ -0002e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e1d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002e160: 2020 7c0a 7c6f 3420 3a20 4e6f 726d 616c |.|o4 : Normal │ │ │ │ +0002e170: 546f 7269 6356 6172 6965 7479 2020 2020 ToricVariety │ │ │ │ +0002e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e1b0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002e1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e220: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2052 -------+.|i5 : R │ │ │ │ -0002e230: 3d72 696e 6720 5820 2020 2020 2020 2020 =ring X │ │ │ │ +0002e200: 2d2d 2b0a 7c69 3520 3a20 523d 7269 6e67 --+.|i5 : R=ring │ │ │ │ +0002e210: 2058 2020 2020 2020 2020 2020 2020 2020 X │ │ │ │ +0002e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e250: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e270: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e2a0: 2020 7c0a 7c6f 3520 3d20 5220 2020 2020 |.|o5 = R │ │ │ │ 0002e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e2c0: 2020 2020 2020 207c 0a7c 6f35 203d 2052 |.|o5 = R │ │ │ │ +0002e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e2f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e310: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e360: 2020 2020 2020 207c 0a7c 6f35 203a 2050 |.|o5 : P │ │ │ │ -0002e370: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +0002e340: 2020 7c0a 7c6f 3520 3a20 506f 6c79 6e6f |.|o5 : Polyno │ │ │ │ +0002e350: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ +0002e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e3b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002e390: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002e3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e400: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2043 -------+.|i6 : C │ │ │ │ -0002e410: 683d 546f 7269 6343 686f 7752 696e 6728 h=ToricChowRing( │ │ │ │ -0002e420: 5829 2020 2020 2020 2020 2020 2020 2020 X) │ │ │ │ -0002e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e3e0: 2d2d 2b0a 7c69 3620 3a20 4368 3d54 6f72 --+.|i6 : Ch=Tor │ │ │ │ +0002e3f0: 6963 4368 6f77 5269 6e67 2858 2920 2020 icChowRing(X) │ │ │ │ +0002e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e430: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e450: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e480: 2020 7c0a 7c6f 3620 3d20 4368 2020 2020 |.|o6 = Ch │ │ │ │ 0002e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e4a0: 2020 2020 2020 207c 0a7c 6f36 203d 2043 |.|o6 = C │ │ │ │ -0002e4b0: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0002e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e4d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e4f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e540: 2020 2020 2020 207c 0a7c 6f36 203a 2051 |.|o6 : Q │ │ │ │ -0002e550: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +0002e520: 2020 7c0a 7c6f 3620 3a20 5175 6f74 6965 |.|o6 : Quotie │ │ │ │ +0002e530: 6e74 5269 6e67 2020 2020 2020 2020 2020 ntRing │ │ │ │ +0002e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e590: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002e570: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002e580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e5e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2064 -------+.|i7 : d │ │ │ │ -0002e5f0: 6573 6372 6962 6520 4368 2020 2020 2020 escribe Ch │ │ │ │ +0002e5c0: 2d2d 2b0a 7c69 3720 3a20 6465 7363 7269 --+.|i7 : descri │ │ │ │ +0002e5d0: 6265 2043 6820 2020 2020 2020 2020 2020 be Ch │ │ │ │ +0002e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e610: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e630: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e680: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002e690: 2020 2020 2020 2020 2020 2020 2020 205a Z │ │ │ │ -0002e6a0: 5a5b 7820 2e2e 7820 5d20 2020 2020 2020 Z[x ..x ] │ │ │ │ -0002e6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e6d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e660: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002e670: 2020 2020 2020 2020 2020 5a5a 5b78 202e ZZ[x . │ │ │ │ +0002e680: 2e78 205d 2020 2020 2020 2020 2020 2020 .x ] │ │ │ │ +0002e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e6b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002e6c0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +0002e6d0: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 0002e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e6f0: 2020 2030 2020 2034 2020 2020 2020 2020 0 4 │ │ │ │ -0002e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e720: 2020 2020 2020 207c 0a7c 6f37 203d 202d |.|o7 = - │ │ │ │ -0002e730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e750: 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 2020 -------- │ │ │ │ -0002e760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e770: 2020 2020 2020 207c 0a7c 2020 2020 2028 |.| ( │ │ │ │ -0002e780: 7820 7820 2c20 7820 7820 7820 2c20 7820 x x , x x x , x │ │ │ │ -0002e790: 202d 2078 202c 2078 2020 2d20 7820 2c20 - x , x - x , │ │ │ │ -0002e7a0: 7820 202d 2078 2029 2020 2020 2020 2020 x - x ) │ │ │ │ -0002e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e7c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002e7d0: 2032 2034 2020 2030 2031 2033 2020 2030 2 4 0 1 3 0 │ │ │ │ -0002e7e0: 2020 2020 3320 2020 3120 2020 2033 2020 3 1 3 │ │ │ │ -0002e7f0: 2032 2020 2020 3420 2020 2020 2020 2020 2 4 │ │ │ │ -0002e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e810: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e700: 2020 7c0a 7c6f 3720 3d20 2d2d 2d2d 2d2d |.|o7 = ------ │ │ │ │ +0002e710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e730: 2d2d 2d20 2020 2020 2020 2020 2020 2020 --- │ │ │ │ +0002e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e750: 2020 7c0a 7c20 2020 2020 2878 2078 202c |.| (x x , │ │ │ │ +0002e760: 2078 2078 2078 202c 2078 2020 2d20 7820 x x x , x - x │ │ │ │ +0002e770: 2c20 7820 202d 2078 202c 2078 2020 2d20 , x - x , x - │ │ │ │ +0002e780: 7820 2920 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ +0002e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e7a0: 2020 7c0a 7c20 2020 2020 2020 3220 3420 |.| 2 4 │ │ │ │ +0002e7b0: 2020 3020 3120 3320 2020 3020 2020 2033 0 1 3 0 3 │ │ │ │ +0002e7c0: 2020 2031 2020 2020 3320 2020 3220 2020 1 3 2 │ │ │ │ +0002e7d0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0002e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e7f0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002e800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e860: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2072 -------+.|i8 : r │ │ │ │ -0002e870: 3d67 656e 7320 5220 2020 2020 2020 2020 =gens R │ │ │ │ +0002e840: 2d2d 2b0a 7c69 3820 3a20 723d 6765 6e73 --+.|i8 : r=gens │ │ │ │ +0002e850: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0002e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e8b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e900: 2020 2020 2020 207c 0a7c 6f38 203d 207b |.|o8 = { │ │ │ │ -0002e910: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ -0002e920: 7820 7d20 2020 2020 2020 2020 2020 2020 x } │ │ │ │ -0002e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e950: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002e960: 2030 2020 2031 2020 2032 2020 2033 2020 0 1 2 3 │ │ │ │ -0002e970: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0002e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e8e0: 2020 7c0a 7c6f 3820 3d20 7b78 202c 2078 |.|o8 = {x , x │ │ │ │ +0002e8f0: 202c 2078 202c 2078 202c 2078 207d 2020 , x , x , x } │ │ │ │ +0002e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e930: 2020 7c0a 7c20 2020 2020 2020 3020 2020 |.| 0 │ │ │ │ +0002e940: 3120 2020 3220 2020 3320 2020 3420 2020 1 2 3 4 │ │ │ │ +0002e950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e980: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002e990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e9a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e9d0: 2020 7c0a 7c6f 3820 3a20 4c69 7374 2020 |.|o8 : List │ │ │ │ 0002e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e9f0: 2020 2020 2020 207c 0a7c 6f38 203a 204c |.|o8 : L │ │ │ │ -0002ea00: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +0002e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ea10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea40: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002ea20: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002ea30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ea40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ea50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ea60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ea70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ea80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ea90: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2049 -------+.|i9 : I │ │ │ │ -0002eaa0: 3d69 6465 616c 2872 616e 646f 6d28 7b31 =ideal(random({1 │ │ │ │ -0002eab0: 2c30 7d2c 5229 2920 2020 2020 2020 2020 ,0},R)) │ │ │ │ -0002eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ea70: 2d2d 2b0a 7c69 3920 3a20 493d 6964 6561 --+.|i9 : I=idea │ │ │ │ +0002ea80: 6c28 7261 6e64 6f6d 287b 312c 307d 2c52 l(random({1,0},R │ │ │ │ +0002ea90: 2929 2020 2020 2020 2020 2020 2020 2020 )) │ │ │ │ +0002eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eac0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eae0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002eae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb30: 2020 2020 2020 207c 0a7c 6f39 203d 2069 |.|o9 = i │ │ │ │ -0002eb40: 6465 616c 2831 3037 7820 202b 2034 3337 deal(107x + 437 │ │ │ │ -0002eb50: 3678 2020 2d20 3633 3136 7820 2920 2020 6x - 6316x ) │ │ │ │ -0002eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002eb90: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ -0002eba0: 2020 3120 2020 2020 2020 2033 2020 2020 1 3 │ │ │ │ -0002ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eb10: 2020 7c0a 7c6f 3920 3d20 6964 6561 6c28 |.|o9 = ideal( │ │ │ │ +0002eb20: 3130 3778 2020 2b20 3433 3736 7820 202d 107x + 4376x - │ │ │ │ +0002eb30: 2036 3331 3678 2029 2020 2020 2020 2020 6316x ) │ │ │ │ +0002eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eb60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002eb70: 2020 2020 3020 2020 2020 2020 2031 2020 0 1 │ │ │ │ +0002eb80: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +0002eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ebb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ebd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002ebd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec20: 2020 2020 2020 207c 0a7c 6f39 203a 2049 |.|o9 : I │ │ │ │ -0002ec30: 6465 616c 206f 6620 5220 2020 2020 2020 deal of R │ │ │ │ +0002ec00: 2020 7c0a 7c6f 3920 3a20 4964 6561 6c20 |.|o9 : Ideal │ │ │ │ +0002ec10: 6f66 2052 2020 2020 2020 2020 2020 2020 of R │ │ │ │ +0002ec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec70: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002ec50: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002ec60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ec70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ec80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ec90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ecb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ecc0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ -0002ecd0: 4b3d 6964 6561 6c28 7261 6e64 6f6d 287b K=ideal(random({ │ │ │ │ -0002ece0: 312c 317d 2c52 2929 2020 2020 2020 2020 1,1},R)) │ │ │ │ -0002ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eca0: 2d2d 2b0a 7c69 3130 203a 204b 3d69 6465 --+.|i10 : K=ide │ │ │ │ +0002ecb0: 616c 2872 616e 646f 6d28 7b31 2c31 7d2c al(random({1,1}, │ │ │ │ +0002ecc0: 5229 2920 2020 2020 2020 2020 2020 2020 R)) │ │ │ │ +0002ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ecf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002ed00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002ed10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed60: 2020 2020 2020 207c 0a7c 6f31 3020 3d20 |.|o10 = │ │ │ │ -0002ed70: 6964 6561 6c28 3331 3837 7820 7820 202d ideal(3187x x - │ │ │ │ -0002ed80: 2036 3035 3378 2078 2020 2d20 3136 3039 6053x x - 1609 │ │ │ │ -0002ed90: 3078 2078 2020 2b20 3337 3833 7820 7820 0x x + 3783x x │ │ │ │ -0002eda0: 202b 2038 3537 3078 2078 2020 2b20 3834 + 8570x x + 84 │ │ │ │ -0002edb0: 3434 7820 7820 297c 0a7c 2020 2020 2020 44x x )|.| │ │ │ │ -0002edc0: 2020 2020 2020 2020 2020 2030 2032 2020 0 2 │ │ │ │ -0002edd0: 2020 2020 2020 3120 3220 2020 2020 2020 1 2 │ │ │ │ -0002ede0: 2020 3220 3320 2020 2020 2020 2030 2034 2 3 0 4 │ │ │ │ -0002edf0: 2020 2020 2020 2020 3120 3420 2020 2020 1 4 │ │ │ │ -0002ee00: 2020 2033 2034 207c 0a7c 2020 2020 2020 3 4 |.| │ │ │ │ +0002ed40: 2020 7c0a 7c6f 3130 203d 2069 6465 616c |.|o10 = ideal │ │ │ │ +0002ed50: 2833 3138 3778 2078 2020 2d20 3630 3533 (3187x x - 6053 │ │ │ │ +0002ed60: 7820 7820 202d 2031 3630 3930 7820 7820 x x - 16090x x │ │ │ │ +0002ed70: 202b 2033 3738 3378 2078 2020 2b20 3835 + 3783x x + 85 │ │ │ │ +0002ed80: 3730 7820 7820 202b 2038 3434 3478 2078 70x x + 8444x x │ │ │ │ +0002ed90: 2029 7c0a 7c20 2020 2020 2020 2020 2020 )|.| │ │ │ │ +0002eda0: 2020 2020 2020 3020 3220 2020 2020 2020 0 2 │ │ │ │ +0002edb0: 2031 2032 2020 2020 2020 2020 2032 2033 1 2 2 3 │ │ │ │ +0002edc0: 2020 2020 2020 2020 3020 3420 2020 2020 0 4 │ │ │ │ +0002edd0: 2020 2031 2034 2020 2020 2020 2020 3320 1 4 3 │ │ │ │ +0002ede0: 3420 7c0a 7c20 2020 2020 2020 2020 2020 4 |.| │ │ │ │ +0002edf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ee00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee50: 2020 2020 2020 207c 0a7c 6f31 3020 3a20 |.|o10 : │ │ │ │ -0002ee60: 4964 6561 6c20 6f66 2052 2020 2020 2020 Ideal of R │ │ │ │ +0002ee30: 2020 7c0a 7c6f 3130 203a 2049 6465 616c |.|o10 : Ideal │ │ │ │ +0002ee40: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ +0002ee50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eea0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002ee80: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002ee90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002eea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002eeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002eec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eef0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 -------+.|i11 : │ │ │ │ -0002ef00: 633d 4368 6572 6e28 4368 2c58 2c49 2920 c=Chern(Ch,X,I) │ │ │ │ +0002eed0: 2d2d 2b0a 7c69 3131 203a 2063 3d43 6865 --+.|i11 : c=Che │ │ │ │ +0002eee0: 726e 2843 682c 582c 4929 2020 2020 2020 rn(Ch,X,I) │ │ │ │ +0002eef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ef20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002ef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ef40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002ef40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ef80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ef90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002efa0: 2020 3220 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ +0002ef70: 2020 7c0a 7c20 2020 2020 2020 2032 2020 |.| 2 │ │ │ │ +0002ef80: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0002ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002efe0: 2020 2020 2020 207c 0a7c 6f31 3120 3d20 |.|o11 = │ │ │ │ -0002eff0: 3478 2078 2020 2b20 3278 2020 2b20 3278 4x x + 2x + 2x │ │ │ │ -0002f000: 2078 2020 2b20 7820 2020 2020 2020 2020 x + x │ │ │ │ -0002f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f030: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002f040: 2020 3320 3420 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ -0002f050: 3320 3420 2020 2033 2020 2020 2020 2020 3 4 3 │ │ │ │ -0002f060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002efc0: 2020 7c0a 7c6f 3131 203d 2034 7820 7820 |.|o11 = 4x x │ │ │ │ +0002efd0: 202b 2032 7820 202b 2032 7820 7820 202b + 2x + 2x x + │ │ │ │ +0002efe0: 2078 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ +0002eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f010: 2020 7c0a 7c20 2020 2020 2020 2033 2034 |.| 3 4 │ │ │ │ +0002f020: 2020 2020 2033 2020 2020 2033 2034 2020 3 3 4 │ │ │ │ +0002f030: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0002f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f060: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f080: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f0b0: 2020 7c0a 7c6f 3131 203a 2043 6820 2020 |.|o11 : Ch │ │ │ │ 0002f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f0d0: 2020 2020 2020 207c 0a7c 6f31 3120 3a20 |.|o11 : │ │ │ │ -0002f0e0: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ +0002f0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f120: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002f100: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002f110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f170: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 3a20 -------+.|i12 : │ │ │ │ -0002f180: 733d 5365 6772 6528 4368 2c58 2c4b 2920 s=Segre(Ch,X,K) │ │ │ │ +0002f150: 2d2d 2b0a 7c69 3132 203a 2073 3d53 6567 --+.|i12 : s=Seg │ │ │ │ +0002f160: 7265 2843 682c 582c 4b29 2020 2020 2020 re(Ch,X,K) │ │ │ │ +0002f170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f1a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f1c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f210: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002f220: 2020 3220 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ +0002f1f0: 2020 7c0a 7c20 2020 2020 2020 2032 2020 |.| 2 │ │ │ │ +0002f200: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0002f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f260: 2020 2020 2020 207c 0a7c 6f31 3220 3d20 |.|o12 = │ │ │ │ -0002f270: 3378 2078 2020 2d20 7820 202d 2032 7820 3x x - x - 2x │ │ │ │ -0002f280: 7820 202b 2078 2020 2b20 7820 2020 2020 x + x + x │ │ │ │ -0002f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f2b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002f2c0: 2020 3320 3420 2020 2033 2020 2020 2033 3 4 3 3 │ │ │ │ -0002f2d0: 2034 2020 2020 3320 2020 2034 2020 2020 4 3 4 │ │ │ │ -0002f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f240: 2020 7c0a 7c6f 3132 203d 2033 7820 7820 |.|o12 = 3x x │ │ │ │ +0002f250: 202d 2078 2020 2d20 3278 2078 2020 2b20 - x - 2x x + │ │ │ │ +0002f260: 7820 202b 2078 2020 2020 2020 2020 2020 x + x │ │ │ │ +0002f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f290: 2020 7c0a 7c20 2020 2020 2020 2033 2034 |.| 3 4 │ │ │ │ +0002f2a0: 2020 2020 3320 2020 2020 3320 3420 2020 3 3 4 │ │ │ │ +0002f2b0: 2033 2020 2020 3420 2020 2020 2020 2020 3 4 │ │ │ │ +0002f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f2e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002f2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f300: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f330: 2020 7c0a 7c6f 3132 203a 2043 6820 2020 |.|o12 : Ch │ │ │ │ 0002f340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f350: 2020 2020 2020 207c 0a7c 6f31 3220 3a20 |.|o12 : │ │ │ │ -0002f360: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ +0002f350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f3a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002f380: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002f390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f3f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 -------+.|i13 : │ │ │ │ -0002f400: 732d 6320 2020 2020 2020 2020 2020 2020 s-c │ │ │ │ +0002f3d0: 2d2d 2b0a 7c69 3133 203a 2073 2d63 2020 --+.|i13 : s-c │ │ │ │ +0002f3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f420: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002f430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f440: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f490: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002f4a0: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +0002f470: 2020 7c0a 7c20 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ +0002f480: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0002f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f4e0: 2020 2020 2020 207c 0a7c 6f31 3320 3d20 |.|o13 = │ │ │ │ -0002f4f0: 2d20 7820 7820 202d 2033 7820 202d 2034 - x x - 3x - 4 │ │ │ │ -0002f500: 7820 7820 202b 2078 2020 2020 2020 2020 x x + x │ │ │ │ -0002f510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f530: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002f540: 2020 2033 2034 2020 2020 2033 2020 2020 3 4 3 │ │ │ │ -0002f550: 2033 2034 2020 2020 3420 2020 2020 2020 3 4 4 │ │ │ │ -0002f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f4c0: 2020 7c0a 7c6f 3133 203d 202d 2078 2078 |.|o13 = - x x │ │ │ │ +0002f4d0: 2020 2d20 3378 2020 2d20 3478 2078 2020 - 3x - 4x x │ │ │ │ +0002f4e0: 2b20 7820 2020 2020 2020 2020 2020 2020 + x │ │ │ │ +0002f4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f510: 2020 7c0a 7c20 2020 2020 2020 2020 3320 |.| 3 │ │ │ │ +0002f520: 3420 2020 2020 3320 2020 2020 3320 3420 4 3 3 4 │ │ │ │ +0002f530: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0002f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f560: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f580: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f5b0: 2020 7c0a 7c6f 3133 203a 2043 6820 2020 |.|o13 : Ch │ │ │ │ 0002f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f5d0: 2020 2020 2020 207c 0a7c 6f31 3320 3a20 |.|o13 : │ │ │ │ -0002f5e0: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ +0002f5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f620: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002f600: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002f610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f670: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 -------+.|i14 : │ │ │ │ -0002f680: 732a 6320 2020 2020 2020 2020 2020 2020 s*c │ │ │ │ +0002f650: 2d2d 2b0a 7c69 3134 203a 2073 2a63 2020 --+.|i14 : s*c │ │ │ │ +0002f660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f6a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f6c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f710: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002f720: 2020 3220 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ +0002f6f0: 2020 7c0a 7c20 2020 2020 2020 2032 2020 |.| 2 │ │ │ │ +0002f700: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0002f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f760: 2020 2020 2020 207c 0a7c 6f31 3420 3d20 |.|o14 = │ │ │ │ -0002f770: 3278 2078 2020 2b20 7820 202b 2078 2078 2x x + x + x x │ │ │ │ +0002f740: 2020 7c0a 7c6f 3134 203d 2032 7820 7820 |.|o14 = 2x x │ │ │ │ +0002f750: 202b 2078 2020 2b20 7820 7820 2020 2020 + x + x x │ │ │ │ +0002f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f7b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002f7c0: 2020 3320 3420 2020 2033 2020 2020 3320 3 4 3 3 │ │ │ │ -0002f7d0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0002f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f790: 2020 7c0a 7c20 2020 2020 2020 2033 2034 |.| 3 4 │ │ │ │ +0002f7a0: 2020 2020 3320 2020 2033 2034 2020 2020 3 3 4 │ │ │ │ +0002f7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f7e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f800: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f830: 2020 7c0a 7c6f 3134 203a 2043 6820 2020 |.|o14 : Ch │ │ │ │ 0002f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f850: 2020 2020 2020 207c 0a7c 6f31 3420 3a20 |.|o14 : │ │ │ │ -0002f860: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ +0002f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f8a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002f880: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002f890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f8f0: 2d2d 2d2d 2d2d 2d2b 0a0a 466f 7220 7468 -------+..For th │ │ │ │ -0002f900: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0002f910: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0002f920: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0002f930: 6520 546f 7269 6343 686f 7752 696e 673a e ToricChowRing: │ │ │ │ -0002f940: 2054 6f72 6963 4368 6f77 5269 6e67 2c20 ToricChowRing, │ │ │ │ -0002f950: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -0002f960: 6420 6675 6e63 7469 6f6e 3a0a 284d 6163 d function:.(Mac │ │ │ │ -0002f970: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -0002f980: 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d Function,...---- │ │ │ │ +0002f8d0: 2d2d 2b0a 0a46 6f72 2074 6865 2070 726f --+..For the pro │ │ │ │ +0002f8e0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +0002f8f0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +0002f900: 6f62 6a65 6374 202a 6e6f 7465 2054 6f72 object *note Tor │ │ │ │ +0002f910: 6963 4368 6f77 5269 6e67 3a20 546f 7269 icChowRing: Tori │ │ │ │ +0002f920: 6343 686f 7752 696e 672c 2069 7320 6120 cChowRing, is a │ │ │ │ +0002f930: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ +0002f940: 6374 696f 6e3a 0a28 4d61 6361 756c 6179 ction:.(Macaulay │ │ │ │ +0002f950: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ +0002f960: 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d ion,...--------- │ │ │ │ +0002f970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -0002f9e0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -0002f9f0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -0002fa00: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -0002fa10: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -0002fa20: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -0002fa30: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -0002fa40: 6573 2f0a 4368 6172 6163 7465 7269 7374 es/.Characterist │ │ │ │ -0002fa50: 6963 436c 6173 7365 732e 6d32 3a31 3935 icClasses.m2:195 │ │ │ │ -0002fa60: 313a 302e 0a1f 0a54 6167 2054 6162 6c65 1:0....Tag Table │ │ │ │ -0002fa70: 3a0a 4e6f 6465 3a20 546f 707f 3239 310a :.Node: Top.291. │ │ │ │ -0002fa80: 4e6f 6465 3a20 6265 7274 696e 6943 6865 Node: bertiniChe │ │ │ │ -0002fa90: 636b 7f31 3637 3035 0a4e 6f64 653a 2043 ck.16705.Node: C │ │ │ │ -0002faa0: 6865 636b 536d 6f6f 7468 7f31 3739 3232 heckSmooth.17922 │ │ │ │ -0002fab0: 0a4e 6f64 653a 2043 6865 636b 546f 7269 .Node: CheckTori │ │ │ │ -0002fac0: 6356 6172 6965 7479 5661 6c69 647f 3232 cVarietyValid.22 │ │ │ │ -0002fad0: 3731 380a 4e6f 6465 3a20 4368 6572 6e7f 718.Node: Chern. │ │ │ │ -0002fae0: 3333 3730 390a 4e6f 6465 3a20 4368 6f77 33709.Node: Chow │ │ │ │ -0002faf0: 5269 6e67 7f35 3132 3137 0a4e 6f64 653a Ring.51217.Node: │ │ │ │ -0002fb00: 2043 6c61 7373 496e 4368 6f77 5269 6e67 ClassInChowRing │ │ │ │ -0002fb10: 7f35 3839 3438 0a4e 6f64 653a 2043 6c61 .58948.Node: Cla │ │ │ │ -0002fb20: 7373 496e 546f 7269 6343 686f 7752 696e ssInToricChowRin │ │ │ │ -0002fb30: 677f 3631 3330 380a 4e6f 6465 3a20 436f g.61308.Node: Co │ │ │ │ -0002fb40: 6d70 4d65 7468 6f64 7f36 3635 3531 0a4e mpMethod.66551.N │ │ │ │ -0002fb50: 6f64 653a 2063 6f6e 6669 6775 7269 6e67 ode: configuring │ │ │ │ -0002fb60: 2042 6572 7469 6e69 7f37 3634 3738 0a4e Bertini.76478.N │ │ │ │ -0002fb70: 6f64 653a 2043 534d 7f37 3831 3133 0a4e ode: CSM.78113.N │ │ │ │ -0002fb80: 6f64 653a 2045 756c 6572 7f31 3031 3735 ode: Euler.10175 │ │ │ │ -0002fb90: 310a 4e6f 6465 3a20 4575 6c65 7241 6666 1.Node: EulerAff │ │ │ │ -0002fba0: 696e 657f 3131 3936 3238 0a4e 6f64 653a ine.119628.Node: │ │ │ │ -0002fbb0: 2049 6e64 734f 6653 6d6f 6f74 687f 3132 IndsOfSmooth.12 │ │ │ │ -0002fbc0: 3231 3430 0a4e 6f64 653a 2049 6e70 7574 2140.Node: Input │ │ │ │ -0002fbd0: 4973 536d 6f6f 7468 7f31 3236 3039 350a IsSmooth.126095. │ │ │ │ -0002fbe0: 4e6f 6465 3a20 6973 4d75 6c74 6948 6f6d Node: isMultiHom │ │ │ │ -0002fbf0: 6f67 656e 656f 7573 7f31 3330 3131 330a ogeneous.130113. │ │ │ │ -0002fc00: 4e6f 6465 3a20 4d65 7468 6f64 7f31 3334 Node: Method.134 │ │ │ │ -0002fc10: 3139 310a 4e6f 6465 3a20 4d75 6c74 6950 191.Node: MultiP │ │ │ │ -0002fc20: 726f 6a43 6f6f 7264 5269 6e67 7f31 3338 rojCoordRing.138 │ │ │ │ -0002fc30: 3134 300a 4e6f 6465 3a20 4f75 7470 7574 140.Node: Output │ │ │ │ -0002fc40: 7f31 3434 3830 380a 4e6f 6465 3a20 7072 .144808.Node: pr │ │ │ │ -0002fc50: 6f62 6162 696c 6973 7469 6320 616c 676f obabilistic algo │ │ │ │ -0002fc60: 7269 7468 6d7f 3136 3333 3236 0a4e 6f64 rithm.163326.Nod │ │ │ │ -0002fc70: 653a 2053 6567 7265 7f31 3638 3032 310a e: Segre.168021. │ │ │ │ -0002fc80: 4e6f 6465 3a20 546f 7269 6343 686f 7752 Node: ToricChowR │ │ │ │ -0002fc90: 696e 677f 3138 3539 3238 0a1f 0a45 6e64 ing.185928...End │ │ │ │ -0002fca0: 2054 6167 2054 6162 6c65 0a Tag Table. │ │ │ │ +0002f9b0: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ +0002f9c0: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ +0002f9d0: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ +0002f9e0: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ +0002f9f0: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ +0002fa00: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ +0002fa10: 6c61 7932 2f70 6163 6b61 6765 732f 0a43 lay2/packages/.C │ │ │ │ +0002fa20: 6861 7261 6374 6572 6973 7469 6343 6c61 haracteristicCla │ │ │ │ +0002fa30: 7373 6573 2e6d 323a 3139 3531 3a30 2e0a sses.m2:1951:0.. │ │ │ │ +0002fa40: 1f0a 5461 6720 5461 626c 653a 0a4e 6f64 ..Tag Table:.Nod │ │ │ │ +0002fa50: 653a 2054 6f70 7f32 3931 0a4e 6f64 653a e: Top.291.Node: │ │ │ │ +0002fa60: 2062 6572 7469 6e69 4368 6563 6b7f 3136 bertiniCheck.16 │ │ │ │ +0002fa70: 3730 350a 4e6f 6465 3a20 4368 6563 6b53 705.Node: CheckS │ │ │ │ +0002fa80: 6d6f 6f74 687f 3137 3932 320a 4e6f 6465 mooth.17922.Node │ │ │ │ +0002fa90: 3a20 4368 6563 6b54 6f72 6963 5661 7269 : CheckToricVari │ │ │ │ +0002faa0: 6574 7956 616c 6964 7f32 3237 3138 0a4e etyValid.22718.N │ │ │ │ +0002fab0: 6f64 653a 2043 6865 726e 7f33 3337 3039 ode: Chern.33709 │ │ │ │ +0002fac0: 0a4e 6f64 653a 2043 686f 7752 696e 677f .Node: ChowRing. │ │ │ │ +0002fad0: 3531 3231 370a 4e6f 6465 3a20 436c 6173 51217.Node: Clas │ │ │ │ +0002fae0: 7349 6e43 686f 7752 696e 677f 3538 3934 sInChowRing.5894 │ │ │ │ +0002faf0: 380a 4e6f 6465 3a20 436c 6173 7349 6e54 8.Node: ClassInT │ │ │ │ +0002fb00: 6f72 6963 4368 6f77 5269 6e67 7f36 3133 oricChowRing.613 │ │ │ │ +0002fb10: 3038 0a4e 6f64 653a 2043 6f6d 704d 6574 08.Node: CompMet │ │ │ │ +0002fb20: 686f 647f 3636 3535 310a 4e6f 6465 3a20 hod.66551.Node: │ │ │ │ +0002fb30: 636f 6e66 6967 7572 696e 6720 4265 7274 configuring Bert │ │ │ │ +0002fb40: 696e 697f 3736 3437 380a 4e6f 6465 3a20 ini.76478.Node: │ │ │ │ +0002fb50: 4353 4d7f 3738 3131 330a 4e6f 6465 3a20 CSM.78113.Node: │ │ │ │ +0002fb60: 4575 6c65 727f 3130 3137 3531 0a4e 6f64 Euler.101751.Nod │ │ │ │ +0002fb70: 653a 2045 756c 6572 4166 6669 6e65 7f31 e: EulerAffine.1 │ │ │ │ +0002fb80: 3139 3632 380a 4e6f 6465 3a20 496e 6473 19628.Node: Inds │ │ │ │ +0002fb90: 4f66 536d 6f6f 7468 7f31 3232 3131 380a OfSmooth.122118. │ │ │ │ +0002fba0: 4e6f 6465 3a20 496e 7075 7449 7353 6d6f Node: InputIsSmo │ │ │ │ +0002fbb0: 6f74 687f 3132 3630 3733 0a4e 6f64 653a oth.126073.Node: │ │ │ │ +0002fbc0: 2069 734d 756c 7469 486f 6d6f 6765 6e65 isMultiHomogene │ │ │ │ +0002fbd0: 6f75 737f 3133 3030 3736 0a4e 6f64 653a ous.130076.Node: │ │ │ │ +0002fbe0: 204d 6574 686f 647f 3133 3431 3534 0a4e Method.134154.N │ │ │ │ +0002fbf0: 6f64 653a 204d 756c 7469 5072 6f6a 436f ode: MultiProjCo │ │ │ │ +0002fc00: 6f72 6452 696e 677f 3133 3831 3033 0a4e ordRing.138103.N │ │ │ │ +0002fc10: 6f64 653a 204f 7574 7075 747f 3134 3437 ode: Output.1447 │ │ │ │ +0002fc20: 3731 0a4e 6f64 653a 2070 726f 6261 6269 71.Node: probabi │ │ │ │ +0002fc30: 6c69 7374 6963 2061 6c67 6f72 6974 686d listic algorithm │ │ │ │ +0002fc40: 7f31 3633 3238 390a 4e6f 6465 3a20 5365 .163289.Node: Se │ │ │ │ +0002fc50: 6772 657f 3136 3739 3834 0a4e 6f64 653a gre.167984.Node: │ │ │ │ +0002fc60: 2054 6f72 6963 4368 6f77 5269 6e67 7f31 ToricChowRing.1 │ │ │ │ +0002fc70: 3835 3839 310a 1f0a 456e 6420 5461 6720 85891...End Tag │ │ │ │ +0002fc80: 5461 626c 650a Table. │ │ ├── ./usr/share/info/Chordal.info.gz │ │ │ ├── Chordal.info │ │ │ │ @@ -3949,30 +3949,30 @@ │ │ │ │ 0000f6c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f710: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ 0000f720: 203d 2045 6c69 6d54 7265 657b 6120 3d3e = ElimTree{a => │ │ │ │ -0000f730: 2062 2020 207d 2020 2020 2020 2020 2020 b } │ │ │ │ +0000f730: 2063 7d20 2020 2020 2020 2020 2020 2020 c} │ │ │ │ 0000f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f760: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f770: 2020 2020 2020 2020 2020 2020 6220 3d3e b => │ │ │ │ 0000f780: 2063 2020 2020 2020 2020 2020 2020 2020 c │ │ │ │ 0000f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f7b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f7c0: 2020 2020 2020 2020 2020 2020 6320 3d3e c => │ │ │ │ 0000f7d0: 2064 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 0000f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f800: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f810: 2020 2020 2020 2020 2020 2020 6420 3d3e d => │ │ │ │ -0000f820: 206e 756c 6c20 2020 2020 2020 2020 2020 null │ │ │ │ +0000f820: 2062 2020 2020 2020 2020 2020 2020 2020 b │ │ │ │ 0000f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f850: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4033,31 +4033,31 @@ │ │ │ │ 0000fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc60: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ -0000fc70: 203d 2043 686f 7264 616c 4e65 747b 2064 = ChordalNet{ d │ │ │ │ -0000fc80: 203d 3e20 7b20 2c20 647d 2020 2020 7d20 => { , d} } │ │ │ │ +0000fc70: 203d 2043 686f 7264 616c 4e65 747b 2061 = ChordalNet{ a │ │ │ │ +0000fc80: 203d 3e20 7b61 2c20 207d 2020 2020 7d20 => {a, } } │ │ │ │ 0000fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fcb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0000fcc0: 2020 2020 2020 2020 2020 2020 2020 2062 b │ │ │ │ -0000fcd0: 203d 3e20 7b62 2c20 202c 2062 7d20 2020 => {b, , b} │ │ │ │ +0000fcc0: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ +0000fcd0: 203d 3e20 7b20 2c20 637d 2020 2020 2020 => { , c} │ │ │ │ 0000fce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0000fd10: 2020 2020 2020 2020 2020 2020 2020 2061 a │ │ │ │ -0000fd20: 203d 3e20 7b61 2c20 207d 2020 2020 2020 => {a, } │ │ │ │ +0000fd10: 2020 2020 2020 2020 2020 2020 2020 2064 d │ │ │ │ +0000fd20: 203d 3e20 7b20 2c20 647d 2020 2020 2020 => { , d} │ │ │ │ 0000fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0000fd60: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ -0000fd70: 203d 3e20 7b20 2c20 637d 2020 2020 2020 => { , c} │ │ │ │ +0000fd60: 2020 2020 2020 2020 2020 2020 2020 2062 b │ │ │ │ +0000fd70: 203d 3e20 7b62 2c20 202c 2062 7d20 2020 => {b, , b} │ │ │ │ 0000fd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fda0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/CohomCalg.info.gz │ │ │ ├── CohomCalg.info │ │ │ │ @@ -1042,15 +1042,15 @@ │ │ │ │ 00004110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00004130: 7c69 3230 203a 2065 6c61 7073 6564 5469 |i20 : elapsedTi │ │ │ │ 00004140: 6d65 2068 7665 6373 203d 2063 6f68 6f6d me hvecs = cohom │ │ │ │ 00004150: 4361 6c67 2858 2c20 4432 2920 2020 2020 Calg(X, D2) │ │ │ │ 00004160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004170: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00004180: 7c20 2d2d 2032 2e39 3733 3836 7320 656c | -- 2.97386s el │ │ │ │ +00004180: 7c20 2d2d 2033 2e31 3636 3133 7320 656c | -- 3.16613s el │ │ │ │ 00004190: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 000041a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000041b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000041c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000041d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000041e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000041f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1677,16 +1677,16 @@ │ │ │ │ 000068c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000068d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000068e0: 7c69 3233 203a 2065 6c61 7073 6564 5469 |i23 : elapsedTi │ │ │ │ 000068f0: 6d65 2063 6f68 6f6d 7665 6331 203d 2063 me cohomvec1 = c │ │ │ │ 00006900: 6f68 6f6d 4361 6c67 2858 5f33 202b 2058 ohomCalg(X_3 + X │ │ │ │ 00006910: 5f37 202b 2058 5f38 2920 2020 2020 2020 _7 + X_8) │ │ │ │ 00006920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00006930: 7c20 2d2d 202e 3339 3039 3736 7320 656c | -- .390976s el │ │ │ │ -00006940: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ +00006930: 7c20 2d2d 202e 3439 3837 3473 2065 6c61 | -- .49874s ela │ │ │ │ +00006940: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00006950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00006980: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00006990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000069a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000069b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1712,15 +1712,15 @@ │ │ │ │ 00006af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00006b10: 7c69 3234 203a 2065 6c61 7073 6564 5469 |i24 : elapsedTi │ │ │ │ 00006b20: 6d65 2063 6f68 6f6d 7665 6332 203d 2066 me cohomvec2 = f │ │ │ │ 00006b30: 6f72 206a 2066 726f 6d20 3020 746f 2064 or j from 0 to d │ │ │ │ 00006b40: 696d 2058 206c 6973 7420 7261 6e6b 2048 im X list rank H │ │ │ │ 00006b50: 485e 6a28 582c 2020 2020 2020 2020 7c0a H^j(X, |. │ │ │ │ -00006b60: 7c20 2d2d 2031 302e 3333 3031 7320 656c | -- 10.3301s el │ │ │ │ +00006b60: 7c20 2d2d 2039 2e37 3135 3638 7320 656c | -- 9.71568s el │ │ │ │ 00006b70: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00006b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006ba0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00006bb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00006bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1797,15 +1797,15 @@ │ │ │ │ 00007040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00007050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00007060: 7c69 3237 203a 2065 6c61 7073 6564 5469 |i27 : elapsedTi │ │ │ │ 00007070: 6d65 2063 6f68 6f6d 7665 6331 203d 2063 me cohomvec1 = c │ │ │ │ 00007080: 6f68 6f6d 4361 6c67 2858 5f33 202b 2058 ohomCalg(X_3 + X │ │ │ │ 00007090: 5f37 202d 2058 5f38 2920 2020 2020 2020 _7 - X_8) │ │ │ │ 000070a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000070b0: 7c20 2d2d 202e 3334 3435 3632 7320 656c | -- .344562s el │ │ │ │ +000070b0: 7c20 2d2d 202e 3531 3337 3336 7320 656c | -- .513736s el │ │ │ │ 000070c0: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 000070d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000070e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000070f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00007100: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00007110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1832,20 +1832,20 @@ │ │ │ │ 00007270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00007280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00007290: 7c69 3238 203a 2065 6c61 7073 6564 5469 |i28 : elapsedTi │ │ │ │ 000072a0: 6d65 2063 6f68 6f6d 7665 6332 203d 2065 me cohomvec2 = e │ │ │ │ 000072b0: 6c61 7073 6564 5469 6d65 2066 6f72 206a lapsedTime for j │ │ │ │ 000072c0: 2066 726f 6d20 3020 746f 2064 696d 2058 from 0 to dim X │ │ │ │ 000072d0: 206c 6973 7420 7261 6e6b 2020 2020 7c0a list rank |. │ │ │ │ -000072e0: 7c20 2d2d 202e 3535 3638 3938 7320 656c | -- .556898s el │ │ │ │ -000072f0: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ +000072e0: 7c20 2d2d 202e 3434 3837 3973 2065 6c61 | -- .44879s ela │ │ │ │ +000072f0: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00007300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007320: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00007330: 7c20 2d2d 202e 3535 3639 3332 7320 656c | -- .556932s el │ │ │ │ +00007330: 7c20 2d2d 202e 3434 3838 3232 7320 656c | -- .448822s el │ │ │ │ 00007340: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00007350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007370: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00007380: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00007390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000073a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/CompleteIntersectionResolutions.info.gz │ │ │ ├── CompleteIntersectionResolutions.info │ │ │ │ @@ -4343,17 +4343,17 @@ │ │ │ │ 00010f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f80: 2d2d 2d2b 0a7c 6937 203a 2074 696d 6520 ---+.|i7 : time │ │ │ │ 00010f90: 4720 3d20 4569 7365 6e62 7564 5368 616d G = EisenbudSham │ │ │ │ 00010fa0: 6173 6828 6666 2c46 2c6c 656e 2920 2020 ash(ff,F,len) │ │ │ │ 00010fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010fd0: 2020 207c 0a7c 202d 2d20 7573 6564 2036 |.| -- used 6 │ │ │ │ -00010fe0: 2e38 3231 3235 7320 2863 7075 293b 2035 .82125s (cpu); 5 │ │ │ │ -00010ff0: 2e31 3938 3933 7320 2874 6872 6561 6429 .19893s (thread) │ │ │ │ +00010fd0: 2020 207c 0a7c 202d 2d20 7573 6564 2038 |.| -- used 8 │ │ │ │ +00010fe0: 2e32 3535 3538 7320 2863 7075 293b 2036 .25558s (cpu); 6 │ │ │ │ +00010ff0: 2e30 3631 3338 7320 2874 6872 6561 6429 .06138s (thread) │ │ │ │ 00011000: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 00011010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011020: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4884,16 +4884,16 @@ │ │ │ │ 00013130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013150: 2d2b 0a7c 6932 3020 3a20 4646 203d 2074 -+.|i20 : FF = t │ │ │ │ 00013160: 696d 6520 5368 616d 6173 6828 5231 2c46 ime Shamash(R1,F │ │ │ │ 00013170: 2c34 2920 2020 2020 2020 2020 2020 2020 ,4) │ │ │ │ 00013180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013190: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -000131a0: 2e31 3834 3033 3373 2028 6370 7529 3b20 .184033s (cpu); │ │ │ │ -000131b0: 302e 3130 3730 3037 7320 2874 6872 6561 0.107007s (threa │ │ │ │ +000131a0: 2e32 3433 3131 3173 2028 6370 7529 3b20 .243111s (cpu); │ │ │ │ +000131b0: 302e 3134 3337 3135 7320 2874 6872 6561 0.143715s (threa │ │ │ │ 000131c0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 000131d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000131e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000131f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013210: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00013220: 2020 3120 2020 2020 2020 3620 2020 2020 1 6 │ │ │ │ @@ -4925,17 +4925,17 @@ │ │ │ │ 000133c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000133d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000133e0: 2d2d 2d2d 2d2b 0a7c 6932 3120 3a20 4747 -----+.|i21 : GG │ │ │ │ 000133f0: 203d 2074 696d 6520 4569 7365 6e62 7564 = time Eisenbud │ │ │ │ 00013400: 5368 616d 6173 6828 6666 2c46 2c34 2920 Shamash(ff,F,4) │ │ │ │ 00013410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013420: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00013430: 6564 2030 2e39 3533 3535 3473 2028 6370 ed 0.953554s (cp │ │ │ │ -00013440: 7529 3b20 302e 3732 3432 3334 7320 2874 u); 0.724234s (t │ │ │ │ -00013450: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +00013430: 6564 2031 2e31 3637 3435 7320 2863 7075 ed 1.16745s (cpu │ │ │ │ +00013440: 293b 2030 2e38 3638 3937 3373 2028 7468 ); 0.868973s (th │ │ │ │ +00013450: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00013460: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00013470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000134a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000134b0: 2020 2020 2f20 525c 3120 2020 2020 2f20 / R\1 / │ │ │ │ 000134c0: 525c 3620 2020 2020 2f20 525c 3138 2020 R\6 / R\18 │ │ │ │ @@ -4977,24032 +4977,24031 @@ │ │ │ │ 00013700: 5468 6520 6675 6e63 7469 6f6e 2061 6c73 The function als │ │ │ │ 00013710: 6f20 6465 616c 7320 636f 7272 6563 746c o deals correctl │ │ │ │ 00013720: 7920 7769 7468 2063 6f6d 706c 6578 6573 y with complexes │ │ │ │ 00013730: 2046 2077 6865 7265 206d 696e 2046 2069 F where min F i │ │ │ │ 00013740: 7320 6e6f 7420 303a 0a0a 2b2d 2d2d 2d2d s not 0:..+----- │ │ │ │ 00013750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013780: 2b0a 7c69 3232 203a 2047 4720 3d20 7469 +.|i22 : GG = ti │ │ │ │ -00013790: 6d65 2045 6973 656e 6275 6453 6861 6d61 me EisenbudShama │ │ │ │ -000137a0: 7368 2852 312c 465b 325d 2c34 2920 2020 sh(R1,F[2],4) │ │ │ │ -000137b0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -000137c0: 7365 6420 302e 3934 3530 3835 7320 2863 sed 0.945085s (c │ │ │ │ -000137d0: 7075 293b 2030 2e37 3430 3130 3173 2028 pu); 0.740101s ( │ │ │ │ -000137e0: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ -000137f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00013780: 0a7c 6932 3220 3a20 4747 203d 2074 696d .|i22 : GG = tim │ │ │ │ +00013790: 6520 4569 7365 6e62 7564 5368 616d 6173 e EisenbudShamas │ │ │ │ +000137a0: 6828 5231 2c46 5b32 5d2c 3429 2020 2020 h(R1,F[2],4) │ │ │ │ +000137b0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ +000137c0: 6420 312e 3137 3532 3873 2028 6370 7529 d 1.17528s (cpu) │ │ │ │ +000137d0: 3b20 302e 3839 3630 3531 7320 2874 6872 ; 0.896051s (thr │ │ │ │ +000137e0: 6561 6429 3b20 3073 2028 6763 297c 0a7c ead); 0s (gc)|.| │ │ │ │ +000137f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013820: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00013830: 2020 2031 2020 2020 2020 2036 2020 2020 1 6 │ │ │ │ -00013840: 2020 2031 3820 2020 2020 2020 3338 2020 18 38 │ │ │ │ -00013850: 2020 2020 2036 3620 2020 2020 2020 2020 66 │ │ │ │ -00013860: 7c0a 7c6f 3232 203d 2052 3120 203c 2d2d |.|o22 = R1 <-- │ │ │ │ -00013870: 2052 3120 203c 2d2d 2052 3120 2020 3c2d R1 <-- R1 <- │ │ │ │ -00013880: 2d20 5231 2020 203c 2d2d 2052 3120 2020 - R1 <-- R1 │ │ │ │ -00013890: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00013820: 2020 2020 7c0a 7c20 2020 2020 2020 2031 |.| 1 │ │ │ │ +00013830: 2020 2020 2020 2036 2020 2020 2020 2031 6 1 │ │ │ │ +00013840: 3820 2020 2020 2020 3338 2020 2020 2020 8 38 │ │ │ │ +00013850: 2036 3620 2020 2020 2020 207c 0a7c 6f32 66 |.|o2 │ │ │ │ +00013860: 3220 3d20 5231 2020 3c2d 2d20 5231 2020 2 = R1 <-- R1 │ │ │ │ +00013870: 3c2d 2d20 5231 2020 203c 2d2d 2052 3120 <-- R1 <-- R1 │ │ │ │ +00013880: 2020 3c2d 2d20 5231 2020 2020 2020 2020 <-- R1 │ │ │ │ +00013890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000138a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000138b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000138c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000138d0: 7c0a 7c20 2020 2020 202d 3220 2020 2020 |.| -2 │ │ │ │ -000138e0: 202d 3120 2020 2020 2030 2020 2020 2020 -1 0 │ │ │ │ -000138f0: 2020 3120 2020 2020 2020 2032 2020 2020 1 2 │ │ │ │ -00013900: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000138c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000138d0: 2020 2d32 2020 2020 2020 2d31 2020 2020 -2 -1 │ │ │ │ +000138e0: 2020 3020 2020 2020 2020 2031 2020 2020 0 1 │ │ │ │ +000138f0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00013900: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00013910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013940: 7c0a 7c6f 3232 203a 2043 6f6d 706c 6578 |.|o22 : Complex │ │ │ │ +00013930: 2020 2020 2020 207c 0a7c 6f32 3220 3a20 |.|o22 : │ │ │ │ +00013940: 436f 6d70 6c65 7820 2020 2020 2020 2020 Complex │ │ │ │ 00013950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013970: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00013960: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013970: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000139a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000139b0: 2b0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d +..See also.==== │ │ │ │ -000139c0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -000139d0: 6d61 6b65 486f 6d6f 746f 7069 6573 3a20 makeHomotopies: │ │ │ │ -000139e0: 6d61 6b65 486f 6d6f 746f 7069 6573 2c20 makeHomotopies, │ │ │ │ -000139f0: 2d2d 2072 6574 7572 6e73 2061 2073 7973 -- returns a sys │ │ │ │ -00013a00: 7465 6d20 6f66 2068 6967 6865 720a 2020 tem of higher. │ │ │ │ -00013a10: 2020 686f 6d6f 746f 7069 6573 0a20 202a homotopies. * │ │ │ │ -00013a20: 202a 6e6f 7465 2053 6861 6d61 7368 3a20 *note Shamash: │ │ │ │ -00013a30: 5368 616d 6173 682c 202d 2d20 436f 6d70 Shamash, -- Comp │ │ │ │ -00013a40: 7574 6573 2074 6865 2053 6861 6d61 7368 utes the Shamash │ │ │ │ -00013a50: 2043 6f6d 706c 6578 0a20 202a 202a 6e6f Complex. * *no │ │ │ │ -00013a60: 7465 2065 7870 6f3a 2065 7870 6f2c 202d te expo: expo, - │ │ │ │ -00013a70: 2d20 7265 7475 726e 7320 6120 7365 7420 - returns a set │ │ │ │ -00013a80: 636f 7272 6573 706f 6e64 696e 6720 746f corresponding to │ │ │ │ -00013a90: 2074 6865 2062 6173 6973 206f 6620 6120 the basis of a │ │ │ │ -00013aa0: 6469 7669 6465 640a 2020 2020 706f 7765 divided. powe │ │ │ │ -00013ab0: 720a 0a57 6179 7320 746f 2075 7365 2045 r..Ways to use E │ │ │ │ -00013ac0: 6973 656e 6275 6453 6861 6d61 7368 3a0a isenbudShamash:. │ │ │ │ +000139a0: 2d2d 2d2d 2d2b 0a0a 5365 6520 616c 736f -----+..See also │ │ │ │ +000139b0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +000139c0: 6e6f 7465 206d 616b 6548 6f6d 6f74 6f70 note makeHomotop │ │ │ │ +000139d0: 6965 733a 206d 616b 6548 6f6d 6f74 6f70 ies: makeHomotop │ │ │ │ +000139e0: 6965 732c 202d 2d20 7265 7475 726e 7320 ies, -- returns │ │ │ │ +000139f0: 6120 7379 7374 656d 206f 6620 6869 6768 a system of high │ │ │ │ +00013a00: 6572 0a20 2020 2068 6f6d 6f74 6f70 6965 er. homotopie │ │ │ │ +00013a10: 730a 2020 2a20 2a6e 6f74 6520 5368 616d s. * *note Sham │ │ │ │ +00013a20: 6173 683a 2053 6861 6d61 7368 2c20 2d2d ash: Shamash, -- │ │ │ │ +00013a30: 2043 6f6d 7075 7465 7320 7468 6520 5368 Computes the Sh │ │ │ │ +00013a40: 616d 6173 6820 436f 6d70 6c65 780a 2020 amash Complex. │ │ │ │ +00013a50: 2a20 2a6e 6f74 6520 6578 706f 3a20 6578 * *note expo: ex │ │ │ │ +00013a60: 706f 2c20 2d2d 2072 6574 7572 6e73 2061 po, -- returns a │ │ │ │ +00013a70: 2073 6574 2063 6f72 7265 7370 6f6e 6469 set correspondi │ │ │ │ +00013a80: 6e67 2074 6f20 7468 6520 6261 7369 7320 ng to the basis │ │ │ │ +00013a90: 6f66 2061 2064 6976 6964 6564 0a20 2020 of a divided. │ │ │ │ +00013aa0: 2070 6f77 6572 0a0a 5761 7973 2074 6f20 power..Ways to │ │ │ │ +00013ab0: 7573 6520 4569 7365 6e62 7564 5368 616d use EisenbudSham │ │ │ │ +00013ac0: 6173 683a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ash:.=========== │ │ │ │ 00013ad0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00013ae0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -00013af0: 2a20 2245 6973 656e 6275 6453 6861 6d61 * "EisenbudShama │ │ │ │ -00013b00: 7368 284d 6174 7269 782c 436f 6d70 6c65 sh(Matrix,Comple │ │ │ │ -00013b10: 782c 5a5a 2922 0a20 202a 2022 4569 7365 x,ZZ)". * "Eise │ │ │ │ -00013b20: 6e62 7564 5368 616d 6173 6828 5269 6e67 nbudShamash(Ring │ │ │ │ -00013b30: 2c43 6f6d 706c 6578 2c5a 5a29 220a 0a46 ,Complex,ZZ)"..F │ │ │ │ -00013b40: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -00013b50: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -00013b60: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00013b70: 202a 6e6f 7465 2045 6973 656e 6275 6453 *note EisenbudS │ │ │ │ -00013b80: 6861 6d61 7368 3a20 4569 7365 6e62 7564 hamash: Eisenbud │ │ │ │ -00013b90: 5368 616d 6173 682c 2069 7320 6120 2a6e Shamash, is a *n │ │ │ │ -00013ba0: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -00013bb0: 696f 6e3a 0a28 4d61 6361 756c 6179 3244 ion:.(Macaulay2D │ │ │ │ -00013bc0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -00013bd0: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ +00013ae0: 3d0a 0a20 202a 2022 4569 7365 6e62 7564 =.. * "Eisenbud │ │ │ │ +00013af0: 5368 616d 6173 6828 4d61 7472 6978 2c43 Shamash(Matrix,C │ │ │ │ +00013b00: 6f6d 706c 6578 2c5a 5a29 220a 2020 2a20 omplex,ZZ)". * │ │ │ │ +00013b10: 2245 6973 656e 6275 6453 6861 6d61 7368 "EisenbudShamash │ │ │ │ +00013b20: 2852 696e 672c 436f 6d70 6c65 782c 5a5a (Ring,Complex,ZZ │ │ │ │ +00013b30: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ +00013b40: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +00013b50: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +00013b60: 626a 6563 7420 2a6e 6f74 6520 4569 7365 bject *note Eise │ │ │ │ +00013b70: 6e62 7564 5368 616d 6173 683a 2045 6973 nbudShamash: Eis │ │ │ │ +00013b80: 656e 6275 6453 6861 6d61 7368 2c20 6973 enbudShamash, is │ │ │ │ +00013b90: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ +00013ba0: 6675 6e63 7469 6f6e 3a0a 284d 6163 6175 function:.(Macau │ │ │ │ +00013bb0: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ +00013bc0: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ +00013bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013c20: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -00013c30: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -00013c40: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -00013c50: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -00013c60: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -00013c70: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -00013c80: 7932 2f70 6163 6b61 6765 732f 0a43 6f6d y2/packages/.Com │ │ │ │ -00013c90: 706c 6574 6549 6e74 6572 7365 6374 696f pleteIntersectio │ │ │ │ -00013ca0: 6e52 6573 6f6c 7574 696f 6e73 2e6d 323a nResolutions.m2: │ │ │ │ -00013cb0: 3438 3432 3a30 2e0a 1f0a 4669 6c65 3a20 4842:0....File: │ │ │ │ -00013cc0: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ -00013cd0: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ -00013ce0: 696e 666f 2c20 4e6f 6465 3a20 4569 7365 info, Node: Eise │ │ │ │ -00013cf0: 6e62 7564 5368 616d 6173 6854 6f74 616c nbudShamashTotal │ │ │ │ -00013d00: 2c20 4e65 7874 3a20 6576 656e 4578 744d , Next: evenExtM │ │ │ │ -00013d10: 6f64 756c 652c 2050 7265 763a 2045 6973 odule, Prev: Eis │ │ │ │ -00013d20: 656e 6275 6453 6861 6d61 7368 2c20 5570 enbudShamash, Up │ │ │ │ -00013d30: 3a20 546f 700a 0a45 6973 656e 6275 6453 : Top..EisenbudS │ │ │ │ -00013d40: 6861 6d61 7368 546f 7461 6c20 2d2d 2050 hamashTotal -- P │ │ │ │ -00013d50: 7265 6375 7273 6f72 2063 6f6d 706c 6578 recursor complex │ │ │ │ -00013d60: 206f 6620 746f 7461 6c20 4578 740a 2a2a of total Ext.** │ │ │ │ +00013c10: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00013c20: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00013c30: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00013c40: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00013c50: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00013c60: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00013c70: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +00013c80: 2f0a 436f 6d70 6c65 7465 496e 7465 7273 /.CompleteInters │ │ │ │ +00013c90: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ +00013ca0: 732e 6d32 3a34 3834 323a 302e 0a1f 0a46 s.m2:4842:0....F │ │ │ │ +00013cb0: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ +00013cc0: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ +00013cd0: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ +00013ce0: 2045 6973 656e 6275 6453 6861 6d61 7368 EisenbudShamash │ │ │ │ +00013cf0: 546f 7461 6c2c 204e 6578 743a 2065 7665 Total, Next: eve │ │ │ │ +00013d00: 6e45 7874 4d6f 6475 6c65 2c20 5072 6576 nExtModule, Prev │ │ │ │ +00013d10: 3a20 4569 7365 6e62 7564 5368 616d 6173 : EisenbudShamas │ │ │ │ +00013d20: 682c 2055 703a 2054 6f70 0a0a 4569 7365 h, Up: Top..Eise │ │ │ │ +00013d30: 6e62 7564 5368 616d 6173 6854 6f74 616c nbudShamashTotal │ │ │ │ +00013d40: 202d 2d20 5072 6563 7572 736f 7220 636f -- Precursor co │ │ │ │ +00013d50: 6d70 6c65 7820 6f66 2074 6f74 616c 2045 mplex of total E │ │ │ │ +00013d60: 7874 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a xt.************* │ │ │ │ 00013d70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00013d80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00013d90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00013da0: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ -00013db0: 200a 2020 2020 2020 2020 2864 302c 6431 . (d0,d1 │ │ │ │ -00013dc0: 2920 3d20 2045 6973 656e 6275 6453 6861 ) = EisenbudSha │ │ │ │ -00013dd0: 6d61 7368 546f 7461 6c20 4d0a 2020 2a20 mashTotal M. * │ │ │ │ -00013de0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -00013df0: 4d2c 2061 202a 6e6f 7465 206d 6f64 756c M, a *note modul │ │ │ │ -00013e00: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ -00013e10: 294d 6f64 756c 652c 2c20 6f76 6572 2061 )Module,, over a │ │ │ │ -00013e20: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ -00013e30: 6563 7469 6f6e 0a20 202a 202a 6e6f 7465 ection. * *note │ │ │ │ -00013e40: 204f 7074 696f 6e61 6c20 696e 7075 7473 Optional inputs │ │ │ │ -00013e50: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00013e60: 7573 696e 6720 6675 6e63 7469 6f6e 7320 using functions │ │ │ │ -00013e70: 7769 7468 206f 7074 696f 6e61 6c20 696e with optional in │ │ │ │ -00013e80: 7075 7473 2c3a 0a20 2020 2020 202a 2043 puts,:. * C │ │ │ │ -00013e90: 6865 636b 203d 3e20 2e2e 2e2c 2064 6566 heck => ..., def │ │ │ │ -00013ea0: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ -00013eb0: 0a20 2020 2020 202a 2047 7261 6469 6e67 . * Grading │ │ │ │ -00013ec0: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -00013ed0: 2076 616c 7565 2032 0a20 2020 2020 202a value 2. * │ │ │ │ -00013ee0: 2056 6172 6961 626c 6573 203d 3e20 2e2e Variables => .. │ │ │ │ -00013ef0: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -00013f00: 2073 0a20 202a 204f 7574 7075 7473 3a0a s. * Outputs:. │ │ │ │ -00013f10: 2020 2020 2020 2a20 6430 2c20 6120 2a6e * d0, a *n │ │ │ │ -00013f20: 6f74 6520 6d61 7472 6978 3a20 284d 6163 ote matrix: (Mac │ │ │ │ -00013f30: 6175 6c61 7932 446f 6329 4d61 7472 6978 aulay2Doc)Matrix │ │ │ │ -00013f40: 2c2c 206d 6170 206f 6620 6672 6565 206d ,, map of free m │ │ │ │ -00013f50: 6f64 756c 6573 206f 7665 7220 616e 0a20 odules over an. │ │ │ │ -00013f60: 2020 2020 2020 2065 6e6c 6172 6765 6420 enlarged │ │ │ │ -00013f70: 7269 6e67 0a20 2020 2020 202a 2064 312c ring. * d1, │ │ │ │ -00013f80: 2061 202a 6e6f 7465 206d 6174 7269 783a a *note matrix: │ │ │ │ -00013f90: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ -00013fa0: 6174 7269 782c 2c20 6d61 7020 6f66 2066 atrix,, map of f │ │ │ │ -00013fb0: 7265 6520 6d6f 6475 6c65 7320 6f76 6572 ree modules over │ │ │ │ -00013fc0: 2061 6e0a 2020 2020 2020 2020 656e 6c61 an. enla │ │ │ │ -00013fd0: 7267 6564 2072 696e 670a 0a44 6573 6372 rged ring..Descr │ │ │ │ -00013fe0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -00013ff0: 3d3d 0a0a 4173 7375 6d65 2074 6861 7420 ==..Assume that │ │ │ │ -00014000: 4d20 6973 2064 6566 696e 6564 206f 7665 M is defined ove │ │ │ │ -00014010: 7220 6120 7269 6e67 206f 6620 7468 6520 r a ring of the │ │ │ │ -00014020: 666f 726d 2052 6261 7220 3d20 522f 2866 form Rbar = R/(f │ │ │ │ -00014030: 5f30 2e2e 665f 7b63 2d31 7d29 2c20 610a _0..f_{c-1}), a. │ │ │ │ -00014040: 636f 6d70 6c65 7465 2069 6e74 6572 7365 complete interse │ │ │ │ -00014050: 6374 696f 6e2c 2061 6e64 2074 6861 7420 ction, and that │ │ │ │ -00014060: 4d20 6861 7320 6120 6669 6e69 7465 2066 M has a finite f │ │ │ │ -00014070: 7265 6520 7265 736f 6c75 7469 6f6e 2047 ree resolution G │ │ │ │ -00014080: 206f 7665 7220 522e 2049 6e0a 7468 6973 over R. In.this │ │ │ │ -00014090: 2063 6173 6520 4d20 6861 7320 6120 6672 case M has a fr │ │ │ │ -000140a0: 6565 2072 6573 6f6c 7574 696f 6e20 4620 ee resolution F │ │ │ │ -000140b0: 6f76 6572 2052 6261 7220 7768 6f73 6520 over Rbar whose │ │ │ │ -000140c0: 6475 616c 2c20 465e 2a20 6973 2061 2066 dual, F^* is a f │ │ │ │ -000140d0: 696e 6974 656c 790a 6765 6e65 7261 7465 initely.generate │ │ │ │ -000140e0: 642c 205a 2d67 7261 6465 6420 6672 6565 d, Z-graded free │ │ │ │ -000140f0: 206d 6f64 756c 6520 6f76 6572 2061 2072 module over a r │ │ │ │ -00014100: 696e 6720 5362 6172 5c63 6f6e 6720 6b6b ing Sbar\cong kk │ │ │ │ -00014110: 5b73 5f30 2e2e 735f 7b63 2d31 7d2c 6765 [s_0..s_{c-1},ge │ │ │ │ -00014120: 6e73 0a52 6261 725d 2c20 7768 6572 6520 ns.Rbar], where │ │ │ │ -00014130: 7468 6520 6465 6772 6565 7320 6f66 2074 the degrees of t │ │ │ │ -00014140: 6865 2073 5f69 2061 7265 207b 2d32 2c20 he s_i are {-2, │ │ │ │ -00014150: 2d64 6567 7265 6520 665f 697d 2e20 5468 -degree f_i}. Th │ │ │ │ -00014160: 6973 2072 6573 6f6c 7574 696f 6e20 6973 is resolution is │ │ │ │ -00014170: 0a69 7320 636f 6e73 7472 7563 7465 6420 .is constructed │ │ │ │ -00014180: 6672 6f6d 2074 6865 2064 7561 6c20 6f66 from the dual of │ │ │ │ -00014190: 2047 2c20 746f 6765 7468 6572 2077 6974 G, together wit │ │ │ │ -000141a0: 6820 7468 6520 6475 616c 7320 6f66 2074 h the duals of t │ │ │ │ -000141b0: 6865 2068 6967 6865 720a 686f 6d6f 746f he higher.homoto │ │ │ │ -000141c0: 7069 6573 206f 6e20 4720 6465 6669 6e65 pies on G define │ │ │ │ -000141d0: 6420 6279 2045 6973 656e 6275 642e 0a0a d by Eisenbud... │ │ │ │ -000141e0: 5468 6520 6675 6e63 7469 6f6e 2072 6574 The function ret │ │ │ │ -000141f0: 7572 6e73 2074 6865 2064 6966 6665 7265 urns the differe │ │ │ │ -00014200: 6e74 6961 6c73 2064 303a 465e 2a5f 7b65 ntials d0:F^*_{e │ │ │ │ -00014210: 7665 6e7d 205c 746f 2046 5e2a 5f7b 6f64 ven} \to F^*_{od │ │ │ │ -00014220: 647d 2061 6e64 0a64 313a 465e 2a5f 7b6f d} and.d1:F^*_{o │ │ │ │ -00014230: 6464 7d5c 746f 2046 5e2a 5f7b 6576 656e dd}\to F^*_{even │ │ │ │ -00014240: 7d2e 0a0a 5468 6520 6d61 7073 2064 302c }...The maps d0, │ │ │ │ -00014250: 6431 2066 6f72 6d20 6120 6d61 7472 6978 d1 form a matrix │ │ │ │ -00014260: 2066 6163 746f 7269 7a61 7469 6f6e 206f factorization o │ │ │ │ -00014270: 6620 7375 6d28 632c 2069 2d3e 735f 692a f sum(c, i->s_i* │ │ │ │ -00014280: 665f 6929 2e20 5468 6520 6861 7665 2074 f_i). The have t │ │ │ │ -00014290: 6865 0a70 726f 7065 7274 7920 7468 6174 he.property that │ │ │ │ -000142a0: 2066 6f72 2061 6e79 2052 6261 7220 6d6f for any Rbar mo │ │ │ │ -000142b0: 6475 6c65 204e 2c0a 0a48 485f 3120 636f dule N,..HH_1 co │ │ │ │ -000142c0: 6d70 6c65 7820 5c7b 6430 2a2a 4e2c 2064 mplex \{d0**N, d │ │ │ │ -000142d0: 312a 2a4e 5c7d 203d 2045 7874 5e7b 6576 1**N\} = Ext^{ev │ │ │ │ -000142e0: 656e 7d5f 7b52 6261 727d 284d 2c4e 290a en}_{Rbar}(M,N). │ │ │ │ -000142f0: 0a53 5e7b 7b31 2c30 7d7d 2a2a 4848 5f31 .S^{{1,0}}**HH_1 │ │ │ │ -00014300: 2063 6f6d 706c 6578 205c 7b53 5e7b 7b2d complex \{S^{{- │ │ │ │ -00014310: 322c 307d 7d2a 2a64 312a 2a4e 2c20 6430 2,0}}**d1**N, d0 │ │ │ │ -00014320: 2a2a 4e5c 7d20 3d20 4578 745e 7b6f 6464 **N\} = Ext^{odd │ │ │ │ -00014330: 7d5f 7b52 6261 727d 284d 2c4e 290a 0a54 }_{Rbar}(M,N)..T │ │ │ │ -00014340: 6869 7320 6973 2065 6e63 6f64 6564 2069 his is encoded i │ │ │ │ -00014350: 6e20 7468 6520 7363 7269 7074 206e 6577 n the script new │ │ │ │ -00014360: 4578 740a 0a4f 7074 696f 6e20 6465 6661 Ext..Option defa │ │ │ │ -00014370: 756c 7473 3a20 4368 6563 6b3d 3e66 616c ults: Check=>fal │ │ │ │ -00014380: 7365 2056 6172 6961 626c 6573 3d3e 6765 se Variables=>ge │ │ │ │ -00014390: 7453 796d 626f 6c20 2273 222c 2047 7261 tSymbol "s", Gra │ │ │ │ -000143a0: 6469 6e67 203d 3e32 7d0a 0a49 6620 4772 ding =>2}..If Gr │ │ │ │ -000143b0: 6164 696e 6720 3d3e 312c 2074 6865 6e20 ading =>1, then │ │ │ │ -000143c0: 6120 7369 6e67 6c79 2067 7261 6465 6420 a singly graded │ │ │ │ -000143d0: 7265 7375 6c74 2069 7320 7265 7475 726e result is return │ │ │ │ -000143e0: 6564 2028 6a75 7374 2066 6f72 6765 7474 ed (just forgett │ │ │ │ -000143f0: 696e 6720 7468 650a 686f 6d6f 6c6f 6769 ing the.homologi │ │ │ │ -00014400: 6361 6c20 6772 6164 696e 672e 290a 0a0a cal grading.)... │ │ │ │ -00014410: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00013d90: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ +00013da0: 7361 6765 3a20 0a20 2020 2020 2020 2028 sage: . ( │ │ │ │ +00013db0: 6430 2c64 3129 203d 2020 4569 7365 6e62 d0,d1) = Eisenb │ │ │ │ +00013dc0: 7564 5368 616d 6173 6854 6f74 616c 204d udShamashTotal M │ │ │ │ +00013dd0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +00013de0: 2020 202a 204d 2c20 6120 2a6e 6f74 6520 * M, a *note │ │ │ │ +00013df0: 6d6f 6475 6c65 3a20 284d 6163 6175 6c61 module: (Macaula │ │ │ │ +00013e00: 7932 446f 6329 4d6f 6475 6c65 2c2c 206f y2Doc)Module,, o │ │ │ │ +00013e10: 7665 7220 6120 636f 6d70 6c65 7465 2069 ver a complete i │ │ │ │ +00013e20: 6e74 6572 7365 6374 696f 6e0a 2020 2a20 ntersection. * │ │ │ │ +00013e30: 2a6e 6f74 6520 4f70 7469 6f6e 616c 2069 *note Optional i │ │ │ │ +00013e40: 6e70 7574 733a 2028 4d61 6361 756c 6179 nputs: (Macaulay │ │ │ │ +00013e50: 3244 6f63 2975 7369 6e67 2066 756e 6374 2Doc)using funct │ │ │ │ +00013e60: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ +00013e70: 616c 2069 6e70 7574 732c 3a0a 2020 2020 al inputs,:. │ │ │ │ +00013e80: 2020 2a20 4368 6563 6b20 3d3e 202e 2e2e * Check => ... │ │ │ │ +00013e90: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +00013ea0: 6661 6c73 650a 2020 2020 2020 2a20 4772 false. * Gr │ │ │ │ +00013eb0: 6164 696e 6720 3d3e 202e 2e2e 2c20 6465 ading => ..., de │ │ │ │ +00013ec0: 6661 756c 7420 7661 6c75 6520 320a 2020 fault value 2. │ │ │ │ +00013ed0: 2020 2020 2a20 5661 7269 6162 6c65 7320 * Variables │ │ │ │ +00013ee0: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +00013ef0: 7661 6c75 6520 730a 2020 2a20 4f75 7470 value s. * Outp │ │ │ │ +00013f00: 7574 733a 0a20 2020 2020 202a 2064 302c uts:. * d0, │ │ │ │ +00013f10: 2061 202a 6e6f 7465 206d 6174 7269 783a a *note matrix: │ │ │ │ +00013f20: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +00013f30: 6174 7269 782c 2c20 6d61 7020 6f66 2066 atrix,, map of f │ │ │ │ +00013f40: 7265 6520 6d6f 6475 6c65 7320 6f76 6572 ree modules over │ │ │ │ +00013f50: 2061 6e0a 2020 2020 2020 2020 656e 6c61 an. enla │ │ │ │ +00013f60: 7267 6564 2072 696e 670a 2020 2020 2020 rged ring. │ │ │ │ +00013f70: 2a20 6431 2c20 6120 2a6e 6f74 6520 6d61 * d1, a *note ma │ │ │ │ +00013f80: 7472 6978 3a20 284d 6163 6175 6c61 7932 trix: (Macaulay2 │ │ │ │ +00013f90: 446f 6329 4d61 7472 6978 2c2c 206d 6170 Doc)Matrix,, map │ │ │ │ +00013fa0: 206f 6620 6672 6565 206d 6f64 756c 6573 of free modules │ │ │ │ +00013fb0: 206f 7665 7220 616e 0a20 2020 2020 2020 over an. │ │ │ │ +00013fc0: 2065 6e6c 6172 6765 6420 7269 6e67 0a0a enlarged ring.. │ │ │ │ +00013fd0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +00013fe0: 3d3d 3d3d 3d3d 3d0a 0a41 7373 756d 6520 =======..Assume │ │ │ │ +00013ff0: 7468 6174 204d 2069 7320 6465 6669 6e65 that M is define │ │ │ │ +00014000: 6420 6f76 6572 2061 2072 696e 6720 6f66 d over a ring of │ │ │ │ +00014010: 2074 6865 2066 6f72 6d20 5262 6172 203d the form Rbar = │ │ │ │ +00014020: 2052 2f28 665f 302e 2e66 5f7b 632d 317d R/(f_0..f_{c-1} │ │ │ │ +00014030: 292c 2061 0a63 6f6d 706c 6574 6520 696e ), a.complete in │ │ │ │ +00014040: 7465 7273 6563 7469 6f6e 2c20 616e 6420 tersection, and │ │ │ │ +00014050: 7468 6174 204d 2068 6173 2061 2066 696e that M has a fin │ │ │ │ +00014060: 6974 6520 6672 6565 2072 6573 6f6c 7574 ite free resolut │ │ │ │ +00014070: 696f 6e20 4720 6f76 6572 2052 2e20 496e ion G over R. In │ │ │ │ +00014080: 0a74 6869 7320 6361 7365 204d 2068 6173 .this case M has │ │ │ │ +00014090: 2061 2066 7265 6520 7265 736f 6c75 7469 a free resoluti │ │ │ │ +000140a0: 6f6e 2046 206f 7665 7220 5262 6172 2077 on F over Rbar w │ │ │ │ +000140b0: 686f 7365 2064 7561 6c2c 2046 5e2a 2069 hose dual, F^* i │ │ │ │ +000140c0: 7320 6120 6669 6e69 7465 6c79 0a67 656e s a finitely.gen │ │ │ │ +000140d0: 6572 6174 6564 2c20 5a2d 6772 6164 6564 erated, Z-graded │ │ │ │ +000140e0: 2066 7265 6520 6d6f 6475 6c65 206f 7665 free module ove │ │ │ │ +000140f0: 7220 6120 7269 6e67 2053 6261 725c 636f r a ring Sbar\co │ │ │ │ +00014100: 6e67 206b 6b5b 735f 302e 2e73 5f7b 632d ng kk[s_0..s_{c- │ │ │ │ +00014110: 317d 2c67 656e 730a 5262 6172 5d2c 2077 1},gens.Rbar], w │ │ │ │ +00014120: 6865 7265 2074 6865 2064 6567 7265 6573 here the degrees │ │ │ │ +00014130: 206f 6620 7468 6520 735f 6920 6172 6520 of the s_i are │ │ │ │ +00014140: 7b2d 322c 202d 6465 6772 6565 2066 5f69 {-2, -degree f_i │ │ │ │ +00014150: 7d2e 2054 6869 7320 7265 736f 6c75 7469 }. This resoluti │ │ │ │ +00014160: 6f6e 2069 730a 6973 2063 6f6e 7374 7275 on is.is constru │ │ │ │ +00014170: 6374 6564 2066 726f 6d20 7468 6520 6475 cted from the du │ │ │ │ +00014180: 616c 206f 6620 472c 2074 6f67 6574 6865 al of G, togethe │ │ │ │ +00014190: 7220 7769 7468 2074 6865 2064 7561 6c73 r with the duals │ │ │ │ +000141a0: 206f 6620 7468 6520 6869 6768 6572 0a68 of the higher.h │ │ │ │ +000141b0: 6f6d 6f74 6f70 6965 7320 6f6e 2047 2064 omotopies on G d │ │ │ │ +000141c0: 6566 696e 6564 2062 7920 4569 7365 6e62 efined by Eisenb │ │ │ │ +000141d0: 7564 2e0a 0a54 6865 2066 756e 6374 696f ud...The functio │ │ │ │ +000141e0: 6e20 7265 7475 726e 7320 7468 6520 6469 n returns the di │ │ │ │ +000141f0: 6666 6572 656e 7469 616c 7320 6430 3a46 fferentials d0:F │ │ │ │ +00014200: 5e2a 5f7b 6576 656e 7d20 5c74 6f20 465e ^*_{even} \to F^ │ │ │ │ +00014210: 2a5f 7b6f 6464 7d20 616e 640a 6431 3a46 *_{odd} and.d1:F │ │ │ │ +00014220: 5e2a 5f7b 6f64 647d 5c74 6f20 465e 2a5f ^*_{odd}\to F^*_ │ │ │ │ +00014230: 7b65 7665 6e7d 2e0a 0a54 6865 206d 6170 {even}...The map │ │ │ │ +00014240: 7320 6430 2c64 3120 666f 726d 2061 206d s d0,d1 form a m │ │ │ │ +00014250: 6174 7269 7820 6661 6374 6f72 697a 6174 atrix factorizat │ │ │ │ +00014260: 696f 6e20 6f66 2073 756d 2863 2c20 692d ion of sum(c, i- │ │ │ │ +00014270: 3e73 5f69 2a66 5f69 292e 2054 6865 2068 >s_i*f_i). The h │ │ │ │ +00014280: 6176 6520 7468 650a 7072 6f70 6572 7479 ave the.property │ │ │ │ +00014290: 2074 6861 7420 666f 7220 616e 7920 5262 that for any Rb │ │ │ │ +000142a0: 6172 206d 6f64 756c 6520 4e2c 0a0a 4848 ar module N,..HH │ │ │ │ +000142b0: 5f31 2063 6f6d 706c 6578 205c 7b64 302a _1 complex \{d0* │ │ │ │ +000142c0: 2a4e 2c20 6431 2a2a 4e5c 7d20 3d20 4578 *N, d1**N\} = Ex │ │ │ │ +000142d0: 745e 7b65 7665 6e7d 5f7b 5262 6172 7d28 t^{even}_{Rbar}( │ │ │ │ +000142e0: 4d2c 4e29 0a0a 535e 7b7b 312c 307d 7d2a M,N)..S^{{1,0}}* │ │ │ │ +000142f0: 2a48 485f 3120 636f 6d70 6c65 7820 5c7b *HH_1 complex \{ │ │ │ │ +00014300: 535e 7b7b 2d32 2c30 7d7d 2a2a 6431 2a2a S^{{-2,0}}**d1** │ │ │ │ +00014310: 4e2c 2064 302a 2a4e 5c7d 203d 2045 7874 N, d0**N\} = Ext │ │ │ │ +00014320: 5e7b 6f64 647d 5f7b 5262 6172 7d28 4d2c ^{odd}_{Rbar}(M, │ │ │ │ +00014330: 4e29 0a0a 5468 6973 2069 7320 656e 636f N)..This is enco │ │ │ │ +00014340: 6465 6420 696e 2074 6865 2073 6372 6970 ded in the scrip │ │ │ │ +00014350: 7420 6e65 7745 7874 0a0a 4f70 7469 6f6e t newExt..Option │ │ │ │ +00014360: 2064 6566 6175 6c74 733a 2043 6865 636b defaults: Check │ │ │ │ +00014370: 3d3e 6661 6c73 6520 5661 7269 6162 6c65 =>false Variable │ │ │ │ +00014380: 733d 3e67 6574 5379 6d62 6f6c 2022 7322 s=>getSymbol "s" │ │ │ │ +00014390: 2c20 4772 6164 696e 6720 3d3e 327d 0a0a , Grading =>2}.. │ │ │ │ +000143a0: 4966 2047 7261 6469 6e67 203d 3e31 2c20 If Grading =>1, │ │ │ │ +000143b0: 7468 656e 2061 2073 696e 676c 7920 6772 then a singly gr │ │ │ │ +000143c0: 6164 6564 2072 6573 756c 7420 6973 2072 aded result is r │ │ │ │ +000143d0: 6574 7572 6e65 6420 286a 7573 7420 666f eturned (just fo │ │ │ │ +000143e0: 7267 6574 7469 6e67 2074 6865 0a68 6f6d rgetting the.hom │ │ │ │ +000143f0: 6f6c 6f67 6963 616c 2067 7261 6469 6e67 ological grading │ │ │ │ +00014400: 2e29 0a0a 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d .)....+--------- │ │ │ │ +00014410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00014460: 0a7c 6931 203a 206e 203d 2033 2020 2020 .|i1 : n = 3 │ │ │ │ +00014450: 2d2d 2d2d 2b0a 7c69 3120 3a20 6e20 3d20 ----+.|i1 : n = │ │ │ │ +00014460: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 00014470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000144a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000144b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000144a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000144b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000144f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014500: 0a7c 6f31 203d 2033 2020 2020 2020 2020 .|o1 = 3 │ │ │ │ +000144f0: 2020 2020 7c0a 7c6f 3120 3d20 3320 2020 |.|o1 = 3 │ │ │ │ +00014500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014540: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014550: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014540: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00014550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000145a0: 0a7c 6932 203a 2063 203d 2032 2020 2020 .|i2 : c = 2 │ │ │ │ +00014590: 2d2d 2d2d 2b0a 7c69 3220 3a20 6320 3d20 ----+.|i2 : c = │ │ │ │ +000145a0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000145b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000145e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000145f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000145e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000145f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014630: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014640: 0a7c 6f32 203d 2032 2020 2020 2020 2020 .|o2 = 2 │ │ │ │ +00014630: 2020 2020 7c0a 7c6f 3220 3d20 3220 2020 |.|o2 = 2 │ │ │ │ +00014640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014680: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014690: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014680: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00014690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000146a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000146b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000146c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000146d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000146e0: 0a7c 6933 203a 206b 6b20 3d20 5a5a 2f31 .|i3 : kk = ZZ/1 │ │ │ │ -000146f0: 3031 2020 2020 2020 2020 2020 2020 2020 01 │ │ │ │ +000146d0: 2d2d 2d2d 2b0a 7c69 3320 3a20 6b6b 203d ----+.|i3 : kk = │ │ │ │ +000146e0: 205a 5a2f 3130 3120 2020 2020 2020 2020 ZZ/101 │ │ │ │ +000146f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014720: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014730: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00014720: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00014730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014770: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014780: 0a7c 6f33 203d 206b 6b20 2020 2020 2020 .|o3 = kk │ │ │ │ +00014770: 2020 2020 7c0a 7c6f 3320 3d20 6b6b 2020 |.|o3 = kk │ │ │ │ +00014780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000147c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000147d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000147c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000147d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014810: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014820: 0a7c 6f33 203a 2051 756f 7469 656e 7452 .|o3 : QuotientR │ │ │ │ -00014830: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +00014810: 2020 2020 7c0a 7c6f 3320 3a20 5175 6f74 |.|o3 : Quot │ │ │ │ +00014820: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ +00014830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014860: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014870: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014860: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00014870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000148a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000148b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000148c0: 0a7c 6934 203a 2052 203d 206b 6b5b 785f .|i4 : R = kk[x_ │ │ │ │ -000148d0: 302e 2e78 5f28 6e2d 3129 5d20 2020 2020 0..x_(n-1)] │ │ │ │ +000148b0: 2d2d 2d2d 2b0a 7c69 3420 3a20 5220 3d20 ----+.|i4 : R = │ │ │ │ +000148c0: 6b6b 5b78 5f30 2e2e 785f 286e 2d31 295d kk[x_0..x_(n-1)] │ │ │ │ +000148d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000148e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000148f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014900: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014910: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00014900: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00014910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014950: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014960: 0a7c 6f34 203d 2052 2020 2020 2020 2020 .|o4 = R │ │ │ │ +00014950: 2020 2020 7c0a 7c6f 3420 3d20 5220 2020 |.|o4 = R │ │ │ │ +00014960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000149a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000149b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000149a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000149b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000149c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000149d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000149e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000149f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014a00: 0a7c 6f34 203a 2050 6f6c 796e 6f6d 6961 .|o4 : Polynomia │ │ │ │ -00014a10: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ +000149f0: 2020 2020 7c0a 7c6f 3420 3a20 506f 6c79 |.|o4 : Poly │ │ │ │ +00014a00: 6e6f 6d69 616c 5269 6e67 2020 2020 2020 nomialRing │ │ │ │ +00014a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014a40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014a50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014a40: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00014a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00014aa0: 0a7c 6935 203a 2049 203d 2069 6465 616c .|i5 : I = ideal │ │ │ │ -00014ab0: 2878 5f30 5e32 2c20 785f 325e 3329 2020 (x_0^2, x_2^3) │ │ │ │ +00014a90: 2d2d 2d2d 2b0a 7c69 3520 3a20 4920 3d20 ----+.|i5 : I = │ │ │ │ +00014aa0: 6964 6561 6c28 785f 305e 322c 2078 5f32 ideal(x_0^2, x_2 │ │ │ │ +00014ab0: 5e33 2920 2020 2020 2020 2020 2020 2020 ^3) │ │ │ │ 00014ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014ae0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014af0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00014ae0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00014af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014b30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014b40: 0a7c 2020 2020 2020 2020 2020 2020 2032 .| 2 │ │ │ │ -00014b50: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00014b30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00014b40: 2020 2020 3220 2020 3320 2020 2020 2020 2 3 │ │ │ │ +00014b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014b80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014b90: 0a7c 6f35 203d 2069 6465 616c 2028 7820 .|o5 = ideal (x │ │ │ │ -00014ba0: 2c20 7820 2920 2020 2020 2020 2020 2020 , x ) │ │ │ │ +00014b80: 2020 2020 7c0a 7c6f 3520 3d20 6964 6561 |.|o5 = idea │ │ │ │ +00014b90: 6c20 2878 202c 2078 2029 2020 2020 2020 l (x , x ) │ │ │ │ +00014ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014bd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014be0: 0a7c 2020 2020 2020 2020 2020 2020 2030 .| 0 │ │ │ │ -00014bf0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00014bd0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00014be0: 2020 2020 3020 2020 3220 2020 2020 2020 0 2 │ │ │ │ +00014bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014c20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014c30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00014c20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00014c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014c80: 0a7c 6f35 203a 2049 6465 616c 206f 6620 .|o5 : Ideal of │ │ │ │ -00014c90: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00014c70: 2020 2020 7c0a 7c6f 3520 3a20 4964 6561 |.|o5 : Idea │ │ │ │ +00014c80: 6c20 6f66 2052 2020 2020 2020 2020 2020 l of R │ │ │ │ +00014c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014cc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014cd0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014cc0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00014cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00014d20: 0a7c 6936 203a 2066 6620 3d20 6765 6e73 .|i6 : ff = gens │ │ │ │ -00014d30: 2049 2020 2020 2020 2020 2020 2020 2020 I │ │ │ │ +00014d10: 2d2d 2d2d 2b0a 7c69 3620 3a20 6666 203d ----+.|i6 : ff = │ │ │ │ +00014d20: 2067 656e 7320 4920 2020 2020 2020 2020 gens I │ │ │ │ +00014d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014d60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014d70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00014d60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00014d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014db0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014dc0: 0a7c 6f36 203d 207c 2078 5f30 5e32 2078 .|o6 = | x_0^2 x │ │ │ │ -00014dd0: 5f32 5e33 207c 2020 2020 2020 2020 2020 _2^3 | │ │ │ │ +00014db0: 2020 2020 7c0a 7c6f 3620 3d20 7c20 785f |.|o6 = | x_ │ │ │ │ +00014dc0: 305e 3220 785f 325e 3320 7c20 2020 2020 0^2 x_2^3 | │ │ │ │ +00014dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014e00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014e10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00014e00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00014e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014e50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014e60: 0a7c 2020 2020 2020 2020 2020 2020 2031 .| 1 │ │ │ │ -00014e70: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00014e50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00014e60: 2020 2020 3120 2020 2020 2032 2020 2020 1 2 │ │ │ │ +00014e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014ea0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014eb0: 0a7c 6f36 203a 204d 6174 7269 7820 5220 .|o6 : Matrix R │ │ │ │ -00014ec0: 203c 2d2d 2052 2020 2020 2020 2020 2020 <-- R │ │ │ │ +00014ea0: 2020 2020 7c0a 7c6f 3620 3a20 4d61 7472 |.|o6 : Matr │ │ │ │ +00014eb0: 6978 2052 2020 3c2d 2d20 5220 2020 2020 ix R <-- R │ │ │ │ +00014ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014ef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014f00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014ef0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00014f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00014f50: 0a7c 6937 203a 2052 6261 7220 3d20 522f .|i7 : Rbar = R/ │ │ │ │ -00014f60: 4920 2020 2020 2020 2020 2020 2020 2020 I │ │ │ │ +00014f40: 2d2d 2d2d 2b0a 7c69 3720 3a20 5262 6172 ----+.|i7 : Rbar │ │ │ │ +00014f50: 203d 2052 2f49 2020 2020 2020 2020 2020 = R/I │ │ │ │ +00014f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014fa0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00014f90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00014fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014fe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014ff0: 0a7c 6f37 203d 2052 6261 7220 2020 2020 .|o7 = Rbar │ │ │ │ +00014fe0: 2020 2020 7c0a 7c6f 3720 3d20 5262 6172 |.|o7 = Rbar │ │ │ │ +00014ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015030: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015040: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00015030: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00015040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015090: 0a7c 6f37 203a 2051 756f 7469 656e 7452 .|o7 : QuotientR │ │ │ │ -000150a0: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +00015080: 2020 2020 7c0a 7c6f 3720 3a20 5175 6f74 |.|o7 : Quot │ │ │ │ +00015090: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ +000150a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000150b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000150c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000150d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000150e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000150d0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000150e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000150f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00015130: 0a7c 6938 203a 2062 6172 203d 206d 6170 .|i8 : bar = map │ │ │ │ -00015140: 2852 6261 722c 2052 2920 2020 2020 2020 (Rbar, R) │ │ │ │ +00015120: 2d2d 2d2d 2b0a 7c69 3820 3a20 6261 7220 ----+.|i8 : bar │ │ │ │ +00015130: 3d20 6d61 7028 5262 6172 2c20 5229 2020 = map(Rbar, R) │ │ │ │ +00015140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015170: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015180: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00015170: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00015180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000151a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000151b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000151c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000151d0: 0a7c 6f38 203d 206d 6170 2028 5262 6172 .|o8 = map (Rbar │ │ │ │ -000151e0: 2c20 522c 207b 7820 2c20 7820 2c20 7820 , R, {x , x , x │ │ │ │ -000151f0: 7d29 2020 2020 2020 2020 2020 2020 2020 }) │ │ │ │ +000151c0: 2020 2020 7c0a 7c6f 3820 3d20 6d61 7020 |.|o8 = map │ │ │ │ +000151d0: 2852 6261 722c 2052 2c20 7b78 202c 2078 (Rbar, R, {x , x │ │ │ │ +000151e0: 202c 2078 207d 2920 2020 2020 2020 2020 , x }) │ │ │ │ +000151f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015220: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00015230: 2020 2020 2020 2030 2020 2031 2020 2032 0 1 2 │ │ │ │ +00015210: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00015220: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00015230: 3120 2020 3220 2020 2020 2020 2020 2020 1 2 │ │ │ │ 00015240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015260: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015270: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00015260: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00015270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000152a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000152b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000152c0: 0a7c 6f38 203a 2052 696e 674d 6170 2052 .|o8 : RingMap R │ │ │ │ -000152d0: 6261 7220 3c2d 2d20 5220 2020 2020 2020 bar <-- R │ │ │ │ +000152b0: 2020 2020 7c0a 7c6f 3820 3a20 5269 6e67 |.|o8 : Ring │ │ │ │ +000152c0: 4d61 7020 5262 6172 203c 2d2d 2052 2020 Map Rbar <-- R │ │ │ │ +000152d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000152e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000152f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015310: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00015300: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00015310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00015360: 0a7c 6939 203a 204d 6261 7220 3d20 7072 .|i9 : Mbar = pr │ │ │ │ -00015370: 756e 6520 636f 6b65 7220 7261 6e64 6f6d une coker random │ │ │ │ -00015380: 2852 6261 725e 312c 2052 6261 725e 7b2d (Rbar^1, Rbar^{- │ │ │ │ -00015390: 327d 2920 2020 2020 2020 2020 2020 2020 2}) │ │ │ │ -000153a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000153b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00015350: 2d2d 2d2d 2b0a 7c69 3920 3a20 4d62 6172 ----+.|i9 : Mbar │ │ │ │ +00015360: 203d 2070 7275 6e65 2063 6f6b 6572 2072 = prune coker r │ │ │ │ +00015370: 616e 646f 6d28 5262 6172 5e31 2c20 5262 andom(Rbar^1, Rb │ │ │ │ +00015380: 6172 5e7b 2d32 7d29 2020 2020 2020 2020 ar^{-2}) │ │ │ │ +00015390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000153a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000153b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000153c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000153d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000153e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000153f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015400: 0a7c 6f39 203d 2063 6f6b 6572 6e65 6c20 .|o9 = cokernel │ │ │ │ -00015410: 7c20 785f 3078 5f31 2b32 3478 5f31 5e32 | x_0x_1+24x_1^2 │ │ │ │ -00015420: 2b34 3978 5f30 785f 322b 3378 5f31 785f +49x_0x_2+3x_1x_ │ │ │ │ -00015430: 322b 3578 5f32 5e32 207c 2020 2020 2020 2+5x_2^2 | │ │ │ │ -00015440: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015450: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000153f0: 2020 2020 7c0a 7c6f 3920 3d20 636f 6b65 |.|o9 = coke │ │ │ │ +00015400: 726e 656c 207c 2078 5f30 785f 312b 3234 rnel | x_0x_1+24 │ │ │ │ +00015410: 785f 315e 322b 3439 785f 3078 5f32 2b33 x_1^2+49x_0x_2+3 │ │ │ │ +00015420: 785f 3178 5f32 2b35 785f 325e 3220 7c20 x_1x_2+5x_2^2 | │ │ │ │ +00015430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015440: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00015450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015490: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000154a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000154b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000154c0: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ +00015490: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000154a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000154b0: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ +000154c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000154d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000154e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000154f0: 0a7c 6f39 203a 2052 6261 722d 6d6f 6475 .|o9 : Rbar-modu │ │ │ │ -00015500: 6c65 2c20 7175 6f74 6965 6e74 206f 6620 le, quotient of │ │ │ │ -00015510: 5262 6172 2020 2020 2020 2020 2020 2020 Rbar │ │ │ │ +000154e0: 2020 2020 7c0a 7c6f 3920 3a20 5262 6172 |.|o9 : Rbar │ │ │ │ +000154f0: 2d6d 6f64 756c 652c 2071 756f 7469 656e -module, quotien │ │ │ │ +00015500: 7420 6f66 2052 6261 7220 2020 2020 2020 t of Rbar │ │ │ │ +00015510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015530: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015540: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00015530: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00015540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00015590: 0a7c 6931 3020 3a20 2864 302c 6431 2920 .|i10 : (d0,d1) │ │ │ │ -000155a0: 3d20 4569 7365 6e62 7564 5368 616d 6173 = EisenbudShamas │ │ │ │ -000155b0: 6854 6f74 616c 284d 6261 722c 4772 6164 hTotal(Mbar,Grad │ │ │ │ -000155c0: 696e 6720 3d3e 3129 2020 2020 2020 2020 ing =>1) │ │ │ │ -000155d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000155e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00015580: 2d2d 2d2d 2b0a 7c69 3130 203a 2028 6430 ----+.|i10 : (d0 │ │ │ │ +00015590: 2c64 3129 203d 2045 6973 656e 6275 6453 ,d1) = EisenbudS │ │ │ │ +000155a0: 6861 6d61 7368 546f 7461 6c28 4d62 6172 hamashTotal(Mbar │ │ │ │ +000155b0: 2c47 7261 6469 6e67 203d 3e31 2920 2020 ,Grading =>1) │ │ │ │ +000155c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000155d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000155e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000155f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015620: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015630: 0a7c 6f31 3020 3d20 287b 2d32 7d20 7c20 .|o10 = ({-2} | │ │ │ │ -00015640: 785f 305e 3220 2020 2020 2020 2020 2020 x_0^2 │ │ │ │ -00015650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015660: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ -00015670: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015680: 0a7c 2020 2020 2020 207b 2d32 7d20 7c20 .| {-2} | │ │ │ │ -00015690: 785f 3078 5f31 2b32 3478 5f31 5e32 2b34 x_0x_1+24x_1^2+4 │ │ │ │ -000156a0: 3978 5f30 785f 322b 3378 5f31 785f 322b 9x_0x_2+3x_1x_2+ │ │ │ │ -000156b0: 3578 5f32 5e32 2033 3073 5f30 2020 2020 5x_2^2 30s_0 │ │ │ │ -000156c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000156d0: 0a7c 2020 2020 2020 207b 2d33 7d20 7c20 .| {-3} | │ │ │ │ -000156e0: 785f 325e 3320 2020 2020 2020 2020 2020 x_2^3 │ │ │ │ -000156f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015700: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ -00015710: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015720: 0a7c 2020 2020 2020 207b 2d37 7d20 7c20 .| {-7} | │ │ │ │ -00015730: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00015740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015750: 2020 2020 2020 2078 5f32 5e33 2020 2020 x_2^3 │ │ │ │ -00015760: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015770: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ +00015620: 2020 2020 7c0a 7c6f 3130 203d 2028 7b2d |.|o10 = ({- │ │ │ │ +00015630: 327d 207c 2078 5f30 5e32 2020 2020 2020 2} | x_0^2 │ │ │ │ +00015640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015650: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00015660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015670: 2020 2020 7c0a 7c20 2020 2020 2020 7b2d |.| {- │ │ │ │ +00015680: 327d 207c 2078 5f30 785f 312b 3234 785f 2} | x_0x_1+24x_ │ │ │ │ +00015690: 315e 322b 3439 785f 3078 5f32 2b33 785f 1^2+49x_0x_2+3x_ │ │ │ │ +000156a0: 3178 5f32 2b35 785f 325e 3220 3330 735f 1x_2+5x_2^2 30s_ │ │ │ │ +000156b0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000156c0: 2020 2020 7c0a 7c20 2020 2020 2020 7b2d |.| {- │ │ │ │ +000156d0: 337d 207c 2078 5f32 5e33 2020 2020 2020 3} | x_2^3 │ │ │ │ +000156e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000156f0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00015700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015710: 2020 2020 7c0a 7c20 2020 2020 2020 7b2d |.| {- │ │ │ │ +00015720: 377d 207c 2030 2020 2020 2020 2020 2020 7} | 0 │ │ │ │ +00015730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015740: 2020 2020 2020 2020 2020 2020 785f 325e x_2^ │ │ │ │ +00015750: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00015760: 2020 2020 7c0a 7c20 2020 2020 202d 2d2d |.| --- │ │ │ │ +00015770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000157a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000157b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000157c0: 0a7c 2020 2020 2020 2d73 5f31 2020 2020 .| -s_1 │ │ │ │ +000157b0: 2d2d 2d2d 7c0a 7c20 2020 2020 202d 735f ----|.| -s_ │ │ │ │ +000157c0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 000157d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157f0: 2020 3020 2020 2020 2020 207c 2c20 7b30 0 |, {0 │ │ │ │ -00015800: 7d20 207c 2020 2020 2020 2020 2020 207c } | | │ │ │ │ -00015810: 0a7c 2020 2020 2020 3020 2020 2020 2020 .| 0 │ │ │ │ +000157e0: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ +000157f0: 7c2c 207b 307d 2020 7c20 2020 2020 2020 |, {0} | │ │ │ │ +00015800: 2020 2020 7c0a 7c20 2020 2020 2030 2020 |.| 0 │ │ │ │ +00015810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015840: 2020 2d73 5f31 2020 2020 207c 2020 7b2d -s_1 | {- │ │ │ │ -00015850: 347d 207c 2020 2020 2020 2020 2020 207c 4} | | │ │ │ │ -00015860: 0a7c 2020 2020 2020 735f 3020 2020 2020 .| s_0 │ │ │ │ +00015830: 2020 2020 2020 202d 735f 3120 2020 2020 -s_1 │ │ │ │ +00015840: 7c20 207b 2d34 7d20 7c20 2020 2020 2020 | {-4} | │ │ │ │ +00015850: 2020 2020 7c0a 7c20 2020 2020 2073 5f30 |.| s_0 │ │ │ │ +00015860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015890: 2020 3020 2020 2020 2020 207c 2020 7b2d 0 | {- │ │ │ │ -000158a0: 357d 207c 2020 2020 2020 2020 2020 207c 5} | | │ │ │ │ -000158b0: 0a7c 2020 2020 2020 3337 785f 3078 5f31 .| 37x_0x_1 │ │ │ │ -000158c0: 2d32 3178 5f31 5e32 2d35 785f 3078 5f32 -21x_1^2-5x_0x_2 │ │ │ │ -000158d0: 2b31 3078 5f31 785f 322d 3137 785f 325e +10x_1x_2-17x_2^ │ │ │ │ -000158e0: 3220 2d33 3778 5f30 5e32 207c 2020 7b2d 2 -37x_0^2 | {- │ │ │ │ -000158f0: 357d 207c 2020 2020 2020 2020 2020 207c 5} | | │ │ │ │ -00015900: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ +00015880: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ +00015890: 7c20 207b 2d35 7d20 7c20 2020 2020 2020 | {-5} | │ │ │ │ +000158a0: 2020 2020 7c0a 7c20 2020 2020 2033 3778 |.| 37x │ │ │ │ +000158b0: 5f30 785f 312d 3231 785f 315e 322d 3578 _0x_1-21x_1^2-5x │ │ │ │ +000158c0: 5f30 785f 322b 3130 785f 3178 5f32 2d31 _0x_2+10x_1x_2-1 │ │ │ │ +000158d0: 3778 5f32 5e32 202d 3337 785f 305e 3220 7x_2^2 -37x_0^2 │ │ │ │ +000158e0: 7c20 207b 2d35 7d20 7c20 2020 2020 2020 | {-5} | │ │ │ │ +000158f0: 2020 2020 7c0a 7c20 2020 2020 202d 2d2d |.| --- │ │ │ │ +00015900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00015950: 0a7c 2020 2020 2020 735f 3020 2020 2020 .| s_0 │ │ │ │ +00015940: 2d2d 2d2d 7c0a 7c20 2020 2020 2073 5f30 ----|.| s_0 │ │ │ │ +00015950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015980: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00015990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000159a0: 0a7c 2020 2020 2020 3337 785f 3078 5f31 .| 37x_0x_1 │ │ │ │ -000159b0: 2d32 3178 5f31 5e32 2d35 785f 3078 5f32 -21x_1^2-5x_0x_2 │ │ │ │ -000159c0: 2b31 3078 5f31 785f 322d 3137 785f 325e +10x_1x_2-17x_2^ │ │ │ │ -000159d0: 3220 2d33 3778 5f30 5e32 2020 2020 2020 2 -37x_0^2 │ │ │ │ -000159e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000159f0: 0a7c 2020 2020 2020 2d78 5f32 5e33 2020 .| -x_2^3 │ │ │ │ +00015970: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ +00015980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015990: 2020 2020 7c0a 7c20 2020 2020 2033 3778 |.| 37x │ │ │ │ +000159a0: 5f30 785f 312d 3231 785f 315e 322d 3578 _0x_1-21x_1^2-5x │ │ │ │ +000159b0: 5f30 785f 322b 3130 785f 3178 5f32 2d31 _0x_2+10x_1x_2-1 │ │ │ │ +000159c0: 3778 5f32 5e32 202d 3337 785f 305e 3220 7x_2^2 -37x_0^2 │ │ │ │ +000159d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000159e0: 2020 2020 7c0a 7c20 2020 2020 202d 785f |.| -x_ │ │ │ │ +000159f0: 325e 3320 2020 2020 2020 2020 2020 2020 2^3 │ │ │ │ 00015a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a20: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00015a30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015a40: 0a7c 2020 2020 2020 3020 2020 2020 2020 .| 0 │ │ │ │ +00015a10: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ +00015a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015a30: 2020 2020 7c0a 7c20 2020 2020 2030 2020 |.| 0 │ │ │ │ +00015a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a70: 2020 2d78 5f32 5e33 2020 2020 2020 2020 -x_2^3 │ │ │ │ -00015a80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015a90: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ +00015a60: 2020 2020 2020 202d 785f 325e 3320 2020 -x_2^3 │ │ │ │ +00015a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015a80: 2020 2020 7c0a 7c20 2020 2020 202d 2d2d |.| --- │ │ │ │ +00015a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00015ae0: 0a7c 2020 2020 2020 735f 3120 2020 2020 .| s_1 │ │ │ │ +00015ad0: 2d2d 2d2d 7c0a 7c20 2020 2020 2073 5f31 ----|.| s_1 │ │ │ │ +00015ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015b00: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00015b10: 2020 2020 207c 2920 2020 2020 2020 2020 |) │ │ │ │ -00015b20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015b30: 0a7c 2020 2020 2020 3020 2020 2020 2020 .| 0 │ │ │ │ +00015b00: 2020 2020 3020 2020 2020 7c29 2020 2020 0 |) │ │ │ │ +00015b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015b20: 2020 2020 7c0a 7c20 2020 2020 2030 2020 |.| 0 │ │ │ │ +00015b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015b50: 2020 2020 2020 2020 2020 2020 2020 2073 s │ │ │ │ -00015b60: 5f31 2020 207c 2020 2020 2020 2020 2020 _1 | │ │ │ │ -00015b70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015b80: 0a7c 2020 2020 2020 785f 305e 3220 2020 .| x_0^2 │ │ │ │ +00015b50: 2020 2020 735f 3120 2020 7c20 2020 2020 s_1 | │ │ │ │ +00015b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015b70: 2020 2020 7c0a 7c20 2020 2020 2078 5f30 |.| x_0 │ │ │ │ +00015b80: 5e32 2020 2020 2020 2020 2020 2020 2020 ^2 │ │ │ │ 00015b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ba0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00015bb0: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -00015bc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015bd0: 0a7c 2020 2020 2020 785f 3078 5f31 2b32 .| x_0x_1+2 │ │ │ │ -00015be0: 3478 5f31 5e32 2b34 3978 5f30 785f 322b 4x_1^2+49x_0x_2+ │ │ │ │ -00015bf0: 3378 5f31 785f 322b 3578 5f32 5e32 2033 3x_1x_2+5x_2^2 3 │ │ │ │ -00015c00: 3073 5f30 207c 2020 2020 2020 2020 2020 0s_0 | │ │ │ │ -00015c10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015c20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00015ba0: 2020 2020 3020 2020 2020 7c20 2020 2020 0 | │ │ │ │ +00015bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015bc0: 2020 2020 7c0a 7c20 2020 2020 2078 5f30 |.| x_0 │ │ │ │ +00015bd0: 785f 312b 3234 785f 315e 322b 3439 785f x_1+24x_1^2+49x_ │ │ │ │ +00015be0: 3078 5f32 2b33 785f 3178 5f32 2b35 785f 0x_2+3x_1x_2+5x_ │ │ │ │ +00015bf0: 325e 3220 3330 735f 3020 7c20 2020 2020 2^2 30s_0 | │ │ │ │ +00015c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015c10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00015c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015c70: 0a7c 6f31 3020 3a20 5365 7175 656e 6365 .|o10 : Sequence │ │ │ │ +00015c60: 2020 2020 7c0a 7c6f 3130 203a 2053 6571 |.|o10 : Seq │ │ │ │ +00015c70: 7565 6e63 6520 2020 2020 2020 2020 2020 uence │ │ │ │ 00015c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015cb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015cc0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00015cb0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00015cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00015d10: 0a7c 6931 3120 3a20 6430 2a64 3120 2020 .|i11 : d0*d1 │ │ │ │ +00015d00: 2d2d 2d2d 2b0a 7c69 3131 203a 2064 302a ----+.|i11 : d0* │ │ │ │ +00015d10: 6431 2020 2020 2020 2020 2020 2020 2020 d1 │ │ │ │ 00015d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015d60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00015d50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00015d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015db0: 0a7c 6f31 3120 3d20 7b2d 327d 207c 2073 .|o11 = {-2} | s │ │ │ │ -00015dc0: 5f31 785f 325e 332b 735f 3078 5f30 5e32 _1x_2^3+s_0x_0^2 │ │ │ │ -00015dd0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00015de0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00015df0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015e00: 0a7c 2020 2020 2020 7b2d 327d 207c 2030 .| {-2} | 0 │ │ │ │ -00015e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e20: 2073 5f31 785f 325e 332b 735f 3078 5f30 s_1x_2^3+s_0x_0 │ │ │ │ -00015e30: 5e32 2030 2020 2020 2020 2020 2020 2020 ^2 0 │ │ │ │ -00015e40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015e50: 0a7c 2020 2020 2020 7b2d 337d 207c 2030 .| {-3} | 0 │ │ │ │ -00015e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e70: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00015e80: 2020 2073 5f31 785f 325e 332b 735f 3078 s_1x_2^3+s_0x │ │ │ │ -00015e90: 5f30 5e32 2020 2020 2020 2020 2020 207c _0^2 | │ │ │ │ -00015ea0: 0a7c 2020 2020 2020 7b2d 377d 207c 2030 .| {-7} | 0 │ │ │ │ -00015eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ec0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00015ed0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00015ee0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015ef0: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ +00015da0: 2020 2020 7c0a 7c6f 3131 203d 207b 2d32 |.|o11 = {-2 │ │ │ │ +00015db0: 7d20 7c20 735f 3178 5f32 5e33 2b73 5f30 } | s_1x_2^3+s_0 │ │ │ │ +00015dc0: 785f 305e 3220 3020 2020 2020 2020 2020 x_0^2 0 │ │ │ │ +00015dd0: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ +00015de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015df0: 2020 2020 7c0a 7c20 2020 2020 207b 2d32 |.| {-2 │ │ │ │ +00015e00: 7d20 7c20 3020 2020 2020 2020 2020 2020 } | 0 │ │ │ │ +00015e10: 2020 2020 2020 735f 3178 5f32 5e33 2b73 s_1x_2^3+s │ │ │ │ +00015e20: 5f30 785f 305e 3220 3020 2020 2020 2020 _0x_0^2 0 │ │ │ │ +00015e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015e40: 2020 2020 7c0a 7c20 2020 2020 207b 2d33 |.| {-3 │ │ │ │ +00015e50: 7d20 7c20 3020 2020 2020 2020 2020 2020 } | 0 │ │ │ │ +00015e60: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00015e70: 2020 2020 2020 2020 735f 3178 5f32 5e33 s_1x_2^3 │ │ │ │ +00015e80: 2b73 5f30 785f 305e 3220 2020 2020 2020 +s_0x_0^2 │ │ │ │ +00015e90: 2020 2020 7c0a 7c20 2020 2020 207b 2d37 |.| {-7 │ │ │ │ +00015ea0: 7d20 7c20 3020 2020 2020 2020 2020 2020 } | 0 │ │ │ │ +00015eb0: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00015ec0: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ +00015ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015ee0: 2020 2020 7c0a 7c20 2020 2020 202d 2d2d |.| --- │ │ │ │ +00015ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00015f40: 0a7c 2020 2020 2020 3020 2020 2020 2020 .| 0 │ │ │ │ -00015f50: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +00015f30: 2d2d 2d2d 7c0a 7c20 2020 2020 2030 2020 ----|.| 0 │ │ │ │ +00015f40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00015f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015f80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015f90: 0a7c 2020 2020 2020 3020 2020 2020 2020 .| 0 │ │ │ │ -00015fa0: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +00015f80: 2020 2020 7c0a 7c20 2020 2020 2030 2020 |.| 0 │ │ │ │ +00015f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00015fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015fd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015fe0: 0a7c 2020 2020 2020 3020 2020 2020 2020 .| 0 │ │ │ │ -00015ff0: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +00015fd0: 2020 2020 7c0a 7c20 2020 2020 2030 2020 |.| 0 │ │ │ │ +00015fe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00015ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016020: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016030: 0a7c 2020 2020 2020 735f 3178 5f32 5e33 .| s_1x_2^3 │ │ │ │ -00016040: 2b73 5f30 785f 305e 3220 7c20 2020 2020 +s_0x_0^2 | │ │ │ │ +00016020: 2020 2020 7c0a 7c20 2020 2020 2073 5f31 |.| s_1 │ │ │ │ +00016030: 785f 325e 332b 735f 3078 5f30 5e32 207c x_2^3+s_0x_0^2 | │ │ │ │ +00016040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016080: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00016070: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000160a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000160b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000160c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000160d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000160e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000160f0: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00016100: 2020 2020 2020 2020 2020 2020 2034 2020 4 │ │ │ │ -00016110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016120: 0a7c 6f31 3120 3a20 4d61 7472 6978 2028 .|o11 : Matrix ( │ │ │ │ -00016130: 6b6b 5b73 202e 2e73 202c 2078 202e 2e78 kk[s ..s , x ..x │ │ │ │ -00016140: 205d 2920 203c 2d2d 2028 6b6b 5b73 202e ]) <-- (kk[s . │ │ │ │ -00016150: 2e73 202c 2078 202e 2e78 205d 2920 2020 .s , x ..x ]) │ │ │ │ -00016160: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016170: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00016180: 2020 2020 3020 2020 3120 2020 3020 2020 0 1 0 │ │ │ │ -00016190: 3220 2020 2020 2020 2020 2020 2020 3020 2 0 │ │ │ │ -000161a0: 2020 3120 2020 3020 2020 3220 2020 2020 1 0 2 │ │ │ │ -000161b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000161c0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000160c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000160d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000160e0: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ +000160f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016100: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00016110: 2020 2020 7c0a 7c6f 3131 203a 204d 6174 |.|o11 : Mat │ │ │ │ +00016120: 7269 7820 286b 6b5b 7320 2e2e 7320 2c20 rix (kk[s ..s , │ │ │ │ +00016130: 7820 2e2e 7820 5d29 2020 3c2d 2d20 286b x ..x ]) <-- (k │ │ │ │ +00016140: 6b5b 7320 2e2e 7320 2c20 7820 2e2e 7820 k[s ..s , x ..x │ │ │ │ +00016150: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +00016160: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016170: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ +00016180: 2030 2020 2032 2020 2020 2020 2020 2020 0 2 │ │ │ │ +00016190: 2020 2030 2020 2031 2020 2030 2020 2032 0 1 0 2 │ │ │ │ +000161a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000161b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000161c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000161d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000161e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000161f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00016210: 0a7c 6931 3220 3a20 6431 2a64 3020 2020 .|i12 : d1*d0 │ │ │ │ +00016200: 2d2d 2d2d 2b0a 7c69 3132 203a 2064 312a ----+.|i12 : d1* │ │ │ │ +00016210: 6430 2020 2020 2020 2020 2020 2020 2020 d0 │ │ │ │ 00016220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016260: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00016250: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000162a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000162b0: 0a7c 6f31 3220 3d20 7b30 7d20 207c 2073 .|o12 = {0} | s │ │ │ │ -000162c0: 5f31 785f 325e 332b 735f 3078 5f30 5e32 _1x_2^3+s_0x_0^2 │ │ │ │ -000162d0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -000162e0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -000162f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016300: 0a7c 2020 2020 2020 7b2d 347d 207c 2030 .| {-4} | 0 │ │ │ │ -00016310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016320: 2073 5f31 785f 325e 332b 735f 3078 5f30 s_1x_2^3+s_0x_0 │ │ │ │ -00016330: 5e32 2030 2020 2020 2020 2020 2020 2020 ^2 0 │ │ │ │ -00016340: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016350: 0a7c 2020 2020 2020 7b2d 357d 207c 2030 .| {-5} | 0 │ │ │ │ -00016360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016370: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00016380: 2020 2073 5f31 785f 325e 332b 735f 3078 s_1x_2^3+s_0x │ │ │ │ -00016390: 5f30 5e32 2020 2020 2020 2020 2020 207c _0^2 | │ │ │ │ -000163a0: 0a7c 2020 2020 2020 7b2d 357d 207c 2030 .| {-5} | 0 │ │ │ │ -000163b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000163c0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -000163d0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -000163e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000163f0: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ +000162a0: 2020 2020 7c0a 7c6f 3132 203d 207b 307d |.|o12 = {0} │ │ │ │ +000162b0: 2020 7c20 735f 3178 5f32 5e33 2b73 5f30 | s_1x_2^3+s_0 │ │ │ │ +000162c0: 785f 305e 3220 3020 2020 2020 2020 2020 x_0^2 0 │ │ │ │ +000162d0: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ +000162e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000162f0: 2020 2020 7c0a 7c20 2020 2020 207b 2d34 |.| {-4 │ │ │ │ +00016300: 7d20 7c20 3020 2020 2020 2020 2020 2020 } | 0 │ │ │ │ +00016310: 2020 2020 2020 735f 3178 5f32 5e33 2b73 s_1x_2^3+s │ │ │ │ +00016320: 5f30 785f 305e 3220 3020 2020 2020 2020 _0x_0^2 0 │ │ │ │ +00016330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016340: 2020 2020 7c0a 7c20 2020 2020 207b 2d35 |.| {-5 │ │ │ │ +00016350: 7d20 7c20 3020 2020 2020 2020 2020 2020 } | 0 │ │ │ │ +00016360: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00016370: 2020 2020 2020 2020 735f 3178 5f32 5e33 s_1x_2^3 │ │ │ │ +00016380: 2b73 5f30 785f 305e 3220 2020 2020 2020 +s_0x_0^2 │ │ │ │ +00016390: 2020 2020 7c0a 7c20 2020 2020 207b 2d35 |.| {-5 │ │ │ │ +000163a0: 7d20 7c20 3020 2020 2020 2020 2020 2020 } | 0 │ │ │ │ +000163b0: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +000163c0: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ +000163d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000163e0: 2020 2020 7c0a 7c20 2020 2020 202d 2d2d |.| --- │ │ │ │ +000163f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00016440: 0a7c 2020 2020 2020 3020 2020 2020 2020 .| 0 │ │ │ │ -00016450: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +00016430: 2d2d 2d2d 7c0a 7c20 2020 2020 2030 2020 ----|.| 0 │ │ │ │ +00016440: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00016450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016490: 0a7c 2020 2020 2020 3020 2020 2020 2020 .| 0 │ │ │ │ -000164a0: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +00016480: 2020 2020 7c0a 7c20 2020 2020 2030 2020 |.| 0 │ │ │ │ +00016490: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000164a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000164b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000164c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000164d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000164e0: 0a7c 2020 2020 2020 3020 2020 2020 2020 .| 0 │ │ │ │ -000164f0: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +000164d0: 2020 2020 7c0a 7c20 2020 2020 2030 2020 |.| 0 │ │ │ │ +000164e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000164f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016530: 0a7c 2020 2020 2020 735f 3178 5f32 5e33 .| s_1x_2^3 │ │ │ │ -00016540: 2b73 5f30 785f 305e 3220 7c20 2020 2020 +s_0x_0^2 | │ │ │ │ +00016520: 2020 2020 7c0a 7c20 2020 2020 2073 5f31 |.| s_1 │ │ │ │ +00016530: 785f 325e 332b 735f 3078 5f30 5e32 207c x_2^3+s_0x_0^2 | │ │ │ │ +00016540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016570: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016580: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00016570: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000165a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000165b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000165c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000165d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000165e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000165f0: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00016600: 2020 2020 2020 2020 2020 2020 2034 2020 4 │ │ │ │ -00016610: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016620: 0a7c 6f31 3220 3a20 4d61 7472 6978 2028 .|o12 : Matrix ( │ │ │ │ -00016630: 6b6b 5b73 202e 2e73 202c 2078 202e 2e78 kk[s ..s , x ..x │ │ │ │ -00016640: 205d 2920 203c 2d2d 2028 6b6b 5b73 202e ]) <-- (kk[s . │ │ │ │ -00016650: 2e73 202c 2078 202e 2e78 205d 2920 2020 .s , x ..x ]) │ │ │ │ -00016660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016670: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00016680: 2020 2020 3020 2020 3120 2020 3020 2020 0 1 0 │ │ │ │ -00016690: 3220 2020 2020 2020 2020 2020 2020 3020 2 0 │ │ │ │ -000166a0: 2020 3120 2020 3020 2020 3220 2020 2020 1 0 2 │ │ │ │ -000166b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000166c0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000165c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000165d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000165e0: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ +000165f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016600: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00016610: 2020 2020 7c0a 7c6f 3132 203a 204d 6174 |.|o12 : Mat │ │ │ │ +00016620: 7269 7820 286b 6b5b 7320 2e2e 7320 2c20 rix (kk[s ..s , │ │ │ │ +00016630: 7820 2e2e 7820 5d29 2020 3c2d 2d20 286b x ..x ]) <-- (k │ │ │ │ +00016640: 6b5b 7320 2e2e 7320 2c20 7820 2e2e 7820 k[s ..s , x ..x │ │ │ │ +00016650: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +00016660: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016670: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ +00016680: 2030 2020 2032 2020 2020 2020 2020 2020 0 2 │ │ │ │ +00016690: 2020 2030 2020 2031 2020 2030 2020 2032 0 1 0 2 │ │ │ │ +000166a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000166b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000166c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000166d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000166e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000166f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00016710: 0a7c 6931 3320 3a20 5320 3d20 7269 6e67 .|i13 : S = ring │ │ │ │ -00016720: 2064 3020 2020 2020 2020 2020 2020 2020 d0 │ │ │ │ +00016700: 2d2d 2d2d 2b0a 7c69 3133 203a 2053 203d ----+.|i13 : S = │ │ │ │ +00016710: 2072 696e 6720 6430 2020 2020 2020 2020 ring d0 │ │ │ │ +00016720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00016750: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000167a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000167b0: 0a7c 6f31 3320 3d20 5320 2020 2020 2020 .|o13 = S │ │ │ │ +000167a0: 2020 2020 7c0a 7c6f 3133 203d 2053 2020 |.|o13 = S │ │ │ │ +000167b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000167c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000167d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000167e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000167f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016800: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000167f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016840: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016850: 0a7c 6f31 3320 3a20 506f 6c79 6e6f 6d69 .|o13 : Polynomi │ │ │ │ -00016860: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ +00016840: 2020 2020 7c0a 7c6f 3133 203a 2050 6f6c |.|o13 : Pol │ │ │ │ +00016850: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ +00016860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016890: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000168a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00016890: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000168a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000168b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000168c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000168d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000168e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000168f0: 0a7c 6931 3420 3a20 7068 6920 3d20 6d61 .|i14 : phi = ma │ │ │ │ -00016900: 7028 532c 5229 2020 2020 2020 2020 2020 p(S,R) │ │ │ │ +000168e0: 2d2d 2d2d 2b0a 7c69 3134 203a 2070 6869 ----+.|i14 : phi │ │ │ │ +000168f0: 203d 206d 6170 2853 2c52 2920 2020 2020 = map(S,R) │ │ │ │ +00016900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016940: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00016930: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016990: 0a7c 6f31 3420 3d20 6d61 7020 2853 2c20 .|o14 = map (S, │ │ │ │ -000169a0: 522c 207b 7820 2c20 7820 2c20 7820 7d29 R, {x , x , x }) │ │ │ │ +00016980: 2020 2020 7c0a 7c6f 3134 203d 206d 6170 |.|o14 = map │ │ │ │ +00016990: 2028 532c 2052 2c20 7b78 202c 2078 202c (S, R, {x , x , │ │ │ │ +000169a0: 2078 207d 2920 2020 2020 2020 2020 2020 x }) │ │ │ │ 000169b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000169c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000169d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000169e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000169f0: 2020 2020 2030 2020 2031 2020 2032 2020 0 1 2 │ │ │ │ +000169d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000169e0: 2020 2020 2020 2020 2020 3020 2020 3120 0 1 │ │ │ │ +000169f0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00016a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016a30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00016a20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016a80: 0a7c 6f31 3420 3a20 5269 6e67 4d61 7020 .|o14 : RingMap │ │ │ │ -00016a90: 5320 3c2d 2d20 5220 2020 2020 2020 2020 S <-- R │ │ │ │ +00016a70: 2020 2020 7c0a 7c6f 3134 203a 2052 696e |.|o14 : Rin │ │ │ │ +00016a80: 674d 6170 2053 203c 2d2d 2052 2020 2020 gMap S <-- R │ │ │ │ +00016a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ac0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016ad0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00016ac0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00016ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00016b20: 0a7c 6931 3520 3a20 4953 203d 2070 6869 .|i15 : IS = phi │ │ │ │ -00016b30: 2049 2020 2020 2020 2020 2020 2020 2020 I │ │ │ │ +00016b10: 2d2d 2d2d 2b0a 7c69 3135 203a 2049 5320 ----+.|i15 : IS │ │ │ │ +00016b20: 3d20 7068 6920 4920 2020 2020 2020 2020 = phi I │ │ │ │ +00016b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016b60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00016b60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016bb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016bc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00016bd0: 3220 2020 3320 2020 2020 2020 2020 2020 2 3 │ │ │ │ +00016bb0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016bc0: 2020 2020 2032 2020 2033 2020 2020 2020 2 3 │ │ │ │ +00016bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016c10: 0a7c 6f31 3520 3d20 6964 6561 6c20 2878 .|o15 = ideal (x │ │ │ │ -00016c20: 202c 2078 2029 2020 2020 2020 2020 2020 , x ) │ │ │ │ +00016c00: 2020 2020 7c0a 7c6f 3135 203d 2069 6465 |.|o15 = ide │ │ │ │ +00016c10: 616c 2028 7820 2c20 7820 2920 2020 2020 al (x , x ) │ │ │ │ +00016c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016c60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00016c70: 3020 2020 3220 2020 2020 2020 2020 2020 0 2 │ │ │ │ +00016c50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016c60: 2020 2020 2030 2020 2032 2020 2020 2020 0 2 │ │ │ │ +00016c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ca0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016cb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00016ca0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016cf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016d00: 0a7c 6f31 3520 3a20 4964 6561 6c20 6f66 .|o15 : Ideal of │ │ │ │ -00016d10: 2053 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +00016cf0: 2020 2020 7c0a 7c6f 3135 203a 2049 6465 |.|o15 : Ide │ │ │ │ +00016d00: 616c 206f 6620 5320 2020 2020 2020 2020 al of S │ │ │ │ +00016d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016d50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00016d40: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00016d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00016da0: 0a7c 6931 3620 3a20 5362 6172 203d 2053 .|i16 : Sbar = S │ │ │ │ -00016db0: 2f49 5320 2020 2020 2020 2020 2020 2020 /IS │ │ │ │ +00016d90: 2d2d 2d2d 2b0a 7c69 3136 203a 2053 6261 ----+.|i16 : Sba │ │ │ │ +00016da0: 7220 3d20 532f 4953 2020 2020 2020 2020 r = S/IS │ │ │ │ +00016db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016df0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00016de0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016e40: 0a7c 6f31 3620 3d20 5362 6172 2020 2020 .|o16 = Sbar │ │ │ │ +00016e30: 2020 2020 7c0a 7c6f 3136 203d 2053 6261 |.|o16 = Sba │ │ │ │ +00016e40: 7220 2020 2020 2020 2020 2020 2020 2020 r │ │ │ │ 00016e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016e90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00016e80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016ee0: 0a7c 6f31 3620 3a20 5175 6f74 6965 6e74 .|o16 : Quotient │ │ │ │ -00016ef0: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ +00016ed0: 2020 2020 7c0a 7c6f 3136 203a 2051 756f |.|o16 : Quo │ │ │ │ +00016ee0: 7469 656e 7452 696e 6720 2020 2020 2020 tientRing │ │ │ │ +00016ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016f30: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00016f20: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00016f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00016f80: 0a7c 6931 3720 3a20 534d 6261 7220 3d20 .|i17 : SMbar = │ │ │ │ -00016f90: 5362 6172 2a2a 4d62 6172 2020 2020 2020 Sbar**Mbar │ │ │ │ +00016f70: 2d2d 2d2d 2b0a 7c69 3137 203a 2053 4d62 ----+.|i17 : SMb │ │ │ │ +00016f80: 6172 203d 2053 6261 722a 2a4d 6261 7220 ar = Sbar**Mbar │ │ │ │ +00016f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016fc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016fd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00016fc0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017010: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017020: 0a7c 6f31 3720 3d20 636f 6b65 726e 656c .|o17 = cokernel │ │ │ │ -00017030: 207c 2078 5f30 785f 312b 3234 785f 315e | x_0x_1+24x_1^ │ │ │ │ -00017040: 322b 3439 785f 3078 5f32 2b33 785f 3178 2+49x_0x_2+3x_1x │ │ │ │ -00017050: 5f32 2b35 785f 325e 3220 7c20 2020 2020 _2+5x_2^2 | │ │ │ │ -00017060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017070: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00017010: 2020 2020 7c0a 7c6f 3137 203d 2063 6f6b |.|o17 = cok │ │ │ │ +00017020: 6572 6e65 6c20 7c20 785f 3078 5f31 2b32 ernel | x_0x_1+2 │ │ │ │ +00017030: 3478 5f31 5e32 2b34 3978 5f30 785f 322b 4x_1^2+49x_0x_2+ │ │ │ │ +00017040: 3378 5f31 785f 322b 3578 5f32 5e32 207c 3x_1x_2+5x_2^2 | │ │ │ │ +00017050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017060: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00017070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000170a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000170c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000170d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170e0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +000170b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000170c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170d0: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ +000170e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000170f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017100: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017110: 0a7c 6f31 3720 3a20 5362 6172 2d6d 6f64 .|o17 : Sbar-mod │ │ │ │ -00017120: 756c 652c 2071 756f 7469 656e 7420 6f66 ule, quotient of │ │ │ │ -00017130: 2053 6261 7220 2020 2020 2020 2020 2020 Sbar │ │ │ │ +00017100: 2020 2020 7c0a 7c6f 3137 203a 2053 6261 |.|o17 : Sba │ │ │ │ +00017110: 722d 6d6f 6475 6c65 2c20 7175 6f74 6965 r-module, quotie │ │ │ │ +00017120: 6e74 206f 6620 5362 6172 2020 2020 2020 nt of Sbar │ │ │ │ +00017130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017150: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017160: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00017150: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00017160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000171a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000171b0: 0a0a 486f 6d28 6430 2c53 6261 7229 2061 ..Hom(d0,Sbar) a │ │ │ │ -000171c0: 6e64 2048 6f6d 2864 312c 5362 6172 2920 nd Hom(d1,Sbar) │ │ │ │ -000171d0: 746f 6765 7468 6572 2066 6f72 6d20 7468 together form th │ │ │ │ -000171e0: 6520 7265 736f 6c75 7469 6f6e 206f 6620 e resolution of │ │ │ │ -000171f0: 4d62 6172 3b20 7468 7573 2074 6865 0a68 Mbar; thus the.h │ │ │ │ -00017200: 6f6d 6f6c 6f67 7920 6f66 206f 6e65 2063 omology of one c │ │ │ │ -00017210: 6f6d 706f 7369 7469 6f6e 2069 7320 302c omposition is 0, │ │ │ │ -00017220: 2077 6869 6c65 2074 6865 206f 7468 6572 while the other │ │ │ │ -00017230: 2069 7320 4d62 6172 0a0a 2b2d 2d2d 2d2d is Mbar..+----- │ │ │ │ +000171a0: 2d2d 2d2d 2b0a 0a48 6f6d 2864 302c 5362 ----+..Hom(d0,Sb │ │ │ │ +000171b0: 6172 2920 616e 6420 486f 6d28 6431 2c53 ar) and Hom(d1,S │ │ │ │ +000171c0: 6261 7229 2074 6f67 6574 6865 7220 666f bar) together fo │ │ │ │ +000171d0: 726d 2074 6865 2072 6573 6f6c 7574 696f rm the resolutio │ │ │ │ +000171e0: 6e20 6f66 204d 6261 723b 2074 6875 7320 n of Mbar; thus │ │ │ │ +000171f0: 7468 650a 686f 6d6f 6c6f 6779 206f 6620 the.homology of │ │ │ │ +00017200: 6f6e 6520 636f 6d70 6f73 6974 696f 6e20 one composition │ │ │ │ +00017210: 6973 2030 2c20 7768 696c 6520 7468 6520 is 0, while the │ │ │ │ +00017220: 6f74 6865 7220 6973 204d 6261 720a 0a2b other is Mbar..+ │ │ │ │ +00017230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017280: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3138 203a --------+.|i18 : │ │ │ │ -00017290: 2070 7275 6e65 2048 485f 3120 636f 6d70 prune HH_1 comp │ │ │ │ -000172a0: 6c65 787b 6475 616c 2028 5362 6172 2a2a lex{dual (Sbar** │ │ │ │ -000172b0: 6430 292c 2064 7561 6c28 5362 6172 2a2a d0), dual(Sbar** │ │ │ │ -000172c0: 6431 297d 203d 3d20 3020 2020 2020 2020 d1)} == 0 │ │ │ │ -000172d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00017270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00017280: 6931 3820 3a20 7072 756e 6520 4848 5f31 i18 : prune HH_1 │ │ │ │ +00017290: 2063 6f6d 706c 6578 7b64 7561 6c20 2853 complex{dual (S │ │ │ │ +000172a0: 6261 722a 2a64 3029 2c20 6475 616c 2853 bar**d0), dual(S │ │ │ │ +000172b0: 6261 722a 2a64 3129 7d20 3d3d 2030 2020 bar**d1)} == 0 │ │ │ │ +000172c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000172d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000172e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000172f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017320: 2020 2020 2020 2020 7c0a 7c6f 3138 203d |.|o18 = │ │ │ │ -00017330: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +00017310: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017320: 6f31 3820 3d20 7472 7565 2020 2020 2020 o18 = true │ │ │ │ +00017330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017370: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00017360: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00017370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000173a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000173b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000173c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3139 203a --------+.|i19 : │ │ │ │ -000173d0: 204d 6261 7227 203d 2053 6261 725e 312f Mbar' = Sbar^1/ │ │ │ │ -000173e0: 2853 6261 725f 302c 2053 6261 725f 3129 (Sbar_0, Sbar_1) │ │ │ │ -000173f0: 2a2a 534d 6261 7220 2020 2020 2020 2020 **SMbar │ │ │ │ -00017400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017410: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000173b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000173c0: 6931 3920 3a20 4d62 6172 2720 3d20 5362 i19 : Mbar' = Sb │ │ │ │ +000173d0: 6172 5e31 2f28 5362 6172 5f30 2c20 5362 ar^1/(Sbar_0, Sb │ │ │ │ +000173e0: 6172 5f31 292a 2a53 4d62 6172 2020 2020 ar_1)**SMbar │ │ │ │ +000173f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017400: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017460: 2020 2020 2020 2020 7c0a 7c6f 3139 203d |.|o19 = │ │ │ │ -00017470: 2063 6f6b 6572 6e65 6c20 7c20 785f 3078 cokernel | x_0x │ │ │ │ -00017480: 5f31 2b32 3478 5f31 5e32 2b34 3978 5f30 _1+24x_1^2+49x_0 │ │ │ │ -00017490: 785f 322b 3378 5f31 785f 322b 3578 5f32 x_2+3x_1x_2+5x_2 │ │ │ │ -000174a0: 5e32 2073 5f30 2073 5f31 207c 2020 2020 ^2 s_0 s_1 | │ │ │ │ -000174b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00017450: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017460: 6f31 3920 3d20 636f 6b65 726e 656c 207c o19 = cokernel | │ │ │ │ +00017470: 2078 5f30 785f 312b 3234 785f 315e 322b x_0x_1+24x_1^2+ │ │ │ │ +00017480: 3439 785f 3078 5f32 2b33 785f 3178 5f32 49x_0x_2+3x_1x_2 │ │ │ │ +00017490: 2b35 785f 325e 3220 735f 3020 735f 3120 +5x_2^2 s_0 s_1 │ │ │ │ +000174a0: 7c20 2020 2020 2020 2020 2020 207c 0a7c | |.| │ │ │ │ +000174b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000174c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000174d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000174e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000174f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017500: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000174f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017520: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +00017520: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00017530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017550: 2020 2020 2020 2020 7c0a 7c6f 3139 203a |.|o19 : │ │ │ │ -00017560: 2053 6261 722d 6d6f 6475 6c65 2c20 7175 Sbar-module, qu │ │ │ │ -00017570: 6f74 6965 6e74 206f 6620 5362 6172 2020 otient of Sbar │ │ │ │ +00017540: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017550: 6f31 3920 3a20 5362 6172 2d6d 6f64 756c o19 : Sbar-modul │ │ │ │ +00017560: 652c 2071 756f 7469 656e 7420 6f66 2053 e, quotient of S │ │ │ │ +00017570: 6261 7220 2020 2020 2020 2020 2020 2020 bar │ │ │ │ 00017580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000175a0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00017590: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000175a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000175b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000175c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000175d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000175e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000175f0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a --------+.|i20 : │ │ │ │ -00017600: 2069 6465 616c 2070 7265 7365 6e74 6174 ideal presentat │ │ │ │ -00017610: 696f 6e20 7072 756e 6520 4848 5f31 2063 ion prune HH_1 c │ │ │ │ -00017620: 6f6d 706c 6578 7b64 7561 6c20 2853 6261 omplex{dual (Sba │ │ │ │ -00017630: 722a 2a64 3129 2c20 6475 616c 2853 6261 r**d1), dual(Sba │ │ │ │ -00017640: 722a 2a64 3029 7d20 7c0a 7c20 2020 2020 r**d0)} |.| │ │ │ │ +000175e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000175f0: 6932 3020 3a20 6964 6561 6c20 7072 6573 i20 : ideal pres │ │ │ │ +00017600: 656e 7461 7469 6f6e 2070 7275 6e65 2048 entation prune H │ │ │ │ +00017610: 485f 3120 636f 6d70 6c65 787b 6475 616c H_1 complex{dual │ │ │ │ +00017620: 2028 5362 6172 2a2a 6431 292c 2064 7561 (Sbar**d1), dua │ │ │ │ +00017630: 6c28 5362 6172 2a2a 6430 297d 207c 0a7c l(Sbar**d0)} |.| │ │ │ │ +00017640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017690: 2020 2020 2020 2020 7c0a 7c6f 3230 203d |.|o20 = │ │ │ │ -000176a0: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +00017680: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017690: 6f32 3020 3d20 7472 7565 2020 2020 2020 o20 = true │ │ │ │ +000176a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000176b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000176c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000176d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000176e0: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +000176d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000176e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000176f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017730: 2d2d 2d2d 2d2d 2d2d 7c0a 7c3d 3d20 6964 --------|.|== id │ │ │ │ -00017740: 6561 6c20 7072 6573 656e 7461 7469 6f6e eal presentation │ │ │ │ -00017750: 204d 6261 7227 2020 2020 2020 2020 2020 Mbar' │ │ │ │ +00017720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00017730: 3d3d 2069 6465 616c 2070 7265 7365 6e74 == ideal present │ │ │ │ +00017740: 6174 696f 6e20 4d62 6172 2720 2020 2020 ation Mbar' │ │ │ │ +00017750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017780: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00017770: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00017780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000177a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000177b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000177c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000177d0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ -000177e0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -000177f0: 2a20 2a6e 6f74 6520 4578 743a 2028 4d61 * *note Ext: (Ma │ │ │ │ -00017800: 6361 756c 6179 3244 6f63 2945 7874 2c20 caulay2Doc)Ext, │ │ │ │ -00017810: 2d2d 2063 6f6d 7075 7465 2061 6e20 4578 -- compute an Ex │ │ │ │ -00017820: 7420 6d6f 6475 6c65 0a20 202a 202a 6e6f t module. * *no │ │ │ │ -00017830: 7465 206e 6577 4578 743a 206e 6577 4578 te newExt: newEx │ │ │ │ -00017840: 742c 202d 2d20 476c 6f62 616c 2045 7874 t, -- Global Ext │ │ │ │ -00017850: 2066 6f72 206d 6f64 756c 6573 206f 7665 for modules ove │ │ │ │ -00017860: 7220 6120 636f 6d70 6c65 7465 0a20 2020 r a complete. │ │ │ │ -00017870: 2049 6e74 6572 7365 6374 696f 6e0a 2020 Intersection. │ │ │ │ -00017880: 2a20 2a6e 6f74 6520 6d61 6b65 486f 6d6f * *note makeHomo │ │ │ │ -00017890: 746f 7069 6573 3a20 6d61 6b65 486f 6d6f topies: makeHomo │ │ │ │ -000178a0: 746f 7069 6573 2c20 2d2d 2072 6574 7572 topies, -- retur │ │ │ │ -000178b0: 6e73 2061 2073 7973 7465 6d20 6f66 2068 ns a system of h │ │ │ │ -000178c0: 6967 6865 720a 2020 2020 686f 6d6f 746f igher. homoto │ │ │ │ -000178d0: 7069 6573 0a0a 5761 7973 2074 6f20 7573 pies..Ways to us │ │ │ │ -000178e0: 6520 4569 7365 6e62 7564 5368 616d 6173 e EisenbudShamas │ │ │ │ -000178f0: 6854 6f74 616c 3a0a 3d3d 3d3d 3d3d 3d3d hTotal:.======== │ │ │ │ -00017900: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00017910: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -00017920: 4569 7365 6e62 7564 5368 616d 6173 6854 EisenbudShamashT │ │ │ │ -00017930: 6f74 616c 284d 6f64 756c 6529 220a 0a46 otal(Module)"..F │ │ │ │ -00017940: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -00017950: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -00017960: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00017970: 202a 6e6f 7465 2045 6973 656e 6275 6453 *note EisenbudS │ │ │ │ -00017980: 6861 6d61 7368 546f 7461 6c3a 2045 6973 hamashTotal: Eis │ │ │ │ -00017990: 656e 6275 6453 6861 6d61 7368 546f 7461 enbudShamashTota │ │ │ │ -000179a0: 6c2c 2069 7320 6120 2a6e 6f74 6520 6d65 l, is a *note me │ │ │ │ -000179b0: 7468 6f64 0a66 756e 6374 696f 6e20 7769 thod.function wi │ │ │ │ -000179c0: 7468 206f 7074 696f 6e73 3a20 284d 6163 th options: (Mac │ │ │ │ -000179d0: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -000179e0: 4675 6e63 7469 6f6e 5769 7468 4f70 7469 FunctionWithOpti │ │ │ │ -000179f0: 6f6e 732c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d ons,...--------- │ │ │ │ +000177c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +000177d0: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +000177e0: 3d0a 0a20 202a 202a 6e6f 7465 2045 7874 =.. * *note Ext │ │ │ │ +000177f0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00017800: 4578 742c 202d 2d20 636f 6d70 7574 6520 Ext, -- compute │ │ │ │ +00017810: 616e 2045 7874 206d 6f64 756c 650a 2020 an Ext module. │ │ │ │ +00017820: 2a20 2a6e 6f74 6520 6e65 7745 7874 3a20 * *note newExt: │ │ │ │ +00017830: 6e65 7745 7874 2c20 2d2d 2047 6c6f 6261 newExt, -- Globa │ │ │ │ +00017840: 6c20 4578 7420 666f 7220 6d6f 6475 6c65 l Ext for module │ │ │ │ +00017850: 7320 6f76 6572 2061 2063 6f6d 706c 6574 s over a complet │ │ │ │ +00017860: 650a 2020 2020 496e 7465 7273 6563 7469 e. Intersecti │ │ │ │ +00017870: 6f6e 0a20 202a 202a 6e6f 7465 206d 616b on. * *note mak │ │ │ │ +00017880: 6548 6f6d 6f74 6f70 6965 733a 206d 616b eHomotopies: mak │ │ │ │ +00017890: 6548 6f6d 6f74 6f70 6965 732c 202d 2d20 eHomotopies, -- │ │ │ │ +000178a0: 7265 7475 726e 7320 6120 7379 7374 656d returns a system │ │ │ │ +000178b0: 206f 6620 6869 6768 6572 0a20 2020 2068 of higher. h │ │ │ │ +000178c0: 6f6d 6f74 6f70 6965 730a 0a57 6179 7320 omotopies..Ways │ │ │ │ +000178d0: 746f 2075 7365 2045 6973 656e 6275 6453 to use EisenbudS │ │ │ │ +000178e0: 6861 6d61 7368 546f 7461 6c3a 0a3d 3d3d hamashTotal:.=== │ │ │ │ +000178f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00017900: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00017910: 2020 2a20 2245 6973 656e 6275 6453 6861 * "EisenbudSha │ │ │ │ +00017920: 6d61 7368 546f 7461 6c28 4d6f 6475 6c65 mashTotal(Module │ │ │ │ +00017930: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ +00017940: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +00017950: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +00017960: 626a 6563 7420 2a6e 6f74 6520 4569 7365 bject *note Eise │ │ │ │ +00017970: 6e62 7564 5368 616d 6173 6854 6f74 616c nbudShamashTotal │ │ │ │ +00017980: 3a20 4569 7365 6e62 7564 5368 616d 6173 : EisenbudShamas │ │ │ │ +00017990: 6854 6f74 616c 2c20 6973 2061 202a 6e6f hTotal, is a *no │ │ │ │ +000179a0: 7465 206d 6574 686f 640a 6675 6e63 7469 te method.functi │ │ │ │ +000179b0: 6f6e 2077 6974 6820 6f70 7469 6f6e 733a on with options: │ │ │ │ +000179c0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +000179d0: 6574 686f 6446 756e 6374 696f 6e57 6974 ethodFunctionWit │ │ │ │ +000179e0: 684f 7074 696f 6e73 2c2e 0a0a 2d2d 2d2d hOptions,...---- │ │ │ │ +000179f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017a40: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -00017a50: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -00017a60: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -00017a70: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -00017a80: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -00017a90: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -00017aa0: 6c61 7932 2f70 6163 6b61 6765 732f 0a43 lay2/packages/.C │ │ │ │ -00017ab0: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ -00017ac0: 696f 6e52 6573 6f6c 7574 696f 6e73 2e6d ionResolutions.m │ │ │ │ -00017ad0: 323a 3531 3639 3a30 2e0a 1f0a 4669 6c65 2:5169:0....File │ │ │ │ -00017ae0: 3a20 436f 6d70 6c65 7465 496e 7465 7273 : CompleteInters │ │ │ │ -00017af0: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ -00017b00: 732e 696e 666f 2c20 4e6f 6465 3a20 6576 s.info, Node: ev │ │ │ │ -00017b10: 656e 4578 744d 6f64 756c 652c 204e 6578 enExtModule, Nex │ │ │ │ -00017b20: 743a 2065 7870 6f2c 2050 7265 763a 2045 t: expo, Prev: E │ │ │ │ -00017b30: 6973 656e 6275 6453 6861 6d61 7368 546f isenbudShamashTo │ │ │ │ -00017b40: 7461 6c2c 2055 703a 2054 6f70 0a0a 6576 tal, Up: Top..ev │ │ │ │ -00017b50: 656e 4578 744d 6f64 756c 6520 2d2d 2065 enExtModule -- e │ │ │ │ -00017b60: 7665 6e20 7061 7274 206f 6620 4578 745e ven part of Ext^ │ │ │ │ -00017b70: 2a28 4d2c 6b29 206f 7665 7220 6120 636f *(M,k) over a co │ │ │ │ -00017b80: 6d70 6c65 7465 2069 6e74 6572 7365 6374 mplete intersect │ │ │ │ -00017b90: 696f 6e20 6173 206d 6f64 756c 6520 6f76 ion as module ov │ │ │ │ -00017ba0: 6572 2043 4920 6f70 6572 6174 6f72 2072 er CI operator r │ │ │ │ -00017bb0: 696e 670a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ing.************ │ │ │ │ +00017a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +00017a40: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +00017a50: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +00017a60: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +00017a70: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00017a80: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00017a90: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +00017aa0: 6573 2f0a 436f 6d70 6c65 7465 496e 7465 es/.CompleteInte │ │ │ │ +00017ab0: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ +00017ac0: 6f6e 732e 6d32 3a35 3136 393a 302e 0a1f ons.m2:5169:0... │ │ │ │ +00017ad0: 0a46 696c 653a 2043 6f6d 706c 6574 6549 .File: CompleteI │ │ │ │ +00017ae0: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ +00017af0: 7574 696f 6e73 2e69 6e66 6f2c 204e 6f64 utions.info, Nod │ │ │ │ +00017b00: 653a 2065 7665 6e45 7874 4d6f 6475 6c65 e: evenExtModule │ │ │ │ +00017b10: 2c20 4e65 7874 3a20 6578 706f 2c20 5072 , Next: expo, Pr │ │ │ │ +00017b20: 6576 3a20 4569 7365 6e62 7564 5368 616d ev: EisenbudSham │ │ │ │ +00017b30: 6173 6854 6f74 616c 2c20 5570 3a20 546f ashTotal, Up: To │ │ │ │ +00017b40: 700a 0a65 7665 6e45 7874 4d6f 6475 6c65 p..evenExtModule │ │ │ │ +00017b50: 202d 2d20 6576 656e 2070 6172 7420 6f66 -- even part of │ │ │ │ +00017b60: 2045 7874 5e2a 284d 2c6b 2920 6f76 6572 Ext^*(M,k) over │ │ │ │ +00017b70: 2061 2063 6f6d 706c 6574 6520 696e 7465 a complete inte │ │ │ │ +00017b80: 7273 6563 7469 6f6e 2061 7320 6d6f 6475 rsection as modu │ │ │ │ +00017b90: 6c65 206f 7665 7220 4349 206f 7065 7261 le over CI opera │ │ │ │ +00017ba0: 746f 7220 7269 6e67 0a2a 2a2a 2a2a 2a2a tor ring.******* │ │ │ │ +00017bb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00017bc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00017bd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00017be0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00017bf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00017c00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00017c10: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ -00017c20: 7361 6765 3a20 0a20 2020 2020 2020 2045 sage: . E │ │ │ │ -00017c30: 203d 2065 7665 6e45 7874 4d6f 6475 6c65 = evenExtModule │ │ │ │ -00017c40: 204d 0a20 202a 2049 6e70 7574 733a 0a20 M. * Inputs:. │ │ │ │ -00017c50: 2020 2020 202a 204d 2c20 6120 2a6e 6f74 * M, a *not │ │ │ │ -00017c60: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ -00017c70: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ -00017c80: 206f 7665 7220 6120 636f 6d70 6c65 7465 over a complete │ │ │ │ -00017c90: 2069 6e74 6572 7365 6374 696f 6e0a 2020 intersection. │ │ │ │ -00017ca0: 2020 2020 2020 7269 6e67 0a20 202a 202a ring. * * │ │ │ │ -00017cb0: 6e6f 7465 204f 7074 696f 6e61 6c20 696e note Optional in │ │ │ │ -00017cc0: 7075 7473 3a20 284d 6163 6175 6c61 7932 puts: (Macaulay2 │ │ │ │ -00017cd0: 446f 6329 7573 696e 6720 6675 6e63 7469 Doc)using functi │ │ │ │ -00017ce0: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ -00017cf0: 6c20 696e 7075 7473 2c3a 0a20 2020 2020 l inputs,:. │ │ │ │ -00017d00: 202a 204f 7574 5269 6e67 203d 3e20 2e2e * OutRing => .. │ │ │ │ -00017d10: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -00017d20: 2030 0a20 202a 204f 7574 7075 7473 3a0a 0. * Outputs:. │ │ │ │ -00017d30: 2020 2020 2020 2a20 452c 2061 202a 6e6f * E, a *no │ │ │ │ -00017d40: 7465 206d 6f64 756c 653a 2028 4d61 6361 te module: (Maca │ │ │ │ -00017d50: 756c 6179 3244 6f63 294d 6f64 756c 652c ulay2Doc)Module, │ │ │ │ -00017d60: 2c20 6f76 6572 2061 2070 6f6c 796e 6f6d , over a polynom │ │ │ │ -00017d70: 6961 6c20 7269 6e67 2077 6974 680a 2020 ial ring with. │ │ │ │ -00017d80: 2020 2020 2020 6765 6e73 2069 6e20 6465 gens in de │ │ │ │ -00017d90: 6772 6565 2031 0a0a 4465 7363 7269 7074 gree 1..Descript │ │ │ │ -00017da0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -00017db0: 0a45 7874 7261 6374 7320 7468 6520 6576 .Extracts the ev │ │ │ │ -00017dc0: 656e 2064 6567 7265 6520 7061 7274 2066 en degree part f │ │ │ │ -00017dd0: 726f 6d20 4578 744d 6f64 756c 6520 4d20 rom ExtModule M │ │ │ │ -00017de0: 4966 2074 6865 206f 7074 696f 6e61 6c20 If the optional │ │ │ │ -00017df0: 6172 6775 6d65 6e74 204f 7574 5269 6e67 argument OutRing │ │ │ │ -00017e00: 0a3d 3e20 5420 6973 2067 6976 656e 2c20 .=> T is given, │ │ │ │ -00017e10: 616e 6420 636c 6173 7320 5420 3d3d 3d20 and class T === │ │ │ │ -00017e20: 506f 6c79 6e6f 6d69 616c 5269 6e67 2c20 PolynomialRing, │ │ │ │ -00017e30: 7468 656e 2074 6865 206f 7574 7075 7420 then the output │ │ │ │ -00017e40: 7769 6c6c 2062 6520 6120 6d6f 6475 6c65 will be a module │ │ │ │ -00017e50: 0a6f 7665 7220 542e 0a0a 2b2d 2d2d 2d2d .over T...+----- │ │ │ │ +00017c00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00017c10: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +00017c20: 2020 2020 4520 3d20 6576 656e 4578 744d E = evenExtM │ │ │ │ +00017c30: 6f64 756c 6520 4d0a 2020 2a20 496e 7075 odule M. * Inpu │ │ │ │ +00017c40: 7473 3a0a 2020 2020 2020 2a20 4d2c 2061 ts:. * M, a │ │ │ │ +00017c50: 202a 6e6f 7465 206d 6f64 756c 653a 2028 *note module: ( │ │ │ │ +00017c60: 4d61 6361 756c 6179 3244 6f63 294d 6f64 Macaulay2Doc)Mod │ │ │ │ +00017c70: 756c 652c 2c20 6f76 6572 2061 2063 6f6d ule,, over a com │ │ │ │ +00017c80: 706c 6574 6520 696e 7465 7273 6563 7469 plete intersecti │ │ │ │ +00017c90: 6f6e 0a20 2020 2020 2020 2072 696e 670a on. ring. │ │ │ │ +00017ca0: 2020 2a20 2a6e 6f74 6520 4f70 7469 6f6e * *note Option │ │ │ │ +00017cb0: 616c 2069 6e70 7574 733a 2028 4d61 6361 al inputs: (Maca │ │ │ │ +00017cc0: 756c 6179 3244 6f63 2975 7369 6e67 2066 ulay2Doc)using f │ │ │ │ +00017cd0: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ +00017ce0: 7469 6f6e 616c 2069 6e70 7574 732c 3a0a tional inputs,:. │ │ │ │ +00017cf0: 2020 2020 2020 2a20 4f75 7452 696e 6720 * OutRing │ │ │ │ +00017d00: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +00017d10: 7661 6c75 6520 300a 2020 2a20 4f75 7470 value 0. * Outp │ │ │ │ +00017d20: 7574 733a 0a20 2020 2020 202a 2045 2c20 uts:. * E, │ │ │ │ +00017d30: 6120 2a6e 6f74 6520 6d6f 6475 6c65 3a20 a *note module: │ │ │ │ +00017d40: 284d 6163 6175 6c61 7932 446f 6329 4d6f (Macaulay2Doc)Mo │ │ │ │ +00017d50: 6475 6c65 2c2c 206f 7665 7220 6120 706f dule,, over a po │ │ │ │ +00017d60: 6c79 6e6f 6d69 616c 2072 696e 6720 7769 lynomial ring wi │ │ │ │ +00017d70: 7468 0a20 2020 2020 2020 2067 656e 7320 th. gens │ │ │ │ +00017d80: 696e 2064 6567 7265 6520 310a 0a44 6573 in degree 1..Des │ │ │ │ +00017d90: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +00017da0: 3d3d 3d3d 0a0a 4578 7472 6163 7473 2074 ====..Extracts t │ │ │ │ +00017db0: 6865 2065 7665 6e20 6465 6772 6565 2070 he even degree p │ │ │ │ +00017dc0: 6172 7420 6672 6f6d 2045 7874 4d6f 6475 art from ExtModu │ │ │ │ +00017dd0: 6c65 204d 2049 6620 7468 6520 6f70 7469 le M If the opti │ │ │ │ +00017de0: 6f6e 616c 2061 7267 756d 656e 7420 4f75 onal argument Ou │ │ │ │ +00017df0: 7452 696e 670a 3d3e 2054 2069 7320 6769 tRing.=> T is gi │ │ │ │ +00017e00: 7665 6e2c 2061 6e64 2063 6c61 7373 2054 ven, and class T │ │ │ │ +00017e10: 203d 3d3d 2050 6f6c 796e 6f6d 6961 6c52 === PolynomialR │ │ │ │ +00017e20: 696e 672c 2074 6865 6e20 7468 6520 6f75 ing, then the ou │ │ │ │ +00017e30: 7470 7574 2077 696c 6c20 6265 2061 206d tput will be a m │ │ │ │ +00017e40: 6f64 756c 650a 6f76 6572 2054 2e0a 0a2b odule.over T...+ │ │ │ │ +00017e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017e90: 2d2d 2d2d 2b0a 7c69 3120 3a20 6b6b 3d20 ----+.|i1 : kk= │ │ │ │ -00017ea0: 5a5a 2f31 3031 2020 2020 2020 2020 2020 ZZ/101 │ │ │ │ +00017e80: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +00017e90: 206b 6b3d 205a 5a2f 3130 3120 2020 2020 kk= ZZ/101 │ │ │ │ +00017ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ed0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00017ec0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00017ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f00: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00017f10: 3120 3d20 6b6b 2020 2020 2020 2020 2020 1 = kk │ │ │ │ +00017f00: 207c 0a7c 6f31 203d 206b 6b20 2020 2020 |.|o1 = kk │ │ │ │ +00017f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00017f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f80: 2020 2020 7c0a 7c6f 3120 3a20 5175 6f74 |.|o1 : Quot │ │ │ │ -00017f90: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ +00017f70: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ +00017f80: 2051 756f 7469 656e 7452 696e 6720 2020 QuotientRing │ │ │ │ +00017f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017fc0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00017fb0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00017fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00018000: 3220 3a20 5320 3d20 6b6b 5b78 2c79 2c7a 2 : S = kk[x,y,z │ │ │ │ -00018010: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ -00018020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018030: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00017ff0: 2d2b 0a7c 6932 203a 2053 203d 206b 6b5b -+.|i2 : S = kk[ │ │ │ │ +00018000: 782c 792c 7a5d 2020 2020 2020 2020 2020 x,y,z] │ │ │ │ +00018010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018020: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018070: 2020 2020 7c0a 7c6f 3220 3d20 5320 2020 |.|o2 = S │ │ │ │ +00018060: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ +00018070: 2053 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 00018080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000180a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000180b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000180c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000180d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000180f0: 3220 3a20 506f 6c79 6e6f 6d69 616c 5269 2 : PolynomialRi │ │ │ │ -00018100: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ -00018110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018120: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000180e0: 207c 0a7c 6f32 203a 2050 6f6c 796e 6f6d |.|o2 : Polynom │ │ │ │ +000180f0: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ +00018100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018110: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00018120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018160: 2d2d 2d2d 2b0a 7c69 3320 3a20 4932 203d ----+.|i3 : I2 = │ │ │ │ -00018170: 2069 6465 616c 2278 332c 797a 2220 2020 ideal"x3,yz" │ │ │ │ +00018150: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +00018160: 2049 3220 3d20 6964 6561 6c22 7833 2c79 I2 = ideal"x3,y │ │ │ │ +00018170: 7a22 2020 2020 2020 2020 2020 2020 2020 z" │ │ │ │ 00018180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000181a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00018190: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000181a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000181b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000181c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000181d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000181e0: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ +000181d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000181e0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 000181f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018210: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -00018220: 6964 6561 6c20 2878 202c 2079 2a7a 2920 ideal (x , y*z) │ │ │ │ +00018200: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018210: 6f33 203d 2069 6465 616c 2028 7820 2c20 o3 = ideal (x , │ │ │ │ +00018220: 792a 7a29 2020 2020 2020 2020 2020 2020 y*z) │ │ │ │ 00018230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018250: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00018240: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00018250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018290: 7c0a 7c6f 3320 3a20 4964 6561 6c20 6f66 |.|o3 : Ideal of │ │ │ │ -000182a0: 2053 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +00018280: 2020 2020 207c 0a7c 6f33 203a 2049 6465 |.|o3 : Ide │ │ │ │ +00018290: 616c 206f 6620 5320 2020 2020 2020 2020 al of S │ │ │ │ +000182a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000182c0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000182c0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 000182d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000182e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000182f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018300: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ -00018310: 5232 203d 2053 2f49 3220 2020 2020 2020 R2 = S/I2 │ │ │ │ +000182f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00018300: 6934 203a 2052 3220 3d20 532f 4932 2020 i4 : R2 = S/I2 │ │ │ │ +00018310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018340: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00018330: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00018340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018380: 7c0a 7c6f 3420 3d20 5232 2020 2020 2020 |.|o4 = R2 │ │ │ │ +00018370: 2020 2020 207c 0a7c 6f34 203d 2052 3220 |.|o4 = R2 │ │ │ │ +00018380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000183a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000183b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000183c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000183d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183f0: 2020 2020 2020 2020 7c0a 7c6f 3420 3a20 |.|o4 : │ │ │ │ -00018400: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +000183e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000183f0: 6f34 203a 2051 756f 7469 656e 7452 696e o4 : QuotientRin │ │ │ │ +00018400: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ 00018410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018430: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00018420: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00018430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018470: 2b0a 7c69 3520 3a20 4d32 203d 2052 325e +.|i5 : M2 = R2^ │ │ │ │ -00018480: 312f 6964 6561 6c22 7832 2c79 2c7a 2220 1/ideal"x2,y,z" │ │ │ │ +00018460: 2d2d 2d2d 2d2b 0a7c 6935 203a 204d 3220 -----+.|i5 : M2 │ │ │ │ +00018470: 3d20 5232 5e31 2f69 6465 616c 2278 322c = R2^1/ideal"x2, │ │ │ │ +00018480: 792c 7a22 2020 2020 2020 2020 2020 2020 y,z" │ │ │ │ 00018490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000184a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000184a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000184b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000184c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000184d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000184e0: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ -000184f0: 636f 6b65 726e 656c 207c 2078 3220 7920 cokernel | x2 y │ │ │ │ -00018500: 7a20 7c20 2020 2020 2020 2020 2020 2020 z | │ │ │ │ -00018510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018520: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000184d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000184e0: 6f35 203d 2063 6f6b 6572 6e65 6c20 7c20 o5 = cokernel | │ │ │ │ +000184f0: 7832 2079 207a 207c 2020 2020 2020 2020 x2 y z | │ │ │ │ +00018500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018510: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00018520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018560: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00018570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018580: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00018590: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000185a0: 3520 3a20 5232 2d6d 6f64 756c 652c 2071 5 : R2-module, q │ │ │ │ -000185b0: 756f 7469 656e 7420 6f66 2052 3220 2020 uotient of R2 │ │ │ │ -000185c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000185d0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00018550: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00018560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018570: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +00018580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018590: 207c 0a7c 6f35 203a 2052 322d 6d6f 6475 |.|o5 : R2-modu │ │ │ │ +000185a0: 6c65 2c20 7175 6f74 6965 6e74 206f 6620 le, quotient of │ │ │ │ +000185b0: 5232 2020 2020 2020 2020 2020 2020 2020 R2 │ │ │ │ +000185c0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000185d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000185e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000185f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018610: 2d2d 2d2d 2b0a 7c69 3620 3a20 6265 7474 ----+.|i6 : bett │ │ │ │ -00018620: 6920 6672 6565 5265 736f 6c75 7469 6f6e i freeResolution │ │ │ │ -00018630: 2028 4d32 2c20 4c65 6e67 7468 4c69 6d69 (M2, LengthLimi │ │ │ │ -00018640: 7420 3d3e 3130 2920 2020 2020 2020 2020 t =>10) │ │ │ │ -00018650: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00018600: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ +00018610: 2062 6574 7469 2066 7265 6552 6573 6f6c betti freeResol │ │ │ │ +00018620: 7574 696f 6e20 284d 322c 204c 656e 6774 ution (M2, Lengt │ │ │ │ +00018630: 684c 696d 6974 203d 3e31 3029 2020 2020 hLimit =>10) │ │ │ │ +00018640: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00018650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018680: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00018690: 2020 2020 2020 2020 2020 2030 2031 2032 0 1 2 │ │ │ │ -000186a0: 2033 2034 2020 3520 2036 2020 3720 2038 3 4 5 6 7 8 │ │ │ │ -000186b0: 2020 3920 3130 2020 2020 2020 2020 2020 9 10 │ │ │ │ -000186c0: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ -000186d0: 746f 7461 6c3a 2031 2033 2035 2037 2039 total: 1 3 5 7 9 │ │ │ │ -000186e0: 2031 3120 3133 2031 3520 3137 2031 3920 11 13 15 17 19 │ │ │ │ -000186f0: 3231 2020 2020 2020 2020 2020 2020 2020 21 │ │ │ │ -00018700: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00018710: 303a 2031 2032 2032 2032 2032 2020 3220 0: 1 2 2 2 2 2 │ │ │ │ -00018720: 2032 2020 3220 2032 2020 3220 2032 2020 2 2 2 2 2 │ │ │ │ -00018730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018740: 7c0a 7c20 2020 2020 2020 2020 313a 202e |.| 1: . │ │ │ │ -00018750: 2031 2033 2034 2034 2020 3420 2034 2020 1 3 4 4 4 4 │ │ │ │ -00018760: 3420 2034 2020 3420 2034 2020 2020 2020 4 4 4 4 │ │ │ │ -00018770: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00018780: 2020 2020 2020 2020 323a 202e 202e 202e 2: . . . │ │ │ │ -00018790: 2031 2033 2020 3420 2034 2020 3420 2034 1 3 4 4 4 4 │ │ │ │ -000187a0: 2020 3420 2034 2020 2020 2020 2020 2020 4 4 │ │ │ │ -000187b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000187c0: 2020 2020 333a 202e 202e 202e 202e 202e 3: . . . . . │ │ │ │ -000187d0: 2020 3120 2033 2020 3420 2034 2020 3420 1 3 4 4 4 │ │ │ │ -000187e0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -000187f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00018800: 343a 202e 202e 202e 202e 202e 2020 2e20 4: . . . . . . │ │ │ │ -00018810: 202e 2020 3120 2033 2020 3420 2034 2020 . 1 3 4 4 │ │ │ │ -00018820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018830: 7c0a 7c20 2020 2020 2020 2020 353a 202e |.| 5: . │ │ │ │ -00018840: 202e 202e 202e 202e 2020 2e20 202e 2020 . . . . . . │ │ │ │ -00018850: 2e20 202e 2020 3120 2033 2020 2020 2020 . . 1 3 │ │ │ │ -00018860: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00018680: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00018690: 3020 3120 3220 3320 3420 2035 2020 3620 0 1 2 3 4 5 6 │ │ │ │ +000186a0: 2037 2020 3820 2039 2031 3020 2020 2020 7 8 9 10 │ │ │ │ +000186b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000186c0: 6f36 203d 2074 6f74 616c 3a20 3120 3320 o6 = total: 1 3 │ │ │ │ +000186d0: 3520 3720 3920 3131 2031 3320 3135 2031 5 7 9 11 13 15 1 │ │ │ │ +000186e0: 3720 3139 2032 3120 2020 2020 2020 2020 7 19 21 │ │ │ │ +000186f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00018700: 2020 2020 2030 3a20 3120 3220 3220 3220 0: 1 2 2 2 │ │ │ │ +00018710: 3220 2032 2020 3220 2032 2020 3220 2032 2 2 2 2 2 2 │ │ │ │ +00018720: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00018730: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00018740: 2031 3a20 2e20 3120 3320 3420 3420 2034 1: . 1 3 4 4 4 │ │ │ │ +00018750: 2020 3420 2034 2020 3420 2034 2020 3420 4 4 4 4 4 │ │ │ │ +00018760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018770: 207c 0a7c 2020 2020 2020 2020 2032 3a20 |.| 2: │ │ │ │ +00018780: 2e20 2e20 2e20 3120 3320 2034 2020 3420 . . . 1 3 4 4 │ │ │ │ +00018790: 2034 2020 3420 2034 2020 3420 2020 2020 4 4 4 4 │ │ │ │ +000187a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000187b0: 2020 2020 2020 2020 2033 3a20 2e20 2e20 3: . . │ │ │ │ +000187c0: 2e20 2e20 2e20 2031 2020 3320 2034 2020 . . . 1 3 4 │ │ │ │ +000187d0: 3420 2034 2020 3420 2020 2020 2020 2020 4 4 4 │ │ │ │ +000187e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000187f0: 2020 2020 2034 3a20 2e20 2e20 2e20 2e20 4: . . . . │ │ │ │ +00018800: 2e20 202e 2020 2e20 2031 2020 3320 2034 . . . 1 3 4 │ │ │ │ +00018810: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00018820: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00018830: 2035 3a20 2e20 2e20 2e20 2e20 2e20 202e 5: . . . . . . │ │ │ │ +00018840: 2020 2e20 202e 2020 2e20 2031 2020 3320 . . . 1 3 │ │ │ │ +00018850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018860: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00018870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000188a0: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ -000188b0: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +00018890: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000188a0: 6f36 203a 2042 6574 7469 5461 6c6c 7920 o6 : BettiTally │ │ │ │ +000188b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000188c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000188d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000188e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000188d0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000188e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000188f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018920: 2b0a 7c69 3720 3a20 4520 3d20 4578 744d +.|i7 : E = ExtM │ │ │ │ -00018930: 6f64 756c 6520 4d32 2020 2020 2020 2020 odule M2 │ │ │ │ +00018910: 2d2d 2d2d 2d2b 0a7c 6937 203a 2045 203d -----+.|i7 : E = │ │ │ │ +00018920: 2045 7874 4d6f 6475 6c65 204d 3220 2020 ExtModule M2 │ │ │ │ +00018930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018950: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00018950: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00018960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018990: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000189a0: 2020 2020 2020 2020 2020 2020 3820 2020 8 │ │ │ │ +00018980: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000189a0: 2038 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ 000189b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000189c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000189d0: 2020 2020 7c0a 7c6f 3720 3d20 286b 6b5b |.|o7 = (kk[ │ │ │ │ -000189e0: 5820 2e2e 5820 5d29 2020 2020 2020 2020 X ..X ]) │ │ │ │ +000189c0: 2020 2020 2020 2020 207c 0a7c 6f37 203d |.|o7 = │ │ │ │ +000189d0: 2028 6b6b 5b58 202e 2e58 205d 2920 2020 (kk[X ..X ]) │ │ │ │ +000189e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000189f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018a10: 7c0a 7c20 2020 2020 2020 2020 2030 2020 |.| 0 │ │ │ │ -00018a20: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00018a00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00018a10: 2020 3020 2020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +00018a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018a40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00018a40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00018a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018a80: 2020 2020 2020 2020 7c0a 7c6f 3720 3a20 |.|o7 : │ │ │ │ -00018a90: 6b6b 5b58 202e 2e58 205d 2d6d 6f64 756c kk[X ..X ]-modul │ │ │ │ -00018aa0: 652c 2066 7265 652c 2064 6567 7265 6573 e, free, degrees │ │ │ │ -00018ab0: 207b 302e 2e31 2c20 323a 312c 2033 3a32 {0..1, 2:1, 3:2 │ │ │ │ -00018ac0: 2c20 337d 7c0a 7c20 2020 2020 2020 2020 , 3}|.| │ │ │ │ -00018ad0: 3020 2020 3120 2020 2020 2020 2020 2020 0 1 │ │ │ │ +00018a70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018a80: 6f37 203a 206b 6b5b 5820 2e2e 5820 5d2d o7 : kk[X ..X ]- │ │ │ │ +00018a90: 6d6f 6475 6c65 2c20 6672 6565 2c20 6465 module, free, de │ │ │ │ +00018aa0: 6772 6565 7320 7b30 2e2e 312c 2032 3a31 grees {0..1, 2:1 │ │ │ │ +00018ab0: 2c20 333a 322c 2033 7d7c 0a7c 2020 2020 , 3:2, 3}|.| │ │ │ │ +00018ac0: 2020 2020 2030 2020 2031 2020 2020 2020 0 1 │ │ │ │ +00018ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018b00: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00018af0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00018b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00018b40: 3820 3a20 6170 706c 7928 746f 4c69 7374 8 : apply(toList │ │ │ │ -00018b50: 2830 2e2e 3130 292c 2069 2d3e 6869 6c62 (0..10), i->hilb │ │ │ │ -00018b60: 6572 7446 756e 6374 696f 6e28 692c 2045 ertFunction(i, E │ │ │ │ -00018b70: 2929 2020 2020 2020 7c0a 7c20 2020 2020 )) |.| │ │ │ │ +00018b30: 2d2b 0a7c 6938 203a 2061 7070 6c79 2874 -+.|i8 : apply(t │ │ │ │ +00018b40: 6f4c 6973 7428 302e 2e31 3029 2c20 692d oList(0..10), i- │ │ │ │ +00018b50: 3e68 696c 6265 7274 4675 6e63 7469 6f6e >hilbertFunction │ │ │ │ +00018b60: 2869 2c20 4529 2920 2020 2020 207c 0a7c (i, E)) |.| │ │ │ │ +00018b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018bb0: 2020 2020 7c0a 7c6f 3820 3d20 7b31 2c20 |.|o8 = {1, │ │ │ │ -00018bc0: 332c 2035 2c20 372c 2039 2c20 3131 2c20 3, 5, 7, 9, 11, │ │ │ │ -00018bd0: 3133 2c20 3135 2c20 3137 2c20 3139 2c20 13, 15, 17, 19, │ │ │ │ -00018be0: 3231 7d20 2020 2020 2020 2020 2020 2020 21} │ │ │ │ -00018bf0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00018ba0: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ +00018bb0: 207b 312c 2033 2c20 352c 2037 2c20 392c {1, 3, 5, 7, 9, │ │ │ │ +00018bc0: 2031 312c 2031 332c 2031 352c 2031 372c 11, 13, 15, 17, │ │ │ │ +00018bd0: 2031 392c 2032 317d 2020 2020 2020 2020 19, 21} │ │ │ │ +00018be0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00018bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018c20: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00018c30: 3820 3a20 4c69 7374 2020 2020 2020 2020 8 : List │ │ │ │ +00018c20: 207c 0a7c 6f38 203a 204c 6973 7420 2020 |.|o8 : List │ │ │ │ +00018c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018c60: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00018c50: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00018c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018ca0: 2d2d 2d2d 2b0a 7c69 3920 3a20 4565 7665 ----+.|i9 : Eeve │ │ │ │ -00018cb0: 6e20 3d20 6576 656e 4578 744d 6f64 756c n = evenExtModul │ │ │ │ -00018cc0: 6520 4d32 2020 2020 2020 2020 2020 2020 e M2 │ │ │ │ -00018cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018ce0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00018c90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a ---------+.|i9 : │ │ │ │ +00018ca0: 2045 6576 656e 203d 2065 7665 6e45 7874 Eeven = evenExt │ │ │ │ +00018cb0: 4d6f 6475 6c65 204d 3220 2020 2020 2020 Module M2 │ │ │ │ +00018cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018cd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00018ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018d10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00018d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018d30: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00018d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018d50: 2020 2020 2020 2020 7c0a 7c6f 3920 3d20 |.|o9 = │ │ │ │ -00018d60: 286b 6b5b 5820 2e2e 5820 5d29 2020 2020 (kk[X ..X ]) │ │ │ │ +00018d10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00018d20: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ +00018d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018d40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018d50: 6f39 203d 2028 6b6b 5b58 202e 2e58 205d o9 = (kk[X ..X ] │ │ │ │ +00018d60: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00018d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018d90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00018da0: 2030 2020 2031 2020 2020 2020 2020 2020 0 1 │ │ │ │ +00018d80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00018d90: 2020 2020 2020 3020 2020 3120 2020 2020 0 1 │ │ │ │ +00018da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018dd0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00018dc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00018dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018e00: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00018e10: 3920 3a20 6b6b 5b58 202e 2e58 205d 2d6d 9 : kk[X ..X ]-m │ │ │ │ -00018e20: 6f64 756c 652c 2066 7265 652c 2064 6567 odule, free, deg │ │ │ │ -00018e30: 7265 6573 207b 302e 2e31 2c20 323a 317d rees {0..1, 2:1} │ │ │ │ -00018e40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00018e50: 2020 2020 3020 2020 3120 2020 2020 2020 0 1 │ │ │ │ +00018e00: 207c 0a7c 6f39 203a 206b 6b5b 5820 2e2e |.|o9 : kk[X .. │ │ │ │ +00018e10: 5820 5d2d 6d6f 6475 6c65 2c20 6672 6565 X ]-module, free │ │ │ │ +00018e20: 2c20 6465 6772 6565 7320 7b30 2e2e 312c , degrees {0..1, │ │ │ │ +00018e30: 2032 3a31 7d20 2020 2020 2020 207c 0a7c 2:1} |.| │ │ │ │ +00018e40: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ +00018e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018e80: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00018e70: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00018e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018ec0: 2b0a 7c69 3130 203a 2061 7070 6c79 2874 +.|i10 : apply(t │ │ │ │ -00018ed0: 6f4c 6973 7428 302e 2e35 292c 2069 2d3e oList(0..5), i-> │ │ │ │ -00018ee0: 6869 6c62 6572 7446 756e 6374 696f 6e28 hilbertFunction( │ │ │ │ -00018ef0: 692c 2045 6576 656e 2929 2020 7c0a 7c20 i, Eeven)) |.| │ │ │ │ +00018eb0: 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 6170 -----+.|i10 : ap │ │ │ │ +00018ec0: 706c 7928 746f 4c69 7374 2830 2e2e 3529 ply(toList(0..5) │ │ │ │ +00018ed0: 2c20 692d 3e68 696c 6265 7274 4675 6e63 , i->hilbertFunc │ │ │ │ +00018ee0: 7469 6f6e 2869 2c20 4565 7665 6e29 2920 tion(i, Eeven)) │ │ │ │ +00018ef0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00018f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018f30: 2020 2020 2020 2020 7c0a 7c6f 3130 203d |.|o10 = │ │ │ │ -00018f40: 207b 312c 2035 2c20 392c 2031 332c 2031 {1, 5, 9, 13, 1 │ │ │ │ -00018f50: 372c 2032 317d 2020 2020 2020 2020 2020 7, 21} │ │ │ │ -00018f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018f70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00018f20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018f30: 6f31 3020 3d20 7b31 2c20 352c 2039 2c20 o10 = {1, 5, 9, │ │ │ │ +00018f40: 3133 2c20 3137 2c20 3231 7d20 2020 2020 13, 17, 21} │ │ │ │ +00018f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018f60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00018f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018fb0: 7c0a 7c6f 3130 203a 204c 6973 7420 2020 |.|o10 : List │ │ │ │ +00018fa0: 2020 2020 207c 0a7c 6f31 3020 3a20 4c69 |.|o10 : Li │ │ │ │ +00018fb0: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ 00018fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018fe0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00018fe0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00018ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019020: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ -00019030: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -00019040: 2a20 2a6e 6f74 6520 4578 744d 6f64 756c * *note ExtModul │ │ │ │ -00019050: 653a 2045 7874 4d6f 6475 6c65 2c20 2d2d e: ExtModule, -- │ │ │ │ -00019060: 2045 7874 5e2a 284d 2c6b 2920 6f76 6572 Ext^*(M,k) over │ │ │ │ -00019070: 2061 2063 6f6d 706c 6574 6520 696e 7465 a complete inte │ │ │ │ -00019080: 7273 6563 7469 6f6e 2061 730a 2020 2020 rsection as. │ │ │ │ -00019090: 6d6f 6475 6c65 206f 7665 7220 4349 206f module over CI o │ │ │ │ -000190a0: 7065 7261 746f 7220 7269 6e67 0a20 202a perator ring. * │ │ │ │ -000190b0: 202a 6e6f 7465 206f 6464 4578 744d 6f64 *note oddExtMod │ │ │ │ -000190c0: 756c 653a 206f 6464 4578 744d 6f64 756c ule: oddExtModul │ │ │ │ -000190d0: 652c 202d 2d20 6f64 6420 7061 7274 206f e, -- odd part o │ │ │ │ -000190e0: 6620 4578 745e 2a28 4d2c 6b29 206f 7665 f Ext^*(M,k) ove │ │ │ │ -000190f0: 7220 6120 636f 6d70 6c65 7465 0a20 2020 r a complete. │ │ │ │ -00019100: 2069 6e74 6572 7365 6374 696f 6e20 6173 intersection as │ │ │ │ -00019110: 206d 6f64 756c 6520 6f76 6572 2043 4920 module over CI │ │ │ │ -00019120: 6f70 6572 6174 6f72 2072 696e 670a 2020 operator ring. │ │ │ │ -00019130: 2a20 2a6e 6f74 6520 4f75 7452 696e 673a * *note OutRing: │ │ │ │ -00019140: 204f 7574 5269 6e67 2c20 2d2d 204f 7074 OutRing, -- Opt │ │ │ │ -00019150: 696f 6e20 616c 6c6f 7769 6e67 2073 7065 ion allowing spe │ │ │ │ -00019160: 6369 6669 6361 7469 6f6e 206f 6620 7468 cification of th │ │ │ │ -00019170: 6520 7269 6e67 206f 7665 720a 2020 2020 e ring over. │ │ │ │ -00019180: 7768 6963 6820 7468 6520 6f75 7470 7574 which the output │ │ │ │ -00019190: 2069 7320 6465 6669 6e65 640a 0a57 6179 is defined..Way │ │ │ │ -000191a0: 7320 746f 2075 7365 2065 7665 6e45 7874 s to use evenExt │ │ │ │ -000191b0: 4d6f 6475 6c65 3a0a 3d3d 3d3d 3d3d 3d3d Module:.======== │ │ │ │ -000191c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000191d0: 3d3d 0a0a 2020 2a20 2265 7665 6e45 7874 ==.. * "evenExt │ │ │ │ -000191e0: 4d6f 6475 6c65 284d 6f64 756c 6529 220a Module(Module)". │ │ │ │ -000191f0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -00019200: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -00019210: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -00019220: 6374 202a 6e6f 7465 2065 7665 6e45 7874 ct *note evenExt │ │ │ │ -00019230: 4d6f 6475 6c65 3a20 6576 656e 4578 744d Module: evenExtM │ │ │ │ -00019240: 6f64 756c 652c 2069 7320 6120 2a6e 6f74 odule, is a *not │ │ │ │ -00019250: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ -00019260: 6e20 7769 7468 0a6f 7074 696f 6e73 3a20 n with.options: │ │ │ │ -00019270: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ -00019280: 7468 6f64 4675 6e63 7469 6f6e 5769 7468 thodFunctionWith │ │ │ │ -00019290: 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d Options,...----- │ │ │ │ +00019010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00019020: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +00019030: 3d0a 0a20 202a 202a 6e6f 7465 2045 7874 =.. * *note Ext │ │ │ │ +00019040: 4d6f 6475 6c65 3a20 4578 744d 6f64 756c Module: ExtModul │ │ │ │ +00019050: 652c 202d 2d20 4578 745e 2a28 4d2c 6b29 e, -- Ext^*(M,k) │ │ │ │ +00019060: 206f 7665 7220 6120 636f 6d70 6c65 7465 over a complete │ │ │ │ +00019070: 2069 6e74 6572 7365 6374 696f 6e20 6173 intersection as │ │ │ │ +00019080: 0a20 2020 206d 6f64 756c 6520 6f76 6572 . module over │ │ │ │ +00019090: 2043 4920 6f70 6572 6174 6f72 2072 696e CI operator rin │ │ │ │ +000190a0: 670a 2020 2a20 2a6e 6f74 6520 6f64 6445 g. * *note oddE │ │ │ │ +000190b0: 7874 4d6f 6475 6c65 3a20 6f64 6445 7874 xtModule: oddExt │ │ │ │ +000190c0: 4d6f 6475 6c65 2c20 2d2d 206f 6464 2070 Module, -- odd p │ │ │ │ +000190d0: 6172 7420 6f66 2045 7874 5e2a 284d 2c6b art of Ext^*(M,k │ │ │ │ +000190e0: 2920 6f76 6572 2061 2063 6f6d 706c 6574 ) over a complet │ │ │ │ +000190f0: 650a 2020 2020 696e 7465 7273 6563 7469 e. intersecti │ │ │ │ +00019100: 6f6e 2061 7320 6d6f 6475 6c65 206f 7665 on as module ove │ │ │ │ +00019110: 7220 4349 206f 7065 7261 746f 7220 7269 r CI operator ri │ │ │ │ +00019120: 6e67 0a20 202a 202a 6e6f 7465 204f 7574 ng. * *note Out │ │ │ │ +00019130: 5269 6e67 3a20 4f75 7452 696e 672c 202d Ring: OutRing, - │ │ │ │ +00019140: 2d20 4f70 7469 6f6e 2061 6c6c 6f77 696e - Option allowin │ │ │ │ +00019150: 6720 7370 6563 6966 6963 6174 696f 6e20 g specification │ │ │ │ +00019160: 6f66 2074 6865 2072 696e 6720 6f76 6572 of the ring over │ │ │ │ +00019170: 0a20 2020 2077 6869 6368 2074 6865 206f . which the o │ │ │ │ +00019180: 7574 7075 7420 6973 2064 6566 696e 6564 utput is defined │ │ │ │ +00019190: 0a0a 5761 7973 2074 6f20 7573 6520 6576 ..Ways to use ev │ │ │ │ +000191a0: 656e 4578 744d 6f64 756c 653a 0a3d 3d3d enExtModule:.=== │ │ │ │ +000191b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000191c0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 6576 =======.. * "ev │ │ │ │ +000191d0: 656e 4578 744d 6f64 756c 6528 4d6f 6475 enExtModule(Modu │ │ │ │ +000191e0: 6c65 2922 0a0a 466f 7220 7468 6520 7072 le)"..For the pr │ │ │ │ +000191f0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +00019200: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +00019210: 206f 626a 6563 7420 2a6e 6f74 6520 6576 object *note ev │ │ │ │ +00019220: 656e 4578 744d 6f64 756c 653a 2065 7665 enExtModule: eve │ │ │ │ +00019230: 6e45 7874 4d6f 6475 6c65 2c20 6973 2061 nExtModule, is a │ │ │ │ +00019240: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ +00019250: 6e63 7469 6f6e 2077 6974 680a 6f70 7469 nction with.opti │ │ │ │ +00019260: 6f6e 733a 2028 4d61 6361 756c 6179 3244 ons: (Macaulay2D │ │ │ │ +00019270: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +00019280: 6e57 6974 684f 7074 696f 6e73 2c2e 0a0a nWithOptions,... │ │ │ │ +00019290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000192a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000192b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000192c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000192d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000192e0: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -000192f0: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -00019300: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -00019310: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -00019320: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -00019330: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -00019340: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -00019350: 732f 0a43 6f6d 706c 6574 6549 6e74 6572 s/.CompleteInter │ │ │ │ -00019360: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -00019370: 6e73 2e6d 323a 3336 3433 3a30 2e0a 1f0a ns.m2:3643:0.... │ │ │ │ -00019380: 4669 6c65 3a20 436f 6d70 6c65 7465 496e File: CompleteIn │ │ │ │ -00019390: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ -000193a0: 7469 6f6e 732e 696e 666f 2c20 4e6f 6465 tions.info, Node │ │ │ │ -000193b0: 3a20 6578 706f 2c20 4e65 7874 3a20 6578 : expo, Next: ex │ │ │ │ -000193c0: 7465 7269 6f72 4578 744d 6f64 756c 652c teriorExtModule, │ │ │ │ -000193d0: 2050 7265 763a 2065 7665 6e45 7874 4d6f Prev: evenExtMo │ │ │ │ -000193e0: 6475 6c65 2c20 5570 3a20 546f 700a 0a65 dule, Up: Top..e │ │ │ │ -000193f0: 7870 6f20 2d2d 2072 6574 7572 6e73 2061 xpo -- returns a │ │ │ │ -00019400: 2073 6574 2063 6f72 7265 7370 6f6e 6469 set correspondi │ │ │ │ -00019410: 6e67 2074 6f20 7468 6520 6261 7369 7320 ng to the basis │ │ │ │ -00019420: 6f66 2061 2064 6976 6964 6564 2070 6f77 of a divided pow │ │ │ │ -00019430: 6572 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a er.************* │ │ │ │ +000192d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +000192e0: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +000192f0: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +00019300: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +00019310: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +00019320: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +00019330: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +00019340: 636b 6167 6573 2f0a 436f 6d70 6c65 7465 ckages/.Complete │ │ │ │ +00019350: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +00019360: 6c75 7469 6f6e 732e 6d32 3a33 3634 333a lutions.m2:3643: │ │ │ │ +00019370: 302e 0a1f 0a46 696c 653a 2043 6f6d 706c 0....File: Compl │ │ │ │ +00019380: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ +00019390: 6573 6f6c 7574 696f 6e73 2e69 6e66 6f2c esolutions.info, │ │ │ │ +000193a0: 204e 6f64 653a 2065 7870 6f2c 204e 6578 Node: expo, Nex │ │ │ │ +000193b0: 743a 2065 7874 6572 696f 7245 7874 4d6f t: exteriorExtMo │ │ │ │ +000193c0: 6475 6c65 2c20 5072 6576 3a20 6576 656e dule, Prev: even │ │ │ │ +000193d0: 4578 744d 6f64 756c 652c 2055 703a 2054 ExtModule, Up: T │ │ │ │ +000193e0: 6f70 0a0a 6578 706f 202d 2d20 7265 7475 op..expo -- retu │ │ │ │ +000193f0: 726e 7320 6120 7365 7420 636f 7272 6573 rns a set corres │ │ │ │ +00019400: 706f 6e64 696e 6720 746f 2074 6865 2062 ponding to the b │ │ │ │ +00019410: 6173 6973 206f 6620 6120 6469 7669 6465 asis of a divide │ │ │ │ +00019420: 6420 706f 7765 720a 2a2a 2a2a 2a2a 2a2a d power.******** │ │ │ │ +00019430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00019440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00019450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019470: 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 6167 ******.. * Usag │ │ │ │ -00019480: 653a 200a 2020 2020 2020 2020 4220 3d20 e: . B = │ │ │ │ -00019490: 6578 706f 2863 2c4e 290a 2020 2020 2020 expo(c,N). │ │ │ │ -000194a0: 2020 4220 3d20 6578 706f 2863 2c4c 290a B = expo(c,L). │ │ │ │ -000194b0: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -000194c0: 2020 2a20 4e2c 2061 6e20 2a6e 6f74 6520 * N, an *note │ │ │ │ -000194d0: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ -000194e0: 6179 3244 6f63 295a 5a2c 2c20 0a20 2020 ay2Doc)ZZ,, . │ │ │ │ -000194f0: 2020 202a 2063 2c20 616e 202a 6e6f 7465 * c, an *note │ │ │ │ -00019500: 2069 6e74 6567 6572 3a20 284d 6163 6175 integer: (Macau │ │ │ │ -00019510: 6c61 7932 446f 6329 5a5a 2c2c 200a 2020 lay2Doc)ZZ,, . │ │ │ │ -00019520: 2020 2020 2a20 4c2c 2061 202a 6e6f 7465 * L, a *note │ │ │ │ -00019530: 206c 6973 743a 2028 4d61 6361 756c 6179 list: (Macaulay │ │ │ │ -00019540: 3244 6f63 294c 6973 742c 2c20 6f66 2063 2Doc)List,, of c │ │ │ │ -00019550: 206e 6f6e 2d6e 6567 6174 6976 6520 696e non-negative in │ │ │ │ -00019560: 7465 6765 7273 0a20 202a 204f 7574 7075 tegers. * Outpu │ │ │ │ -00019570: 7473 3a0a 2020 2020 2020 2a20 422c 2061 ts:. * B, a │ │ │ │ -00019580: 202a 6e6f 7465 206c 6973 743a 2028 4d61 *note list: (Ma │ │ │ │ -00019590: 6361 756c 6179 3244 6f63 294c 6973 742c caulay2Doc)List, │ │ │ │ -000195a0: 2c20 7061 7274 6974 696f 6e73 2077 6974 , partitions wit │ │ │ │ -000195b0: 6820 6320 6e6f 6e2d 6e65 6761 7469 7665 h c non-negative │ │ │ │ -000195c0: 0a20 2020 2020 2020 2070 6172 7473 0a0a . parts.. │ │ │ │ -000195d0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -000195e0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 2066 6f72 =======..The for │ │ │ │ -000195f0: 6d20 6578 706f 2863 2c4e 2920 7265 7475 m expo(c,N) retu │ │ │ │ -00019600: 726e 7320 7061 7274 6974 696f 6e73 206f rns partitions o │ │ │ │ -00019610: 6620 4e20 7769 7468 2063 206e 6f6e 2d6e f N with c non-n │ │ │ │ -00019620: 6567 6174 6976 6520 7061 7274 732e 2054 egative parts. T │ │ │ │ -00019630: 6865 2066 6f72 6d0a 6578 706f 2863 2c20 he form.expo(c, │ │ │ │ -00019640: 4c29 2072 6574 7572 6e73 2070 6172 7469 L) returns parti │ │ │ │ -00019650: 7469 6f6e 7320 7769 7468 206e 6f6e 2d6e tions with non-n │ │ │ │ -00019660: 6567 6174 6976 6520 7061 7274 7320 7468 egative parts th │ │ │ │ -00019670: 6174 2061 7265 2063 6f6d 706f 6e65 6e74 at are component │ │ │ │ -00019680: 7769 7365 203c 3d0a 4c20 2861 6e64 2061 wise <=.L (and a │ │ │ │ -00019690: 6e79 2073 756d 203c 3d20 7375 6d20 4c29 ny sum <= sum L) │ │ │ │ -000196a0: 2e0a 0a54 6865 206c 6973 7420 6578 706f ...The list expo │ │ │ │ -000196b0: 2863 2c4e 2920 206d 6179 2062 6520 7468 (c,N) may be th │ │ │ │ -000196c0: 6f75 6768 7420 6f66 2061 7320 7468 6520 ought of as the │ │ │ │ -000196d0: 6c69 7374 206f 6620 6578 706f 6e65 6e74 list of exponent │ │ │ │ -000196e0: 2076 6563 746f 7273 206f 6620 7468 650a vectors of the. │ │ │ │ -000196f0: 6d6f 6e6f 6d69 616c 7320 6f66 2064 6567 monomials of deg │ │ │ │ -00019700: 7265 6520 4e20 696e 2063 2076 6172 6961 ree N in c varia │ │ │ │ -00019710: 626c 6573 2e20 5468 6973 2069 7320 7573 bles. This is us │ │ │ │ -00019720: 6564 2069 6e20 7468 6520 636f 6e73 7472 ed in the constr │ │ │ │ -00019730: 7563 7469 6f6e 206f 6620 7468 650a 4569 uction of the.Ei │ │ │ │ -00019740: 7365 6e62 7564 2d53 6861 6d61 7368 2072 senbud-Shamash r │ │ │ │ -00019750: 6573 6f6c 7574 696f 6e2e 0a0a 5468 6520 esolution...The │ │ │ │ -00019760: 6c69 7374 2065 7870 6f28 632c 204c 292c list expo(c, L), │ │ │ │ -00019770: 206f 6e20 7468 6520 6f74 6865 7220 6861 on the other ha │ │ │ │ -00019780: 6e64 2c20 6d61 7920 6265 2074 686f 7567 nd, may be thoug │ │ │ │ -00019790: 6874 206f 6620 6173 2074 6865 206c 6973 ht of as the lis │ │ │ │ -000197a0: 7420 6f66 0a64 6976 6973 6f72 7320 6f66 t of.divisors of │ │ │ │ -000197b0: 2065 5e4c 203d 2065 5f30 5e7b 4c5f 307d e^L = e_0^{L_0} │ │ │ │ -000197c0: 202e 2e2e 2065 5f63 5e7b 4c5f 637d 2e20 ... e_c^{L_c}. │ │ │ │ -000197d0: 5468 6973 2069 7320 7573 6564 2069 6e20 This is used in │ │ │ │ -000197e0: 7468 6520 636f 6e73 7472 7563 7469 6f6e the construction │ │ │ │ -000197f0: 206f 660a 7468 6520 6869 6768 6572 2068 of.the higher h │ │ │ │ -00019800: 6f6d 6f74 6f70 6965 7320 6f6e 2061 2063 omotopies on a c │ │ │ │ -00019810: 6f6d 706c 6578 2e0a 0a2b 2d2d 2d2d 2d2d omplex...+------ │ │ │ │ +00019460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +00019470: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +00019480: 2042 203d 2065 7870 6f28 632c 4e29 0a20 B = expo(c,N). │ │ │ │ +00019490: 2020 2020 2020 2042 203d 2065 7870 6f28 B = expo( │ │ │ │ +000194a0: 632c 4c29 0a20 202a 2049 6e70 7574 733a c,L). * Inputs: │ │ │ │ +000194b0: 0a20 2020 2020 202a 204e 2c20 616e 202a . * N, an * │ │ │ │ +000194c0: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ +000194d0: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ +000194e0: 200a 2020 2020 2020 2a20 632c 2061 6e20 . * c, an │ │ │ │ +000194f0: 2a6e 6f74 6520 696e 7465 6765 723a 2028 *note integer: ( │ │ │ │ +00019500: 4d61 6361 756c 6179 3244 6f63 295a 5a2c Macaulay2Doc)ZZ, │ │ │ │ +00019510: 2c20 0a20 2020 2020 202a 204c 2c20 6120 , . * L, a │ │ │ │ +00019520: 2a6e 6f74 6520 6c69 7374 3a20 284d 6163 *note list: (Mac │ │ │ │ +00019530: 6175 6c61 7932 446f 6329 4c69 7374 2c2c aulay2Doc)List,, │ │ │ │ +00019540: 206f 6620 6320 6e6f 6e2d 6e65 6761 7469 of c non-negati │ │ │ │ +00019550: 7665 2069 6e74 6567 6572 730a 2020 2a20 ve integers. * │ │ │ │ +00019560: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ +00019570: 2042 2c20 6120 2a6e 6f74 6520 6c69 7374 B, a *note list │ │ │ │ +00019580: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00019590: 4c69 7374 2c2c 2070 6172 7469 7469 6f6e List,, partition │ │ │ │ +000195a0: 7320 7769 7468 2063 206e 6f6e 2d6e 6567 s with c non-neg │ │ │ │ +000195b0: 6174 6976 650a 2020 2020 2020 2020 7061 ative. pa │ │ │ │ +000195c0: 7274 730a 0a44 6573 6372 6970 7469 6f6e rts..Description │ │ │ │ +000195d0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 .===========..Th │ │ │ │ +000195e0: 6520 666f 726d 2065 7870 6f28 632c 4e29 e form expo(c,N) │ │ │ │ +000195f0: 2072 6574 7572 6e73 2070 6172 7469 7469 returns partiti │ │ │ │ +00019600: 6f6e 7320 6f66 204e 2077 6974 6820 6320 ons of N with c │ │ │ │ +00019610: 6e6f 6e2d 6e65 6761 7469 7665 2070 6172 non-negative par │ │ │ │ +00019620: 7473 2e20 5468 6520 666f 726d 0a65 7870 ts. The form.exp │ │ │ │ +00019630: 6f28 632c 204c 2920 7265 7475 726e 7320 o(c, L) returns │ │ │ │ +00019640: 7061 7274 6974 696f 6e73 2077 6974 6820 partitions with │ │ │ │ +00019650: 6e6f 6e2d 6e65 6761 7469 7665 2070 6172 non-negative par │ │ │ │ +00019660: 7473 2074 6861 7420 6172 6520 636f 6d70 ts that are comp │ │ │ │ +00019670: 6f6e 656e 7477 6973 6520 3c3d 0a4c 2028 onentwise <=.L ( │ │ │ │ +00019680: 616e 6420 616e 7920 7375 6d20 3c3d 2073 and any sum <= s │ │ │ │ +00019690: 756d 204c 292e 0a0a 5468 6520 6c69 7374 um L)...The list │ │ │ │ +000196a0: 2065 7870 6f28 632c 4e29 2020 6d61 7920 expo(c,N) may │ │ │ │ +000196b0: 6265 2074 686f 7567 6874 206f 6620 6173 be thought of as │ │ │ │ +000196c0: 2074 6865 206c 6973 7420 6f66 2065 7870 the list of exp │ │ │ │ +000196d0: 6f6e 656e 7420 7665 6374 6f72 7320 6f66 onent vectors of │ │ │ │ +000196e0: 2074 6865 0a6d 6f6e 6f6d 6961 6c73 206f the.monomials o │ │ │ │ +000196f0: 6620 6465 6772 6565 204e 2069 6e20 6320 f degree N in c │ │ │ │ +00019700: 7661 7269 6162 6c65 732e 2054 6869 7320 variables. This │ │ │ │ +00019710: 6973 2075 7365 6420 696e 2074 6865 2063 is used in the c │ │ │ │ +00019720: 6f6e 7374 7275 6374 696f 6e20 6f66 2074 onstruction of t │ │ │ │ +00019730: 6865 0a45 6973 656e 6275 642d 5368 616d he.Eisenbud-Sham │ │ │ │ +00019740: 6173 6820 7265 736f 6c75 7469 6f6e 2e0a ash resolution.. │ │ │ │ +00019750: 0a54 6865 206c 6973 7420 6578 706f 2863 .The list expo(c │ │ │ │ +00019760: 2c20 4c29 2c20 6f6e 2074 6865 206f 7468 , L), on the oth │ │ │ │ +00019770: 6572 2068 616e 642c 206d 6179 2062 6520 er hand, may be │ │ │ │ +00019780: 7468 6f75 6768 7420 6f66 2061 7320 7468 thought of as th │ │ │ │ +00019790: 6520 6c69 7374 206f 660a 6469 7669 736f e list of.diviso │ │ │ │ +000197a0: 7273 206f 6620 655e 4c20 3d20 655f 305e rs of e^L = e_0^ │ │ │ │ +000197b0: 7b4c 5f30 7d20 2e2e 2e20 655f 635e 7b4c {L_0} ... e_c^{L │ │ │ │ +000197c0: 5f63 7d2e 2054 6869 7320 6973 2075 7365 _c}. This is use │ │ │ │ +000197d0: 6420 696e 2074 6865 2063 6f6e 7374 7275 d in the constru │ │ │ │ +000197e0: 6374 696f 6e20 6f66 0a74 6865 2068 6967 ction of.the hig │ │ │ │ +000197f0: 6865 7220 686f 6d6f 746f 7069 6573 206f her homotopies o │ │ │ │ +00019800: 6e20 6120 636f 6d70 6c65 782e 0a0a 2b2d n a complex...+- │ │ │ │ +00019810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019860: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2065 -------+.|i1 : e │ │ │ │ -00019870: 7870 6f28 332c 3529 2020 2020 2020 2020 xpo(3,5) │ │ │ │ +00019850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00019860: 3120 3a20 6578 706f 2833 2c35 2920 2020 1 : expo(3,5) │ │ │ │ +00019870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000198a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000198b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000198a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000198b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000198c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000198d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000198e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000198f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019900: 2020 2020 2020 207c 0a7c 6f31 203d 207b |.|o1 = { │ │ │ │ -00019910: 7b35 2c20 302c 2030 7d2c 207b 342c 2031 {5, 0, 0}, {4, 1 │ │ │ │ -00019920: 2c20 307d 2c20 7b34 2c20 302c 2031 7d2c , 0}, {4, 0, 1}, │ │ │ │ -00019930: 207b 332c 2032 2c20 307d 2c20 7b33 2c20 {3, 2, 0}, {3, │ │ │ │ -00019940: 312c 2031 7d2c 207b 332c 2030 2c20 327d 1, 1}, {3, 0, 2} │ │ │ │ -00019950: 2c20 7b32 2c20 207c 0a7c 2020 2020 202d , {2, |.| - │ │ │ │ +000198f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00019900: 3120 3d20 7b7b 352c 2030 2c20 307d 2c20 1 = {{5, 0, 0}, │ │ │ │ +00019910: 7b34 2c20 312c 2030 7d2c 207b 342c 2030 {4, 1, 0}, {4, 0 │ │ │ │ +00019920: 2c20 317d 2c20 7b33 2c20 322c 2030 7d2c , 1}, {3, 2, 0}, │ │ │ │ +00019930: 207b 332c 2031 2c20 317d 2c20 7b33 2c20 {3, 1, 1}, {3, │ │ │ │ +00019940: 302c 2032 7d2c 207b 322c 2020 7c0a 7c20 0, 2}, {2, |.| │ │ │ │ +00019950: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ 00019960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000199a0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2033 -------|.| 3 │ │ │ │ -000199b0: 2c20 307d 2c20 7b32 2c20 322c 2031 7d2c , 0}, {2, 2, 1}, │ │ │ │ -000199c0: 207b 322c 2031 2c20 327d 2c20 7b32 2c20 {2, 1, 2}, {2, │ │ │ │ -000199d0: 302c 2033 7d2c 207b 312c 2034 2c20 307d 0, 3}, {1, 4, 0} │ │ │ │ -000199e0: 2c20 7b31 2c20 332c 2031 7d2c 207b 312c , {1, 3, 1}, {1, │ │ │ │ -000199f0: 2032 2c20 327d 2c7c 0a7c 2020 2020 202d 2, 2},|.| - │ │ │ │ +00019990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +000199a0: 2020 2020 332c 2030 7d2c 207b 322c 2032 3, 0}, {2, 2 │ │ │ │ +000199b0: 2c20 317d 2c20 7b32 2c20 312c 2032 7d2c , 1}, {2, 1, 2}, │ │ │ │ +000199c0: 207b 322c 2030 2c20 337d 2c20 7b31 2c20 {2, 0, 3}, {1, │ │ │ │ +000199d0: 342c 2030 7d2c 207b 312c 2033 2c20 317d 4, 0}, {1, 3, 1} │ │ │ │ +000199e0: 2c20 7b31 2c20 322c 2032 7d2c 7c0a 7c20 , {1, 2, 2},|.| │ │ │ │ +000199f0: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ 00019a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019a40: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 207b -------|.| { │ │ │ │ -00019a50: 312c 2031 2c20 337d 2c20 7b31 2c20 302c 1, 1, 3}, {1, 0, │ │ │ │ -00019a60: 2034 7d2c 207b 302c 2035 2c20 307d 2c20 4}, {0, 5, 0}, │ │ │ │ -00019a70: 7b30 2c20 342c 2031 7d2c 207b 302c 2033 {0, 4, 1}, {0, 3 │ │ │ │ -00019a80: 2c20 327d 2c20 7b30 2c20 322c 2033 7d2c , 2}, {0, 2, 3}, │ │ │ │ -00019a90: 207b 302c 2031 2c7c 0a7c 2020 2020 202d {0, 1,|.| - │ │ │ │ +00019a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00019a40: 2020 2020 7b31 2c20 312c 2033 7d2c 207b {1, 1, 3}, { │ │ │ │ +00019a50: 312c 2030 2c20 347d 2c20 7b30 2c20 352c 1, 0, 4}, {0, 5, │ │ │ │ +00019a60: 2030 7d2c 207b 302c 2034 2c20 317d 2c20 0}, {0, 4, 1}, │ │ │ │ +00019a70: 7b30 2c20 332c 2032 7d2c 207b 302c 2032 {0, 3, 2}, {0, 2 │ │ │ │ +00019a80: 2c20 337d 2c20 7b30 2c20 312c 7c0a 7c20 , 3}, {0, 1,|.| │ │ │ │ +00019a90: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ 00019aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ae0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2034 -------|.| 4 │ │ │ │ -00019af0: 7d2c 207b 302c 2030 2c20 357d 7d20 2020 }, {0, 0, 5}} │ │ │ │ +00019ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00019ae0: 2020 2020 347d 2c20 7b30 2c20 302c 2035 4}, {0, 0, 5 │ │ │ │ +00019af0: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ 00019b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00019b20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00019b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b80: 2020 2020 2020 207c 0a7c 6f31 203a 204c |.|o1 : L │ │ │ │ -00019b90: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +00019b70: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00019b80: 3120 3a20 4c69 7374 2020 2020 2020 2020 1 : List │ │ │ │ +00019b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019bd0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00019bc0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00019bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019c20: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2065 -------+.|i2 : e │ │ │ │ -00019c30: 7870 6f28 332c 207b 332c 322c 317d 2920 xpo(3, {3,2,1}) │ │ │ │ +00019c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00019c20: 3220 3a20 6578 706f 2833 2c20 7b33 2c32 2 : expo(3, {3,2 │ │ │ │ +00019c30: 2c31 7d29 2020 2020 2020 2020 2020 2020 ,1}) │ │ │ │ 00019c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00019c60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00019c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019cc0: 2020 2020 2020 207c 0a7c 6f32 203d 207b |.|o2 = { │ │ │ │ -00019cd0: 7b30 2c20 302c 2030 7d2c 207b 312c 2030 {0, 0, 0}, {1, 0 │ │ │ │ -00019ce0: 2c20 307d 2c20 7b30 2c20 312c 2030 7d2c , 0}, {0, 1, 0}, │ │ │ │ -00019cf0: 207b 302c 2030 2c20 317d 2c20 7b32 2c20 {0, 0, 1}, {2, │ │ │ │ -00019d00: 302c 2030 7d2c 207b 312c 2031 2c20 307d 0, 0}, {1, 1, 0} │ │ │ │ -00019d10: 2c20 7b31 2c20 207c 0a7c 2020 2020 202d , {1, |.| - │ │ │ │ +00019cb0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00019cc0: 3220 3d20 7b7b 302c 2030 2c20 307d 2c20 2 = {{0, 0, 0}, │ │ │ │ +00019cd0: 7b31 2c20 302c 2030 7d2c 207b 302c 2031 {1, 0, 0}, {0, 1 │ │ │ │ +00019ce0: 2c20 307d 2c20 7b30 2c20 302c 2031 7d2c , 0}, {0, 0, 1}, │ │ │ │ +00019cf0: 207b 322c 2030 2c20 307d 2c20 7b31 2c20 {2, 0, 0}, {1, │ │ │ │ +00019d00: 312c 2030 7d2c 207b 312c 2020 7c0a 7c20 1, 0}, {1, |.| │ │ │ │ +00019d10: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ 00019d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019d60: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2030 -------|.| 0 │ │ │ │ -00019d70: 2c20 317d 2c20 7b30 2c20 322c 2030 7d2c , 1}, {0, 2, 0}, │ │ │ │ -00019d80: 207b 302c 2031 2c20 317d 2c20 7b33 2c20 {0, 1, 1}, {3, │ │ │ │ -00019d90: 302c 2030 7d2c 207b 322c 2031 2c20 307d 0, 0}, {2, 1, 0} │ │ │ │ -00019da0: 2c20 7b32 2c20 302c 2031 7d2c 207b 312c , {2, 0, 1}, {1, │ │ │ │ -00019db0: 2032 2c20 307d 2c7c 0a7c 2020 2020 202d 2, 0},|.| - │ │ │ │ +00019d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00019d60: 2020 2020 302c 2031 7d2c 207b 302c 2032 0, 1}, {0, 2 │ │ │ │ +00019d70: 2c20 307d 2c20 7b30 2c20 312c 2031 7d2c , 0}, {0, 1, 1}, │ │ │ │ +00019d80: 207b 332c 2030 2c20 307d 2c20 7b32 2c20 {3, 0, 0}, {2, │ │ │ │ +00019d90: 312c 2030 7d2c 207b 322c 2030 2c20 317d 1, 0}, {2, 0, 1} │ │ │ │ +00019da0: 2c20 7b31 2c20 322c 2030 7d2c 7c0a 7c20 , {1, 2, 0},|.| │ │ │ │ +00019db0: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ 00019dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019e00: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 207b -------|.| { │ │ │ │ -00019e10: 312c 2031 2c20 317d 2c20 7b30 2c20 322c 1, 1, 1}, {0, 2, │ │ │ │ -00019e20: 2031 7d2c 207b 332c 2031 2c20 307d 2c20 1}, {3, 1, 0}, │ │ │ │ -00019e30: 7b33 2c20 302c 2031 7d2c 207b 322c 2032 {3, 0, 1}, {2, 2 │ │ │ │ -00019e40: 2c20 307d 2c20 7b32 2c20 312c 2031 7d2c , 0}, {2, 1, 1}, │ │ │ │ -00019e50: 207b 312c 2032 2c7c 0a7c 2020 2020 202d {1, 2,|.| - │ │ │ │ +00019df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00019e00: 2020 2020 7b31 2c20 312c 2031 7d2c 207b {1, 1, 1}, { │ │ │ │ +00019e10: 302c 2032 2c20 317d 2c20 7b33 2c20 312c 0, 2, 1}, {3, 1, │ │ │ │ +00019e20: 2030 7d2c 207b 332c 2030 2c20 317d 2c20 0}, {3, 0, 1}, │ │ │ │ +00019e30: 7b32 2c20 322c 2030 7d2c 207b 322c 2031 {2, 2, 0}, {2, 1 │ │ │ │ +00019e40: 2c20 317d 2c20 7b31 2c20 322c 7c0a 7c20 , 1}, {1, 2,|.| │ │ │ │ +00019e50: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ 00019e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ea0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2031 -------|.| 1 │ │ │ │ -00019eb0: 7d2c 207b 332c 2032 2c20 307d 2c20 7b33 }, {3, 2, 0}, {3 │ │ │ │ -00019ec0: 2c20 312c 2031 7d2c 207b 322c 2032 2c20 , 1, 1}, {2, 2, │ │ │ │ -00019ed0: 317d 7d20 2020 2020 2020 2020 2020 2020 1}} │ │ │ │ -00019ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019ef0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00019e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00019ea0: 2020 2020 317d 2c20 7b33 2c20 322c 2030 1}, {3, 2, 0 │ │ │ │ +00019eb0: 7d2c 207b 332c 2031 2c20 317d 2c20 7b32 }, {3, 1, 1}, {2 │ │ │ │ +00019ec0: 2c20 322c 2031 7d7d 2020 2020 2020 2020 , 2, 1}} │ │ │ │ +00019ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019ee0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00019ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f40: 2020 2020 2020 207c 0a7c 6f32 203a 204c |.|o2 : L │ │ │ │ -00019f50: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +00019f30: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00019f40: 3220 3a20 4c69 7374 2020 2020 2020 2020 2 : List │ │ │ │ +00019f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f90: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00019f80: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00019f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019fe0: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ -00019ff0: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -0001a000: 202a 6e6f 7465 2045 6973 656e 6275 6453 *note EisenbudS │ │ │ │ -0001a010: 6861 6d61 7368 3a20 4569 7365 6e62 7564 hamash: Eisenbud │ │ │ │ -0001a020: 5368 616d 6173 682c 202d 2d20 436f 6d70 Shamash, -- Comp │ │ │ │ -0001a030: 7574 6573 2074 6865 2045 6973 656e 6275 utes the Eisenbu │ │ │ │ -0001a040: 642d 5368 616d 6173 680a 2020 2020 436f d-Shamash. Co │ │ │ │ -0001a050: 6d70 6c65 780a 2020 2a20 2a6e 6f74 6520 mplex. * *note │ │ │ │ -0001a060: 6d61 6b65 486f 6d6f 746f 7069 6573 3a20 makeHomotopies: │ │ │ │ -0001a070: 6d61 6b65 486f 6d6f 746f 7069 6573 2c20 makeHomotopies, │ │ │ │ -0001a080: 2d2d 2072 6574 7572 6e73 2061 2073 7973 -- returns a sys │ │ │ │ -0001a090: 7465 6d20 6f66 2068 6967 6865 720a 2020 tem of higher. │ │ │ │ -0001a0a0: 2020 686f 6d6f 746f 7069 6573 0a0a 5761 homotopies..Wa │ │ │ │ -0001a0b0: 7973 2074 6f20 7573 6520 6578 706f 3a0a ys to use expo:. │ │ │ │ -0001a0c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001a0d0: 3d0a 0a20 202a 2022 6578 706f 285a 5a2c =.. * "expo(ZZ, │ │ │ │ -0001a0e0: 4c69 7374 2922 0a20 202a 2022 6578 706f List)". * "expo │ │ │ │ -0001a0f0: 285a 5a2c 5a5a 2922 0a0a 466f 7220 7468 (ZZ,ZZ)"..For th │ │ │ │ -0001a100: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0001a110: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0001a120: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0001a130: 6520 6578 706f 3a20 6578 706f 2c20 6973 e expo: expo, is │ │ │ │ -0001a140: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ -0001a150: 6675 6e63 7469 6f6e 3a0a 284d 6163 6175 function:.(Macau │ │ │ │ -0001a160: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ -0001a170: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ +00019fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ +00019fe0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +00019ff0: 0a0a 2020 2a20 2a6e 6f74 6520 4569 7365 .. * *note Eise │ │ │ │ +0001a000: 6e62 7564 5368 616d 6173 683a 2045 6973 nbudShamash: Eis │ │ │ │ +0001a010: 656e 6275 6453 6861 6d61 7368 2c20 2d2d enbudShamash, -- │ │ │ │ +0001a020: 2043 6f6d 7075 7465 7320 7468 6520 4569 Computes the Ei │ │ │ │ +0001a030: 7365 6e62 7564 2d53 6861 6d61 7368 0a20 senbud-Shamash. │ │ │ │ +0001a040: 2020 2043 6f6d 706c 6578 0a20 202a 202a Complex. * * │ │ │ │ +0001a050: 6e6f 7465 206d 616b 6548 6f6d 6f74 6f70 note makeHomotop │ │ │ │ +0001a060: 6965 733a 206d 616b 6548 6f6d 6f74 6f70 ies: makeHomotop │ │ │ │ +0001a070: 6965 732c 202d 2d20 7265 7475 726e 7320 ies, -- returns │ │ │ │ +0001a080: 6120 7379 7374 656d 206f 6620 6869 6768 a system of high │ │ │ │ +0001a090: 6572 0a20 2020 2068 6f6d 6f74 6f70 6965 er. homotopie │ │ │ │ +0001a0a0: 730a 0a57 6179 7320 746f 2075 7365 2065 s..Ways to use e │ │ │ │ +0001a0b0: 7870 6f3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d xpo:.=========== │ │ │ │ +0001a0c0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2265 7870 ======.. * "exp │ │ │ │ +0001a0d0: 6f28 5a5a 2c4c 6973 7429 220a 2020 2a20 o(ZZ,List)". * │ │ │ │ +0001a0e0: 2265 7870 6f28 5a5a 2c5a 5a29 220a 0a46 "expo(ZZ,ZZ)"..F │ │ │ │ +0001a0f0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +0001a100: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +0001a110: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +0001a120: 202a 6e6f 7465 2065 7870 6f3a 2065 7870 *note expo: exp │ │ │ │ +0001a130: 6f2c 2069 7320 6120 2a6e 6f74 6520 6d65 o, is a *note me │ │ │ │ +0001a140: 7468 6f64 2066 756e 6374 696f 6e3a 0a28 thod function:.( │ │ │ │ +0001a150: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ +0001a160: 686f 6446 756e 6374 696f 6e2c 2e0a 0a2d hodFunction,...- │ │ │ │ +0001a170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a1c0: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -0001a1d0: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -0001a1e0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -0001a1f0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -0001a200: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -0001a210: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -0001a220: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -0001a230: 2f0a 436f 6d70 6c65 7465 496e 7465 7273 /.CompleteInters │ │ │ │ -0001a240: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ -0001a250: 732e 6d32 3a35 3038 363a 302e 0a1f 0a46 s.m2:5086:0....F │ │ │ │ -0001a260: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ -0001a270: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ -0001a280: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ -0001a290: 2065 7874 6572 696f 7245 7874 4d6f 6475 exteriorExtModu │ │ │ │ -0001a2a0: 6c65 2c20 4e65 7874 3a20 6578 7465 7269 le, Next: exteri │ │ │ │ -0001a2b0: 6f72 486f 6d6f 6c6f 6779 4d6f 6475 6c65 orHomologyModule │ │ │ │ -0001a2c0: 2c20 5072 6576 3a20 6578 706f 2c20 5570 , Prev: expo, Up │ │ │ │ -0001a2d0: 3a20 546f 700a 0a65 7874 6572 696f 7245 : Top..exteriorE │ │ │ │ -0001a2e0: 7874 4d6f 6475 6c65 202d 2d20 4578 7428 xtModule -- Ext( │ │ │ │ -0001a2f0: 4d2c 6b29 206f 7220 4578 7428 4d2c 4e29 M,k) or Ext(M,N) │ │ │ │ -0001a300: 2061 7320 6120 6d6f 6475 6c65 206f 7665 as a module ove │ │ │ │ -0001a310: 7220 616e 2065 7874 6572 696f 7220 616c r an exterior al │ │ │ │ -0001a320: 6765 6272 610a 2a2a 2a2a 2a2a 2a2a 2a2a gebra.********** │ │ │ │ +0001a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +0001a1c0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +0001a1d0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +0001a1e0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +0001a1f0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +0001a200: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +0001a210: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +0001a220: 6b61 6765 732f 0a43 6f6d 706c 6574 6549 kages/.CompleteI │ │ │ │ +0001a230: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ +0001a240: 7574 696f 6e73 2e6d 323a 3530 3836 3a30 utions.m2:5086:0 │ │ │ │ +0001a250: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ +0001a260: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ +0001a270: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ +0001a280: 4e6f 6465 3a20 6578 7465 7269 6f72 4578 Node: exteriorEx │ │ │ │ +0001a290: 744d 6f64 756c 652c 204e 6578 743a 2065 tModule, Next: e │ │ │ │ +0001a2a0: 7874 6572 696f 7248 6f6d 6f6c 6f67 794d xteriorHomologyM │ │ │ │ +0001a2b0: 6f64 756c 652c 2050 7265 763a 2065 7870 odule, Prev: exp │ │ │ │ +0001a2c0: 6f2c 2055 703a 2054 6f70 0a0a 6578 7465 o, Up: Top..exte │ │ │ │ +0001a2d0: 7269 6f72 4578 744d 6f64 756c 6520 2d2d riorExtModule -- │ │ │ │ +0001a2e0: 2045 7874 284d 2c6b 2920 6f72 2045 7874 Ext(M,k) or Ext │ │ │ │ +0001a2f0: 284d 2c4e 2920 6173 2061 206d 6f64 756c (M,N) as a modul │ │ │ │ +0001a300: 6520 6f76 6572 2061 6e20 6578 7465 7269 e over an exteri │ │ │ │ +0001a310: 6f72 2061 6c67 6562 7261 0a2a 2a2a 2a2a or algebra.***** │ │ │ │ +0001a320: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001a330: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001a340: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001a350: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001a360: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001a370: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ -0001a380: 200a 2020 2020 2020 2020 4520 3d20 6578 . E = ex │ │ │ │ -0001a390: 7465 7269 6f72 4578 744d 6f64 756c 6528 teriorExtModule( │ │ │ │ -0001a3a0: 662c 4d29 0a20 202a 2049 6e70 7574 733a f,M). * Inputs: │ │ │ │ -0001a3b0: 0a20 2020 2020 202a 2066 2c20 6120 2a6e . * f, a *n │ │ │ │ -0001a3c0: 6f74 6520 6d61 7472 6978 3a20 284d 6163 ote matrix: (Mac │ │ │ │ -0001a3d0: 6175 6c61 7932 446f 6329 4d61 7472 6978 aulay2Doc)Matrix │ │ │ │ -0001a3e0: 2c2c 2031 2078 2063 2c20 656e 7472 6965 ,, 1 x c, entrie │ │ │ │ -0001a3f0: 7320 6d75 7374 2062 650a 2020 2020 2020 s must be. │ │ │ │ -0001a400: 2020 686f 6d6f 746f 7069 6320 746f 2030 homotopic to 0 │ │ │ │ -0001a410: 206f 6e20 460a 2020 2020 2020 2a20 4d2c on F. * M, │ │ │ │ -0001a420: 2061 202a 6e6f 7465 206d 6f64 756c 653a a *note module: │ │ │ │ -0001a430: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ -0001a440: 6f64 756c 652c 2c20 616e 6e69 6869 6c61 odule,, annihila │ │ │ │ -0001a450: 7465 6420 6279 2074 6865 2065 6c65 6d65 ted by the eleme │ │ │ │ -0001a460: 6e74 730a 2020 2020 2020 2020 6f66 2066 nts. of f │ │ │ │ -0001a470: 660a 2020 2020 2020 2a20 4e2c 2061 202a f. * N, a * │ │ │ │ -0001a480: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -0001a490: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -0001a4a0: 652c 2c20 616e 6e69 6869 6c61 7465 6420 e,, annihilated │ │ │ │ -0001a4b0: 6279 2074 6865 2065 6c65 6d65 6e74 730a by the elements. │ │ │ │ -0001a4c0: 2020 2020 2020 2020 6f66 2066 660a 2020 of ff. │ │ │ │ -0001a4d0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -0001a4e0: 202a 2045 2c20 6120 2a6e 6f74 6520 6d6f * E, a *note mo │ │ │ │ -0001a4f0: 6475 6c65 3a20 284d 6163 6175 6c61 7932 dule: (Macaulay2 │ │ │ │ -0001a500: 446f 6329 4d6f 6475 6c65 2c2c 204d 6f64 Doc)Module,, Mod │ │ │ │ -0001a510: 756c 6520 6f76 6572 2061 6e20 6578 7465 ule over an exte │ │ │ │ -0001a520: 7269 6f72 0a20 2020 2020 2020 2061 6c67 rior. alg │ │ │ │ -0001a530: 6562 7261 2077 6974 6820 7661 7269 6162 ebra with variab │ │ │ │ -0001a540: 6c65 7320 636f 7272 6573 706f 6e64 696e les correspondin │ │ │ │ -0001a550: 6720 746f 2065 6c65 6d65 6e74 7320 6f66 g to elements of │ │ │ │ -0001a560: 2066 0a0a 4465 7363 7269 7074 696f 6e0a f..Description. │ │ │ │ -0001a570: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a49 6620 ===========..If │ │ │ │ -0001a580: 4d2c 4e20 6172 6520 532d 6d6f 6475 6c65 M,N are S-module │ │ │ │ -0001a590: 7320 616e 6e69 6869 6c61 7465 6420 6279 s annihilated by │ │ │ │ -0001a5a0: 2074 6865 2065 6c65 6d65 6e74 7320 6f66 the elements of │ │ │ │ -0001a5b0: 2074 6865 206d 6174 7269 7820 6666 203d the matrix ff = │ │ │ │ -0001a5c0: 2028 665f 312e 2e66 5f63 292c 0a61 6e64 (f_1..f_c),.and │ │ │ │ -0001a5d0: 206b 2069 7320 7468 6520 7265 7369 6475 k is the residu │ │ │ │ -0001a5e0: 6520 6669 656c 6420 6f66 2053 2c20 7468 e field of S, th │ │ │ │ -0001a5f0: 656e 2074 6865 2073 6372 6970 7420 6578 en the script ex │ │ │ │ -0001a600: 7465 7269 6f72 4578 744d 6f64 756c 6528 teriorExtModule( │ │ │ │ -0001a610: 662c 4d29 2072 6574 7572 6e73 0a45 7874 f,M) returns.Ext │ │ │ │ -0001a620: 5f53 284d 2c20 6b29 2061 7320 6120 6d6f _S(M, k) as a mo │ │ │ │ -0001a630: 6475 6c65 206f 7665 7220 616e 2065 7874 dule over an ext │ │ │ │ -0001a640: 6572 696f 7220 616c 6765 6272 6120 4520 erior algebra E │ │ │ │ -0001a650: 3d20 6b3c 655f 312c 2e2e 2e2c 655f 633e = k │ │ │ │ -0001a660: 2c20 7768 6572 6520 7468 650a 655f 6920 , where the.e_i │ │ │ │ -0001a670: 6861 7665 2064 6567 7265 6520 312e 2049 have degree 1. I │ │ │ │ -0001a680: 7420 6973 2063 6f6d 7075 7465 6420 6173 t is computed as │ │ │ │ -0001a690: 2074 6865 2045 2d64 7561 6c20 6f66 2065 the E-dual of e │ │ │ │ -0001a6a0: 7874 6572 696f 7254 6f72 4d6f 6475 6c65 xteriorTorModule │ │ │ │ -0001a6b0: 2e0a 0a54 6865 2073 6372 6970 7420 6578 ...The script ex │ │ │ │ -0001a6c0: 7465 7269 6f72 546f 724d 6f64 756c 6528 teriorTorModule( │ │ │ │ -0001a6d0: 662c 4d2c 4e29 2072 6574 7572 6e73 2045 f,M,N) returns E │ │ │ │ -0001a6e0: 7874 5f53 284d 2c4e 2920 6173 2061 206d xt_S(M,N) as a m │ │ │ │ -0001a6f0: 6f64 756c 6520 6f76 6572 2061 0a62 6967 odule over a.big │ │ │ │ -0001a700: 7261 6465 6420 7269 6e67 2053 4520 3d20 raded ring SE = │ │ │ │ -0001a710: 533c 655f 312c 2e2e 2c65 5f63 3e2c 2077 S, w │ │ │ │ -0001a720: 6865 7265 2074 6865 2065 5f69 2068 6176 here the e_i hav │ │ │ │ -0001a730: 6520 6465 6772 6565 7320 7b64 5f69 2c31 e degrees {d_i,1 │ │ │ │ -0001a740: 7d2c 2077 6865 7265 2064 5f69 0a69 7320 }, where d_i.is │ │ │ │ -0001a750: 7468 6520 6465 6772 6565 206f 6620 665f the degree of f_ │ │ │ │ -0001a760: 692e 2054 6865 206d 6f64 756c 6520 7374 i. The module st │ │ │ │ -0001a770: 7275 6374 7572 652c 2069 6e20 6569 7468 ructure, in eith │ │ │ │ -0001a780: 6572 2063 6173 652c 2069 7320 6465 6669 er case, is defi │ │ │ │ -0001a790: 6e65 6420 6279 2074 6865 0a68 6f6d 6f74 ned by the.homot │ │ │ │ -0001a7a0: 6f70 6965 7320 666f 7220 7468 6520 665f opies for the f_ │ │ │ │ -0001a7b0: 6920 6f6e 2074 6865 2072 6573 6f6c 7574 i on the resolut │ │ │ │ -0001a7c0: 696f 6e20 6f66 204d 2c20 636f 6d70 7574 ion of M, comput │ │ │ │ -0001a7d0: 6564 2062 7920 7468 6520 7363 7269 7074 ed by the script │ │ │ │ -0001a7e0: 0a6d 616b 6548 6f6d 6f74 6f70 6965 7331 .makeHomotopies1 │ │ │ │ -0001a7f0: 2e54 6865 2073 6372 6970 7420 6361 6c6c .The script call │ │ │ │ -0001a800: 7320 6d61 6b65 4d6f 6475 6c65 2074 6f20 s makeModule to │ │ │ │ -0001a810: 636f 6d70 7574 6520 6120 286e 6f6e 2d6d compute a (non-m │ │ │ │ -0001a820: 696e 696d 616c 290a 7072 6573 656e 7461 inimal).presenta │ │ │ │ -0001a830: 7469 6f6e 206f 6620 7468 6973 206d 6f64 tion of this mod │ │ │ │ -0001a840: 756c 652e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ule...+--------- │ │ │ │ +0001a360: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ +0001a370: 7361 6765 3a20 0a20 2020 2020 2020 2045 sage: . E │ │ │ │ +0001a380: 203d 2065 7874 6572 696f 7245 7874 4d6f = exteriorExtMo │ │ │ │ +0001a390: 6475 6c65 2866 2c4d 290a 2020 2a20 496e dule(f,M). * In │ │ │ │ +0001a3a0: 7075 7473 3a0a 2020 2020 2020 2a20 662c puts:. * f, │ │ │ │ +0001a3b0: 2061 202a 6e6f 7465 206d 6174 7269 783a a *note matrix: │ │ │ │ +0001a3c0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +0001a3d0: 6174 7269 782c 2c20 3120 7820 632c 2065 atrix,, 1 x c, e │ │ │ │ +0001a3e0: 6e74 7269 6573 206d 7573 7420 6265 0a20 ntries must be. │ │ │ │ +0001a3f0: 2020 2020 2020 2068 6f6d 6f74 6f70 6963 homotopic │ │ │ │ +0001a400: 2074 6f20 3020 6f6e 2046 0a20 2020 2020 to 0 on F. │ │ │ │ +0001a410: 202a 204d 2c20 6120 2a6e 6f74 6520 6d6f * M, a *note mo │ │ │ │ +0001a420: 6475 6c65 3a20 284d 6163 6175 6c61 7932 dule: (Macaulay2 │ │ │ │ +0001a430: 446f 6329 4d6f 6475 6c65 2c2c 2061 6e6e Doc)Module,, ann │ │ │ │ +0001a440: 6968 696c 6174 6564 2062 7920 7468 6520 ihilated by the │ │ │ │ +0001a450: 656c 656d 656e 7473 0a20 2020 2020 2020 elements. │ │ │ │ +0001a460: 206f 6620 6666 0a20 2020 2020 202a 204e of ff. * N │ │ │ │ +0001a470: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +0001a480: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0001a490: 4d6f 6475 6c65 2c2c 2061 6e6e 6968 696c Module,, annihil │ │ │ │ +0001a4a0: 6174 6564 2062 7920 7468 6520 656c 656d ated by the elem │ │ │ │ +0001a4b0: 656e 7473 0a20 2020 2020 2020 206f 6620 ents. of │ │ │ │ +0001a4c0: 6666 0a20 202a 204f 7574 7075 7473 3a0a ff. * Outputs:. │ │ │ │ +0001a4d0: 2020 2020 2020 2a20 452c 2061 202a 6e6f * E, a *no │ │ │ │ +0001a4e0: 7465 206d 6f64 756c 653a 2028 4d61 6361 te module: (Maca │ │ │ │ +0001a4f0: 756c 6179 3244 6f63 294d 6f64 756c 652c ulay2Doc)Module, │ │ │ │ +0001a500: 2c20 4d6f 6475 6c65 206f 7665 7220 616e , Module over an │ │ │ │ +0001a510: 2065 7874 6572 696f 720a 2020 2020 2020 exterior. │ │ │ │ +0001a520: 2020 616c 6765 6272 6120 7769 7468 2076 algebra with v │ │ │ │ +0001a530: 6172 6961 626c 6573 2063 6f72 7265 7370 ariables corresp │ │ │ │ +0001a540: 6f6e 6469 6e67 2074 6f20 656c 656d 656e onding to elemen │ │ │ │ +0001a550: 7473 206f 6620 660a 0a44 6573 6372 6970 ts of f..Descrip │ │ │ │ +0001a560: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +0001a570: 0a0a 4966 204d 2c4e 2061 7265 2053 2d6d ..If M,N are S-m │ │ │ │ +0001a580: 6f64 756c 6573 2061 6e6e 6968 696c 6174 odules annihilat │ │ │ │ +0001a590: 6564 2062 7920 7468 6520 656c 656d 656e ed by the elemen │ │ │ │ +0001a5a0: 7473 206f 6620 7468 6520 6d61 7472 6978 ts of the matrix │ │ │ │ +0001a5b0: 2066 6620 3d20 2866 5f31 2e2e 665f 6329 ff = (f_1..f_c) │ │ │ │ +0001a5c0: 2c0a 616e 6420 6b20 6973 2074 6865 2072 ,.and k is the r │ │ │ │ +0001a5d0: 6573 6964 7565 2066 6965 6c64 206f 6620 esidue field of │ │ │ │ +0001a5e0: 532c 2074 6865 6e20 7468 6520 7363 7269 S, then the scri │ │ │ │ +0001a5f0: 7074 2065 7874 6572 696f 7245 7874 4d6f pt exteriorExtMo │ │ │ │ +0001a600: 6475 6c65 2866 2c4d 2920 7265 7475 726e dule(f,M) return │ │ │ │ +0001a610: 730a 4578 745f 5328 4d2c 206b 2920 6173 s.Ext_S(M, k) as │ │ │ │ +0001a620: 2061 206d 6f64 756c 6520 6f76 6572 2061 a module over a │ │ │ │ +0001a630: 6e20 6578 7465 7269 6f72 2061 6c67 6562 n exterior algeb │ │ │ │ +0001a640: 7261 2045 203d 206b 3c65 5f31 2c2e 2e2e ra E = k, where the │ │ │ │ +0001a660: 0a65 5f69 2068 6176 6520 6465 6772 6565 .e_i have degree │ │ │ │ +0001a670: 2031 2e20 4974 2069 7320 636f 6d70 7574 1. It is comput │ │ │ │ +0001a680: 6564 2061 7320 7468 6520 452d 6475 616c ed as the E-dual │ │ │ │ +0001a690: 206f 6620 6578 7465 7269 6f72 546f 724d of exteriorTorM │ │ │ │ +0001a6a0: 6f64 756c 652e 0a0a 5468 6520 7363 7269 odule...The scri │ │ │ │ +0001a6b0: 7074 2065 7874 6572 696f 7254 6f72 4d6f pt exteriorTorMo │ │ │ │ +0001a6c0: 6475 6c65 2866 2c4d 2c4e 2920 7265 7475 dule(f,M,N) retu │ │ │ │ +0001a6d0: 726e 7320 4578 745f 5328 4d2c 4e29 2061 rns Ext_S(M,N) a │ │ │ │ +0001a6e0: 7320 6120 6d6f 6475 6c65 206f 7665 7220 s a module over │ │ │ │ +0001a6f0: 610a 6269 6772 6164 6564 2072 696e 6720 a.bigraded ring │ │ │ │ +0001a700: 5345 203d 2053 3c65 5f31 2c2e 2e2c 655f SE = S, where the e_ │ │ │ │ +0001a720: 6920 6861 7665 2064 6567 7265 6573 207b i have degrees { │ │ │ │ +0001a730: 645f 692c 317d 2c20 7768 6572 6520 645f d_i,1}, where d_ │ │ │ │ +0001a740: 690a 6973 2074 6865 2064 6567 7265 6520 i.is the degree │ │ │ │ +0001a750: 6f66 2066 5f69 2e20 5468 6520 6d6f 6475 of f_i. The modu │ │ │ │ +0001a760: 6c65 2073 7472 7563 7475 7265 2c20 696e le structure, in │ │ │ │ +0001a770: 2065 6974 6865 7220 6361 7365 2c20 6973 either case, is │ │ │ │ +0001a780: 2064 6566 696e 6564 2062 7920 7468 650a defined by the. │ │ │ │ +0001a790: 686f 6d6f 746f 7069 6573 2066 6f72 2074 homotopies for t │ │ │ │ +0001a7a0: 6865 2066 5f69 206f 6e20 7468 6520 7265 he f_i on the re │ │ │ │ +0001a7b0: 736f 6c75 7469 6f6e 206f 6620 4d2c 2063 solution of M, c │ │ │ │ +0001a7c0: 6f6d 7075 7465 6420 6279 2074 6865 2073 omputed by the s │ │ │ │ +0001a7d0: 6372 6970 740a 6d61 6b65 486f 6d6f 746f cript.makeHomoto │ │ │ │ +0001a7e0: 7069 6573 312e 5468 6520 7363 7269 7074 pies1.The script │ │ │ │ +0001a7f0: 2063 616c 6c73 206d 616b 654d 6f64 756c calls makeModul │ │ │ │ +0001a800: 6520 746f 2063 6f6d 7075 7465 2061 2028 e to compute a ( │ │ │ │ +0001a810: 6e6f 6e2d 6d69 6e69 6d61 6c29 0a70 7265 non-minimal).pre │ │ │ │ +0001a820: 7365 6e74 6174 696f 6e20 6f66 2074 6869 sentation of thi │ │ │ │ +0001a830: 7320 6d6f 6475 6c65 2e0a 0a2b 2d2d 2d2d s module...+---- │ │ │ │ +0001a840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a880: 2d2d 2b0a 7c69 3120 3a20 6b6b 203d 205a --+.|i1 : kk = Z │ │ │ │ -0001a890: 5a2f 3130 3120 2020 2020 2020 2020 2020 Z/101 │ │ │ │ +0001a870: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 206b -------+.|i1 : k │ │ │ │ +0001a880: 6b20 3d20 5a5a 2f31 3031 2020 2020 2020 k = ZZ/101 │ │ │ │ +0001a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a8b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001a900: 7c6f 3120 3d20 6b6b 2020 2020 2020 2020 |o1 = kk │ │ │ │ +0001a8f0: 2020 207c 0a7c 6f31 203d 206b 6b20 2020 |.|o1 = kk │ │ │ │ +0001a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a930: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001a930: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a970: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -0001a980: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ +0001a960: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001a970: 0a7c 6f31 203a 2051 756f 7469 656e 7452 .|o1 : QuotientR │ │ │ │ +0001a980: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ 0001a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001a9a0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001a9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a9f0: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 5320 ------+.|i2 : S │ │ │ │ -0001aa00: 3d20 6b6b 5b61 2c62 2c63 5d20 2020 2020 = kk[a,b,c] │ │ │ │ +0001a9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +0001a9f0: 203a 2053 203d 206b 6b5b 612c 622c 635d : S = kk[a,b,c] │ │ │ │ +0001aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001aa20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa70: 2020 7c0a 7c6f 3220 3d20 5320 2020 2020 |.|o2 = S │ │ │ │ +0001aa60: 2020 2020 2020 207c 0a7c 6f32 203d 2053 |.|o2 = S │ │ │ │ +0001aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aab0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001aaa0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aae0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001aaf0: 7c6f 3220 3a20 506f 6c79 6e6f 6d69 616c |o2 : Polynomial │ │ │ │ -0001ab00: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ +0001aae0: 2020 207c 0a7c 6f32 203a 2050 6f6c 796e |.|o2 : Polyn │ │ │ │ +0001aaf0: 6f6d 6961 6c52 696e 6720 2020 2020 2020 omialRing │ │ │ │ +0001ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab20: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001ab20: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0001ab30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ab40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ab50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ab60: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ -0001ab70: 3a20 6620 3d20 6d61 7472 6978 2261 342c : f = matrix"a4, │ │ │ │ -0001ab80: 6234 2c63 3422 2020 2020 2020 2020 2020 b4,c4" │ │ │ │ -0001ab90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aba0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001ab50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001ab60: 0a7c 6933 203a 2066 203d 206d 6174 7269 .|i3 : f = matri │ │ │ │ +0001ab70: 7822 6134 2c62 342c 6334 2220 2020 2020 x"a4,b4,c4" │ │ │ │ +0001ab80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ab90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001abc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001abd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001abe0: 2020 2020 2020 7c0a 7c6f 3320 3d20 7c20 |.|o3 = | │ │ │ │ -0001abf0: 6134 2062 3420 6334 207c 2020 2020 2020 a4 b4 c4 | │ │ │ │ +0001abd0: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +0001abe0: 203d 207c 2061 3420 6234 2063 3420 7c20 = | a4 b4 c4 | │ │ │ │ +0001abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001ac10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001ac20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001ac70: 2020 3120 2020 2020 2033 2020 2020 2020 1 3 │ │ │ │ +0001ac50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001ac60: 2020 2020 2020 2031 2020 2020 2020 3320 1 3 │ │ │ │ +0001ac70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ac80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aca0: 7c0a 7c6f 3320 3a20 4d61 7472 6978 2053 |.|o3 : Matrix S │ │ │ │ -0001acb0: 2020 3c2d 2d20 5320 2020 2020 2020 2020 <-- S │ │ │ │ +0001ac90: 2020 2020 207c 0a7c 6f33 203a 204d 6174 |.|o3 : Mat │ │ │ │ +0001aca0: 7269 7820 5320 203c 2d2d 2053 2020 2020 rix S <-- S │ │ │ │ +0001acb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001acd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001ace0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0001acd0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001ace0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001acf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ad00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ad10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001ad20: 3420 3a20 5220 3d20 532f 6964 6561 6c20 4 : R = S/ideal │ │ │ │ -0001ad30: 6620 2020 2020 2020 2020 2020 2020 2020 f │ │ │ │ -0001ad40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ad50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001ad10: 2d2b 0a7c 6934 203a 2052 203d 2053 2f69 -+.|i4 : R = S/i │ │ │ │ +0001ad20: 6465 616c 2066 2020 2020 2020 2020 2020 deal f │ │ │ │ +0001ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ad40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001ad50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001ad60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ad70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ad80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ad90: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ -0001ada0: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0001ad80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001ad90: 6f34 203d 2052 2020 2020 2020 2020 2020 o4 = R │ │ │ │ +0001ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001add0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001adc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001adf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae10: 2020 2020 7c0a 7c6f 3420 3a20 5175 6f74 |.|o4 : Quot │ │ │ │ -0001ae20: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ +0001ae00: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ +0001ae10: 2051 756f 7469 656e 7452 696e 6720 2020 QuotientRing │ │ │ │ +0001ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae50: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001ae40: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001ae50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ae60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ae70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ae80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ae90: 2b0a 7c69 3520 3a20 7020 3d20 6d61 7028 +.|i5 : p = map( │ │ │ │ -0001aea0: 522c 5329 2020 2020 2020 2020 2020 2020 R,S) │ │ │ │ +0001ae80: 2d2d 2d2d 2d2b 0a7c 6935 203a 2070 203d -----+.|i5 : p = │ │ │ │ +0001ae90: 206d 6170 2852 2c53 2920 2020 2020 2020 map(R,S) │ │ │ │ +0001aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aec0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001aed0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001aec0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001af00: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001af10: 3520 3d20 6d61 7020 2852 2c20 532c 207b 5 = map (R, S, { │ │ │ │ -0001af20: 612c 2062 2c20 637d 2920 2020 2020 2020 a, b, c}) │ │ │ │ -0001af30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001af40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001af00: 207c 0a7c 6f35 203d 206d 6170 2028 522c |.|o5 = map (R, │ │ │ │ +0001af10: 2053 2c20 7b61 2c20 622c 2063 7d29 2020 S, {a, b, c}) │ │ │ │ +0001af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001af30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001af40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001af70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001af80: 2020 2020 2020 2020 7c0a 7c6f 3520 3a20 |.|o5 : │ │ │ │ -0001af90: 5269 6e67 4d61 7020 5220 3c2d 2d20 5320 RingMap R <-- S │ │ │ │ +0001af70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001af80: 6f35 203a 2052 696e 674d 6170 2052 203c o5 : RingMap R < │ │ │ │ +0001af90: 2d2d 2053 2020 2020 2020 2020 2020 2020 -- S │ │ │ │ 0001afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001afc0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001afb0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001afc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001afd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001afe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b000: 2d2d 2d2d 2b0a 7c69 3620 3a20 4d20 3d20 ----+.|i6 : M = │ │ │ │ -0001b010: 636f 6b65 7220 6d61 7028 525e 322c 2052 coker map(R^2, R │ │ │ │ -0001b020: 5e7b 333a 2d31 7d2c 207b 7b61 2c62 2c63 ^{3:-1}, {{a,b,c │ │ │ │ -0001b030: 7d2c 7b62 2c63 2c61 7d7d 2920 2020 2020 },{b,c,a}}) │ │ │ │ -0001b040: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001aff0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ +0001b000: 204d 203d 2063 6f6b 6572 206d 6170 2852 M = coker map(R │ │ │ │ +0001b010: 5e32 2c20 525e 7b33 3a2d 317d 2c20 7b7b ^2, R^{3:-1}, {{ │ │ │ │ +0001b020: 612c 622c 637d 2c7b 622c 632c 617d 7d29 a,b,c},{b,c,a}}) │ │ │ │ +0001b030: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b080: 7c0a 7c6f 3620 3d20 636f 6b65 726e 656c |.|o6 = cokernel │ │ │ │ -0001b090: 207c 2061 2062 2063 207c 2020 2020 2020 | a b c | │ │ │ │ +0001b070: 2020 2020 207c 0a7c 6f36 203d 2063 6f6b |.|o6 = cok │ │ │ │ +0001b080: 6572 6e65 6c20 7c20 6120 6220 6320 7c20 ernel | a b c | │ │ │ │ +0001b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b0b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001b0c0: 7c20 2020 2020 2020 2020 2020 2020 207c | | │ │ │ │ -0001b0d0: 2062 2063 2061 207c 2020 2020 2020 2020 b c a | │ │ │ │ +0001b0b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b0c0: 2020 2020 7c20 6220 6320 6120 7c20 2020 | b c a | │ │ │ │ +0001b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b0f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b0f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b130: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b150: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -0001b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b170: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ -0001b180: 522d 6d6f 6475 6c65 2c20 7175 6f74 6965 R-module, quotie │ │ │ │ -0001b190: 6e74 206f 6620 5220 2020 2020 2020 2020 nt of R │ │ │ │ -0001b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b1b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001b120: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001b130: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001b140: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0001b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b160: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001b170: 6f36 203a 2052 2d6d 6f64 756c 652c 2071 o6 : R-module, q │ │ │ │ +0001b180: 756f 7469 656e 7420 6f66 2052 2020 2020 uotient of R │ │ │ │ +0001b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b1a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b1f0: 2d2d 2d2d 2b0a 7c69 3720 3a20 6265 7474 ----+.|i7 : bett │ │ │ │ -0001b200: 6920 2846 4620 3d66 7265 6552 6573 6f6c i (FF =freeResol │ │ │ │ -0001b210: 7574 696f 6e28 204d 2c20 4c65 6e67 7468 ution( M, Length │ │ │ │ -0001b220: 4c69 6d69 7420 3d3e 3629 2920 2020 2020 Limit =>6)) │ │ │ │ -0001b230: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b1e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ +0001b1f0: 2062 6574 7469 2028 4646 203d 6672 6565 betti (FF =free │ │ │ │ +0001b200: 5265 736f 6c75 7469 6f6e 2820 4d2c 204c Resolution( M, L │ │ │ │ +0001b210: 656e 6774 684c 696d 6974 203d 3e36 2929 engthLimit =>6)) │ │ │ │ +0001b220: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b270: 7c0a 7c20 2020 2020 2020 2020 2020 2030 |.| 0 │ │ │ │ -0001b280: 2031 2032 2033 2034 2020 3520 2036 2020 1 2 3 4 5 6 │ │ │ │ +0001b260: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001b270: 2020 2020 3020 3120 3220 3320 3420 2035 0 1 2 3 4 5 │ │ │ │ +0001b280: 2020 3620 2020 2020 2020 2020 2020 2020 6 │ │ │ │ 0001b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b2a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001b2b0: 7c6f 3720 3d20 746f 7461 6c3a 2032 2033 |o7 = total: 2 3 │ │ │ │ -0001b2c0: 2034 2036 2039 2031 3320 3138 2020 2020 4 6 9 13 18 │ │ │ │ +0001b2a0: 2020 207c 0a7c 6f37 203d 2074 6f74 616c |.|o7 = total │ │ │ │ +0001b2b0: 3a20 3220 3320 3420 3620 3920 3133 2031 : 2 3 4 6 9 13 1 │ │ │ │ +0001b2c0: 3820 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ 0001b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b2e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001b2f0: 2020 2020 2020 2020 303a 2032 2033 202e 0: 2 3 . │ │ │ │ -0001b300: 202e 202e 2020 2e20 202e 2020 2020 2020 . . . . │ │ │ │ -0001b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b320: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001b330: 2020 2020 2020 313a 202e 202e 2031 202e 1: . . 1 . │ │ │ │ -0001b340: 202e 2020 2e20 202e 2020 2020 2020 2020 . . . │ │ │ │ -0001b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b360: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001b370: 2020 2020 323a 202e 202e 2033 2033 202e 2: . . 3 3 . │ │ │ │ -0001b380: 2020 2e20 202e 2020 2020 2020 2020 2020 . . │ │ │ │ -0001b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b3a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001b3b0: 2020 333a 202e 202e 202e 2033 2033 2020 3: . . . 3 3 │ │ │ │ -0001b3c0: 2e20 202e 2020 2020 2020 2020 2020 2020 . . │ │ │ │ -0001b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b3e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001b3f0: 343a 202e 202e 202e 202e 2033 2020 3320 4: . . . . 3 3 │ │ │ │ -0001b400: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -0001b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b420: 2020 7c0a 7c20 2020 2020 2020 2020 353a |.| 5: │ │ │ │ -0001b430: 202e 202e 202e 202e 2033 2020 3920 2036 . . . . 3 9 6 │ │ │ │ +0001b2e0: 207c 0a7c 2020 2020 2020 2020 2030 3a20 |.| 0: │ │ │ │ +0001b2f0: 3220 3320 2e20 2e20 2e20 202e 2020 2e20 2 3 . . . . . │ │ │ │ +0001b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b310: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001b320: 0a7c 2020 2020 2020 2020 2031 3a20 2e20 .| 1: . │ │ │ │ +0001b330: 2e20 3120 2e20 2e20 202e 2020 2e20 2020 . 1 . . . . │ │ │ │ +0001b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b350: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001b360: 2020 2020 2020 2020 2032 3a20 2e20 2e20 2: . . │ │ │ │ +0001b370: 3320 3320 2e20 202e 2020 2e20 2020 2020 3 3 . . . │ │ │ │ +0001b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b390: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001b3a0: 2020 2020 2020 2033 3a20 2e20 2e20 2e20 3: . . . │ │ │ │ +0001b3b0: 3320 3320 202e 2020 2e20 2020 2020 2020 3 3 . . │ │ │ │ +0001b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b3d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001b3e0: 2020 2020 2034 3a20 2e20 2e20 2e20 2e20 4: . . . . │ │ │ │ +0001b3f0: 3320 2033 2020 2e20 2020 2020 2020 2020 3 3 . │ │ │ │ +0001b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b410: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001b420: 2020 2035 3a20 2e20 2e20 2e20 2e20 3320 5: . . . . 3 │ │ │ │ +0001b430: 2039 2020 3620 2020 2020 2020 2020 2020 9 6 │ │ │ │ 0001b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b460: 7c0a 7c20 2020 2020 2020 2020 363a 202e |.| 6: . │ │ │ │ -0001b470: 202e 202e 202e 202e 2020 2e20 2033 2020 . . . . . 3 │ │ │ │ +0001b450: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001b460: 2036 3a20 2e20 2e20 2e20 2e20 2e20 202e 6: . . . . . . │ │ │ │ +0001b470: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0001b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b490: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001b4a0: 7c20 2020 2020 2020 2020 373a 202e 202e | 7: . . │ │ │ │ -0001b4b0: 202e 202e 202e 2020 3120 2039 2020 2020 . . . 1 9 │ │ │ │ +0001b490: 2020 207c 0a7c 2020 2020 2020 2020 2037 |.| 7 │ │ │ │ +0001b4a0: 3a20 2e20 2e20 2e20 2e20 2e20 2031 2020 : . . . . . 1 │ │ │ │ +0001b4b0: 3920 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ 0001b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b4d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b4d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b510: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ -0001b520: 3a20 4265 7474 6954 616c 6c79 2020 2020 : BettiTally │ │ │ │ +0001b500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001b510: 0a7c 6f37 203a 2042 6574 7469 5461 6c6c .|o7 : BettiTall │ │ │ │ +0001b520: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ 0001b530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b550: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001b540: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001b550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b590: 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 4d53 ------+.|i8 : MS │ │ │ │ -0001b5a0: 203d 2070 7275 6e65 2070 7573 6846 6f72 = prune pushFor │ │ │ │ -0001b5b0: 7761 7264 2870 2c20 636f 6b65 7220 4646 ward(p, coker FF │ │ │ │ -0001b5c0: 2e64 645f 3629 3b20 2020 2020 2020 2020 .dd_6); │ │ │ │ -0001b5d0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001b580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 -----------+.|i8 │ │ │ │ +0001b590: 203a 204d 5320 3d20 7072 756e 6520 7075 : MS = prune pu │ │ │ │ +0001b5a0: 7368 466f 7277 6172 6428 702c 2063 6f6b shForward(p, cok │ │ │ │ +0001b5b0: 6572 2046 462e 6464 5f36 293b 2020 2020 er FF.dd_6); │ │ │ │ +0001b5c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001b5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b610: 2d2d 2b0a 7c69 3920 3a20 7265 7346 6c64 --+.|i9 : resFld │ │ │ │ -0001b620: 203a 3d20 7075 7368 466f 7277 6172 6428 := pushForward( │ │ │ │ -0001b630: 702c 2063 6f6b 6572 2076 6172 7320 5229 p, coker vars R) │ │ │ │ -0001b640: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -0001b650: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0001b600: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2072 -------+.|i9 : r │ │ │ │ +0001b610: 6573 466c 6420 3a3d 2070 7573 6846 6f72 esFld := pushFor │ │ │ │ +0001b620: 7761 7264 2870 2c20 636f 6b65 7220 7661 ward(p, coker va │ │ │ │ +0001b630: 7273 2052 293b 2020 2020 2020 2020 2020 rs R); │ │ │ │ +0001b640: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001b650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0001b690: 7c69 3130 203a 2054 203d 2065 7874 6572 |i10 : T = exter │ │ │ │ -0001b6a0: 696f 7254 6f72 4d6f 6475 6c65 2866 2c4d iorTorModule(f,M │ │ │ │ -0001b6b0: 5329 3b20 2020 2020 2020 2020 2020 2020 S); │ │ │ │ -0001b6c0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001b680: 2d2d 2d2b 0a7c 6931 3020 3a20 5420 3d20 ---+.|i10 : T = │ │ │ │ +0001b690: 6578 7465 7269 6f72 546f 724d 6f64 756c exteriorTorModul │ │ │ │ +0001b6a0: 6528 662c 4d53 293b 2020 2020 2020 2020 e(f,MS); │ │ │ │ +0001b6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b6c0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0001b6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b700: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 ----------+.|i11 │ │ │ │ -0001b710: 203a 2045 203d 2065 7874 6572 696f 7245 : E = exteriorE │ │ │ │ -0001b720: 7874 4d6f 6475 6c65 2866 2c4d 5329 3b20 xtModule(f,MS); │ │ │ │ -0001b730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b740: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001b6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001b700: 0a7c 6931 3120 3a20 4520 3d20 6578 7465 .|i11 : E = exte │ │ │ │ +0001b710: 7269 6f72 4578 744d 6f64 756c 6528 662c riorExtModule(f, │ │ │ │ +0001b720: 4d53 293b 2020 2020 2020 2020 2020 2020 MS); │ │ │ │ +0001b730: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001b740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b780: 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a 2068 ------+.|i12 : h │ │ │ │ -0001b790: 6628 2d34 2e2e 302c 4529 2020 2020 2020 f(-4..0,E) │ │ │ │ +0001b770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0001b780: 3220 3a20 6866 282d 342e 2e30 2c45 2920 2 : hf(-4..0,E) │ │ │ │ +0001b790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b7c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001b7b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001b7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b800: 2020 7c0a 7c6f 3132 203d 207b 302c 2039 |.|o12 = {0, 9 │ │ │ │ -0001b810: 2c20 3239 2c20 3333 2c20 3133 7d20 2020 , 29, 33, 13} │ │ │ │ +0001b7f0: 2020 2020 2020 207c 0a7c 6f31 3220 3d20 |.|o12 = │ │ │ │ +0001b800: 7b30 2c20 392c 2032 392c 2033 332c 2031 {0, 9, 29, 33, 1 │ │ │ │ +0001b810: 337d 2020 2020 2020 2020 2020 2020 2020 3} │ │ │ │ 0001b820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b840: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b830: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001b840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b870: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001b880: 7c6f 3132 203a 204c 6973 7420 2020 2020 |o12 : List │ │ │ │ +0001b870: 2020 207c 0a7c 6f31 3220 3a20 4c69 7374 |.|o12 : List │ │ │ │ +0001b880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b8b0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001b8b0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0001b8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 ----------+.|i13 │ │ │ │ -0001b900: 203a 2062 6574 7469 2066 7265 6552 6573 : betti freeRes │ │ │ │ -0001b910: 6f6c 7574 696f 6e20 4d53 2020 2020 2020 olution MS │ │ │ │ -0001b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b930: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001b8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001b8f0: 0a7c 6931 3320 3a20 6265 7474 6920 6672 .|i13 : betti fr │ │ │ │ +0001b900: 6565 5265 736f 6c75 7469 6f6e 204d 5320 eeResolution MS │ │ │ │ +0001b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b920: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001b930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b970: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001b980: 2020 2020 2020 2030 2020 3120 2032 2033 0 1 2 3 │ │ │ │ +0001b960: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001b970: 2020 2020 2020 2020 2020 2020 3020 2031 0 1 │ │ │ │ +0001b980: 2020 3220 3320 2020 2020 2020 2020 2020 2 3 │ │ │ │ 0001b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b9b0: 2020 2020 7c0a 7c6f 3133 203d 2074 6f74 |.|o13 = tot │ │ │ │ -0001b9c0: 616c 3a20 3133 2033 3320 3239 2039 2020 al: 13 33 29 9 │ │ │ │ +0001b9a0: 2020 2020 2020 2020 207c 0a7c 6f31 3320 |.|o13 │ │ │ │ +0001b9b0: 3d20 746f 7461 6c3a 2031 3320 3333 2032 = total: 13 33 2 │ │ │ │ +0001b9c0: 3920 3920 2020 2020 2020 2020 2020 2020 9 9 │ │ │ │ 0001b9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b9f0: 2020 7c0a 7c20 2020 2020 2020 2020 2039 |.| 9 │ │ │ │ -0001ba00: 3a20 2033 2020 2e20 202e 202e 2020 2020 : 3 . . . │ │ │ │ +0001b9e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001b9f0: 2020 2020 393a 2020 3320 202e 2020 2e20 9: 3 . . │ │ │ │ +0001ba00: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 0001ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba30: 7c0a 7c20 2020 2020 2020 2020 3130 3a20 |.| 10: │ │ │ │ -0001ba40: 2039 2020 3620 202e 202e 2020 2020 2020 9 6 . . │ │ │ │ +0001ba20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001ba30: 2031 303a 2020 3920 2036 2020 2e20 2e20 10: 9 6 . . │ │ │ │ +0001ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001ba70: 7c20 2020 2020 2020 2020 3131 3a20 202e | 11: . │ │ │ │ -0001ba80: 2020 3320 202e 202e 2020 2020 2020 2020 3 . . │ │ │ │ +0001ba60: 2020 207c 0a7c 2020 2020 2020 2020 2031 |.| 1 │ │ │ │ +0001ba70: 313a 2020 2e20 2033 2020 2e20 2e20 2020 1: . 3 . . │ │ │ │ +0001ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001baa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001bab0: 2020 2020 2020 2020 3132 3a20 2031 2031 12: 1 1 │ │ │ │ -0001bac0: 3520 202e 202e 2020 2020 2020 2020 2020 5 . . │ │ │ │ -0001bad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bae0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001baf0: 2020 2020 2020 3133 3a20 202e 2020 3920 13: . 9 │ │ │ │ -0001bb00: 2038 202e 2020 2020 2020 2020 2020 2020 8 . │ │ │ │ -0001bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bb20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001bb30: 2020 2020 3134 3a20 202e 2020 2e20 2036 14: . . 6 │ │ │ │ -0001bb40: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -0001bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bb60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001bb70: 2020 3135 3a20 202e 2020 2e20 3132 202e 15: . . 12 . │ │ │ │ +0001baa0: 207c 0a7c 2020 2020 2020 2020 2031 323a |.| 12: │ │ │ │ +0001bab0: 2020 3120 3135 2020 2e20 2e20 2020 2020 1 15 . . │ │ │ │ +0001bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bad0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001bae0: 0a7c 2020 2020 2020 2020 2031 333a 2020 .| 13: │ │ │ │ +0001baf0: 2e20 2039 2020 3820 2e20 2020 2020 2020 . 9 8 . │ │ │ │ +0001bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bb10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001bb20: 2020 2020 2020 2020 2031 343a 2020 2e20 14: . │ │ │ │ +0001bb30: 202e 2020 3620 2e20 2020 2020 2020 2020 . 6 . │ │ │ │ +0001bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bb50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001bb60: 2020 2020 2020 2031 353a 2020 2e20 202e 15: . . │ │ │ │ +0001bb70: 2031 3220 2e20 2020 2020 2020 2020 2020 12 . │ │ │ │ 0001bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bba0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001bbb0: 3136 3a20 202e 2020 2e20 2033 2033 2020 16: . . 3 3 │ │ │ │ +0001bb90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001bba0: 2020 2020 2031 363a 2020 2e20 202e 2020 16: . . │ │ │ │ +0001bbb0: 3320 3320 2020 2020 2020 2020 2020 2020 3 3 │ │ │ │ 0001bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bbe0: 2020 7c0a 7c20 2020 2020 2020 2020 3137 |.| 17 │ │ │ │ -0001bbf0: 3a20 202e 2020 2e20 202e 2033 2020 2020 : . . . 3 │ │ │ │ +0001bbd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001bbe0: 2020 2031 373a 2020 2e20 202e 2020 2e20 17: . . . │ │ │ │ +0001bbf0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0001bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bc20: 7c0a 7c20 2020 2020 2020 2020 3138 3a20 |.| 18: │ │ │ │ -0001bc30: 202e 2020 2e20 202e 2033 2020 2020 2020 . . . 3 │ │ │ │ +0001bc10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001bc20: 2031 383a 2020 2e20 202e 2020 2e20 3320 18: . . . 3 │ │ │ │ +0001bc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bc50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001bc60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001bc50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bc90: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001bca0: 3133 203a 2042 6574 7469 5461 6c6c 7920 13 : BettiTally │ │ │ │ +0001bc90: 207c 0a7c 6f31 3320 3a20 4265 7474 6954 |.|o13 : BettiT │ │ │ │ +0001bca0: 616c 6c79 2020 2020 2020 2020 2020 2020 ally │ │ │ │ 0001bcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bcd0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001bcc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001bcd0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0001bce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bd10: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3134 203a --------+.|i14 : │ │ │ │ -0001bd20: 2062 6574 7469 2066 7265 6552 6573 6f6c betti freeResol │ │ │ │ -0001bd30: 7574 696f 6e20 2850 4520 3d20 7072 756e ution (PE = prun │ │ │ │ -0001bd40: 6520 452c 204c 656e 6774 684c 696d 6974 e E, LengthLimit │ │ │ │ -0001bd50: 203d 3e20 3629 7c0a 7c20 2020 2020 2020 => 6)|.| │ │ │ │ +0001bd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001bd10: 6931 3420 3a20 6265 7474 6920 6672 6565 i14 : betti free │ │ │ │ +0001bd20: 5265 736f 6c75 7469 6f6e 2028 5045 203d Resolution (PE = │ │ │ │ +0001bd30: 2070 7275 6e65 2045 2c20 4c65 6e67 7468 prune E, Length │ │ │ │ +0001bd40: 4c69 6d69 7420 3d3e 2036 297c 0a7c 2020 Limit => 6)|.| │ │ │ │ +0001bd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bd90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001bda0: 2020 2020 2030 2020 3120 2032 2020 3320 0 1 2 3 │ │ │ │ -0001bdb0: 2034 2020 2035 2020 2036 2020 2020 2020 4 5 6 │ │ │ │ -0001bdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bdd0: 2020 7c0a 7c6f 3134 203d 2074 6f74 616c |.|o14 = total │ │ │ │ -0001bde0: 3a20 3136 2031 3320 3235 2034 3920 3831 : 16 13 25 49 81 │ │ │ │ -0001bdf0: 2031 3231 2031 3639 2020 2020 2020 2020 121 169 │ │ │ │ -0001be00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001be10: 7c0a 7c20 2020 2020 2020 2020 2d33 3a20 |.| -3: │ │ │ │ -0001be20: 2039 2020 3420 2033 2020 3320 2033 2020 9 4 3 3 3 │ │ │ │ -0001be30: 2033 2020 2033 2020 2020 2020 2020 2020 3 3 │ │ │ │ -0001be40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001be50: 7c20 2020 2020 2020 2020 2d32 3a20 2036 | -2: 6 │ │ │ │ -0001be60: 2020 3320 202e 2020 2e20 202e 2020 202e 3 . . . . │ │ │ │ -0001be70: 2020 202e 2020 2020 2020 2020 2020 2020 . │ │ │ │ -0001be80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001be90: 2020 2020 2020 2020 2d31 3a20 202e 2020 -1: . │ │ │ │ -0001bea0: 2e20 2037 2031 3820 3333 2020 3532 2020 . 7 18 33 52 │ │ │ │ -0001beb0: 3735 2020 2020 2020 2020 2020 2020 2020 75 │ │ │ │ -0001bec0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001bed0: 2020 2020 2020 2030 3a20 2031 2020 3620 0: 1 6 │ │ │ │ -0001bee0: 3135 2032 3820 3435 2020 3636 2020 3931 15 28 45 66 91 │ │ │ │ -0001bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bf00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001bd80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001bd90: 2020 2020 2020 2020 2020 3020 2031 2020 0 1 │ │ │ │ +0001bda0: 3220 2033 2020 3420 2020 3520 2020 3620 2 3 4 5 6 │ │ │ │ +0001bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bdc0: 2020 2020 2020 207c 0a7c 6f31 3420 3d20 |.|o14 = │ │ │ │ +0001bdd0: 746f 7461 6c3a 2031 3620 3133 2032 3520 total: 16 13 25 │ │ │ │ +0001bde0: 3439 2038 3120 3132 3120 3136 3920 2020 49 81 121 169 │ │ │ │ +0001bdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001be00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001be10: 202d 333a 2020 3920 2034 2020 3320 2033 -3: 9 4 3 3 │ │ │ │ +0001be20: 2020 3320 2020 3320 2020 3320 2020 2020 3 3 3 │ │ │ │ +0001be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001be40: 2020 207c 0a7c 2020 2020 2020 2020 202d |.| - │ │ │ │ +0001be50: 323a 2020 3620 2033 2020 2e20 202e 2020 2: 6 3 . . │ │ │ │ +0001be60: 2e20 2020 2e20 2020 2e20 2020 2020 2020 . . . │ │ │ │ +0001be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001be80: 207c 0a7c 2020 2020 2020 2020 202d 313a |.| -1: │ │ │ │ +0001be90: 2020 2e20 202e 2020 3720 3138 2033 3320 . . 7 18 33 │ │ │ │ +0001bea0: 2035 3220 2037 3520 2020 2020 2020 2020 52 75 │ │ │ │ +0001beb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001bec0: 0a7c 2020 2020 2020 2020 2020 303a 2020 .| 0: │ │ │ │ +0001bed0: 3120 2036 2031 3520 3238 2034 3520 2036 1 6 15 28 45 6 │ │ │ │ +0001bee0: 3620 2039 3120 2020 2020 2020 2020 2020 6 91 │ │ │ │ +0001bef0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bf40: 2020 2020 2020 7c0a 7c6f 3134 203a 2042 |.|o14 : B │ │ │ │ -0001bf50: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ +0001bf30: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001bf40: 3420 3a20 4265 7474 6954 616c 6c79 2020 4 : BettiTally │ │ │ │ +0001bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bf80: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001bf70: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001bf80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bf90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bfc0: 2d2d 2b0a 7c69 3135 203a 2062 6574 7469 --+.|i15 : betti │ │ │ │ -0001bfd0: 2066 7265 6552 6573 6f6c 7574 696f 6e20 freeResolution │ │ │ │ -0001bfe0: 2850 5420 3d20 7072 756e 6520 542c 204c (PT = prune T, L │ │ │ │ -0001bff0: 656e 6774 684c 696d 6974 203d 3e20 3629 engthLimit => 6) │ │ │ │ -0001c000: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001bfb0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 -------+.|i15 : │ │ │ │ +0001bfc0: 6265 7474 6920 6672 6565 5265 736f 6c75 betti freeResolu │ │ │ │ +0001bfd0: 7469 6f6e 2028 5054 203d 2070 7275 6e65 tion (PT = prune │ │ │ │ +0001bfe0: 2054 2c20 4c65 6e67 7468 4c69 6d69 7420 T, LengthLimit │ │ │ │ +0001bff0: 3d3e 2036 297c 0a7c 2020 2020 2020 2020 => 6)|.| │ │ │ │ +0001c000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c030: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001c040: 7c20 2020 2020 2020 2020 2020 2020 2030 | 0 │ │ │ │ -0001c050: 2020 3120 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ -0001c060: 2035 2020 2036 2020 2020 2020 2020 2020 5 6 │ │ │ │ -0001c070: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001c080: 3135 203d 2074 6f74 616c 3a20 3331 2035 15 = total: 31 5 │ │ │ │ -0001c090: 3520 3837 2031 3237 2031 3735 2032 3331 5 87 127 175 231 │ │ │ │ -0001c0a0: 2032 3935 2020 2020 2020 2020 2020 2020 295 │ │ │ │ -0001c0b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001c0c0: 2020 2020 2020 2030 3a20 3133 2032 3420 0: 13 24 │ │ │ │ -0001c0d0: 3339 2020 3538 2020 3831 2031 3038 2031 39 58 81 108 1 │ │ │ │ -0001c0e0: 3339 2020 2020 2020 2020 2020 2020 2020 39 │ │ │ │ -0001c0f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001c100: 2020 2020 2031 3a20 3138 2033 3120 3438 1: 18 31 48 │ │ │ │ -0001c110: 2020 3639 2020 3934 2031 3233 2031 3536 69 94 123 156 │ │ │ │ -0001c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c130: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001c030: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001c040: 2020 2020 3020 2031 2020 3220 2020 3320 0 1 2 3 │ │ │ │ +0001c050: 2020 3420 2020 3520 2020 3620 2020 2020 4 5 6 │ │ │ │ +0001c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c070: 207c 0a7c 6f31 3520 3d20 746f 7461 6c3a |.|o15 = total: │ │ │ │ +0001c080: 2033 3120 3535 2038 3720 3132 3720 3137 31 55 87 127 17 │ │ │ │ +0001c090: 3520 3233 3120 3239 3520 2020 2020 2020 5 231 295 │ │ │ │ +0001c0a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001c0b0: 0a7c 2020 2020 2020 2020 2020 303a 2031 .| 0: 1 │ │ │ │ +0001c0c0: 3320 3234 2033 3920 2035 3820 2038 3120 3 24 39 58 81 │ │ │ │ +0001c0d0: 3130 3820 3133 3920 2020 2020 2020 2020 108 139 │ │ │ │ +0001c0e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001c0f0: 2020 2020 2020 2020 2020 313a 2031 3820 1: 18 │ │ │ │ +0001c100: 3331 2034 3820 2036 3920 2039 3420 3132 31 48 69 94 12 │ │ │ │ +0001c110: 3320 3135 3620 2020 2020 2020 2020 2020 3 156 │ │ │ │ +0001c120: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c170: 2020 2020 7c0a 7c6f 3135 203a 2042 6574 |.|o15 : Bet │ │ │ │ -0001c180: 7469 5461 6c6c 7920 2020 2020 2020 2020 tiTally │ │ │ │ +0001c160: 2020 2020 2020 2020 207c 0a7c 6f31 3520 |.|o15 │ │ │ │ +0001c170: 3a20 4265 7474 6954 616c 6c79 2020 2020 : BettiTally │ │ │ │ +0001c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c1b0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001c1a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001c1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c1f0: 2b0a 7c69 3136 203a 2045 3120 3d20 7072 +.|i16 : E1 = pr │ │ │ │ -0001c200: 756e 6520 6578 7465 7269 6f72 4578 744d une exteriorExtM │ │ │ │ -0001c210: 6f64 756c 6528 662c 204d 532c 2072 6573 odule(f, MS, res │ │ │ │ -0001c220: 466c 6429 3b20 2020 2020 2020 2020 7c0a Fld); |. │ │ │ │ -0001c230: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0001c1e0: 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 4531 -----+.|i16 : E1 │ │ │ │ +0001c1f0: 203d 2070 7275 6e65 2065 7874 6572 696f = prune exterio │ │ │ │ +0001c200: 7245 7874 4d6f 6475 6c65 2866 2c20 4d53 rExtModule(f, MS │ │ │ │ +0001c210: 2c20 7265 7346 6c64 293b 2020 2020 2020 , resFld); │ │ │ │ +0001c220: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001c230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001c270: 3137 203a 2072 696e 6720 4531 2020 2020 17 : ring E1 │ │ │ │ +0001c260: 2d2b 0a7c 6931 3720 3a20 7269 6e67 2045 -+.|i17 : ring E │ │ │ │ +0001c270: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0001c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c2a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001c290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001c2a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c2e0: 2020 2020 2020 2020 7c0a 7c6f 3137 203d |.|o17 = │ │ │ │ -0001c2f0: 206b 6b5b 5820 2e2e 5820 2c20 6520 2e2e kk[X ..X , e .. │ │ │ │ -0001c300: 6520 5d20 2020 2020 2020 2020 2020 2020 e ] │ │ │ │ -0001c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c320: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001c330: 2020 2030 2020 2032 2020 2030 2020 2032 0 2 0 2 │ │ │ │ +0001c2d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001c2e0: 6f31 3720 3d20 6b6b 5b58 202e 2e58 202c o17 = kk[X ..X , │ │ │ │ +0001c2f0: 2065 202e 2e65 205d 2020 2020 2020 2020 e ..e ] │ │ │ │ +0001c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c310: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001c320: 2020 2020 2020 2020 3020 2020 3220 2020 0 2 │ │ │ │ +0001c330: 3020 2020 3220 2020 2020 2020 2020 2020 0 2 │ │ │ │ 0001c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c360: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001c350: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c3a0: 2020 7c0a 7c6f 3137 203a 2050 6f6c 796e |.|o17 : Polyn │ │ │ │ -0001c3b0: 6f6d 6961 6c52 696e 672c 2033 2073 6b65 omialRing, 3 ske │ │ │ │ -0001c3c0: 7720 636f 6d6d 7574 6174 6976 6520 7661 w commutative va │ │ │ │ -0001c3d0: 7269 6162 6c65 2873 2920 2020 2020 2020 riable(s) │ │ │ │ -0001c3e0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0001c390: 2020 2020 2020 207c 0a7c 6f31 3720 3a20 |.|o17 : │ │ │ │ +0001c3a0: 506f 6c79 6e6f 6d69 616c 5269 6e67 2c20 PolynomialRing, │ │ │ │ +0001c3b0: 3320 736b 6577 2063 6f6d 6d75 7461 7469 3 skew commutati │ │ │ │ +0001c3c0: 7665 2076 6172 6961 626c 6528 7329 2020 ve variable(s) │ │ │ │ +0001c3d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001c3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0001c420: 7c69 3138 203a 2065 7852 696e 6720 3d20 |i18 : exRing = │ │ │ │ -0001c430: 6b6b 5b65 5f30 2c65 5f31 2c65 5f32 2c20 kk[e_0,e_1,e_2, │ │ │ │ -0001c440: 536b 6577 436f 6d6d 7574 6174 6976 6520 SkewCommutative │ │ │ │ -0001c450: 3d3e 7472 7565 5d20 2020 2020 7c0a 7c20 =>true] |.| │ │ │ │ +0001c410: 2d2d 2d2b 0a7c 6931 3820 3a20 6578 5269 ---+.|i18 : exRi │ │ │ │ +0001c420: 6e67 203d 206b 6b5b 655f 302c 655f 312c ng = kk[e_0,e_1, │ │ │ │ +0001c430: 655f 322c 2053 6b65 7743 6f6d 6d75 7461 e_2, SkewCommuta │ │ │ │ +0001c440: 7469 7665 203d 3e74 7275 655d 2020 2020 tive =>true] │ │ │ │ +0001c450: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c490: 2020 2020 2020 2020 2020 7c0a 7c6f 3138 |.|o18 │ │ │ │ -0001c4a0: 203d 2065 7852 696e 6720 2020 2020 2020 = exRing │ │ │ │ +0001c480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001c490: 0a7c 6f31 3820 3d20 6578 5269 6e67 2020 .|o18 = exRing │ │ │ │ +0001c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c4d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001c4c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c510: 2020 2020 2020 7c0a 7c6f 3138 203a 2050 |.|o18 : P │ │ │ │ -0001c520: 6f6c 796e 6f6d 6961 6c52 696e 672c 2033 olynomialRing, 3 │ │ │ │ -0001c530: 2073 6b65 7720 636f 6d6d 7574 6174 6976 skew commutativ │ │ │ │ -0001c540: 6520 7661 7269 6162 6c65 2873 2920 2020 e variable(s) │ │ │ │ -0001c550: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001c500: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001c510: 3820 3a20 506f 6c79 6e6f 6d69 616c 5269 8 : PolynomialRi │ │ │ │ +0001c520: 6e67 2c20 3320 736b 6577 2063 6f6d 6d75 ng, 3 skew commu │ │ │ │ +0001c530: 7461 7469 7665 2076 6172 6961 626c 6528 tative variable( │ │ │ │ +0001c540: 7329 2020 2020 2020 207c 0a2b 2d2d 2d2d s) |.+---- │ │ │ │ +0001c550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c590: 2d2d 2b0a 0a57 6520 6361 6e20 616c 736f --+..We can also │ │ │ │ -0001c5a0: 2063 6f6e 7374 7275 6374 2074 6865 2065 construct the e │ │ │ │ -0001c5b0: 7874 6572 696f 7245 7874 4d6f 6475 6c65 xteriorExtModule │ │ │ │ -0001c5c0: 2061 7320 6120 6269 6772 6164 6564 206d as a bigraded m │ │ │ │ -0001c5d0: 6f64 756c 652c 206f 7665 7220 6120 7269 odule, over a ri │ │ │ │ -0001c5e0: 6e67 0a53 4520 7468 6174 2068 6173 2062 ng.SE that has b │ │ │ │ -0001c5f0: 6f74 6820 706f 6c79 6e6f 6d69 616c 2076 oth polynomial v │ │ │ │ -0001c600: 6172 6961 626c 6573 206c 696b 6520 5320 ariables like S │ │ │ │ -0001c610: 616e 6420 6578 7465 7269 6f72 2076 6172 and exterior var │ │ │ │ -0001c620: 6961 626c 6573 206c 696b 6520 452e 2054 iables like E. T │ │ │ │ -0001c630: 6865 0a70 6f6c 796e 6f6d 6961 6c20 7661 he.polynomial va │ │ │ │ -0001c640: 7269 6162 6c65 7320 6861 7665 2064 6567 riables have deg │ │ │ │ -0001c650: 7265 6573 207b 312c 307d 2e20 5468 6520 rees {1,0}. The │ │ │ │ -0001c660: 6578 7465 7269 6f72 2076 6172 6961 626c exterior variabl │ │ │ │ -0001c670: 6573 2068 6176 6520 6465 6772 6565 730a es have degrees. │ │ │ │ -0001c680: 7b64 6567 2066 665f 692c 2031 7d2e 0a0a {deg ff_i, 1}... │ │ │ │ -0001c690: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0001c580: 2d2d 2d2d 2d2d 2d2b 0a0a 5765 2063 616e -------+..We can │ │ │ │ +0001c590: 2061 6c73 6f20 636f 6e73 7472 7563 7420 also construct │ │ │ │ +0001c5a0: 7468 6520 6578 7465 7269 6f72 4578 744d the exteriorExtM │ │ │ │ +0001c5b0: 6f64 756c 6520 6173 2061 2062 6967 7261 odule as a bigra │ │ │ │ +0001c5c0: 6465 6420 6d6f 6475 6c65 2c20 6f76 6572 ded module, over │ │ │ │ +0001c5d0: 2061 2072 696e 670a 5345 2074 6861 7420 a ring.SE that │ │ │ │ +0001c5e0: 6861 7320 626f 7468 2070 6f6c 796e 6f6d has both polynom │ │ │ │ +0001c5f0: 6961 6c20 7661 7269 6162 6c65 7320 6c69 ial variables li │ │ │ │ +0001c600: 6b65 2053 2061 6e64 2065 7874 6572 696f ke S and exterio │ │ │ │ +0001c610: 7220 7661 7269 6162 6c65 7320 6c69 6b65 r variables like │ │ │ │ +0001c620: 2045 2e20 5468 650a 706f 6c79 6e6f 6d69 E. The.polynomi │ │ │ │ +0001c630: 616c 2076 6172 6961 626c 6573 2068 6176 al variables hav │ │ │ │ +0001c640: 6520 6465 6772 6565 7320 7b31 2c30 7d2e e degrees {1,0}. │ │ │ │ +0001c650: 2054 6865 2065 7874 6572 696f 7220 7661 The exterior va │ │ │ │ +0001c660: 7269 6162 6c65 7320 6861 7665 2064 6567 riables have deg │ │ │ │ +0001c670: 7265 6573 0a7b 6465 6720 6666 5f69 2c20 rees.{deg ff_i, │ │ │ │ +0001c680: 317d 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 1}...+---------- │ │ │ │ +0001c690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c6c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3920 3a20 -------+.|i19 : │ │ │ │ -0001c6d0: 4531 203d 2070 7275 6e65 2065 7874 6572 E1 = prune exter │ │ │ │ -0001c6e0: 696f 7245 7874 4d6f 6475 6c65 2866 2c20 iorExtModule(f, │ │ │ │ -0001c6f0: 4d53 2c20 7265 7346 6c64 293b 2020 2020 MS, resFld); │ │ │ │ -0001c700: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0001c6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0001c6c0: 3139 203a 2045 3120 3d20 7072 756e 6520 19 : E1 = prune │ │ │ │ +0001c6d0: 6578 7465 7269 6f72 4578 744d 6f64 756c exteriorExtModul │ │ │ │ +0001c6e0: 6528 662c 204d 532c 2072 6573 466c 6429 e(f, MS, resFld) │ │ │ │ +0001c6f0: 3b20 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d ; |.+-------- │ │ │ │ +0001c700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c730: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3020 ---------+.|i20 │ │ │ │ -0001c740: 3a20 7269 6e67 2045 3120 2020 2020 2020 : ring E1 │ │ │ │ +0001c720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0001c730: 7c69 3230 203a 2072 696e 6720 4531 2020 |i20 : ring E1 │ │ │ │ +0001c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c770: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001c760: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c7a0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -0001c7b0: 3020 3d20 6b6b 5b58 202e 2e58 202c 2065 0 = kk[X ..X , e │ │ │ │ -0001c7c0: 202e 2e65 205d 2020 2020 2020 2020 2020 ..e ] │ │ │ │ -0001c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c7e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001c7f0: 2030 2020 2032 2020 2030 2020 2032 2020 0 2 0 2 │ │ │ │ +0001c7a0: 7c0a 7c6f 3230 203d 206b 6b5b 5820 2e2e |.|o20 = kk[X .. │ │ │ │ +0001c7b0: 5820 2c20 6520 2e2e 6520 5d20 2020 2020 X , e ..e ] │ │ │ │ +0001c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c7d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001c7e0: 2020 2020 2020 3020 2020 3220 2020 3020 0 2 0 │ │ │ │ +0001c7f0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001c800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c810: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001c810: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c850: 2020 2020 2020 7c0a 7c6f 3230 203a 2050 |.|o20 : P │ │ │ │ -0001c860: 6f6c 796e 6f6d 6961 6c52 696e 672c 2033 olynomialRing, 3 │ │ │ │ -0001c870: 2073 6b65 7720 636f 6d6d 7574 6174 6976 skew commutativ │ │ │ │ -0001c880: 6520 7661 7269 6162 6c65 2873 2920 207c e variable(s) | │ │ │ │ -0001c890: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001c840: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0001c850: 3020 3a20 506f 6c79 6e6f 6d69 616c 5269 0 : PolynomialRi │ │ │ │ +0001c860: 6e67 2c20 3320 736b 6577 2063 6f6d 6d75 ng, 3 skew commu │ │ │ │ +0001c870: 7461 7469 7665 2076 6172 6961 626c 6528 tative variable( │ │ │ │ +0001c880: 7329 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d s) |.+--------- │ │ │ │ +0001c890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c8c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3231 203a --------+.|i21 : │ │ │ │ -0001c8d0: 2065 7852 696e 6720 3d20 6b6b 5b65 5f30 exRing = kk[e_0 │ │ │ │ -0001c8e0: 2c65 5f31 2c65 5f32 2c20 536b 6577 436f ,e_1,e_2, SkewCo │ │ │ │ -0001c8f0: 6d6d 7574 6174 6976 6520 3d3e 7472 7565 mmutative =>true │ │ │ │ -0001c900: 5d7c 0a7c 2020 2020 2020 2020 2020 2020 ]|.| │ │ │ │ +0001c8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001c8c0: 6932 3120 3a20 6578 5269 6e67 203d 206b i21 : exRing = k │ │ │ │ +0001c8d0: 6b5b 655f 302c 655f 312c 655f 322c 2053 k[e_0,e_1,e_2, S │ │ │ │ +0001c8e0: 6b65 7743 6f6d 6d75 7461 7469 7665 203d kewCommutative = │ │ │ │ +0001c8f0: 3e74 7275 655d 7c0a 7c20 2020 2020 2020 >true]|.| │ │ │ │ +0001c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c930: 2020 2020 2020 2020 2020 7c0a 7c6f 3231 |.|o21 │ │ │ │ -0001c940: 203d 2065 7852 696e 6720 2020 2020 2020 = exRing │ │ │ │ +0001c920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001c930: 0a7c 6f32 3120 3d20 6578 5269 6e67 2020 .|o21 = exRing │ │ │ │ +0001c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c970: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001c960: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001c970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c9a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001c9b0: 3231 203a 2050 6f6c 796e 6f6d 6961 6c52 21 : PolynomialR │ │ │ │ -0001c9c0: 696e 672c 2033 2073 6b65 7720 636f 6d6d ing, 3 skew comm │ │ │ │ -0001c9d0: 7574 6174 6976 6520 7661 7269 6162 6c65 utative variable │ │ │ │ -0001c9e0: 2873 2920 207c 0a2b 2d2d 2d2d 2d2d 2d2d (s) |.+-------- │ │ │ │ +0001c9a0: 207c 0a7c 6f32 3120 3a20 506f 6c79 6e6f |.|o21 : Polyno │ │ │ │ +0001c9b0: 6d69 616c 5269 6e67 2c20 3320 736b 6577 mialRing, 3 skew │ │ │ │ +0001c9c0: 2063 6f6d 6d75 7461 7469 7665 2076 6172 commutative var │ │ │ │ +0001c9d0: 6961 626c 6528 7329 2020 7c0a 2b2d 2d2d iable(s) |.+--- │ │ │ │ +0001c9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ca00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ca10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0001ca20: 0a54 6f20 7365 6520 7468 6174 2074 6869 .To see that thi │ │ │ │ -0001ca30: 7320 6973 2072 6561 6c6c 7920 7468 6520 s is really the │ │ │ │ -0001ca40: 7361 6d65 206d 6f64 756c 652c 2077 6974 same module, wit │ │ │ │ -0001ca50: 6820 6120 6d6f 7265 2063 6f6d 706c 6578 h a more complex │ │ │ │ -0001ca60: 2067 7261 6469 6e67 2c20 7765 2063 616e grading, we can │ │ │ │ -0001ca70: 0a62 7269 6e67 2069 7420 6f76 6572 2074 .bring it over t │ │ │ │ -0001ca80: 6f20 6120 7075 7265 2065 7874 6572 696f o a pure exterio │ │ │ │ -0001ca90: 7220 616c 6765 6272 612e 204e 6f74 6520 r algebra. Note │ │ │ │ -0001caa0: 7468 6174 2074 6865 206e 6563 6573 7361 that the necessa │ │ │ │ -0001cab0: 7279 206d 6170 206f 6620 7269 6e67 730a ry map of rings. │ │ │ │ -0001cac0: 6d75 7374 2063 6f6e 7461 696e 2061 2044 must contain a D │ │ │ │ -0001cad0: 6567 7265 654d 6170 206f 7074 696f 6e2e egreeMap option. │ │ │ │ -0001cae0: 2049 6e20 6765 6e65 7261 6c20 7765 2063 In general we c │ │ │ │ -0001caf0: 6f75 6c64 206f 6e6c 7920 7461 6b65 2074 ould only take t │ │ │ │ -0001cb00: 6865 2064 6567 7265 6573 206f 660a 7468 he degrees of.th │ │ │ │ -0001cb10: 6520 6765 6e65 7261 746f 7273 206f 6620 e generators of │ │ │ │ -0001cb20: 7468 6520 6578 7465 7269 6f72 2061 6c67 the exterior alg │ │ │ │ -0001cb30: 6562 7261 2074 6f20 6265 2074 6865 2067 ebra to be the g │ │ │ │ -0001cb40: 6364 206f 6620 2074 6865 2064 6567 2066 cd of the deg f │ │ │ │ -0001cb50: 665f 6920 3b20 696e 2074 6865 0a65 7861 f_i ; in the.exa │ │ │ │ -0001cb60: 6d70 6c65 2061 626f 7665 2074 6869 7320 mple above this │ │ │ │ -0001cb70: 6973 2031 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d is 1...+-------- │ │ │ │ +0001ca10: 2d2d 2d2b 0a0a 546f 2073 6565 2074 6861 ---+..To see tha │ │ │ │ +0001ca20: 7420 7468 6973 2069 7320 7265 616c 6c79 t this is really │ │ │ │ +0001ca30: 2074 6865 2073 616d 6520 6d6f 6475 6c65 the same module │ │ │ │ +0001ca40: 2c20 7769 7468 2061 206d 6f72 6520 636f , with a more co │ │ │ │ +0001ca50: 6d70 6c65 7820 6772 6164 696e 672c 2077 mplex grading, w │ │ │ │ +0001ca60: 6520 6361 6e0a 6272 696e 6720 6974 206f e can.bring it o │ │ │ │ +0001ca70: 7665 7220 746f 2061 2070 7572 6520 6578 ver to a pure ex │ │ │ │ +0001ca80: 7465 7269 6f72 2061 6c67 6562 7261 2e20 terior algebra. │ │ │ │ +0001ca90: 4e6f 7465 2074 6861 7420 7468 6520 6e65 Note that the ne │ │ │ │ +0001caa0: 6365 7373 6172 7920 6d61 7020 6f66 2072 cessary map of r │ │ │ │ +0001cab0: 696e 6773 0a6d 7573 7420 636f 6e74 6169 ings.must contai │ │ │ │ +0001cac0: 6e20 6120 4465 6772 6565 4d61 7020 6f70 n a DegreeMap op │ │ │ │ +0001cad0: 7469 6f6e 2e20 496e 2067 656e 6572 616c tion. In general │ │ │ │ +0001cae0: 2077 6520 636f 756c 6420 6f6e 6c79 2074 we could only t │ │ │ │ +0001caf0: 616b 6520 7468 6520 6465 6772 6565 7320 ake the degrees │ │ │ │ +0001cb00: 6f66 0a74 6865 2067 656e 6572 6174 6f72 of.the generator │ │ │ │ +0001cb10: 7320 6f66 2074 6865 2065 7874 6572 696f s of the exterio │ │ │ │ +0001cb20: 7220 616c 6765 6272 6120 746f 2062 6520 r algebra to be │ │ │ │ +0001cb30: 7468 6520 6763 6420 6f66 2020 7468 6520 the gcd of the │ │ │ │ +0001cb40: 6465 6720 6666 5f69 203b 2069 6e20 7468 deg ff_i ; in th │ │ │ │ +0001cb50: 650a 6578 616d 706c 6520 6162 6f76 6520 e.example above │ │ │ │ +0001cb60: 7468 6973 2069 7320 312e 0a0a 2b2d 2d2d this is 1...+--- │ │ │ │ +0001cb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cbc0: 2d2d 2b0a 7c69 3232 203a 2071 203d 206d --+.|i22 : q = m │ │ │ │ -0001cbd0: 6170 2865 7852 696e 672c 2072 696e 6720 ap(exRing, ring │ │ │ │ -0001cbe0: 4531 2c20 7b33 3a30 2c65 5f30 2c65 5f31 E1, {3:0,e_0,e_1 │ │ │ │ -0001cbf0: 2c65 5f32 7d2c 2044 6567 7265 654d 6170 ,e_2}, DegreeMap │ │ │ │ -0001cc00: 203d 3e20 6420 2d3e 207b 645f 317d 297c => d -> {d_1})| │ │ │ │ -0001cc10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001cbb0: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3220 3a20 -------+.|i22 : │ │ │ │ +0001cbc0: 7120 3d20 6d61 7028 6578 5269 6e67 2c20 q = map(exRing, │ │ │ │ +0001cbd0: 7269 6e67 2045 312c 207b 333a 302c 655f ring E1, {3:0,e_ │ │ │ │ +0001cbe0: 302c 655f 312c 655f 327d 2c20 4465 6772 0,e_1,e_2}, Degr │ │ │ │ +0001cbf0: 6565 4d61 7020 3d3e 2064 202d 3e20 7b64 eeMap => d -> {d │ │ │ │ +0001cc00: 5f31 7d29 7c0a 7c20 2020 2020 2020 2020 _1})|.| │ │ │ │ +0001cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc50: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001cc60: 3232 203d 206d 6170 2028 6578 5269 6e67 22 = map (exRing │ │ │ │ -0001cc70: 2c20 6b6b 5b58 202e 2e58 202c 2065 202e , kk[X ..X , e . │ │ │ │ -0001cc80: 2e65 205d 2c20 7b30 2c20 302c 2030 2c20 .e ], {0, 0, 0, │ │ │ │ -0001cc90: 6520 2c20 6520 2c20 6520 7d29 2020 2020 e , e , e }) │ │ │ │ -0001cca0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ccc0: 2020 2030 2020 2032 2020 2030 2020 2032 0 2 0 2 │ │ │ │ -0001ccd0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -0001cce0: 2020 3120 2020 3220 2020 2020 2020 2020 1 2 │ │ │ │ -0001ccf0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001cc50: 207c 0a7c 6f32 3220 3d20 6d61 7020 2865 |.|o22 = map (e │ │ │ │ +0001cc60: 7852 696e 672c 206b 6b5b 5820 2e2e 5820 xRing, kk[X ..X │ │ │ │ +0001cc70: 2c20 6520 2e2e 6520 5d2c 207b 302c 2030 , e ..e ], {0, 0 │ │ │ │ +0001cc80: 2c20 302c 2065 202c 2065 202c 2065 207d , 0, e , e , e } │ │ │ │ +0001cc90: 2920 2020 2020 2020 2020 2020 2020 7c0a ) |. │ │ │ │ +0001cca0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001ccb0: 2020 2020 2020 2020 3020 2020 3220 2020 0 2 │ │ │ │ +0001ccc0: 3020 2020 3220 2020 2020 2020 2020 2020 0 2 │ │ │ │ +0001ccd0: 2020 2030 2020 2031 2020 2032 2020 2020 0 1 2 │ │ │ │ +0001cce0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cd40: 2020 207c 0a7c 6f32 3220 3a20 5269 6e67 |.|o22 : Ring │ │ │ │ -0001cd50: 4d61 7020 6578 5269 6e67 203c 2d2d 206b Map exRing <-- k │ │ │ │ -0001cd60: 6b5b 5820 2e2e 5820 2c20 6520 2e2e 6520 k[X ..X , e ..e │ │ │ │ -0001cd70: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ -0001cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cd90: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cdb0: 3020 2020 3220 2020 3020 2020 3220 2020 0 2 0 2 │ │ │ │ +0001cd30: 2020 2020 2020 2020 7c0a 7c6f 3232 203a |.|o22 : │ │ │ │ +0001cd40: 2052 696e 674d 6170 2065 7852 696e 6720 RingMap exRing │ │ │ │ +0001cd50: 3c2d 2d20 6b6b 5b58 202e 2e58 202c 2065 <-- kk[X ..X , e │ │ │ │ +0001cd60: 202e 2e65 205d 2020 2020 2020 2020 2020 ..e ] │ │ │ │ +0001cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cd80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cda0: 2020 2020 2030 2020 2032 2020 2030 2020 0 2 0 │ │ │ │ +0001cdb0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cdd0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001cdd0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0001cde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ce00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ce10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ce20: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3233 ----------+.|i23 │ │ │ │ -0001ce30: 203a 2045 3220 3d20 636f 6b65 7220 7120 : E2 = coker q │ │ │ │ -0001ce40: 7072 6573 656e 7461 7469 6f6e 2045 313b presentation E1; │ │ │ │ +0001ce10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001ce20: 0a7c 6932 3320 3a20 4532 203d 2063 6f6b .|i23 : E2 = cok │ │ │ │ +0001ce30: 6572 2071 2070 7265 7365 6e74 6174 696f er q presentatio │ │ │ │ +0001ce40: 6e20 4531 3b20 2020 2020 2020 2020 2020 n E1; │ │ │ │ 0001ce50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce70: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001ce60: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001ce70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ce80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ce90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ceb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cec0: 2d2d 2d2d 2b0a 7c69 3234 203a 2068 6628 ----+.|i24 : hf( │ │ │ │ -0001ced0: 2d35 2e2e 352c 4532 2920 3d3d 2068 6628 -5..5,E2) == hf( │ │ │ │ -0001cee0: 2d35 2e2e 352c 4529 2020 2020 2020 2020 -5..5,E) │ │ │ │ +0001ceb0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3420 ---------+.|i24 │ │ │ │ +0001cec0: 3a20 6866 282d 352e 2e35 2c45 3229 203d : hf(-5..5,E2) = │ │ │ │ +0001ced0: 3d20 6866 282d 352e 2e35 2c45 2920 2020 = hf(-5..5,E) │ │ │ │ +0001cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001cf00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001cf60: 7c6f 3234 203d 2074 7275 6520 2020 2020 |o24 = true │ │ │ │ +0001cf50: 2020 207c 0a7c 6f32 3420 3d20 7472 7565 |.|o24 = true │ │ │ │ +0001cf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cfa0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001cfa0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0001cfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cfd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cff0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ -0001d000: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -0001d010: 2a20 2a6e 6f74 6520 6578 7465 7269 6f72 * *note exterior │ │ │ │ -0001d020: 546f 724d 6f64 756c 653a 2065 7874 6572 TorModule: exter │ │ │ │ -0001d030: 696f 7254 6f72 4d6f 6475 6c65 2c20 2d2d iorTorModule, -- │ │ │ │ -0001d040: 2054 6f72 2061 7320 6120 6d6f 6475 6c65 Tor as a module │ │ │ │ -0001d050: 206f 7665 7220 616e 0a20 2020 2065 7874 over an. ext │ │ │ │ -0001d060: 6572 696f 7220 616c 6765 6272 6120 6f72 erior algebra or │ │ │ │ -0001d070: 2062 6967 7261 6465 6420 616c 6765 6272 bigraded algebr │ │ │ │ -0001d080: 610a 2020 2a20 2a6e 6f74 6520 6d61 6b65 a. * *note make │ │ │ │ -0001d090: 4d6f 6475 6c65 3a20 6d61 6b65 4d6f 6475 Module: makeModu │ │ │ │ -0001d0a0: 6c65 2c20 2d2d 206d 616b 6573 2061 204d le, -- makes a M │ │ │ │ -0001d0b0: 6f64 756c 6520 6f75 7420 6f66 2061 2063 odule out of a c │ │ │ │ -0001d0c0: 6f6c 6c65 6374 696f 6e20 6f66 0a20 2020 ollection of. │ │ │ │ -0001d0d0: 206d 6f64 756c 6573 2061 6e64 206d 6170 modules and map │ │ │ │ -0001d0e0: 730a 0a57 6179 7320 746f 2075 7365 2065 s..Ways to use e │ │ │ │ -0001d0f0: 7874 6572 696f 7245 7874 4d6f 6475 6c65 xteriorExtModule │ │ │ │ -0001d100: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -0001d110: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001d120: 0a0a 2020 2a20 2265 7874 6572 696f 7245 .. * "exteriorE │ │ │ │ -0001d130: 7874 4d6f 6475 6c65 284d 6174 7269 782c xtModule(Matrix, │ │ │ │ -0001d140: 4d6f 6475 6c65 2922 0a20 202a 2022 6578 Module)". * "ex │ │ │ │ -0001d150: 7465 7269 6f72 4578 744d 6f64 756c 6528 teriorExtModule( │ │ │ │ -0001d160: 4d61 7472 6978 2c4d 6f64 756c 652c 4d6f Matrix,Module,Mo │ │ │ │ -0001d170: 6475 6c65 2922 0a0a 466f 7220 7468 6520 dule)"..For the │ │ │ │ -0001d180: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -0001d190: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -0001d1a0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -0001d1b0: 6578 7465 7269 6f72 4578 744d 6f64 756c exteriorExtModul │ │ │ │ -0001d1c0: 653a 2065 7874 6572 696f 7245 7874 4d6f e: exteriorExtMo │ │ │ │ -0001d1d0: 6475 6c65 2c20 6973 2061 202a 6e6f 7465 dule, is a *note │ │ │ │ -0001d1e0: 206d 6574 686f 640a 6675 6e63 7469 6f6e method.function │ │ │ │ -0001d1f0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0001d200: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ -0001d210: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ +0001cfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +0001cff0: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +0001d000: 3d0a 0a20 202a 202a 6e6f 7465 2065 7874 =.. * *note ext │ │ │ │ +0001d010: 6572 696f 7254 6f72 4d6f 6475 6c65 3a20 eriorTorModule: │ │ │ │ +0001d020: 6578 7465 7269 6f72 546f 724d 6f64 756c exteriorTorModul │ │ │ │ +0001d030: 652c 202d 2d20 546f 7220 6173 2061 206d e, -- Tor as a m │ │ │ │ +0001d040: 6f64 756c 6520 6f76 6572 2061 6e0a 2020 odule over an. │ │ │ │ +0001d050: 2020 6578 7465 7269 6f72 2061 6c67 6562 exterior algeb │ │ │ │ +0001d060: 7261 206f 7220 6269 6772 6164 6564 2061 ra or bigraded a │ │ │ │ +0001d070: 6c67 6562 7261 0a20 202a 202a 6e6f 7465 lgebra. * *note │ │ │ │ +0001d080: 206d 616b 654d 6f64 756c 653a 206d 616b makeModule: mak │ │ │ │ +0001d090: 654d 6f64 756c 652c 202d 2d20 6d61 6b65 eModule, -- make │ │ │ │ +0001d0a0: 7320 6120 4d6f 6475 6c65 206f 7574 206f s a Module out o │ │ │ │ +0001d0b0: 6620 6120 636f 6c6c 6563 7469 6f6e 206f f a collection o │ │ │ │ +0001d0c0: 660a 2020 2020 6d6f 6475 6c65 7320 616e f. modules an │ │ │ │ +0001d0d0: 6420 6d61 7073 0a0a 5761 7973 2074 6f20 d maps..Ways to │ │ │ │ +0001d0e0: 7573 6520 6578 7465 7269 6f72 4578 744d use exteriorExtM │ │ │ │ +0001d0f0: 6f64 756c 653a 0a3d 3d3d 3d3d 3d3d 3d3d odule:.========= │ │ │ │ +0001d100: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001d110: 3d3d 3d3d 3d0a 0a20 202a 2022 6578 7465 =====.. * "exte │ │ │ │ +0001d120: 7269 6f72 4578 744d 6f64 756c 6528 4d61 riorExtModule(Ma │ │ │ │ +0001d130: 7472 6978 2c4d 6f64 756c 6529 220a 2020 trix,Module)". │ │ │ │ +0001d140: 2a20 2265 7874 6572 696f 7245 7874 4d6f * "exteriorExtMo │ │ │ │ +0001d150: 6475 6c65 284d 6174 7269 782c 4d6f 6475 dule(Matrix,Modu │ │ │ │ +0001d160: 6c65 2c4d 6f64 756c 6529 220a 0a46 6f72 le,Module)"..For │ │ │ │ +0001d170: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +0001d180: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001d190: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +0001d1a0: 6e6f 7465 2065 7874 6572 696f 7245 7874 note exteriorExt │ │ │ │ +0001d1b0: 4d6f 6475 6c65 3a20 6578 7465 7269 6f72 Module: exterior │ │ │ │ +0001d1c0: 4578 744d 6f64 756c 652c 2069 7320 6120 ExtModule, is a │ │ │ │ +0001d1d0: 2a6e 6f74 6520 6d65 7468 6f64 0a66 756e *note method.fun │ │ │ │ +0001d1e0: 6374 696f 6e3a 2028 4d61 6361 756c 6179 ction: (Macaulay │ │ │ │ +0001d1f0: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ +0001d200: 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d ion,...--------- │ │ │ │ +0001d210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d260: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -0001d270: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -0001d280: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -0001d290: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -0001d2a0: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -0001d2b0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -0001d2c0: 7061 636b 6167 6573 2f0a 436f 6d70 6c65 packages/.Comple │ │ │ │ -0001d2d0: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ -0001d2e0: 736f 6c75 7469 6f6e 732e 6d32 3a34 3236 solutions.m2:426 │ │ │ │ -0001d2f0: 333a 302e 0a1f 0a46 696c 653a 2043 6f6d 3:0....File: Com │ │ │ │ -0001d300: 706c 6574 6549 6e74 6572 7365 6374 696f pleteIntersectio │ │ │ │ -0001d310: 6e52 6573 6f6c 7574 696f 6e73 2e69 6e66 nResolutions.inf │ │ │ │ -0001d320: 6f2c 204e 6f64 653a 2065 7874 6572 696f o, Node: exterio │ │ │ │ -0001d330: 7248 6f6d 6f6c 6f67 794d 6f64 756c 652c rHomologyModule, │ │ │ │ -0001d340: 204e 6578 743a 2065 7874 6572 696f 7254 Next: exteriorT │ │ │ │ -0001d350: 6f72 4d6f 6475 6c65 2c20 5072 6576 3a20 orModule, Prev: │ │ │ │ -0001d360: 6578 7465 7269 6f72 4578 744d 6f64 756c exteriorExtModul │ │ │ │ -0001d370: 652c 2055 703a 2054 6f70 0a0a 6578 7465 e, Up: Top..exte │ │ │ │ -0001d380: 7269 6f72 486f 6d6f 6c6f 6779 4d6f 6475 riorHomologyModu │ │ │ │ -0001d390: 6c65 202d 2d20 4d61 6b65 2074 6865 2068 le -- Make the h │ │ │ │ -0001d3a0: 6f6d 6f6c 6f67 7920 6f66 2061 2063 6f6d omology of a com │ │ │ │ -0001d3b0: 706c 6578 2069 6e74 6f20 6120 6d6f 6475 plex into a modu │ │ │ │ -0001d3c0: 6c65 206f 7665 7220 616e 2065 7874 6572 le over an exter │ │ │ │ -0001d3d0: 696f 7220 616c 6765 6272 610a 2a2a 2a2a ior algebra.**** │ │ │ │ +0001d250: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ +0001d260: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ +0001d270: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ +0001d280: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ +0001d290: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ +0001d2a0: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ +0001d2b0: 6c61 7932 2f70 6163 6b61 6765 732f 0a43 lay2/packages/.C │ │ │ │ +0001d2c0: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ +0001d2d0: 696f 6e52 6573 6f6c 7574 696f 6e73 2e6d ionResolutions.m │ │ │ │ +0001d2e0: 323a 3432 3633 3a30 2e0a 1f0a 4669 6c65 2:4263:0....File │ │ │ │ +0001d2f0: 3a20 436f 6d70 6c65 7465 496e 7465 7273 : CompleteInters │ │ │ │ +0001d300: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ +0001d310: 732e 696e 666f 2c20 4e6f 6465 3a20 6578 s.info, Node: ex │ │ │ │ +0001d320: 7465 7269 6f72 486f 6d6f 6c6f 6779 4d6f teriorHomologyMo │ │ │ │ +0001d330: 6475 6c65 2c20 4e65 7874 3a20 6578 7465 dule, Next: exte │ │ │ │ +0001d340: 7269 6f72 546f 724d 6f64 756c 652c 2050 riorTorModule, P │ │ │ │ +0001d350: 7265 763a 2065 7874 6572 696f 7245 7874 rev: exteriorExt │ │ │ │ +0001d360: 4d6f 6475 6c65 2c20 5570 3a20 546f 700a Module, Up: Top. │ │ │ │ +0001d370: 0a65 7874 6572 696f 7248 6f6d 6f6c 6f67 .exteriorHomolog │ │ │ │ +0001d380: 794d 6f64 756c 6520 2d2d 204d 616b 6520 yModule -- Make │ │ │ │ +0001d390: 7468 6520 686f 6d6f 6c6f 6779 206f 6620 the homology of │ │ │ │ +0001d3a0: 6120 636f 6d70 6c65 7820 696e 746f 2061 a complex into a │ │ │ │ +0001d3b0: 206d 6f64 756c 6520 6f76 6572 2061 6e20 module over an │ │ │ │ +0001d3c0: 6578 7465 7269 6f72 2061 6c67 6562 7261 exterior algebra │ │ │ │ +0001d3d0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ 0001d3e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001d3f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001d400: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001d410: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001d420: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -0001d440: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -0001d450: 204d 203d 2065 7874 6572 696f 7248 6f6d M = exteriorHom │ │ │ │ -0001d460: 6f6c 6f67 794d 6f64 756c 6528 6666 2c20 ologyModule(ff, │ │ │ │ -0001d470: 4329 0a20 202a 2049 6e70 7574 733a 0a20 C). * Inputs:. │ │ │ │ -0001d480: 2020 2020 202a 2066 662c 2061 202a 6e6f * ff, a *no │ │ │ │ -0001d490: 7465 206d 6174 7269 783a 2028 4d61 6361 te matrix: (Maca │ │ │ │ -0001d4a0: 756c 6179 3244 6f63 294d 6174 7269 782c ulay2Doc)Matrix, │ │ │ │ -0001d4b0: 2c20 4d61 7472 6978 206f 6620 656c 656d , Matrix of elem │ │ │ │ -0001d4c0: 656e 7473 2074 6861 7420 6172 650a 2020 ents that are. │ │ │ │ -0001d4d0: 2020 2020 2020 686f 6d6f 746f 7069 6320 homotopic │ │ │ │ -0001d4e0: 746f 2030 206f 6e20 430a 2020 2020 2020 to 0 on C. │ │ │ │ -0001d4f0: 2a20 432c 2061 202a 6e6f 7465 2063 6f6d * C, a *note com │ │ │ │ -0001d500: 706c 6578 3a20 2843 6f6d 706c 6578 6573 plex: (Complexes │ │ │ │ -0001d510: 2943 6f6d 706c 6578 2c2c 200a 2020 2a20 )Complex,, . * │ │ │ │ -0001d520: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -0001d530: 204d 2c20 6120 2a6e 6f74 6520 6d6f 6475 M, a *note modu │ │ │ │ -0001d540: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ -0001d550: 6329 4d6f 6475 6c65 2c2c 200a 0a44 6573 c)Module,, ..Des │ │ │ │ -0001d560: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0001d570: 3d3d 3d3d 0a0a 4173 7375 6d69 6e67 2074 ====..Assuming t │ │ │ │ -0001d580: 6861 7420 7468 6520 656c 656d 656e 7473 hat the elements │ │ │ │ -0001d590: 206f 6620 7468 6520 3178 6320 6d61 7472 of the 1xc matr │ │ │ │ -0001d5a0: 6978 2066 6620 6172 6520 6e75 6c6c 2d68 ix ff are null-h │ │ │ │ -0001d5b0: 6f6d 6f74 6f70 6963 206f 6e20 432c 2074 omotopic on C, t │ │ │ │ -0001d5c0: 6865 0a73 6372 6970 7420 7265 7475 726e he.script return │ │ │ │ -0001d5d0: 7320 7468 6520 6469 7265 6374 2073 756d s the direct sum │ │ │ │ -0001d5e0: 206f 6620 7468 6520 686f 6d6f 6c6f 6779 of the homology │ │ │ │ -0001d5f0: 206f 6620 4320 6173 2061 206d 6f64 756c of C as a modul │ │ │ │ -0001d600: 6520 6f76 6572 2061 206e 6577 2072 696e e over a new rin │ │ │ │ -0001d610: 672c 0a63 6f6e 7369 7374 696e 6720 6f66 g,.consisting of │ │ │ │ -0001d620: 2072 696e 6720 4320 7769 7468 2063 2065 ring C with c e │ │ │ │ -0001d630: 7874 6572 696f 7220 7661 7269 6162 6c65 xterior variable │ │ │ │ -0001d640: 7320 6164 6a6f 696e 6564 2e20 5468 6520 s adjoined. The │ │ │ │ -0001d650: 7363 7269 7074 2069 7320 7468 6520 6d61 script is the ma │ │ │ │ -0001d660: 696e 0a63 6f6d 706f 6e65 6e74 206f 6620 in.component of │ │ │ │ -0001d670: 6578 7465 7269 6f72 546f 724d 6f64 756c exteriorTorModul │ │ │ │ -0001d680: 650a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d e..See also.==== │ │ │ │ -0001d690: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -0001d6a0: 6578 7465 7269 6f72 546f 724d 6f64 756c exteriorTorModul │ │ │ │ -0001d6b0: 653a 2065 7874 6572 696f 7254 6f72 4d6f e: exteriorTorMo │ │ │ │ -0001d6c0: 6475 6c65 2c20 2d2d 2054 6f72 2061 7320 dule, -- Tor as │ │ │ │ -0001d6d0: 6120 6d6f 6475 6c65 206f 7665 7220 616e a module over an │ │ │ │ -0001d6e0: 0a20 2020 2065 7874 6572 696f 7220 616c . exterior al │ │ │ │ -0001d6f0: 6765 6272 6120 6f72 2062 6967 7261 6465 gebra or bigrade │ │ │ │ -0001d700: 6420 616c 6765 6272 610a 2020 2a20 2a6e d algebra. * *n │ │ │ │ -0001d710: 6f74 6520 6d61 6b65 486f 6d6f 746f 7069 ote makeHomotopi │ │ │ │ -0001d720: 6573 4f6e 486f 6d6f 6c6f 6779 3a20 6d61 esOnHomology: ma │ │ │ │ -0001d730: 6b65 486f 6d6f 746f 7069 6573 4f6e 486f keHomotopiesOnHo │ │ │ │ -0001d740: 6d6f 6c6f 6779 2c20 2d2d 2048 6f6d 6f6c mology, -- Homol │ │ │ │ -0001d750: 6f67 7920 6f66 2061 0a20 2020 2063 6f6d ogy of a. com │ │ │ │ -0001d760: 706c 6578 2061 7320 6578 7465 7269 6f72 plex as exterior │ │ │ │ -0001d770: 206d 6f64 756c 650a 0a57 6179 7320 746f module..Ways to │ │ │ │ -0001d780: 2075 7365 2065 7874 6572 696f 7248 6f6d use exteriorHom │ │ │ │ -0001d790: 6f6c 6f67 794d 6f64 756c 653a 0a3d 3d3d ologyModule:.=== │ │ │ │ +0001d430: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +0001d440: 2020 2020 2020 4d20 3d20 6578 7465 7269 M = exteri │ │ │ │ +0001d450: 6f72 486f 6d6f 6c6f 6779 4d6f 6475 6c65 orHomologyModule │ │ │ │ +0001d460: 2866 662c 2043 290a 2020 2a20 496e 7075 (ff, C). * Inpu │ │ │ │ +0001d470: 7473 3a0a 2020 2020 2020 2a20 6666 2c20 ts:. * ff, │ │ │ │ +0001d480: 6120 2a6e 6f74 6520 6d61 7472 6978 3a20 a *note matrix: │ │ │ │ +0001d490: 284d 6163 6175 6c61 7932 446f 6329 4d61 (Macaulay2Doc)Ma │ │ │ │ +0001d4a0: 7472 6978 2c2c 204d 6174 7269 7820 6f66 trix,, Matrix of │ │ │ │ +0001d4b0: 2065 6c65 6d65 6e74 7320 7468 6174 2061 elements that a │ │ │ │ +0001d4c0: 7265 0a20 2020 2020 2020 2068 6f6d 6f74 re. homot │ │ │ │ +0001d4d0: 6f70 6963 2074 6f20 3020 6f6e 2043 0a20 opic to 0 on C. │ │ │ │ +0001d4e0: 2020 2020 202a 2043 2c20 6120 2a6e 6f74 * C, a *not │ │ │ │ +0001d4f0: 6520 636f 6d70 6c65 783a 2028 436f 6d70 e complex: (Comp │ │ │ │ +0001d500: 6c65 7865 7329 436f 6d70 6c65 782c 2c20 lexes)Complex,, │ │ │ │ +0001d510: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +0001d520: 2020 2020 2a20 4d2c 2061 202a 6e6f 7465 * M, a *note │ │ │ │ +0001d530: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ +0001d540: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ +0001d550: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +0001d560: 3d3d 3d3d 3d3d 3d3d 3d0a 0a41 7373 756d =========..Assum │ │ │ │ +0001d570: 696e 6720 7468 6174 2074 6865 2065 6c65 ing that the ele │ │ │ │ +0001d580: 6d65 6e74 7320 6f66 2074 6865 2031 7863 ments of the 1xc │ │ │ │ +0001d590: 206d 6174 7269 7820 6666 2061 7265 206e matrix ff are n │ │ │ │ +0001d5a0: 756c 6c2d 686f 6d6f 746f 7069 6320 6f6e ull-homotopic on │ │ │ │ +0001d5b0: 2043 2c20 7468 650a 7363 7269 7074 2072 C, the.script r │ │ │ │ +0001d5c0: 6574 7572 6e73 2074 6865 2064 6972 6563 eturns the direc │ │ │ │ +0001d5d0: 7420 7375 6d20 6f66 2074 6865 2068 6f6d t sum of the hom │ │ │ │ +0001d5e0: 6f6c 6f67 7920 6f66 2043 2061 7320 6120 ology of C as a │ │ │ │ +0001d5f0: 6d6f 6475 6c65 206f 7665 7220 6120 6e65 module over a ne │ │ │ │ +0001d600: 7720 7269 6e67 2c0a 636f 6e73 6973 7469 w ring,.consisti │ │ │ │ +0001d610: 6e67 206f 6620 7269 6e67 2043 2077 6974 ng of ring C wit │ │ │ │ +0001d620: 6820 6320 6578 7465 7269 6f72 2076 6172 h c exterior var │ │ │ │ +0001d630: 6961 626c 6573 2061 646a 6f69 6e65 642e iables adjoined. │ │ │ │ +0001d640: 2054 6865 2073 6372 6970 7420 6973 2074 The script is t │ │ │ │ +0001d650: 6865 206d 6169 6e0a 636f 6d70 6f6e 656e he main.componen │ │ │ │ +0001d660: 7420 6f66 2065 7874 6572 696f 7254 6f72 t of exteriorTor │ │ │ │ +0001d670: 4d6f 6475 6c65 0a0a 5365 6520 616c 736f Module..See also │ │ │ │ +0001d680: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +0001d690: 6e6f 7465 2065 7874 6572 696f 7254 6f72 note exteriorTor │ │ │ │ +0001d6a0: 4d6f 6475 6c65 3a20 6578 7465 7269 6f72 Module: exterior │ │ │ │ +0001d6b0: 546f 724d 6f64 756c 652c 202d 2d20 546f TorModule, -- To │ │ │ │ +0001d6c0: 7220 6173 2061 206d 6f64 756c 6520 6f76 r as a module ov │ │ │ │ +0001d6d0: 6572 2061 6e0a 2020 2020 6578 7465 7269 er an. exteri │ │ │ │ +0001d6e0: 6f72 2061 6c67 6562 7261 206f 7220 6269 or algebra or bi │ │ │ │ +0001d6f0: 6772 6164 6564 2061 6c67 6562 7261 0a20 graded algebra. │ │ │ │ +0001d700: 202a 202a 6e6f 7465 206d 616b 6548 6f6d * *note makeHom │ │ │ │ +0001d710: 6f74 6f70 6965 734f 6e48 6f6d 6f6c 6f67 otopiesOnHomolog │ │ │ │ +0001d720: 793a 206d 616b 6548 6f6d 6f74 6f70 6965 y: makeHomotopie │ │ │ │ +0001d730: 734f 6e48 6f6d 6f6c 6f67 792c 202d 2d20 sOnHomology, -- │ │ │ │ +0001d740: 486f 6d6f 6c6f 6779 206f 6620 610a 2020 Homology of a. │ │ │ │ +0001d750: 2020 636f 6d70 6c65 7820 6173 2065 7874 complex as ext │ │ │ │ +0001d760: 6572 696f 7220 6d6f 6475 6c65 0a0a 5761 erior module..Wa │ │ │ │ +0001d770: 7973 2074 6f20 7573 6520 6578 7465 7269 ys to use exteri │ │ │ │ +0001d780: 6f72 486f 6d6f 6c6f 6779 4d6f 6475 6c65 orHomologyModule │ │ │ │ +0001d790: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ 0001d7a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001d7b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001d7c0: 0a0a 2020 2a20 2265 7874 6572 696f 7248 .. * "exteriorH │ │ │ │ -0001d7d0: 6f6d 6f6c 6f67 794d 6f64 756c 6528 4d61 omologyModule(Ma │ │ │ │ -0001d7e0: 7472 6978 2c43 6f6d 706c 6578 2922 0a0a trix,Complex)".. │ │ │ │ -0001d7f0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -0001d800: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -0001d810: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -0001d820: 7420 2a6e 6f74 6520 6578 7465 7269 6f72 t *note exterior │ │ │ │ -0001d830: 486f 6d6f 6c6f 6779 4d6f 6475 6c65 3a20 HomologyModule: │ │ │ │ -0001d840: 6578 7465 7269 6f72 486f 6d6f 6c6f 6779 exteriorHomology │ │ │ │ -0001d850: 4d6f 6475 6c65 2c20 6973 2061 202a 6e6f Module, is a *no │ │ │ │ -0001d860: 7465 0a6d 6574 686f 6420 6675 6e63 7469 te.method functi │ │ │ │ -0001d870: 6f6e 3a20 284d 6163 6175 6c61 7932 446f on: (Macaulay2Do │ │ │ │ -0001d880: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -0001d890: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ +0001d7b0: 3d3d 3d3d 3d0a 0a20 202a 2022 6578 7465 =====.. * "exte │ │ │ │ +0001d7c0: 7269 6f72 486f 6d6f 6c6f 6779 4d6f 6475 riorHomologyModu │ │ │ │ +0001d7d0: 6c65 284d 6174 7269 782c 436f 6d70 6c65 le(Matrix,Comple │ │ │ │ +0001d7e0: 7829 220a 0a46 6f72 2074 6865 2070 726f x)"..For the pro │ │ │ │ +0001d7f0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +0001d800: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +0001d810: 6f62 6a65 6374 202a 6e6f 7465 2065 7874 object *note ext │ │ │ │ +0001d820: 6572 696f 7248 6f6d 6f6c 6f67 794d 6f64 eriorHomologyMod │ │ │ │ +0001d830: 756c 653a 2065 7874 6572 696f 7248 6f6d ule: exteriorHom │ │ │ │ +0001d840: 6f6c 6f67 794d 6f64 756c 652c 2069 7320 ologyModule, is │ │ │ │ +0001d850: 6120 2a6e 6f74 650a 6d65 7468 6f64 2066 a *note.method f │ │ │ │ +0001d860: 756e 6374 696f 6e3a 2028 4d61 6361 756c unction: (Macaul │ │ │ │ +0001d870: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ +0001d880: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ +0001d890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d8e0: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -0001d8f0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -0001d900: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -0001d910: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -0001d920: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -0001d930: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -0001d940: 322f 7061 636b 6167 6573 2f0a 436f 6d70 2/packages/.Comp │ │ │ │ -0001d950: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ -0001d960: 5265 736f 6c75 7469 6f6e 732e 6d32 3a32 Resolutions.m2:2 │ │ │ │ -0001d970: 3738 353a 302e 0a1f 0a46 696c 653a 2043 785:0....File: C │ │ │ │ -0001d980: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ -0001d990: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ -0001d9a0: 6e66 6f2c 204e 6f64 653a 2065 7874 6572 nfo, Node: exter │ │ │ │ -0001d9b0: 696f 7254 6f72 4d6f 6475 6c65 2c20 4e65 iorTorModule, Ne │ │ │ │ -0001d9c0: 7874 3a20 6578 7449 734f 6e65 506f 6c79 xt: extIsOnePoly │ │ │ │ -0001d9d0: 6e6f 6d69 616c 2c20 5072 6576 3a20 6578 nomial, Prev: ex │ │ │ │ -0001d9e0: 7465 7269 6f72 486f 6d6f 6c6f 6779 4d6f teriorHomologyMo │ │ │ │ -0001d9f0: 6475 6c65 2c20 5570 3a20 546f 700a 0a65 dule, Up: Top..e │ │ │ │ -0001da00: 7874 6572 696f 7254 6f72 4d6f 6475 6c65 xteriorTorModule │ │ │ │ -0001da10: 202d 2d20 546f 7220 6173 2061 206d 6f64 -- Tor as a mod │ │ │ │ -0001da20: 756c 6520 6f76 6572 2061 6e20 6578 7465 ule over an exte │ │ │ │ -0001da30: 7269 6f72 2061 6c67 6562 7261 206f 7220 rior algebra or │ │ │ │ -0001da40: 6269 6772 6164 6564 2061 6c67 6562 7261 bigraded algebra │ │ │ │ -0001da50: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ +0001d8d0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +0001d8e0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +0001d8f0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +0001d900: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +0001d910: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +0001d920: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +0001d930: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +0001d940: 0a43 6f6d 706c 6574 6549 6e74 6572 7365 .CompleteInterse │ │ │ │ +0001d950: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ +0001d960: 2e6d 323a 3237 3835 3a30 2e0a 1f0a 4669 .m2:2785:0....Fi │ │ │ │ +0001d970: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ +0001d980: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ +0001d990: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ +0001d9a0: 6578 7465 7269 6f72 546f 724d 6f64 756c exteriorTorModul │ │ │ │ +0001d9b0: 652c 204e 6578 743a 2065 7874 4973 4f6e e, Next: extIsOn │ │ │ │ +0001d9c0: 6550 6f6c 796e 6f6d 6961 6c2c 2050 7265 ePolynomial, Pre │ │ │ │ +0001d9d0: 763a 2065 7874 6572 696f 7248 6f6d 6f6c v: exteriorHomol │ │ │ │ +0001d9e0: 6f67 794d 6f64 756c 652c 2055 703a 2054 ogyModule, Up: T │ │ │ │ +0001d9f0: 6f70 0a0a 6578 7465 7269 6f72 546f 724d op..exteriorTorM │ │ │ │ +0001da00: 6f64 756c 6520 2d2d 2054 6f72 2061 7320 odule -- Tor as │ │ │ │ +0001da10: 6120 6d6f 6475 6c65 206f 7665 7220 616e a module over an │ │ │ │ +0001da20: 2065 7874 6572 696f 7220 616c 6765 6272 exterior algebr │ │ │ │ +0001da30: 6120 6f72 2062 6967 7261 6465 6420 616c a or bigraded al │ │ │ │ +0001da40: 6765 6272 610a 2a2a 2a2a 2a2a 2a2a 2a2a gebra.********** │ │ │ │ +0001da50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001da60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001da70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001da80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001da90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001daa0: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ -0001dab0: 2020 2020 2020 2020 5420 3d20 6578 7465 T = exte │ │ │ │ -0001dac0: 7269 6f72 546f 724d 6f64 756c 6528 662c riorTorModule(f, │ │ │ │ -0001dad0: 4629 0a20 2020 2020 2020 2054 203d 2065 F). T = e │ │ │ │ -0001dae0: 7874 6572 696f 7254 6f72 4d6f 6475 6c65 xteriorTorModule │ │ │ │ -0001daf0: 2866 2c4d 2c4e 290a 2020 2a20 496e 7075 (f,M,N). * Inpu │ │ │ │ -0001db00: 7473 3a0a 2020 2020 2020 2a20 662c 2061 ts:. * f, a │ │ │ │ -0001db10: 202a 6e6f 7465 206d 6174 7269 783a 2028 *note matrix: ( │ │ │ │ -0001db20: 4d61 6361 756c 6179 3244 6f63 294d 6174 Macaulay2Doc)Mat │ │ │ │ -0001db30: 7269 782c 2c20 3120 7820 632c 2065 6e74 rix,, 1 x c, ent │ │ │ │ -0001db40: 7269 6573 206d 7573 7420 6265 0a20 2020 ries must be. │ │ │ │ -0001db50: 2020 2020 2068 6f6d 6f74 6f70 6963 2074 homotopic t │ │ │ │ -0001db60: 6f20 3020 6f6e 2046 0a20 2020 2020 202a o 0 on F. * │ │ │ │ -0001db70: 204d 2c20 6120 2a6e 6f74 6520 6d6f 6475 M, a *note modu │ │ │ │ -0001db80: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ -0001db90: 6329 4d6f 6475 6c65 2c2c 2053 2d6d 6f64 c)Module,, S-mod │ │ │ │ -0001dba0: 756c 6520 616e 6e69 6869 6c61 7465 6420 ule annihilated │ │ │ │ -0001dbb0: 6279 2069 6465 616c 0a20 2020 2020 2020 by ideal. │ │ │ │ -0001dbc0: 2066 0a20 2020 2020 202a 204e 2c20 6120 f. * N, a │ │ │ │ -0001dbd0: 2a6e 6f74 6520 6d6f 6475 6c65 3a20 284d *note module: (M │ │ │ │ -0001dbe0: 6163 6175 6c61 7932 446f 6329 4d6f 6475 acaulay2Doc)Modu │ │ │ │ -0001dbf0: 6c65 2c2c 2053 2d6d 6f64 756c 6520 616e le,, S-module an │ │ │ │ -0001dc00: 6e69 6869 6c61 7465 6420 6279 2069 6465 nihilated by ide │ │ │ │ -0001dc10: 616c 0a20 2020 2020 2020 2066 0a20 202a al. f. * │ │ │ │ -0001dc20: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -0001dc30: 2a20 542c 2061 202a 6e6f 7465 206d 6f64 * T, a *note mod │ │ │ │ -0001dc40: 756c 653a 2028 4d61 6361 756c 6179 3244 ule: (Macaulay2D │ │ │ │ -0001dc50: 6f63 294d 6f64 756c 652c 2c20 546f 725e oc)Module,, Tor^ │ │ │ │ -0001dc60: 5328 4d2c 4e29 2061 7320 6120 4d6f 6475 S(M,N) as a Modu │ │ │ │ -0001dc70: 6c65 206f 7665 720a 2020 2020 2020 2020 le over. │ │ │ │ -0001dc80: 616e 2065 7874 6572 696f 7220 616c 6765 an exterior alge │ │ │ │ -0001dc90: 6272 610a 0a44 6573 6372 6970 7469 6f6e bra..Description │ │ │ │ -0001dca0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4966 .===========..If │ │ │ │ -0001dcb0: 204d 2c4e 2061 7265 2053 2d6d 6f64 756c M,N are S-modul │ │ │ │ -0001dcc0: 6573 2061 6e6e 6968 696c 6174 6564 2062 es annihilated b │ │ │ │ -0001dcd0: 7920 7468 6520 656c 656d 656e 7473 206f y the elements o │ │ │ │ -0001dce0: 6620 7468 6520 6d61 7472 6978 2066 6620 f the matrix ff │ │ │ │ -0001dcf0: 3d20 2866 5f31 2e2e 665f 6329 2c0a 616e = (f_1..f_c),.an │ │ │ │ -0001dd00: 6420 6b20 6973 2074 6865 2072 6573 6964 d k is the resid │ │ │ │ -0001dd10: 7565 2066 6965 6c64 206f 6620 532c 2074 ue field of S, t │ │ │ │ -0001dd20: 6865 6e20 7468 6520 7363 7269 7074 2065 hen the script e │ │ │ │ -0001dd30: 7874 6572 696f 7254 6f72 4d6f 6475 6c65 xteriorTorModule │ │ │ │ -0001dd40: 2866 2c4d 2920 7265 7475 726e 730a 546f (f,M) returns.To │ │ │ │ -0001dd50: 725e 5328 4d2c 206b 2920 6173 2061 206d r^S(M, k) as a m │ │ │ │ -0001dd60: 6f64 756c 6520 6f76 6572 2061 6e20 6578 odule over an ex │ │ │ │ -0001dd70: 7465 7269 6f72 2061 6c67 6562 7261 206b terior algebra k │ │ │ │ -0001dd80: 3c65 5f31 2c2e 2e2e 2c65 5f63 3e2c 2077 , w │ │ │ │ -0001dd90: 6865 7265 2074 6865 2065 5f69 0a68 6176 here the e_i.hav │ │ │ │ -0001dda0: 6520 6465 6772 6565 2031 2c20 7768 696c e degree 1, whil │ │ │ │ -0001ddb0: 6520 6578 7465 7269 6f72 546f 724d 6f64 e exteriorTorMod │ │ │ │ -0001ddc0: 756c 6528 662c 4d2c 4e29 2072 6574 7572 ule(f,M,N) retur │ │ │ │ -0001ddd0: 6e73 2054 6f72 5e53 284d 2c4e 2920 6173 ns Tor^S(M,N) as │ │ │ │ -0001dde0: 2061 206d 6f64 756c 650a 6f76 6572 2061 a module.over a │ │ │ │ -0001ddf0: 2062 6967 7261 6465 6420 7269 6e67 2053 bigraded ring S │ │ │ │ -0001de00: 4520 3d20 533c 655f 312c 2e2e 2c65 5f63 E = S, where the e_i │ │ │ │ -0001de20: 2068 6176 6520 6465 6772 6565 7320 7b64 have degrees {d │ │ │ │ -0001de30: 5f69 2c31 7d2c 0a77 6865 7265 2064 5f69 _i,1},.where d_i │ │ │ │ -0001de40: 2069 7320 7468 6520 6465 6772 6565 206f is the degree o │ │ │ │ -0001de50: 6620 665f 692e 2054 6865 206d 6f64 756c f f_i. The modul │ │ │ │ -0001de60: 6520 7374 7275 6374 7572 652c 2069 6e20 e structure, in │ │ │ │ -0001de70: 6569 7468 6572 2063 6173 652c 2069 730a either case, is. │ │ │ │ -0001de80: 6465 6669 6e65 6420 6279 2074 6865 2068 defined by the h │ │ │ │ -0001de90: 6f6d 6f74 6f70 6965 7320 666f 7220 7468 omotopies for th │ │ │ │ -0001dea0: 6520 665f 6920 6f6e 2074 6865 2072 6573 e f_i on the res │ │ │ │ -0001deb0: 6f6c 7574 696f 6e20 6f66 204d 2c20 636f olution of M, co │ │ │ │ -0001dec0: 6d70 7574 6564 2062 7920 7468 650a 7363 mputed by the.sc │ │ │ │ -0001ded0: 7269 7074 206d 616b 6548 6f6d 6f74 6f70 ript makeHomotop │ │ │ │ -0001dee0: 6965 7331 2e0a 0a54 6865 2073 6372 6970 ies1...The scrip │ │ │ │ -0001def0: 7473 2063 616c 6c20 6d61 6b65 4d6f 6475 ts call makeModu │ │ │ │ -0001df00: 6c65 2074 6f20 636f 6d70 7574 6520 6120 le to compute a │ │ │ │ -0001df10: 286e 6f6e 2d6d 696e 696d 616c 2920 7072 (non-minimal) pr │ │ │ │ -0001df20: 6573 656e 7461 7469 6f6e 206f 6620 7468 esentation of th │ │ │ │ -0001df30: 6973 0a6d 6f64 756c 652e 0a0a 4672 6f6d is.module...From │ │ │ │ -0001df40: 2074 6865 2064 6573 6372 6970 7469 6f6e the description │ │ │ │ -0001df50: 2062 7920 6d61 7472 6978 2066 6163 746f by matrix facto │ │ │ │ -0001df60: 7269 7a61 7469 6f6e 7320 616e 6420 7468 rizations and th │ │ │ │ -0001df70: 6520 7061 7065 7220 2254 6f72 2061 7320 e paper "Tor as │ │ │ │ -0001df80: 6120 6d6f 6475 6c65 0a6f 7665 7220 616e a module.over an │ │ │ │ -0001df90: 2065 7874 6572 696f 7220 616c 6765 6272 exterior algebr │ │ │ │ -0001dfa0: 6122 206f 6620 4569 7365 6e62 7564 2c20 a" of Eisenbud, │ │ │ │ -0001dfb0: 5065 6576 6120 616e 6420 5363 6872 6579 Peeva and Schrey │ │ │ │ -0001dfc0: 6572 2069 7420 666f 6c6c 6f77 7320 7468 er it follows th │ │ │ │ -0001dfd0: 6174 2077 6865 6e0a 4d20 6973 2061 2068 at when.M is a h │ │ │ │ -0001dfe0: 6967 6820 7379 7a79 6779 2061 6e64 2046 igh syzygy and F │ │ │ │ -0001dff0: 2069 7320 6974 7320 7265 736f 6c75 7469 is its resoluti │ │ │ │ -0001e000: 6f6e 2c20 7468 656e 2074 6865 2070 7265 on, then the pre │ │ │ │ -0001e010: 7365 6e74 6174 696f 6e20 6f66 0a54 6f72 sentation of.Tor │ │ │ │ -0001e020: 284d 2c53 5e31 2f6d 6d29 2061 6c77 6179 (M,S^1/mm) alway │ │ │ │ -0001e030: 7320 6861 7320 6765 6e65 7261 746f 7273 s has generators │ │ │ │ -0001e040: 2069 6e20 6465 6772 6565 7320 302c 312c in degrees 0,1, │ │ │ │ -0001e050: 2063 6f72 7265 7370 6f6e 6469 6e67 2074 corresponding t │ │ │ │ -0001e060: 6f20 7468 650a 7461 7267 6574 7320 616e o the.targets an │ │ │ │ -0001e070: 6420 736f 7572 6365 7320 6f66 2074 6865 d sources of the │ │ │ │ -0001e080: 2073 7461 636b 206f 6620 6d61 7073 2042 stack of maps B │ │ │ │ -0001e090: 2869 292c 2061 6e64 2074 6861 7420 7468 (i), and that th │ │ │ │ -0001e0a0: 6520 7265 736f 6c75 7469 6f6e 2069 730a e resolution is. │ │ │ │ -0001e0b0: 636f 6d70 6f6e 656e 7477 6973 6520 6c69 componentwise li │ │ │ │ -0001e0c0: 6e65 6172 2069 6e20 6120 7375 6974 6162 near in a suitab │ │ │ │ -0001e0d0: 6c65 2073 656e 7365 2e20 496e 2074 6865 le sense. In the │ │ │ │ -0001e0e0: 2066 6f6c 6c6f 7769 6e67 2065 7861 6d70 following examp │ │ │ │ -0001e0f0: 6c65 2c20 7468 6573 6520 6661 6374 730a le, these facts. │ │ │ │ -0001e100: 6172 6520 7665 7269 6669 6564 2e20 5468 are verified. Th │ │ │ │ -0001e110: 6520 546f 7220 6d6f 6475 6c65 2064 6f65 e Tor module doe │ │ │ │ -0001e120: 7320 4e4f 5420 7370 6c69 7420 696e 746f s NOT split into │ │ │ │ -0001e130: 2074 6865 2064 6972 6563 7420 7375 6d20 the direct sum │ │ │ │ -0001e140: 6f66 2074 6865 0a73 7562 6d6f 6475 6c65 of the.submodule │ │ │ │ -0001e150: 7320 6765 6e65 7261 7465 6420 696e 2064 s generated in d │ │ │ │ -0001e160: 6567 7265 6573 2030 2061 6e64 2031 2c20 egrees 0 and 1, │ │ │ │ -0001e170: 686f 7765 7665 722e 0a0a 0a0a 2b2d 2d2d however.....+--- │ │ │ │ +0001da90: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ +0001daa0: 6765 3a20 0a20 2020 2020 2020 2054 203d ge: . T = │ │ │ │ +0001dab0: 2065 7874 6572 696f 7254 6f72 4d6f 6475 exteriorTorModu │ │ │ │ +0001dac0: 6c65 2866 2c46 290a 2020 2020 2020 2020 le(f,F). │ │ │ │ +0001dad0: 5420 3d20 6578 7465 7269 6f72 546f 724d T = exteriorTorM │ │ │ │ +0001dae0: 6f64 756c 6528 662c 4d2c 4e29 0a20 202a odule(f,M,N). * │ │ │ │ +0001daf0: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +0001db00: 2066 2c20 6120 2a6e 6f74 6520 6d61 7472 f, a *note matr │ │ │ │ +0001db10: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ +0001db20: 6329 4d61 7472 6978 2c2c 2031 2078 2063 c)Matrix,, 1 x c │ │ │ │ +0001db30: 2c20 656e 7472 6965 7320 6d75 7374 2062 , entries must b │ │ │ │ +0001db40: 650a 2020 2020 2020 2020 686f 6d6f 746f e. homoto │ │ │ │ +0001db50: 7069 6320 746f 2030 206f 6e20 460a 2020 pic to 0 on F. │ │ │ │ +0001db60: 2020 2020 2a20 4d2c 2061 202a 6e6f 7465 * M, a *note │ │ │ │ +0001db70: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ +0001db80: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ +0001db90: 532d 6d6f 6475 6c65 2061 6e6e 6968 696c S-module annihil │ │ │ │ +0001dba0: 6174 6564 2062 7920 6964 6561 6c0a 2020 ated by ideal. │ │ │ │ +0001dbb0: 2020 2020 2020 660a 2020 2020 2020 2a20 f. * │ │ │ │ +0001dbc0: 4e2c 2061 202a 6e6f 7465 206d 6f64 756c N, a *note modul │ │ │ │ +0001dbd0: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ +0001dbe0: 294d 6f64 756c 652c 2c20 532d 6d6f 6475 )Module,, S-modu │ │ │ │ +0001dbf0: 6c65 2061 6e6e 6968 696c 6174 6564 2062 le annihilated b │ │ │ │ +0001dc00: 7920 6964 6561 6c0a 2020 2020 2020 2020 y ideal. │ │ │ │ +0001dc10: 660a 2020 2a20 4f75 7470 7574 733a 0a20 f. * Outputs:. │ │ │ │ +0001dc20: 2020 2020 202a 2054 2c20 6120 2a6e 6f74 * T, a *not │ │ │ │ +0001dc30: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ +0001dc40: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ +0001dc50: 2054 6f72 5e53 284d 2c4e 2920 6173 2061 Tor^S(M,N) as a │ │ │ │ +0001dc60: 204d 6f64 756c 6520 6f76 6572 0a20 2020 Module over. │ │ │ │ +0001dc70: 2020 2020 2061 6e20 6578 7465 7269 6f72 an exterior │ │ │ │ +0001dc80: 2061 6c67 6562 7261 0a0a 4465 7363 7269 algebra..Descri │ │ │ │ +0001dc90: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +0001dca0: 3d0a 0a49 6620 4d2c 4e20 6172 6520 532d =..If M,N are S- │ │ │ │ +0001dcb0: 6d6f 6475 6c65 7320 616e 6e69 6869 6c61 modules annihila │ │ │ │ +0001dcc0: 7465 6420 6279 2074 6865 2065 6c65 6d65 ted by the eleme │ │ │ │ +0001dcd0: 6e74 7320 6f66 2074 6865 206d 6174 7269 nts of the matri │ │ │ │ +0001dce0: 7820 6666 203d 2028 665f 312e 2e66 5f63 x ff = (f_1..f_c │ │ │ │ +0001dcf0: 292c 0a61 6e64 206b 2069 7320 7468 6520 ),.and k is the │ │ │ │ +0001dd00: 7265 7369 6475 6520 6669 656c 6420 6f66 residue field of │ │ │ │ +0001dd10: 2053 2c20 7468 656e 2074 6865 2073 6372 S, then the scr │ │ │ │ +0001dd20: 6970 7420 6578 7465 7269 6f72 546f 724d ipt exteriorTorM │ │ │ │ +0001dd30: 6f64 756c 6528 662c 4d29 2072 6574 7572 odule(f,M) retur │ │ │ │ +0001dd40: 6e73 0a54 6f72 5e53 284d 2c20 6b29 2061 ns.Tor^S(M, k) a │ │ │ │ +0001dd50: 7320 6120 6d6f 6475 6c65 206f 7665 7220 s a module over │ │ │ │ +0001dd60: 616e 2065 7874 6572 696f 7220 616c 6765 an exterior alge │ │ │ │ +0001dd70: 6272 6120 6b3c 655f 312c 2e2e 2e2c 655f bra k, where the e_ │ │ │ │ +0001dd90: 690a 6861 7665 2064 6567 7265 6520 312c i.have degree 1, │ │ │ │ +0001dda0: 2077 6869 6c65 2065 7874 6572 696f 7254 while exteriorT │ │ │ │ +0001ddb0: 6f72 4d6f 6475 6c65 2866 2c4d 2c4e 2920 orModule(f,M,N) │ │ │ │ +0001ddc0: 7265 7475 726e 7320 546f 725e 5328 4d2c returns Tor^S(M, │ │ │ │ +0001ddd0: 4e29 2061 7320 6120 6d6f 6475 6c65 0a6f N) as a module.o │ │ │ │ +0001dde0: 7665 7220 6120 6269 6772 6164 6564 2072 ver a bigraded r │ │ │ │ +0001ddf0: 696e 6720 5345 203d 2053 3c65 5f31 2c2e ing SE = S, where th │ │ │ │ +0001de10: 6520 655f 6920 6861 7665 2064 6567 7265 e e_i have degre │ │ │ │ +0001de20: 6573 207b 645f 692c 317d 2c0a 7768 6572 es {d_i,1},.wher │ │ │ │ +0001de30: 6520 645f 6920 6973 2074 6865 2064 6567 e d_i is the deg │ │ │ │ +0001de40: 7265 6520 6f66 2066 5f69 2e20 5468 6520 ree of f_i. The │ │ │ │ +0001de50: 6d6f 6475 6c65 2073 7472 7563 7475 7265 module structure │ │ │ │ +0001de60: 2c20 696e 2065 6974 6865 7220 6361 7365 , in either case │ │ │ │ +0001de70: 2c20 6973 0a64 6566 696e 6564 2062 7920 , is.defined by │ │ │ │ +0001de80: 7468 6520 686f 6d6f 746f 7069 6573 2066 the homotopies f │ │ │ │ +0001de90: 6f72 2074 6865 2066 5f69 206f 6e20 7468 or the f_i on th │ │ │ │ +0001dea0: 6520 7265 736f 6c75 7469 6f6e 206f 6620 e resolution of │ │ │ │ +0001deb0: 4d2c 2063 6f6d 7075 7465 6420 6279 2074 M, computed by t │ │ │ │ +0001dec0: 6865 0a73 6372 6970 7420 6d61 6b65 486f he.script makeHo │ │ │ │ +0001ded0: 6d6f 746f 7069 6573 312e 0a0a 5468 6520 motopies1...The │ │ │ │ +0001dee0: 7363 7269 7074 7320 6361 6c6c 206d 616b scripts call mak │ │ │ │ +0001def0: 654d 6f64 756c 6520 746f 2063 6f6d 7075 eModule to compu │ │ │ │ +0001df00: 7465 2061 2028 6e6f 6e2d 6d69 6e69 6d61 te a (non-minima │ │ │ │ +0001df10: 6c29 2070 7265 7365 6e74 6174 696f 6e20 l) presentation │ │ │ │ +0001df20: 6f66 2074 6869 730a 6d6f 6475 6c65 2e0a of this.module.. │ │ │ │ +0001df30: 0a46 726f 6d20 7468 6520 6465 7363 7269 .From the descri │ │ │ │ +0001df40: 7074 696f 6e20 6279 206d 6174 7269 7820 ption by matrix │ │ │ │ +0001df50: 6661 6374 6f72 697a 6174 696f 6e73 2061 factorizations a │ │ │ │ +0001df60: 6e64 2074 6865 2070 6170 6572 2022 546f nd the paper "To │ │ │ │ +0001df70: 7220 6173 2061 206d 6f64 756c 650a 6f76 r as a module.ov │ │ │ │ +0001df80: 6572 2061 6e20 6578 7465 7269 6f72 2061 er an exterior a │ │ │ │ +0001df90: 6c67 6562 7261 2220 6f66 2045 6973 656e lgebra" of Eisen │ │ │ │ +0001dfa0: 6275 642c 2050 6565 7661 2061 6e64 2053 bud, Peeva and S │ │ │ │ +0001dfb0: 6368 7265 7965 7220 6974 2066 6f6c 6c6f chreyer it follo │ │ │ │ +0001dfc0: 7773 2074 6861 7420 7768 656e 0a4d 2069 ws that when.M i │ │ │ │ +0001dfd0: 7320 6120 6869 6768 2073 797a 7967 7920 s a high syzygy │ │ │ │ +0001dfe0: 616e 6420 4620 6973 2069 7473 2072 6573 and F is its res │ │ │ │ +0001dff0: 6f6c 7574 696f 6e2c 2074 6865 6e20 7468 olution, then th │ │ │ │ +0001e000: 6520 7072 6573 656e 7461 7469 6f6e 206f e presentation o │ │ │ │ +0001e010: 660a 546f 7228 4d2c 535e 312f 6d6d 2920 f.Tor(M,S^1/mm) │ │ │ │ +0001e020: 616c 7761 7973 2068 6173 2067 656e 6572 always has gener │ │ │ │ +0001e030: 6174 6f72 7320 696e 2064 6567 7265 6573 ators in degrees │ │ │ │ +0001e040: 2030 2c31 2c20 636f 7272 6573 706f 6e64 0,1, correspond │ │ │ │ +0001e050: 696e 6720 746f 2074 6865 0a74 6172 6765 ing to the.targe │ │ │ │ +0001e060: 7473 2061 6e64 2073 6f75 7263 6573 206f ts and sources o │ │ │ │ +0001e070: 6620 7468 6520 7374 6163 6b20 6f66 206d f the stack of m │ │ │ │ +0001e080: 6170 7320 4228 6929 2c20 616e 6420 7468 aps B(i), and th │ │ │ │ +0001e090: 6174 2074 6865 2072 6573 6f6c 7574 696f at the resolutio │ │ │ │ +0001e0a0: 6e20 6973 0a63 6f6d 706f 6e65 6e74 7769 n is.componentwi │ │ │ │ +0001e0b0: 7365 206c 696e 6561 7220 696e 2061 2073 se linear in a s │ │ │ │ +0001e0c0: 7569 7461 626c 6520 7365 6e73 652e 2049 uitable sense. I │ │ │ │ +0001e0d0: 6e20 7468 6520 666f 6c6c 6f77 696e 6720 n the following │ │ │ │ +0001e0e0: 6578 616d 706c 652c 2074 6865 7365 2066 example, these f │ │ │ │ +0001e0f0: 6163 7473 0a61 7265 2076 6572 6966 6965 acts.are verifie │ │ │ │ +0001e100: 642e 2054 6865 2054 6f72 206d 6f64 756c d. The Tor modul │ │ │ │ +0001e110: 6520 646f 6573 204e 4f54 2073 706c 6974 e does NOT split │ │ │ │ +0001e120: 2069 6e74 6f20 7468 6520 6469 7265 6374 into the direct │ │ │ │ +0001e130: 2073 756d 206f 6620 7468 650a 7375 626d sum of the.subm │ │ │ │ +0001e140: 6f64 756c 6573 2067 656e 6572 6174 6564 odules generated │ │ │ │ +0001e150: 2069 6e20 6465 6772 6565 7320 3020 616e in degrees 0 an │ │ │ │ +0001e160: 6420 312c 2068 6f77 6576 6572 2e0a 0a0a d 1, however.... │ │ │ │ +0001e170: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0001e180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e1c0: 2b0a 7c69 3120 3a20 6b6b 203d 205a 5a2f +.|i1 : kk = ZZ/ │ │ │ │ -0001e1d0: 3130 3120 2020 2020 2020 2020 2020 2020 101 │ │ │ │ +0001e1b0: 2d2d 2d2d 2d2b 0a7c 6931 203a 206b 6b20 -----+.|i1 : kk │ │ │ │ +0001e1c0: 3d20 5a5a 2f31 3031 2020 2020 2020 2020 = ZZ/101 │ │ │ │ +0001e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e200: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001e1f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e240: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001e250: 3120 3d20 6b6b 2020 2020 2020 2020 2020 1 = kk │ │ │ │ +0001e240: 207c 0a7c 6f31 203d 206b 6b20 2020 2020 |.|o1 = kk │ │ │ │ +0001e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e290: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001e280: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e2d0: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ -0001e2e0: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +0001e2c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e2d0: 6f31 203a 2051 756f 7469 656e 7452 696e o1 : QuotientRin │ │ │ │ +0001e2e0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ 0001e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e310: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e320: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0001e310: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001e320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e360: 2d2d 2d2d 2b0a 7c69 3220 3a20 5320 3d20 ----+.|i2 : S = │ │ │ │ -0001e370: 6b6b 5b61 2c62 2c63 5d20 2020 2020 2020 kk[a,b,c] │ │ │ │ +0001e350: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +0001e360: 2053 203d 206b 6b5b 612c 622c 635d 2020 S = kk[a,b,c] │ │ │ │ +0001e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e3a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001e390: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001e3a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e3f0: 7c0a 7c6f 3220 3d20 5320 2020 2020 2020 |.|o2 = S │ │ │ │ +0001e3e0: 2020 2020 207c 0a7c 6f32 203d 2053 2020 |.|o2 = S │ │ │ │ +0001e3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e430: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001e420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e470: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001e480: 3220 3a20 506f 6c79 6e6f 6d69 616c 5269 2 : PolynomialRi │ │ │ │ -0001e490: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +0001e470: 207c 0a7c 6f32 203a 2050 6f6c 796e 6f6d |.|o2 : Polynom │ │ │ │ +0001e480: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ +0001e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e4c0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001e4b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001e4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e500: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ -0001e510: 6620 3d20 6d61 7472 6978 2261 342c 6234 f = matrix"a4,b4 │ │ │ │ -0001e520: 2c63 3422 2020 2020 2020 2020 2020 2020 ,c4" │ │ │ │ +0001e4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001e500: 6933 203a 2066 203d 206d 6174 7269 7822 i3 : f = matrix" │ │ │ │ +0001e510: 6134 2c62 342c 6334 2220 2020 2020 2020 a4,b4,c4" │ │ │ │ +0001e520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e540: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e550: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001e540: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e590: 2020 2020 7c0a 7c6f 3320 3d20 7c20 6134 |.|o3 = | a4 │ │ │ │ -0001e5a0: 2062 3420 6334 207c 2020 2020 2020 2020 b4 c4 | │ │ │ │ +0001e580: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ +0001e590: 207c 2061 3420 6234 2063 3420 7c20 2020 | a4 b4 c4 | │ │ │ │ +0001e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e5d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001e5c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001e5d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e620: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001e630: 3120 2020 2020 2033 2020 2020 2020 2020 1 3 │ │ │ │ +0001e610: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001e620: 2020 2020 2031 2020 2020 2020 3320 2020 1 3 │ │ │ │ +0001e630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e660: 2020 2020 2020 7c0a 7c6f 3320 3a20 4d61 |.|o3 : Ma │ │ │ │ -0001e670: 7472 6978 2053 2020 3c2d 2d20 5320 2020 trix S <-- S │ │ │ │ +0001e650: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +0001e660: 203a 204d 6174 7269 7820 5320 203c 2d2d : Matrix S <-- │ │ │ │ +0001e670: 2053 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 0001e680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e6a0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001e6a0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0001e6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e6f0: 2d2d 2b0a 7c69 3420 3a20 5220 3d20 532f --+.|i4 : R = S/ │ │ │ │ -0001e700: 6964 6561 6c20 6620 2020 2020 2020 2020 ideal f │ │ │ │ +0001e6e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2052 -------+.|i4 : R │ │ │ │ +0001e6f0: 203d 2053 2f69 6465 616c 2066 2020 2020 = S/ideal f │ │ │ │ +0001e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e730: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001e720: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e770: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e780: 7c6f 3420 3d20 5220 2020 2020 2020 2020 |o4 = R │ │ │ │ +0001e770: 2020 207c 0a7c 6f34 203d 2052 2020 2020 |.|o4 = R │ │ │ │ +0001e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e7c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001e7b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001e7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e800: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ -0001e810: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ +0001e7f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001e800: 0a7c 6f34 203a 2051 756f 7469 656e 7452 .|o4 : QuotientR │ │ │ │ +0001e810: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ 0001e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e850: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0001e840: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001e850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e890: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 7020 ------+.|i5 : p │ │ │ │ -0001e8a0: 3d20 6d61 7028 522c 5329 2020 2020 2020 = map(R,S) │ │ │ │ +0001e880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ +0001e890: 203a 2070 203d 206d 6170 2852 2c53 2920 : p = map(R,S) │ │ │ │ +0001e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e8d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001e8d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e920: 2020 7c0a 7c6f 3520 3d20 6d61 7020 2852 |.|o5 = map (R │ │ │ │ -0001e930: 2c20 532c 207b 612c 2062 2c20 637d 2920 , S, {a, b, c}) │ │ │ │ +0001e910: 2020 2020 2020 207c 0a7c 6f35 203d 206d |.|o5 = m │ │ │ │ +0001e920: 6170 2028 522c 2053 2c20 7b61 2c20 622c ap (R, S, {a, b, │ │ │ │ +0001e930: 2063 7d29 2020 2020 2020 2020 2020 2020 c}) │ │ │ │ 0001e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e960: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001e950: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e9a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e9b0: 7c6f 3520 3a20 5269 6e67 4d61 7020 5220 |o5 : RingMap R │ │ │ │ -0001e9c0: 3c2d 2d20 5320 2020 2020 2020 2020 2020 <-- S │ │ │ │ +0001e9a0: 2020 207c 0a7c 6f35 203a 2052 696e 674d |.|o5 : RingM │ │ │ │ +0001e9b0: 6170 2052 203c 2d2d 2053 2020 2020 2020 ap R <-- S │ │ │ │ +0001e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e9f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001e9e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001e9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ea00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ea10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ea20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ea30: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ -0001ea40: 3a20 4d20 3d20 636f 6b65 7220 6d61 7028 : M = coker map( │ │ │ │ -0001ea50: 525e 322c 2052 5e7b 333a 2d31 7d2c 207b R^2, R^{3:-1}, { │ │ │ │ -0001ea60: 7b61 2c62 2c63 7d2c 7b62 2c63 2c61 7d7d {a,b,c},{b,c,a}} │ │ │ │ -0001ea70: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0001ea80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001ea20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001ea30: 0a7c 6936 203a 204d 203d 2063 6f6b 6572 .|i6 : M = coker │ │ │ │ +0001ea40: 206d 6170 2852 5e32 2c20 525e 7b33 3a2d map(R^2, R^{3:- │ │ │ │ +0001ea50: 317d 2c20 7b7b 612c 622c 637d 2c7b 622c 1}, {{a,b,c},{b, │ │ │ │ +0001ea60: 632c 617d 7d29 2020 2020 2020 2020 2020 c,a}}) │ │ │ │ +0001ea70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001ea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ea90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eac0: 2020 2020 2020 7c0a 7c6f 3620 3d20 636f |.|o6 = co │ │ │ │ -0001ead0: 6b65 726e 656c 207c 2061 2062 2063 207c kernel | a b c | │ │ │ │ +0001eab0: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ +0001eac0: 203d 2063 6f6b 6572 6e65 6c20 7c20 6120 = cokernel | a │ │ │ │ +0001ead0: 6220 6320 7c20 2020 2020 2020 2020 2020 b c | │ │ │ │ 0001eae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eb00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001eb10: 2020 2020 2020 2020 2020 2020 207c 2062 | b │ │ │ │ -0001eb20: 2063 2061 207c 2020 2020 2020 2020 2020 c a | │ │ │ │ +0001eb00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001eb10: 2020 7c20 6220 6320 6120 7c20 2020 2020 | b c a | │ │ │ │ +0001eb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eb50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001eb40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eb90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ebb0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0001eb80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001eba0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0001ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ebd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001ebe0: 7c6f 3620 3a20 522d 6d6f 6475 6c65 2c20 |o6 : R-module, │ │ │ │ -0001ebf0: 7175 6f74 6965 6e74 206f 6620 5220 2020 quotient of R │ │ │ │ +0001ebd0: 2020 207c 0a7c 6f36 203a 2052 2d6d 6f64 |.|o6 : R-mod │ │ │ │ +0001ebe0: 756c 652c 2071 756f 7469 656e 7420 6f66 ule, quotient of │ │ │ │ +0001ebf0: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 0001ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ec20: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001ec10: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001ec20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ec30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ec40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ec50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ec60: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ -0001ec70: 3a20 6265 7474 6920 2846 4620 3d66 7265 : betti (FF =fre │ │ │ │ -0001ec80: 6552 6573 6f6c 7574 696f 6e28 204d 2c20 eResolution( M, │ │ │ │ -0001ec90: 4c65 6e67 7468 4c69 6d69 7420 3d3e 3629 LengthLimit =>6) │ │ │ │ -0001eca0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0001ecb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001ec50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001ec60: 0a7c 6937 203a 2062 6574 7469 2028 4646 .|i7 : betti (FF │ │ │ │ +0001ec70: 203d 6672 6565 5265 736f 6c75 7469 6f6e =freeResolution │ │ │ │ +0001ec80: 2820 4d2c 204c 656e 6774 684c 696d 6974 ( M, LengthLimit │ │ │ │ +0001ec90: 203d 3e36 2929 2020 2020 2020 2020 2020 =>6)) │ │ │ │ +0001eca0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001ecb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ecc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ecf0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001ed00: 2020 2020 2030 2031 2032 2033 2034 2020 0 1 2 3 4 │ │ │ │ -0001ed10: 3520 2036 2020 2020 2020 2020 2020 2020 5 6 │ │ │ │ +0001ece0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001ecf0: 2020 2020 2020 2020 2020 3020 3120 3220 0 1 2 │ │ │ │ +0001ed00: 3320 3420 2035 2020 3620 2020 2020 2020 3 4 5 6 │ │ │ │ +0001ed10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ed30: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001ed40: 3720 3d20 746f 7461 6c3a 2032 2033 2034 7 = total: 2 3 4 │ │ │ │ -0001ed50: 2036 2039 2031 3320 3138 2020 2020 2020 6 9 13 18 │ │ │ │ +0001ed30: 207c 0a7c 6f37 203d 2074 6f74 616c 3a20 |.|o7 = total: │ │ │ │ +0001ed40: 3220 3320 3420 3620 3920 3133 2031 3820 2 3 4 6 9 13 18 │ │ │ │ +0001ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ed80: 2020 7c0a 7c20 2020 2020 2020 2020 303a |.| 0: │ │ │ │ -0001ed90: 2032 2033 202e 202e 202e 2020 2e20 202e 2 3 . . . . . │ │ │ │ +0001ed70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001ed80: 2020 2030 3a20 3220 3320 2e20 2e20 2e20 0: 2 3 . . . │ │ │ │ +0001ed90: 202e 2020 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ 0001eda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001edb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001edc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001edd0: 2020 2020 313a 202e 202e 2031 202e 202e 1: . . 1 . . │ │ │ │ -0001ede0: 2020 2e20 202e 2020 2020 2020 2020 2020 . . │ │ │ │ +0001edb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001edc0: 2020 2020 2020 2020 2031 3a20 2e20 2e20 1: . . │ │ │ │ +0001edd0: 3120 2e20 2e20 202e 2020 2e20 2020 2020 1 . . . . │ │ │ │ +0001ede0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001edf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ee00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001ee10: 7c20 2020 2020 2020 2020 323a 202e 202e | 2: . . │ │ │ │ -0001ee20: 2033 2033 202e 2020 2e20 202e 2020 2020 3 3 . . . │ │ │ │ +0001ee00: 2020 207c 0a7c 2020 2020 2020 2020 2032 |.| 2 │ │ │ │ +0001ee10: 3a20 2e20 2e20 3320 3320 2e20 202e 2020 : . . 3 3 . . │ │ │ │ +0001ee20: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 0001ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ee50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001ee60: 333a 202e 202e 202e 2033 2033 2020 2e20 3: . . . 3 3 . │ │ │ │ -0001ee70: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -0001ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ee90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001eea0: 2020 2020 2020 343a 202e 202e 202e 202e 4: . . . . │ │ │ │ -0001eeb0: 2033 2020 3320 202e 2020 2020 2020 2020 3 3 . │ │ │ │ +0001ee40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001ee50: 2020 2020 2033 3a20 2e20 2e20 2e20 3320 3: . . . 3 │ │ │ │ +0001ee60: 3320 202e 2020 2e20 2020 2020 2020 2020 3 . . │ │ │ │ +0001ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ee80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001ee90: 0a7c 2020 2020 2020 2020 2034 3a20 2e20 .| 4: . │ │ │ │ +0001eea0: 2e20 2e20 2e20 3320 2033 2020 2e20 2020 . . . 3 3 . │ │ │ │ +0001eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eee0: 7c0a 7c20 2020 2020 2020 2020 353a 202e |.| 5: . │ │ │ │ -0001eef0: 202e 202e 202e 2033 2020 3920 2036 2020 . . . 3 9 6 │ │ │ │ +0001eed0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001eee0: 2035 3a20 2e20 2e20 2e20 2e20 3320 2039 5: . . . . 3 9 │ │ │ │ +0001eef0: 2020 3620 2020 2020 2020 2020 2020 2020 6 │ │ │ │ 0001ef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001ef30: 2020 363a 202e 202e 202e 202e 202e 2020 6: . . . . . │ │ │ │ -0001ef40: 2e20 2033 2020 2020 2020 2020 2020 2020 . 3 │ │ │ │ +0001ef10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001ef20: 2020 2020 2020 2036 3a20 2e20 2e20 2e20 6: . . . │ │ │ │ +0001ef30: 2e20 2e20 202e 2020 3320 2020 2020 2020 . . . 3 │ │ │ │ +0001ef40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001ef70: 2020 2020 2020 2020 373a 202e 202e 202e 7: . . . │ │ │ │ -0001ef80: 202e 202e 2020 3120 2039 2020 2020 2020 . . 1 9 │ │ │ │ +0001ef60: 207c 0a7c 2020 2020 2020 2020 2037 3a20 |.| 7: │ │ │ │ +0001ef70: 2e20 2e20 2e20 2e20 2e20 2031 2020 3920 . . . . . 1 9 │ │ │ │ +0001ef80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001efb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001efa0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eff0: 2020 2020 2020 2020 7c0a 7c6f 3720 3a20 |.|o7 : │ │ │ │ -0001f000: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +0001efe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001eff0: 6f37 203a 2042 6574 7469 5461 6c6c 7920 o7 : BettiTally │ │ │ │ +0001f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f030: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001f040: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0001f030: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001f040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f080: 2d2d 2d2d 2b0a 7c69 3820 3a20 4d53 203d ----+.|i8 : MS = │ │ │ │ -0001f090: 2070 7275 6e65 2070 7573 6846 6f72 7761 prune pushForwa │ │ │ │ -0001f0a0: 7264 2870 2c20 636f 6b65 7220 4646 2e64 rd(p, coker FF.d │ │ │ │ -0001f0b0: 645f 3629 3b20 2020 2020 2020 2020 2020 d_6); │ │ │ │ -0001f0c0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001f070: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ +0001f080: 204d 5320 3d20 7072 756e 6520 7075 7368 MS = prune push │ │ │ │ +0001f090: 466f 7277 6172 6428 702c 2063 6f6b 6572 Forward(p, coker │ │ │ │ +0001f0a0: 2046 462e 6464 5f36 293b 2020 2020 2020 FF.dd_6); │ │ │ │ +0001f0b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f0c0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0001f0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f110: 2b0a 7c69 3920 3a20 5420 3d20 6578 7465 +.|i9 : T = exte │ │ │ │ -0001f120: 7269 6f72 546f 724d 6f64 756c 6528 662c riorTorModule(f, │ │ │ │ -0001f130: 4d53 293b 2020 2020 2020 2020 2020 2020 MS); │ │ │ │ -0001f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f150: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001f100: 2d2d 2d2d 2d2b 0a7c 6939 203a 2054 203d -----+.|i9 : T = │ │ │ │ +0001f110: 2065 7874 6572 696f 7254 6f72 4d6f 6475 exteriorTorModu │ │ │ │ +0001f120: 6c65 2866 2c4d 5329 3b20 2020 2020 2020 le(f,MS); │ │ │ │ +0001f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f140: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001f150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001f1a0: 3130 203a 2062 6574 7469 2054 2020 2020 10 : betti T │ │ │ │ +0001f190: 2d2b 0a7c 6931 3020 3a20 6265 7474 6920 -+.|i10 : betti │ │ │ │ +0001f1a0: 5420 2020 2020 2020 2020 2020 2020 2020 T │ │ │ │ 0001f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f1d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f220: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001f230: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ +0001f210: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f220: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +0001f230: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0001f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f260: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001f270: 7c6f 3130 203d 2074 6f74 616c 3a20 3834 |o10 = total: 84 │ │ │ │ -0001f280: 2032 3532 2020 2020 2020 2020 2020 2020 252 │ │ │ │ +0001f260: 2020 207c 0a7c 6f31 3020 3d20 746f 7461 |.|o10 = tota │ │ │ │ +0001f270: 6c3a 2038 3420 3235 3220 2020 2020 2020 l: 84 252 │ │ │ │ +0001f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001f2c0: 2030 3a20 3133 2020 3339 2020 2020 2020 0: 13 39 │ │ │ │ +0001f2a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001f2b0: 2020 2020 2020 303a 2031 3320 2033 3920 0: 13 39 │ │ │ │ +0001f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001f300: 2020 2020 2020 2031 3a20 3333 2020 3939 1: 33 99 │ │ │ │ +0001f2e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f2f0: 0a7c 2020 2020 2020 2020 2020 313a 2033 .| 1: 3 │ │ │ │ +0001f300: 3320 2039 3920 2020 2020 2020 2020 2020 3 99 │ │ │ │ 0001f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f340: 7c0a 7c20 2020 2020 2020 2020 2032 3a20 |.| 2: │ │ │ │ -0001f350: 3239 2020 3837 2020 2020 2020 2020 2020 29 87 │ │ │ │ +0001f330: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001f340: 2020 323a 2032 3920 2038 3720 2020 2020 2: 29 87 │ │ │ │ +0001f350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f380: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001f390: 2020 2033 3a20 2039 2020 3237 2020 2020 3: 9 27 │ │ │ │ +0001f370: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001f380: 2020 2020 2020 2020 333a 2020 3920 2032 3: 9 2 │ │ │ │ +0001f390: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ 0001f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f3c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001f3c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001f3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f410: 2020 7c0a 7c6f 3130 203a 2042 6574 7469 |.|o10 : Betti │ │ │ │ -0001f420: 5461 6c6c 7920 2020 2020 2020 2020 2020 Tally │ │ │ │ +0001f400: 2020 2020 2020 207c 0a7c 6f31 3020 3a20 |.|o10 : │ │ │ │ +0001f410: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +0001f420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f450: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001f440: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001f450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0001f4a0: 7c69 3131 203a 2062 6574 7469 2066 7265 |i11 : betti fre │ │ │ │ -0001f4b0: 6552 6573 6f6c 7574 696f 6e20 2850 5420 eResolution (PT │ │ │ │ -0001f4c0: 3d20 7072 756e 6520 542c 204c 656e 6774 = prune T, Lengt │ │ │ │ -0001f4d0: 684c 696d 6974 203d 3e20 3429 2020 2020 hLimit => 4) │ │ │ │ -0001f4e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001f490: 2d2d 2d2b 0a7c 6931 3120 3a20 6265 7474 ---+.|i11 : bett │ │ │ │ +0001f4a0: 6920 6672 6565 5265 736f 6c75 7469 6f6e i freeResolution │ │ │ │ +0001f4b0: 2028 5054 203d 2070 7275 6e65 2054 2c20 (PT = prune T, │ │ │ │ +0001f4c0: 4c65 6e67 7468 4c69 6d69 7420 3d3e 2034 LengthLimit => 4 │ │ │ │ +0001f4d0: 2920 2020 2020 2020 207c 0a7c 2020 2020 ) |.| │ │ │ │ +0001f4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f520: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001f530: 2020 2020 2020 2020 2020 2030 2020 3120 0 1 │ │ │ │ -0001f540: 2032 2020 2033 2020 2034 2020 2020 2020 2 3 4 │ │ │ │ +0001f510: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f520: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001f530: 3020 2031 2020 3220 2020 3320 2020 3420 0 1 2 3 4 │ │ │ │ +0001f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f570: 7c0a 7c6f 3131 203d 2074 6f74 616c 3a20 |.|o11 = total: │ │ │ │ -0001f580: 3331 2035 3520 3837 2031 3237 2031 3735 31 55 87 127 175 │ │ │ │ +0001f560: 2020 2020 207c 0a7c 6f31 3120 3d20 746f |.|o11 = to │ │ │ │ +0001f570: 7461 6c3a 2033 3120 3535 2038 3720 3132 tal: 31 55 87 12 │ │ │ │ +0001f580: 3720 3137 3520 2020 2020 2020 2020 2020 7 175 │ │ │ │ 0001f590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f5b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001f5c0: 2020 2030 3a20 3133 2032 3420 3339 2020 0: 13 24 39 │ │ │ │ -0001f5d0: 3538 2020 3831 2020 2020 2020 2020 2020 58 81 │ │ │ │ +0001f5a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001f5b0: 2020 2020 2020 2020 303a 2031 3320 3234 0: 13 24 │ │ │ │ +0001f5c0: 2033 3920 2035 3820 2038 3120 2020 2020 39 58 81 │ │ │ │ +0001f5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f5f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001f600: 2020 2020 2020 2020 2031 3a20 3138 2033 1: 18 3 │ │ │ │ -0001f610: 3120 3438 2020 3639 2020 3934 2020 2020 1 48 69 94 │ │ │ │ +0001f5f0: 207c 0a7c 2020 2020 2020 2020 2020 313a |.| 1: │ │ │ │ +0001f600: 2031 3820 3331 2034 3820 2036 3920 2039 18 31 48 69 9 │ │ │ │ +0001f610: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 0001f620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f640: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f630: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f680: 2020 2020 2020 2020 7c0a 7c6f 3131 203a |.|o11 : │ │ │ │ -0001f690: 2042 6574 7469 5461 6c6c 7920 2020 2020 BettiTally │ │ │ │ +0001f670: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f680: 6f31 3120 3a20 4265 7474 6954 616c 6c79 o11 : BettiTally │ │ │ │ +0001f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f6c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001f6d0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0001f6c0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001f6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f710: 2d2d 2d2d 2b0a 7c69 3132 203a 2061 6e6e ----+.|i12 : ann │ │ │ │ -0001f720: 2050 5420 2020 2020 2020 2020 2020 2020 PT │ │ │ │ +0001f700: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 ---------+.|i12 │ │ │ │ +0001f710: 3a20 616e 6e20 5054 2020 2020 2020 2020 : ann PT │ │ │ │ +0001f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f750: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001f740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f750: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7a0: 7c0a 7c6f 3132 203d 2069 6465 616c 2865 |.|o12 = ideal(e │ │ │ │ -0001f7b0: 2065 2065 2029 2020 2020 2020 2020 2020 e e ) │ │ │ │ +0001f790: 2020 2020 207c 0a7c 6f31 3220 3d20 6964 |.|o12 = id │ │ │ │ +0001f7a0: 6561 6c28 6520 6520 6520 2920 2020 2020 eal(e e e ) │ │ │ │ +0001f7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001f7f0: 2020 2020 2020 3020 3120 3220 2020 2020 0 1 2 │ │ │ │ +0001f7d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001f7e0: 2020 2020 2020 2020 2020 2030 2031 2032 0 1 2 │ │ │ │ +0001f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f820: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001f820: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f870: 2020 7c0a 7c6f 3132 203a 2049 6465 616c |.|o12 : Ideal │ │ │ │ -0001f880: 206f 6620 6b6b 5b65 202e 2e65 205d 2020 of kk[e ..e ] │ │ │ │ +0001f860: 2020 2020 2020 207c 0a7c 6f31 3220 3a20 |.|o12 : │ │ │ │ +0001f870: 4964 6561 6c20 6f66 206b 6b5b 6520 2e2e Ideal of kk[e .. │ │ │ │ +0001f880: 6520 5d20 2020 2020 2020 2020 2020 2020 e ] │ │ │ │ 0001f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001f8c0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -0001f8d0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001f8a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f8c0: 2020 2030 2020 2032 2020 2020 2020 2020 0 2 │ │ │ │ +0001f8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001f900: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0001f8f0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001f900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f940: 2d2d 2d2d 2b0a 7c69 3133 203a 2050 5430 ----+.|i13 : PT0 │ │ │ │ -0001f950: 203d 2069 6d61 6765 2028 696e 6475 6365 = image (induce │ │ │ │ -0001f960: 644d 6170 2850 542c 636f 7665 7220 5054 dMap(PT,cover PT │ │ │ │ -0001f970: 292a 2028 2863 6f76 6572 2050 5429 5f7b )* ((cover PT)_{ │ │ │ │ -0001f980: 302e 2e31 327d 2929 3b20 7c0a 2b2d 2d2d 0..12})); |.+--- │ │ │ │ +0001f930: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 ---------+.|i13 │ │ │ │ +0001f940: 3a20 5054 3020 3d20 696d 6167 6520 2869 : PT0 = image (i │ │ │ │ +0001f950: 6e64 7563 6564 4d61 7028 5054 2c63 6f76 nducedMap(PT,cov │ │ │ │ +0001f960: 6572 2050 5429 2a20 2828 636f 7665 7220 er PT)* ((cover │ │ │ │ +0001f970: 5054 295f 7b30 2e2e 3132 7d29 293b 207c PT)_{0..12})); | │ │ │ │ +0001f980: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0001f990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f9d0: 2b0a 7c69 3134 203a 2050 5431 203d 2069 +.|i14 : PT1 = i │ │ │ │ -0001f9e0: 6d61 6765 2028 696e 6475 6365 644d 6170 mage (inducedMap │ │ │ │ -0001f9f0: 2850 542c 636f 7665 7220 5054 292a 2028 (PT,cover PT)* ( │ │ │ │ -0001fa00: 2863 6f76 6572 2050 5429 5f7b 3133 2e2e (cover PT)_{13.. │ │ │ │ -0001fa10: 3330 7d29 293b 7c0a 2b2d 2d2d 2d2d 2d2d 30}));|.+------- │ │ │ │ +0001f9c0: 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 5054 -----+.|i14 : PT │ │ │ │ +0001f9d0: 3120 3d20 696d 6167 6520 2869 6e64 7563 1 = image (induc │ │ │ │ +0001f9e0: 6564 4d61 7028 5054 2c63 6f76 6572 2050 edMap(PT,cover P │ │ │ │ +0001f9f0: 5429 2a20 2828 636f 7665 7220 5054 295f T)* ((cover PT)_ │ │ │ │ +0001fa00: 7b31 332e 2e33 307d 2929 3b7c 0a2b 2d2d {13..30}));|.+-- │ │ │ │ +0001fa10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fa20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fa30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fa40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fa50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001fa60: 3135 203a 2062 6574 7469 2066 7265 6552 15 : betti freeR │ │ │ │ -0001fa70: 6573 6f6c 7574 696f 6e28 7072 756e 6520 esolution(prune │ │ │ │ -0001fa80: 5054 302c 204c 656e 6774 684c 696d 6974 PT0, LengthLimit │ │ │ │ -0001fa90: 203d 3e20 3429 2020 2020 2020 2020 2020 => 4) │ │ │ │ -0001faa0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001fa50: 2d2b 0a7c 6931 3520 3a20 6265 7474 6920 -+.|i15 : betti │ │ │ │ +0001fa60: 6672 6565 5265 736f 6c75 7469 6f6e 2870 freeResolution(p │ │ │ │ +0001fa70: 7275 6e65 2050 5430 2c20 4c65 6e67 7468 rune PT0, Length │ │ │ │ +0001fa80: 4c69 6d69 7420 3d3e 2034 2920 2020 2020 Limit => 4) │ │ │ │ +0001fa90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001faa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fae0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001faf0: 2020 2020 2020 2020 2030 2020 3120 2032 0 1 2 │ │ │ │ -0001fb00: 2020 3320 2034 2020 2020 2020 2020 2020 3 4 │ │ │ │ +0001fad0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001fae0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +0001faf0: 2031 2020 3220 2033 2020 3420 2020 2020 1 2 3 4 │ │ │ │ +0001fb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fb20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001fb30: 7c6f 3135 203d 2074 6f74 616c 3a20 3133 |o15 = total: 13 │ │ │ │ -0001fb40: 2032 3420 3339 2035 3820 3831 2020 2020 24 39 58 81 │ │ │ │ +0001fb20: 2020 207c 0a7c 6f31 3520 3d20 746f 7461 |.|o15 = tota │ │ │ │ +0001fb30: 6c3a 2031 3320 3234 2033 3920 3538 2038 l: 13 24 39 58 8 │ │ │ │ +0001fb40: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0001fb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fb70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001fb80: 2030 3a20 3133 2032 3420 3339 2035 3820 0: 13 24 39 58 │ │ │ │ -0001fb90: 3831 2020 2020 2020 2020 2020 2020 2020 81 │ │ │ │ -0001fba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fbb0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001fb60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001fb70: 2020 2020 2020 303a 2031 3320 3234 2033 0: 13 24 3 │ │ │ │ +0001fb80: 3920 3538 2038 3120 2020 2020 2020 2020 9 58 81 │ │ │ │ +0001fb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001fba0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fbb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001fbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fc00: 7c0a 7c6f 3135 203a 2042 6574 7469 5461 |.|o15 : BettiTa │ │ │ │ -0001fc10: 6c6c 7920 2020 2020 2020 2020 2020 2020 lly │ │ │ │ +0001fbf0: 2020 2020 207c 0a7c 6f31 3520 3a20 4265 |.|o15 : Be │ │ │ │ +0001fc00: 7474 6954 616c 6c79 2020 2020 2020 2020 ttiTally │ │ │ │ +0001fc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fc40: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001fc30: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001fc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001fc90: 3136 203a 2062 6574 7469 2066 7265 6552 16 : betti freeR │ │ │ │ -0001fca0: 6573 6f6c 7574 696f 6e28 7072 756e 6520 esolution(prune │ │ │ │ -0001fcb0: 5054 312c 204c 656e 6774 684c 696d 6974 PT1, LengthLimit │ │ │ │ -0001fcc0: 203d 3e20 3429 2020 2020 2020 2020 2020 => 4) │ │ │ │ -0001fcd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001fc80: 2d2b 0a7c 6931 3620 3a20 6265 7474 6920 -+.|i16 : betti │ │ │ │ +0001fc90: 6672 6565 5265 736f 6c75 7469 6f6e 2870 freeResolution(p │ │ │ │ +0001fca0: 7275 6e65 2050 5431 2c20 4c65 6e67 7468 rune PT1, Length │ │ │ │ +0001fcb0: 4c69 6d69 7420 3d3e 2034 2920 2020 2020 Limit => 4) │ │ │ │ +0001fcc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001fcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fd10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001fd20: 2020 2020 2020 2020 2030 2020 3120 2032 0 1 2 │ │ │ │ -0001fd30: 2020 3320 2034 2020 2020 2020 2020 2020 3 4 │ │ │ │ +0001fd00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001fd10: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +0001fd20: 2031 2020 3220 2033 2020 3420 2020 2020 1 2 3 4 │ │ │ │ +0001fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fd50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001fd60: 7c6f 3136 203d 2074 6f74 616c 3a20 3138 |o16 = total: 18 │ │ │ │ -0001fd70: 2032 3820 3339 2035 3120 3634 2020 2020 28 39 51 64 │ │ │ │ +0001fd50: 2020 207c 0a7c 6f31 3620 3d20 746f 7461 |.|o16 = tota │ │ │ │ +0001fd60: 6c3a 2031 3820 3238 2033 3920 3531 2036 l: 18 28 39 51 6 │ │ │ │ +0001fd70: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 0001fd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fda0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001fdb0: 2031 3a20 3138 2032 3820 3339 2035 3120 1: 18 28 39 51 │ │ │ │ -0001fdc0: 3634 2020 2020 2020 2020 2020 2020 2020 64 │ │ │ │ -0001fdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fde0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001fd90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001fda0: 2020 2020 2020 313a 2031 3820 3238 2033 1: 18 28 3 │ │ │ │ +0001fdb0: 3920 3531 2036 3420 2020 2020 2020 2020 9 51 64 │ │ │ │ +0001fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001fdd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fde0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001fdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fe00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fe20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fe30: 7c0a 7c6f 3136 203a 2042 6574 7469 5461 |.|o16 : BettiTa │ │ │ │ -0001fe40: 6c6c 7920 2020 2020 2020 2020 2020 2020 lly │ │ │ │ +0001fe20: 2020 2020 207c 0a7c 6f31 3620 3a20 4265 |.|o16 : Be │ │ │ │ +0001fe30: 7474 6954 616c 6c79 2020 2020 2020 2020 ttiTally │ │ │ │ +0001fe40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fe50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fe60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fe70: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001fe60: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001fe70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fe80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fe90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001feb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001fec0: 3137 203a 2062 6574 7469 2066 7265 6552 17 : betti freeR │ │ │ │ -0001fed0: 6573 6f6c 7574 696f 6e28 7072 756e 6520 esolution(prune │ │ │ │ -0001fee0: 5054 2c20 4c65 6e67 7468 4c69 6d69 7420 PT, LengthLimit │ │ │ │ -0001fef0: 3d3e 2034 2920 2020 2020 2020 2020 2020 => 4) │ │ │ │ -0001ff00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001feb0: 2d2b 0a7c 6931 3720 3a20 6265 7474 6920 -+.|i17 : betti │ │ │ │ +0001fec0: 6672 6565 5265 736f 6c75 7469 6f6e 2870 freeResolution(p │ │ │ │ +0001fed0: 7275 6e65 2050 542c 204c 656e 6774 684c rune PT, LengthL │ │ │ │ +0001fee0: 696d 6974 203d 3e20 3429 2020 2020 2020 imit => 4) │ │ │ │ +0001fef0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ff10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001ff50: 2020 2020 2020 2020 2030 2020 3120 2032 0 1 2 │ │ │ │ -0001ff60: 2020 2033 2020 2034 2020 2020 2020 2020 3 4 │ │ │ │ +0001ff30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001ff40: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +0001ff50: 2031 2020 3220 2020 3320 2020 3420 2020 1 2 3 4 │ │ │ │ +0001ff60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ff70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001ff90: 7c6f 3137 203d 2074 6f74 616c 3a20 3331 |o17 = total: 31 │ │ │ │ -0001ffa0: 2035 3520 3837 2031 3237 2031 3735 2020 55 87 127 175 │ │ │ │ +0001ff80: 2020 207c 0a7c 6f31 3720 3d20 746f 7461 |.|o17 = tota │ │ │ │ +0001ff90: 6c3a 2033 3120 3535 2038 3720 3132 3720 l: 31 55 87 127 │ │ │ │ +0001ffa0: 3137 3520 2020 2020 2020 2020 2020 2020 175 │ │ │ │ 0001ffb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ffd0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001ffe0: 2030 3a20 3133 2032 3420 3339 2020 3538 0: 13 24 39 58 │ │ │ │ -0001fff0: 2020 3831 2020 2020 2020 2020 2020 2020 81 │ │ │ │ -00020000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020010: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00020020: 2020 2020 2020 2031 3a20 3138 2033 3120 1: 18 31 │ │ │ │ -00020030: 3438 2020 3639 2020 3934 2020 2020 2020 48 69 94 │ │ │ │ +0001ffc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001ffd0: 2020 2020 2020 303a 2031 3320 3234 2033 0: 13 24 3 │ │ │ │ +0001ffe0: 3920 2035 3820 2038 3120 2020 2020 2020 9 58 81 │ │ │ │ +0001fff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020000: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020010: 0a7c 2020 2020 2020 2020 2020 313a 2031 .| 1: 1 │ │ │ │ +00020020: 3820 3331 2034 3820 2036 3920 2039 3420 8 31 48 69 94 │ │ │ │ +00020030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020060: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020050: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000200a0: 2020 2020 2020 7c0a 7c6f 3137 203a 2042 |.|o17 : B │ │ │ │ -000200b0: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ +00020090: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000200a0: 3720 3a20 4265 7474 6954 616c 6c79 2020 7 : BettiTally │ │ │ │ +000200b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000200c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000200d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000200e0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000200e0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 000200f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020130: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ -00020140: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -00020150: 6520 6d61 6b65 4d6f 6475 6c65 3a20 6d61 e makeModule: ma │ │ │ │ -00020160: 6b65 4d6f 6475 6c65 2c20 2d2d 206d 616b keModule, -- mak │ │ │ │ -00020170: 6573 2061 204d 6f64 756c 6520 6f75 7420 es a Module out │ │ │ │ -00020180: 6f66 2061 2063 6f6c 6c65 6374 696f 6e20 of a collection │ │ │ │ -00020190: 6f66 0a20 2020 206d 6f64 756c 6573 2061 of. modules a │ │ │ │ -000201a0: 6e64 206d 6170 730a 0a57 6179 7320 746f nd maps..Ways to │ │ │ │ -000201b0: 2075 7365 2065 7874 6572 696f 7254 6f72 use exteriorTor │ │ │ │ -000201c0: 4d6f 6475 6c65 3a0a 3d3d 3d3d 3d3d 3d3d Module:.======== │ │ │ │ -000201d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000201e0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2265 7874 ======.. * "ext │ │ │ │ -000201f0: 6572 696f 7254 6f72 4d6f 6475 6c65 284d eriorTorModule(M │ │ │ │ -00020200: 6174 7269 782c 4d6f 6475 6c65 2922 0a20 atrix,Module)". │ │ │ │ -00020210: 202a 2022 6578 7465 7269 6f72 546f 724d * "exteriorTorM │ │ │ │ -00020220: 6f64 756c 6528 4d61 7472 6978 2c4d 6f64 odule(Matrix,Mod │ │ │ │ -00020230: 756c 652c 4d6f 6475 6c65 2922 0a0a 466f ule,Module)"..Fo │ │ │ │ -00020240: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -00020250: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00020260: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -00020270: 2a6e 6f74 6520 6578 7465 7269 6f72 546f *note exteriorTo │ │ │ │ -00020280: 724d 6f64 756c 653a 2065 7874 6572 696f rModule: exterio │ │ │ │ -00020290: 7254 6f72 4d6f 6475 6c65 2c20 6973 2061 rTorModule, is a │ │ │ │ -000202a0: 202a 6e6f 7465 206d 6574 686f 640a 6675 *note method.fu │ │ │ │ -000202b0: 6e63 7469 6f6e 3a20 284d 6163 6175 6c61 nction: (Macaula │ │ │ │ -000202c0: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ -000202d0: 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d tion,...-------- │ │ │ │ +00020120: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ +00020130: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ +00020140: 202a 6e6f 7465 206d 616b 654d 6f64 756c *note makeModul │ │ │ │ +00020150: 653a 206d 616b 654d 6f64 756c 652c 202d e: makeModule, - │ │ │ │ +00020160: 2d20 6d61 6b65 7320 6120 4d6f 6475 6c65 - makes a Module │ │ │ │ +00020170: 206f 7574 206f 6620 6120 636f 6c6c 6563 out of a collec │ │ │ │ +00020180: 7469 6f6e 206f 660a 2020 2020 6d6f 6475 tion of. modu │ │ │ │ +00020190: 6c65 7320 616e 6420 6d61 7073 0a0a 5761 les and maps..Wa │ │ │ │ +000201a0: 7973 2074 6f20 7573 6520 6578 7465 7269 ys to use exteri │ │ │ │ +000201b0: 6f72 546f 724d 6f64 756c 653a 0a3d 3d3d orTorModule:.=== │ │ │ │ +000201c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000201d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +000201e0: 2022 6578 7465 7269 6f72 546f 724d 6f64 "exteriorTorMod │ │ │ │ +000201f0: 756c 6528 4d61 7472 6978 2c4d 6f64 756c ule(Matrix,Modul │ │ │ │ +00020200: 6529 220a 2020 2a20 2265 7874 6572 696f e)". * "exterio │ │ │ │ +00020210: 7254 6f72 4d6f 6475 6c65 284d 6174 7269 rTorModule(Matri │ │ │ │ +00020220: 782c 4d6f 6475 6c65 2c4d 6f64 756c 6529 x,Module,Module) │ │ │ │ +00020230: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +00020240: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00020250: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00020260: 6a65 6374 202a 6e6f 7465 2065 7874 6572 ject *note exter │ │ │ │ +00020270: 696f 7254 6f72 4d6f 6475 6c65 3a20 6578 iorTorModule: ex │ │ │ │ +00020280: 7465 7269 6f72 546f 724d 6f64 756c 652c teriorTorModule, │ │ │ │ +00020290: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ +000202a0: 6f64 0a66 756e 6374 696f 6e3a 2028 4d61 od.function: (Ma │ │ │ │ +000202b0: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ +000202c0: 6446 756e 6374 696f 6e2c 2e0a 0a2d 2d2d dFunction,...--- │ │ │ │ +000202d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000202e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000202f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020320: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -00020330: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -00020340: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -00020350: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -00020360: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -00020370: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -00020380: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ -00020390: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ -000203a0: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ -000203b0: 6d32 3a34 3138 323a 302e 0a1f 0a46 696c m2:4182:0....Fil │ │ │ │ -000203c0: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ -000203d0: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -000203e0: 6e73 2e69 6e66 6f2c 204e 6f64 653a 2065 ns.info, Node: e │ │ │ │ -000203f0: 7874 4973 4f6e 6550 6f6c 796e 6f6d 6961 xtIsOnePolynomia │ │ │ │ -00020400: 6c2c 204e 6578 743a 2045 7874 4d6f 6475 l, Next: ExtModu │ │ │ │ -00020410: 6c65 2c20 5072 6576 3a20 6578 7465 7269 le, Prev: exteri │ │ │ │ -00020420: 6f72 546f 724d 6f64 756c 652c 2055 703a orTorModule, Up: │ │ │ │ -00020430: 2054 6f70 0a0a 6578 7449 734f 6e65 506f Top..extIsOnePo │ │ │ │ -00020440: 6c79 6e6f 6d69 616c 202d 2d20 6368 6563 lynomial -- chec │ │ │ │ -00020450: 6b20 7768 6574 6865 7220 7468 6520 4869 k whether the Hi │ │ │ │ -00020460: 6c62 6572 7420 6675 6e63 7469 6f6e 206f lbert function o │ │ │ │ -00020470: 6620 4578 7428 4d2c 6b29 2069 7320 6f6e f Ext(M,k) is on │ │ │ │ -00020480: 6520 706f 6c79 6e6f 6d69 616c 0a2a 2a2a e polynomial.*** │ │ │ │ +00020310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +00020320: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +00020330: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +00020340: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +00020350: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +00020360: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +00020370: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +00020380: 6765 732f 0a43 6f6d 706c 6574 6549 6e74 ges/.CompleteInt │ │ │ │ +00020390: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ +000203a0: 696f 6e73 2e6d 323a 3431 3832 3a30 2e0a ions.m2:4182:0.. │ │ │ │ +000203b0: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ +000203c0: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +000203d0: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ +000203e0: 6465 3a20 6578 7449 734f 6e65 506f 6c79 de: extIsOnePoly │ │ │ │ +000203f0: 6e6f 6d69 616c 2c20 4e65 7874 3a20 4578 nomial, Next: Ex │ │ │ │ +00020400: 744d 6f64 756c 652c 2050 7265 763a 2065 tModule, Prev: e │ │ │ │ +00020410: 7874 6572 696f 7254 6f72 4d6f 6475 6c65 xteriorTorModule │ │ │ │ +00020420: 2c20 5570 3a20 546f 700a 0a65 7874 4973 , Up: Top..extIs │ │ │ │ +00020430: 4f6e 6550 6f6c 796e 6f6d 6961 6c20 2d2d OnePolynomial -- │ │ │ │ +00020440: 2063 6865 636b 2077 6865 7468 6572 2074 check whether t │ │ │ │ +00020450: 6865 2048 696c 6265 7274 2066 756e 6374 he Hilbert funct │ │ │ │ +00020460: 696f 6e20 6f66 2045 7874 284d 2c6b 2920 ion of Ext(M,k) │ │ │ │ +00020470: 6973 206f 6e65 2070 6f6c 796e 6f6d 6961 is one polynomia │ │ │ │ +00020480: 6c0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a l.************** │ │ │ │ 00020490: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000204a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000204b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000204c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000204d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000204e0: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -000204f0: 0a20 2020 2020 2020 2028 702c 7429 203d . (p,t) = │ │ │ │ -00020500: 2065 7874 4973 4f6e 6550 6f6c 796e 6f6d extIsOnePolynom │ │ │ │ -00020510: 6961 6c20 4d0a 2020 2a20 496e 7075 7473 ial M. * Inputs │ │ │ │ -00020520: 3a0a 2020 2020 2020 2a20 4d2c 2061 202a :. * M, a * │ │ │ │ -00020530: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -00020540: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -00020550: 652c 2c20 6d6f 6475 6c65 206f 7665 7220 e,, module over │ │ │ │ -00020560: 6120 636f 6d70 6c65 7465 0a20 2020 2020 a complete. │ │ │ │ -00020570: 2020 2069 6e74 6572 7365 6374 696f 6e0a intersection. │ │ │ │ -00020580: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ -00020590: 2020 202a 2070 2c20 6120 2a6e 6f74 6520 * p, a *note │ │ │ │ -000205a0: 7269 6e67 2065 6c65 6d65 6e74 3a20 284d ring element: (M │ │ │ │ -000205b0: 6163 6175 6c61 7932 446f 6329 5269 6e67 acaulay2Doc)Ring │ │ │ │ -000205c0: 456c 656d 656e 742c 2c20 7028 7a29 3d70 Element,, p(z)=p │ │ │ │ -000205d0: 6528 7a2f 3229 2c0a 2020 2020 2020 2020 e(z/2),. │ │ │ │ -000205e0: 7768 6572 6520 7065 2069 7320 7468 6520 where pe is the │ │ │ │ -000205f0: 4869 6c62 6572 7420 706f 6c79 206f 6620 Hilbert poly of │ │ │ │ -00020600: 4578 745e 7b65 7665 6e7d 284d 2c6b 290a Ext^{even}(M,k). │ │ │ │ -00020610: 2020 2020 2020 2a20 742c 2061 202a 6e6f * t, a *no │ │ │ │ -00020620: 7465 2042 6f6f 6c65 616e 2076 616c 7565 te Boolean value │ │ │ │ -00020630: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00020640: 426f 6f6c 6561 6e2c 2c20 7472 7565 2069 Boolean,, true i │ │ │ │ -00020650: 6620 7468 6520 6576 656e 2061 6e64 0a20 f the even and. │ │ │ │ -00020660: 2020 2020 2020 206f 6464 2070 6f6c 796e odd polyn │ │ │ │ -00020670: 6f6d 6961 6c73 206d 6174 6368 2074 6f20 omials match to │ │ │ │ -00020680: 666f 726d 206f 6e65 2070 6f6c 796e 6f6d form one polynom │ │ │ │ -00020690: 6961 6c0a 0a44 6573 6372 6970 7469 6f6e ial..Description │ │ │ │ -000206a0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 436f .===========..Co │ │ │ │ -000206b0: 6d70 7574 6573 2074 6865 2048 696c 6265 mputes the Hilbe │ │ │ │ -000206c0: 7274 2070 6f6c 796e 6f6d 6961 6c73 2070 rt polynomials p │ │ │ │ -000206d0: 6528 7a29 2c20 706f 287a 2920 6f66 2065 e(z), po(z) of e │ │ │ │ -000206e0: 7665 6e45 7874 4d6f 6475 6c65 2061 6e64 venExtModule and │ │ │ │ -000206f0: 0a6f 6464 4578 744d 6f64 756c 652e 2049 .oddExtModule. I │ │ │ │ -00020700: 7420 7265 7475 726e 7320 7065 287a 2f32 t returns pe(z/2 │ │ │ │ -00020710: 292c 2061 6e64 2063 6f6d 7061 7265 7320 ), and compares │ │ │ │ -00020720: 746f 2073 6565 2077 6865 7468 6572 2074 to see whether t │ │ │ │ -00020730: 6869 7320 6973 2065 7175 616c 2074 6f0a his is equal to. │ │ │ │ -00020740: 706f 287a 2f32 2d31 2f32 292e 2041 7672 po(z/2-1/2). Avr │ │ │ │ -00020750: 616d 6f76 2c20 5365 6365 6c65 616e 7520 amov, Seceleanu │ │ │ │ -00020760: 616e 6420 5a68 656e 6720 6861 7665 2070 and Zheng have p │ │ │ │ -00020770: 726f 7665 6e20 7468 6174 2069 6620 7468 roven that if th │ │ │ │ -00020780: 6520 6964 6561 6c20 6f66 0a71 7561 6472 e ideal of.quadr │ │ │ │ -00020790: 6174 6963 206c 6561 6469 6e67 2066 6f72 atic leading for │ │ │ │ -000207a0: 6d73 206f 6620 6120 636f 6d70 6c65 7465 ms of a complete │ │ │ │ -000207b0: 2069 6e74 6572 7365 6374 696f 6e20 6f66 intersection of │ │ │ │ -000207c0: 2063 6f64 696d 656e 7369 6f6e 2063 2067 codimension c g │ │ │ │ -000207d0: 656e 6572 6174 6520 616e 0a69 6465 616c enerate an.ideal │ │ │ │ -000207e0: 206f 6620 636f 6469 6d65 6e73 696f 6e20 of codimension │ │ │ │ -000207f0: 6174 206c 6561 7374 2063 2d31 2c20 7468 at least c-1, th │ │ │ │ -00020800: 656e 2074 6865 2042 6574 7469 206e 756d en the Betti num │ │ │ │ -00020810: 6265 7273 206f 6620 616e 7920 6d6f 6475 bers of any modu │ │ │ │ -00020820: 6c65 2067 726f 772c 0a65 7665 6e74 7561 le grow,.eventua │ │ │ │ -00020830: 6c6c 792c 2061 7320 6120 7369 6e67 6c65 lly, as a single │ │ │ │ -00020840: 2070 6f6c 796e 6f6d 6961 6c20 2869 6e73 polynomial (ins │ │ │ │ -00020850: 7465 6164 206f 6620 7265 7175 6972 696e tead of requirin │ │ │ │ -00020860: 6720 7365 7061 7261 7465 2070 6f6c 796e g separate polyn │ │ │ │ -00020870: 6f6d 6961 6c73 0a66 6f72 2065 7665 6e20 omials.for even │ │ │ │ -00020880: 616e 6420 6f64 6420 7465 726d 732e 2920 and odd terms.) │ │ │ │ -00020890: 5468 6973 2073 6372 6970 7420 6368 6563 This script chec │ │ │ │ -000208a0: 6b73 2074 6865 2072 6573 756c 7420 696e ks the result in │ │ │ │ -000208b0: 2074 6865 2068 6f6d 6f67 656e 656f 7573 the homogeneous │ │ │ │ -000208c0: 2063 6173 650a 2869 6e20 7768 6963 6820 case.(in which │ │ │ │ -000208d0: 6361 7365 2074 6865 2063 6f6e 6469 7469 case the conditi │ │ │ │ -000208e0: 6f6e 2069 7320 6e65 6365 7373 6172 7920 on is necessary │ │ │ │ -000208f0: 616e 6420 7375 6666 6963 6965 6e74 2e29 and sufficient.) │ │ │ │ -00020900: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +000204d0: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ +000204e0: 6167 653a 200a 2020 2020 2020 2020 2870 age: . (p │ │ │ │ +000204f0: 2c74 2920 3d20 6578 7449 734f 6e65 506f ,t) = extIsOnePo │ │ │ │ +00020500: 6c79 6e6f 6d69 616c 204d 0a20 202a 2049 lynomial M. * I │ │ │ │ +00020510: 6e70 7574 733a 0a20 2020 2020 202a 204d nputs:. * M │ │ │ │ +00020520: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +00020530: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00020540: 4d6f 6475 6c65 2c2c 206d 6f64 756c 6520 Module,, module │ │ │ │ +00020550: 6f76 6572 2061 2063 6f6d 706c 6574 650a over a complete. │ │ │ │ +00020560: 2020 2020 2020 2020 696e 7465 7273 6563 intersec │ │ │ │ +00020570: 7469 6f6e 0a20 202a 204f 7574 7075 7473 tion. * Outputs │ │ │ │ +00020580: 3a0a 2020 2020 2020 2a20 702c 2061 202a :. * p, a * │ │ │ │ +00020590: 6e6f 7465 2072 696e 6720 656c 656d 656e note ring elemen │ │ │ │ +000205a0: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ +000205b0: 2952 696e 6745 6c65 6d65 6e74 2c2c 2070 )RingElement,, p │ │ │ │ +000205c0: 287a 293d 7065 287a 2f32 292c 0a20 2020 (z)=pe(z/2),. │ │ │ │ +000205d0: 2020 2020 2077 6865 7265 2070 6520 6973 where pe is │ │ │ │ +000205e0: 2074 6865 2048 696c 6265 7274 2070 6f6c the Hilbert pol │ │ │ │ +000205f0: 7920 6f66 2045 7874 5e7b 6576 656e 7d28 y of Ext^{even}( │ │ │ │ +00020600: 4d2c 6b29 0a20 2020 2020 202a 2074 2c20 M,k). * t, │ │ │ │ +00020610: 6120 2a6e 6f74 6520 426f 6f6c 6561 6e20 a *note Boolean │ │ │ │ +00020620: 7661 6c75 653a 2028 4d61 6361 756c 6179 value: (Macaulay │ │ │ │ +00020630: 3244 6f63 2942 6f6f 6c65 616e 2c2c 2074 2Doc)Boolean,, t │ │ │ │ +00020640: 7275 6520 6966 2074 6865 2065 7665 6e20 rue if the even │ │ │ │ +00020650: 616e 640a 2020 2020 2020 2020 6f64 6420 and. odd │ │ │ │ +00020660: 706f 6c79 6e6f 6d69 616c 7320 6d61 7463 polynomials matc │ │ │ │ +00020670: 6820 746f 2066 6f72 6d20 6f6e 6520 706f h to form one po │ │ │ │ +00020680: 6c79 6e6f 6d69 616c 0a0a 4465 7363 7269 lynomial..Descri │ │ │ │ +00020690: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +000206a0: 3d0a 0a43 6f6d 7075 7465 7320 7468 6520 =..Computes the │ │ │ │ +000206b0: 4869 6c62 6572 7420 706f 6c79 6e6f 6d69 Hilbert polynomi │ │ │ │ +000206c0: 616c 7320 7065 287a 292c 2070 6f28 7a29 als pe(z), po(z) │ │ │ │ +000206d0: 206f 6620 6576 656e 4578 744d 6f64 756c of evenExtModul │ │ │ │ +000206e0: 6520 616e 640a 6f64 6445 7874 4d6f 6475 e and.oddExtModu │ │ │ │ +000206f0: 6c65 2e20 4974 2072 6574 7572 6e73 2070 le. It returns p │ │ │ │ +00020700: 6528 7a2f 3229 2c20 616e 6420 636f 6d70 e(z/2), and comp │ │ │ │ +00020710: 6172 6573 2074 6f20 7365 6520 7768 6574 ares to see whet │ │ │ │ +00020720: 6865 7220 7468 6973 2069 7320 6571 7561 her this is equa │ │ │ │ +00020730: 6c20 746f 0a70 6f28 7a2f 322d 312f 3229 l to.po(z/2-1/2) │ │ │ │ +00020740: 2e20 4176 7261 6d6f 762c 2053 6563 656c . Avramov, Secel │ │ │ │ +00020750: 6561 6e75 2061 6e64 205a 6865 6e67 2068 eanu and Zheng h │ │ │ │ +00020760: 6176 6520 7072 6f76 656e 2074 6861 7420 ave proven that │ │ │ │ +00020770: 6966 2074 6865 2069 6465 616c 206f 660a if the ideal of. │ │ │ │ +00020780: 7175 6164 7261 7469 6320 6c65 6164 696e quadratic leadin │ │ │ │ +00020790: 6720 666f 726d 7320 6f66 2061 2063 6f6d g forms of a com │ │ │ │ +000207a0: 706c 6574 6520 696e 7465 7273 6563 7469 plete intersecti │ │ │ │ +000207b0: 6f6e 206f 6620 636f 6469 6d65 6e73 696f on of codimensio │ │ │ │ +000207c0: 6e20 6320 6765 6e65 7261 7465 2061 6e0a n c generate an. │ │ │ │ +000207d0: 6964 6561 6c20 6f66 2063 6f64 696d 656e ideal of codimen │ │ │ │ +000207e0: 7369 6f6e 2061 7420 6c65 6173 7420 632d sion at least c- │ │ │ │ +000207f0: 312c 2074 6865 6e20 7468 6520 4265 7474 1, then the Bett │ │ │ │ +00020800: 6920 6e75 6d62 6572 7320 6f66 2061 6e79 i numbers of any │ │ │ │ +00020810: 206d 6f64 756c 6520 6772 6f77 2c0a 6576 module grow,.ev │ │ │ │ +00020820: 656e 7475 616c 6c79 2c20 6173 2061 2073 entually, as a s │ │ │ │ +00020830: 696e 676c 6520 706f 6c79 6e6f 6d69 616c ingle polynomial │ │ │ │ +00020840: 2028 696e 7374 6561 6420 6f66 2072 6571 (instead of req │ │ │ │ +00020850: 7569 7269 6e67 2073 6570 6172 6174 6520 uiring separate │ │ │ │ +00020860: 706f 6c79 6e6f 6d69 616c 730a 666f 7220 polynomials.for │ │ │ │ +00020870: 6576 656e 2061 6e64 206f 6464 2074 6572 even and odd ter │ │ │ │ +00020880: 6d73 2e29 2054 6869 7320 7363 7269 7074 ms.) This script │ │ │ │ +00020890: 2063 6865 636b 7320 7468 6520 7265 7375 checks the resu │ │ │ │ +000208a0: 6c74 2069 6e20 7468 6520 686f 6d6f 6765 lt in the homoge │ │ │ │ +000208b0: 6e65 6f75 7320 6361 7365 0a28 696e 2077 neous case.(in w │ │ │ │ +000208c0: 6869 6368 2063 6173 6520 7468 6520 636f hich case the co │ │ │ │ +000208d0: 6e64 6974 696f 6e20 6973 206e 6563 6573 ndition is neces │ │ │ │ +000208e0: 7361 7279 2061 6e64 2073 7566 6669 6369 sary and suffici │ │ │ │ +000208f0: 656e 742e 290a 0a2b 2d2d 2d2d 2d2d 2d2d ent.)..+-------- │ │ │ │ +00020900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00020940: 203a 2052 313d 5a5a 2f31 3031 5b61 2c62 : R1=ZZ/101[a,b │ │ │ │ -00020950: 2c63 5d2f 6964 6561 6c28 615e 322c 625e ,c]/ideal(a^2,b^ │ │ │ │ -00020960: 322c 635e 3529 2020 2020 2020 2020 2020 2,c^5) │ │ │ │ -00020970: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00020930: 2b0a 7c69 3120 3a20 5231 3d5a 5a2f 3130 +.|i1 : R1=ZZ/10 │ │ │ │ +00020940: 315b 612c 622c 635d 2f69 6465 616c 2861 1[a,b,c]/ideal(a │ │ │ │ +00020950: 5e32 2c62 5e32 2c63 5e35 2920 2020 2020 ^2,b^2,c^5) │ │ │ │ +00020960: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00020970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000209a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000209b0: 207c 0a7c 6f31 203d 2052 3120 2020 2020 |.|o1 = R1 │ │ │ │ +000209a0: 2020 2020 2020 7c0a 7c6f 3120 3d20 5231 |.|o1 = R1 │ │ │ │ +000209b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000209c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000209d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000209e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000209e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000209f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a20: 2020 2020 2020 207c 0a7c 6f31 203a 2051 |.|o1 : Q │ │ │ │ -00020a30: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +00020a10: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00020a20: 3120 3a20 5175 6f74 6965 6e74 5269 6e67 1 : QuotientRing │ │ │ │ +00020a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a60: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00020a50: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00020a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00020aa0: 6932 203a 2052 323d 5a5a 2f31 3031 5b61 i2 : R2=ZZ/101[a │ │ │ │ -00020ab0: 2c62 2c63 5d2f 6964 6561 6c28 615e 332c ,b,c]/ideal(a^3, │ │ │ │ -00020ac0: 625e 3329 2020 2020 2020 2020 2020 2020 b^3) │ │ │ │ -00020ad0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00020a90: 2d2d 2b0a 7c69 3220 3a20 5232 3d5a 5a2f --+.|i2 : R2=ZZ/ │ │ │ │ +00020aa0: 3130 315b 612c 622c 635d 2f69 6465 616c 101[a,b,c]/ideal │ │ │ │ +00020ab0: 2861 5e33 2c62 5e33 2920 2020 2020 2020 (a^3,b^3) │ │ │ │ +00020ac0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b10: 2020 207c 0a7c 6f32 203d 2052 3220 2020 |.|o2 = R2 │ │ │ │ +00020b00: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ +00020b10: 5232 2020 2020 2020 2020 2020 2020 2020 R2 │ │ │ │ 00020b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020b50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00020b40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b80: 2020 2020 2020 2020 207c 0a7c 6f32 203a |.|o2 : │ │ │ │ -00020b90: 2051 756f 7469 656e 7452 696e 6720 2020 QuotientRing │ │ │ │ +00020b70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020b80: 7c6f 3220 3a20 5175 6f74 6965 6e74 5269 |o2 : QuotientRi │ │ │ │ +00020b90: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 00020ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020bc0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00020bb0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00020bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00020c00: 0a7c 6933 203a 2065 7874 4973 4f6e 6550 .|i3 : extIsOneP │ │ │ │ -00020c10: 6f6c 796e 6f6d 6961 6c20 636f 6b65 7220 olynomial coker │ │ │ │ -00020c20: 7261 6e64 6f6d 2852 315e 7b30 2c31 7d2c random(R1^{0,1}, │ │ │ │ -00020c30: 5231 5e7b 333a 2d31 7d29 7c0a 7c20 2020 R1^{3:-1})|.| │ │ │ │ +00020bf0: 2d2d 2d2d 2b0a 7c69 3320 3a20 6578 7449 ----+.|i3 : extI │ │ │ │ +00020c00: 734f 6e65 506f 6c79 6e6f 6d69 616c 2063 sOnePolynomial c │ │ │ │ +00020c10: 6f6b 6572 2072 616e 646f 6d28 5231 5e7b oker random(R1^{ │ │ │ │ +00020c20: 302c 317d 2c52 315e 7b33 3a2d 317d 297c 0,1},R1^{3:-1})| │ │ │ │ +00020c30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c70: 2020 2020 207c 0a7c 2020 2020 2020 3120 |.| 1 │ │ │ │ -00020c80: 3220 2020 3120 2020 2020 2020 2020 2020 2 1 │ │ │ │ +00020c60: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00020c70: 2020 2031 2032 2020 2031 2020 2020 2020 1 2 1 │ │ │ │ +00020c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020cb0: 7c0a 7c6f 3320 3d20 282d 7a20 202d 202d |.|o3 = (-z - - │ │ │ │ -00020cc0: 7a20 2b20 332c 2074 7275 6529 2020 2020 z + 3, true) │ │ │ │ +00020ca0: 2020 2020 207c 0a7c 6f33 203d 2028 2d7a |.|o3 = (-z │ │ │ │ +00020cb0: 2020 2d20 2d7a 202b 2033 2c20 7472 7565 - -z + 3, true │ │ │ │ +00020cc0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00020cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ce0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00020cf0: 2020 2020 3220 2020 2020 3220 2020 2020 2 2 │ │ │ │ +00020ce0: 7c0a 7c20 2020 2020 2032 2020 2020 2032 |.| 2 2 │ │ │ │ +00020cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020d20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00020d10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00020d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020d60: 207c 0a7c 6f33 203a 2053 6571 7565 6e63 |.|o3 : Sequenc │ │ │ │ -00020d70: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00020d50: 2020 2020 2020 7c0a 7c6f 3320 3a20 5365 |.|o3 : Se │ │ │ │ +00020d60: 7175 656e 6365 2020 2020 2020 2020 2020 quence │ │ │ │ +00020d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020d90: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00020d90: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00020da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020dd0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2065 -------+.|i4 : e │ │ │ │ -00020de0: 7874 4973 4f6e 6550 6f6c 796e 6f6d 6961 xtIsOnePolynomia │ │ │ │ -00020df0: 6c20 636f 6b65 7220 7261 6e64 6f6d 2852 l coker random(R │ │ │ │ -00020e00: 325e 7b30 2c31 7d2c 5232 5e7b 333a 2d31 2^{0,1},R2^{3:-1 │ │ │ │ -00020e10: 7d29 7c0a 7c20 2020 2020 2020 2020 2020 })|.| │ │ │ │ +00020dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00020dd0: 3420 3a20 6578 7449 734f 6e65 506f 6c79 4 : extIsOnePoly │ │ │ │ +00020de0: 6e6f 6d69 616c 2063 6f6b 6572 2072 616e nomial coker ran │ │ │ │ +00020df0: 646f 6d28 5232 5e7b 302c 317d 2c52 325e dom(R2^{0,1},R2^ │ │ │ │ +00020e00: 7b33 3a2d 317d 297c 0a7c 2020 2020 2020 {3:-1})|.| │ │ │ │ +00020e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020e50: 6f34 203d 2028 337a 202d 2032 2c20 6661 o4 = (3z - 2, fa │ │ │ │ -00020e60: 6c73 6529 2020 2020 2020 2020 2020 2020 lse) │ │ │ │ -00020e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00020e40: 2020 7c0a 7c6f 3420 3d20 2833 7a20 2d20 |.|o4 = (3z - │ │ │ │ +00020e50: 322c 2066 616c 7365 2920 2020 2020 2020 2, false) │ │ │ │ +00020e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020e70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ec0: 2020 207c 0a7c 6f34 203a 2053 6571 7565 |.|o4 : Seque │ │ │ │ -00020ed0: 6e63 6520 2020 2020 2020 2020 2020 2020 nce │ │ │ │ +00020eb0: 2020 2020 2020 2020 7c0a 7c6f 3420 3a20 |.|o4 : │ │ │ │ +00020ec0: 5365 7175 656e 6365 2020 2020 2020 2020 Sequence │ │ │ │ +00020ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ef0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020f00: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00020ef0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00020f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020f30: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ -00020f40: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -00020f50: 202a 202a 6e6f 7465 2065 7665 6e45 7874 * *note evenExt │ │ │ │ -00020f60: 4d6f 6475 6c65 3a20 6576 656e 4578 744d Module: evenExtM │ │ │ │ -00020f70: 6f64 756c 652c 202d 2d20 6576 656e 2070 odule, -- even p │ │ │ │ -00020f80: 6172 7420 6f66 2045 7874 5e2a 284d 2c6b art of Ext^*(M,k │ │ │ │ -00020f90: 2920 6f76 6572 2061 0a20 2020 2063 6f6d ) over a. com │ │ │ │ -00020fa0: 706c 6574 6520 696e 7465 7273 6563 7469 plete intersecti │ │ │ │ -00020fb0: 6f6e 2061 7320 6d6f 6475 6c65 206f 7665 on as module ove │ │ │ │ -00020fc0: 7220 4349 206f 7065 7261 746f 7220 7269 r CI operator ri │ │ │ │ -00020fd0: 6e67 0a20 202a 202a 6e6f 7465 206f 6464 ng. * *note odd │ │ │ │ -00020fe0: 4578 744d 6f64 756c 653a 206f 6464 4578 ExtModule: oddEx │ │ │ │ -00020ff0: 744d 6f64 756c 652c 202d 2d20 6f64 6420 tModule, -- odd │ │ │ │ -00021000: 7061 7274 206f 6620 4578 745e 2a28 4d2c part of Ext^*(M, │ │ │ │ -00021010: 6b29 206f 7665 7220 6120 636f 6d70 6c65 k) over a comple │ │ │ │ -00021020: 7465 0a20 2020 2069 6e74 6572 7365 6374 te. intersect │ │ │ │ -00021030: 696f 6e20 6173 206d 6f64 756c 6520 6f76 ion as module ov │ │ │ │ -00021040: 6572 2043 4920 6f70 6572 6174 6f72 2072 er CI operator r │ │ │ │ -00021050: 696e 670a 0a57 6179 7320 746f 2075 7365 ing..Ways to use │ │ │ │ -00021060: 2065 7874 4973 4f6e 6550 6f6c 796e 6f6d extIsOnePolynom │ │ │ │ -00021070: 6961 6c3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ial:.=========== │ │ │ │ -00021080: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00021090: 3d3d 3d3d 0a0a 2020 2a20 2265 7874 4973 ====.. * "extIs │ │ │ │ -000210a0: 4f6e 6550 6f6c 796e 6f6d 6961 6c28 4d6f OnePolynomial(Mo │ │ │ │ -000210b0: 6475 6c65 2922 0a0a 466f 7220 7468 6520 dule)"..For the │ │ │ │ -000210c0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -000210d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -000210e0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -000210f0: 6578 7449 734f 6e65 506f 6c79 6e6f 6d69 extIsOnePolynomi │ │ │ │ -00021100: 616c 3a20 6578 7449 734f 6e65 506f 6c79 al: extIsOnePoly │ │ │ │ -00021110: 6e6f 6d69 616c 2c20 6973 2061 202a 6e6f nomial, is a *no │ │ │ │ -00021120: 7465 206d 6574 686f 640a 6675 6e63 7469 te method.functi │ │ │ │ -00021130: 6f6e 3a20 284d 6163 6175 6c61 7932 446f on: (Macaulay2Do │ │ │ │ -00021140: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -00021150: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ +00020f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00020f30: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +00020f40: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6576 ==.. * *note ev │ │ │ │ +00020f50: 656e 4578 744d 6f64 756c 653a 2065 7665 enExtModule: eve │ │ │ │ +00020f60: 6e45 7874 4d6f 6475 6c65 2c20 2d2d 2065 nExtModule, -- e │ │ │ │ +00020f70: 7665 6e20 7061 7274 206f 6620 4578 745e ven part of Ext^ │ │ │ │ +00020f80: 2a28 4d2c 6b29 206f 7665 7220 610a 2020 *(M,k) over a. │ │ │ │ +00020f90: 2020 636f 6d70 6c65 7465 2069 6e74 6572 complete inter │ │ │ │ +00020fa0: 7365 6374 696f 6e20 6173 206d 6f64 756c section as modul │ │ │ │ +00020fb0: 6520 6f76 6572 2043 4920 6f70 6572 6174 e over CI operat │ │ │ │ +00020fc0: 6f72 2072 696e 670a 2020 2a20 2a6e 6f74 or ring. * *not │ │ │ │ +00020fd0: 6520 6f64 6445 7874 4d6f 6475 6c65 3a20 e oddExtModule: │ │ │ │ +00020fe0: 6f64 6445 7874 4d6f 6475 6c65 2c20 2d2d oddExtModule, -- │ │ │ │ +00020ff0: 206f 6464 2070 6172 7420 6f66 2045 7874 odd part of Ext │ │ │ │ +00021000: 5e2a 284d 2c6b 2920 6f76 6572 2061 2063 ^*(M,k) over a c │ │ │ │ +00021010: 6f6d 706c 6574 650a 2020 2020 696e 7465 omplete. inte │ │ │ │ +00021020: 7273 6563 7469 6f6e 2061 7320 6d6f 6475 rsection as modu │ │ │ │ +00021030: 6c65 206f 7665 7220 4349 206f 7065 7261 le over CI opera │ │ │ │ +00021040: 746f 7220 7269 6e67 0a0a 5761 7973 2074 tor ring..Ways t │ │ │ │ +00021050: 6f20 7573 6520 6578 7449 734f 6e65 506f o use extIsOnePo │ │ │ │ +00021060: 6c79 6e6f 6d69 616c 3a0a 3d3d 3d3d 3d3d lynomial:.====== │ │ │ │ +00021070: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00021080: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ +00021090: 6578 7449 734f 6e65 506f 6c79 6e6f 6d69 extIsOnePolynomi │ │ │ │ +000210a0: 616c 284d 6f64 756c 6529 220a 0a46 6f72 al(Module)"..For │ │ │ │ +000210b0: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +000210c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000210d0: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +000210e0: 6e6f 7465 2065 7874 4973 4f6e 6550 6f6c note extIsOnePol │ │ │ │ +000210f0: 796e 6f6d 6961 6c3a 2065 7874 4973 4f6e ynomial: extIsOn │ │ │ │ +00021100: 6550 6f6c 796e 6f6d 6961 6c2c 2069 7320 ePolynomial, is │ │ │ │ +00021110: 6120 2a6e 6f74 6520 6d65 7468 6f64 0a66 a *note method.f │ │ │ │ +00021120: 756e 6374 696f 6e3a 2028 4d61 6361 756c unction: (Macaul │ │ │ │ +00021130: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ +00021140: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ +00021150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000211a0: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -000211b0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -000211c0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -000211d0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -000211e0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -000211f0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -00021200: 322f 7061 636b 6167 6573 2f0a 436f 6d70 2/packages/.Comp │ │ │ │ -00021210: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ -00021220: 5265 736f 6c75 7469 6f6e 732e 6d32 3a34 Resolutions.m2:4 │ │ │ │ -00021230: 3933 313a 302e 0a1f 0a46 696c 653a 2043 931:0....File: C │ │ │ │ -00021240: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ -00021250: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ -00021260: 6e66 6f2c 204e 6f64 653a 2045 7874 4d6f nfo, Node: ExtMo │ │ │ │ -00021270: 6475 6c65 2c20 4e65 7874 3a20 4578 744d dule, Next: ExtM │ │ │ │ -00021280: 6f64 756c 6544 6174 612c 2050 7265 763a oduleData, Prev: │ │ │ │ -00021290: 2065 7874 4973 4f6e 6550 6f6c 796e 6f6d extIsOnePolynom │ │ │ │ -000212a0: 6961 6c2c 2055 703a 2054 6f70 0a0a 4578 ial, Up: Top..Ex │ │ │ │ -000212b0: 744d 6f64 756c 6520 2d2d 2045 7874 5e2a tModule -- Ext^* │ │ │ │ -000212c0: 284d 2c6b 2920 6f76 6572 2061 2063 6f6d (M,k) over a com │ │ │ │ -000212d0: 706c 6574 6520 696e 7465 7273 6563 7469 plete intersecti │ │ │ │ -000212e0: 6f6e 2061 7320 6d6f 6475 6c65 206f 7665 on as module ove │ │ │ │ -000212f0: 7220 4349 206f 7065 7261 746f 7220 7269 r CI operator ri │ │ │ │ -00021300: 6e67 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ng.************* │ │ │ │ +00021190: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +000211a0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +000211b0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +000211c0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +000211d0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +000211e0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +000211f0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +00021200: 0a43 6f6d 706c 6574 6549 6e74 6572 7365 .CompleteInterse │ │ │ │ +00021210: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ +00021220: 2e6d 323a 3439 3331 3a30 2e0a 1f0a 4669 .m2:4931:0....Fi │ │ │ │ +00021230: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ +00021240: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ +00021250: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ +00021260: 4578 744d 6f64 756c 652c 204e 6578 743a ExtModule, Next: │ │ │ │ +00021270: 2045 7874 4d6f 6475 6c65 4461 7461 2c20 ExtModuleData, │ │ │ │ +00021280: 5072 6576 3a20 6578 7449 734f 6e65 506f Prev: extIsOnePo │ │ │ │ +00021290: 6c79 6e6f 6d69 616c 2c20 5570 3a20 546f lynomial, Up: To │ │ │ │ +000212a0: 700a 0a45 7874 4d6f 6475 6c65 202d 2d20 p..ExtModule -- │ │ │ │ +000212b0: 4578 745e 2a28 4d2c 6b29 206f 7665 7220 Ext^*(M,k) over │ │ │ │ +000212c0: 6120 636f 6d70 6c65 7465 2069 6e74 6572 a complete inter │ │ │ │ +000212d0: 7365 6374 696f 6e20 6173 206d 6f64 756c section as modul │ │ │ │ +000212e0: 6520 6f76 6572 2043 4920 6f70 6572 6174 e over CI operat │ │ │ │ +000212f0: 6f72 2072 696e 670a 2a2a 2a2a 2a2a 2a2a or ring.******** │ │ │ │ +00021300: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00021310: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00021320: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00021330: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021340: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021350: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ -00021360: 6765 3a20 0a20 2020 2020 2020 2045 203d ge: . E = │ │ │ │ -00021370: 2045 7874 4d6f 6475 6c65 204d 0a20 202a ExtModule M. * │ │ │ │ -00021380: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -00021390: 204d 2c20 6120 2a6e 6f74 6520 6d6f 6475 M, a *note modu │ │ │ │ -000213a0: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ -000213b0: 6329 4d6f 6475 6c65 2c2c 206f 7665 7220 c)Module,, over │ │ │ │ -000213c0: 6120 636f 6d70 6c65 7465 2069 6e74 6572 a complete inter │ │ │ │ -000213d0: 7365 6374 696f 6e0a 2020 2020 2020 2020 section. │ │ │ │ -000213e0: 7269 6e67 0a20 202a 204f 7574 7075 7473 ring. * Outputs │ │ │ │ -000213f0: 3a0a 2020 2020 2020 2a20 452c 2061 202a :. * E, a * │ │ │ │ -00021400: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -00021410: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -00021420: 652c 2c20 6f76 6572 2061 2070 6f6c 796e e,, over a polyn │ │ │ │ -00021430: 6f6d 6961 6c20 7269 6e67 2077 6974 680a omial ring with. │ │ │ │ -00021440: 2020 2020 2020 2020 6765 6e73 2069 6e20 gens in │ │ │ │ -00021450: 6576 656e 2064 6567 7265 650a 0a44 6573 even degree..Des │ │ │ │ -00021460: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00021470: 3d3d 3d3d 0a0a 5573 6573 2063 6f64 6520 ====..Uses code │ │ │ │ -00021480: 6f66 2041 7672 616d 6f76 2d47 7261 7973 of Avramov-Grays │ │ │ │ -00021490: 6f6e 2064 6573 6372 6962 6564 2069 6e20 on described in │ │ │ │ -000214a0: 4d61 6361 756c 6179 3220 626f 6f6b 0a0a Macaulay2 book.. │ │ │ │ -000214b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00021340: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ +00021350: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +00021360: 2020 4520 3d20 4578 744d 6f64 756c 6520 E = ExtModule │ │ │ │ +00021370: 4d0a 2020 2a20 496e 7075 7473 3a0a 2020 M. * Inputs:. │ │ │ │ +00021380: 2020 2020 2a20 4d2c 2061 202a 6e6f 7465 * M, a *note │ │ │ │ +00021390: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ +000213a0: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ +000213b0: 6f76 6572 2061 2063 6f6d 706c 6574 6520 over a complete │ │ │ │ +000213c0: 696e 7465 7273 6563 7469 6f6e 0a20 2020 intersection. │ │ │ │ +000213d0: 2020 2020 2072 696e 670a 2020 2a20 4f75 ring. * Ou │ │ │ │ +000213e0: 7470 7574 733a 0a20 2020 2020 202a 2045 tputs:. * E │ │ │ │ +000213f0: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +00021400: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00021410: 4d6f 6475 6c65 2c2c 206f 7665 7220 6120 Module,, over a │ │ │ │ +00021420: 706f 6c79 6e6f 6d69 616c 2072 696e 6720 polynomial ring │ │ │ │ +00021430: 7769 7468 0a20 2020 2020 2020 2067 656e with. gen │ │ │ │ +00021440: 7320 696e 2065 7665 6e20 6465 6772 6565 s in even degree │ │ │ │ +00021450: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +00021460: 3d3d 3d3d 3d3d 3d3d 3d0a 0a55 7365 7320 =========..Uses │ │ │ │ +00021470: 636f 6465 206f 6620 4176 7261 6d6f 762d code of Avramov- │ │ │ │ +00021480: 4772 6179 736f 6e20 6465 7363 7269 6265 Grayson describe │ │ │ │ +00021490: 6420 696e 204d 6163 6175 6c61 7932 2062 d in Macaulay2 b │ │ │ │ +000214a0: 6f6f 6b0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ook..+---------- │ │ │ │ +000214b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000214c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000214d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000214e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -000214f0: 203a 206b 6b3d 205a 5a2f 3130 3120 2020 : kk= ZZ/101 │ │ │ │ +000214e0: 2b0a 7c69 3120 3a20 6b6b 3d20 5a5a 2f31 +.|i1 : kk= ZZ/1 │ │ │ │ +000214f0: 3031 2020 2020 2020 2020 2020 2020 2020 01 │ │ │ │ 00021500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021520: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00021510: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021560: 2020 2020 207c 0a7c 6f31 203d 206b 6b20 |.|o1 = kk │ │ │ │ +00021550: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +00021560: 3d20 6b6b 2020 2020 2020 2020 2020 2020 = kk │ │ │ │ 00021570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021590: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000215a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000215b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000215c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000215e0: 0a7c 6f31 203a 2051 756f 7469 656e 7452 .|o1 : QuotientR │ │ │ │ -000215f0: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +000215d0: 2020 2020 7c0a 7c6f 3120 3a20 5175 6f74 |.|o1 : Quot │ │ │ │ +000215e0: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ +000215f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021610: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00021610: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00021620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021650: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -00021660: 2053 203d 206b 6b5b 782c 792c 7a5d 2020 S = kk[x,y,z] │ │ │ │ +00021640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00021650: 7c69 3220 3a20 5320 3d20 6b6b 5b78 2c79 |i2 : S = kk[x,y │ │ │ │ +00021660: 2c7a 5d20 2020 2020 2020 2020 2020 2020 ,z] │ │ │ │ 00021670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021690: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00021680: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00021690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000216a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000216b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000216c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000216d0: 2020 207c 0a7c 6f32 203d 2053 2020 2020 |.|o2 = S │ │ │ │ +000216c0: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ +000216d0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 000216e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000216f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021710: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021700: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021740: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00021750: 6f32 203a 2050 6f6c 796e 6f6d 6961 6c52 o2 : PolynomialR │ │ │ │ -00021760: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ -00021770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021780: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00021740: 2020 7c0a 7c6f 3220 3a20 506f 6c79 6e6f |.|o2 : Polyno │ │ │ │ +00021750: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ +00021760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021770: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021780: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00021790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000217a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000217b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000217c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2049 -------+.|i3 : I │ │ │ │ -000217d0: 3120 3d20 6964 6561 6c20 2278 3379 2220 1 = ideal "x3y" │ │ │ │ +000217b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000217c0: 3320 3a20 4931 203d 2069 6465 616c 2022 3 : I1 = ideal " │ │ │ │ +000217d0: 7833 7922 2020 2020 2020 2020 2020 2020 x3y" │ │ │ │ 000217e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021800: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000217f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00021800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021840: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00021850: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00021830: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00021840: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ +00021850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021870: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00021880: 7c6f 3320 3d20 6964 6561 6c28 7820 7929 |o3 = ideal(x y) │ │ │ │ +00021870: 2020 207c 0a7c 6f33 203d 2069 6465 616c |.|o3 = ideal │ │ │ │ +00021880: 2878 2079 2920 2020 2020 2020 2020 2020 (x y) │ │ │ │ 00021890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000218a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000218b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000218b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000218c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000218d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000218e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000218f0: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ -00021900: 4964 6561 6c20 6f66 2053 2020 2020 2020 Ideal of S │ │ │ │ +000218e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000218f0: 6f33 203a 2049 6465 616c 206f 6620 5320 o3 : Ideal of S │ │ │ │ +00021900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021930: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00021920: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00021930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021970: 2d2d 2b0a 7c69 3420 3a20 5231 203d 2053 --+.|i4 : R1 = S │ │ │ │ -00021980: 2f49 3120 2020 2020 2020 2020 2020 2020 /I1 │ │ │ │ +00021960: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2052 -------+.|i4 : R │ │ │ │ +00021970: 3120 3d20 532f 4931 2020 2020 2020 2020 1 = S/I1 │ │ │ │ +00021980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000219a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000219b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000219a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000219b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000219c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000219d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000219e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000219f0: 3420 3d20 5231 2020 2020 2020 2020 2020 4 = R1 │ │ │ │ +000219e0: 207c 0a7c 6f34 203d 2052 3120 2020 2020 |.|o4 = R1 │ │ │ │ +000219f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00021a10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021a20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00021a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a60: 2020 2020 2020 7c0a 7c6f 3420 3a20 5175 |.|o4 : Qu │ │ │ │ -00021a70: 6f74 6965 6e74 5269 6e67 2020 2020 2020 otientRing │ │ │ │ +00021a50: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +00021a60: 203a 2051 756f 7469 656e 7452 696e 6720 : QuotientRing │ │ │ │ +00021a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021aa0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00021a90: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00021aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021ae0: 2b0a 7c69 3520 3a20 4d31 203d 2052 315e +.|i5 : M1 = R1^ │ │ │ │ -00021af0: 312f 6964 6561 6c28 785e 3229 2020 2020 1/ideal(x^2) │ │ │ │ +00021ad0: 2d2d 2d2d 2d2b 0a7c 6935 203a 204d 3120 -----+.|i5 : M1 │ │ │ │ +00021ae0: 3d20 5231 5e31 2f69 6465 616c 2878 5e32 = R1^1/ideal(x^2 │ │ │ │ +00021af0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00021b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021b10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00021b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b50: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -00021b60: 3d20 636f 6b65 726e 656c 207c 2078 3220 = cokernel | x2 │ │ │ │ -00021b70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00021b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00021b40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021b50: 0a7c 6f35 203d 2063 6f6b 6572 6e65 6c20 .|o5 = cokernel │ │ │ │ +00021b60: 7c20 7832 207c 2020 2020 2020 2020 2020 | x2 | │ │ │ │ +00021b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021b80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00021b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021bd0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00021be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021bf0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ -00021c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021c10: 207c 0a7c 6f35 203a 2052 312d 6d6f 6475 |.|o5 : R1-modu │ │ │ │ -00021c20: 6c65 2c20 7175 6f74 6965 6e74 206f 6620 le, quotient of │ │ │ │ -00021c30: 5231 2020 2020 2020 2020 2020 2020 2020 R1 │ │ │ │ -00021c40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00021c50: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00021bc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00021bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021be0: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ +00021bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021c00: 2020 2020 2020 7c0a 7c6f 3520 3a20 5231 |.|o5 : R1 │ │ │ │ +00021c10: 2d6d 6f64 756c 652c 2071 756f 7469 656e -module, quotien │ │ │ │ +00021c20: 7420 6f66 2052 3120 2020 2020 2020 2020 t of R1 │ │ │ │ +00021c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021c40: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00021c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 -----------+.|i6 │ │ │ │ -00021c90: 203a 2062 6574 7469 2066 7265 6552 6573 : betti freeRes │ │ │ │ -00021ca0: 6f6c 7574 696f 6e20 284d 312c 204c 656e olution (M1, Len │ │ │ │ -00021cb0: 6774 684c 696d 6974 203d 3e35 2920 2020 gthLimit =>5) │ │ │ │ -00021cc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00021c80: 2b0a 7c69 3620 3a20 6265 7474 6920 6672 +.|i6 : betti fr │ │ │ │ +00021c90: 6565 5265 736f 6c75 7469 6f6e 2028 4d31 eeResolution (M1 │ │ │ │ +00021ca0: 2c20 4c65 6e67 7468 4c69 6d69 7420 3d3e , LengthLimit => │ │ │ │ +00021cb0: 3529 2020 2020 2020 2020 2020 207c 0a7c 5) |.| │ │ │ │ +00021cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021d00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00021d10: 2020 2020 3020 3120 3220 3320 3420 3520 0 1 2 3 4 5 │ │ │ │ +00021cf0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00021d00: 2020 2020 2020 2020 2030 2031 2032 2033 0 1 2 3 │ │ │ │ +00021d10: 2034 2035 2020 2020 2020 2020 2020 2020 4 5 │ │ │ │ 00021d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021d40: 2020 7c0a 7c6f 3620 3d20 746f 7461 6c3a |.|o6 = total: │ │ │ │ -00021d50: 2031 2031 2031 2031 2031 2031 2020 2020 1 1 1 1 1 1 │ │ │ │ +00021d30: 2020 2020 2020 207c 0a7c 6f36 203d 2074 |.|o6 = t │ │ │ │ +00021d40: 6f74 616c 3a20 3120 3120 3120 3120 3120 otal: 1 1 1 1 1 │ │ │ │ +00021d50: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00021d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021d70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021d80: 0a7c 2020 2020 2020 2020 2030 3a20 3120 .| 0: 1 │ │ │ │ -00021d90: 2e20 2e20 2e20 2e20 2e20 2020 2020 2020 . . . . . │ │ │ │ +00021d70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00021d80: 303a 2031 202e 202e 202e 202e 202e 2020 0: 1 . . . . . │ │ │ │ +00021d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021db0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00021dc0: 2020 2020 2020 2020 313a 202e 2031 202e 1: . 1 . │ │ │ │ -00021dd0: 202e 202e 202e 2020 2020 2020 2020 2020 . . . │ │ │ │ -00021de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021df0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00021e00: 2020 2020 2032 3a20 2e20 2e20 3120 2e20 2: . . 1 . │ │ │ │ -00021e10: 2e20 2e20 2020 2020 2020 2020 2020 2020 . . │ │ │ │ -00021e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00021e40: 2020 333a 202e 202e 202e 2031 202e 202e 3: . . . 1 . . │ │ │ │ +00021db0: 207c 0a7c 2020 2020 2020 2020 2031 3a20 |.| 1: │ │ │ │ +00021dc0: 2e20 3120 2e20 2e20 2e20 2e20 2020 2020 . 1 . . . . │ │ │ │ +00021dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021de0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021df0: 7c20 2020 2020 2020 2020 323a 202e 202e | 2: . . │ │ │ │ +00021e00: 2031 202e 202e 202e 2020 2020 2020 2020 1 . . . │ │ │ │ +00021e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021e20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00021e30: 2020 2020 2020 2033 3a20 2e20 2e20 2e20 3: . . . │ │ │ │ +00021e40: 3120 2e20 2e20 2020 2020 2020 2020 2020 1 . . │ │ │ │ 00021e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e70: 2020 207c 0a7c 2020 2020 2020 2020 2034 |.| 4 │ │ │ │ -00021e80: 3a20 2e20 2e20 2e20 2e20 3120 2e20 2020 : . . . . 1 . │ │ │ │ +00021e60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00021e70: 2020 2020 343a 202e 202e 202e 202e 2031 4: . . . . 1 │ │ │ │ +00021e80: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 00021e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021eb0: 7c0a 7c20 2020 2020 2020 2020 353a 202e |.| 5: . │ │ │ │ -00021ec0: 202e 202e 202e 202e 2031 2020 2020 2020 . . . . 1 │ │ │ │ +00021ea0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021eb0: 2035 3a20 2e20 2e20 2e20 2e20 2e20 3120 5: . . . . . 1 │ │ │ │ +00021ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ee0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021ee0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00021ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021f20: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -00021f30: 3a20 4265 7474 6954 616c 6c79 2020 2020 : BettiTally │ │ │ │ +00021f10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021f20: 0a7c 6f36 203a 2042 6574 7469 5461 6c6c .|o6 : BettiTall │ │ │ │ +00021f30: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ 00021f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021f60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00021f50: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00021f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021fa0: 2d2d 2d2d 2b0a 7c69 3720 3a20 4520 3d20 ----+.|i7 : E = │ │ │ │ -00021fb0: 4578 744d 6f64 756c 6520 4d31 2020 2020 ExtModule M1 │ │ │ │ +00021f90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ +00021fa0: 2045 203d 2045 7874 4d6f 6475 6c65 204d E = ExtModule M │ │ │ │ +00021fb0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00021fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021fe0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021fd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00021fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022010: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00022020: 7c20 2020 2020 2020 2020 2020 2020 3220 | 2 │ │ │ │ +00022010: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00022020: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00022030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022050: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ -00022060: 203d 2028 6b6b 5b58 205d 2920 2020 2020 = (kk[X ]) │ │ │ │ +00022050: 7c0a 7c6f 3720 3d20 286b 6b5b 5820 5d29 |.|o7 = (kk[X ]) │ │ │ │ +00022060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022090: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000220a0: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +00022080: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022090: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +000220a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000220b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000220c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000220d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000220c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000220d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000220e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000220f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022110: 2020 7c0a 7c6f 3720 3a20 6b6b 5b58 205d |.|o7 : kk[X ] │ │ │ │ -00022120: 2d6d 6f64 756c 652c 2066 7265 652c 2064 -module, free, d │ │ │ │ -00022130: 6567 7265 6573 207b 302e 2e31 7d20 2020 egrees {0..1} │ │ │ │ -00022140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00022150: 0a7c 2020 2020 2020 2020 2030 2020 2020 .| 0 │ │ │ │ +00022100: 2020 2020 2020 207c 0a7c 6f37 203a 206b |.|o7 : k │ │ │ │ +00022110: 6b5b 5820 5d2d 6d6f 6475 6c65 2c20 6672 k[X ]-module, fr │ │ │ │ +00022120: 6565 2c20 6465 6772 6565 7320 7b30 2e2e ee, degrees {0.. │ │ │ │ +00022130: 317d 2020 2020 2020 2020 2020 2020 2020 1} │ │ │ │ +00022140: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00022150: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 00022160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022180: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00022180: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00022190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000221a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000221b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000221c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ -000221d0: 2061 7070 6c79 2874 6f4c 6973 7428 302e apply(toList(0. │ │ │ │ -000221e0: 2e31 3029 2c20 692d 3e68 696c 6265 7274 .10), i->hilbert │ │ │ │ -000221f0: 4675 6e63 7469 6f6e 2869 2c20 4529 2920 Function(i, E)) │ │ │ │ -00022200: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000221b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000221c0: 7c69 3820 3a20 6170 706c 7928 746f 4c69 |i8 : apply(toLi │ │ │ │ +000221d0: 7374 2830 2e2e 3130 292c 2069 2d3e 6869 st(0..10), i->hi │ │ │ │ +000221e0: 6c62 6572 7446 756e 6374 696f 6e28 692c lbertFunction(i, │ │ │ │ +000221f0: 2045 2929 2020 2020 2020 207c 0a7c 2020 E)) |.| │ │ │ │ +00022200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022240: 2020 207c 0a7c 6f38 203d 207b 312c 2031 |.|o8 = {1, 1 │ │ │ │ -00022250: 2c20 312c 2031 2c20 312c 2031 2c20 312c , 1, 1, 1, 1, 1, │ │ │ │ -00022260: 2031 2c20 312c 2031 2c20 317d 2020 2020 1, 1, 1, 1} │ │ │ │ -00022270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022280: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00022230: 2020 2020 2020 2020 7c0a 7c6f 3820 3d20 |.|o8 = │ │ │ │ +00022240: 7b31 2c20 312c 2031 2c20 312c 2031 2c20 {1, 1, 1, 1, 1, │ │ │ │ +00022250: 312c 2031 2c20 312c 2031 2c20 312c 2031 1, 1, 1, 1, 1, 1 │ │ │ │ +00022260: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00022270: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000222a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000222c0: 6f38 203a 204c 6973 7420 2020 2020 2020 o8 : List │ │ │ │ +000222b0: 2020 7c0a 7c6f 3820 3a20 4c69 7374 2020 |.|o8 : List │ │ │ │ +000222c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000222d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222f0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000222e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000222f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00022300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022330: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2045 -------+.|i9 : E │ │ │ │ -00022340: 6576 656e 203d 2065 7665 6e45 7874 4d6f even = evenExtMo │ │ │ │ -00022350: 6475 6c65 284d 3129 2020 2020 2020 2020 dule(M1) │ │ │ │ -00022360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022370: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00022320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00022330: 3920 3a20 4565 7665 6e20 3d20 6576 656e 9 : Eeven = even │ │ │ │ +00022340: 4578 744d 6f64 756c 6528 4d31 2920 2020 ExtModule(M1) │ │ │ │ +00022350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022360: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00022370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000223c0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000223a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000223b0: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +000223c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000223f0: 7c6f 3920 3d20 286b 6b5b 5820 5d29 2020 |o9 = (kk[X ]) │ │ │ │ +000223e0: 2020 207c 0a7c 6f39 203d 2028 6b6b 5b58 |.|o9 = (kk[X │ │ │ │ +000223f0: 205d 2920 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ 00022400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00022430: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ +00022420: 7c0a 7c20 2020 2020 2020 2020 2030 2020 |.| 0 │ │ │ │ +00022430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022460: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00022450: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000224a0: 2020 2020 207c 0a7c 6f39 203a 206b 6b5b |.|o9 : kk[ │ │ │ │ -000224b0: 5820 5d2d 6d6f 6475 6c65 2c20 6672 6565 X ]-module, free │ │ │ │ +00022490: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ +000224a0: 3a20 6b6b 5b58 205d 2d6d 6f64 756c 652c : kk[X ]-module, │ │ │ │ +000224b0: 2066 7265 6520 2020 2020 2020 2020 2020 free │ │ │ │ 000224c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000224d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000224e0: 2020 7c0a 7c20 2020 2020 2020 2020 3020 |.| 0 │ │ │ │ +000224d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000224e0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 000224f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022510: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00022520: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00022510: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00022520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00022560: 3130 203a 2061 7070 6c79 2874 6f4c 6973 10 : apply(toLis │ │ │ │ -00022570: 7428 302e 2e35 292c 2069 2d3e 6869 6c62 t(0..5), i->hilb │ │ │ │ -00022580: 6572 7446 756e 6374 696f 6e28 692c 2045 ertFunction(i, E │ │ │ │ -00022590: 6576 656e 2929 2020 207c 0a7c 2020 2020 even)) |.| │ │ │ │ +00022550: 2d2b 0a7c 6931 3020 3a20 6170 706c 7928 -+.|i10 : apply( │ │ │ │ +00022560: 746f 4c69 7374 2830 2e2e 3529 2c20 692d toList(0..5), i- │ │ │ │ +00022570: 3e68 696c 6265 7274 4675 6e63 7469 6f6e >hilbertFunction │ │ │ │ +00022580: 2869 2c20 4565 7665 6e29 2920 2020 7c0a (i, Eeven)) |. │ │ │ │ +00022590: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000225a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000225b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225d0: 2020 2020 2020 7c0a 7c6f 3130 203d 207b |.|o10 = { │ │ │ │ -000225e0: 312c 2031 2c20 312c 2031 2c20 312c 2031 1, 1, 1, 1, 1, 1 │ │ │ │ -000225f0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ -00022600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022610: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000225c0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000225d0: 3020 3d20 7b31 2c20 312c 2031 2c20 312c 0 = {1, 1, 1, 1, │ │ │ │ +000225e0: 2031 2c20 317d 2020 2020 2020 2020 2020 1, 1} │ │ │ │ +000225f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022600: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00022610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022650: 7c0a 7c6f 3130 203a 204c 6973 7420 2020 |.|o10 : List │ │ │ │ +00022640: 2020 2020 207c 0a7c 6f31 3020 3a20 4c69 |.|o10 : Li │ │ │ │ +00022650: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ 00022660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022680: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00022680: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00022690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000226a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000226b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000226c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 ----------+.|i11 │ │ │ │ -000226d0: 203a 2045 6f64 6420 3d20 6f64 6445 7874 : Eodd = oddExt │ │ │ │ -000226e0: 4d6f 6475 6c65 284d 3129 2020 2020 2020 Module(M1) │ │ │ │ -000226f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022700: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000226b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000226c0: 0a7c 6931 3120 3a20 456f 6464 203d 206f .|i11 : Eodd = o │ │ │ │ +000226d0: 6464 4578 744d 6f64 756c 6528 4d31 2920 ddExtModule(M1) │ │ │ │ +000226e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000226f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00022700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022740: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00022750: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +00022730: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00022740: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ +00022750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022780: 207c 0a7c 6f31 3120 3d20 286b 6b5b 5820 |.|o11 = (kk[X │ │ │ │ -00022790: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +00022770: 2020 2020 2020 7c0a 7c6f 3131 203d 2028 |.|o11 = ( │ │ │ │ +00022780: 6b6b 5b58 205d 2920 2020 2020 2020 2020 kk[X ]) │ │ │ │ +00022790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000227a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000227b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000227c0: 7c20 2020 2020 2020 2020 2020 3020 2020 | 0 │ │ │ │ +000227b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000227c0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 000227d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000227e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000227f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000227f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00022800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022830: 2020 2020 2020 2020 7c0a 7c6f 3131 203a |.|o11 : │ │ │ │ -00022840: 206b 6b5b 5820 5d2d 6d6f 6475 6c65 2c20 kk[X ]-module, │ │ │ │ -00022850: 6672 6565 2020 2020 2020 2020 2020 2020 free │ │ │ │ -00022860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022870: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00022880: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00022820: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022830: 6f31 3120 3a20 6b6b 5b58 205d 2d6d 6f64 o11 : kk[X ]-mod │ │ │ │ +00022840: 756c 652c 2066 7265 6520 2020 2020 2020 ule, free │ │ │ │ +00022850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022860: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022870: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ +00022880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228b0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000228a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000228b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000228c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000228d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000228e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000228f0: 0a7c 6931 3220 3a20 6170 706c 7928 746f .|i12 : apply(to │ │ │ │ -00022900: 4c69 7374 2830 2e2e 3529 2c20 692d 3e68 List(0..5), i->h │ │ │ │ -00022910: 696c 6265 7274 4675 6e63 7469 6f6e 2869 ilbertFunction(i │ │ │ │ -00022920: 2c20 456f 6464 2929 2020 2020 7c0a 7c20 , Eodd)) |.| │ │ │ │ +000228e0: 2d2d 2d2d 2b0a 7c69 3132 203a 2061 7070 ----+.|i12 : app │ │ │ │ +000228f0: 6c79 2874 6f4c 6973 7428 302e 2e35 292c ly(toList(0..5), │ │ │ │ +00022900: 2069 2d3e 6869 6c62 6572 7446 756e 6374 i->hilbertFunct │ │ │ │ +00022910: 696f 6e28 692c 2045 6f64 6429 2920 2020 ion(i, Eodd)) │ │ │ │ +00022920: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00022930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022960: 2020 2020 2020 2020 207c 0a7c 6f31 3220 |.|o12 │ │ │ │ -00022970: 3d20 7b31 2c20 312c 2031 2c20 312c 2031 = {1, 1, 1, 1, 1 │ │ │ │ -00022980: 2c20 317d 2020 2020 2020 2020 2020 2020 , 1} │ │ │ │ -00022990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00022950: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00022960: 7c6f 3132 203d 207b 312c 2031 2c20 312c |o12 = {1, 1, 1, │ │ │ │ +00022970: 2031 2c20 312c 2031 7d20 2020 2020 2020 1, 1, 1} │ │ │ │ +00022980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022990: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000229a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229e0: 2020 207c 0a7c 6f31 3220 3a20 4c69 7374 |.|o12 : List │ │ │ │ +000229d0: 2020 2020 2020 2020 7c0a 7c6f 3132 203a |.|o12 : │ │ │ │ +000229e0: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 000229f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a20: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00022a10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00022a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00022a60: 6931 3320 3a20 7573 6520 5320 2020 2020 i13 : use S │ │ │ │ +00022a50: 2d2d 2b0a 7c69 3133 203a 2075 7365 2053 --+.|i13 : use S │ │ │ │ +00022a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022a80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022a90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ad0: 2020 2020 2020 207c 0a7c 6f31 3320 3d20 |.|o13 = │ │ │ │ -00022ae0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +00022ac0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00022ad0: 3133 203d 2053 2020 2020 2020 2020 2020 13 = S │ │ │ │ +00022ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00022b00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00022b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b50: 207c 0a7c 6f31 3320 3a20 506f 6c79 6e6f |.|o13 : Polyno │ │ │ │ -00022b60: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ +00022b40: 2020 2020 2020 7c0a 7c6f 3133 203a 2050 |.|o13 : P │ │ │ │ +00022b50: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +00022b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00022b90: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00022b80: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00022b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00022bd0: 3420 3a20 4932 203d 2069 6465 616c 2278 4 : I2 = ideal"x │ │ │ │ -00022be0: 332c 797a 2220 2020 2020 2020 2020 2020 3,yz" │ │ │ │ -00022bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00022bc0: 2b0a 7c69 3134 203a 2049 3220 3d20 6964 +.|i14 : I2 = id │ │ │ │ +00022bd0: 6561 6c22 7833 2c79 7a22 2020 2020 2020 eal"x3,yz" │ │ │ │ +00022be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022bf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00022c50: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +00022c30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022c40: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +00022c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c80: 2020 7c0a 7c6f 3134 203d 2069 6465 616c |.|o14 = ideal │ │ │ │ -00022c90: 2028 7820 2c20 792a 7a29 2020 2020 2020 (x , y*z) │ │ │ │ +00022c70: 2020 2020 2020 207c 0a7c 6f31 3420 3d20 |.|o14 = │ │ │ │ +00022c80: 6964 6561 6c20 2878 202c 2079 2a7a 2920 ideal (x , y*z) │ │ │ │ +00022c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022cb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00022cc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00022cb0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00022cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022cf0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00022d00: 3134 203a 2049 6465 616c 206f 6620 5320 14 : Ideal of S │ │ │ │ +00022cf0: 207c 0a7c 6f31 3420 3a20 4964 6561 6c20 |.|o14 : Ideal │ │ │ │ +00022d00: 6f66 2053 2020 2020 2020 2020 2020 2020 of S │ │ │ │ 00022d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d30: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00022d20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00022d30: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00022d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022d70: 2d2d 2d2d 2d2d 2b0a 7c69 3135 203a 2052 ------+.|i15 : R │ │ │ │ -00022d80: 3220 3d20 532f 4932 2020 2020 2020 2020 2 = S/I2 │ │ │ │ +00022d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00022d70: 3520 3a20 5232 203d 2053 2f49 3220 2020 5 : R2 = S/I2 │ │ │ │ +00022d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022db0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00022da0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00022db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022df0: 7c0a 7c6f 3135 203d 2052 3220 2020 2020 |.|o15 = R2 │ │ │ │ +00022de0: 2020 2020 207c 0a7c 6f31 3520 3d20 5232 |.|o15 = R2 │ │ │ │ +00022df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022e20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00022e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e60: 2020 2020 2020 2020 2020 7c0a 7c6f 3135 |.|o15 │ │ │ │ -00022e70: 203a 2051 756f 7469 656e 7452 696e 6720 : QuotientRing │ │ │ │ +00022e50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022e60: 0a7c 6f31 3520 3a20 5175 6f74 6965 6e74 .|o15 : Quotient │ │ │ │ +00022e70: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 00022e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ea0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00022e90: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00022ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022ee0: 2d2d 2d2d 2b0a 7c69 3136 203a 204d 3220 ----+.|i16 : M2 │ │ │ │ -00022ef0: 3d20 5232 5e31 2f69 6465 616c 2278 322c = R2^1/ideal"x2, │ │ │ │ -00022f00: 792c 7a22 2020 2020 2020 2020 2020 2020 y,z" │ │ │ │ -00022f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00022ed0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 ---------+.|i16 │ │ │ │ +00022ee0: 3a20 4d32 203d 2052 325e 312f 6964 6561 : M2 = R2^1/idea │ │ │ │ +00022ef0: 6c22 7832 2c79 2c7a 2220 2020 2020 2020 l"x2,y,z" │ │ │ │ +00022f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022f10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00022f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00022f60: 7c6f 3136 203d 2063 6f6b 6572 6e65 6c20 |o16 = cokernel │ │ │ │ -00022f70: 7c20 7832 2079 207a 207c 2020 2020 2020 | x2 y z | │ │ │ │ +00022f50: 2020 207c 0a7c 6f31 3620 3d20 636f 6b65 |.|o16 = coke │ │ │ │ +00022f60: 726e 656c 207c 2078 3220 7920 7a20 7c20 rnel | x2 y z | │ │ │ │ +00022f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00022f90: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00022fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022fd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00022fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ff0: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -00023000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023010: 2020 2020 207c 0a7c 6f31 3620 3a20 5232 |.|o16 : R2 │ │ │ │ -00023020: 2d6d 6f64 756c 652c 2071 756f 7469 656e -module, quotien │ │ │ │ -00023030: 7420 6f66 2052 3220 2020 2020 2020 2020 t of R2 │ │ │ │ -00023040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023050: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00022fc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022fe0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00022ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023000: 2020 2020 2020 2020 2020 7c0a 7c6f 3136 |.|o16 │ │ │ │ +00023010: 203a 2052 322d 6d6f 6475 6c65 2c20 7175 : R2-module, qu │ │ │ │ +00023020: 6f74 6965 6e74 206f 6620 5232 2020 2020 otient of R2 │ │ │ │ +00023030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023040: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00023050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00023090: 0a7c 6931 3720 3a20 6265 7474 6920 6672 .|i17 : betti fr │ │ │ │ -000230a0: 6565 5265 736f 6c75 7469 6f6e 2028 4d32 eeResolution (M2 │ │ │ │ -000230b0: 2c20 4c65 6e67 7468 4c69 6d69 7420 3d3e , LengthLimit => │ │ │ │ -000230c0: 3130 2920 2020 2020 2020 2020 7c0a 7c20 10) |.| │ │ │ │ +00023080: 2d2d 2d2d 2b0a 7c69 3137 203a 2062 6574 ----+.|i17 : bet │ │ │ │ +00023090: 7469 2066 7265 6552 6573 6f6c 7574 696f ti freeResolutio │ │ │ │ +000230a0: 6e20 284d 322c 204c 656e 6774 684c 696d n (M2, LengthLim │ │ │ │ +000230b0: 6974 203d 3e31 3029 2020 2020 2020 2020 it =>10) │ │ │ │ +000230c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000230d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000230e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000230f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023100: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00023110: 2020 2020 2020 2020 2030 2031 2032 2033 0 1 2 3 │ │ │ │ -00023120: 2034 2020 3520 2036 2020 3720 2038 2020 4 5 6 7 8 │ │ │ │ -00023130: 3920 3130 2020 2020 2020 2020 2020 2020 9 10 │ │ │ │ -00023140: 2020 2020 2020 7c0a 7c6f 3137 203d 2074 |.|o17 = t │ │ │ │ -00023150: 6f74 616c 3a20 3120 3320 3520 3720 3920 otal: 1 3 5 7 9 │ │ │ │ -00023160: 3131 2031 3320 3135 2031 3720 3139 2032 11 13 15 17 19 2 │ │ │ │ -00023170: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00023180: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00023190: 303a 2031 2032 2032 2032 2032 2020 3220 0: 1 2 2 2 2 2 │ │ │ │ -000231a0: 2032 2020 3220 2032 2020 3220 2032 2020 2 2 2 2 2 │ │ │ │ -000231b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000231c0: 7c0a 7c20 2020 2020 2020 2020 2031 3a20 |.| 1: │ │ │ │ -000231d0: 2e20 3120 3320 3420 3420 2034 2020 3420 . 1 3 4 4 4 4 │ │ │ │ -000231e0: 2034 2020 3420 2034 2020 3420 2020 2020 4 4 4 4 │ │ │ │ -000231f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00023200: 2020 2020 2020 2020 2020 323a 202e 202e 2: . . │ │ │ │ -00023210: 202e 2031 2033 2020 3420 2034 2020 3420 . 1 3 4 4 4 │ │ │ │ -00023220: 2034 2020 3420 2034 2020 2020 2020 2020 4 4 4 │ │ │ │ -00023230: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00023240: 2020 2020 2020 2033 3a20 2e20 2e20 2e20 3: . . . │ │ │ │ -00023250: 2e20 2e20 2031 2020 3320 2034 2020 3420 . . 1 3 4 4 │ │ │ │ -00023260: 2034 2020 3420 2020 2020 2020 2020 2020 4 4 │ │ │ │ -00023270: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00023280: 2020 2020 343a 202e 202e 202e 202e 202e 4: . . . . . │ │ │ │ -00023290: 2020 2e20 202e 2020 3120 2033 2020 3420 . . 1 3 4 │ │ │ │ -000232a0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -000232b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000232c0: 2035 3a20 2e20 2e20 2e20 2e20 2e20 202e 5: . . . . . . │ │ │ │ -000232d0: 2020 2e20 202e 2020 2e20 2031 2020 3320 . . . 1 3 │ │ │ │ -000232e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000232f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000230f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023100: 7c20 2020 2020 2020 2020 2020 2020 3020 | 0 │ │ │ │ +00023110: 3120 3220 3320 3420 2035 2020 3620 2037 1 2 3 4 5 6 7 │ │ │ │ +00023120: 2020 3820 2039 2031 3020 2020 2020 2020 8 9 10 │ │ │ │ +00023130: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00023140: 3720 3d20 746f 7461 6c3a 2031 2033 2035 7 = total: 1 3 5 │ │ │ │ +00023150: 2037 2039 2031 3120 3133 2031 3520 3137 7 9 11 13 15 17 │ │ │ │ +00023160: 2031 3920 3231 2020 2020 2020 2020 2020 19 21 │ │ │ │ +00023170: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00023180: 2020 2020 2030 3a20 3120 3220 3220 3220 0: 1 2 2 2 │ │ │ │ +00023190: 3220 2032 2020 3220 2032 2020 3220 2032 2 2 2 2 2 2 │ │ │ │ +000231a0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000231b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000231c0: 2020 313a 202e 2031 2033 2034 2034 2020 1: . 1 3 4 4 │ │ │ │ +000231d0: 3420 2034 2020 3420 2034 2020 3420 2034 4 4 4 4 4 4 │ │ │ │ +000231e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000231f0: 2020 7c0a 7c20 2020 2020 2020 2020 2032 |.| 2 │ │ │ │ +00023200: 3a20 2e20 2e20 2e20 3120 3320 2034 2020 : . . . 1 3 4 │ │ │ │ +00023210: 3420 2034 2020 3420 2034 2020 3420 2020 4 4 4 4 4 │ │ │ │ +00023220: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023230: 0a7c 2020 2020 2020 2020 2020 333a 202e .| 3: . │ │ │ │ +00023240: 202e 202e 202e 202e 2020 3120 2033 2020 . . . . 1 3 │ │ │ │ +00023250: 3420 2034 2020 3420 2034 2020 2020 2020 4 4 4 4 │ │ │ │ +00023260: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00023270: 2020 2020 2020 2020 2034 3a20 2e20 2e20 4: . . │ │ │ │ +00023280: 2e20 2e20 2e20 202e 2020 2e20 2031 2020 . . . . . 1 │ │ │ │ +00023290: 3320 2034 2020 3420 2020 2020 2020 2020 3 4 4 │ │ │ │ +000232a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000232b0: 2020 2020 2020 353a 202e 202e 202e 202e 5: . . . . │ │ │ │ +000232c0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +000232d0: 3120 2033 2020 2020 2020 2020 2020 2020 1 3 │ │ │ │ +000232e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000232f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023320: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00023330: 7c6f 3137 203a 2042 6574 7469 5461 6c6c |o17 : BettiTall │ │ │ │ -00023340: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ +00023320: 2020 207c 0a7c 6f31 3720 3a20 4265 7474 |.|o17 : Bett │ │ │ │ +00023330: 6954 616c 6c79 2020 2020 2020 2020 2020 iTally │ │ │ │ +00023340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023360: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00023360: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00023370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000233a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3138 203a --------+.|i18 : │ │ │ │ -000233b0: 2045 203d 2045 7874 4d6f 6475 6c65 204d E = ExtModule M │ │ │ │ -000233c0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000233d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000233e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000233a0: 6931 3820 3a20 4520 3d20 4578 744d 6f64 i18 : E = ExtMod │ │ │ │ +000233b0: 756c 6520 4d32 2020 2020 2020 2020 2020 ule M2 │ │ │ │ +000233c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000233d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000233e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000233f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023420: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00023430: 2020 2020 2020 2038 2020 2020 2020 2020 8 │ │ │ │ +00023410: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00023420: 2020 2020 2020 2020 2020 2020 3820 2020 8 │ │ │ │ +00023430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023450: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00023460: 0a7c 6f31 3820 3d20 286b 6b5b 5820 2e2e .|o18 = (kk[X .. │ │ │ │ -00023470: 5820 5d29 2020 2020 2020 2020 2020 2020 X ]) │ │ │ │ +00023450: 2020 2020 7c0a 7c6f 3138 203d 2028 6b6b |.|o18 = (kk │ │ │ │ +00023460: 5b58 202e 2e58 205d 2920 2020 2020 2020 [X ..X ]) │ │ │ │ +00023470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023490: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000234a0: 2020 2020 2020 2020 2020 3020 2020 3120 0 1 │ │ │ │ +00023490: 207c 0a7c 2020 2020 2020 2020 2020 2030 |.| 0 │ │ │ │ +000234a0: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 000234b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000234c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000234d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000234c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000234d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000234e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000234f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023510: 2020 2020 2020 7c0a 7c6f 3138 203a 206b |.|o18 : k │ │ │ │ -00023520: 6b5b 5820 2e2e 5820 5d2d 6d6f 6475 6c65 k[X ..X ]-module │ │ │ │ -00023530: 2c20 6672 6565 2c20 6465 6772 6565 7320 , free, degrees │ │ │ │ -00023540: 7b30 2e2e 312c 2032 3a31 2c20 333a 322c {0..1, 2:1, 3:2, │ │ │ │ -00023550: 2033 7d7c 0a7c 2020 2020 2020 2020 2020 3}|.| │ │ │ │ -00023560: 3020 2020 3120 2020 2020 2020 2020 2020 0 1 │ │ │ │ +00023500: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00023510: 3820 3a20 6b6b 5b58 202e 2e58 205d 2d6d 8 : kk[X ..X ]-m │ │ │ │ +00023520: 6f64 756c 652c 2066 7265 652c 2064 6567 odule, free, deg │ │ │ │ +00023530: 7265 6573 207b 302e 2e31 2c20 323a 312c rees {0..1, 2:1, │ │ │ │ +00023540: 2033 3a32 2c20 337d 7c0a 7c20 2020 2020 3:2, 3}|.| │ │ │ │ +00023550: 2020 2020 2030 2020 2031 2020 2020 2020 0 1 │ │ │ │ +00023560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023590: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00023580: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00023590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000235a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000235b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000235c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000235d0: 6931 3920 3a20 6170 706c 7928 746f 4c69 i19 : apply(toLi │ │ │ │ -000235e0: 7374 2830 2e2e 3130 292c 2069 2d3e 6869 st(0..10), i->hi │ │ │ │ -000235f0: 6c62 6572 7446 756e 6374 696f 6e28 692c lbertFunction(i, │ │ │ │ -00023600: 2045 2929 2020 2020 2020 7c0a 7c20 2020 E)) |.| │ │ │ │ +000235c0: 2d2d 2b0a 7c69 3139 203a 2061 7070 6c79 --+.|i19 : apply │ │ │ │ +000235d0: 2874 6f4c 6973 7428 302e 2e31 3029 2c20 (toList(0..10), │ │ │ │ +000235e0: 692d 3e68 696c 6265 7274 4675 6e63 7469 i->hilbertFuncti │ │ │ │ +000235f0: 6f6e 2869 2c20 4529 2920 2020 2020 207c on(i, E)) | │ │ │ │ +00023600: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023640: 2020 2020 2020 207c 0a7c 6f31 3920 3d20 |.|o19 = │ │ │ │ -00023650: 7b31 2c20 332c 2035 2c20 372c 2039 2c20 {1, 3, 5, 7, 9, │ │ │ │ -00023660: 3131 2c20 3133 2c20 3135 2c20 3137 2c20 11, 13, 15, 17, │ │ │ │ -00023670: 3139 2c20 3231 7d20 2020 2020 2020 2020 19, 21} │ │ │ │ -00023680: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00023630: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00023640: 3139 203d 207b 312c 2033 2c20 352c 2037 19 = {1, 3, 5, 7 │ │ │ │ +00023650: 2c20 392c 2031 312c 2031 332c 2031 352c , 9, 11, 13, 15, │ │ │ │ +00023660: 2031 372c 2031 392c 2032 317d 2020 2020 17, 19, 21} │ │ │ │ +00023670: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00023680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000236a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000236b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000236c0: 207c 0a7c 6f31 3920 3a20 4c69 7374 2020 |.|o19 : List │ │ │ │ +000236b0: 2020 2020 2020 7c0a 7c6f 3139 203a 204c |.|o19 : L │ │ │ │ +000236c0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ 000236d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000236e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000236f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00023700: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000236f0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00023700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00023740: 3020 3a20 4565 7665 6e20 3d20 6576 656e 0 : Eeven = even │ │ │ │ -00023750: 4578 744d 6f64 756c 6520 4d32 2020 2020 ExtModule M2 │ │ │ │ -00023760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023770: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00023730: 2b0a 7c69 3230 203a 2045 6576 656e 203d +.|i20 : Eeven = │ │ │ │ +00023740: 2065 7665 6e45 7874 4d6f 6475 6c65 204d evenExtModule M │ │ │ │ +00023750: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00023760: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000237a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000237b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000237c0: 2020 2020 2020 2020 2020 3420 2020 2020 4 │ │ │ │ +000237a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000237b0: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ +000237c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000237d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000237e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000237f0: 2020 7c0a 7c6f 3230 203d 2028 6b6b 5b58 |.|o20 = (kk[X │ │ │ │ -00023800: 202e 2e58 205d 2920 2020 2020 2020 2020 ..X ]) │ │ │ │ +000237e0: 2020 2020 2020 207c 0a7c 6f32 3020 3d20 |.|o20 = │ │ │ │ +000237f0: 286b 6b5b 5820 2e2e 5820 5d29 2020 2020 (kk[X ..X ]) │ │ │ │ +00023800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023820: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00023830: 0a7c 2020 2020 2020 2020 2020 2030 2020 .| 0 │ │ │ │ -00023840: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00023820: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00023830: 2020 3020 2020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +00023840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023860: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00023860: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000238a0: 2020 2020 2020 2020 207c 0a7c 6f32 3020 |.|o20 │ │ │ │ -000238b0: 3a20 6b6b 5b58 202e 2e58 205d 2d6d 6f64 : kk[X ..X ]-mod │ │ │ │ -000238c0: 756c 652c 2066 7265 652c 2064 6567 7265 ule, free, degre │ │ │ │ -000238d0: 6573 207b 302e 2e31 2c20 323a 317d 2020 es {0..1, 2:1} │ │ │ │ -000238e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000238f0: 2020 2030 2020 2031 2020 2020 2020 2020 0 1 │ │ │ │ +00023890: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000238a0: 7c6f 3230 203a 206b 6b5b 5820 2e2e 5820 |o20 : kk[X ..X │ │ │ │ +000238b0: 5d2d 6d6f 6475 6c65 2c20 6672 6565 2c20 ]-module, free, │ │ │ │ +000238c0: 6465 6772 6565 7320 7b30 2e2e 312c 2032 degrees {0..1, 2 │ │ │ │ +000238d0: 3a31 7d20 2020 2020 2020 207c 0a7c 2020 :1} |.| │ │ │ │ +000238e0: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ +000238f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023920: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00023910: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00023920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023960: 2b0a 7c69 3231 203a 2061 7070 6c79 2874 +.|i21 : apply(t │ │ │ │ -00023970: 6f4c 6973 7428 302e 2e35 292c 2069 2d3e oList(0..5), i-> │ │ │ │ -00023980: 6869 6c62 6572 7446 756e 6374 696f 6e28 hilbertFunction( │ │ │ │ -00023990: 692c 2045 6576 656e 2929 2020 207c 0a7c i, Eeven)) |.| │ │ │ │ +00023950: 2d2d 2d2d 2d2b 0a7c 6932 3120 3a20 6170 -----+.|i21 : ap │ │ │ │ +00023960: 706c 7928 746f 4c69 7374 2830 2e2e 3529 ply(toList(0..5) │ │ │ │ +00023970: 2c20 692d 3e68 696c 6265 7274 4675 6e63 , i->hilbertFunc │ │ │ │ +00023980: 7469 6f6e 2869 2c20 4565 7665 6e29 2920 tion(i, Eeven)) │ │ │ │ +00023990: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000239a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3231 |.|o21 │ │ │ │ -000239e0: 203d 207b 312c 2035 2c20 392c 2031 332c = {1, 5, 9, 13, │ │ │ │ -000239f0: 2031 372c 2032 317d 2020 2020 2020 2020 17, 21} │ │ │ │ -00023a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000239c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000239d0: 0a7c 6f32 3120 3d20 7b31 2c20 352c 2039 .|o21 = {1, 5, 9 │ │ │ │ +000239e0: 2c20 3133 2c20 3137 2c20 3231 7d20 2020 , 13, 17, 21} │ │ │ │ +000239f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023a00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00023a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a50: 2020 2020 7c0a 7c6f 3231 203a 204c 6973 |.|o21 : Lis │ │ │ │ -00023a60: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ +00023a40: 2020 2020 2020 2020 207c 0a7c 6f32 3120 |.|o21 │ │ │ │ +00023a50: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +00023a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a90: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00023a80: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00023a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00023ad0: 7c69 3232 203a 2045 6f64 6420 3d20 6f64 |i22 : Eodd = od │ │ │ │ -00023ae0: 6445 7874 4d6f 6475 6c65 204d 3220 2020 dExtModule M2 │ │ │ │ +00023ac0: 2d2d 2d2b 0a7c 6932 3220 3a20 456f 6464 ---+.|i22 : Eodd │ │ │ │ +00023ad0: 203d 206f 6464 4578 744d 6f64 756c 6520 = oddExtModule │ │ │ │ +00023ae0: 4d32 2020 2020 2020 2020 2020 2020 2020 M2 │ │ │ │ 00023af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00023b00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00023b50: 2020 2020 2020 2020 2020 2020 2034 2020 4 │ │ │ │ +00023b30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023b50: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 00023b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b80: 2020 2020 207c 0a7c 6f32 3220 3d20 286b |.|o22 = (k │ │ │ │ -00023b90: 6b5b 5820 2e2e 5820 5d29 2020 2020 2020 k[X ..X ]) │ │ │ │ +00023b70: 2020 2020 2020 2020 2020 7c0a 7c6f 3232 |.|o22 │ │ │ │ +00023b80: 203d 2028 6b6b 5b58 202e 2e58 205d 2920 = (kk[X ..X ]) │ │ │ │ +00023b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023bc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00023bd0: 3020 2020 3120 2020 2020 2020 2020 2020 0 1 │ │ │ │ +00023bb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00023bc0: 2020 2020 2030 2020 2031 2020 2020 2020 0 1 │ │ │ │ +00023bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023bf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00023c00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00023bf0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00023c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c30: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00023c40: 3232 203a 206b 6b5b 5820 2e2e 5820 5d2d 22 : kk[X ..X ]- │ │ │ │ -00023c50: 6d6f 6475 6c65 2c20 6672 6565 2c20 6465 module, free, de │ │ │ │ -00023c60: 6772 6565 7320 7b33 3a30 2c20 317d 2020 grees {3:0, 1} │ │ │ │ -00023c70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00023c80: 2020 2020 2020 3020 2020 3120 2020 2020 0 1 │ │ │ │ +00023c30: 207c 0a7c 6f32 3220 3a20 6b6b 5b58 202e |.|o22 : kk[X . │ │ │ │ +00023c40: 2e58 205d 2d6d 6f64 756c 652c 2066 7265 .X ]-module, fre │ │ │ │ +00023c50: 652c 2064 6567 7265 6573 207b 333a 302c e, degrees {3:0, │ │ │ │ +00023c60: 2031 7d20 2020 2020 2020 2020 2020 7c0a 1} |. │ │ │ │ +00023c70: 7c20 2020 2020 2020 2020 2030 2020 2031 | 0 1 │ │ │ │ +00023c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023cb0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00023ca0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00023cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023cf0: 2d2d 2d2b 0a7c 6932 3320 3a20 6170 706c ---+.|i23 : appl │ │ │ │ -00023d00: 7928 746f 4c69 7374 2830 2e2e 3529 2c20 y(toList(0..5), │ │ │ │ -00023d10: 692d 3e68 696c 6265 7274 4675 6e63 7469 i->hilbertFuncti │ │ │ │ -00023d20: 6f6e 2869 2c20 456f 6464 2929 2020 2020 on(i, Eodd)) │ │ │ │ -00023d30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023ce0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3233 203a --------+.|i23 : │ │ │ │ +00023cf0: 2061 7070 6c79 2874 6f4c 6973 7428 302e apply(toList(0. │ │ │ │ +00023d00: 2e35 292c 2069 2d3e 6869 6c62 6572 7446 .5), i->hilbertF │ │ │ │ +00023d10: 756e 6374 696f 6e28 692c 2045 6f64 6429 unction(i, Eodd) │ │ │ │ +00023d20: 2920 2020 207c 0a7c 2020 2020 2020 2020 ) |.| │ │ │ │ +00023d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00023d70: 6f32 3320 3d20 7b33 2c20 372c 2031 312c o23 = {3, 7, 11, │ │ │ │ -00023d80: 2031 352c 2031 392c 2032 337d 2020 2020 15, 19, 23} │ │ │ │ -00023d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023da0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00023d60: 2020 7c0a 7c6f 3233 203d 207b 332c 2037 |.|o23 = {3, 7 │ │ │ │ +00023d70: 2c20 3131 2c20 3135 2c20 3139 2c20 3233 , 11, 15, 19, 23 │ │ │ │ +00023d80: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00023d90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023da0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023de0: 2020 2020 2020 207c 0a7c 6f32 3320 3a20 |.|o23 : │ │ │ │ -00023df0: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ +00023dd0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00023de0: 3233 203a 204c 6973 7420 2020 2020 2020 23 : List │ │ │ │ +00023df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e20: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00023e10: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00023e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e60: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ -00023e70: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -00023e80: 2065 7665 6e45 7874 4d6f 6475 6c65 3a20 evenExtModule: │ │ │ │ -00023e90: 6576 656e 4578 744d 6f64 756c 652c 202d evenExtModule, - │ │ │ │ -00023ea0: 2d20 6576 656e 2070 6172 7420 6f66 2045 - even part of E │ │ │ │ -00023eb0: 7874 5e2a 284d 2c6b 2920 6f76 6572 2061 xt^*(M,k) over a │ │ │ │ -00023ec0: 0a20 2020 2063 6f6d 706c 6574 6520 696e . complete in │ │ │ │ -00023ed0: 7465 7273 6563 7469 6f6e 2061 7320 6d6f tersection as mo │ │ │ │ -00023ee0: 6475 6c65 206f 7665 7220 4349 206f 7065 dule over CI ope │ │ │ │ -00023ef0: 7261 746f 7220 7269 6e67 0a20 202a 202a rator ring. * * │ │ │ │ -00023f00: 6e6f 7465 206f 6464 4578 744d 6f64 756c note oddExtModul │ │ │ │ -00023f10: 653a 206f 6464 4578 744d 6f64 756c 652c e: oddExtModule, │ │ │ │ -00023f20: 202d 2d20 6f64 6420 7061 7274 206f 6620 -- odd part of │ │ │ │ -00023f30: 4578 745e 2a28 4d2c 6b29 206f 7665 7220 Ext^*(M,k) over │ │ │ │ -00023f40: 6120 636f 6d70 6c65 7465 0a20 2020 2069 a complete. i │ │ │ │ -00023f50: 6e74 6572 7365 6374 696f 6e20 6173 206d ntersection as m │ │ │ │ -00023f60: 6f64 756c 6520 6f76 6572 2043 4920 6f70 odule over CI op │ │ │ │ -00023f70: 6572 6174 6f72 2072 696e 670a 0a57 6179 erator ring..Way │ │ │ │ -00023f80: 7320 746f 2075 7365 2045 7874 4d6f 6475 s to use ExtModu │ │ │ │ -00023f90: 6c65 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d le:.============ │ │ │ │ -00023fa0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00023fb0: 2245 7874 4d6f 6475 6c65 284d 6f64 756c "ExtModule(Modul │ │ │ │ -00023fc0: 6529 220a 0a46 6f72 2074 6865 2070 726f e)"..For the pro │ │ │ │ -00023fd0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -00023fe0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -00023ff0: 6f62 6a65 6374 202a 6e6f 7465 2045 7874 object *note Ext │ │ │ │ -00024000: 4d6f 6475 6c65 3a20 4578 744d 6f64 756c Module: ExtModul │ │ │ │ -00024010: 652c 2069 7320 6120 2a6e 6f74 6520 6d65 e, is a *note me │ │ │ │ -00024020: 7468 6f64 2066 756e 6374 696f 6e3a 0a28 thod function:.( │ │ │ │ -00024030: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ -00024040: 686f 6446 756e 6374 696f 6e2c 2e0a 0a2d hodFunction,...- │ │ │ │ +00023e50: 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 ------+..See als │ │ │ │ +00023e60: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +00023e70: 2a6e 6f74 6520 6576 656e 4578 744d 6f64 *note evenExtMod │ │ │ │ +00023e80: 756c 653a 2065 7665 6e45 7874 4d6f 6475 ule: evenExtModu │ │ │ │ +00023e90: 6c65 2c20 2d2d 2065 7665 6e20 7061 7274 le, -- even part │ │ │ │ +00023ea0: 206f 6620 4578 745e 2a28 4d2c 6b29 206f of Ext^*(M,k) o │ │ │ │ +00023eb0: 7665 7220 610a 2020 2020 636f 6d70 6c65 ver a. comple │ │ │ │ +00023ec0: 7465 2069 6e74 6572 7365 6374 696f 6e20 te intersection │ │ │ │ +00023ed0: 6173 206d 6f64 756c 6520 6f76 6572 2043 as module over C │ │ │ │ +00023ee0: 4920 6f70 6572 6174 6f72 2072 696e 670a I operator ring. │ │ │ │ +00023ef0: 2020 2a20 2a6e 6f74 6520 6f64 6445 7874 * *note oddExt │ │ │ │ +00023f00: 4d6f 6475 6c65 3a20 6f64 6445 7874 4d6f Module: oddExtMo │ │ │ │ +00023f10: 6475 6c65 2c20 2d2d 206f 6464 2070 6172 dule, -- odd par │ │ │ │ +00023f20: 7420 6f66 2045 7874 5e2a 284d 2c6b 2920 t of Ext^*(M,k) │ │ │ │ +00023f30: 6f76 6572 2061 2063 6f6d 706c 6574 650a over a complete. │ │ │ │ +00023f40: 2020 2020 696e 7465 7273 6563 7469 6f6e intersection │ │ │ │ +00023f50: 2061 7320 6d6f 6475 6c65 206f 7665 7220 as module over │ │ │ │ +00023f60: 4349 206f 7065 7261 746f 7220 7269 6e67 CI operator ring │ │ │ │ +00023f70: 0a0a 5761 7973 2074 6f20 7573 6520 4578 ..Ways to use Ex │ │ │ │ +00023f80: 744d 6f64 756c 653a 0a3d 3d3d 3d3d 3d3d tModule:.======= │ │ │ │ +00023f90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00023fa0: 0a20 202a 2022 4578 744d 6f64 756c 6528 . * "ExtModule( │ │ │ │ +00023fb0: 4d6f 6475 6c65 2922 0a0a 466f 7220 7468 Module)"..For th │ │ │ │ +00023fc0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +00023fd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00023fe0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +00023ff0: 6520 4578 744d 6f64 756c 653a 2045 7874 e ExtModule: Ext │ │ │ │ +00024000: 4d6f 6475 6c65 2c20 6973 2061 202a 6e6f Module, is a *no │ │ │ │ +00024010: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +00024020: 6f6e 3a0a 284d 6163 6175 6c61 7932 446f on:.(Macaulay2Do │ │ │ │ +00024030: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ +00024040: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ 00024050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -000240a0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -000240b0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -000240c0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -000240d0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -000240e0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -000240f0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -00024100: 6b61 6765 732f 0a43 6f6d 706c 6574 6549 kages/.CompleteI │ │ │ │ -00024110: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ -00024120: 7574 696f 6e73 2e6d 323a 3335 3936 3a30 utions.m2:3596:0 │ │ │ │ -00024130: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ -00024140: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ -00024150: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ -00024160: 4e6f 6465 3a20 4578 744d 6f64 756c 6544 Node: ExtModuleD │ │ │ │ -00024170: 6174 612c 204e 6578 743a 2065 7874 5673 ata, Next: extVs │ │ │ │ -00024180: 436f 686f 6d6f 6c6f 6779 2c20 5072 6576 Cohomology, Prev │ │ │ │ -00024190: 3a20 4578 744d 6f64 756c 652c 2055 703a : ExtModule, Up: │ │ │ │ -000241a0: 2054 6f70 0a0a 4578 744d 6f64 756c 6544 Top..ExtModuleD │ │ │ │ -000241b0: 6174 6120 2d2d 2045 7665 6e20 616e 6420 ata -- Even and │ │ │ │ -000241c0: 6f64 6420 4578 7420 6d6f 6475 6c65 7320 odd Ext modules │ │ │ │ -000241d0: 616e 6420 7468 6569 7220 7265 6775 6c61 and their regula │ │ │ │ -000241e0: 7269 7479 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a rity.*********** │ │ │ │ +00024090: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +000240a0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +000240b0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +000240c0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +000240d0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +000240e0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +000240f0: 322f 7061 636b 6167 6573 2f0a 436f 6d70 2/packages/.Comp │ │ │ │ +00024100: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ +00024110: 5265 736f 6c75 7469 6f6e 732e 6d32 3a33 Resolutions.m2:3 │ │ │ │ +00024120: 3539 363a 302e 0a1f 0a46 696c 653a 2043 596:0....File: C │ │ │ │ +00024130: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ +00024140: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ +00024150: 6e66 6f2c 204e 6f64 653a 2045 7874 4d6f nfo, Node: ExtMo │ │ │ │ +00024160: 6475 6c65 4461 7461 2c20 4e65 7874 3a20 duleData, Next: │ │ │ │ +00024170: 6578 7456 7343 6f68 6f6d 6f6c 6f67 792c extVsCohomology, │ │ │ │ +00024180: 2050 7265 763a 2045 7874 4d6f 6475 6c65 Prev: ExtModule │ │ │ │ +00024190: 2c20 5570 3a20 546f 700a 0a45 7874 4d6f , Up: Top..ExtMo │ │ │ │ +000241a0: 6475 6c65 4461 7461 202d 2d20 4576 656e duleData -- Even │ │ │ │ +000241b0: 2061 6e64 206f 6464 2045 7874 206d 6f64 and odd Ext mod │ │ │ │ +000241c0: 756c 6573 2061 6e64 2074 6865 6972 2072 ules and their r │ │ │ │ +000241d0: 6567 756c 6172 6974 790a 2a2a 2a2a 2a2a egularity.****** │ │ │ │ +000241e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000241f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00024200: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00024210: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00024220: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -00024230: 0a20 2020 2020 2020 204c 203d 2045 7874 . L = Ext │ │ │ │ -00024240: 4d6f 6475 6c65 4461 7461 204d 0a20 202a ModuleData M. * │ │ │ │ -00024250: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -00024260: 204d 2c20 6120 2a6e 6f74 6520 6d6f 6475 M, a *note modu │ │ │ │ -00024270: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ -00024280: 6329 4d6f 6475 6c65 2c2c 204d 6f64 756c c)Module,, Modul │ │ │ │ -00024290: 6520 6f76 6572 2061 2063 6f6d 706c 6574 e over a complet │ │ │ │ -000242a0: 650a 2020 2020 2020 2020 696e 7465 7273 e. inters │ │ │ │ -000242b0: 6563 7469 6f6e 2053 0a20 202a 204f 7574 ection S. * Out │ │ │ │ -000242c0: 7075 7473 3a0a 2020 2020 2020 2a20 4c2c puts:. * L, │ │ │ │ -000242d0: 2061 202a 6e6f 7465 206c 6973 743a 2028 a *note list: ( │ │ │ │ -000242e0: 4d61 6361 756c 6179 3244 6f63 294c 6973 Macaulay2Doc)Lis │ │ │ │ -000242f0: 742c 2c20 4c20 3d20 5c7b 6576 656e 4578 t,, L = \{evenEx │ │ │ │ -00024300: 744d 6f64 756c 652c 0a20 2020 2020 2020 tModule,. │ │ │ │ -00024310: 206f 6464 4578 744d 6f64 756c 652c 2072 oddExtModule, r │ │ │ │ -00024320: 6567 302c 2072 6567 315c 7d0a 0a44 6573 eg0, reg1\}..Des │ │ │ │ -00024330: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00024340: 3d3d 3d3d 0a0a 5375 7070 6f73 6520 7468 ====..Suppose th │ │ │ │ -00024350: 6174 204d 2069 7320 6120 6d6f 6475 6c65 at M is a module │ │ │ │ -00024360: 206f 7665 7220 6120 636f 6d70 6c65 7465 over a complete │ │ │ │ -00024370: 2069 6e74 6572 7365 6374 696f 6e20 5220 intersection R │ │ │ │ -00024380: 736f 2074 6861 740a 0a45 203a 3d20 4578 so that..E := Ex │ │ │ │ -00024390: 744d 6f64 756c 6520 4d0a 0a69 7320 6120 tModule M..is a │ │ │ │ -000243a0: 6d6f 6475 6c65 2067 656e 6572 6174 6564 module generated │ │ │ │ -000243b0: 2069 6e20 6465 6772 6565 7320 3e3d 3020 in degrees >=0 │ │ │ │ -000243c0: 6f76 6572 2061 2070 6f6c 796e 6f6d 6961 over a polynomia │ │ │ │ -000243d0: 6c20 7269 6e67 2054 2720 6765 6e65 7261 l ring T' genera │ │ │ │ -000243e0: 7465 6420 696e 0a64 6567 7265 6520 322c ted in.degree 2, │ │ │ │ -000243f0: 2061 6e64 0a0a 4530 203a 3d20 6576 656e and..E0 := even │ │ │ │ -00024400: 4578 744d 6f64 756c 6520 4d20 616e 6420 ExtModule M and │ │ │ │ -00024410: 4531 203a 3d20 6f64 6445 7874 4d6f 6475 E1 := oddExtModu │ │ │ │ -00024420: 6c65 204d 0a0a 6172 6520 6d6f 6475 6c65 le M..are module │ │ │ │ -00024430: 7320 6765 6e65 7261 7465 6420 696e 2064 s generated in d │ │ │ │ -00024440: 6567 7265 6520 3e3d 2030 206f 7665 7220 egree >= 0 over │ │ │ │ -00024450: 6120 706f 6c79 6e6f 6d69 616c 2072 696e a polynomial rin │ │ │ │ -00024460: 6720 5420 7769 7468 2067 656e 6572 6174 g T with generat │ │ │ │ -00024470: 6f72 730a 696e 2064 6567 7265 6520 312e ors.in degree 1. │ │ │ │ -00024480: 0a0a 5468 6520 7363 7269 7074 2072 6574 ..The script ret │ │ │ │ -00024490: 7572 6e73 0a0a 4c20 3d20 5c7b 4530 2c45 urns..L = \{E0,E │ │ │ │ -000244a0: 312c 2072 6567 756c 6172 6974 7920 4530 1, regularity E0 │ │ │ │ -000244b0: 2c20 7265 6775 6c61 7269 7479 2045 315c , regularity E1\ │ │ │ │ -000244c0: 7d0a 0a61 6e64 2070 7269 6e74 7320 6120 }..and prints a │ │ │ │ -000244d0: 6d65 7373 6167 6520 6966 207c 7265 6730 message if |reg0 │ │ │ │ -000244e0: 2d72 6567 317c 3e31 2e0a 0a49 6620 7765 -reg1|>1...If we │ │ │ │ -000244f0: 2073 6574 2072 203d 206d 6178 2832 2a72 set r = max(2*r │ │ │ │ -00024500: 6567 302c 2031 2b32 2a72 6567 3129 2c20 eg0, 1+2*reg1), │ │ │ │ -00024510: 616e 6420 4620 6973 2061 2072 6573 6f6c and F is a resol │ │ │ │ -00024520: 7574 696f 6e20 6f66 204d 2c20 7468 656e ution of M, then │ │ │ │ -00024530: 2063 6f6b 6572 0a46 2e64 645f 7b28 722b coker.F.dd_{(r+ │ │ │ │ -00024540: 3129 7d20 6973 2074 6865 2066 6972 7374 1)} is the first │ │ │ │ -00024550: 2073 7a79 6779 206d 6f64 756c 6520 6f66 szygy module of │ │ │ │ -00024560: 204d 2073 7563 6820 7468 6174 2072 6567 M such that reg │ │ │ │ -00024570: 756c 6172 6974 7920 6576 656e 4578 744d ularity evenExtM │ │ │ │ -00024580: 6f64 756c 650a 4d20 3d30 2041 4e44 2072 odule.M =0 AND r │ │ │ │ -00024590: 6567 756c 6172 6974 7920 6f64 6445 7874 egularity oddExt │ │ │ │ -000245a0: 4d6f 6475 6c65 204d 203d 300a 0a57 6520 Module M =0..We │ │ │ │ -000245b0: 6861 7665 2062 6565 6e20 7573 696e 6720 have been using │ │ │ │ -000245c0: 7265 6775 6c61 7269 7479 2045 7874 4d6f regularity ExtMo │ │ │ │ -000245d0: 6475 6c65 204d 2061 7320 6120 7375 6273 dule M as a subs │ │ │ │ -000245e0: 7469 7475 7465 2066 6f72 2072 2c20 6275 titute for r, bu │ │ │ │ -000245f0: 7420 7468 6174 2773 206e 6f74 0a61 6c77 t that's not.alw │ │ │ │ -00024600: 6179 7320 7468 6520 7361 6d65 2e0a 0a54 ays the same...T │ │ │ │ -00024610: 6865 2072 6567 756c 6172 6974 6965 7320 he regularities │ │ │ │ -00024620: 6f66 2074 6865 2065 7665 6e20 616e 6420 of the even and │ │ │ │ -00024630: 6f64 6420 4578 7420 6d6f 6475 6c65 7320 odd Ext modules │ │ │ │ -00024640: 2a63 616e 2a20 6469 6666 6572 2062 7920 *can* differ by │ │ │ │ -00024650: 6d6f 7265 2074 6861 6e20 312e 0a41 6e20 more than 1..An │ │ │ │ -00024660: 6578 616d 706c 6520 6361 6e20 6265 2070 example can be p │ │ │ │ -00024670: 726f 6475 6365 6420 7769 7468 2073 6574 roduced with set │ │ │ │ -00024680: 5261 6e64 6f6d 5365 6564 2030 2053 203d RandomSeed 0 S = │ │ │ │ -00024690: 205a 5a2f 3130 315b 612c 622c 632c 645d ZZ/101[a,b,c,d] │ │ │ │ -000246a0: 2066 660a 3d6d 6174 7269 7822 6134 2c62 ff.=matrix"a4,b │ │ │ │ -000246b0: 342c 6334 2c64 3422 2052 203d 2053 2f69 4,c4,d4" R = S/i │ │ │ │ -000246c0: 6465 616c 2066 6620 4e20 3d20 636f 6b65 deal ff N = coke │ │ │ │ -000246d0: 7220 7261 6e64 6f6d 2852 5e7b 302c 317d r random(R^{0,1} │ │ │ │ -000246e0: 2c20 525e 7b20 2d31 2c2d 322c 2d33 2c2d , R^{ -1,-2,-3,- │ │ │ │ -000246f0: 347d 290a 2d2d 6769 7665 7320 7265 6720 4}).--gives reg │ │ │ │ -00024700: 4578 745e 6576 656e 203d 2034 2c20 7265 Ext^even = 4, re │ │ │ │ -00024710: 6720 4578 745e 6f64 6420 3d20 3320 4c20 g Ext^odd = 3 L │ │ │ │ -00024720: 3d20 4578 744d 6f64 756c 6544 6174 6120 = ExtModuleData │ │ │ │ -00024730: 4e3b 2062 7574 2074 616b 6573 2073 6f6d N; but takes som │ │ │ │ -00024740: 650a 7469 6d65 2074 6f20 636f 6d70 7574 e.time to comput │ │ │ │ -00024750: 652e 0a0a 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d e.....+--------- │ │ │ │ +00024210: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ +00024220: 6167 653a 200a 2020 2020 2020 2020 4c20 age: . L │ │ │ │ +00024230: 3d20 4578 744d 6f64 756c 6544 6174 6120 = ExtModuleData │ │ │ │ +00024240: 4d0a 2020 2a20 496e 7075 7473 3a0a 2020 M. * Inputs:. │ │ │ │ +00024250: 2020 2020 2a20 4d2c 2061 202a 6e6f 7465 * M, a *note │ │ │ │ +00024260: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ +00024270: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ +00024280: 4d6f 6475 6c65 206f 7665 7220 6120 636f Module over a co │ │ │ │ +00024290: 6d70 6c65 7465 0a20 2020 2020 2020 2069 mplete. i │ │ │ │ +000242a0: 6e74 6572 7365 6374 696f 6e20 530a 2020 ntersection S. │ │ │ │ +000242b0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +000242c0: 202a 204c 2c20 6120 2a6e 6f74 6520 6c69 * L, a *note li │ │ │ │ +000242d0: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ +000242e0: 6329 4c69 7374 2c2c 204c 203d 205c 7b65 c)List,, L = \{e │ │ │ │ +000242f0: 7665 6e45 7874 4d6f 6475 6c65 2c0a 2020 venExtModule,. │ │ │ │ +00024300: 2020 2020 2020 6f64 6445 7874 4d6f 6475 oddExtModu │ │ │ │ +00024310: 6c65 2c20 7265 6730 2c20 7265 6731 5c7d le, reg0, reg1\} │ │ │ │ +00024320: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +00024330: 3d3d 3d3d 3d3d 3d3d 3d0a 0a53 7570 706f =========..Suppo │ │ │ │ +00024340: 7365 2074 6861 7420 4d20 6973 2061 206d se that M is a m │ │ │ │ +00024350: 6f64 756c 6520 6f76 6572 2061 2063 6f6d odule over a com │ │ │ │ +00024360: 706c 6574 6520 696e 7465 7273 6563 7469 plete intersecti │ │ │ │ +00024370: 6f6e 2052 2073 6f20 7468 6174 0a0a 4520 on R so that..E │ │ │ │ +00024380: 3a3d 2045 7874 4d6f 6475 6c65 204d 0a0a := ExtModule M.. │ │ │ │ +00024390: 6973 2061 206d 6f64 756c 6520 6765 6e65 is a module gene │ │ │ │ +000243a0: 7261 7465 6420 696e 2064 6567 7265 6573 rated in degrees │ │ │ │ +000243b0: 203e 3d30 206f 7665 7220 6120 706f 6c79 >=0 over a poly │ │ │ │ +000243c0: 6e6f 6d69 616c 2072 696e 6720 5427 2067 nomial ring T' g │ │ │ │ +000243d0: 656e 6572 6174 6564 2069 6e0a 6465 6772 enerated in.degr │ │ │ │ +000243e0: 6565 2032 2c20 616e 640a 0a45 3020 3a3d ee 2, and..E0 := │ │ │ │ +000243f0: 2065 7665 6e45 7874 4d6f 6475 6c65 204d evenExtModule M │ │ │ │ +00024400: 2061 6e64 2045 3120 3a3d 206f 6464 4578 and E1 := oddEx │ │ │ │ +00024410: 744d 6f64 756c 6520 4d0a 0a61 7265 206d tModule M..are m │ │ │ │ +00024420: 6f64 756c 6573 2067 656e 6572 6174 6564 odules generated │ │ │ │ +00024430: 2069 6e20 6465 6772 6565 203e 3d20 3020 in degree >= 0 │ │ │ │ +00024440: 6f76 6572 2061 2070 6f6c 796e 6f6d 6961 over a polynomia │ │ │ │ +00024450: 6c20 7269 6e67 2054 2077 6974 6820 6765 l ring T with ge │ │ │ │ +00024460: 6e65 7261 746f 7273 0a69 6e20 6465 6772 nerators.in degr │ │ │ │ +00024470: 6565 2031 2e0a 0a54 6865 2073 6372 6970 ee 1...The scrip │ │ │ │ +00024480: 7420 7265 7475 726e 730a 0a4c 203d 205c t returns..L = \ │ │ │ │ +00024490: 7b45 302c 4531 2c20 7265 6775 6c61 7269 {E0,E1, regulari │ │ │ │ +000244a0: 7479 2045 302c 2072 6567 756c 6172 6974 ty E0, regularit │ │ │ │ +000244b0: 7920 4531 5c7d 0a0a 616e 6420 7072 696e y E1\}..and prin │ │ │ │ +000244c0: 7473 2061 206d 6573 7361 6765 2069 6620 ts a message if │ │ │ │ +000244d0: 7c72 6567 302d 7265 6731 7c3e 312e 0a0a |reg0-reg1|>1... │ │ │ │ +000244e0: 4966 2077 6520 7365 7420 7220 3d20 6d61 If we set r = ma │ │ │ │ +000244f0: 7828 322a 7265 6730 2c20 312b 322a 7265 x(2*reg0, 1+2*re │ │ │ │ +00024500: 6731 292c 2061 6e64 2046 2069 7320 6120 g1), and F is a │ │ │ │ +00024510: 7265 736f 6c75 7469 6f6e 206f 6620 4d2c resolution of M, │ │ │ │ +00024520: 2074 6865 6e20 636f 6b65 720a 462e 6464 then coker.F.dd │ │ │ │ +00024530: 5f7b 2872 2b31 297d 2069 7320 7468 6520 _{(r+1)} is the │ │ │ │ +00024540: 6669 7273 7420 737a 7967 7920 6d6f 6475 first szygy modu │ │ │ │ +00024550: 6c65 206f 6620 4d20 7375 6368 2074 6861 le of M such tha │ │ │ │ +00024560: 7420 7265 6775 6c61 7269 7479 2065 7665 t regularity eve │ │ │ │ +00024570: 6e45 7874 4d6f 6475 6c65 0a4d 203d 3020 nExtModule.M =0 │ │ │ │ +00024580: 414e 4420 7265 6775 6c61 7269 7479 206f AND regularity o │ │ │ │ +00024590: 6464 4578 744d 6f64 756c 6520 4d20 3d30 ddExtModule M =0 │ │ │ │ +000245a0: 0a0a 5765 2068 6176 6520 6265 656e 2075 ..We have been u │ │ │ │ +000245b0: 7369 6e67 2072 6567 756c 6172 6974 7920 sing regularity │ │ │ │ +000245c0: 4578 744d 6f64 756c 6520 4d20 6173 2061 ExtModule M as a │ │ │ │ +000245d0: 2073 7562 7374 6974 7574 6520 666f 7220 substitute for │ │ │ │ +000245e0: 722c 2062 7574 2074 6861 7427 7320 6e6f r, but that's no │ │ │ │ +000245f0: 740a 616c 7761 7973 2074 6865 2073 616d t.always the sam │ │ │ │ +00024600: 652e 0a0a 5468 6520 7265 6775 6c61 7269 e...The regulari │ │ │ │ +00024610: 7469 6573 206f 6620 7468 6520 6576 656e ties of the even │ │ │ │ +00024620: 2061 6e64 206f 6464 2045 7874 206d 6f64 and odd Ext mod │ │ │ │ +00024630: 756c 6573 202a 6361 6e2a 2064 6966 6665 ules *can* diffe │ │ │ │ +00024640: 7220 6279 206d 6f72 6520 7468 616e 2031 r by more than 1 │ │ │ │ +00024650: 2e0a 416e 2065 7861 6d70 6c65 2063 616e ..An example can │ │ │ │ +00024660: 2062 6520 7072 6f64 7563 6564 2077 6974 be produced wit │ │ │ │ +00024670: 6820 7365 7452 616e 646f 6d53 6565 6420 h setRandomSeed │ │ │ │ +00024680: 3020 5320 3d20 5a5a 2f31 3031 5b61 2c62 0 S = ZZ/101[a,b │ │ │ │ +00024690: 2c63 2c64 5d20 6666 0a3d 6d61 7472 6978 ,c,d] ff.=matrix │ │ │ │ +000246a0: 2261 342c 6234 2c63 342c 6434 2220 5220 "a4,b4,c4,d4" R │ │ │ │ +000246b0: 3d20 532f 6964 6561 6c20 6666 204e 203d = S/ideal ff N = │ │ │ │ +000246c0: 2063 6f6b 6572 2072 616e 646f 6d28 525e coker random(R^ │ │ │ │ +000246d0: 7b30 2c31 7d2c 2052 5e7b 202d 312c 2d32 {0,1}, R^{ -1,-2 │ │ │ │ +000246e0: 2c2d 332c 2d34 7d29 0a2d 2d67 6976 6573 ,-3,-4}).--gives │ │ │ │ +000246f0: 2072 6567 2045 7874 5e65 7665 6e20 3d20 reg Ext^even = │ │ │ │ +00024700: 342c 2072 6567 2045 7874 5e6f 6464 203d 4, reg Ext^odd = │ │ │ │ +00024710: 2033 204c 203d 2045 7874 4d6f 6475 6c65 3 L = ExtModule │ │ │ │ +00024720: 4461 7461 204e 3b20 6275 7420 7461 6b65 Data N; but take │ │ │ │ +00024730: 7320 736f 6d65 0a74 696d 6520 746f 2063 s some.time to c │ │ │ │ +00024740: 6f6d 7075 7465 2e0a 0a0a 0a2b 2d2d 2d2d ompute.....+---- │ │ │ │ +00024750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00024790: 203a 2073 6574 5261 6e64 6f6d 5365 6564 : setRandomSeed │ │ │ │ -000247a0: 2031 3030 2020 2020 2020 2020 2020 2020 100 │ │ │ │ -000247b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247c0: 2020 7c0a 7c20 2d2d 2073 6574 7469 6e67 |.| -- setting │ │ │ │ -000247d0: 2072 616e 646f 6d20 7365 6564 2074 6f20 random seed to │ │ │ │ -000247e0: 3130 3020 2020 2020 2020 2020 2020 2020 100 │ │ │ │ -000247f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00024780: 2b0a 7c69 3120 3a20 7365 7452 616e 646f +.|i1 : setRando │ │ │ │ +00024790: 6d53 6565 6420 3130 3020 2020 2020 2020 mSeed 100 │ │ │ │ +000247a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000247b0: 2020 2020 2020 207c 0a7c 202d 2d20 7365 |.| -- se │ │ │ │ +000247c0: 7474 696e 6720 7261 6e64 6f6d 2073 6565 tting random see │ │ │ │ +000247d0: 6420 746f 2031 3030 2020 2020 2020 2020 d to 100 │ │ │ │ +000247e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000247f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00024800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024830: 7c0a 7c6f 3120 3d20 3130 3020 2020 2020 |.|o1 = 100 │ │ │ │ +00024820: 2020 2020 207c 0a7c 6f31 203d 2031 3030 |.|o1 = 100 │ │ │ │ +00024830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024860: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00024850: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00024860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000248a0: 7c69 3220 3a20 5320 3d20 5a5a 2f31 3031 |i2 : S = ZZ/101 │ │ │ │ -000248b0: 5b61 2c62 2c63 2c64 5d3b 2020 2020 2020 [a,b,c,d]; │ │ │ │ -000248c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00024890: 2d2d 2d2b 0a7c 6932 203a 2053 203d 205a ---+.|i2 : S = Z │ │ │ │ +000248a0: 5a2f 3130 315b 612c 622c 632c 645d 3b20 Z/101[a,b,c,d]; │ │ │ │ +000248b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000248c0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000248d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000248e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000248f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00024910: 3320 3a20 6620 3d20 6d61 7028 535e 312c 3 : f = map(S^1, │ │ │ │ -00024920: 2053 5e34 2c20 2869 2c6a 2920 2d3e 2053 S^4, (i,j) -> S │ │ │ │ -00024930: 5f6a 5e33 2920 2020 2020 2020 2020 2020 _j^3) │ │ │ │ -00024940: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024900: 2d2b 0a7c 6933 203a 2066 203d 206d 6170 -+.|i3 : f = map │ │ │ │ +00024910: 2853 5e31 2c20 535e 342c 2028 692c 6a29 (S^1, S^4, (i,j) │ │ │ │ +00024920: 202d 3e20 535f 6a5e 3329 2020 2020 2020 -> S_j^3) │ │ │ │ +00024930: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00024940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024970: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -00024980: 3d20 7c20 6133 2062 3320 6333 2064 3320 = | a3 b3 c3 d3 │ │ │ │ -00024990: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000249a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024960: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024970: 0a7c 6f33 203d 207c 2061 3320 6233 2063 .|o3 = | a3 b3 c │ │ │ │ +00024980: 3320 6433 207c 2020 2020 2020 2020 2020 3 d3 | │ │ │ │ +00024990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000249a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000249b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000249c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000249f0: 2020 2020 2020 2020 3120 2020 2020 2034 1 4 │ │ │ │ +000249d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000249e0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +000249f0: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ 00024a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00024a20: 0a7c 6f33 203a 204d 6174 7269 7820 5320 .|o3 : Matrix S │ │ │ │ -00024a30: 203c 2d2d 2053 2020 2020 2020 2020 2020 <-- S │ │ │ │ -00024a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a50: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00024a10: 2020 2020 7c0a 7c6f 3320 3a20 4d61 7472 |.|o3 : Matr │ │ │ │ +00024a20: 6978 2053 2020 3c2d 2d20 5320 2020 2020 ix S <-- S │ │ │ │ +00024a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024a40: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00024a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00024a90: 6934 203a 2052 203d 2053 2f69 6465 616c i4 : R = S/ideal │ │ │ │ -00024aa0: 2066 3b20 2020 2020 2020 2020 2020 2020 f; │ │ │ │ -00024ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ac0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00024a80: 2d2d 2b0a 7c69 3420 3a20 5220 3d20 532f --+.|i4 : R = S/ │ │ │ │ +00024a90: 6964 6561 6c20 663b 2020 2020 2020 2020 ideal f; │ │ │ │ +00024aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024ab0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00024ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ -00024b00: 203a 204d 203d 2052 5e31 2f69 6465 616c : M = R^1/ideal │ │ │ │ -00024b10: 2261 6232 2b63 6432 223b 2020 2020 2020 "ab2+cd2"; │ │ │ │ -00024b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b30: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00024af0: 2b0a 7c69 3520 3a20 4d20 3d20 525e 312f +.|i5 : M = R^1/ │ │ │ │ +00024b00: 6964 6561 6c22 6162 322b 6364 3222 3b20 ideal"ab2+cd2"; │ │ │ │ +00024b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024b20: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00024b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024b60: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ -00024b70: 2062 6574 7469 2028 4620 3d20 6672 6565 betti (F = free │ │ │ │ -00024b80: 5265 736f 6c75 7469 6f6e 284d 2c20 4c65 Resolution(M, Le │ │ │ │ -00024b90: 6e67 7468 4c69 6d69 7420 3d3e 2035 2929 ngthLimit => 5)) │ │ │ │ -00024ba0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00024b60: 7c69 3620 3a20 6265 7474 6920 2846 203d |i6 : betti (F = │ │ │ │ +00024b70: 2066 7265 6552 6573 6f6c 7574 696f 6e28 freeResolution( │ │ │ │ +00024b80: 4d2c 204c 656e 6774 684c 696d 6974 203d M, LengthLimit = │ │ │ │ +00024b90: 3e20 3529 297c 0a7c 2020 2020 2020 2020 > 5))|.| │ │ │ │ +00024ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024bd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00024be0: 2020 2020 2020 3020 3120 3220 2033 2020 0 1 2 3 │ │ │ │ -00024bf0: 3420 2035 2020 2020 2020 2020 2020 2020 4 5 │ │ │ │ -00024c00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00024c10: 7c6f 3620 3d20 746f 7461 6c3a 2031 2031 |o6 = total: 1 1 │ │ │ │ -00024c20: 2035 2031 3620 3335 2036 3420 2020 2020 5 16 35 64 │ │ │ │ -00024c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024c40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00024c50: 2030 3a20 3120 2e20 2e20 202e 2020 2e20 0: 1 . . . . │ │ │ │ -00024c60: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -00024c70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00024c80: 2020 2020 2020 2020 313a 202e 202e 202e 1: . . . │ │ │ │ -00024c90: 2020 2e20 202e 2020 2e20 2020 2020 2020 . . . │ │ │ │ -00024ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024cb0: 2020 207c 0a7c 2020 2020 2020 2020 2032 |.| 2 │ │ │ │ -00024cc0: 3a20 2e20 3120 2e20 202e 2020 2e20 202e : . 1 . . . . │ │ │ │ -00024cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ce0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00024cf0: 2020 2020 2020 333a 202e 202e 2031 2020 3: . . 1 │ │ │ │ -00024d00: 2e20 202e 2020 2e20 2020 2020 2020 2020 . . . │ │ │ │ -00024d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d20: 207c 0a7c 2020 2020 2020 2020 2034 3a20 |.| 4: │ │ │ │ -00024d30: 2e20 2e20 3320 2038 2020 3520 202e 2020 . . 3 8 5 . │ │ │ │ -00024d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00024d60: 2020 2020 353a 202e 202e 2031 2020 3820 5: . . 1 8 │ │ │ │ -00024d70: 3235 2033 3220 2020 2020 2020 2020 2020 25 32 │ │ │ │ -00024d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00024d90: 0a7c 2020 2020 2020 2020 2036 3a20 2e20 .| 6: . │ │ │ │ -00024da0: 2e20 2e20 202e 2020 3520 3332 2020 2020 . . . 5 32 │ │ │ │ -00024db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024dc0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024bc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00024bd0: 2020 2020 2020 2020 2020 2030 2031 2032 0 1 2 │ │ │ │ +00024be0: 2020 3320 2034 2020 3520 2020 2020 2020 3 4 5 │ │ │ │ +00024bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024c00: 2020 207c 0a7c 6f36 203d 2074 6f74 616c |.|o6 = total │ │ │ │ +00024c10: 3a20 3120 3120 3520 3136 2033 3520 3634 : 1 1 5 16 35 64 │ │ │ │ +00024c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024c30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00024c40: 2020 2020 2020 303a 2031 202e 202e 2020 0: 1 . . │ │ │ │ +00024c50: 2e20 202e 2020 2e20 2020 2020 2020 2020 . . . │ │ │ │ +00024c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024c70: 207c 0a7c 2020 2020 2020 2020 2031 3a20 |.| 1: │ │ │ │ +00024c80: 2e20 2e20 2e20 202e 2020 2e20 202e 2020 . . . . . . │ │ │ │ +00024c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024ca0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00024cb0: 2020 2020 323a 202e 2031 202e 2020 2e20 2: . 1 . . │ │ │ │ +00024cc0: 202e 2020 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ +00024cd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024ce0: 0a7c 2020 2020 2020 2020 2033 3a20 2e20 .| 3: . │ │ │ │ +00024cf0: 2e20 3120 202e 2020 2e20 202e 2020 2020 . 1 . . . │ │ │ │ +00024d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024d10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024d20: 2020 343a 202e 202e 2033 2020 3820 2035 4: . . 3 8 5 │ │ │ │ +00024d30: 2020 2e20 2020 2020 2020 2020 2020 2020 . │ │ │ │ +00024d40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00024d50: 2020 2020 2020 2020 2035 3a20 2e20 2e20 5: . . │ │ │ │ +00024d60: 3120 2038 2032 3520 3332 2020 2020 2020 1 8 25 32 │ │ │ │ +00024d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024d80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00024d90: 363a 202e 202e 202e 2020 2e20 2035 2033 6: . . . . 5 3 │ │ │ │ +00024da0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00024db0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024df0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00024e00: 6f36 203a 2042 6574 7469 5461 6c6c 7920 o6 : BettiTally │ │ │ │ +00024df0: 2020 7c0a 7c6f 3620 3a20 4265 7474 6954 |.|o6 : BettiT │ │ │ │ +00024e00: 616c 6c79 2020 2020 2020 2020 2020 2020 ally │ │ │ │ 00024e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e30: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00024e20: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00024e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ -00024e70: 203a 2045 203d 2045 7874 4d6f 6475 6c65 : E = ExtModule │ │ │ │ -00024e80: 4461 7461 204d 3b20 2020 2020 2020 2020 Data M; │ │ │ │ -00024e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ea0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00024e60: 2b0a 7c69 3720 3a20 4520 3d20 4578 744d +.|i7 : E = ExtM │ │ │ │ +00024e70: 6f64 756c 6544 6174 6120 4d3b 2020 2020 oduleData M; │ │ │ │ +00024e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024e90: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00024ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024ed0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ -00024ee0: 2045 5f32 2020 2020 2020 2020 2020 2020 E_2 │ │ │ │ +00024ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00024ed0: 7c69 3820 3a20 455f 3220 2020 2020 2020 |i8 : E_2 │ │ │ │ +00024ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024f10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024f00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024f40: 2020 2020 2020 207c 0a7c 6f38 203d 2032 |.|o8 = 2 │ │ │ │ +00024f30: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00024f40: 3820 3d20 3220 2020 2020 2020 2020 2020 8 = 2 │ │ │ │ 00024f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024f70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00024f80: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00024f70: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00024f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024fb0: 2d2d 2d2d 2d2b 0a7c 6939 203a 2045 5f33 -----+.|i9 : E_3 │ │ │ │ +00024fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 ----------+.|i9 │ │ │ │ +00024fb0: 3a20 455f 3320 2020 2020 2020 2020 2020 : E_3 │ │ │ │ 00024fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024fe0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00024fe0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025020: 2020 207c 0a7c 6f39 203d 2031 2020 2020 |.|o9 = 1 │ │ │ │ +00025010: 2020 2020 2020 2020 7c0a 7c6f 3920 3d20 |.|o9 = │ │ │ │ +00025020: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00025030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025050: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00025040: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025050: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00025060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025090: 2d2b 0a7c 6931 3020 3a20 7220 3d20 6d61 -+.|i10 : r = ma │ │ │ │ -000250a0: 7828 322a 455f 322c 322a 455f 332b 3129 x(2*E_2,2*E_3+1) │ │ │ │ -000250b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00025080: 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a 2072 ------+.|i10 : r │ │ │ │ +00025090: 203d 206d 6178 2832 2a45 5f32 2c32 2a45 = max(2*E_2,2*E │ │ │ │ +000250a0: 5f33 2b31 2920 2020 2020 2020 2020 2020 _3+1) │ │ │ │ +000250b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000250c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00025100: 0a7c 6f31 3020 3d20 3420 2020 2020 2020 .|o10 = 4 │ │ │ │ +000250f0: 2020 2020 7c0a 7c6f 3130 203d 2034 2020 |.|o10 = 4 │ │ │ │ +00025100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025130: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00025120: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00025130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00025170: 6931 3120 3a20 4572 203d 2045 7874 4d6f i11 : Er = ExtMo │ │ │ │ -00025180: 6475 6c65 4461 7461 2063 6f6b 6572 2046 duleData coker F │ │ │ │ -00025190: 2e64 645f 723b 2020 2020 2020 2020 2020 .dd_r; │ │ │ │ -000251a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00025160: 2d2d 2b0a 7c69 3131 203a 2045 7220 3d20 --+.|i11 : Er = │ │ │ │ +00025170: 4578 744d 6f64 756c 6544 6174 6120 636f ExtModuleData co │ │ │ │ +00025180: 6b65 7220 462e 6464 5f72 3b20 2020 2020 ker F.dd_r; │ │ │ │ +00025190: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000251a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000251b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000251c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000251d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -000251e0: 3220 3a20 7265 6775 6c61 7269 7479 2045 2 : regularity E │ │ │ │ -000251f0: 725f 3020 2020 2020 2020 2020 2020 2020 r_0 │ │ │ │ -00025200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025210: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000251d0: 2b0a 7c69 3132 203a 2072 6567 756c 6172 +.|i12 : regular │ │ │ │ +000251e0: 6974 7920 4572 5f30 2020 2020 2020 2020 ity Er_0 │ │ │ │ +000251f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025200: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00025210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025240: 2020 2020 2020 2020 207c 0a7c 6f31 3220 |.|o12 │ │ │ │ -00025250: 3d20 3020 2020 2020 2020 2020 2020 2020 = 0 │ │ │ │ +00025230: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00025240: 7c6f 3132 203d 2030 2020 2020 2020 2020 |o12 = 0 │ │ │ │ +00025250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025280: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00025270: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00025280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000252a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000252b0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 -------+.|i13 : │ │ │ │ -000252c0: 7265 6775 6c61 7269 7479 2045 725f 3120 regularity Er_1 │ │ │ │ +000252a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000252b0: 3133 203a 2072 6567 756c 6172 6974 7920 13 : regularity │ │ │ │ +000252c0: 4572 5f31 2020 2020 2020 2020 2020 2020 Er_1 │ │ │ │ 000252d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000252e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000252f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000252e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000252f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025320: 2020 2020 207c 0a7c 6f31 3320 3d20 3020 |.|o13 = 0 │ │ │ │ +00025310: 2020 2020 2020 2020 2020 7c0a 7c6f 3133 |.|o13 │ │ │ │ +00025320: 203d 2030 2020 2020 2020 2020 2020 2020 = 0 │ │ │ │ 00025330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025350: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00025350: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00025360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025390: 2d2d 2d2b 0a7c 6931 3420 3a20 7265 6775 ---+.|i14 : regu │ │ │ │ -000253a0: 6c61 7269 7479 2065 7665 6e45 7874 4d6f larity evenExtMo │ │ │ │ -000253b0: 6475 6c65 2863 6f6b 6572 2046 2e64 645f dule(coker F.dd_ │ │ │ │ -000253c0: 2872 2d31 2929 2020 2020 7c0a 7c20 2020 (r-1)) |.| │ │ │ │ +00025380: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3134 203a --------+.|i14 : │ │ │ │ +00025390: 2072 6567 756c 6172 6974 7920 6576 656e regularity even │ │ │ │ +000253a0: 4578 744d 6f64 756c 6528 636f 6b65 7220 ExtModule(coker │ │ │ │ +000253b0: 462e 6464 5f28 722d 3129 2920 2020 207c F.dd_(r-1)) | │ │ │ │ +000253c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000253d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000253e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000253f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025400: 207c 0a7c 6f31 3420 3d20 3120 2020 2020 |.|o14 = 1 │ │ │ │ +000253f0: 2020 2020 2020 7c0a 7c6f 3134 203d 2031 |.|o14 = 1 │ │ │ │ +00025400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025430: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00025420: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00025430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00025470: 0a7c 6931 3520 3a20 6666 203d 2066 2a72 .|i15 : ff = f*r │ │ │ │ -00025480: 616e 646f 6d28 736f 7572 6365 2066 2c20 andom(source f, │ │ │ │ -00025490: 736f 7572 6365 2066 293b 2020 2020 2020 source f); │ │ │ │ -000254a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025460: 2d2d 2d2d 2b0a 7c69 3135 203a 2066 6620 ----+.|i15 : ff │ │ │ │ +00025470: 3d20 662a 7261 6e64 6f6d 2873 6f75 7263 = f*random(sourc │ │ │ │ +00025480: 6520 662c 2073 6f75 7263 6520 6629 3b20 e f, source f); │ │ │ │ +00025490: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000254a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000254d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000254e0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -000254f0: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ -00025500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025510: 2020 2020 7c0a 7c6f 3135 203a 204d 6174 |.|o15 : Mat │ │ │ │ -00025520: 7269 7820 5320 203c 2d2d 2053 2020 2020 rix S <-- S │ │ │ │ +000254d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000254e0: 2020 2031 2020 2020 2020 3420 2020 2020 1 4 │ │ │ │ +000254f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025500: 2020 2020 2020 2020 207c 0a7c 6f31 3520 |.|o15 │ │ │ │ +00025510: 3a20 4d61 7472 6978 2053 2020 3c2d 2d20 : Matrix S <-- │ │ │ │ +00025520: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 00025530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025540: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00025540: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00025550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025580: 2d2d 2b0a 7c69 3136 203a 206d 6174 7269 --+.|i16 : matri │ │ │ │ -00025590: 7846 6163 746f 7269 7a61 7469 6f6e 2866 xFactorization(f │ │ │ │ -000255a0: 662c 2063 6f6b 6572 2046 2e64 645f 2872 f, coker F.dd_(r │ │ │ │ -000255b0: 2b31 2929 3b20 2020 207c 0a2b 2d2d 2d2d +1)); |.+---- │ │ │ │ +00025570: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 -------+.|i16 : │ │ │ │ +00025580: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ +00025590: 696f 6e28 6666 2c20 636f 6b65 7220 462e ion(ff, coker F. │ │ │ │ +000255a0: 6464 5f28 722b 3129 293b 2020 2020 7c0a dd_(r+1)); |. │ │ │ │ +000255b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000255c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000255d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000255e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000255f0: 2b0a 0a54 6869 7320 7375 6363 6565 6473 +..This succeeds │ │ │ │ -00025600: 2c20 6275 7420 7765 2063 6f75 6c64 2067 , but we could g │ │ │ │ -00025610: 6574 2061 6e20 6572 726f 7220 6672 6f6d et an error from │ │ │ │ -00025620: 0a0a 6d61 7472 6978 4661 6374 6f72 697a ..matrixFactoriz │ │ │ │ -00025630: 6174 696f 6e28 6666 2c20 636f 6b65 7220 ation(ff, coker │ │ │ │ -00025640: 462e 6464 5f72 290a 0a69 6620 6f6e 6520 F.dd_r)..if one │ │ │ │ -00025650: 6f66 2074 6865 2043 4920 6f70 6572 6174 of the CI operat │ │ │ │ -00025660: 6f72 7320 7765 7265 206e 6f74 2073 7572 ors were not sur │ │ │ │ -00025670: 6a65 6374 6976 652e 0a0a 4361 7665 6174 jective...Caveat │ │ │ │ -00025680: 0a3d 3d3d 3d3d 3d0a 0a45 7874 4d6f 6475 .======..ExtModu │ │ │ │ -00025690: 6c65 2063 7265 6174 6573 2061 2072 696e le creates a rin │ │ │ │ -000256a0: 6720 696e 7369 6465 2074 6865 2073 6372 g inside the scr │ │ │ │ -000256b0: 6970 742c 2073 6f20 6966 2069 7427 7320 ipt, so if it's │ │ │ │ -000256c0: 7275 6e20 7477 6963 6520 796f 7520 6765 run twice you ge │ │ │ │ -000256d0: 740a 6d6f 6475 6c65 7320 6f76 6572 2064 t.modules over d │ │ │ │ -000256e0: 6966 6665 7265 6e74 2072 696e 6773 2e20 ifferent rings. │ │ │ │ -000256f0: 5468 6973 2073 686f 756c 6420 6265 2063 This should be c │ │ │ │ -00025700: 6861 6e67 6564 2e0a 0a53 6565 2061 6c73 hanged...See als │ │ │ │ -00025710: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ -00025720: 2a6e 6f74 6520 4578 744d 6f64 756c 653a *note ExtModule: │ │ │ │ -00025730: 2045 7874 4d6f 6475 6c65 2c20 2d2d 2045 ExtModule, -- E │ │ │ │ -00025740: 7874 5e2a 284d 2c6b 2920 6f76 6572 2061 xt^*(M,k) over a │ │ │ │ -00025750: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ -00025760: 6563 7469 6f6e 2061 730a 2020 2020 6d6f ection as. mo │ │ │ │ -00025770: 6475 6c65 206f 7665 7220 4349 206f 7065 dule over CI ope │ │ │ │ -00025780: 7261 746f 7220 7269 6e67 0a20 202a 202a rator ring. * * │ │ │ │ -00025790: 6e6f 7465 2065 7665 6e45 7874 4d6f 6475 note evenExtModu │ │ │ │ -000257a0: 6c65 3a20 6576 656e 4578 744d 6f64 756c le: evenExtModul │ │ │ │ -000257b0: 652c 202d 2d20 6576 656e 2070 6172 7420 e, -- even part │ │ │ │ -000257c0: 6f66 2045 7874 5e2a 284d 2c6b 2920 6f76 of Ext^*(M,k) ov │ │ │ │ -000257d0: 6572 2061 0a20 2020 2063 6f6d 706c 6574 er a. complet │ │ │ │ -000257e0: 6520 696e 7465 7273 6563 7469 6f6e 2061 e intersection a │ │ │ │ -000257f0: 7320 6d6f 6475 6c65 206f 7665 7220 4349 s module over CI │ │ │ │ -00025800: 206f 7065 7261 746f 7220 7269 6e67 0a20 operator ring. │ │ │ │ -00025810: 202a 202a 6e6f 7465 206f 6464 4578 744d * *note oddExtM │ │ │ │ -00025820: 6f64 756c 653a 206f 6464 4578 744d 6f64 odule: oddExtMod │ │ │ │ -00025830: 756c 652c 202d 2d20 6f64 6420 7061 7274 ule, -- odd part │ │ │ │ -00025840: 206f 6620 4578 745e 2a28 4d2c 6b29 206f of Ext^*(M,k) o │ │ │ │ -00025850: 7665 7220 6120 636f 6d70 6c65 7465 0a20 ver a complete. │ │ │ │ -00025860: 2020 2069 6e74 6572 7365 6374 696f 6e20 intersection │ │ │ │ -00025870: 6173 206d 6f64 756c 6520 6f76 6572 2043 as module over C │ │ │ │ -00025880: 4920 6f70 6572 6174 6f72 2072 696e 670a I operator ring. │ │ │ │ -00025890: 0a57 6179 7320 746f 2075 7365 2045 7874 .Ways to use Ext │ │ │ │ -000258a0: 4d6f 6475 6c65 4461 7461 3a0a 3d3d 3d3d ModuleData:.==== │ │ │ │ -000258b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000258c0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2245 7874 ======.. * "Ext │ │ │ │ -000258d0: 4d6f 6475 6c65 4461 7461 284d 6f64 756c ModuleData(Modul │ │ │ │ -000258e0: 6529 220a 0a46 6f72 2074 6865 2070 726f e)"..For the pro │ │ │ │ -000258f0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -00025900: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -00025910: 6f62 6a65 6374 202a 6e6f 7465 2045 7874 object *note Ext │ │ │ │ -00025920: 4d6f 6475 6c65 4461 7461 3a20 4578 744d ModuleData: ExtM │ │ │ │ -00025930: 6f64 756c 6544 6174 612c 2069 7320 6120 oduleData, is a │ │ │ │ -00025940: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ -00025950: 6374 696f 6e3a 0a28 4d61 6361 756c 6179 ction:.(Macaulay │ │ │ │ -00025960: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ -00025970: 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d ion,...--------- │ │ │ │ +000255e0: 2d2d 2d2d 2d2b 0a0a 5468 6973 2073 7563 -----+..This suc │ │ │ │ +000255f0: 6365 6564 732c 2062 7574 2077 6520 636f ceeds, but we co │ │ │ │ +00025600: 756c 6420 6765 7420 616e 2065 7272 6f72 uld get an error │ │ │ │ +00025610: 2066 726f 6d0a 0a6d 6174 7269 7846 6163 from..matrixFac │ │ │ │ +00025620: 746f 7269 7a61 7469 6f6e 2866 662c 2063 torization(ff, c │ │ │ │ +00025630: 6f6b 6572 2046 2e64 645f 7229 0a0a 6966 oker F.dd_r)..if │ │ │ │ +00025640: 206f 6e65 206f 6620 7468 6520 4349 206f one of the CI o │ │ │ │ +00025650: 7065 7261 746f 7273 2077 6572 6520 6e6f perators were no │ │ │ │ +00025660: 7420 7375 726a 6563 7469 7665 2e0a 0a43 t surjective...C │ │ │ │ +00025670: 6176 6561 740a 3d3d 3d3d 3d3d 0a0a 4578 aveat.======..Ex │ │ │ │ +00025680: 744d 6f64 756c 6520 6372 6561 7465 7320 tModule creates │ │ │ │ +00025690: 6120 7269 6e67 2069 6e73 6964 6520 7468 a ring inside th │ │ │ │ +000256a0: 6520 7363 7269 7074 2c20 736f 2069 6620 e script, so if │ │ │ │ +000256b0: 6974 2773 2072 756e 2074 7769 6365 2079 it's run twice y │ │ │ │ +000256c0: 6f75 2067 6574 0a6d 6f64 756c 6573 206f ou get.modules o │ │ │ │ +000256d0: 7665 7220 6469 6666 6572 656e 7420 7269 ver different ri │ │ │ │ +000256e0: 6e67 732e 2054 6869 7320 7368 6f75 6c64 ngs. This should │ │ │ │ +000256f0: 2062 6520 6368 616e 6765 642e 0a0a 5365 be changed...Se │ │ │ │ +00025700: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +00025710: 0a20 202a 202a 6e6f 7465 2045 7874 4d6f . * *note ExtMo │ │ │ │ +00025720: 6475 6c65 3a20 4578 744d 6f64 756c 652c dule: ExtModule, │ │ │ │ +00025730: 202d 2d20 4578 745e 2a28 4d2c 6b29 206f -- Ext^*(M,k) o │ │ │ │ +00025740: 7665 7220 6120 636f 6d70 6c65 7465 2069 ver a complete i │ │ │ │ +00025750: 6e74 6572 7365 6374 696f 6e20 6173 0a20 ntersection as. │ │ │ │ +00025760: 2020 206d 6f64 756c 6520 6f76 6572 2043 module over C │ │ │ │ +00025770: 4920 6f70 6572 6174 6f72 2072 696e 670a I operator ring. │ │ │ │ +00025780: 2020 2a20 2a6e 6f74 6520 6576 656e 4578 * *note evenEx │ │ │ │ +00025790: 744d 6f64 756c 653a 2065 7665 6e45 7874 tModule: evenExt │ │ │ │ +000257a0: 4d6f 6475 6c65 2c20 2d2d 2065 7665 6e20 Module, -- even │ │ │ │ +000257b0: 7061 7274 206f 6620 4578 745e 2a28 4d2c part of Ext^*(M, │ │ │ │ +000257c0: 6b29 206f 7665 7220 610a 2020 2020 636f k) over a. co │ │ │ │ +000257d0: 6d70 6c65 7465 2069 6e74 6572 7365 6374 mplete intersect │ │ │ │ +000257e0: 696f 6e20 6173 206d 6f64 756c 6520 6f76 ion as module ov │ │ │ │ +000257f0: 6572 2043 4920 6f70 6572 6174 6f72 2072 er CI operator r │ │ │ │ +00025800: 696e 670a 2020 2a20 2a6e 6f74 6520 6f64 ing. * *note od │ │ │ │ +00025810: 6445 7874 4d6f 6475 6c65 3a20 6f64 6445 dExtModule: oddE │ │ │ │ +00025820: 7874 4d6f 6475 6c65 2c20 2d2d 206f 6464 xtModule, -- odd │ │ │ │ +00025830: 2070 6172 7420 6f66 2045 7874 5e2a 284d part of Ext^*(M │ │ │ │ +00025840: 2c6b 2920 6f76 6572 2061 2063 6f6d 706c ,k) over a compl │ │ │ │ +00025850: 6574 650a 2020 2020 696e 7465 7273 6563 ete. intersec │ │ │ │ +00025860: 7469 6f6e 2061 7320 6d6f 6475 6c65 206f tion as module o │ │ │ │ +00025870: 7665 7220 4349 206f 7065 7261 746f 7220 ver CI operator │ │ │ │ +00025880: 7269 6e67 0a0a 5761 7973 2074 6f20 7573 ring..Ways to us │ │ │ │ +00025890: 6520 4578 744d 6f64 756c 6544 6174 613a e ExtModuleData: │ │ │ │ +000258a0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +000258b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +000258c0: 2022 4578 744d 6f64 756c 6544 6174 6128 "ExtModuleData( │ │ │ │ +000258d0: 4d6f 6475 6c65 2922 0a0a 466f 7220 7468 Module)"..For th │ │ │ │ +000258e0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +000258f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00025900: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +00025910: 6520 4578 744d 6f64 756c 6544 6174 613a e ExtModuleData: │ │ │ │ +00025920: 2045 7874 4d6f 6475 6c65 4461 7461 2c20 ExtModuleData, │ │ │ │ +00025930: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ +00025940: 6420 6675 6e63 7469 6f6e 3a0a 284d 6163 d function:.(Mac │ │ │ │ +00025950: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ +00025960: 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d Function,...---- │ │ │ │ +00025970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000259a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000259b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000259c0: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -000259d0: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -000259e0: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -000259f0: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -00025a00: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -00025a10: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -00025a20: 6c61 7932 2f70 6163 6b61 6765 732f 0a43 lay2/packages/.C │ │ │ │ -00025a30: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ -00025a40: 696f 6e52 6573 6f6c 7574 696f 6e73 2e6d ionResolutions.m │ │ │ │ -00025a50: 323a 3334 3433 3a30 2e0a 1f0a 4669 6c65 2:3443:0....File │ │ │ │ -00025a60: 3a20 436f 6d70 6c65 7465 496e 7465 7273 : CompleteInters │ │ │ │ -00025a70: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ -00025a80: 732e 696e 666f 2c20 4e6f 6465 3a20 6578 s.info, Node: ex │ │ │ │ -00025a90: 7456 7343 6f68 6f6d 6f6c 6f67 792c 204e tVsCohomology, N │ │ │ │ -00025aa0: 6578 743a 2066 696e 6974 6542 6574 7469 ext: finiteBetti │ │ │ │ -00025ab0: 4e75 6d62 6572 732c 2050 7265 763a 2045 Numbers, Prev: E │ │ │ │ -00025ac0: 7874 4d6f 6475 6c65 4461 7461 2c20 5570 xtModuleData, Up │ │ │ │ -00025ad0: 3a20 546f 700a 0a65 7874 5673 436f 686f : Top..extVsCoho │ │ │ │ -00025ae0: 6d6f 6c6f 6779 202d 2d20 636f 6d70 6172 mology -- compar │ │ │ │ -00025af0: 6573 2045 7874 5f53 284d 2c6b 2920 6173 es Ext_S(M,k) as │ │ │ │ -00025b00: 2065 7874 6572 696f 7220 6d6f 6475 6c65 exterior module │ │ │ │ -00025b10: 2077 6974 6820 636f 6820 7461 626c 6520 with coh table │ │ │ │ -00025b20: 6f66 2073 6865 6166 2045 7874 5f52 284d of sheaf Ext_R(M │ │ │ │ -00025b30: 2c6b 290a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ,k).************ │ │ │ │ +000259b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +000259c0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +000259d0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +000259e0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +000259f0: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00025a00: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00025a10: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +00025a20: 6573 2f0a 436f 6d70 6c65 7465 496e 7465 es/.CompleteInte │ │ │ │ +00025a30: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ +00025a40: 6f6e 732e 6d32 3a33 3434 333a 302e 0a1f ons.m2:3443:0... │ │ │ │ +00025a50: 0a46 696c 653a 2043 6f6d 706c 6574 6549 .File: CompleteI │ │ │ │ +00025a60: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ +00025a70: 7574 696f 6e73 2e69 6e66 6f2c 204e 6f64 utions.info, Nod │ │ │ │ +00025a80: 653a 2065 7874 5673 436f 686f 6d6f 6c6f e: extVsCohomolo │ │ │ │ +00025a90: 6779 2c20 4e65 7874 3a20 6669 6e69 7465 gy, Next: finite │ │ │ │ +00025aa0: 4265 7474 694e 756d 6265 7273 2c20 5072 BettiNumbers, Pr │ │ │ │ +00025ab0: 6576 3a20 4578 744d 6f64 756c 6544 6174 ev: ExtModuleDat │ │ │ │ +00025ac0: 612c 2055 703a 2054 6f70 0a0a 6578 7456 a, Up: Top..extV │ │ │ │ +00025ad0: 7343 6f68 6f6d 6f6c 6f67 7920 2d2d 2063 sCohomology -- c │ │ │ │ +00025ae0: 6f6d 7061 7265 7320 4578 745f 5328 4d2c ompares Ext_S(M, │ │ │ │ +00025af0: 6b29 2061 7320 6578 7465 7269 6f72 206d k) as exterior m │ │ │ │ +00025b00: 6f64 756c 6520 7769 7468 2063 6f68 2074 odule with coh t │ │ │ │ +00025b10: 6162 6c65 206f 6620 7368 6561 6620 4578 able of sheaf Ex │ │ │ │ +00025b20: 745f 5228 4d2c 6b29 0a2a 2a2a 2a2a 2a2a t_R(M,k).******* │ │ │ │ +00025b30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00025b40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00025b50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00025b60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00025b70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00025b80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00025b90: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -00025ba0: 2020 2020 2020 2845 2c54 2920 3d20 6578 (E,T) = ex │ │ │ │ -00025bb0: 7456 7343 6f68 6f6d 6f6c 6f67 7928 6666 tVsCohomology(ff │ │ │ │ -00025bc0: 2c4e 290a 2020 2a20 496e 7075 7473 3a0a ,N). * Inputs:. │ │ │ │ -00025bd0: 2020 2020 2020 2a20 6666 2c20 6120 2a6e * ff, a *n │ │ │ │ -00025be0: 6f74 6520 6d61 7472 6978 3a20 284d 6163 ote matrix: (Mac │ │ │ │ -00025bf0: 6175 6c61 7932 446f 6329 4d61 7472 6978 aulay2Doc)Matrix │ │ │ │ -00025c00: 2c2c 2072 6567 756c 6172 2073 6571 7565 ,, regular seque │ │ │ │ -00025c10: 6e63 6520 696e 2061 0a20 2020 2020 2020 nce in a. │ │ │ │ -00025c20: 2072 6567 756c 6172 2072 696e 6720 530a regular ring S. │ │ │ │ -00025c30: 2020 2020 2020 2a20 4e2c 2061 202a 6e6f * N, a *no │ │ │ │ -00025c40: 7465 206d 6f64 756c 653a 2028 4d61 6361 te module: (Maca │ │ │ │ -00025c50: 756c 6179 3244 6f63 294d 6f64 756c 652c ulay2Doc)Module, │ │ │ │ -00025c60: 2c20 6772 6164 6564 206d 6f64 756c 6520 , graded module │ │ │ │ -00025c70: 6f76 6572 2052 203d 0a20 2020 2020 2020 over R =. │ │ │ │ -00025c80: 2053 2f69 6465 616c 2866 6629 2028 7573 S/ideal(ff) (us │ │ │ │ -00025c90: 7561 6c6c 7920 6120 6869 6768 2073 797a ually a high syz │ │ │ │ -00025ca0: 7967 7929 0a20 202a 204f 7574 7075 7473 ygy). * Outputs │ │ │ │ -00025cb0: 3a0a 2020 2020 2020 2a20 452c 2061 202a :. * E, a * │ │ │ │ -00025cc0: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -00025cd0: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -00025ce0: 652c 2c20 0a20 2020 2020 202a 2054 2c20 e,, . * T, │ │ │ │ -00025cf0: 6120 2a6e 6f74 6520 6d6f 6475 6c65 3a20 a *note module: │ │ │ │ -00025d00: 284d 6163 6175 6c61 7932 446f 6329 4d6f (Macaulay2Doc)Mo │ │ │ │ -00025d10: 6475 6c65 2c2c 2045 7874 2061 6e64 2054 dule,, Ext and T │ │ │ │ -00025d20: 6f72 2061 7320 6578 7465 7269 6f72 0a20 or as exterior. │ │ │ │ -00025d30: 2020 2020 2020 206d 6f64 756c 6573 0a0a modules.. │ │ │ │ -00025d40: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -00025d50: 3d3d 3d3d 3d3d 3d0a 0a47 6976 656e 2061 =======..Given a │ │ │ │ -00025d60: 206d 6174 7269 7820 6666 2063 6f6e 7461 matrix ff conta │ │ │ │ -00025d70: 696e 696e 6720 6120 7265 6775 6c61 7220 ining a regular │ │ │ │ -00025d80: 7365 7175 656e 6365 2069 6e20 6120 706f sequence in a po │ │ │ │ -00025d90: 6c79 6e6f 6d69 616c 2072 696e 6720 5320 lynomial ring S │ │ │ │ -00025da0: 6f76 6572 206b 2c0a 7365 7420 5220 3d20 over k,.set R = │ │ │ │ -00025db0: 532f 2869 6465 616c 2066 6629 2e20 4966 S/(ideal ff). If │ │ │ │ -00025dc0: 204e 2069 7320 6120 6772 6164 6564 2052 N is a graded R │ │ │ │ -00025dd0: 2d6d 6f64 756c 652c 2061 6e64 204d 2069 -module, and M i │ │ │ │ -00025de0: 7320 7468 6520 6d6f 6475 6c65 204e 2072 s the module N r │ │ │ │ -00025df0: 6567 6172 6465 640a 6173 2061 6e20 532d egarded.as an S- │ │ │ │ -00025e00: 6d6f 6475 6c65 2c20 7468 6520 7363 7269 module, the scri │ │ │ │ -00025e10: 7074 2072 6574 7572 6e73 2045 203d 2045 pt returns E = E │ │ │ │ -00025e20: 7874 5f53 284d 2c6b 2920 616e 6420 5420 xt_S(M,k) and T │ │ │ │ -00025e30: 3d20 546f 725e 5328 4d2c 6b29 2061 7320 = Tor^S(M,k) as │ │ │ │ -00025e40: 6d6f 6475 6c65 730a 6f76 6572 2061 6e20 modules.over an │ │ │ │ -00025e50: 6578 7465 7269 6f72 2061 6c67 6562 7261 exterior algebra │ │ │ │ -00025e60: 2e0a 0a54 6865 2073 6372 6970 7420 7072 ...The script pr │ │ │ │ -00025e70: 696e 7473 2074 6865 2054 6174 6520 7265 ints the Tate re │ │ │ │ -00025e80: 736f 6c75 7469 6f6e 206f 6620 453b 2061 solution of E; a │ │ │ │ -00025e90: 6e64 2074 6865 2063 6f68 6f6d 6f6c 6f67 nd the cohomolog │ │ │ │ -00025ea0: 7920 7461 626c 6520 6f66 2074 6865 0a73 y table of the.s │ │ │ │ -00025eb0: 6865 6166 2061 7373 6f63 6961 7465 6420 heaf associated │ │ │ │ -00025ec0: 746f 2045 7874 5f52 284e 2c6b 2920 6f76 to Ext_R(N,k) ov │ │ │ │ -00025ed0: 6572 2074 6865 2072 696e 6720 6f66 2043 er the ring of C │ │ │ │ -00025ee0: 4920 6f70 6572 6174 6f72 732c 2077 6869 I operators, whi │ │ │ │ -00025ef0: 6368 2069 7320 610a 706f 6c79 6e6f 6d69 ch is a.polynomi │ │ │ │ -00025f00: 616c 2072 696e 6720 6f76 6572 206b 206f al ring over k o │ │ │ │ -00025f10: 6e20 6320 7661 7269 6162 6c65 732e 0a0a n c variables... │ │ │ │ -00025f20: 5468 6520 6f75 7470 7574 2063 616e 2062 The output can b │ │ │ │ -00025f30: 6520 7573 6564 2074 6f20 2873 6f6d 6574 e used to (somet │ │ │ │ -00025f40: 696d 6573 2920 6368 6563 6b20 7768 6574 imes) check whet │ │ │ │ -00025f50: 6865 7220 7468 6520 7375 626d 6f64 756c her the submodul │ │ │ │ -00025f60: 6520 6f66 2045 7874 5f53 284d 2c6b 290a e of Ext_S(M,k). │ │ │ │ -00025f70: 6765 6e65 7261 7465 6420 696e 2064 6567 generated in deg │ │ │ │ -00025f80: 7265 6520 3020 7370 6c69 7473 2028 6173 ree 0 splits (as │ │ │ │ -00025f90: 2061 6e20 6578 7465 7269 6f72 206d 6f64 an exterior mod │ │ │ │ -00025fa0: 756c 650a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ule..+---------- │ │ │ │ +00025b80: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ +00025b90: 3a20 0a20 2020 2020 2020 2028 452c 5429 : . (E,T) │ │ │ │ +00025ba0: 203d 2065 7874 5673 436f 686f 6d6f 6c6f = extVsCohomolo │ │ │ │ +00025bb0: 6779 2866 662c 4e29 0a20 202a 2049 6e70 gy(ff,N). * Inp │ │ │ │ +00025bc0: 7574 733a 0a20 2020 2020 202a 2066 662c uts:. * ff, │ │ │ │ +00025bd0: 2061 202a 6e6f 7465 206d 6174 7269 783a a *note matrix: │ │ │ │ +00025be0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +00025bf0: 6174 7269 782c 2c20 7265 6775 6c61 7220 atrix,, regular │ │ │ │ +00025c00: 7365 7175 656e 6365 2069 6e20 610a 2020 sequence in a. │ │ │ │ +00025c10: 2020 2020 2020 7265 6775 6c61 7220 7269 regular ri │ │ │ │ +00025c20: 6e67 2053 0a20 2020 2020 202a 204e 2c20 ng S. * N, │ │ │ │ +00025c30: 6120 2a6e 6f74 6520 6d6f 6475 6c65 3a20 a *note module: │ │ │ │ +00025c40: 284d 6163 6175 6c61 7932 446f 6329 4d6f (Macaulay2Doc)Mo │ │ │ │ +00025c50: 6475 6c65 2c2c 2067 7261 6465 6420 6d6f dule,, graded mo │ │ │ │ +00025c60: 6475 6c65 206f 7665 7220 5220 3d0a 2020 dule over R =. │ │ │ │ +00025c70: 2020 2020 2020 532f 6964 6561 6c28 6666 S/ideal(ff │ │ │ │ +00025c80: 2920 2875 7375 616c 6c79 2061 2068 6967 ) (usually a hig │ │ │ │ +00025c90: 6820 7379 7a79 6779 290a 2020 2a20 4f75 h syzygy). * Ou │ │ │ │ +00025ca0: 7470 7574 733a 0a20 2020 2020 202a 2045 tputs:. * E │ │ │ │ +00025cb0: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +00025cc0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00025cd0: 4d6f 6475 6c65 2c2c 200a 2020 2020 2020 Module,, . │ │ │ │ +00025ce0: 2a20 542c 2061 202a 6e6f 7465 206d 6f64 * T, a *note mod │ │ │ │ +00025cf0: 756c 653a 2028 4d61 6361 756c 6179 3244 ule: (Macaulay2D │ │ │ │ +00025d00: 6f63 294d 6f64 756c 652c 2c20 4578 7420 oc)Module,, Ext │ │ │ │ +00025d10: 616e 6420 546f 7220 6173 2065 7874 6572 and Tor as exter │ │ │ │ +00025d20: 696f 720a 2020 2020 2020 2020 6d6f 6475 ior. modu │ │ │ │ +00025d30: 6c65 730a 0a44 6573 6372 6970 7469 6f6e les..Description │ │ │ │ +00025d40: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4769 .===========..Gi │ │ │ │ +00025d50: 7665 6e20 6120 6d61 7472 6978 2066 6620 ven a matrix ff │ │ │ │ +00025d60: 636f 6e74 6169 6e69 6e67 2061 2072 6567 containing a reg │ │ │ │ +00025d70: 756c 6172 2073 6571 7565 6e63 6520 696e ular sequence in │ │ │ │ +00025d80: 2061 2070 6f6c 796e 6f6d 6961 6c20 7269 a polynomial ri │ │ │ │ +00025d90: 6e67 2053 206f 7665 7220 6b2c 0a73 6574 ng S over k,.set │ │ │ │ +00025da0: 2052 203d 2053 2f28 6964 6561 6c20 6666 R = S/(ideal ff │ │ │ │ +00025db0: 292e 2049 6620 4e20 6973 2061 2067 7261 ). If N is a gra │ │ │ │ +00025dc0: 6465 6420 522d 6d6f 6475 6c65 2c20 616e ded R-module, an │ │ │ │ +00025dd0: 6420 4d20 6973 2074 6865 206d 6f64 756c d M is the modul │ │ │ │ +00025de0: 6520 4e20 7265 6761 7264 6564 0a61 7320 e N regarded.as │ │ │ │ +00025df0: 616e 2053 2d6d 6f64 756c 652c 2074 6865 an S-module, the │ │ │ │ +00025e00: 2073 6372 6970 7420 7265 7475 726e 7320 script returns │ │ │ │ +00025e10: 4520 3d20 4578 745f 5328 4d2c 6b29 2061 E = Ext_S(M,k) a │ │ │ │ +00025e20: 6e64 2054 203d 2054 6f72 5e53 284d 2c6b nd T = Tor^S(M,k │ │ │ │ +00025e30: 2920 6173 206d 6f64 756c 6573 0a6f 7665 ) as modules.ove │ │ │ │ +00025e40: 7220 616e 2065 7874 6572 696f 7220 616c r an exterior al │ │ │ │ +00025e50: 6765 6272 612e 0a0a 5468 6520 7363 7269 gebra...The scri │ │ │ │ +00025e60: 7074 2070 7269 6e74 7320 7468 6520 5461 pt prints the Ta │ │ │ │ +00025e70: 7465 2072 6573 6f6c 7574 696f 6e20 6f66 te resolution of │ │ │ │ +00025e80: 2045 3b20 616e 6420 7468 6520 636f 686f E; and the coho │ │ │ │ +00025e90: 6d6f 6c6f 6779 2074 6162 6c65 206f 6620 mology table of │ │ │ │ +00025ea0: 7468 650a 7368 6561 6620 6173 736f 6369 the.sheaf associ │ │ │ │ +00025eb0: 6174 6564 2074 6f20 4578 745f 5228 4e2c ated to Ext_R(N, │ │ │ │ +00025ec0: 6b29 206f 7665 7220 7468 6520 7269 6e67 k) over the ring │ │ │ │ +00025ed0: 206f 6620 4349 206f 7065 7261 746f 7273 of CI operators │ │ │ │ +00025ee0: 2c20 7768 6963 6820 6973 2061 0a70 6f6c , which is a.pol │ │ │ │ +00025ef0: 796e 6f6d 6961 6c20 7269 6e67 206f 7665 ynomial ring ove │ │ │ │ +00025f00: 7220 6b20 6f6e 2063 2076 6172 6961 626c r k on c variabl │ │ │ │ +00025f10: 6573 2e0a 0a54 6865 206f 7574 7075 7420 es...The output │ │ │ │ +00025f20: 6361 6e20 6265 2075 7365 6420 746f 2028 can be used to ( │ │ │ │ +00025f30: 736f 6d65 7469 6d65 7329 2063 6865 636b sometimes) check │ │ │ │ +00025f40: 2077 6865 7468 6572 2074 6865 2073 7562 whether the sub │ │ │ │ +00025f50: 6d6f 6475 6c65 206f 6620 4578 745f 5328 module of Ext_S( │ │ │ │ +00025f60: 4d2c 6b29 0a67 656e 6572 6174 6564 2069 M,k).generated i │ │ │ │ +00025f70: 6e20 6465 6772 6565 2030 2073 706c 6974 n degree 0 split │ │ │ │ +00025f80: 7320 2861 7320 616e 2065 7874 6572 696f s (as an exterio │ │ │ │ +00025f90: 7220 6d6f 6475 6c65 0a0a 2b2d 2d2d 2d2d r module..+----- │ │ │ │ +00025fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025fe0: 2d2d 2d2b 0a7c 6931 203a 2053 203d 205a ---+.|i1 : S = Z │ │ │ │ -00025ff0: 5a2f 3130 315b 612c 622c 635d 2020 2020 Z/101[a,b,c] │ │ │ │ +00025fd0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +00025fe0: 5320 3d20 5a5a 2f31 3031 5b61 2c62 2c63 S = ZZ/101[a,b,c │ │ │ │ +00025ff0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 00026000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026020: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026010: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00026020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026060: 2020 207c 0a7c 6f31 203d 2053 2020 2020 |.|o1 = S │ │ │ │ +00026050: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ +00026060: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 00026070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000260a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026090: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000260a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000260b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000260c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000260d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000260e0: 2020 207c 0a7c 6f31 203a 2050 6f6c 796e |.|o1 : Polyn │ │ │ │ -000260f0: 6f6d 6961 6c52 696e 6720 2020 2020 2020 omialRing │ │ │ │ +000260d0: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +000260e0: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ +000260f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026120: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00026110: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00026120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026160: 2d2d 2d2b 0a7c 6932 203a 2066 6620 3d20 ---+.|i2 : ff = │ │ │ │ -00026170: 6d61 7472 6978 2022 6132 2c62 322c 6332 matrix "a2,b2,c2 │ │ │ │ -00026180: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ -00026190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000261a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026150: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +00026160: 6666 203d 206d 6174 7269 7820 2261 322c ff = matrix "a2, │ │ │ │ +00026170: 6232 2c63 3222 2020 2020 2020 2020 2020 b2,c2" │ │ │ │ +00026180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026190: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000261a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000261b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000261c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000261d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000261e0: 2020 207c 0a7c 6f32 203d 207c 2061 3220 |.|o2 = | a2 │ │ │ │ -000261f0: 6232 2063 3220 7c20 2020 2020 2020 2020 b2 c2 | │ │ │ │ +000261d0: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ +000261e0: 7c20 6132 2062 3220 6332 207c 2020 2020 | a2 b2 c2 | │ │ │ │ +000261f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026220: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026210: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00026220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026260: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026270: 2020 2031 2020 2020 2020 3320 2020 2020 1 3 │ │ │ │ +00026250: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00026260: 2020 2020 2020 2020 3120 2020 2020 2033 1 3 │ │ │ │ +00026270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000262a0: 2020 207c 0a7c 6f32 203a 204d 6174 7269 |.|o2 : Matri │ │ │ │ -000262b0: 7820 5320 203c 2d2d 2053 2020 2020 2020 x S <-- S │ │ │ │ +00026290: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ +000262a0: 4d61 7472 6978 2053 2020 3c2d 2d20 5320 Matrix S <-- S │ │ │ │ +000262b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000262c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000262d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000262e0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000262d0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000262e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000262f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026320: 2d2d 2d2b 0a7c 6933 203a 2052 203d 2053 ---+.|i3 : R = S │ │ │ │ -00026330: 2f28 6964 6561 6c20 6666 2920 2020 2020 /(ideal ff) │ │ │ │ +00026310: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +00026320: 5220 3d20 532f 2869 6465 616c 2066 6629 R = S/(ideal ff) │ │ │ │ +00026330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026360: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026350: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00026360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000263a0: 2020 207c 0a7c 6f33 203d 2052 2020 2020 |.|o3 = R │ │ │ │ +00026390: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ +000263a0: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 000263b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000263c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000263d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000263e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000263d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000263e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000263f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026420: 2020 207c 0a7c 6f33 203a 2051 756f 7469 |.|o3 : Quoti │ │ │ │ -00026430: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +00026410: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ +00026420: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +00026430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026460: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00026450: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00026460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000264a0: 2d2d 2d2b 0a7c 6934 203a 204e 203d 2068 ---+.|i4 : N = h │ │ │ │ -000264b0: 6967 6853 797a 7967 7928 525e 312f 6964 ighSyzygy(R^1/id │ │ │ │ -000264c0: 6561 6c28 612a 622c 6329 2920 2020 2020 eal(a*b,c)) │ │ │ │ -000264d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026490: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ +000264a0: 4e20 3d20 6869 6768 5379 7a79 6779 2852 N = highSyzygy(R │ │ │ │ +000264b0: 5e31 2f69 6465 616c 2861 2a62 2c63 2929 ^1/ideal(a*b,c)) │ │ │ │ +000264c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000264d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000264e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000264f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026520: 2020 207c 0a7c 6f34 203d 2063 6f6b 6572 |.|o4 = coker │ │ │ │ -00026530: 6e65 6c20 7b34 7d20 7c20 6320 2d61 6220 nel {4} | c -ab │ │ │ │ -00026540: 3020 3020 3020 2030 2020 3020 2030 2030 0 0 0 0 0 0 0 │ │ │ │ -00026550: 2030 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -00026560: 3020 7c7c 0a7c 2020 2020 2020 2020 2020 0 ||.| │ │ │ │ -00026570: 2020 2020 7b35 7d20 7c20 3020 6320 2020 {5} | 0 c │ │ │ │ -00026580: 6220 6120 3020 2030 2020 3020 2030 2030 b a 0 0 0 0 0 │ │ │ │ -00026590: 2030 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -000265a0: 3020 7c7c 0a7c 2020 2020 2020 2020 2020 0 ||.| │ │ │ │ -000265b0: 2020 2020 7b35 7d20 7c20 3020 3020 2020 {5} | 0 0 │ │ │ │ -000265c0: 6320 3020 2d62 2061 2020 3020 2030 2030 c 0 -b a 0 0 0 │ │ │ │ -000265d0: 2030 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -000265e0: 3020 7c7c 0a7c 2020 2020 2020 2020 2020 0 ||.| │ │ │ │ -000265f0: 2020 2020 7b35 7d20 7c20 3020 3020 2020 {5} | 0 0 │ │ │ │ -00026600: 3020 6320 3020 202d 6220 2d61 2030 2030 0 c 0 -b -a 0 0 │ │ │ │ -00026610: 2030 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -00026620: 3020 7c7c 0a7c 2020 2020 2020 2020 2020 0 ||.| │ │ │ │ -00026630: 2020 2020 7b35 7d20 7c20 3020 3020 2020 {5} | 0 0 │ │ │ │ -00026640: 3020 3020 6320 2030 2020 3020 2062 2061 0 0 c 0 0 b a │ │ │ │ -00026650: 2030 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -00026660: 3020 7c7c 0a7c 2020 2020 2020 2020 2020 0 ||.| │ │ │ │ -00026670: 2020 2020 7b35 7d20 7c20 3020 3020 2020 {5} | 0 0 │ │ │ │ -00026680: 3020 3020 3020 2063 2020 3020 2030 2062 0 0 0 c 0 0 b │ │ │ │ -00026690: 2030 2030 2020 3020 2d61 2030 2020 3020 0 0 0 -a 0 0 │ │ │ │ -000266a0: 3020 7c7c 0a7c 2020 2020 2020 2020 2020 0 ||.| │ │ │ │ -000266b0: 2020 2020 7b35 7d20 7c20 3020 3020 2020 {5} | 0 0 │ │ │ │ -000266c0: 3020 3020 3020 2030 2020 6320 2030 2030 0 0 0 0 c 0 0 │ │ │ │ -000266d0: 2030 2030 2020 3020 6220 2030 2020 6120 0 0 0 b 0 a │ │ │ │ -000266e0: 3020 7c7c 0a7c 2020 2020 2020 2020 2020 0 ||.| │ │ │ │ -000266f0: 2020 2020 7b35 7d20 7c20 3020 3020 2020 {5} | 0 0 │ │ │ │ -00026700: 3020 3020 3020 2030 2020 3020 2063 2030 0 0 0 0 0 c 0 │ │ │ │ -00026710: 2062 202d 6120 3020 3020 2030 2020 3020 b -a 0 0 0 0 │ │ │ │ -00026720: 3020 7c7c 0a7c 2020 2020 2020 2020 2020 0 ||.| │ │ │ │ -00026730: 2020 2020 7b35 7d20 7c20 3020 3020 2020 {5} | 0 0 │ │ │ │ -00026740: 3020 3020 3020 2030 2020 3020 2030 2063 0 0 0 0 0 0 c │ │ │ │ -00026750: 2030 2062 2020 6120 3020 2030 2020 3020 0 b a 0 0 0 │ │ │ │ -00026760: 3020 7c7c 0a7c 2020 2020 2020 2020 2020 0 ||.| │ │ │ │ -00026770: 2020 2020 7b35 7d20 7c20 3020 3020 2020 {5} | 0 0 │ │ │ │ -00026780: 3020 3020 3020 2030 2020 3020 2030 2030 0 0 0 0 0 0 0 │ │ │ │ -00026790: 2030 2030 2020 6220 6320 202d 6120 3020 0 0 b c -a 0 │ │ │ │ -000267a0: 3020 7c7c 0a7c 2020 2020 2020 2020 2020 0 ||.| │ │ │ │ -000267b0: 2020 2020 7b35 7d20 7c20 3020 3020 2020 {5} | 0 0 │ │ │ │ -000267c0: 3020 3020 3020 2030 2020 3020 2030 2030 0 0 0 0 0 0 0 │ │ │ │ -000267d0: 2030 2030 2020 3020 3020 2062 2020 6320 0 0 0 0 b c │ │ │ │ -000267e0: 6120 7c7c 0a7c 2020 2020 2020 2020 2020 a ||.| │ │ │ │ +00026510: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ +00026520: 636f 6b65 726e 656c 207b 347d 207c 2063 cokernel {4} | c │ │ │ │ +00026530: 202d 6162 2030 2030 2030 2020 3020 2030 -ab 0 0 0 0 0 │ │ │ │ +00026540: 2020 3020 3020 3020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ +00026550: 3020 2030 2030 207c 7c0a 7c20 2020 2020 0 0 0 ||.| │ │ │ │ +00026560: 2020 2020 2020 2020 207b 357d 207c 2030 {5} | 0 │ │ │ │ +00026570: 2063 2020 2062 2061 2030 2020 3020 2030 c b a 0 0 0 │ │ │ │ +00026580: 2020 3020 3020 3020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ +00026590: 3020 2030 2030 207c 7c0a 7c20 2020 2020 0 0 0 ||.| │ │ │ │ +000265a0: 2020 2020 2020 2020 207b 357d 207c 2030 {5} | 0 │ │ │ │ +000265b0: 2030 2020 2063 2030 202d 6220 6120 2030 0 c 0 -b a 0 │ │ │ │ +000265c0: 2020 3020 3020 3020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ +000265d0: 3020 2030 2030 207c 7c0a 7c20 2020 2020 0 0 0 ||.| │ │ │ │ +000265e0: 2020 2020 2020 2020 207b 357d 207c 2030 {5} | 0 │ │ │ │ +000265f0: 2030 2020 2030 2063 2030 2020 2d62 202d 0 0 c 0 -b - │ │ │ │ +00026600: 6120 3020 3020 3020 3020 2030 2030 2020 a 0 0 0 0 0 0 │ │ │ │ +00026610: 3020 2030 2030 207c 7c0a 7c20 2020 2020 0 0 0 ||.| │ │ │ │ +00026620: 2020 2020 2020 2020 207b 357d 207c 2030 {5} | 0 │ │ │ │ +00026630: 2030 2020 2030 2030 2063 2020 3020 2030 0 0 0 c 0 0 │ │ │ │ +00026640: 2020 6220 6120 3020 3020 2030 2030 2020 b a 0 0 0 0 │ │ │ │ +00026650: 3020 2030 2030 207c 7c0a 7c20 2020 2020 0 0 0 ||.| │ │ │ │ +00026660: 2020 2020 2020 2020 207b 357d 207c 2030 {5} | 0 │ │ │ │ +00026670: 2030 2020 2030 2030 2030 2020 6320 2030 0 0 0 0 c 0 │ │ │ │ +00026680: 2020 3020 6220 3020 3020 2030 202d 6120 0 b 0 0 0 -a │ │ │ │ +00026690: 3020 2030 2030 207c 7c0a 7c20 2020 2020 0 0 0 ||.| │ │ │ │ +000266a0: 2020 2020 2020 2020 207b 357d 207c 2030 {5} | 0 │ │ │ │ +000266b0: 2030 2020 2030 2030 2030 2020 3020 2063 0 0 0 0 0 c │ │ │ │ +000266c0: 2020 3020 3020 3020 3020 2030 2062 2020 0 0 0 0 0 b │ │ │ │ +000266d0: 3020 2061 2030 207c 7c0a 7c20 2020 2020 0 a 0 ||.| │ │ │ │ +000266e0: 2020 2020 2020 2020 207b 357d 207c 2030 {5} | 0 │ │ │ │ +000266f0: 2030 2020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00026700: 2020 6320 3020 6220 2d61 2030 2030 2020 c 0 b -a 0 0 │ │ │ │ +00026710: 3020 2030 2030 207c 7c0a 7c20 2020 2020 0 0 0 ||.| │ │ │ │ +00026720: 2020 2020 2020 2020 207b 357d 207c 2030 {5} | 0 │ │ │ │ +00026730: 2030 2020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00026740: 2020 3020 6320 3020 6220 2061 2030 2020 0 c 0 b a 0 │ │ │ │ +00026750: 3020 2030 2030 207c 7c0a 7c20 2020 2020 0 0 0 ||.| │ │ │ │ +00026760: 2020 2020 2020 2020 207b 357d 207c 2030 {5} | 0 │ │ │ │ +00026770: 2030 2020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00026780: 2020 3020 3020 3020 3020 2062 2063 2020 0 0 0 0 b c │ │ │ │ +00026790: 2d61 2030 2030 207c 7c0a 7c20 2020 2020 -a 0 0 ||.| │ │ │ │ +000267a0: 2020 2020 2020 2020 207b 357d 207c 2030 {5} | 0 │ │ │ │ +000267b0: 2030 2020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +000267c0: 2020 3020 3020 3020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ +000267d0: 6220 2063 2061 207c 7c0a 7c20 2020 2020 b c a ||.| │ │ │ │ +000267e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000267f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026820: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026840: 2020 3131 2020 2020 2020 2020 2020 2020 11 │ │ │ │ -00026850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026860: 2020 207c 0a7c 6f34 203a 2052 2d6d 6f64 |.|o4 : R-mod │ │ │ │ -00026870: 756c 652c 2071 756f 7469 656e 7420 6f66 ule, quotient of │ │ │ │ -00026880: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -00026890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000268a0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00026810: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00026820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026830: 2020 2020 2020 2031 3120 2020 2020 2020 11 │ │ │ │ +00026840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026850: 2020 2020 2020 2020 7c0a 7c6f 3420 3a20 |.|o4 : │ │ │ │ +00026860: 522d 6d6f 6475 6c65 2c20 7175 6f74 6965 R-module, quotie │ │ │ │ +00026870: 6e74 206f 6620 5220 2020 2020 2020 2020 nt of R │ │ │ │ +00026880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026890: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000268a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000268b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000268c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000268d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000268e0: 2d2d 2d2b 0a7c 6935 203a 2045 203d 2065 ---+.|i5 : E = e │ │ │ │ -000268f0: 7874 5673 436f 686f 6d6f 6c6f 6779 2866 xtVsCohomology(f │ │ │ │ -00026900: 662c 6869 6768 5379 7a79 6779 204e 293b f,highSyzygy N); │ │ │ │ -00026910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026920: 2020 207c 0a7c 5461 7465 2052 6573 6f6c |.|Tate Resol │ │ │ │ -00026930: 7574 696f 6e20 6f66 2045 7874 5f53 284d ution of Ext_S(M │ │ │ │ -00026940: 2c6b 2920 6173 2065 7874 6572 696f 7220 ,k) as exterior │ │ │ │ -00026950: 6d6f 6475 6c65 3a20 2020 2020 2020 2020 module: │ │ │ │ -00026960: 2020 207c 0a7c 4e6f 7465 2074 6861 7420 |.|Note that │ │ │ │ -00026970: 6d61 7073 2067 6f20 6c65 6674 2074 6f20 maps go left to │ │ │ │ -00026980: 7269 6768 7420 2020 2020 2020 2020 2020 right │ │ │ │ -00026990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000269a0: 2020 207c 0a7c 2020 2020 2020 202d 3131 |.| -11 │ │ │ │ -000269b0: 202d 3130 2020 2d39 202d 3820 2d37 202d -10 -9 -8 -7 - │ │ │ │ -000269c0: 3620 2d35 202d 3420 2d33 202d 3220 202d 6 -5 -4 -3 -2 - │ │ │ │ -000269d0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -000269e0: 2020 207c 0a7c 746f 7461 6c3a 2031 3938 |.|total: 198 │ │ │ │ -000269f0: 2031 3436 2031 3032 2036 3620 3338 2031 146 102 66 38 1 │ │ │ │ -00026a00: 3820 2039 2031 3620 3336 2036 3420 3130 8 9 16 36 64 10 │ │ │ │ -00026a10: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00026a20: 2020 207c 0a7c 2020 2020 383a 2031 3036 |.| 8: 106 │ │ │ │ -00026a30: 2020 3739 2020 3536 2033 3720 3232 2031 79 56 37 22 1 │ │ │ │ -00026a40: 3120 2034 2020 3120 2031 2020 3120 2020 1 4 1 1 1 │ │ │ │ -00026a50: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00026a60: 2020 207c 0a7c 2020 2020 393a 2020 3932 |.| 9: 92 │ │ │ │ -00026a70: 2020 3637 2020 3436 2032 3920 3136 2020 67 46 29 16 │ │ │ │ -00026a80: 3720 2032 2020 2e20 202e 2020 2e20 2020 7 2 . . . │ │ │ │ -00026a90: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -00026aa0: 2020 207c 0a7c 2020 2031 303a 2020 202e |.| 10: . │ │ │ │ -00026ab0: 2020 202e 2020 202e 2020 2e20 202e 2020 . . . . │ │ │ │ -00026ac0: 2e20 202e 2020 3520 3134 2032 3720 2034 . . 5 14 27 4 │ │ │ │ -00026ad0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00026ae0: 2020 207c 0a7c 2020 2031 313a 2020 202e |.| 11: . │ │ │ │ -00026af0: 2020 202e 2020 202e 2020 2e20 202e 2020 . . . . │ │ │ │ -00026b00: 2e20 2033 2031 3020 3231 2033 3620 2035 . 3 10 21 36 5 │ │ │ │ -00026b10: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -00026b20: 2020 207c 0a7c 2d2d 2d20 2020 2020 2020 |.|--- │ │ │ │ +000268d0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ +000268e0: 4520 3d20 6578 7456 7343 6f68 6f6d 6f6c E = extVsCohomol │ │ │ │ +000268f0: 6f67 7928 6666 2c68 6967 6853 797a 7967 ogy(ff,highSyzyg │ │ │ │ +00026900: 7920 4e29 3b20 2020 2020 2020 2020 2020 y N); │ │ │ │ +00026910: 2020 2020 2020 2020 7c0a 7c54 6174 6520 |.|Tate │ │ │ │ +00026920: 5265 736f 6c75 7469 6f6e 206f 6620 4578 Resolution of Ex │ │ │ │ +00026930: 745f 5328 4d2c 6b29 2061 7320 6578 7465 t_S(M,k) as exte │ │ │ │ +00026940: 7269 6f72 206d 6f64 756c 653a 2020 2020 rior module: │ │ │ │ +00026950: 2020 2020 2020 2020 7c0a 7c4e 6f74 6520 |.|Note │ │ │ │ +00026960: 7468 6174 206d 6170 7320 676f 206c 6566 that maps go lef │ │ │ │ +00026970: 7420 746f 2072 6967 6874 2020 2020 2020 t to right │ │ │ │ +00026980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026990: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000269a0: 2020 2d31 3120 2d31 3020 202d 3920 2d38 -11 -10 -9 -8 │ │ │ │ +000269b0: 202d 3720 2d36 202d 3520 2d34 202d 3320 -7 -6 -5 -4 -3 │ │ │ │ +000269c0: 2d32 2020 2d31 2020 2020 2020 2020 2020 -2 -1 │ │ │ │ +000269d0: 2020 2020 2020 2020 7c0a 7c74 6f74 616c |.|total │ │ │ │ +000269e0: 3a20 3139 3820 3134 3620 3130 3220 3636 : 198 146 102 66 │ │ │ │ +000269f0: 2033 3820 3138 2020 3920 3136 2033 3620 38 18 9 16 36 │ │ │ │ +00026a00: 3634 2031 3030 2020 2020 2020 2020 2020 64 100 │ │ │ │ +00026a10: 2020 2020 2020 2020 7c0a 7c20 2020 2038 |.| 8 │ │ │ │ +00026a20: 3a20 3130 3620 2037 3920 2035 3620 3337 : 106 79 56 37 │ │ │ │ +00026a30: 2032 3220 3131 2020 3420 2031 2020 3120 22 11 4 1 1 │ │ │ │ +00026a40: 2031 2020 2031 2020 2020 2020 2020 2020 1 1 │ │ │ │ +00026a50: 2020 2020 2020 2020 7c0a 7c20 2020 2039 |.| 9 │ │ │ │ +00026a60: 3a20 2039 3220 2036 3720 2034 3620 3239 : 92 67 46 29 │ │ │ │ +00026a70: 2031 3620 2037 2020 3220 202e 2020 2e20 16 7 2 . . │ │ │ │ +00026a80: 202e 2020 202e 2020 2020 2020 2020 2020 . . │ │ │ │ +00026a90: 2020 2020 2020 2020 7c0a 7c20 2020 3130 |.| 10 │ │ │ │ +00026aa0: 3a20 2020 2e20 2020 2e20 2020 2e20 202e : . . . . │ │ │ │ +00026ab0: 2020 2e20 202e 2020 2e20 2035 2031 3420 . . . 5 14 │ │ │ │ +00026ac0: 3237 2020 3434 2020 2020 2020 2020 2020 27 44 │ │ │ │ +00026ad0: 2020 2020 2020 2020 7c0a 7c20 2020 3131 |.| 11 │ │ │ │ +00026ae0: 3a20 2020 2e20 2020 2e20 2020 2e20 202e : . . . . │ │ │ │ +00026af0: 2020 2e20 202e 2020 3320 3130 2032 3120 . . 3 10 21 │ │ │ │ +00026b00: 3336 2020 3535 2020 2020 2020 2020 2020 36 55 │ │ │ │ +00026b10: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2020 |.|--- │ │ │ │ +00026b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b60: 2020 207c 0a7c 436f 686f 6d6f 6c6f 6779 |.|Cohomology │ │ │ │ -00026b70: 2074 6162 6c65 206f 6620 6576 656e 4578 table of evenEx │ │ │ │ -00026b80: 744d 6f64 756c 6520 4d3a 2020 2020 2020 tModule M: │ │ │ │ -00026b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ba0: 2020 207c 0a7c 2020 202d 3520 2d34 202d |.| -5 -4 - │ │ │ │ -00026bb0: 3320 2d32 202d 3120 2030 2020 3120 2032 3 -2 -1 0 1 2 │ │ │ │ -00026bc0: 2020 3320 2034 2020 2035 2020 2020 2020 3 4 5 │ │ │ │ -00026bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026be0: 2020 207c 0a7c 323a 2033 3620 3231 2031 |.|2: 36 21 1 │ │ │ │ -00026bf0: 3020 2033 2020 2e20 202e 2020 2e20 202e 0 3 . . . . │ │ │ │ -00026c00: 2020 2e20 202e 2020 202e 2020 2020 2020 . . . │ │ │ │ -00026c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c20: 2020 207c 0a7c 313a 2020 2e20 202e 2020 |.|1: . . │ │ │ │ -00026c30: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -00026c40: 2020 2e20 202e 2020 202e 2020 2020 2020 . . . │ │ │ │ -00026c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c60: 2020 207c 0a7c 303a 2020 3120 2031 2020 |.|0: 1 1 │ │ │ │ -00026c70: 3120 2032 2020 3720 3136 2032 3920 3436 1 2 7 16 29 46 │ │ │ │ -00026c80: 2036 3720 3932 2031 3231 2020 2020 2020 67 92 121 │ │ │ │ -00026c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ca0: 2020 207c 0a7c 2d2d 2d20 2020 2020 2020 |.|--- │ │ │ │ +00026b50: 2020 2020 2020 2020 7c0a 7c43 6f68 6f6d |.|Cohom │ │ │ │ +00026b60: 6f6c 6f67 7920 7461 626c 6520 6f66 2065 ology table of e │ │ │ │ +00026b70: 7665 6e45 7874 4d6f 6475 6c65 204d 3a20 venExtModule M: │ │ │ │ +00026b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026b90: 2020 2020 2020 2020 7c0a 7c20 2020 2d35 |.| -5 │ │ │ │ +00026ba0: 202d 3420 2d33 202d 3220 2d31 2020 3020 -4 -3 -2 -1 0 │ │ │ │ +00026bb0: 2031 2020 3220 2033 2020 3420 2020 3520 1 2 3 4 5 │ │ │ │ +00026bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026bd0: 2020 2020 2020 2020 7c0a 7c32 3a20 3336 |.|2: 36 │ │ │ │ +00026be0: 2032 3120 3130 2020 3320 202e 2020 2e20 21 10 3 . . │ │ │ │ +00026bf0: 202e 2020 2e20 202e 2020 2e20 2020 2e20 . . . . . │ │ │ │ +00026c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026c10: 2020 2020 2020 2020 7c0a 7c31 3a20 202e |.|1: . │ │ │ │ +00026c20: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +00026c30: 202e 2020 2e20 202e 2020 2e20 2020 2e20 . . . . . │ │ │ │ +00026c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026c50: 2020 2020 2020 2020 7c0a 7c30 3a20 2031 |.|0: 1 │ │ │ │ +00026c60: 2020 3120 2031 2020 3220 2037 2031 3620 1 1 2 7 16 │ │ │ │ +00026c70: 3239 2034 3620 3637 2039 3220 3132 3120 29 46 67 92 121 │ │ │ │ +00026c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026c90: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2020 |.|--- │ │ │ │ +00026ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ce0: 2020 207c 0a7c 436f 686f 6d6f 6c6f 6779 |.|Cohomology │ │ │ │ -00026cf0: 2074 6162 6c65 206f 6620 6f64 6445 7874 table of oddExt │ │ │ │ -00026d00: 4d6f 6475 6c65 204d 3a20 2020 2020 2020 Module M: │ │ │ │ -00026d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d20: 2020 207c 0a7c 2020 202d 3520 2d34 202d |.| -5 -4 - │ │ │ │ -00026d30: 3320 2d32 202d 3120 2030 2020 3120 2032 3 -2 -1 0 1 2 │ │ │ │ -00026d40: 2020 3320 2020 3420 2020 3520 2020 2020 3 4 5 │ │ │ │ -00026d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d60: 2020 207c 0a7c 323a 2032 3820 3135 2020 |.|2: 28 15 │ │ │ │ -00026d70: 3620 2031 2020 2e20 202e 2020 2e20 202e 6 1 . . . . │ │ │ │ -00026d80: 2020 2e20 2020 2e20 2020 2e20 2020 2020 . . . │ │ │ │ -00026d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026da0: 2020 207c 0a7c 313a 2020 2e20 202e 2020 |.|1: . . │ │ │ │ -00026db0: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -00026dc0: 2020 2e20 2020 2e20 2020 2e20 2020 2020 . . . │ │ │ │ -00026dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026de0: 2020 207c 0a7c 303a 2020 3120 2031 2020 |.|0: 1 1 │ │ │ │ -00026df0: 3120 2034 2031 3120 3232 2033 3720 3536 1 4 11 22 37 56 │ │ │ │ -00026e00: 2037 3920 3130 3620 3133 3720 2020 2020 79 106 137 │ │ │ │ -00026e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026e20: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00026cd0: 2020 2020 2020 2020 7c0a 7c43 6f68 6f6d |.|Cohom │ │ │ │ +00026ce0: 6f6c 6f67 7920 7461 626c 6520 6f66 206f ology table of o │ │ │ │ +00026cf0: 6464 4578 744d 6f64 756c 6520 4d3a 2020 ddExtModule M: │ │ │ │ +00026d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026d10: 2020 2020 2020 2020 7c0a 7c20 2020 2d35 |.| -5 │ │ │ │ +00026d20: 202d 3420 2d33 202d 3220 2d31 2020 3020 -4 -3 -2 -1 0 │ │ │ │ +00026d30: 2031 2020 3220 2033 2020 2034 2020 2035 1 2 3 4 5 │ │ │ │ +00026d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026d50: 2020 2020 2020 2020 7c0a 7c32 3a20 3238 |.|2: 28 │ │ │ │ +00026d60: 2031 3520 2036 2020 3120 202e 2020 2e20 15 6 1 . . │ │ │ │ +00026d70: 202e 2020 2e20 202e 2020 202e 2020 202e . . . . . │ │ │ │ +00026d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026d90: 2020 2020 2020 2020 7c0a 7c31 3a20 202e |.|1: . │ │ │ │ +00026da0: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +00026db0: 202e 2020 2e20 202e 2020 202e 2020 202e . . . . . │ │ │ │ +00026dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026dd0: 2020 2020 2020 2020 7c0a 7c30 3a20 2031 |.|0: 1 │ │ │ │ +00026de0: 2020 3120 2031 2020 3420 3131 2032 3220 1 1 4 11 22 │ │ │ │ +00026df0: 3337 2035 3620 3739 2031 3036 2031 3337 37 56 79 106 137 │ │ │ │ +00026e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026e10: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00026e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026e60: 2d2d 2d2b 0a0a 5365 6520 616c 736f 0a3d ---+..See also.= │ │ │ │ -00026e70: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ -00026e80: 7465 2068 6967 6853 797a 7967 793a 2068 te highSyzygy: h │ │ │ │ -00026e90: 6967 6853 797a 7967 792c 202d 2d20 5265 ighSyzygy, -- Re │ │ │ │ -00026ea0: 7475 726e 7320 6120 7379 7a79 6779 206d turns a syzygy m │ │ │ │ -00026eb0: 6f64 756c 6520 6f6e 6520 6265 796f 6e64 odule one beyond │ │ │ │ -00026ec0: 2074 6865 0a20 2020 2072 6567 756c 6172 the. regular │ │ │ │ -00026ed0: 6974 7920 6f66 2045 7874 284d 2c6b 290a ity of Ext(M,k). │ │ │ │ -00026ee0: 2020 2a20 2a6e 6f74 6520 6578 7465 7269 * *note exteri │ │ │ │ -00026ef0: 6f72 4578 744d 6f64 756c 653a 2065 7874 orExtModule: ext │ │ │ │ -00026f00: 6572 696f 7245 7874 4d6f 6475 6c65 2c20 eriorExtModule, │ │ │ │ -00026f10: 2d2d 2045 7874 284d 2c6b 2920 6f72 2045 -- Ext(M,k) or E │ │ │ │ -00026f20: 7874 284d 2c4e 2920 6173 2061 0a20 2020 xt(M,N) as a. │ │ │ │ -00026f30: 206d 6f64 756c 6520 6f76 6572 2061 6e20 module over an │ │ │ │ -00026f40: 6578 7465 7269 6f72 2061 6c67 6562 7261 exterior algebra │ │ │ │ -00026f50: 0a0a 5761 7973 2074 6f20 7573 6520 6578 ..Ways to use ex │ │ │ │ -00026f60: 7456 7343 6f68 6f6d 6f6c 6f67 793a 0a3d tVsCohomology:.= │ │ │ │ +00026e50: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ +00026e60: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ +00026e70: 2a20 2a6e 6f74 6520 6869 6768 5379 7a79 * *note highSyzy │ │ │ │ +00026e80: 6779 3a20 6869 6768 5379 7a79 6779 2c20 gy: highSyzygy, │ │ │ │ +00026e90: 2d2d 2052 6574 7572 6e73 2061 2073 797a -- Returns a syz │ │ │ │ +00026ea0: 7967 7920 6d6f 6475 6c65 206f 6e65 2062 ygy module one b │ │ │ │ +00026eb0: 6579 6f6e 6420 7468 650a 2020 2020 7265 eyond the. re │ │ │ │ +00026ec0: 6775 6c61 7269 7479 206f 6620 4578 7428 gularity of Ext( │ │ │ │ +00026ed0: 4d2c 6b29 0a20 202a 202a 6e6f 7465 2065 M,k). * *note e │ │ │ │ +00026ee0: 7874 6572 696f 7245 7874 4d6f 6475 6c65 xteriorExtModule │ │ │ │ +00026ef0: 3a20 6578 7465 7269 6f72 4578 744d 6f64 : exteriorExtMod │ │ │ │ +00026f00: 756c 652c 202d 2d20 4578 7428 4d2c 6b29 ule, -- Ext(M,k) │ │ │ │ +00026f10: 206f 7220 4578 7428 4d2c 4e29 2061 7320 or Ext(M,N) as │ │ │ │ +00026f20: 610a 2020 2020 6d6f 6475 6c65 206f 7665 a. module ove │ │ │ │ +00026f30: 7220 616e 2065 7874 6572 696f 7220 616c r an exterior al │ │ │ │ +00026f40: 6765 6272 610a 0a57 6179 7320 746f 2075 gebra..Ways to u │ │ │ │ +00026f50: 7365 2065 7874 5673 436f 686f 6d6f 6c6f se extVsCohomolo │ │ │ │ +00026f60: 6779 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d gy:.============ │ │ │ │ 00026f70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00026f80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -00026f90: 2022 6578 7456 7343 6f68 6f6d 6f6c 6f67 "extVsCohomolog │ │ │ │ -00026fa0: 7928 4d61 7472 6978 2c4d 6f64 756c 6529 y(Matrix,Module) │ │ │ │ -00026fb0: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ -00026fc0: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -00026fd0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -00026fe0: 6a65 6374 202a 6e6f 7465 2065 7874 5673 ject *note extVs │ │ │ │ -00026ff0: 436f 686f 6d6f 6c6f 6779 3a20 6578 7456 Cohomology: extV │ │ │ │ -00027000: 7343 6f68 6f6d 6f6c 6f67 792c 2069 7320 sCohomology, is │ │ │ │ -00027010: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ -00027020: 756e 6374 696f 6e3a 0a28 4d61 6361 756c unction:.(Macaul │ │ │ │ -00027030: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ -00027040: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ +00026f80: 0a0a 2020 2a20 2265 7874 5673 436f 686f .. * "extVsCoho │ │ │ │ +00026f90: 6d6f 6c6f 6779 284d 6174 7269 782c 4d6f mology(Matrix,Mo │ │ │ │ +00026fa0: 6475 6c65 2922 0a0a 466f 7220 7468 6520 dule)"..For the │ │ │ │ +00026fb0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00026fc0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00026fd0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +00026fe0: 6578 7456 7343 6f68 6f6d 6f6c 6f67 793a extVsCohomology: │ │ │ │ +00026ff0: 2065 7874 5673 436f 686f 6d6f 6c6f 6779 extVsCohomology │ │ │ │ +00027000: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ +00027010: 686f 6420 6675 6e63 7469 6f6e 3a0a 284d hod function:.(M │ │ │ │ +00027020: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ +00027030: 6f64 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d odFunction,...-- │ │ │ │ +00027040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027090: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -000270a0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -000270b0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -000270c0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -000270d0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -000270e0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -000270f0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -00027100: 0a43 6f6d 706c 6574 6549 6e74 6572 7365 .CompleteInterse │ │ │ │ -00027110: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ -00027120: 2e6d 323a 3238 3236 3a30 2e0a 1f0a 4669 .m2:2826:0....Fi │ │ │ │ -00027130: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ -00027140: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ -00027150: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ -00027160: 6669 6e69 7465 4265 7474 694e 756d 6265 finiteBettiNumbe │ │ │ │ -00027170: 7273 2c20 4e65 7874 3a20 6672 6565 4578 rs, Next: freeEx │ │ │ │ -00027180: 7465 7269 6f72 5375 6d6d 616e 642c 2050 teriorSummand, P │ │ │ │ -00027190: 7265 763a 2065 7874 5673 436f 686f 6d6f rev: extVsCohomo │ │ │ │ -000271a0: 6c6f 6779 2c20 5570 3a20 546f 700a 0a66 logy, Up: Top..f │ │ │ │ -000271b0: 696e 6974 6542 6574 7469 4e75 6d62 6572 initeBettiNumber │ │ │ │ -000271c0: 7320 2d2d 2062 6574 7469 206e 756d 6265 s -- betti numbe │ │ │ │ -000271d0: 7273 206f 6620 6669 6e69 7465 2072 6573 rs of finite res │ │ │ │ -000271e0: 6f6c 7574 696f 6e20 636f 6d70 7574 6564 olution computed │ │ │ │ -000271f0: 2066 726f 6d20 6120 6d61 7472 6978 2066 from a matrix f │ │ │ │ -00027200: 6163 746f 7269 7a61 7469 6f6e 0a2a 2a2a actorization.*** │ │ │ │ +00027080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +00027090: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +000270a0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +000270b0: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +000270c0: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +000270d0: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +000270e0: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +000270f0: 6167 6573 2f0a 436f 6d70 6c65 7465 496e ages/.CompleteIn │ │ │ │ +00027100: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ +00027110: 7469 6f6e 732e 6d32 3a32 3832 363a 302e tions.m2:2826:0. │ │ │ │ +00027120: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ +00027130: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ +00027140: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ +00027150: 6f64 653a 2066 696e 6974 6542 6574 7469 ode: finiteBetti │ │ │ │ +00027160: 4e75 6d62 6572 732c 204e 6578 743a 2066 Numbers, Next: f │ │ │ │ +00027170: 7265 6545 7874 6572 696f 7253 756d 6d61 reeExteriorSumma │ │ │ │ +00027180: 6e64 2c20 5072 6576 3a20 6578 7456 7343 nd, Prev: extVsC │ │ │ │ +00027190: 6f68 6f6d 6f6c 6f67 792c 2055 703a 2054 ohomology, Up: T │ │ │ │ +000271a0: 6f70 0a0a 6669 6e69 7465 4265 7474 694e op..finiteBettiN │ │ │ │ +000271b0: 756d 6265 7273 202d 2d20 6265 7474 6920 umbers -- betti │ │ │ │ +000271c0: 6e75 6d62 6572 7320 6f66 2066 696e 6974 numbers of finit │ │ │ │ +000271d0: 6520 7265 736f 6c75 7469 6f6e 2063 6f6d e resolution com │ │ │ │ +000271e0: 7075 7465 6420 6672 6f6d 2061 206d 6174 puted from a mat │ │ │ │ +000271f0: 7269 7820 6661 6374 6f72 697a 6174 696f rix factorizatio │ │ │ │ +00027200: 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a n.************** │ │ │ │ 00027210: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00027220: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00027230: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00027240: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00027250: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00027260: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -00027270: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -00027280: 4c20 3d20 6669 6e69 7465 4265 7474 694e L = finiteBettiN │ │ │ │ -00027290: 756d 6265 7273 204d 460a 2020 2a20 496e umbers MF. * In │ │ │ │ -000272a0: 7075 7473 3a0a 2020 2020 2020 2a20 4d46 puts:. * MF │ │ │ │ -000272b0: 2c20 6120 2a6e 6f74 6520 6c69 7374 3a20 , a *note list: │ │ │ │ -000272c0: 284d 6163 6175 6c61 7932 446f 6329 4c69 (Macaulay2Doc)Li │ │ │ │ -000272d0: 7374 2c2c 204c 6973 7420 6f66 2048 6173 st,, List of Has │ │ │ │ -000272e0: 6854 6162 6c65 7320 6173 2063 6f6d 7075 hTables as compu │ │ │ │ -000272f0: 7465 640a 2020 2020 2020 2020 6279 2022 ted. by " │ │ │ │ -00027300: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ -00027310: 696f 6e22 0a20 202a 204f 7574 7075 7473 ion". * Outputs │ │ │ │ -00027320: 3a0a 2020 2020 2020 2a20 4c2c 2061 202a :. * L, a * │ │ │ │ -00027330: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ -00027340: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ -00027350: 4c69 7374 206f 6620 6265 7474 6920 6e75 List of betti nu │ │ │ │ -00027360: 6d62 6572 730a 0a44 6573 6372 6970 7469 mbers..Descripti │ │ │ │ -00027370: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -00027380: 5573 6573 2074 6865 2072 616e 6b73 206f Uses the ranks o │ │ │ │ -00027390: 6620 7468 6520 4220 6d61 7472 6963 6573 f the B matrices │ │ │ │ -000273a0: 2069 6e20 6120 6d61 7472 6978 2066 6163 in a matrix fac │ │ │ │ -000273b0: 746f 7269 7a61 7469 6f6e 2066 6f72 2061 torization for a │ │ │ │ -000273c0: 206d 6f64 756c 6520 4d20 6f76 6572 0a53 module M over.S │ │ │ │ -000273d0: 2f28 665f 312c 2e2e 2c66 5f63 2920 746f /(f_1,..,f_c) to │ │ │ │ -000273e0: 2063 6f6d 7075 7465 2074 6865 2062 6574 compute the bet │ │ │ │ -000273f0: 7469 206e 756d 6265 7273 206f 6620 7468 ti numbers of th │ │ │ │ -00027400: 6520 6d69 6e69 6d61 6c20 7265 736f 6c75 e minimal resolu │ │ │ │ -00027410: 7469 6f6e 206f 6620 4d20 6f76 6572 0a53 tion of M over.S │ │ │ │ -00027420: 2c20 7768 6963 6820 6973 2074 6865 2073 , which is the s │ │ │ │ -00027430: 756d 206f 6620 7468 6520 4b6f 737a 756c um of the Koszul │ │ │ │ -00027440: 2063 6f6d 706c 6578 6573 204b 2866 5f31 complexes K(f_1 │ │ │ │ -00027450: 2e2e 665f 7b6a 2d31 7d29 2074 656e 736f ..f_{j-1}) tenso │ │ │ │ -00027460: 7265 6420 7769 7468 2042 286a 290a 0a2b red with B(j)..+ │ │ │ │ +00027250: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00027260: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +00027270: 2020 2020 204c 203d 2066 696e 6974 6542 L = finiteB │ │ │ │ +00027280: 6574 7469 4e75 6d62 6572 7320 4d46 0a20 ettiNumbers MF. │ │ │ │ +00027290: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +000272a0: 202a 204d 462c 2061 202a 6e6f 7465 206c * MF, a *note l │ │ │ │ +000272b0: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ +000272c0: 6f63 294c 6973 742c 2c20 4c69 7374 206f oc)List,, List o │ │ │ │ +000272d0: 6620 4861 7368 5461 626c 6573 2061 7320 f HashTables as │ │ │ │ +000272e0: 636f 6d70 7574 6564 0a20 2020 2020 2020 computed. │ │ │ │ +000272f0: 2062 7920 226d 6174 7269 7846 6163 746f by "matrixFacto │ │ │ │ +00027300: 7269 7a61 7469 6f6e 220a 2020 2a20 4f75 rization". * Ou │ │ │ │ +00027310: 7470 7574 733a 0a20 2020 2020 202a 204c tputs:. * L │ │ │ │ +00027320: 2c20 6120 2a6e 6f74 6520 6c69 7374 3a20 , a *note list: │ │ │ │ +00027330: 284d 6163 6175 6c61 7932 446f 6329 4c69 (Macaulay2Doc)Li │ │ │ │ +00027340: 7374 2c2c 204c 6973 7420 6f66 2062 6574 st,, List of bet │ │ │ │ +00027350: 7469 206e 756d 6265 7273 0a0a 4465 7363 ti numbers..Desc │ │ │ │ +00027360: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +00027370: 3d3d 3d0a 0a55 7365 7320 7468 6520 7261 ===..Uses the ra │ │ │ │ +00027380: 6e6b 7320 6f66 2074 6865 2042 206d 6174 nks of the B mat │ │ │ │ +00027390: 7269 6365 7320 696e 2061 206d 6174 7269 rices in a matri │ │ │ │ +000273a0: 7820 6661 6374 6f72 697a 6174 696f 6e20 x factorization │ │ │ │ +000273b0: 666f 7220 6120 6d6f 6475 6c65 204d 206f for a module M o │ │ │ │ +000273c0: 7665 720a 532f 2866 5f31 2c2e 2e2c 665f ver.S/(f_1,..,f_ │ │ │ │ +000273d0: 6329 2074 6f20 636f 6d70 7574 6520 7468 c) to compute th │ │ │ │ +000273e0: 6520 6265 7474 6920 6e75 6d62 6572 7320 e betti numbers │ │ │ │ +000273f0: 6f66 2074 6865 206d 696e 696d 616c 2072 of the minimal r │ │ │ │ +00027400: 6573 6f6c 7574 696f 6e20 6f66 204d 206f esolution of M o │ │ │ │ +00027410: 7665 720a 532c 2077 6869 6368 2069 7320 ver.S, which is │ │ │ │ +00027420: 7468 6520 7375 6d20 6f66 2074 6865 204b the sum of the K │ │ │ │ +00027430: 6f73 7a75 6c20 636f 6d70 6c65 7865 7320 oszul complexes │ │ │ │ +00027440: 4b28 665f 312e 2e66 5f7b 6a2d 317d 2920 K(f_1..f_{j-1}) │ │ │ │ +00027450: 7465 6e73 6f72 6564 2077 6974 6820 4228 tensored with B( │ │ │ │ +00027460: 6a29 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d j)..+----------- │ │ │ │ 00027470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000274a0: 2d2d 2b0a 7c69 3120 3a20 7365 7452 616e --+.|i1 : setRan │ │ │ │ -000274b0: 646f 6d53 6565 6420 3020 2020 2020 2020 domSeed 0 │ │ │ │ -000274c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000274d0: 2020 2020 2020 207c 0a7c 202d 2d20 7365 |.| -- se │ │ │ │ -000274e0: 7474 696e 6720 7261 6e64 6f6d 2073 6565 tting random see │ │ │ │ -000274f0: 6420 746f 2030 2020 2020 2020 2020 2020 d to 0 │ │ │ │ -00027500: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00027490: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2073 -------+.|i1 : s │ │ │ │ +000274a0: 6574 5261 6e64 6f6d 5365 6564 2030 2020 etRandomSeed 0 │ │ │ │ +000274b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000274c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000274d0: 2d2d 2073 6574 7469 6e67 2072 616e 646f -- setting rando │ │ │ │ +000274e0: 6d20 7365 6564 2074 6f20 3020 2020 2020 m seed to 0 │ │ │ │ +000274f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027500: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00027510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027540: 207c 0a7c 6f31 203d 2030 2020 2020 2020 |.|o1 = 0 │ │ │ │ +00027530: 2020 2020 2020 7c0a 7c6f 3120 3d20 3020 |.|o1 = 0 │ │ │ │ +00027540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027570: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00027560: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00027570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000275a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -000275b0: 203a 206b 6b20 3d20 5a5a 2f31 3031 2020 : kk = ZZ/101 │ │ │ │ +000275a0: 2b0a 7c69 3220 3a20 6b6b 203d 205a 5a2f +.|i2 : kk = ZZ/ │ │ │ │ +000275b0: 3130 3120 2020 2020 2020 2020 2020 2020 101 │ │ │ │ 000275c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000275d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000275e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000275d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000275e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000275f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027610: 2020 2020 207c 0a7c 6f32 203d 206b 6b20 |.|o2 = kk │ │ │ │ +00027600: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +00027610: 3d20 6b6b 2020 2020 2020 2020 2020 2020 = kk │ │ │ │ 00027620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027640: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00027630: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00027640: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00027650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027670: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00027680: 0a7c 6f32 203a 2051 756f 7469 656e 7452 .|o2 : QuotientR │ │ │ │ -00027690: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ -000276a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000276b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00027670: 2020 2020 7c0a 7c6f 3220 3a20 5175 6f74 |.|o2 : Quot │ │ │ │ +00027680: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ +00027690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000276a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000276b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000276c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000276d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000276e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -000276f0: 2053 203d 206b 6b5b 612c 622c 752c 765d S = kk[a,b,u,v] │ │ │ │ +000276d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000276e0: 7c69 3320 3a20 5320 3d20 6b6b 5b61 2c62 |i3 : S = kk[a,b │ │ │ │ +000276f0: 2c75 2c76 5d20 2020 2020 2020 2020 2020 ,u,v] │ │ │ │ 00027700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027710: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00027720: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00027710: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00027720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027750: 2020 207c 0a7c 6f33 203d 2053 2020 2020 |.|o3 = S │ │ │ │ +00027740: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ +00027750: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 00027760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027780: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00027770: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00027780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000277a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000277b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000277c0: 6f33 203a 2050 6f6c 796e 6f6d 6961 6c52 o3 : PolynomialR │ │ │ │ -000277d0: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ -000277e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000277f0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000277b0: 2020 7c0a 7c6f 3320 3a20 506f 6c79 6e6f |.|o3 : Polyno │ │ │ │ +000277c0: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ +000277d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000277e0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000277f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027820: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2066 -------+.|i4 : f │ │ │ │ -00027830: 6620 3d20 6d61 7472 6978 2261 752c 6276 f = matrix"au,bv │ │ │ │ -00027840: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ -00027850: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00027810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00027820: 3420 3a20 6666 203d 206d 6174 7269 7822 4 : ff = matrix" │ │ │ │ +00027830: 6175 2c62 7622 2020 2020 2020 2020 2020 au,bv" │ │ │ │ +00027840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027850: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00027860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027890: 207c 0a7c 6f34 203d 207c 2061 7520 6276 |.|o4 = | au bv │ │ │ │ -000278a0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000278b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000278c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00027880: 2020 2020 2020 7c0a 7c6f 3420 3d20 7c20 |.|o4 = | │ │ │ │ +00027890: 6175 2062 7620 7c20 2020 2020 2020 2020 au bv | │ │ │ │ +000278a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000278b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000278c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000278d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000278e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000278f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00027900: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -00027910: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00027920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027930: 7c0a 7c6f 3420 3a20 4d61 7472 6978 2053 |.|o4 : Matrix S │ │ │ │ -00027940: 2020 3c2d 2d20 5320 2020 2020 2020 2020 <-- S │ │ │ │ -00027950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027960: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000278f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00027900: 3120 2020 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ +00027910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027920: 2020 2020 207c 0a7c 6f34 203a 204d 6174 |.|o4 : Mat │ │ │ │ +00027930: 7269 7820 5320 203c 2d2d 2053 2020 2020 rix S <-- S │ │ │ │ +00027940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027950: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00027960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027990: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -000279a0: 3a20 5220 3d20 532f 6964 6561 6c20 6666 : R = S/ideal ff │ │ │ │ +00027980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00027990: 0a7c 6935 203a 2052 203d 2053 2f69 6465 .|i5 : R = S/ide │ │ │ │ +000279a0: 616c 2066 6620 2020 2020 2020 2020 2020 al ff │ │ │ │ 000279b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000279c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000279d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000279c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000279d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000279e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000279f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a00: 2020 2020 7c0a 7c6f 3520 3d20 5220 2020 |.|o5 = R │ │ │ │ +000279f0: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ +00027a00: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 00027a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027a20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027a30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00027a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00027a70: 7c6f 3520 3a20 5175 6f74 6965 6e74 5269 |o5 : QuotientRi │ │ │ │ -00027a80: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ -00027a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027aa0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00027a60: 2020 207c 0a7c 6f35 203a 2051 756f 7469 |.|o5 : Quoti │ │ │ │ +00027a70: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +00027a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a90: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00027aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ad0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ -00027ae0: 4d30 203d 2052 5e31 2f69 6465 616c 2261 M0 = R^1/ideal"a │ │ │ │ -00027af0: 2c62 2220 2020 2020 2020 2020 2020 2020 ,b" │ │ │ │ -00027b00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00027ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00027ad0: 6936 203a 204d 3020 3d20 525e 312f 6964 i6 : M0 = R^1/id │ │ │ │ +00027ae0: 6561 6c22 612c 6222 2020 2020 2020 2020 eal"a,b" │ │ │ │ +00027af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027b00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00027b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027b40: 2020 7c0a 7c6f 3620 3d20 636f 6b65 726e |.|o6 = cokern │ │ │ │ -00027b50: 656c 207c 2061 2062 207c 2020 2020 2020 el | a b | │ │ │ │ -00027b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027b70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00027b30: 2020 2020 2020 207c 0a7c 6f36 203d 2063 |.|o6 = c │ │ │ │ +00027b40: 6f6b 6572 6e65 6c20 7c20 6120 6220 7c20 okernel | a b | │ │ │ │ +00027b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027b60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00027b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ba0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00027ba0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00027bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027bc0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -00027bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027be0: 207c 0a7c 6f36 203a 2052 2d6d 6f64 756c |.|o6 : R-modul │ │ │ │ -00027bf0: 652c 2071 756f 7469 656e 7420 6f66 2052 e, quotient of R │ │ │ │ -00027c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027c10: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00027bc0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00027bd0: 2020 2020 2020 7c0a 7c6f 3620 3a20 522d |.|o6 : R- │ │ │ │ +00027be0: 6d6f 6475 6c65 2c20 7175 6f74 6965 6e74 module, quotient │ │ │ │ +00027bf0: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ +00027c00: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00027c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ -00027c50: 203a 2046 203d 2066 7265 6552 6573 6f6c : F = freeResol │ │ │ │ -00027c60: 7574 696f 6e28 4d30 2c20 4c65 6e67 7468 ution(M0, Length │ │ │ │ -00027c70: 4c69 6d69 7420 3d3e 3329 2020 2020 2020 Limit =>3) │ │ │ │ -00027c80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00027c40: 2b0a 7c69 3720 3a20 4620 3d20 6672 6565 +.|i7 : F = free │ │ │ │ +00027c50: 5265 736f 6c75 7469 6f6e 284d 302c 204c Resolution(M0, L │ │ │ │ +00027c60: 656e 6774 684c 696d 6974 203d 3e33 2920 engthLimit =>3) │ │ │ │ +00027c70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00027c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027cb0: 2020 2020 207c 0a7c 2020 2020 2020 3120 |.| 1 │ │ │ │ -00027cc0: 2020 2020 2032 2020 2020 2020 3320 2020 2 3 │ │ │ │ -00027cd0: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00027ce0: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ -00027cf0: 3d20 5220 203c 2d2d 2052 2020 3c2d 2d20 = R <-- R <-- │ │ │ │ -00027d00: 5220 203c 2d2d 2052 2020 2020 2020 2020 R <-- R │ │ │ │ -00027d10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00027d20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00027ca0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00027cb0: 2020 2031 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ +00027cc0: 2033 2020 2020 2020 3420 2020 2020 2020 3 4 │ │ │ │ +00027cd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00027ce0: 0a7c 6f37 203d 2052 2020 3c2d 2d20 5220 .|o7 = R <-- R │ │ │ │ +00027cf0: 203c 2d2d 2052 2020 3c2d 2d20 5220 2020 <-- R <-- R │ │ │ │ +00027d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027d10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00027d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027d50: 2020 2020 7c0a 7c20 2020 2020 3020 2020 |.| 0 │ │ │ │ -00027d60: 2020 2031 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ -00027d70: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00027d80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027d40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027d50: 2030 2020 2020 2020 3120 2020 2020 2032 0 1 2 │ │ │ │ +00027d60: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +00027d70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027d80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00027d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027db0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00027dc0: 7c6f 3720 3a20 436f 6d70 6c65 7820 2020 |o7 : Complex │ │ │ │ +00027db0: 2020 207c 0a7c 6f37 203a 2043 6f6d 706c |.|o7 : Compl │ │ │ │ +00027dc0: 6578 2020 2020 2020 2020 2020 2020 2020 ex │ │ │ │ 00027dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027df0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00027de0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00027df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027e20: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 --------+.|i8 : │ │ │ │ -00027e30: 4d20 3d20 636f 6b65 7220 462e 6464 5f33 M = coker F.dd_3 │ │ │ │ -00027e40: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -00027e50: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00027e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00027e20: 6938 203a 204d 203d 2063 6f6b 6572 2046 i8 : M = coker F │ │ │ │ +00027e30: 2e64 645f 333b 2020 2020 2020 2020 2020 .dd_3; │ │ │ │ +00027e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027e50: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00027e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027e90: 2d2d 2b0a 7c69 3920 3a20 4d46 203d 206d --+.|i9 : MF = m │ │ │ │ -00027ea0: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ -00027eb0: 6f6e 2866 662c 4d29 3b20 2020 2020 2020 on(ff,M); │ │ │ │ -00027ec0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00027e80: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 204d -------+.|i9 : M │ │ │ │ +00027e90: 4620 3d20 6d61 7472 6978 4661 6374 6f72 F = matrixFactor │ │ │ │ +00027ea0: 697a 6174 696f 6e28 6666 2c4d 293b 2020 ization(ff,M); │ │ │ │ +00027eb0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00027ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00027f00: 3130 203a 2062 6574 7469 2066 7265 6552 10 : betti freeR │ │ │ │ -00027f10: 6573 6f6c 7574 696f 6e20 7075 7368 466f esolution pushFo │ │ │ │ -00027f20: 7277 6172 6428 6d61 7028 522c 5329 2c4d rward(map(R,S),M │ │ │ │ -00027f30: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ +00027ef0: 2d2b 0a7c 6931 3020 3a20 6265 7474 6920 -+.|i10 : betti │ │ │ │ +00027f00: 6672 6565 5265 736f 6c75 7469 6f6e 2070 freeResolution p │ │ │ │ +00027f10: 7573 6846 6f72 7761 7264 286d 6170 2852 ushForward(map(R │ │ │ │ +00027f20: 2c53 292c 4d29 7c0a 7c20 2020 2020 2020 ,S),M)|.| │ │ │ │ +00027f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027f60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00027f70: 2020 2020 2020 3020 3120 3220 2020 2020 0 1 2 │ │ │ │ +00027f50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00027f60: 2020 2020 2020 2020 2020 2030 2031 2032 0 1 2 │ │ │ │ +00027f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027f90: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00027fa0: 3020 3d20 746f 7461 6c3a 2033 2035 2032 0 = total: 3 5 2 │ │ │ │ +00027f90: 7c0a 7c6f 3130 203d 2074 6f74 616c 3a20 |.|o10 = total: │ │ │ │ +00027fa0: 3320 3520 3220 2020 2020 2020 2020 2020 3 5 2 │ │ │ │ 00027fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027fd0: 7c0a 7c20 2020 2020 2020 2020 2032 3a20 |.| 2: │ │ │ │ -00027fe0: 3320 3420 2e20 2020 2020 2020 2020 2020 3 4 . │ │ │ │ -00027ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028000: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00028010: 2020 333a 202e 2031 2032 2020 2020 2020 3: . 1 2 │ │ │ │ -00028020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028030: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00027fc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00027fd0: 2020 323a 2033 2034 202e 2020 2020 2020 2: 3 4 . │ │ │ │ +00027fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027ff0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00028000: 2020 2020 2020 2033 3a20 2e20 3120 3220 3: . 1 2 │ │ │ │ +00028010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028020: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028030: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00028040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00028070: 0a7c 6f31 3020 3a20 4265 7474 6954 616c .|o10 : BettiTal │ │ │ │ -00028080: 6c79 2020 2020 2020 2020 2020 2020 2020 ly │ │ │ │ -00028090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000280a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00028060: 2020 2020 7c0a 7c6f 3130 203a 2042 6574 |.|o10 : Bet │ │ │ │ +00028070: 7469 5461 6c6c 7920 2020 2020 2020 2020 tiTally │ │ │ │ +00028080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028090: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000280a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000280b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000280c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000280d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 ---------+.|i11 │ │ │ │ -000280e0: 3a20 6669 6e69 7465 4265 7474 694e 756d : finiteBettiNum │ │ │ │ -000280f0: 6265 7273 204d 4620 2020 2020 2020 2020 bers MF │ │ │ │ -00028100: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028110: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000280c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000280d0: 7c69 3131 203a 2066 696e 6974 6542 6574 |i11 : finiteBet │ │ │ │ +000280e0: 7469 4e75 6d62 6572 7320 4d46 2020 2020 tiNumbers MF │ │ │ │ +000280f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028100: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028140: 2020 207c 0a7c 6f31 3120 3d20 7b33 2c20 |.|o11 = {3, │ │ │ │ -00028150: 352c 2032 7d20 2020 2020 2020 2020 2020 5, 2} │ │ │ │ -00028160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028170: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028130: 2020 2020 2020 2020 7c0a 7c6f 3131 203d |.|o11 = │ │ │ │ +00028140: 207b 332c 2035 2c20 327d 2020 2020 2020 {3, 5, 2} │ │ │ │ +00028150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028160: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00028170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000281a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000281b0: 6f31 3120 3a20 4c69 7374 2020 2020 2020 o11 : List │ │ │ │ +000281a0: 2020 7c0a 7c6f 3131 203a 204c 6973 7420 |.|o11 : List │ │ │ │ +000281b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000281c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000281d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000281e0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000281d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000281e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000281f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028210: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 3a20 -------+.|i12 : │ │ │ │ -00028220: 696e 6669 6e69 7465 4265 7474 694e 756d infiniteBettiNum │ │ │ │ -00028230: 6265 7273 284d 462c 3529 2020 2020 2020 bers(MF,5) │ │ │ │ -00028240: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00028200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00028210: 3132 203a 2069 6e66 696e 6974 6542 6574 12 : infiniteBet │ │ │ │ +00028220: 7469 4e75 6d62 6572 7328 4d46 2c35 2920 tiNumbers(MF,5) │ │ │ │ +00028230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028240: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00028250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028280: 207c 0a7c 6f31 3220 3d20 7b33 2c20 342c |.|o12 = {3, 4, │ │ │ │ -00028290: 2035 2c20 362c 2037 2c20 387d 2020 2020 5, 6, 7, 8} │ │ │ │ -000282a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000282b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00028270: 2020 2020 2020 7c0a 7c6f 3132 203d 207b |.|o12 = { │ │ │ │ +00028280: 332c 2034 2c20 352c 2036 2c20 372c 2038 3, 4, 5, 6, 7, 8 │ │ │ │ +00028290: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000282a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000282b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000282c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000282d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000282e0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -000282f0: 3220 3a20 4c69 7374 2020 2020 2020 2020 2 : List │ │ │ │ +000282e0: 7c0a 7c6f 3132 203a 204c 6973 7420 2020 |.|o12 : List │ │ │ │ +000282f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028320: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00028310: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00028320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028350: 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 6265 -----+.|i13 : be │ │ │ │ -00028360: 7474 6920 6672 6565 5265 736f 6c75 7469 tti freeResoluti │ │ │ │ -00028370: 6f6e 2028 4d2c 204c 656e 6774 684c 696d on (M, LengthLim │ │ │ │ -00028380: 6974 203d 3e20 3529 2020 7c0a 7c20 2020 it => 5) |.| │ │ │ │ +00028340: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 ----------+.|i13 │ │ │ │ +00028350: 203a 2062 6574 7469 2066 7265 6552 6573 : betti freeRes │ │ │ │ +00028360: 6f6c 7574 696f 6e20 284d 2c20 4c65 6e67 olution (M, Leng │ │ │ │ +00028370: 7468 4c69 6d69 7420 3d3e 2035 2920 207c thLimit => 5) | │ │ │ │ +00028380: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00028390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000283a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000283b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000283c0: 0a7c 2020 2020 2020 2020 2020 2020 2030 .| 0 │ │ │ │ -000283d0: 2031 2032 2033 2034 2035 2020 2020 2020 1 2 3 4 5 │ │ │ │ -000283e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000283f0: 2020 2020 7c0a 7c6f 3133 203d 2074 6f74 |.|o13 = tot │ │ │ │ -00028400: 616c 3a20 3320 3420 3520 3620 3720 3820 al: 3 4 5 6 7 8 │ │ │ │ -00028410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028420: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00028430: 2020 2020 2020 323a 2033 2034 2035 2036 2: 3 4 5 6 │ │ │ │ -00028440: 2037 2038 2020 2020 2020 2020 2020 2020 7 8 │ │ │ │ -00028450: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028460: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000283b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000283c0: 2020 2020 3020 3120 3220 3320 3420 3520 0 1 2 3 4 5 │ │ │ │ +000283d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000283e0: 2020 2020 2020 2020 207c 0a7c 6f31 3320 |.|o13 │ │ │ │ +000283f0: 3d20 746f 7461 6c3a 2033 2034 2035 2036 = total: 3 4 5 6 │ │ │ │ +00028400: 2037 2038 2020 2020 2020 2020 2020 2020 7 8 │ │ │ │ +00028410: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00028420: 7c20 2020 2020 2020 2020 2032 3a20 3320 | 2: 3 │ │ │ │ +00028430: 3420 3520 3620 3720 3820 2020 2020 2020 4 5 6 7 8 │ │ │ │ +00028440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028450: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028490: 2020 207c 0a7c 6f31 3320 3a20 4265 7474 |.|o13 : Bett │ │ │ │ -000284a0: 6954 616c 6c79 2020 2020 2020 2020 2020 iTally │ │ │ │ -000284b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000284c0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00028480: 2020 2020 2020 2020 7c0a 7c6f 3133 203a |.|o13 : │ │ │ │ +00028490: 2042 6574 7469 5461 6c6c 7920 2020 2020 BettiTally │ │ │ │ +000284a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000284b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000284c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000284d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000284e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000284f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00028500: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ -00028510: 3d0a 0a20 202a 202a 6e6f 7465 206d 6174 =.. * *note mat │ │ │ │ -00028520: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -00028530: 3a20 6d61 7472 6978 4661 6374 6f72 697a : matrixFactoriz │ │ │ │ -00028540: 6174 696f 6e2c 202d 2d20 4d61 7073 2069 ation, -- Maps i │ │ │ │ -00028550: 6e20 6120 6869 6768 6572 0a20 2020 2063 n a higher. c │ │ │ │ -00028560: 6f64 696d 656e 7369 6f6e 206d 6174 7269 odimension matri │ │ │ │ -00028570: 7820 6661 6374 6f72 697a 6174 696f 6e0a x factorization. │ │ │ │ -00028580: 2020 2a20 2a6e 6f74 6520 696e 6669 6e69 * *note infini │ │ │ │ -00028590: 7465 4265 7474 694e 756d 6265 7273 3a20 teBettiNumbers: │ │ │ │ -000285a0: 696e 6669 6e69 7465 4265 7474 694e 756d infiniteBettiNum │ │ │ │ -000285b0: 6265 7273 2c20 2d2d 2062 6574 7469 206e bers, -- betti n │ │ │ │ -000285c0: 756d 6265 7273 206f 660a 2020 2020 6669 umbers of. fi │ │ │ │ -000285d0: 6e69 7465 2072 6573 6f6c 7574 696f 6e20 nite resolution │ │ │ │ -000285e0: 636f 6d70 7574 6564 2066 726f 6d20 6120 computed from a │ │ │ │ -000285f0: 6d61 7472 6978 2066 6163 746f 7269 7a61 matrix factoriza │ │ │ │ -00028600: 7469 6f6e 0a0a 5761 7973 2074 6f20 7573 tion..Ways to us │ │ │ │ -00028610: 6520 6669 6e69 7465 4265 7474 694e 756d e finiteBettiNum │ │ │ │ -00028620: 6265 7273 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d bers:.========== │ │ │ │ -00028630: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00028640: 3d3d 3d3d 3d0a 0a20 202a 2022 6669 6e69 =====.. * "fini │ │ │ │ -00028650: 7465 4265 7474 694e 756d 6265 7273 284c teBettiNumbers(L │ │ │ │ -00028660: 6973 7429 220a 0a46 6f72 2074 6865 2070 ist)"..For the p │ │ │ │ -00028670: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00028680: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00028690: 6520 6f62 6a65 6374 202a 6e6f 7465 2066 e object *note f │ │ │ │ -000286a0: 696e 6974 6542 6574 7469 4e75 6d62 6572 initeBettiNumber │ │ │ │ -000286b0: 733a 2066 696e 6974 6542 6574 7469 4e75 s: finiteBettiNu │ │ │ │ -000286c0: 6d62 6572 732c 2069 7320 6120 2a6e 6f74 mbers, is a *not │ │ │ │ -000286d0: 6520 6d65 7468 6f64 0a66 756e 6374 696f e method.functio │ │ │ │ -000286e0: 6e3a 2028 4d61 6361 756c 6179 3244 6f63 n: (Macaulay2Doc │ │ │ │ -000286f0: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ -00028700: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +000284f0: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ +00028500: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ +00028510: 6520 6d61 7472 6978 4661 6374 6f72 697a e matrixFactoriz │ │ │ │ +00028520: 6174 696f 6e3a 206d 6174 7269 7846 6163 ation: matrixFac │ │ │ │ +00028530: 746f 7269 7a61 7469 6f6e 2c20 2d2d 204d torization, -- M │ │ │ │ +00028540: 6170 7320 696e 2061 2068 6967 6865 720a aps in a higher. │ │ │ │ +00028550: 2020 2020 636f 6469 6d65 6e73 696f 6e20 codimension │ │ │ │ +00028560: 6d61 7472 6978 2066 6163 746f 7269 7a61 matrix factoriza │ │ │ │ +00028570: 7469 6f6e 0a20 202a 202a 6e6f 7465 2069 tion. * *note i │ │ │ │ +00028580: 6e66 696e 6974 6542 6574 7469 4e75 6d62 nfiniteBettiNumb │ │ │ │ +00028590: 6572 733a 2069 6e66 696e 6974 6542 6574 ers: infiniteBet │ │ │ │ +000285a0: 7469 4e75 6d62 6572 732c 202d 2d20 6265 tiNumbers, -- be │ │ │ │ +000285b0: 7474 6920 6e75 6d62 6572 7320 6f66 0a20 tti numbers of. │ │ │ │ +000285c0: 2020 2066 696e 6974 6520 7265 736f 6c75 finite resolu │ │ │ │ +000285d0: 7469 6f6e 2063 6f6d 7075 7465 6420 6672 tion computed fr │ │ │ │ +000285e0: 6f6d 2061 206d 6174 7269 7820 6661 6374 om a matrix fact │ │ │ │ +000285f0: 6f72 697a 6174 696f 6e0a 0a57 6179 7320 orization..Ways │ │ │ │ +00028600: 746f 2075 7365 2066 696e 6974 6542 6574 to use finiteBet │ │ │ │ +00028610: 7469 4e75 6d62 6572 733a 0a3d 3d3d 3d3d tiNumbers:.===== │ │ │ │ +00028620: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00028630: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +00028640: 2266 696e 6974 6542 6574 7469 4e75 6d62 "finiteBettiNumb │ │ │ │ +00028650: 6572 7328 4c69 7374 2922 0a0a 466f 7220 ers(List)"..For │ │ │ │ +00028660: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +00028670: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00028680: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +00028690: 6f74 6520 6669 6e69 7465 4265 7474 694e ote finiteBettiN │ │ │ │ +000286a0: 756d 6265 7273 3a20 6669 6e69 7465 4265 umbers: finiteBe │ │ │ │ +000286b0: 7474 694e 756d 6265 7273 2c20 6973 2061 ttiNumbers, is a │ │ │ │ +000286c0: 202a 6e6f 7465 206d 6574 686f 640a 6675 *note method.fu │ │ │ │ +000286d0: 6e63 7469 6f6e 3a20 284d 6163 6175 6c61 nction: (Macaula │ │ │ │ +000286e0: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ +000286f0: 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d tion,...-------- │ │ │ │ +00028700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028750: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -00028760: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -00028770: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -00028780: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -00028790: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -000287a0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -000287b0: 2f70 6163 6b61 6765 732f 0a43 6f6d 706c /packages/.Compl │ │ │ │ -000287c0: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ -000287d0: 6573 6f6c 7574 696f 6e73 2e6d 323a 3430 esolutions.m2:40 │ │ │ │ -000287e0: 3732 3a30 2e0a 1f0a 4669 6c65 3a20 436f 72:0....File: Co │ │ │ │ -000287f0: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ -00028800: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ -00028810: 666f 2c20 4e6f 6465 3a20 6672 6565 4578 fo, Node: freeEx │ │ │ │ -00028820: 7465 7269 6f72 5375 6d6d 616e 642c 204e teriorSummand, N │ │ │ │ -00028830: 6578 743a 2047 7261 6469 6e67 2c20 5072 ext: Grading, Pr │ │ │ │ -00028840: 6576 3a20 6669 6e69 7465 4265 7474 694e ev: finiteBettiN │ │ │ │ -00028850: 756d 6265 7273 2c20 5570 3a20 546f 700a umbers, Up: Top. │ │ │ │ -00028860: 0a66 7265 6545 7874 6572 696f 7253 756d .freeExteriorSum │ │ │ │ -00028870: 6d61 6e64 202d 2d20 6669 6e64 2074 6865 mand -- find the │ │ │ │ -00028880: 2066 7265 6520 7375 6d6d 616e 6473 206f free summands o │ │ │ │ -00028890: 6620 6120 6d6f 6475 6c65 206f 7665 7220 f a module over │ │ │ │ -000288a0: 616e 2065 7874 6572 696f 7220 616c 6765 an exterior alge │ │ │ │ -000288b0: 6272 610a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a bra.************ │ │ │ │ +00028740: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +00028750: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +00028760: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +00028770: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +00028780: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +00028790: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +000287a0: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ +000287b0: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ +000287c0: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ +000287d0: 6d32 3a34 3037 323a 302e 0a1f 0a46 696c m2:4072:0....Fil │ │ │ │ +000287e0: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ +000287f0: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ +00028800: 6e73 2e69 6e66 6f2c 204e 6f64 653a 2066 ns.info, Node: f │ │ │ │ +00028810: 7265 6545 7874 6572 696f 7253 756d 6d61 reeExteriorSumma │ │ │ │ +00028820: 6e64 2c20 4e65 7874 3a20 4772 6164 696e nd, Next: Gradin │ │ │ │ +00028830: 672c 2050 7265 763a 2066 696e 6974 6542 g, Prev: finiteB │ │ │ │ +00028840: 6574 7469 4e75 6d62 6572 732c 2055 703a ettiNumbers, Up: │ │ │ │ +00028850: 2054 6f70 0a0a 6672 6565 4578 7465 7269 Top..freeExteri │ │ │ │ +00028860: 6f72 5375 6d6d 616e 6420 2d2d 2066 696e orSummand -- fin │ │ │ │ +00028870: 6420 7468 6520 6672 6565 2073 756d 6d61 d the free summa │ │ │ │ +00028880: 6e64 7320 6f66 2061 206d 6f64 756c 6520 nds of a module │ │ │ │ +00028890: 6f76 6572 2061 6e20 6578 7465 7269 6f72 over an exterior │ │ │ │ +000288a0: 2061 6c67 6562 7261 0a2a 2a2a 2a2a 2a2a algebra.******* │ │ │ │ +000288b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000288c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000288d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000288e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000288f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00028900: 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 6167 ******.. * Usag │ │ │ │ -00028910: 653a 200a 2020 2020 2020 2020 4620 3d20 e: . F = │ │ │ │ -00028920: 6672 6565 4578 7465 7269 6f72 5375 6d6d freeExteriorSumm │ │ │ │ -00028930: 616e 6420 4d0a 2020 2a20 496e 7075 7473 and M. * Inputs │ │ │ │ -00028940: 3a0a 2020 2020 2020 2a20 4d2c 2061 202a :. * M, a * │ │ │ │ -00028950: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -00028960: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -00028970: 652c 2c20 6f76 6572 2061 6e20 6578 7465 e,, over an exte │ │ │ │ -00028980: 7269 6f72 2061 6c67 6562 7261 0a20 202a rior algebra. * │ │ │ │ -00028990: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -000289a0: 2a20 462c 2061 202a 6e6f 7465 206d 6174 * F, a *note mat │ │ │ │ -000289b0: 7269 783a 2028 4d61 6361 756c 6179 3244 rix: (Macaulay2D │ │ │ │ -000289c0: 6f63 294d 6174 7269 782c 2c20 4d61 7020 oc)Matrix,, Map │ │ │ │ -000289d0: 6672 6f6d 2061 2066 7265 6520 6d6f 6475 from a free modu │ │ │ │ -000289e0: 6c65 2074 6f20 4d2e 0a20 2020 2020 2020 le to M.. │ │ │ │ -000289f0: 2049 6d61 6765 2069 7320 7468 6520 6c61 Image is the la │ │ │ │ -00028a00: 7267 6573 7420 6672 6565 2073 756d 6d61 rgest free summa │ │ │ │ -00028a10: 6e64 0a0a 4465 7363 7269 7074 696f 6e0a nd..Description. │ │ │ │ -00028a20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d ===========..+-- │ │ │ │ +000288f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +00028900: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +00028910: 2046 203d 2066 7265 6545 7874 6572 696f F = freeExterio │ │ │ │ +00028920: 7253 756d 6d61 6e64 204d 0a20 202a 2049 rSummand M. * I │ │ │ │ +00028930: 6e70 7574 733a 0a20 2020 2020 202a 204d nputs:. * M │ │ │ │ +00028940: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +00028950: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00028960: 4d6f 6475 6c65 2c2c 206f 7665 7220 616e Module,, over an │ │ │ │ +00028970: 2065 7874 6572 696f 7220 616c 6765 6272 exterior algebr │ │ │ │ +00028980: 610a 2020 2a20 4f75 7470 7574 733a 0a20 a. * Outputs:. │ │ │ │ +00028990: 2020 2020 202a 2046 2c20 6120 2a6e 6f74 * F, a *not │ │ │ │ +000289a0: 6520 6d61 7472 6978 3a20 284d 6163 6175 e matrix: (Macau │ │ │ │ +000289b0: 6c61 7932 446f 6329 4d61 7472 6978 2c2c lay2Doc)Matrix,, │ │ │ │ +000289c0: 204d 6170 2066 726f 6d20 6120 6672 6565 Map from a free │ │ │ │ +000289d0: 206d 6f64 756c 6520 746f 204d 2e0a 2020 module to M.. │ │ │ │ +000289e0: 2020 2020 2020 496d 6167 6520 6973 2074 Image is t │ │ │ │ +000289f0: 6865 206c 6172 6765 7374 2066 7265 6520 he largest free │ │ │ │ +00028a00: 7375 6d6d 616e 640a 0a44 6573 6372 6970 summand..Descrip │ │ │ │ +00028a10: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +00028a20: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ 00028a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028a60: 2d2b 0a7c 6931 203a 206b 6b3d 205a 5a2f -+.|i1 : kk= ZZ/ │ │ │ │ -00028a70: 3130 3120 2020 2020 2020 2020 2020 2020 101 │ │ │ │ -00028a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028a50: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 6b6b ------+.|i1 : kk │ │ │ │ +00028a60: 3d20 5a5a 2f31 3031 2020 2020 2020 2020 = ZZ/101 │ │ │ │ +00028a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028a80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00028a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ac0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00028ad0: 6f31 203d 206b 6b20 2020 2020 2020 2020 o1 = kk │ │ │ │ +00028ac0: 2020 7c0a 7c6f 3120 3d20 6b6b 2020 2020 |.|o1 = kk │ │ │ │ +00028ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028af0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b30: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ -00028b40: 2051 756f 7469 656e 7452 696e 6720 2020 QuotientRing │ │ │ │ +00028b20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00028b30: 7c6f 3120 3a20 5175 6f74 6965 6e74 5269 |o1 : QuotientRi │ │ │ │ +00028b40: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 00028b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00028b70: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00028b60: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00028b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028ba0: 2d2d 2d2d 2d2b 0a7c 6932 203a 2045 203d -----+.|i2 : E = │ │ │ │ -00028bb0: 206b 6b5b 652c 662c 672c 2053 6b65 7743 kk[e,f,g, SkewC │ │ │ │ -00028bc0: 6f6d 6d75 7461 7469 7665 203d 3e20 7472 ommutative => tr │ │ │ │ -00028bd0: 7565 5d20 2020 2020 2020 207c 0a7c 2020 ue] |.| │ │ │ │ +00028b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ +00028ba0: 3a20 4520 3d20 6b6b 5b65 2c66 2c67 2c20 : E = kk[e,f,g, │ │ │ │ +00028bb0: 536b 6577 436f 6d6d 7574 6174 6976 6520 SkewCommutative │ │ │ │ +00028bc0: 3d3e 2074 7275 655d 2020 2020 2020 2020 => true] │ │ │ │ +00028bd0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00028be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c10: 207c 0a7c 6f32 203d 2045 2020 2020 2020 |.|o2 = E │ │ │ │ +00028c00: 2020 2020 2020 7c0a 7c6f 3220 3d20 4520 |.|o2 = E │ │ │ │ +00028c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028c30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00028c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00028c80: 6f32 203a 2050 6f6c 796e 6f6d 6961 6c52 o2 : PolynomialR │ │ │ │ -00028c90: 696e 672c 2033 2073 6b65 7720 636f 6d6d ing, 3 skew comm │ │ │ │ -00028ca0: 7574 6174 6976 6520 7661 7269 6162 6c65 utative variable │ │ │ │ -00028cb0: 2873 297c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d (s)|.+---------- │ │ │ │ +00028c70: 2020 7c0a 7c6f 3220 3a20 506f 6c79 6e6f |.|o2 : Polyno │ │ │ │ +00028c80: 6d69 616c 5269 6e67 2c20 3320 736b 6577 mialRing, 3 skew │ │ │ │ +00028c90: 2063 6f6d 6d75 7461 7469 7665 2076 6172 commutative var │ │ │ │ +00028ca0: 6961 626c 6528 7329 7c0a 2b2d 2d2d 2d2d iable(s)|.+----- │ │ │ │ +00028cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028ce0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -00028cf0: 204d 203d 2045 5e31 2b2b 6d6f 6475 6c65 M = E^1++module │ │ │ │ -00028d00: 2069 6465 616c 2076 6172 7320 452b 2b45 ideal vars E++E │ │ │ │ -00028d10: 5e7b 2d31 7d20 2020 2020 2020 2020 207c ^{-1} | │ │ │ │ -00028d20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00028cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00028ce0: 7c69 3320 3a20 4d20 3d20 455e 312b 2b6d |i3 : M = E^1++m │ │ │ │ +00028cf0: 6f64 756c 6520 6964 6561 6c20 7661 7273 odule ideal vars │ │ │ │ +00028d00: 2045 2b2b 455e 7b2d 317d 2020 2020 2020 E++E^{-1} │ │ │ │ +00028d10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00028d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d50: 2020 2020 207c 0a7c 6f33 203d 2069 6d61 |.|o3 = ima │ │ │ │ -00028d60: 6765 207b 307d 207c 2031 2030 2030 2030 ge {0} | 1 0 0 0 │ │ │ │ -00028d70: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00028d80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00028d90: 2020 2020 2020 2020 207b 307d 207c 2030 {0} | 0 │ │ │ │ -00028da0: 2065 2066 2067 2030 207c 2020 2020 2020 e f g 0 | │ │ │ │ -00028db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028dc0: 207c 0a7c 2020 2020 2020 2020 2020 207b |.| { │ │ │ │ -00028dd0: 317d 207c 2030 2030 2030 2030 2031 207c 1} | 0 0 0 0 1 | │ │ │ │ -00028de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028df0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028d40: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ +00028d50: 3d20 696d 6167 6520 7b30 7d20 7c20 3120 = image {0} | 1 │ │ │ │ +00028d60: 3020 3020 3020 3020 7c20 2020 2020 2020 0 0 0 0 | │ │ │ │ +00028d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028d80: 7c0a 7c20 2020 2020 2020 2020 2020 7b30 |.| {0 │ │ │ │ +00028d90: 7d20 7c20 3020 6520 6620 6720 3020 7c20 } | 0 e f g 0 | │ │ │ │ +00028da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028db0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00028dc0: 2020 2020 7b31 7d20 7c20 3020 3020 3020 {1} | 0 0 0 │ │ │ │ +00028dd0: 3020 3120 7c20 2020 2020 2020 2020 2020 0 1 | │ │ │ │ +00028de0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00028df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00028e20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00028e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e40: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ -00028e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e60: 2020 207c 0a7c 6f33 203a 2045 2d6d 6f64 |.|o3 : E-mod │ │ │ │ -00028e70: 756c 652c 2073 7562 6d6f 6475 6c65 206f ule, submodule o │ │ │ │ -00028e80: 6620 4520 2020 2020 2020 2020 2020 2020 f E │ │ │ │ -00028e90: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00028e40: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00028e50: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ +00028e60: 452d 6d6f 6475 6c65 2c20 7375 626d 6f64 E-module, submod │ │ │ │ +00028e70: 756c 6520 6f66 2045 2020 2020 2020 2020 ule of E │ │ │ │ +00028e80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00028e90: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00028ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00028ed0: 0a7c 6934 203a 2066 7265 6545 7874 6572 .|i4 : freeExter │ │ │ │ -00028ee0: 696f 7253 756d 6d61 6e64 204d 2020 2020 iorSummand M │ │ │ │ -00028ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028ec0: 2d2d 2d2d 2b0a 7c69 3420 3a20 6672 6565 ----+.|i4 : free │ │ │ │ +00028ed0: 4578 7465 7269 6f72 5375 6d6d 616e 6420 ExteriorSummand │ │ │ │ +00028ee0: 4d20 2020 2020 2020 2020 2020 2020 2020 M │ │ │ │ +00028ef0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00028f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f30: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ -00028f40: 203d 207b 307d 207c 2031 2030 207c 2020 = {0} | 1 0 | │ │ │ │ +00028f30: 7c0a 7c6f 3420 3d20 7b30 7d20 7c20 3120 |.|o4 = {0} | 1 │ │ │ │ +00028f40: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 00028f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f70: 207c 0a7c 2020 2020 207b 317d 207c 2030 |.| {1} | 0 │ │ │ │ -00028f80: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00028f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028fa0: 2020 2020 2020 207c 0a7c 2020 2020 207b |.| { │ │ │ │ -00028fb0: 317d 207c 2030 2030 207c 2020 2020 2020 1} | 0 0 | │ │ │ │ +00028f60: 2020 2020 2020 7c0a 7c20 2020 2020 7b31 |.| {1 │ │ │ │ +00028f70: 7d20 7c20 3020 3020 7c20 2020 2020 2020 } | 0 0 | │ │ │ │ +00028f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028f90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00028fa0: 2020 2020 7b31 7d20 7c20 3020 3020 7c20 {1} | 0 0 | │ │ │ │ +00028fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028fd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00028fe0: 2020 2020 207b 317d 207c 2030 2030 207c {1} | 0 0 | │ │ │ │ +00028fd0: 2020 7c0a 7c20 2020 2020 7b31 7d20 7c20 |.| {1} | │ │ │ │ +00028fe0: 3020 3020 7c20 2020 2020 2020 2020 2020 0 0 | │ │ │ │ 00028ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029010: 2020 207c 0a7c 2020 2020 207b 317d 207c |.| {1} | │ │ │ │ -00029020: 2030 2031 207c 2020 2020 2020 2020 2020 0 1 | │ │ │ │ -00029030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029040: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00029000: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00029010: 7b31 7d20 7c20 3020 3120 7c20 2020 2020 {1} | 0 1 | │ │ │ │ +00029020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029030: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00029040: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00029050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00029080: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00029090: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000290a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000290b0: 2020 2020 207c 0a7c 6f34 203a 204d 6174 |.|o4 : Mat │ │ │ │ -000290c0: 7269 7820 4d20 3c2d 2d20 4520 2020 2020 rix M <-- E │ │ │ │ +00029070: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00029080: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00029090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000290a0: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +000290b0: 3a20 4d61 7472 6978 204d 203c 2d2d 2045 : Matrix M <-- E │ │ │ │ +000290c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000290d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000290e0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000290e0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 000290f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029120: 2d2b 0a0a 5761 7973 2074 6f20 7573 6520 -+..Ways to use │ │ │ │ -00029130: 6672 6565 4578 7465 7269 6f72 5375 6d6d freeExteriorSumm │ │ │ │ -00029140: 616e 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d and:.=========== │ │ │ │ -00029150: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00029160: 3d3d 3d3d 3d0a 0a20 202a 2022 6672 6565 =====.. * "free │ │ │ │ -00029170: 4578 7465 7269 6f72 5375 6d6d 616e 6428 ExteriorSummand( │ │ │ │ -00029180: 4d6f 6475 6c65 2922 0a0a 466f 7220 7468 Module)"..For th │ │ │ │ -00029190: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -000291a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -000291b0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -000291c0: 6520 6672 6565 4578 7465 7269 6f72 5375 e freeExteriorSu │ │ │ │ -000291d0: 6d6d 616e 643a 2066 7265 6545 7874 6572 mmand: freeExter │ │ │ │ -000291e0: 696f 7253 756d 6d61 6e64 2c20 6973 2061 iorSummand, is a │ │ │ │ -000291f0: 202a 6e6f 7465 206d 6574 686f 640a 6675 *note method.fu │ │ │ │ -00029200: 6e63 7469 6f6e 3a20 284d 6163 6175 6c61 nction: (Macaula │ │ │ │ -00029210: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ -00029220: 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d tion,...-------- │ │ │ │ +00029110: 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 746f ------+..Ways to │ │ │ │ +00029120: 2075 7365 2066 7265 6545 7874 6572 696f use freeExterio │ │ │ │ +00029130: 7253 756d 6d61 6e64 3a0a 3d3d 3d3d 3d3d rSummand:.====== │ │ │ │ +00029140: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00029150: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +00029160: 2266 7265 6545 7874 6572 696f 7253 756d "freeExteriorSum │ │ │ │ +00029170: 6d61 6e64 284d 6f64 756c 6529 220a 0a46 mand(Module)"..F │ │ │ │ +00029180: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +00029190: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +000291a0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +000291b0: 202a 6e6f 7465 2066 7265 6545 7874 6572 *note freeExter │ │ │ │ +000291c0: 696f 7253 756d 6d61 6e64 3a20 6672 6565 iorSummand: free │ │ │ │ +000291d0: 4578 7465 7269 6f72 5375 6d6d 616e 642c ExteriorSummand, │ │ │ │ +000291e0: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ +000291f0: 6f64 0a66 756e 6374 696f 6e3a 2028 4d61 od.function: (Ma │ │ │ │ +00029200: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ +00029210: 6446 756e 6374 696f 6e2c 2e0a 0a2d 2d2d dFunction,...--- │ │ │ │ +00029220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029270: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -00029280: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -00029290: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -000292a0: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -000292b0: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -000292c0: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -000292d0: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ -000292e0: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ -000292f0: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ -00029300: 6d32 3a34 3238 353a 302e 0a1f 0a46 696c m2:4285:0....Fil │ │ │ │ -00029310: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ -00029320: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -00029330: 6e73 2e69 6e66 6f2c 204e 6f64 653a 2047 ns.info, Node: G │ │ │ │ -00029340: 7261 6469 6e67 2c20 4e65 7874 3a20 6866 rading, Next: hf │ │ │ │ -00029350: 2c20 5072 6576 3a20 6672 6565 4578 7465 , Prev: freeExte │ │ │ │ -00029360: 7269 6f72 5375 6d6d 616e 642c 2055 703a riorSummand, Up: │ │ │ │ -00029370: 2054 6f70 0a0a 4772 6164 696e 6720 2d2d Top..Grading -- │ │ │ │ -00029380: 204f 7074 696f 6e20 666f 7220 4569 7365 Option for Eise │ │ │ │ -00029390: 6e62 7564 5368 616d 6173 6854 6f74 616c nbudShamashTotal │ │ │ │ -000293a0: 2c20 6e65 7745 7874 0a2a 2a2a 2a2a 2a2a , newExt.******* │ │ │ │ +00029260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +00029270: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +00029280: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +00029290: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +000292a0: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +000292b0: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +000292c0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +000292d0: 6765 732f 0a43 6f6d 706c 6574 6549 6e74 ges/.CompleteInt │ │ │ │ +000292e0: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ +000292f0: 696f 6e73 2e6d 323a 3432 3835 3a30 2e0a ions.m2:4285:0.. │ │ │ │ +00029300: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ +00029310: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +00029320: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ +00029330: 6465 3a20 4772 6164 696e 672c 204e 6578 de: Grading, Nex │ │ │ │ +00029340: 743a 2068 662c 2050 7265 763a 2066 7265 t: hf, Prev: fre │ │ │ │ +00029350: 6545 7874 6572 696f 7253 756d 6d61 6e64 eExteriorSummand │ │ │ │ +00029360: 2c20 5570 3a20 546f 700a 0a47 7261 6469 , Up: Top..Gradi │ │ │ │ +00029370: 6e67 202d 2d20 4f70 7469 6f6e 2066 6f72 ng -- Option for │ │ │ │ +00029380: 2045 6973 656e 6275 6453 6861 6d61 7368 EisenbudShamash │ │ │ │ +00029390: 546f 7461 6c2c 206e 6577 4578 740a 2a2a Total, newExt.** │ │ │ │ +000293a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000293b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000293c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000293d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -000293e0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -000293f0: 2045 6973 656e 6275 6453 6861 6d61 7368 EisenbudShamash │ │ │ │ -00029400: 546f 7461 6c28 4d62 6172 2c47 7261 6469 Total(Mbar,Gradi │ │ │ │ -00029410: 6e67 203d 3e20 3229 0a20 202a 2049 6e70 ng => 2). * Inp │ │ │ │ -00029420: 7574 733a 0a20 2020 2020 202a 2043 6865 uts:. * Che │ │ │ │ -00029430: 636b 2c20 616e 202a 6e6f 7465 2069 6e74 ck, an *note int │ │ │ │ -00029440: 6567 6572 3a20 284d 6163 6175 6c61 7932 eger: (Macaulay2 │ │ │ │ -00029450: 446f 6329 5a5a 2c2c 200a 0a44 6573 6372 Doc)ZZ,, ..Descr │ │ │ │ -00029460: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -00029470: 3d3d 0a0a 6966 2047 7261 6469 6e67 203d ==..if Grading = │ │ │ │ -00029480: 3e31 2c20 7468 656e 2074 6865 206f 7574 >1, then the out │ │ │ │ -00029490: 7075 7420 6973 2063 6f6e 7665 7274 6564 put is converted │ │ │ │ -000294a0: 2074 6f20 7369 6e67 6c65 2d67 7261 6469 to single-gradi │ │ │ │ -000294b0: 6e67 2c20 7573 6566 756c 2069 6e20 7468 ng, useful in th │ │ │ │ -000294c0: 650a 7061 636b 6167 6520 436c 6966 666f e.package Cliffo │ │ │ │ -000294d0: 7264 0a0a 5365 6520 616c 736f 0a3d 3d3d rd..See also.=== │ │ │ │ -000294e0: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -000294f0: 2045 6973 656e 6275 6453 6861 6d61 7368 EisenbudShamash │ │ │ │ -00029500: 546f 7461 6c3a 2045 6973 656e 6275 6453 Total: EisenbudS │ │ │ │ -00029510: 6861 6d61 7368 546f 7461 6c2c 202d 2d20 hamashTotal, -- │ │ │ │ -00029520: 5072 6563 7572 736f 7220 636f 6d70 6c65 Precursor comple │ │ │ │ -00029530: 7820 6f66 0a20 2020 2074 6f74 616c 2045 x of. total E │ │ │ │ -00029540: 7874 0a20 202a 202a 6e6f 7465 206e 6577 xt. * *note new │ │ │ │ -00029550: 4578 743a 206e 6577 4578 742c 202d 2d20 Ext: newExt, -- │ │ │ │ -00029560: 476c 6f62 616c 2045 7874 2066 6f72 206d Global Ext for m │ │ │ │ -00029570: 6f64 756c 6573 206f 7665 7220 6120 636f odules over a co │ │ │ │ -00029580: 6d70 6c65 7465 0a20 2020 2049 6e74 6572 mplete. Inter │ │ │ │ -00029590: 7365 6374 696f 6e0a 0a46 756e 6374 696f section..Functio │ │ │ │ -000295a0: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ -000295b0: 2061 7267 756d 656e 7420 6e61 6d65 6420 argument named │ │ │ │ -000295c0: 4772 6164 696e 673a 0a3d 3d3d 3d3d 3d3d Grading:.======= │ │ │ │ +000293d0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +000293e0: 2020 2020 2020 4569 7365 6e62 7564 5368 EisenbudSh │ │ │ │ +000293f0: 616d 6173 6854 6f74 616c 284d 6261 722c amashTotal(Mbar, │ │ │ │ +00029400: 4772 6164 696e 6720 3d3e 2032 290a 2020 Grading => 2). │ │ │ │ +00029410: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ +00029420: 2a20 4368 6563 6b2c 2061 6e20 2a6e 6f74 * Check, an *not │ │ │ │ +00029430: 6520 696e 7465 6765 723a 2028 4d61 6361 e integer: (Maca │ │ │ │ +00029440: 756c 6179 3244 6f63 295a 5a2c 2c20 0a0a ulay2Doc)ZZ,, .. │ │ │ │ +00029450: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +00029460: 3d3d 3d3d 3d3d 3d0a 0a69 6620 4772 6164 =======..if Grad │ │ │ │ +00029470: 696e 6720 3d3e 312c 2074 6865 6e20 7468 ing =>1, then th │ │ │ │ +00029480: 6520 6f75 7470 7574 2069 7320 636f 6e76 e output is conv │ │ │ │ +00029490: 6572 7465 6420 746f 2073 696e 676c 652d erted to single- │ │ │ │ +000294a0: 6772 6164 696e 672c 2075 7365 6675 6c20 grading, useful │ │ │ │ +000294b0: 696e 2074 6865 0a70 6163 6b61 6765 2043 in the.package C │ │ │ │ +000294c0: 6c69 6666 6f72 640a 0a53 6565 2061 6c73 lifford..See als │ │ │ │ +000294d0: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +000294e0: 2a6e 6f74 6520 4569 7365 6e62 7564 5368 *note EisenbudSh │ │ │ │ +000294f0: 616d 6173 6854 6f74 616c 3a20 4569 7365 amashTotal: Eise │ │ │ │ +00029500: 6e62 7564 5368 616d 6173 6854 6f74 616c nbudShamashTotal │ │ │ │ +00029510: 2c20 2d2d 2050 7265 6375 7273 6f72 2063 , -- Precursor c │ │ │ │ +00029520: 6f6d 706c 6578 206f 660a 2020 2020 746f omplex of. to │ │ │ │ +00029530: 7461 6c20 4578 740a 2020 2a20 2a6e 6f74 tal Ext. * *not │ │ │ │ +00029540: 6520 6e65 7745 7874 3a20 6e65 7745 7874 e newExt: newExt │ │ │ │ +00029550: 2c20 2d2d 2047 6c6f 6261 6c20 4578 7420 , -- Global Ext │ │ │ │ +00029560: 666f 7220 6d6f 6475 6c65 7320 6f76 6572 for modules over │ │ │ │ +00029570: 2061 2063 6f6d 706c 6574 650a 2020 2020 a complete. │ │ │ │ +00029580: 496e 7465 7273 6563 7469 6f6e 0a0a 4675 Intersection..Fu │ │ │ │ +00029590: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +000295a0: 696f 6e61 6c20 6172 6775 6d65 6e74 206e ional argument n │ │ │ │ +000295b0: 616d 6564 2047 7261 6469 6e67 3a0a 3d3d amed Grading:.== │ │ │ │ +000295c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 000295d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000295e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000295f0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2245 ========.. * "E │ │ │ │ -00029600: 6973 656e 6275 6453 6861 6d61 7368 546f isenbudShamashTo │ │ │ │ -00029610: 7461 6c28 2e2e 2e2c 4772 6164 696e 673d tal(...,Grading= │ │ │ │ -00029620: 3e2e 2e2e 2922 202d 2d20 7365 6520 2a6e >...)" -- see *n │ │ │ │ -00029630: 6f74 6520 4569 7365 6e62 7564 5368 616d ote EisenbudSham │ │ │ │ -00029640: 6173 6854 6f74 616c 3a0a 2020 2020 4569 ashTotal:. Ei │ │ │ │ -00029650: 7365 6e62 7564 5368 616d 6173 6854 6f74 senbudShamashTot │ │ │ │ -00029660: 616c 2c20 2d2d 2050 7265 6375 7273 6f72 al, -- Precursor │ │ │ │ -00029670: 2063 6f6d 706c 6578 206f 6620 746f 7461 complex of tota │ │ │ │ -00029680: 6c20 4578 740a 2020 2a20 226e 6577 4578 l Ext. * "newEx │ │ │ │ -00029690: 7428 2e2e 2e2c 4772 6164 696e 673d 3e2e t(...,Grading=>. │ │ │ │ -000296a0: 2e2e 2922 202d 2d20 7365 6520 2a6e 6f74 ..)" -- see *not │ │ │ │ -000296b0: 6520 6e65 7745 7874 3a20 6e65 7745 7874 e newExt: newExt │ │ │ │ -000296c0: 2c20 2d2d 2047 6c6f 6261 6c20 4578 7420 , -- Global Ext │ │ │ │ -000296d0: 666f 720a 2020 2020 6d6f 6475 6c65 7320 for. modules │ │ │ │ -000296e0: 6f76 6572 2061 2063 6f6d 706c 6574 6520 over a complete │ │ │ │ -000296f0: 496e 7465 7273 6563 7469 6f6e 0a0a 466f Intersection..Fo │ │ │ │ -00029700: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -00029710: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00029720: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -00029730: 2a6e 6f74 6520 4772 6164 696e 673a 2047 *note Grading: G │ │ │ │ -00029740: 7261 6469 6e67 2c20 6973 2061 202a 6e6f rading, is a *no │ │ │ │ -00029750: 7465 2073 796d 626f 6c3a 2028 4d61 6361 te symbol: (Maca │ │ │ │ -00029760: 756c 6179 3244 6f63 2953 796d 626f 6c2c ulay2Doc)Symbol, │ │ │ │ -00029770: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +000295e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +000295f0: 202a 2022 4569 7365 6e62 7564 5368 616d * "EisenbudSham │ │ │ │ +00029600: 6173 6854 6f74 616c 282e 2e2e 2c47 7261 ashTotal(...,Gra │ │ │ │ +00029610: 6469 6e67 3d3e 2e2e 2e29 2220 2d2d 2073 ding=>...)" -- s │ │ │ │ +00029620: 6565 202a 6e6f 7465 2045 6973 656e 6275 ee *note Eisenbu │ │ │ │ +00029630: 6453 6861 6d61 7368 546f 7461 6c3a 0a20 dShamashTotal:. │ │ │ │ +00029640: 2020 2045 6973 656e 6275 6453 6861 6d61 EisenbudShama │ │ │ │ +00029650: 7368 546f 7461 6c2c 202d 2d20 5072 6563 shTotal, -- Prec │ │ │ │ +00029660: 7572 736f 7220 636f 6d70 6c65 7820 6f66 ursor complex of │ │ │ │ +00029670: 2074 6f74 616c 2045 7874 0a20 202a 2022 total Ext. * " │ │ │ │ +00029680: 6e65 7745 7874 282e 2e2e 2c47 7261 6469 newExt(...,Gradi │ │ │ │ +00029690: 6e67 3d3e 2e2e 2e29 2220 2d2d 2073 6565 ng=>...)" -- see │ │ │ │ +000296a0: 202a 6e6f 7465 206e 6577 4578 743a 206e *note newExt: n │ │ │ │ +000296b0: 6577 4578 742c 202d 2d20 476c 6f62 616c ewExt, -- Global │ │ │ │ +000296c0: 2045 7874 2066 6f72 0a20 2020 206d 6f64 Ext for. mod │ │ │ │ +000296d0: 756c 6573 206f 7665 7220 6120 636f 6d70 ules over a comp │ │ │ │ +000296e0: 6c65 7465 2049 6e74 6572 7365 6374 696f lete Intersectio │ │ │ │ +000296f0: 6e0a 0a46 6f72 2074 6865 2070 726f 6772 n..For the progr │ │ │ │ +00029700: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00029710: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00029720: 6a65 6374 202a 6e6f 7465 2047 7261 6469 ject *note Gradi │ │ │ │ +00029730: 6e67 3a20 4772 6164 696e 672c 2069 7320 ng: Grading, is │ │ │ │ +00029740: 6120 2a6e 6f74 6520 7379 6d62 6f6c 3a20 a *note symbol: │ │ │ │ +00029750: 284d 6163 6175 6c61 7932 446f 6329 5379 (Macaulay2Doc)Sy │ │ │ │ +00029760: 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d mbol,...-------- │ │ │ │ +00029770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000297a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000297b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000297c0: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -000297d0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -000297e0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -000297f0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -00029800: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -00029810: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -00029820: 2f70 6163 6b61 6765 732f 0a43 6f6d 706c /packages/.Compl │ │ │ │ -00029830: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ -00029840: 6573 6f6c 7574 696f 6e73 2e6d 323a 3332 esolutions.m2:32 │ │ │ │ -00029850: 3136 3a30 2e0a 1f0a 4669 6c65 3a20 436f 16:0....File: Co │ │ │ │ -00029860: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ -00029870: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ -00029880: 666f 2c20 4e6f 6465 3a20 6866 2c20 4e65 fo, Node: hf, Ne │ │ │ │ -00029890: 7874 3a20 6866 4d6f 6475 6c65 4173 4578 xt: hfModuleAsEx │ │ │ │ -000298a0: 742c 2050 7265 763a 2047 7261 6469 6e67 t, Prev: Grading │ │ │ │ -000298b0: 2c20 5570 3a20 546f 700a 0a68 6620 2d2d , Up: Top..hf -- │ │ │ │ -000298c0: 2043 6f6d 7075 7465 7320 7468 6520 6869 Computes the hi │ │ │ │ -000298d0: 6c62 6572 7420 6675 6e63 7469 6f6e 2069 lbert function i │ │ │ │ -000298e0: 6e20 6120 7261 6e67 6520 6f66 2064 6567 n a range of deg │ │ │ │ -000298f0: 7265 6573 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a rees.*********** │ │ │ │ +000297b0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +000297c0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +000297d0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +000297e0: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +000297f0: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +00029800: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +00029810: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ +00029820: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ +00029830: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ +00029840: 6d32 3a33 3231 363a 302e 0a1f 0a46 696c m2:3216:0....Fil │ │ │ │ +00029850: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ +00029860: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ +00029870: 6e73 2e69 6e66 6f2c 204e 6f64 653a 2068 ns.info, Node: h │ │ │ │ +00029880: 662c 204e 6578 743a 2068 664d 6f64 756c f, Next: hfModul │ │ │ │ +00029890: 6541 7345 7874 2c20 5072 6576 3a20 4772 eAsExt, Prev: Gr │ │ │ │ +000298a0: 6164 696e 672c 2055 703a 2054 6f70 0a0a ading, Up: Top.. │ │ │ │ +000298b0: 6866 202d 2d20 436f 6d70 7574 6573 2074 hf -- Computes t │ │ │ │ +000298c0: 6865 2068 696c 6265 7274 2066 756e 6374 he hilbert funct │ │ │ │ +000298d0: 696f 6e20 696e 2061 2072 616e 6765 206f ion in a range o │ │ │ │ +000298e0: 6620 6465 6772 6565 730a 2a2a 2a2a 2a2a f degrees.****** │ │ │ │ +000298f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00029900: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00029910: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00029920: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -00029930: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -00029940: 2020 2020 4820 3d20 6866 2873 2c50 290a H = hf(s,P). │ │ │ │ -00029950: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -00029960: 2020 2a20 732c 2061 202a 6e6f 7465 2073 * s, a *note s │ │ │ │ -00029970: 6571 7565 6e63 653a 2028 4d61 6361 756c equence: (Macaul │ │ │ │ -00029980: 6179 3244 6f63 2953 6571 7565 6e63 652c ay2Doc)Sequence, │ │ │ │ -00029990: 2c20 6f72 204c 6973 740a 2020 2020 2020 , or List. │ │ │ │ -000299a0: 2a20 502c 2061 202a 6e6f 7465 206d 6f64 * P, a *note mod │ │ │ │ -000299b0: 756c 653a 2028 4d61 6361 756c 6179 3244 ule: (Macaulay2D │ │ │ │ -000299c0: 6f63 294d 6f64 756c 652c 2c20 6772 6164 oc)Module,, grad │ │ │ │ -000299d0: 6564 206d 6f64 756c 650a 2020 2a20 4f75 ed module. * Ou │ │ │ │ -000299e0: 7470 7574 733a 0a20 2020 2020 202a 2048 tputs:. * H │ │ │ │ -000299f0: 2c20 6120 2a6e 6f74 6520 6c69 7374 3a20 , a *note list: │ │ │ │ -00029a00: 284d 6163 6175 6c61 7932 446f 6329 4c69 (Macaulay2Doc)Li │ │ │ │ -00029a10: 7374 2c2c 200a 0a57 6179 7320 746f 2075 st,, ..Ways to u │ │ │ │ -00029a20: 7365 2068 663a 0a3d 3d3d 3d3d 3d3d 3d3d se hf:.========= │ │ │ │ -00029a30: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2268 6628 ======.. * "hf( │ │ │ │ -00029a40: 4c69 7374 2c4d 6f64 756c 6529 220a 2020 List,Module)". │ │ │ │ -00029a50: 2a20 2268 6628 5365 7175 656e 6365 2c4d * "hf(Sequence,M │ │ │ │ -00029a60: 6f64 756c 6529 220a 0a46 6f72 2074 6865 odule)"..For the │ │ │ │ -00029a70: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00029a80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00029a90: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00029aa0: 2068 663a 2068 662c 2069 7320 6120 2a6e hf: hf, is a *n │ │ │ │ -00029ab0: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -00029ac0: 696f 6e3a 0a28 4d61 6361 756c 6179 3244 ion:.(Macaulay2D │ │ │ │ -00029ad0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -00029ae0: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ +00029920: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ +00029930: 0a20 2020 2020 2020 2048 203d 2068 6628 . H = hf( │ │ │ │ +00029940: 732c 5029 0a20 202a 2049 6e70 7574 733a s,P). * Inputs: │ │ │ │ +00029950: 0a20 2020 2020 202a 2073 2c20 6120 2a6e . * s, a *n │ │ │ │ +00029960: 6f74 6520 7365 7175 656e 6365 3a20 284d ote sequence: (M │ │ │ │ +00029970: 6163 6175 6c61 7932 446f 6329 5365 7175 acaulay2Doc)Sequ │ │ │ │ +00029980: 656e 6365 2c2c 206f 7220 4c69 7374 0a20 ence,, or List. │ │ │ │ +00029990: 2020 2020 202a 2050 2c20 6120 2a6e 6f74 * P, a *not │ │ │ │ +000299a0: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ +000299b0: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ +000299c0: 2067 7261 6465 6420 6d6f 6475 6c65 0a20 graded module. │ │ │ │ +000299d0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +000299e0: 2020 2a20 482c 2061 202a 6e6f 7465 206c * H, a *note l │ │ │ │ +000299f0: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ +00029a00: 6f63 294c 6973 742c 2c20 0a0a 5761 7973 oc)List,, ..Ways │ │ │ │ +00029a10: 2074 6f20 7573 6520 6866 3a0a 3d3d 3d3d to use hf:.==== │ │ │ │ +00029a20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +00029a30: 2022 6866 284c 6973 742c 4d6f 6475 6c65 "hf(List,Module │ │ │ │ +00029a40: 2922 0a20 202a 2022 6866 2853 6571 7565 )". * "hf(Seque │ │ │ │ +00029a50: 6e63 652c 4d6f 6475 6c65 2922 0a0a 466f nce,Module)"..Fo │ │ │ │ +00029a60: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00029a70: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00029a80: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00029a90: 2a6e 6f74 6520 6866 3a20 6866 2c20 6973 *note hf: hf, is │ │ │ │ +00029aa0: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ +00029ab0: 6675 6e63 7469 6f6e 3a0a 284d 6163 6175 function:.(Macau │ │ │ │ +00029ac0: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ +00029ad0: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ +00029ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029b30: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -00029b40: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -00029b50: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -00029b60: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -00029b70: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -00029b80: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -00029b90: 7932 2f70 6163 6b61 6765 732f 0a43 6f6d y2/packages/.Com │ │ │ │ -00029ba0: 706c 6574 6549 6e74 6572 7365 6374 696f pleteIntersectio │ │ │ │ -00029bb0: 6e52 6573 6f6c 7574 696f 6e73 2e6d 323a nResolutions.m2: │ │ │ │ -00029bc0: 3435 3932 3a30 2e0a 1f0a 4669 6c65 3a20 4592:0....File: │ │ │ │ -00029bd0: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ -00029be0: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ -00029bf0: 696e 666f 2c20 4e6f 6465 3a20 6866 4d6f info, Node: hfMo │ │ │ │ -00029c00: 6475 6c65 4173 4578 742c 204e 6578 743a duleAsExt, Next: │ │ │ │ -00029c10: 2068 6967 6853 797a 7967 792c 2050 7265 highSyzygy, Pre │ │ │ │ -00029c20: 763a 2068 662c 2055 703a 2054 6f70 0a0a v: hf, Up: Top.. │ │ │ │ -00029c30: 6866 4d6f 6475 6c65 4173 4578 7420 2d2d hfModuleAsExt -- │ │ │ │ -00029c40: 2070 7265 6469 6374 2062 6574 7469 206e predict betti n │ │ │ │ -00029c50: 756d 6265 7273 206f 6620 6d6f 6475 6c65 umbers of module │ │ │ │ -00029c60: 4173 4578 7428 4d2c 5229 0a2a 2a2a 2a2a AsExt(M,R).***** │ │ │ │ +00029b20: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00029b30: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00029b40: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00029b50: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00029b60: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00029b70: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00029b80: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +00029b90: 2f0a 436f 6d70 6c65 7465 496e 7465 7273 /.CompleteInters │ │ │ │ +00029ba0: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ +00029bb0: 732e 6d32 3a34 3539 323a 302e 0a1f 0a46 s.m2:4592:0....F │ │ │ │ +00029bc0: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ +00029bd0: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ +00029be0: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ +00029bf0: 2068 664d 6f64 756c 6541 7345 7874 2c20 hfModuleAsExt, │ │ │ │ +00029c00: 4e65 7874 3a20 6869 6768 5379 7a79 6779 Next: highSyzygy │ │ │ │ +00029c10: 2c20 5072 6576 3a20 6866 2c20 5570 3a20 , Prev: hf, Up: │ │ │ │ +00029c20: 546f 700a 0a68 664d 6f64 756c 6541 7345 Top..hfModuleAsE │ │ │ │ +00029c30: 7874 202d 2d20 7072 6564 6963 7420 6265 xt -- predict be │ │ │ │ +00029c40: 7474 6920 6e75 6d62 6572 7320 6f66 206d tti numbers of m │ │ │ │ +00029c50: 6f64 756c 6541 7345 7874 284d 2c52 290a oduleAsExt(M,R). │ │ │ │ +00029c60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00029c70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00029c80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00029c90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00029ca0: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -00029cb0: 3a20 0a20 2020 2020 2020 2073 6571 203d : . seq = │ │ │ │ -00029cc0: 2068 664d 6f64 756c 6541 7345 7874 286e hfModuleAsExt(n │ │ │ │ -00029cd0: 756d 5661 6c75 6573 2c4d 2c6e 756d 6765 umValues,M,numge │ │ │ │ -00029ce0: 6e73 5229 0a20 202a 2049 6e70 7574 733a nsR). * Inputs: │ │ │ │ -00029cf0: 0a20 2020 2020 202a 206e 756d 5661 6c75 . * numValu │ │ │ │ -00029d00: 6573 2c20 616e 202a 6e6f 7465 2069 6e74 es, an *note int │ │ │ │ -00029d10: 6567 6572 3a20 284d 6163 6175 6c61 7932 eger: (Macaulay2 │ │ │ │ -00029d20: 446f 6329 5a5a 2c2c 206e 756d 6265 7220 Doc)ZZ,, number │ │ │ │ -00029d30: 6f66 2076 616c 7565 7320 746f 0a20 2020 of values to. │ │ │ │ -00029d40: 2020 2020 2063 6f6d 7075 7465 0a20 2020 compute. │ │ │ │ -00029d50: 2020 202a 204d 2c20 6120 2a6e 6f74 6520 * M, a *note │ │ │ │ -00029d60: 6d6f 6475 6c65 3a20 284d 6163 6175 6c61 module: (Macaula │ │ │ │ -00029d70: 7932 446f 6329 4d6f 6475 6c65 2c2c 206d y2Doc)Module,, m │ │ │ │ -00029d80: 6f64 756c 6520 6f76 6572 2074 6865 2072 odule over the r │ │ │ │ -00029d90: 696e 6720 6f66 0a20 2020 2020 2020 206f ing of. o │ │ │ │ -00029da0: 7065 7261 746f 7273 0a20 2020 2020 202a perators. * │ │ │ │ -00029db0: 206e 756d 6765 6e73 522c 2061 6e20 2a6e numgensR, an *n │ │ │ │ -00029dc0: 6f74 6520 696e 7465 6765 723a 2028 4d61 ote integer: (Ma │ │ │ │ -00029dd0: 6361 756c 6179 3244 6f63 295a 5a2c 2c20 caulay2Doc)ZZ,, │ │ │ │ -00029de0: 6e75 6d62 6572 206f 6620 6765 6e65 7261 number of genera │ │ │ │ -00029df0: 746f 7273 206f 660a 2020 2020 2020 2020 tors of. │ │ │ │ -00029e00: 7468 6520 7461 7267 6574 2072 696e 670a the target ring. │ │ │ │ -00029e10: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ -00029e20: 2020 202a 2073 6571 2c20 6120 2a6e 6f74 * seq, a *not │ │ │ │ -00029e30: 6520 7365 7175 656e 6365 3a20 284d 6163 e sequence: (Mac │ │ │ │ -00029e40: 6175 6c61 7932 446f 6329 5365 7175 656e aulay2Doc)Sequen │ │ │ │ -00029e50: 6365 2c2c 2073 6571 7565 6e63 6520 6f66 ce,, sequence of │ │ │ │ -00029e60: 206e 756d 5661 6c75 6573 0a20 2020 2020 numValues. │ │ │ │ -00029e70: 2020 2069 6e74 6567 6572 732c 2074 6865 integers, the │ │ │ │ -00029e80: 2065 7870 6563 7465 6420 746f 7461 6c20 expected total │ │ │ │ -00029e90: 4265 7474 6920 6e75 6d62 6572 730a 0a44 Betti numbers..D │ │ │ │ -00029ea0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -00029eb0: 3d3d 3d3d 3d3d 0a0a 4769 7665 6e20 6120 ======..Given a │ │ │ │ -00029ec0: 6d6f 6475 6c65 204d 206f 7665 7220 7468 module M over th │ │ │ │ -00029ed0: 6520 7269 6e67 206f 6620 6f70 6572 6174 e ring of operat │ │ │ │ -00029ee0: 6f72 7320 246b 5b78 5f31 2e2e 785f 635d ors $k[x_1..x_c] │ │ │ │ -00029ef0: 242c 2074 6865 2063 616c 6c20 244e 203d $, the call $N = │ │ │ │ -00029f00: 0a6d 6f64 756c 6541 7345 7874 284d 2c52 .moduleAsExt(M,R │ │ │ │ -00029f10: 2924 2070 726f 6475 6365 7320 6120 6d6f )$ produces a mo │ │ │ │ -00029f20: 6475 6c65 204e 206f 7665 7220 7468 6520 dule N over the │ │ │ │ -00029f30: 7269 6e67 2052 2077 686f 7365 2065 7874 ring R whose ext │ │ │ │ -00029f40: 206d 6f64 756c 6520 6973 2074 6865 0a65 module is the.e │ │ │ │ -00029f50: 7874 6572 696f 7220 616c 6765 6272 6120 xterior algebra │ │ │ │ -00029f60: 6f6e 206e 3d6e 756d 6765 6e73 5220 6765 on n=numgensR ge │ │ │ │ -00029f70: 6e65 7261 746f 7273 2074 656e 736f 7265 nerators tensore │ │ │ │ -00029f80: 6420 7769 7468 204d 2e20 5468 6973 2073 d with M. This s │ │ │ │ -00029f90: 6372 6970 7420 636f 6d70 7574 6573 0a6e cript computes.n │ │ │ │ -00029fa0: 756d 5661 6c75 6573 2076 616c 7565 7320 umValues values │ │ │ │ -00029fb0: 6f66 2074 6865 2048 696c 6265 7274 2066 of the Hilbert f │ │ │ │ -00029fc0: 756e 6374 696f 6e20 6f66 2024 2420 4d20 unction of $$ M │ │ │ │ -00029fd0: 5c6f 7469 6d65 7320 5c77 6564 6765 206b \otimes \wedge k │ │ │ │ -00029fe0: 5e6e 2c20 2424 2077 6869 6368 0a73 686f ^n, $$ which.sho │ │ │ │ -00029ff0: 756c 6420 6265 2065 7175 616c 2074 6f20 uld be equal to │ │ │ │ -0002a000: 7468 6520 746f 7461 6c20 6265 7474 6920 the total betti │ │ │ │ -0002a010: 6e75 6d62 6572 7320 6f66 204e 2e0a 0a2b numbers of N...+ │ │ │ │ +00029c90: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +00029ca0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +00029cb0: 7365 7120 3d20 6866 4d6f 6475 6c65 4173 seq = hfModuleAs │ │ │ │ +00029cc0: 4578 7428 6e75 6d56 616c 7565 732c 4d2c Ext(numValues,M, │ │ │ │ +00029cd0: 6e75 6d67 656e 7352 290a 2020 2a20 496e numgensR). * In │ │ │ │ +00029ce0: 7075 7473 3a0a 2020 2020 2020 2a20 6e75 puts:. * nu │ │ │ │ +00029cf0: 6d56 616c 7565 732c 2061 6e20 2a6e 6f74 mValues, an *not │ │ │ │ +00029d00: 6520 696e 7465 6765 723a 2028 4d61 6361 e integer: (Maca │ │ │ │ +00029d10: 756c 6179 3244 6f63 295a 5a2c 2c20 6e75 ulay2Doc)ZZ,, nu │ │ │ │ +00029d20: 6d62 6572 206f 6620 7661 6c75 6573 2074 mber of values t │ │ │ │ +00029d30: 6f0a 2020 2020 2020 2020 636f 6d70 7574 o. comput │ │ │ │ +00029d40: 650a 2020 2020 2020 2a20 4d2c 2061 202a e. * M, a * │ │ │ │ +00029d50: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ +00029d60: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ +00029d70: 652c 2c20 6d6f 6475 6c65 206f 7665 7220 e,, module over │ │ │ │ +00029d80: 7468 6520 7269 6e67 206f 660a 2020 2020 the ring of. │ │ │ │ +00029d90: 2020 2020 6f70 6572 6174 6f72 730a 2020 operators. │ │ │ │ +00029da0: 2020 2020 2a20 6e75 6d67 656e 7352 2c20 * numgensR, │ │ │ │ +00029db0: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ +00029dc0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00029dd0: 5a5a 2c2c 206e 756d 6265 7220 6f66 2067 ZZ,, number of g │ │ │ │ +00029de0: 656e 6572 6174 6f72 7320 6f66 0a20 2020 enerators of. │ │ │ │ +00029df0: 2020 2020 2074 6865 2074 6172 6765 7420 the target │ │ │ │ +00029e00: 7269 6e67 0a20 202a 204f 7574 7075 7473 ring. * Outputs │ │ │ │ +00029e10: 3a0a 2020 2020 2020 2a20 7365 712c 2061 :. * seq, a │ │ │ │ +00029e20: 202a 6e6f 7465 2073 6571 7565 6e63 653a *note sequence: │ │ │ │ +00029e30: 2028 4d61 6361 756c 6179 3244 6f63 2953 (Macaulay2Doc)S │ │ │ │ +00029e40: 6571 7565 6e63 652c 2c20 7365 7175 656e equence,, sequen │ │ │ │ +00029e50: 6365 206f 6620 6e75 6d56 616c 7565 730a ce of numValues. │ │ │ │ +00029e60: 2020 2020 2020 2020 696e 7465 6765 7273 integers │ │ │ │ +00029e70: 2c20 7468 6520 6578 7065 6374 6564 2074 , the expected t │ │ │ │ +00029e80: 6f74 616c 2042 6574 7469 206e 756d 6265 otal Betti numbe │ │ │ │ +00029e90: 7273 0a0a 4465 7363 7269 7074 696f 6e0a rs..Description. │ │ │ │ +00029ea0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a47 6976 ===========..Giv │ │ │ │ +00029eb0: 656e 2061 206d 6f64 756c 6520 4d20 6f76 en a module M ov │ │ │ │ +00029ec0: 6572 2074 6865 2072 696e 6720 6f66 206f er the ring of o │ │ │ │ +00029ed0: 7065 7261 746f 7273 2024 6b5b 785f 312e perators $k[x_1. │ │ │ │ +00029ee0: 2e78 5f63 5d24 2c20 7468 6520 6361 6c6c .x_c]$, the call │ │ │ │ +00029ef0: 2024 4e20 3d0a 6d6f 6475 6c65 4173 4578 $N =.moduleAsEx │ │ │ │ +00029f00: 7428 4d2c 5229 2420 7072 6f64 7563 6573 t(M,R)$ produces │ │ │ │ +00029f10: 2061 206d 6f64 756c 6520 4e20 6f76 6572 a module N over │ │ │ │ +00029f20: 2074 6865 2072 696e 6720 5220 7768 6f73 the ring R whos │ │ │ │ +00029f30: 6520 6578 7420 6d6f 6475 6c65 2069 7320 e ext module is │ │ │ │ +00029f40: 7468 650a 6578 7465 7269 6f72 2061 6c67 the.exterior alg │ │ │ │ +00029f50: 6562 7261 206f 6e20 6e3d 6e75 6d67 656e ebra on n=numgen │ │ │ │ +00029f60: 7352 2067 656e 6572 6174 6f72 7320 7465 sR generators te │ │ │ │ +00029f70: 6e73 6f72 6564 2077 6974 6820 4d2e 2054 nsored with M. T │ │ │ │ +00029f80: 6869 7320 7363 7269 7074 2063 6f6d 7075 his script compu │ │ │ │ +00029f90: 7465 730a 6e75 6d56 616c 7565 7320 7661 tes.numValues va │ │ │ │ +00029fa0: 6c75 6573 206f 6620 7468 6520 4869 6c62 lues of the Hilb │ │ │ │ +00029fb0: 6572 7420 6675 6e63 7469 6f6e 206f 6620 ert function of │ │ │ │ +00029fc0: 2424 204d 205c 6f74 696d 6573 205c 7765 $$ M \otimes \we │ │ │ │ +00029fd0: 6467 6520 6b5e 6e2c 2024 2420 7768 6963 dge k^n, $$ whic │ │ │ │ +00029fe0: 680a 7368 6f75 6c64 2062 6520 6571 7561 h.should be equa │ │ │ │ +00029ff0: 6c20 746f 2074 6865 2074 6f74 616c 2062 l to the total b │ │ │ │ +0002a000: 6574 7469 206e 756d 6265 7273 206f 6620 etti numbers of │ │ │ │ +0002a010: 4e2e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d N...+----------- │ │ │ │ 0002a020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a050: 2b0a 7c69 3120 3a20 6b6b 203d 205a 5a2f +.|i1 : kk = ZZ/ │ │ │ │ -0002a060: 3130 313b 2020 2020 2020 2020 2020 2020 101; │ │ │ │ -0002a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a080: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0002a040: 2d2d 2d2d 2d2b 0a7c 6931 203a 206b 6b20 -----+.|i1 : kk │ │ │ │ +0002a050: 3d20 5a5a 2f31 3031 3b20 2020 2020 2020 = ZZ/101; │ │ │ │ +0002a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a070: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002a080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a0b0: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 5320 ------+.|i2 : S │ │ │ │ -0002a0c0: 3d20 6b6b 5b61 2c62 2c63 5d3b 2020 2020 = kk[a,b,c]; │ │ │ │ -0002a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0002a0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +0002a0b0: 203a 2053 203d 206b 6b5b 612c 622c 635d : S = kk[a,b,c] │ │ │ │ +0002a0c0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +0002a0d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a0e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0002a0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002a120: 3320 3a20 6666 203d 206d 6174 7269 787b 3 : ff = matrix{ │ │ │ │ -0002a130: 7b61 5e34 2c20 625e 342c 635e 347d 7d3b {a^4, b^4,c^4}}; │ │ │ │ -0002a140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002a150: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002a110: 2d2b 0a7c 6933 203a 2066 6620 3d20 6d61 -+.|i3 : ff = ma │ │ │ │ +0002a120: 7472 6978 7b7b 615e 342c 2062 5e34 2c63 trix{{a^4, b^4,c │ │ │ │ +0002a130: 5e34 7d7d 3b20 2020 2020 2020 2020 2020 ^4}}; │ │ │ │ +0002a140: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a180: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002a190: 2020 3120 2020 2020 2033 2020 2020 2020 1 3 │ │ │ │ -0002a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a1b0: 2020 2020 207c 0a7c 6f33 203a 204d 6174 |.|o3 : Mat │ │ │ │ -0002a1c0: 7269 7820 5320 203c 2d2d 2053 2020 2020 rix S <-- S │ │ │ │ -0002a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a1e0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002a170: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002a180: 2020 2020 2020 2031 2020 2020 2020 3320 1 3 │ │ │ │ +0002a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a1a0: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ +0002a1b0: 3a20 4d61 7472 6978 2053 2020 3c2d 2d20 : Matrix S <-- │ │ │ │ +0002a1c0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +0002a1d0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002a1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ -0002a220: 203a 2052 203d 2053 2f69 6465 616c 2066 : R = S/ideal f │ │ │ │ -0002a230: 663b 2020 2020 2020 2020 2020 2020 2020 f; │ │ │ │ -0002a240: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002a250: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002a210: 2b0a 7c69 3420 3a20 5220 3d20 532f 6964 +.|i4 : R = S/id │ │ │ │ +0002a220: 6561 6c20 6666 3b20 2020 2020 2020 2020 eal ff; │ │ │ │ +0002a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a240: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0002a250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a280: 2d2b 0a7c 6935 203a 204f 7073 203d 206b -+.|i5 : Ops = k │ │ │ │ -0002a290: 6b5b 785f 312c 785f 322c 785f 335d 3b20 k[x_1,x_2,x_3]; │ │ │ │ -0002a2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a2b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002a270: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 4f70 ------+.|i5 : Op │ │ │ │ +0002a280: 7320 3d20 6b6b 5b78 5f31 2c78 5f32 2c78 s = kk[x_1,x_2,x │ │ │ │ +0002a290: 5f33 5d3b 2020 2020 2020 2020 2020 2020 _3]; │ │ │ │ +0002a2a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0002a2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a2e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 204d -------+.|i6 : M │ │ │ │ -0002a2f0: 4d20 3d20 4f70 735e 312f 2878 5f31 2a69 M = Ops^1/(x_1*i │ │ │ │ -0002a300: 6465 616c 2878 5f32 5e32 2c78 5f33 2929 deal(x_2^2,x_3)) │ │ │ │ -0002a310: 3b20 2020 2020 2020 2020 7c0a 2b2d 2d2d ; |.+--- │ │ │ │ +0002a2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002a2e0: 3620 3a20 4d4d 203d 204f 7073 5e31 2f28 6 : MM = Ops^1/( │ │ │ │ +0002a2f0: 785f 312a 6964 6561 6c28 785f 325e 322c x_1*ideal(x_2^2, │ │ │ │ +0002a300: 785f 3329 293b 2020 2020 2020 2020 207c x_3)); | │ │ │ │ +0002a310: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0002a320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0002a350: 6937 203a 204e 203d 206d 6f64 756c 6541 i7 : N = moduleA │ │ │ │ -0002a360: 7345 7874 284d 4d2c 5229 3b20 2020 2020 sExt(MM,R); │ │ │ │ -0002a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a380: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002a340: 2d2d 2b0a 7c69 3720 3a20 4e20 3d20 6d6f --+.|i7 : N = mo │ │ │ │ +0002a350: 6475 6c65 4173 4578 7428 4d4d 2c52 293b duleAsExt(MM,R); │ │ │ │ +0002a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a370: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002a380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a3b0: 2d2d 2d2b 0a7c 6938 203a 2062 6574 7469 ---+.|i8 : betti │ │ │ │ -0002a3c0: 2066 7265 6552 6573 6f6c 7574 696f 6e28 freeResolution( │ │ │ │ -0002a3d0: 204e 2c20 4c65 6e67 7468 4c69 6d69 7420 N, LengthLimit │ │ │ │ -0002a3e0: 3d3e 2031 3029 7c0a 7c20 2020 2020 2020 => 10)|.| │ │ │ │ +0002a3a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 --------+.|i8 : │ │ │ │ +0002a3b0: 6265 7474 6920 6672 6565 5265 736f 6c75 betti freeResolu │ │ │ │ +0002a3c0: 7469 6f6e 2820 4e2c 204c 656e 6774 684c tion( N, LengthL │ │ │ │ +0002a3d0: 696d 6974 203d 3e20 3130 297c 0a7c 2020 imit => 10)|.| │ │ │ │ +0002a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a410: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0002a420: 2020 2020 2020 2020 2030 2020 3120 2032 0 1 2 │ │ │ │ -0002a430: 2020 3320 2034 2020 3520 2036 2020 3720 3 4 5 6 7 │ │ │ │ -0002a440: 2038 2020 3920 3130 2020 2020 7c0a 7c6f 8 9 10 |.|o │ │ │ │ -0002a450: 3820 3d20 746f 7461 6c3a 2033 3620 3237 8 = total: 36 27 │ │ │ │ -0002a460: 2032 3920 3331 2033 3320 3335 2033 3720 29 31 33 35 37 │ │ │ │ -0002a470: 3339 2034 3120 3433 2034 3520 2020 207c 39 41 43 45 | │ │ │ │ -0002a480: 0a7c 2020 2020 2020 2020 2d36 3a20 3138 .| -6: 18 │ │ │ │ -0002a490: 2020 3620 202e 2020 2e20 202e 2020 2e20 6 . . . . │ │ │ │ -0002a4a0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ -0002a4b0: 2020 7c0a 7c20 2020 2020 2020 202d 353a |.| -5: │ │ │ │ -0002a4c0: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0002a4d0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ -0002a4e0: 2e20 2020 207c 0a7c 2020 2020 2020 2020 . |.| │ │ │ │ -0002a4f0: 2d34 3a20 3138 2032 3120 3231 2020 3720 -4: 18 21 21 7 │ │ │ │ -0002a500: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ -0002a510: 2e20 202e 2020 2020 7c0a 7c20 2020 2020 . . |.| │ │ │ │ -0002a520: 2020 202d 333a 2020 2e20 202e 2020 2e20 -3: . . . │ │ │ │ -0002a530: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ -0002a540: 2e20 202e 2020 2e20 2020 207c 0a7c 2020 . . . |.| │ │ │ │ -0002a550: 2020 2020 2020 2d32 3a20 202e 2020 2e20 -2: . . │ │ │ │ -0002a560: 2038 2032 3420 3234 2020 3820 202e 2020 8 24 24 8 . │ │ │ │ -0002a570: 2e20 202e 2020 2e20 202e 2020 2020 7c0a . . . . |. │ │ │ │ -0002a580: 7c20 2020 2020 2020 202d 313a 2020 2e20 | -1: . │ │ │ │ -0002a590: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ -0002a5a0: 2e20 202e 2020 2e20 202e 2020 2e20 2020 . . . . . │ │ │ │ -0002a5b0: 207c 0a7c 2020 2020 2020 2020 2030 3a20 |.| 0: │ │ │ │ -0002a5c0: 202e 2020 2e20 202e 2020 2e20 2039 2032 . . . . 9 2 │ │ │ │ -0002a5d0: 3720 3237 2020 3920 202e 2020 2e20 202e 7 27 9 . . . │ │ │ │ -0002a5e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002a5f0: 313a 2020 2e20 202e 2020 2e20 202e 2020 1: . . . . │ │ │ │ -0002a600: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -0002a610: 2020 2e20 2020 207c 0a7c 2020 2020 2020 . |.| │ │ │ │ -0002a620: 2020 2032 3a20 202e 2020 2e20 202e 2020 2: . . . │ │ │ │ -0002a630: 2e20 202e 2020 2e20 3130 2033 3020 3330 . . . 10 30 30 │ │ │ │ -0002a640: 2031 3020 202e 2020 2020 7c0a 7c20 2020 10 . |.| │ │ │ │ -0002a650: 2020 2020 2020 333a 2020 2e20 202e 2020 3: . . │ │ │ │ -0002a660: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -0002a670: 2020 2e20 202e 2020 2e20 2020 207c 0a7c . . . |.| │ │ │ │ -0002a680: 2020 2020 2020 2020 2034 3a20 202e 2020 4: . │ │ │ │ -0002a690: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -0002a6a0: 2020 2e20 3131 2033 3320 3333 2020 2020 . 11 33 33 │ │ │ │ -0002a6b0: 7c0a 7c20 2020 2020 2020 2020 353a 2020 |.| 5: │ │ │ │ -0002a6c0: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -0002a6d0: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0002a6e0: 2020 207c 0a7c 2020 2020 2020 2020 2036 |.| 6 │ │ │ │ -0002a6f0: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ -0002a700: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0002a710: 3132 2020 2020 7c0a 7c20 2020 2020 2020 12 |.| │ │ │ │ +0002a400: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a410: 7c20 2020 2020 2020 2020 2020 2020 3020 | 0 │ │ │ │ +0002a420: 2031 2020 3220 2033 2020 3420 2035 2020 1 2 3 4 5 │ │ │ │ +0002a430: 3620 2037 2020 3820 2039 2031 3020 2020 6 7 8 9 10 │ │ │ │ +0002a440: 207c 0a7c 6f38 203d 2074 6f74 616c 3a20 |.|o8 = total: │ │ │ │ +0002a450: 3336 2032 3720 3239 2033 3120 3333 2033 36 27 29 31 33 3 │ │ │ │ +0002a460: 3520 3337 2033 3920 3431 2034 3320 3435 5 37 39 41 43 45 │ │ │ │ +0002a470: 2020 2020 7c0a 7c20 2020 2020 2020 202d |.| - │ │ │ │ +0002a480: 363a 2031 3820 2036 2020 2e20 202e 2020 6: 18 6 . . │ │ │ │ +0002a490: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ +0002a4a0: 2020 2e20 2020 207c 0a7c 2020 2020 2020 . |.| │ │ │ │ +0002a4b0: 2020 2d35 3a20 202e 2020 2e20 202e 2020 -5: . . . │ │ │ │ +0002a4c0: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ +0002a4d0: 2020 2e20 202e 2020 2020 7c0a 7c20 2020 . . |.| │ │ │ │ +0002a4e0: 2020 2020 202d 343a 2031 3820 3231 2032 -4: 18 21 2 │ │ │ │ +0002a4f0: 3120 2037 2020 2e20 202e 2020 2e20 202e 1 7 . . . . │ │ │ │ +0002a500: 2020 2e20 202e 2020 2e20 2020 207c 0a7c . . . |.| │ │ │ │ +0002a510: 2020 2020 2020 2020 2d33 3a20 202e 2020 -3: . │ │ │ │ +0002a520: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ +0002a530: 2020 2e20 202e 2020 2e20 202e 2020 2020 . . . . │ │ │ │ +0002a540: 7c0a 7c20 2020 2020 2020 202d 323a 2020 |.| -2: │ │ │ │ +0002a550: 2e20 202e 2020 3820 3234 2032 3420 2038 . . 8 24 24 8 │ │ │ │ +0002a560: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +0002a570: 2020 207c 0a7c 2020 2020 2020 2020 2d31 |.| -1 │ │ │ │ +0002a580: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ +0002a590: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +0002a5a0: 202e 2020 2020 7c0a 7c20 2020 2020 2020 . |.| │ │ │ │ +0002a5b0: 2020 303a 2020 2e20 202e 2020 2e20 202e 0: . . . . │ │ │ │ +0002a5c0: 2020 3920 3237 2032 3720 2039 2020 2e20 9 27 27 9 . │ │ │ │ +0002a5d0: 202e 2020 2e20 2020 207c 0a7c 2020 2020 . . |.| │ │ │ │ +0002a5e0: 2020 2020 2031 3a20 202e 2020 2e20 202e 1: . . . │ │ │ │ +0002a5f0: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +0002a600: 202e 2020 2e20 202e 2020 2020 7c0a 7c20 . . . |.| │ │ │ │ +0002a610: 2020 2020 2020 2020 323a 2020 2e20 202e 2: . . │ │ │ │ +0002a620: 2020 2e20 202e 2020 2e20 202e 2031 3020 . . . . 10 │ │ │ │ +0002a630: 3330 2033 3020 3130 2020 2e20 2020 207c 30 30 10 . | │ │ │ │ +0002a640: 0a7c 2020 2020 2020 2020 2033 3a20 202e .| 3: . │ │ │ │ +0002a650: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +0002a660: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0002a670: 2020 7c0a 7c20 2020 2020 2020 2020 343a |.| 4: │ │ │ │ +0002a680: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +0002a690: 202e 2020 2e20 202e 2031 3120 3333 2033 . . . 11 33 3 │ │ │ │ +0002a6a0: 3320 2020 207c 0a7c 2020 2020 2020 2020 3 |.| │ │ │ │ +0002a6b0: 2035 3a20 202e 2020 2e20 202e 2020 2e20 5: . . . . │ │ │ │ +0002a6c0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0002a6d0: 2e20 202e 2020 2020 7c0a 7c20 2020 2020 . . |.| │ │ │ │ +0002a6e0: 2020 2020 363a 2020 2e20 202e 2020 2e20 6: . . . │ │ │ │ +0002a6f0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0002a700: 2e20 202e 2031 3220 2020 207c 0a7c 2020 . . 12 |.| │ │ │ │ +0002a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a740: 2020 2020 2020 2020 207c 0a7c 6f38 203a |.|o8 : │ │ │ │ -0002a750: 2042 6574 7469 5461 6c6c 7920 2020 2020 BettiTally │ │ │ │ +0002a730: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a740: 7c6f 3820 3a20 4265 7474 6954 616c 6c79 |o8 : BettiTally │ │ │ │ +0002a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a770: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002a770: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0002a780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002a7b0: 0a7c 6939 203a 2068 664d 6f64 756c 6541 .|i9 : hfModuleA │ │ │ │ -0002a7c0: 7345 7874 2831 322c 4d4d 2c33 2920 2020 sExt(12,MM,3) │ │ │ │ -0002a7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a7e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a7a0: 2d2d 2d2d 2b0a 7c69 3920 3a20 6866 4d6f ----+.|i9 : hfMo │ │ │ │ +0002a7b0: 6475 6c65 4173 4578 7428 3132 2c4d 4d2c duleAsExt(12,MM, │ │ │ │ +0002a7c0: 3329 2020 2020 2020 2020 2020 2020 2020 3) │ │ │ │ +0002a7d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a810: 2020 2020 207c 0a7c 6f39 203d 2028 3233 |.|o9 = (23 │ │ │ │ -0002a820: 2c20 3235 2c20 3237 2c20 3239 2c20 3331 , 25, 27, 29, 31 │ │ │ │ -0002a830: 2c20 3333 2c20 3335 2c20 3337 2c20 3339 , 33, 35, 37, 39 │ │ │ │ -0002a840: 2c20 3431 2920 2020 7c0a 7c20 2020 2020 , 41) |.| │ │ │ │ +0002a800: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ +0002a810: 3d20 2832 332c 2032 352c 2032 372c 2032 = (23, 25, 27, 2 │ │ │ │ +0002a820: 392c 2033 312c 2033 332c 2033 352c 2033 9, 31, 33, 35, 3 │ │ │ │ +0002a830: 372c 2033 392c 2034 3129 2020 207c 0a7c 7, 39, 41) |.| │ │ │ │ +0002a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a870: 2020 2020 2020 2020 2020 207c 0a7c 6f39 |.|o9 │ │ │ │ -0002a880: 203a 2053 6571 7565 6e63 6520 2020 2020 : Sequence │ │ │ │ +0002a870: 7c0a 7c6f 3920 3a20 5365 7175 656e 6365 |.|o9 : Sequence │ │ │ │ +0002a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002a8b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002a8a0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0002a8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a8e0: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ -0002a8f0: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -0002a900: 206d 6f64 756c 6541 7345 7874 3a20 6d6f moduleAsExt: mo │ │ │ │ -0002a910: 6475 6c65 4173 4578 742c 202d 2d20 4669 duleAsExt, -- Fi │ │ │ │ -0002a920: 6e64 2061 206d 6f64 756c 6520 7769 7468 nd a module with │ │ │ │ -0002a930: 2067 6976 656e 2061 7379 6d70 746f 7469 given asymptoti │ │ │ │ -0002a940: 630a 2020 2020 7265 736f 6c75 7469 6f6e c. resolution │ │ │ │ -0002a950: 0a0a 5761 7973 2074 6f20 7573 6520 6866 ..Ways to use hf │ │ │ │ -0002a960: 4d6f 6475 6c65 4173 4578 743a 0a3d 3d3d ModuleAsExt:.=== │ │ │ │ -0002a970: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002a980: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 6866 =======.. * "hf │ │ │ │ -0002a990: 4d6f 6475 6c65 4173 4578 7428 5a5a 2c4d ModuleAsExt(ZZ,M │ │ │ │ -0002a9a0: 6f64 756c 652c 5a5a 2922 0a0a 466f 7220 odule,ZZ)"..For │ │ │ │ -0002a9b0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -0002a9c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002a9d0: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -0002a9e0: 6f74 6520 6866 4d6f 6475 6c65 4173 4578 ote hfModuleAsEx │ │ │ │ -0002a9f0: 743a 2068 664d 6f64 756c 6541 7345 7874 t: hfModuleAsExt │ │ │ │ -0002aa00: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ -0002aa10: 686f 6420 6675 6e63 7469 6f6e 3a0a 284d hod function:.(M │ │ │ │ -0002aa20: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -0002aa30: 6f64 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d odFunction,...-- │ │ │ │ +0002a8d0: 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 ------+..See als │ │ │ │ +0002a8e0: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +0002a8f0: 2a6e 6f74 6520 6d6f 6475 6c65 4173 4578 *note moduleAsEx │ │ │ │ +0002a900: 743a 206d 6f64 756c 6541 7345 7874 2c20 t: moduleAsExt, │ │ │ │ +0002a910: 2d2d 2046 696e 6420 6120 6d6f 6475 6c65 -- Find a module │ │ │ │ +0002a920: 2077 6974 6820 6769 7665 6e20 6173 796d with given asym │ │ │ │ +0002a930: 7074 6f74 6963 0a20 2020 2072 6573 6f6c ptotic. resol │ │ │ │ +0002a940: 7574 696f 6e0a 0a57 6179 7320 746f 2075 ution..Ways to u │ │ │ │ +0002a950: 7365 2068 664d 6f64 756c 6541 7345 7874 se hfModuleAsExt │ │ │ │ +0002a960: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +0002a970: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +0002a980: 2a20 2268 664d 6f64 756c 6541 7345 7874 * "hfModuleAsExt │ │ │ │ +0002a990: 285a 5a2c 4d6f 6475 6c65 2c5a 5a29 220a (ZZ,Module,ZZ)". │ │ │ │ +0002a9a0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +0002a9b0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +0002a9c0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +0002a9d0: 6374 202a 6e6f 7465 2068 664d 6f64 756c ct *note hfModul │ │ │ │ +0002a9e0: 6541 7345 7874 3a20 6866 4d6f 6475 6c65 eAsExt: hfModule │ │ │ │ +0002a9f0: 4173 4578 742c 2069 7320 6120 2a6e 6f74 AsExt, is a *not │ │ │ │ +0002aa00: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ +0002aa10: 6e3a 0a28 4d61 6361 756c 6179 3244 6f63 n:.(Macaulay2Doc │ │ │ │ +0002aa20: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ +0002aa30: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 0002aa40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002aa50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002aa60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002aa70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002aa80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -0002aa90: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -0002aaa0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -0002aab0: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -0002aac0: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -0002aad0: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -0002aae0: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -0002aaf0: 6167 6573 2f0a 436f 6d70 6c65 7465 496e ages/.CompleteIn │ │ │ │ -0002ab00: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ -0002ab10: 7469 6f6e 732e 6d32 3a33 3134 313a 302e tions.m2:3141:0. │ │ │ │ -0002ab20: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ -0002ab30: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ -0002ab40: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ -0002ab50: 6f64 653a 2068 6967 6853 797a 7967 792c ode: highSyzygy, │ │ │ │ -0002ab60: 204e 6578 743a 2068 4d61 7073 2c20 5072 Next: hMaps, Pr │ │ │ │ -0002ab70: 6576 3a20 6866 4d6f 6475 6c65 4173 4578 ev: hfModuleAsEx │ │ │ │ -0002ab80: 742c 2055 703a 2054 6f70 0a0a 6869 6768 t, Up: Top..high │ │ │ │ -0002ab90: 5379 7a79 6779 202d 2d20 5265 7475 726e Syzygy -- Return │ │ │ │ -0002aba0: 7320 6120 7379 7a79 6779 206d 6f64 756c s a syzygy modul │ │ │ │ -0002abb0: 6520 6f6e 6520 6265 796f 6e64 2074 6865 e one beyond the │ │ │ │ -0002abc0: 2072 6567 756c 6172 6974 7920 6f66 2045 regularity of E │ │ │ │ -0002abd0: 7874 284d 2c6b 290a 2a2a 2a2a 2a2a 2a2a xt(M,k).******** │ │ │ │ +0002aa80: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +0002aa90: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +0002aaa0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +0002aab0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +0002aac0: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +0002aad0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +0002aae0: 2f70 6163 6b61 6765 732f 0a43 6f6d 706c /packages/.Compl │ │ │ │ +0002aaf0: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ +0002ab00: 6573 6f6c 7574 696f 6e73 2e6d 323a 3331 esolutions.m2:31 │ │ │ │ +0002ab10: 3431 3a30 2e0a 1f0a 4669 6c65 3a20 436f 41:0....File: Co │ │ │ │ +0002ab20: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ +0002ab30: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ +0002ab40: 666f 2c20 4e6f 6465 3a20 6869 6768 5379 fo, Node: highSy │ │ │ │ +0002ab50: 7a79 6779 2c20 4e65 7874 3a20 684d 6170 zygy, Next: hMap │ │ │ │ +0002ab60: 732c 2050 7265 763a 2068 664d 6f64 756c s, Prev: hfModul │ │ │ │ +0002ab70: 6541 7345 7874 2c20 5570 3a20 546f 700a eAsExt, Up: Top. │ │ │ │ +0002ab80: 0a68 6967 6853 797a 7967 7920 2d2d 2052 .highSyzygy -- R │ │ │ │ +0002ab90: 6574 7572 6e73 2061 2073 797a 7967 7920 eturns a syzygy │ │ │ │ +0002aba0: 6d6f 6475 6c65 206f 6e65 2062 6579 6f6e module one beyon │ │ │ │ +0002abb0: 6420 7468 6520 7265 6775 6c61 7269 7479 d the regularity │ │ │ │ +0002abc0: 206f 6620 4578 7428 4d2c 6b29 0a2a 2a2a of Ext(M,k).*** │ │ │ │ +0002abd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002abe0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002abf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002ac00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002ac10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002ac20: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -0002ac30: 0a20 2020 2020 2020 204d 203d 2068 6967 . M = hig │ │ │ │ -0002ac40: 6853 797a 7967 7920 4d30 0a20 202a 2049 hSyzygy M0. * I │ │ │ │ -0002ac50: 6e70 7574 733a 0a20 2020 2020 202a 204d nputs:. * M │ │ │ │ -0002ac60: 302c 2061 202a 6e6f 7465 206d 6f64 756c 0, a *note modul │ │ │ │ -0002ac70: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ -0002ac80: 294d 6f64 756c 652c 2c20 6f76 6572 2061 )Module,, over a │ │ │ │ -0002ac90: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ -0002aca0: 6563 7469 6f6e 0a20 2020 2020 2020 2072 ection. r │ │ │ │ -0002acb0: 696e 670a 2020 2a20 2a6e 6f74 6520 4f70 ing. * *note Op │ │ │ │ -0002acc0: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ -0002acd0: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ -0002ace0: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ -0002acf0: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ -0002ad00: 732c 3a0a 2020 2020 2020 2a20 4f70 7469 s,:. * Opti │ │ │ │ -0002ad10: 6d69 736d 203d 3e20 2e2e 2e2c 2064 6566 mism => ..., def │ │ │ │ -0002ad20: 6175 6c74 2076 616c 7565 2030 0a20 202a ault value 0. * │ │ │ │ -0002ad30: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -0002ad40: 2a20 4d2c 2061 202a 6e6f 7465 206d 6f64 * M, a *note mod │ │ │ │ -0002ad50: 756c 653a 2028 4d61 6361 756c 6179 3244 ule: (Macaulay2D │ │ │ │ -0002ad60: 6f63 294d 6f64 756c 652c 2c20 6120 7379 oc)Module,, a sy │ │ │ │ -0002ad70: 7a79 6779 206d 6f64 756c 6520 6f66 204d zygy module of M │ │ │ │ -0002ad80: 300a 0a44 6573 6372 6970 7469 6f6e 0a3d 0..Description.= │ │ │ │ -0002ad90: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4120 2268 ==========..A "h │ │ │ │ -0002ada0: 6967 6820 7379 7a79 6779 2220 6f76 6572 igh syzygy" over │ │ │ │ -0002adb0: 2061 2063 6f6d 706c 6574 6520 696e 7465 a complete inte │ │ │ │ -0002adc0: 7273 6563 7469 6f6e 2069 7320 6f6e 6520 rsection is one │ │ │ │ -0002add0: 7375 6368 2074 6861 7420 6765 6e65 7261 such that genera │ │ │ │ -0002ade0: 6c0a 6369 2d6f 7065 7261 746f 7273 2068 l.ci-operators h │ │ │ │ -0002adf0: 6176 6520 7370 6c69 7420 6b65 726e 656c ave split kernel │ │ │ │ -0002ae00: 7320 7768 656e 2061 7070 6c69 6564 2072 s when applied r │ │ │ │ -0002ae10: 6563 7572 7369 7665 6c79 206f 6e20 636f ecursively on co │ │ │ │ -0002ae20: 7379 7a79 6779 2063 6861 696e 7320 6f66 syzygy chains of │ │ │ │ -0002ae30: 0a70 7265 7669 6f75 7320 6b65 726e 656c .previous kernel │ │ │ │ -0002ae40: 732e 0a0a 4966 2070 203d 206d 6642 6f75 s...If p = mfBou │ │ │ │ -0002ae50: 6e64 204d 302c 2074 6865 6e20 6869 6768 nd M0, then high │ │ │ │ -0002ae60: 5379 7a79 6779 204d 3020 7265 7475 726e Syzygy M0 return │ │ │ │ -0002ae70: 7320 7468 6520 702d 7468 2073 797a 7967 s the p-th syzyg │ │ │ │ -0002ae80: 7920 6f66 204d 302e 2028 6966 2046 2069 y of M0. (if F i │ │ │ │ -0002ae90: 7320 610a 7265 736f 6c75 7469 6f6e 206f s a.resolution o │ │ │ │ -0002aea0: 6620 4d20 7468 6973 2069 7320 7468 6520 f M this is the │ │ │ │ -0002aeb0: 636f 6b65 726e 656c 206f 6620 462e 6464 cokernel of F.dd │ │ │ │ -0002aec0: 5f7b 702b 317d 292e 204f 7074 696d 6973 _{p+1}). Optimis │ │ │ │ -0002aed0: 6d20 3d3e 2072 2061 7320 6f70 7469 6f6e m => r as option │ │ │ │ -0002aee0: 616c 0a61 7267 756d 656e 742c 2068 6967 al.argument, hig │ │ │ │ -0002aef0: 6853 797a 7967 7928 4d30 2c4f 7074 696d hSyzygy(M0,Optim │ │ │ │ -0002af00: 6973 6d3d 3e72 2920 7265 7475 726e 7320 ism=>r) returns │ │ │ │ -0002af10: 7468 6520 2870 2d72 292d 7468 2073 797a the (p-r)-th syz │ │ │ │ -0002af20: 7967 792e 2054 6865 2073 6372 6970 7420 ygy. The script │ │ │ │ -0002af30: 6973 0a75 7365 6675 6c20 7769 7468 206d is.useful with m │ │ │ │ -0002af40: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ -0002af50: 6f6e 2866 662c 2068 6967 6853 797a 7967 on(ff, highSyzyg │ │ │ │ -0002af60: 7920 4d30 292e 0a0a 2b2d 2d2d 2d2d 2d2d y M0)...+------- │ │ │ │ +0002ac10: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ +0002ac20: 6167 653a 200a 2020 2020 2020 2020 4d20 age: . M │ │ │ │ +0002ac30: 3d20 6869 6768 5379 7a79 6779 204d 300a = highSyzygy M0. │ │ │ │ +0002ac40: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +0002ac50: 2020 2a20 4d30 2c20 6120 2a6e 6f74 6520 * M0, a *note │ │ │ │ +0002ac60: 6d6f 6475 6c65 3a20 284d 6163 6175 6c61 module: (Macaula │ │ │ │ +0002ac70: 7932 446f 6329 4d6f 6475 6c65 2c2c 206f y2Doc)Module,, o │ │ │ │ +0002ac80: 7665 7220 6120 636f 6d70 6c65 7465 2069 ver a complete i │ │ │ │ +0002ac90: 6e74 6572 7365 6374 696f 6e0a 2020 2020 ntersection. │ │ │ │ +0002aca0: 2020 2020 7269 6e67 0a20 202a 202a 6e6f ring. * *no │ │ │ │ +0002acb0: 7465 204f 7074 696f 6e61 6c20 696e 7075 te Optional inpu │ │ │ │ +0002acc0: 7473 3a20 284d 6163 6175 6c61 7932 446f ts: (Macaulay2Do │ │ │ │ +0002acd0: 6329 7573 696e 6720 6675 6e63 7469 6f6e c)using function │ │ │ │ +0002ace0: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ +0002acf0: 696e 7075 7473 2c3a 0a20 2020 2020 202a inputs,:. * │ │ │ │ +0002ad00: 204f 7074 696d 6973 6d20 3d3e 202e 2e2e Optimism => ... │ │ │ │ +0002ad10: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +0002ad20: 300a 2020 2a20 4f75 7470 7574 733a 0a20 0. * Outputs:. │ │ │ │ +0002ad30: 2020 2020 202a 204d 2c20 6120 2a6e 6f74 * M, a *not │ │ │ │ +0002ad40: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ +0002ad50: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ +0002ad60: 2061 2073 797a 7967 7920 6d6f 6475 6c65 a syzygy module │ │ │ │ +0002ad70: 206f 6620 4d30 0a0a 4465 7363 7269 7074 of M0..Descript │ │ │ │ +0002ad80: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +0002ad90: 0a41 2022 6869 6768 2073 797a 7967 7922 .A "high syzygy" │ │ │ │ +0002ada0: 206f 7665 7220 6120 636f 6d70 6c65 7465 over a complete │ │ │ │ +0002adb0: 2069 6e74 6572 7365 6374 696f 6e20 6973 intersection is │ │ │ │ +0002adc0: 206f 6e65 2073 7563 6820 7468 6174 2067 one such that g │ │ │ │ +0002add0: 656e 6572 616c 0a63 692d 6f70 6572 6174 eneral.ci-operat │ │ │ │ +0002ade0: 6f72 7320 6861 7665 2073 706c 6974 206b ors have split k │ │ │ │ +0002adf0: 6572 6e65 6c73 2077 6865 6e20 6170 706c ernels when appl │ │ │ │ +0002ae00: 6965 6420 7265 6375 7273 6976 656c 7920 ied recursively │ │ │ │ +0002ae10: 6f6e 2063 6f73 797a 7967 7920 6368 6169 on cosyzygy chai │ │ │ │ +0002ae20: 6e73 206f 660a 7072 6576 696f 7573 206b ns of.previous k │ │ │ │ +0002ae30: 6572 6e65 6c73 2e0a 0a49 6620 7020 3d20 ernels...If p = │ │ │ │ +0002ae40: 6d66 426f 756e 6420 4d30 2c20 7468 656e mfBound M0, then │ │ │ │ +0002ae50: 2068 6967 6853 797a 7967 7920 4d30 2072 highSyzygy M0 r │ │ │ │ +0002ae60: 6574 7572 6e73 2074 6865 2070 2d74 6820 eturns the p-th │ │ │ │ +0002ae70: 7379 7a79 6779 206f 6620 4d30 2e20 2869 syzygy of M0. (i │ │ │ │ +0002ae80: 6620 4620 6973 2061 0a72 6573 6f6c 7574 f F is a.resolut │ │ │ │ +0002ae90: 696f 6e20 6f66 204d 2074 6869 7320 6973 ion of M this is │ │ │ │ +0002aea0: 2074 6865 2063 6f6b 6572 6e65 6c20 6f66 the cokernel of │ │ │ │ +0002aeb0: 2046 2e64 645f 7b70 2b31 7d29 2e20 4f70 F.dd_{p+1}). Op │ │ │ │ +0002aec0: 7469 6d69 736d 203d 3e20 7220 6173 206f timism => r as o │ │ │ │ +0002aed0: 7074 696f 6e61 6c0a 6172 6775 6d65 6e74 ptional.argument │ │ │ │ +0002aee0: 2c20 6869 6768 5379 7a79 6779 284d 302c , highSyzygy(M0, │ │ │ │ +0002aef0: 4f70 7469 6d69 736d 3d3e 7229 2072 6574 Optimism=>r) ret │ │ │ │ +0002af00: 7572 6e73 2074 6865 2028 702d 7229 2d74 urns the (p-r)-t │ │ │ │ +0002af10: 6820 7379 7a79 6779 2e20 5468 6520 7363 h syzygy. The sc │ │ │ │ +0002af20: 7269 7074 2069 730a 7573 6566 756c 2077 ript is.useful w │ │ │ │ +0002af30: 6974 6820 6d61 7472 6978 4661 6374 6f72 ith matrixFactor │ │ │ │ +0002af40: 697a 6174 696f 6e28 6666 2c20 6869 6768 ization(ff, high │ │ │ │ +0002af50: 5379 7a79 6779 204d 3029 2e0a 0a2b 2d2d Syzygy M0)...+-- │ │ │ │ +0002af60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002af80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002af90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002afa0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2073 -------+.|i1 : s │ │ │ │ -0002afb0: 6574 5261 6e64 6f6d 5365 6564 2031 3030 etRandomSeed 100 │ │ │ │ +0002af90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002afa0: 3120 3a20 7365 7452 616e 646f 6d53 6565 1 : setRandomSee │ │ │ │ +0002afb0: 6420 3130 3020 2020 2020 2020 2020 2020 d 100 │ │ │ │ 0002afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002afe0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2073 |.| -- s │ │ │ │ -0002aff0: 6574 7469 6e67 2072 616e 646f 6d20 7365 etting random se │ │ │ │ -0002b000: 6564 2074 6f20 3130 3020 2020 2020 2020 ed to 100 │ │ │ │ -0002b010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b020: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002afd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002afe0: 202d 2d20 7365 7474 696e 6720 7261 6e64 -- setting rand │ │ │ │ +0002aff0: 6f6d 2073 6565 6420 746f 2031 3030 2020 om seed to 100 │ │ │ │ +0002b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b010: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b020: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b060: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -0002b070: 3d20 3130 3020 2020 2020 2020 2020 2020 = 100 │ │ │ │ +0002b050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b060: 0a7c 6f31 203d 2031 3030 2020 2020 2020 .|o1 = 100 │ │ │ │ +0002b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b0a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002b0a0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0002b0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002b0f0: 3220 3a20 5320 3d20 5a5a 2f31 3031 5b78 2 : S = ZZ/101[x │ │ │ │ -0002b100: 2c79 2c7a 5d20 2020 2020 2020 2020 2020 ,y,z] │ │ │ │ +0002b0e0: 2d2b 0a7c 6932 203a 2053 203d 205a 5a2f -+.|i2 : S = ZZ/ │ │ │ │ +0002b0f0: 3130 315b 782c 792c 7a5d 2020 2020 2020 101[x,y,z] │ │ │ │ +0002b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b120: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002b120: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b160: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002b170: 7c6f 3220 3d20 5320 2020 2020 2020 2020 |o2 = S │ │ │ │ +0002b160: 2020 207c 0a7c 6f32 203d 2053 2020 2020 |.|o2 = S │ │ │ │ +0002b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b1b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002b1a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1f0: 7c0a 7c6f 3220 3a20 506f 6c79 6e6f 6d69 |.|o2 : Polynomi │ │ │ │ -0002b200: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ +0002b1e0: 2020 2020 207c 0a7c 6f32 203a 2050 6f6c |.|o2 : Pol │ │ │ │ +0002b1f0: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ +0002b200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b230: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002b220: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002b230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b270: 2d2d 2b0a 7c69 3320 3a20 6620 3d20 6d61 --+.|i3 : f = ma │ │ │ │ -0002b280: 7472 6978 2278 332c 7933 2b78 332c 7a33 trix"x3,y3+x3,z3 │ │ │ │ -0002b290: 2b78 332b 7933 2220 2020 2020 2020 2020 +x3+y3" │ │ │ │ -0002b2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b260: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2066 -------+.|i3 : f │ │ │ │ +0002b270: 203d 206d 6174 7269 7822 7833 2c79 332b = matrix"x3,y3+ │ │ │ │ +0002b280: 7833 2c7a 332b 7833 2b79 3322 2020 2020 x3,z3+x3+y3" │ │ │ │ +0002b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b2a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2f0: 2020 2020 7c0a 7c6f 3320 3d20 7c20 7833 |.|o3 = | x3 │ │ │ │ -0002b300: 2078 332b 7933 2078 332b 7933 2b7a 3320 x3+y3 x3+y3+z3 │ │ │ │ -0002b310: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b330: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002b2e0: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ +0002b2f0: 207c 2078 3320 7833 2b79 3320 7833 2b79 | x3 x3+y3 x3+y │ │ │ │ +0002b300: 332b 7a33 207c 2020 2020 2020 2020 2020 3+z3 | │ │ │ │ +0002b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b320: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b370: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002b380: 2020 2020 2020 3120 2020 2020 2033 2020 1 3 │ │ │ │ +0002b360: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002b370: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +0002b380: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0002b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3b0: 2020 2020 2020 207c 0a7c 6f33 203a 204d |.|o3 : M │ │ │ │ -0002b3c0: 6174 7269 7820 5320 203c 2d2d 2053 2020 atrix S <-- S │ │ │ │ +0002b3a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002b3b0: 3320 3a20 4d61 7472 6978 2053 2020 3c2d 3 : Matrix S <- │ │ │ │ +0002b3c0: 2d20 5320 2020 2020 2020 2020 2020 2020 - S │ │ │ │ 0002b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3f0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002b3e0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002b3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b430: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -0002b440: 2066 6620 3d20 662a 7261 6e64 6f6d 2873 ff = f*random(s │ │ │ │ -0002b450: 6f75 7263 6520 662c 2073 6f75 7263 6520 ource f, source │ │ │ │ -0002b460: 6629 2020 2020 2020 2020 2020 2020 2020 f) │ │ │ │ -0002b470: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002b420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002b430: 7c69 3420 3a20 6666 203d 2066 2a72 616e |i4 : ff = f*ran │ │ │ │ +0002b440: 646f 6d28 736f 7572 6365 2066 2c20 736f dom(source f, so │ │ │ │ +0002b450: 7572 6365 2066 2920 2020 2020 2020 2020 urce f) │ │ │ │ +0002b460: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b470: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4b0: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ -0002b4c0: 203d 207c 2031 3078 332d 3232 7933 2d34 = | 10x3-22y3-4 │ │ │ │ -0002b4d0: 7a33 202d 3230 7833 2d32 3079 332d 367a z3 -20x3-20y3-6z │ │ │ │ -0002b4e0: 3320 2d32 3778 332d 3431 7933 2b7a 3320 3 -27x3-41y3+z3 │ │ │ │ -0002b4f0: 7c20 2020 2020 2020 2020 2020 7c0a 7c20 | |.| │ │ │ │ +0002b4b0: 7c0a 7c6f 3420 3d20 7c20 3130 7833 2d32 |.|o4 = | 10x3-2 │ │ │ │ +0002b4c0: 3279 332d 347a 3320 2d32 3078 332d 3230 2y3-4z3 -20x3-20 │ │ │ │ +0002b4d0: 7933 2d36 7a33 202d 3237 7833 2d34 3179 y3-6z3 -27x3-41y │ │ │ │ +0002b4e0: 332b 7a33 207c 2020 2020 2020 2020 2020 3+z3 | │ │ │ │ +0002b4f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b530: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002b540: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ -0002b550: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ +0002b530: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b540: 2020 3120 2020 2020 2033 2020 2020 2020 1 3 │ │ │ │ +0002b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b570: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002b580: 7c6f 3420 3a20 4d61 7472 6978 2053 2020 |o4 : Matrix S │ │ │ │ -0002b590: 3c2d 2d20 5320 2020 2020 2020 2020 2020 <-- S │ │ │ │ +0002b570: 2020 207c 0a7c 6f34 203a 204d 6174 7269 |.|o4 : Matri │ │ │ │ +0002b580: 7820 5320 203c 2d2d 2053 2020 2020 2020 x S <-- S │ │ │ │ +0002b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b5c0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002b5b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002b5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b600: 2b0a 7c69 3520 3a20 5220 3d20 532f 6964 +.|i5 : R = S/id │ │ │ │ -0002b610: 6561 6c20 6620 2020 2020 2020 2020 2020 eal f │ │ │ │ +0002b5f0: 2d2d 2d2d 2d2b 0a7c 6935 203a 2052 203d -----+.|i5 : R = │ │ │ │ +0002b600: 2053 2f69 6465 616c 2066 2020 2020 2020 S/ideal f │ │ │ │ +0002b610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b640: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b630: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002b640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b680: 2020 7c0a 7c6f 3520 3d20 5220 2020 2020 |.|o5 = R │ │ │ │ +0002b670: 2020 2020 2020 207c 0a7c 6f35 203d 2052 |.|o5 = R │ │ │ │ +0002b680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b6c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b6b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b700: 2020 2020 7c0a 7c6f 3520 3a20 5175 6f74 |.|o5 : Quot │ │ │ │ -0002b710: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ +0002b6f0: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ +0002b700: 2051 756f 7469 656e 7452 696e 6720 2020 QuotientRing │ │ │ │ +0002b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b740: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002b730: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002b740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b780: 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 4d30 ------+.|i6 : M0 │ │ │ │ -0002b790: 203d 2052 5e31 2f69 6465 616c 2278 327a = R^1/ideal"x2z │ │ │ │ -0002b7a0: 322c 7879 7a22 2020 2020 2020 2020 2020 2,xyz" │ │ │ │ -0002b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b7c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002b770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 -----------+.|i6 │ │ │ │ +0002b780: 203a 204d 3020 3d20 525e 312f 6964 6561 : M0 = R^1/idea │ │ │ │ +0002b790: 6c22 7832 7a32 2c78 797a 2220 2020 2020 l"x2z2,xyz" │ │ │ │ +0002b7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b7b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b800: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ -0002b810: 636f 6b65 726e 656c 207c 2078 327a 3220 cokernel | x2z2 │ │ │ │ -0002b820: 7879 7a20 7c20 2020 2020 2020 2020 2020 xyz | │ │ │ │ -0002b830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b840: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002b7f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002b800: 6f36 203d 2063 6f6b 6572 6e65 6c20 7c20 o6 = cokernel | │ │ │ │ +0002b810: 7832 7a32 2078 797a 207c 2020 2020 2020 x2z2 xyz | │ │ │ │ +0002b820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b830: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b840: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b880: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b8a0: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ +0002b870: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b880: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002b890: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +0002b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b8c0: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ -0002b8d0: 203a 2052 2d6d 6f64 756c 652c 2071 756f : R-module, quo │ │ │ │ -0002b8e0: 7469 656e 7420 6f66 2052 2020 2020 2020 tient of R │ │ │ │ +0002b8c0: 7c0a 7c6f 3620 3a20 522d 6d6f 6475 6c65 |.|o6 : R-module │ │ │ │ +0002b8d0: 2c20 7175 6f74 6965 6e74 206f 6620 5220 , quotient of R │ │ │ │ +0002b8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b900: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002b900: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0002b910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0002b950: 6937 203a 2062 6574 7469 2066 7265 6552 i7 : betti freeR │ │ │ │ -0002b960: 6573 6f6c 7574 696f 6e20 284d 302c 204c esolution (M0, L │ │ │ │ -0002b970: 656e 6774 684c 696d 6974 203d 3e20 3729 engthLimit => 7) │ │ │ │ -0002b980: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002b990: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b940: 2d2d 2b0a 7c69 3720 3a20 6265 7474 6920 --+.|i7 : betti │ │ │ │ +0002b950: 6672 6565 5265 736f 6c75 7469 6f6e 2028 freeResolution ( │ │ │ │ +0002b960: 4d30 2c20 4c65 6e67 7468 4c69 6d69 7420 M0, LengthLimit │ │ │ │ +0002b970: 3d3e 2037 2920 2020 2020 2020 2020 2020 => 7) │ │ │ │ +0002b980: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b9c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b9d0: 0a7c 2020 2020 2020 2020 2020 2020 3020 .| 0 │ │ │ │ -0002b9e0: 3120 3220 2033 2020 3420 2035 2020 3620 1 2 3 4 5 6 │ │ │ │ -0002b9f0: 2037 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ -0002ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba10: 7c0a 7c6f 3720 3d20 746f 7461 6c3a 2031 |.|o7 = total: 1 │ │ │ │ -0002ba20: 2032 2036 2031 3120 3138 2032 3620 3336 2 6 11 18 26 36 │ │ │ │ -0002ba30: 2034 3720 2020 2020 2020 2020 2020 2020 47 │ │ │ │ -0002ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba50: 207c 0a7c 2020 2020 2020 2020 2030 3a20 |.| 0: │ │ │ │ -0002ba60: 3120 2e20 2e20 202e 2020 2e20 202e 2020 1 . . . . . │ │ │ │ -0002ba70: 2e20 202e 2020 2020 2020 2020 2020 2020 . . │ │ │ │ -0002ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba90: 2020 7c0a 7c20 2020 2020 2020 2020 313a |.| 1: │ │ │ │ -0002baa0: 202e 202e 202e 2020 2e20 202e 2020 2e20 . . . . . . │ │ │ │ -0002bab0: 202e 2020 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ -0002bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bad0: 2020 207c 0a7c 2020 2020 2020 2020 2032 |.| 2 │ │ │ │ -0002bae0: 3a20 2e20 3120 2e20 202e 2020 2e20 202e : . 1 . . . . │ │ │ │ -0002baf0: 2020 2e20 202e 2020 2020 2020 2020 2020 . . │ │ │ │ -0002bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002bb20: 333a 202e 2031 2036 2020 3620 202e 2020 3: . 1 6 6 . │ │ │ │ -0002bb30: 2e20 202e 2020 2e20 2020 2020 2020 2020 . . . │ │ │ │ -0002bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002bb60: 2034 3a20 2e20 2e20 2e20 2035 2031 3820 4: . . . 5 18 │ │ │ │ -0002bb70: 3134 2020 2e20 202e 2020 2020 2020 2020 14 . . │ │ │ │ -0002bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002bba0: 2020 353a 202e 202e 202e 2020 2e20 202e 5: . . . . . │ │ │ │ -0002bbb0: 2031 3220 3336 2032 3520 2020 2020 2020 12 36 25 │ │ │ │ -0002bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bbd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002bbe0: 2020 2036 3a20 2e20 2e20 2e20 202e 2020 6: . . . . │ │ │ │ -0002bbf0: 2e20 202e 2020 2e20 3232 2020 2020 2020 . . . 22 │ │ │ │ -0002bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002b9c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b9d0: 2020 2030 2031 2032 2020 3320 2034 2020 0 1 2 3 4 │ │ │ │ +0002b9e0: 3520 2036 2020 3720 2020 2020 2020 2020 5 6 7 │ │ │ │ +0002b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba00: 2020 2020 207c 0a7c 6f37 203d 2074 6f74 |.|o7 = tot │ │ │ │ +0002ba10: 616c 3a20 3120 3220 3620 3131 2031 3820 al: 1 2 6 11 18 │ │ │ │ +0002ba20: 3236 2033 3620 3437 2020 2020 2020 2020 26 36 47 │ │ │ │ +0002ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002ba50: 2020 303a 2031 202e 202e 2020 2e20 202e 0: 1 . . . . │ │ │ │ +0002ba60: 2020 2e20 202e 2020 2e20 2020 2020 2020 . . . │ │ │ │ +0002ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002ba90: 2020 2031 3a20 2e20 2e20 2e20 202e 2020 1: . . . . │ │ │ │ +0002baa0: 2e20 202e 2020 2e20 202e 2020 2020 2020 . . . . │ │ │ │ +0002bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bac0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002bad0: 2020 2020 323a 202e 2031 202e 2020 2e20 2: . 1 . . │ │ │ │ +0002bae0: 202e 2020 2e20 202e 2020 2e20 2020 2020 . . . . │ │ │ │ +0002baf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bb00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002bb10: 2020 2020 2033 3a20 2e20 3120 3620 2036 3: . 1 6 6 │ │ │ │ +0002bb20: 2020 2e20 202e 2020 2e20 202e 2020 2020 . . . . │ │ │ │ +0002bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bb40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002bb50: 2020 2020 2020 343a 202e 202e 202e 2020 4: . . . │ │ │ │ +0002bb60: 3520 3138 2031 3420 202e 2020 2e20 2020 5 18 14 . . │ │ │ │ +0002bb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bb80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002bb90: 2020 2020 2020 2035 3a20 2e20 2e20 2e20 5: . . . │ │ │ │ +0002bba0: 202e 2020 2e20 3132 2033 3620 3235 2020 . . 12 36 25 │ │ │ │ +0002bbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bbc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002bbd0: 2020 2020 2020 2020 363a 202e 202e 202e 6: . . . │ │ │ │ +0002bbe0: 2020 2e20 202e 2020 2e20 202e 2032 3220 . . . . 22 │ │ │ │ +0002bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bc00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc50: 2020 2020 2020 2020 207c 0a7c 6f37 203a |.|o7 : │ │ │ │ -0002bc60: 2042 6574 7469 5461 6c6c 7920 2020 2020 BettiTally │ │ │ │ +0002bc40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002bc50: 7c6f 3720 3a20 4265 7474 6954 616c 6c79 |o7 : BettiTally │ │ │ │ +0002bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc90: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002bc80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002bc90: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0002bca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 -----------+.|i8 │ │ │ │ -0002bce0: 203a 206d 6642 6f75 6e64 204d 3020 2020 : mfBound M0 │ │ │ │ +0002bcd0: 2b0a 7c69 3820 3a20 6d66 426f 756e 6420 +.|i8 : mfBound │ │ │ │ +0002bce0: 4d30 2020 2020 2020 2020 2020 2020 2020 M0 │ │ │ │ 0002bcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bd10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002bd10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bd50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002bd60: 6f38 203d 2033 2020 2020 2020 2020 2020 o8 = 3 │ │ │ │ +0002bd50: 2020 7c0a 7c6f 3820 3d20 3320 2020 2020 |.|o8 = 3 │ │ │ │ +0002bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bd90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002bda0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002bd90: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0002bda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002bde0: 0a7c 6939 203a 204d 203d 2062 6574 7469 .|i9 : M = betti │ │ │ │ -0002bdf0: 2066 7265 6552 6573 6f6c 7574 696f 6e28 freeResolution( │ │ │ │ -0002be00: 6869 6768 5379 7a79 6779 204d 302c 204c highSyzygy M0, L │ │ │ │ -0002be10: 656e 6774 684c 696d 6974 203d 3e20 3729 engthLimit => 7) │ │ │ │ -0002be20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002bdd0: 2d2d 2d2d 2b0a 7c69 3920 3a20 4d20 3d20 ----+.|i9 : M = │ │ │ │ +0002bde0: 6265 7474 6920 6672 6565 5265 736f 6c75 betti freeResolu │ │ │ │ +0002bdf0: 7469 6f6e 2868 6967 6853 797a 7967 7920 tion(highSyzygy │ │ │ │ +0002be00: 4d30 2c20 4c65 6e67 7468 4c69 6d69 7420 M0, LengthLimit │ │ │ │ +0002be10: 3d3e 2037 297c 0a7c 2020 2020 2020 2020 => 7)|.| │ │ │ │ +0002be20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002be60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002be70: 2030 2020 3120 2032 2020 3320 2034 2020 0 1 2 3 4 │ │ │ │ -0002be80: 3520 2036 2020 3720 2020 2020 2020 2020 5 6 7 │ │ │ │ -0002be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bea0: 2020 7c0a 7c6f 3920 3d20 746f 7461 6c3a |.|o9 = total: │ │ │ │ -0002beb0: 2031 3120 3138 2032 3620 3336 2034 3720 11 18 26 36 47 │ │ │ │ -0002bec0: 3630 2037 3420 3930 2020 2020 2020 2020 60 74 90 │ │ │ │ -0002bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bee0: 2020 207c 0a7c 2020 2020 2020 2020 2036 |.| 6 │ │ │ │ -0002bef0: 3a20 2036 2020 2e20 202e 2020 2e20 202e : 6 . . . . │ │ │ │ -0002bf00: 2020 2e20 202e 2020 2e20 2020 2020 2020 . . . │ │ │ │ -0002bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002bf30: 373a 2020 3520 3138 2031 3420 202e 2020 7: 5 18 14 . │ │ │ │ -0002bf40: 2e20 202e 2020 2e20 202e 2020 2020 2020 . . . . │ │ │ │ -0002bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002bf70: 2038 3a20 202e 2020 2e20 3132 2033 3620 8: . . 12 36 │ │ │ │ -0002bf80: 3235 2020 2e20 202e 2020 2e20 2020 2020 25 . . . │ │ │ │ -0002bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bfa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002bfb0: 2020 393a 2020 2e20 202e 2020 2e20 202e 9: . . . . │ │ │ │ -0002bfc0: 2032 3220 3630 2033 3920 202e 2020 2020 22 60 39 . │ │ │ │ -0002bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bfe0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002bff0: 2020 3130 3a20 202e 2020 2e20 202e 2020 10: . . . │ │ │ │ -0002c000: 2e20 202e 2020 2e20 3335 2039 3020 2020 . . . 35 90 │ │ │ │ -0002c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c020: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002be50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002be60: 2020 2020 2020 3020 2031 2020 3220 2033 0 1 2 3 │ │ │ │ +0002be70: 2020 3420 2035 2020 3620 2037 2020 2020 4 5 6 7 │ │ │ │ +0002be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002be90: 2020 2020 2020 207c 0a7c 6f39 203d 2074 |.|o9 = t │ │ │ │ +0002bea0: 6f74 616c 3a20 3131 2031 3820 3236 2033 otal: 11 18 26 3 │ │ │ │ +0002beb0: 3620 3437 2036 3020 3734 2039 3020 2020 6 47 60 74 90 │ │ │ │ +0002bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bed0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002bee0: 2020 2020 363a 2020 3620 202e 2020 2e20 6: 6 . . │ │ │ │ +0002bef0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0002bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002bf20: 2020 2020 2037 3a20 2035 2031 3820 3134 7: 5 18 14 │ │ │ │ +0002bf30: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +0002bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002bf60: 2020 2020 2020 383a 2020 2e20 202e 2031 8: . . 1 │ │ │ │ +0002bf70: 3220 3336 2032 3520 202e 2020 2e20 202e 2 36 25 . . . │ │ │ │ +0002bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002bfa0: 2020 2020 2020 2039 3a20 202e 2020 2e20 9: . . │ │ │ │ +0002bfb0: 202e 2020 2e20 3232 2036 3020 3339 2020 . . 22 60 39 │ │ │ │ +0002bfc0: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0002bfd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002bfe0: 2020 2020 2020 2031 303a 2020 2e20 202e 10: . . │ │ │ │ +0002bff0: 2020 2e20 202e 2020 2e20 202e 2033 3520 . . . . 35 │ │ │ │ +0002c000: 3930 2020 2020 2020 2020 2020 2020 2020 90 │ │ │ │ +0002c010: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002c020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c060: 2020 2020 2020 2020 207c 0a7c 6f39 203a |.|o9 : │ │ │ │ -0002c070: 2042 6574 7469 5461 6c6c 7920 2020 2020 BettiTally │ │ │ │ +0002c050: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002c060: 7c6f 3920 3a20 4265 7474 6954 616c 6c79 |o9 : BettiTally │ │ │ │ +0002c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0a0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002c090: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c0a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0002c0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -0002c0f0: 3020 3a20 6e65 744c 6973 7420 4252 616e 0 : netList BRan │ │ │ │ -0002c100: 6b73 206d 6174 7269 7846 6163 746f 7269 ks matrixFactori │ │ │ │ -0002c110: 7a61 7469 6f6e 2866 662c 2068 6967 6853 zation(ff, highS │ │ │ │ -0002c120: 797a 7967 7920 4d30 2920 2020 7c0a 7c20 yzygy M0) |.| │ │ │ │ +0002c0e0: 2b0a 7c69 3130 203a 206e 6574 4c69 7374 +.|i10 : netList │ │ │ │ +0002c0f0: 2042 5261 6e6b 7320 6d61 7472 6978 4661 BRanks matrixFa │ │ │ │ +0002c100: 6374 6f72 697a 6174 696f 6e28 6666 2c20 ctorization(ff, │ │ │ │ +0002c110: 6869 6768 5379 7a79 6779 204d 3029 2020 highSyzygy M0) │ │ │ │ +0002c120: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c160: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002c170: 2020 2020 2020 2b2d 2b2d 2b20 2020 2020 +-+-+ │ │ │ │ +0002c160: 2020 7c0a 7c20 2020 2020 202b 2d2b 2d2b |.| +-+-+ │ │ │ │ +0002c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002c1b0: 7c6f 3130 203d 207c 367c 367c 2020 2020 |o10 = |6|6| │ │ │ │ +0002c1a0: 2020 207c 0a7c 6f31 3020 3d20 7c36 7c36 |.|o10 = |6|6 │ │ │ │ +0002c1b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002c1f0: 0a7c 2020 2020 2020 2b2d 2b2d 2b20 2020 .| +-+-+ │ │ │ │ +0002c1e0: 2020 2020 7c0a 7c20 2020 2020 202b 2d2b |.| +-+ │ │ │ │ +0002c1f0: 2d2b 2020 2020 2020 2020 2020 2020 2020 -+ │ │ │ │ 0002c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c230: 7c0a 7c20 2020 2020 207c 337c 367c 2020 |.| |3|6| │ │ │ │ +0002c220: 2020 2020 207c 0a7c 2020 2020 2020 7c33 |.| |3 │ │ │ │ +0002c230: 7c36 7c20 2020 2020 2020 2020 2020 2020 |6| │ │ │ │ 0002c240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c270: 207c 0a7c 2020 2020 2020 2b2d 2b2d 2b20 |.| +-+-+ │ │ │ │ +0002c260: 2020 2020 2020 7c0a 7c20 2020 2020 202b |.| + │ │ │ │ +0002c270: 2d2b 2d2b 2020 2020 2020 2020 2020 2020 -+-+ │ │ │ │ 0002c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2b0: 2020 7c0a 7c20 2020 2020 207c 327c 367c |.| |2|6| │ │ │ │ +0002c2a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c2b0: 7c32 7c36 7c20 2020 2020 2020 2020 2020 |2|6| │ │ │ │ 0002c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2f0: 2020 207c 0a7c 2020 2020 2020 2b2d 2b2d |.| +-+- │ │ │ │ -0002c300: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ +0002c2e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002c2f0: 202b 2d2b 2d2b 2020 2020 2020 2020 2020 +-+-+ │ │ │ │ +0002c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c330: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002c320: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0002c330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c370: 2d2d 2d2d 2d2b 0a0a 496e 2074 6869 7320 -----+..In this │ │ │ │ -0002c380: 6361 7365 2061 7320 696e 2061 6c6c 206f case as in all o │ │ │ │ -0002c390: 7468 6572 7320 7765 2068 6176 6520 6578 thers we have ex │ │ │ │ -0002c3a0: 616d 696e 6564 2c20 6772 6561 7465 7220 amined, greater │ │ │ │ -0002c3b0: 224f 7074 696d 6973 6d22 2069 7320 6e6f "Optimism" is no │ │ │ │ -0002c3c0: 740a 6a75 7374 6966 6965 642c 2061 6e64 t.justified, and │ │ │ │ -0002c3d0: 2074 6875 7320 6d61 7472 6978 4661 6374 thus matrixFact │ │ │ │ -0002c3e0: 6f72 697a 6174 696f 6e28 6666 2c20 6869 orization(ff, hi │ │ │ │ -0002c3f0: 6768 5379 7a79 6779 284d 302c 204f 7074 ghSyzygy(M0, Opt │ │ │ │ -0002c400: 696d 6973 6d3d 3e31 2929 3b20 776f 756c imism=>1)); woul │ │ │ │ -0002c410: 640a 7072 6f64 7563 6520 616e 2065 7272 d.produce an err │ │ │ │ -0002c420: 6f72 2e0a 0a43 6176 6561 740a 3d3d 3d3d or...Caveat.==== │ │ │ │ -0002c430: 3d3d 0a0a 4120 6275 6720 696e 2074 6865 ==..A bug in the │ │ │ │ -0002c440: 2074 6f74 616c 2045 7874 2073 6372 6970 total Ext scrip │ │ │ │ -0002c450: 7420 6d65 616e 7320 7468 6174 2074 6865 t means that the │ │ │ │ -0002c460: 206f 6464 4578 744d 6f64 756c 6520 6973 oddExtModule is │ │ │ │ -0002c470: 2073 6f6d 6574 696d 6573 207a 6572 6f2c sometimes zero, │ │ │ │ -0002c480: 0a61 6e64 2074 6869 7320 6361 6e20 6361 .and this can ca │ │ │ │ -0002c490: 7573 6520 6120 7772 6f6e 6720 7661 6c75 use a wrong valu │ │ │ │ -0002c4a0: 6520 746f 2062 6520 7265 7475 726e 6564 e to be returned │ │ │ │ -0002c4b0: 2e0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d ...See also.==== │ │ │ │ -0002c4c0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -0002c4d0: 6576 656e 4578 744d 6f64 756c 653a 2065 evenExtModule: e │ │ │ │ -0002c4e0: 7665 6e45 7874 4d6f 6475 6c65 2c20 2d2d venExtModule, -- │ │ │ │ -0002c4f0: 2065 7665 6e20 7061 7274 206f 6620 4578 even part of Ex │ │ │ │ -0002c500: 745e 2a28 4d2c 6b29 206f 7665 7220 610a t^*(M,k) over a. │ │ │ │ -0002c510: 2020 2020 636f 6d70 6c65 7465 2069 6e74 complete int │ │ │ │ -0002c520: 6572 7365 6374 696f 6e20 6173 206d 6f64 ersection as mod │ │ │ │ -0002c530: 756c 6520 6f76 6572 2043 4920 6f70 6572 ule over CI oper │ │ │ │ -0002c540: 6174 6f72 2072 696e 670a 2020 2a20 2a6e ator ring. * *n │ │ │ │ -0002c550: 6f74 6520 6f64 6445 7874 4d6f 6475 6c65 ote oddExtModule │ │ │ │ -0002c560: 3a20 6f64 6445 7874 4d6f 6475 6c65 2c20 : oddExtModule, │ │ │ │ -0002c570: 2d2d 206f 6464 2070 6172 7420 6f66 2045 -- odd part of E │ │ │ │ -0002c580: 7874 5e2a 284d 2c6b 2920 6f76 6572 2061 xt^*(M,k) over a │ │ │ │ -0002c590: 2063 6f6d 706c 6574 650a 2020 2020 696e complete. in │ │ │ │ -0002c5a0: 7465 7273 6563 7469 6f6e 2061 7320 6d6f tersection as mo │ │ │ │ -0002c5b0: 6475 6c65 206f 7665 7220 4349 206f 7065 dule over CI ope │ │ │ │ -0002c5c0: 7261 746f 7220 7269 6e67 0a20 202a 202a rator ring. * * │ │ │ │ -0002c5d0: 6e6f 7465 206d 6642 6f75 6e64 3a20 6d66 note mfBound: mf │ │ │ │ -0002c5e0: 426f 756e 642c 202d 2d20 6465 7465 726d Bound, -- determ │ │ │ │ -0002c5f0: 696e 6573 2068 6f77 2068 6967 6820 6120 ines how high a │ │ │ │ -0002c600: 7379 7a79 6779 2074 6f20 7461 6b65 2066 syzygy to take f │ │ │ │ -0002c610: 6f72 0a20 2020 2022 6d61 7472 6978 4661 or. "matrixFa │ │ │ │ -0002c620: 6374 6f72 697a 6174 696f 6e22 0a20 202a ctorization". * │ │ │ │ -0002c630: 202a 6e6f 7465 206d 6174 7269 7846 6163 *note matrixFac │ │ │ │ -0002c640: 746f 7269 7a61 7469 6f6e 3a20 6d61 7472 torization: matr │ │ │ │ -0002c650: 6978 4661 6374 6f72 697a 6174 696f 6e2c ixFactorization, │ │ │ │ -0002c660: 202d 2d20 4d61 7073 2069 6e20 6120 6869 -- Maps in a hi │ │ │ │ -0002c670: 6768 6572 0a20 2020 2063 6f64 696d 656e gher. codimen │ │ │ │ -0002c680: 7369 6f6e 206d 6174 7269 7820 6661 6374 sion matrix fact │ │ │ │ -0002c690: 6f72 697a 6174 696f 6e0a 0a57 6179 7320 orization..Ways │ │ │ │ -0002c6a0: 746f 2075 7365 2068 6967 6853 797a 7967 to use highSyzyg │ │ │ │ -0002c6b0: 793a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d y:.============= │ │ │ │ -0002c6c0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -0002c6d0: 2268 6967 6853 797a 7967 7928 4d6f 6475 "highSyzygy(Modu │ │ │ │ -0002c6e0: 6c65 2922 0a0a 466f 7220 7468 6520 7072 le)"..For the pr │ │ │ │ -0002c6f0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -0002c700: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -0002c710: 206f 626a 6563 7420 2a6e 6f74 6520 6869 object *note hi │ │ │ │ -0002c720: 6768 5379 7a79 6779 3a20 6869 6768 5379 ghSyzygy: highSy │ │ │ │ -0002c730: 7a79 6779 2c20 6973 2061 202a 6e6f 7465 zygy, is a *note │ │ │ │ -0002c740: 206d 6574 686f 6420 6675 6e63 7469 6f6e method function │ │ │ │ -0002c750: 2077 6974 680a 6f70 7469 6f6e 733a 2028 with.options: ( │ │ │ │ -0002c760: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ -0002c770: 686f 6446 756e 6374 696f 6e57 6974 684f hodFunctionWithO │ │ │ │ -0002c780: 7074 696f 6e73 2c2e 0a0a 2d2d 2d2d 2d2d ptions,...------ │ │ │ │ +0002c360: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a49 6e20 ----------+..In │ │ │ │ +0002c370: 7468 6973 2063 6173 6520 6173 2069 6e20 this case as in │ │ │ │ +0002c380: 616c 6c20 6f74 6865 7273 2077 6520 6861 all others we ha │ │ │ │ +0002c390: 7665 2065 7861 6d69 6e65 642c 2067 7265 ve examined, gre │ │ │ │ +0002c3a0: 6174 6572 2022 4f70 7469 6d69 736d 2220 ater "Optimism" │ │ │ │ +0002c3b0: 6973 206e 6f74 0a6a 7573 7469 6669 6564 is not.justified │ │ │ │ +0002c3c0: 2c20 616e 6420 7468 7573 206d 6174 7269 , and thus matri │ │ │ │ +0002c3d0: 7846 6163 746f 7269 7a61 7469 6f6e 2866 xFactorization(f │ │ │ │ +0002c3e0: 662c 2068 6967 6853 797a 7967 7928 4d30 f, highSyzygy(M0 │ │ │ │ +0002c3f0: 2c20 4f70 7469 6d69 736d 3d3e 3129 293b , Optimism=>1)); │ │ │ │ +0002c400: 2077 6f75 6c64 0a70 726f 6475 6365 2061 would.produce a │ │ │ │ +0002c410: 6e20 6572 726f 722e 0a0a 4361 7665 6174 n error...Caveat │ │ │ │ +0002c420: 0a3d 3d3d 3d3d 3d0a 0a41 2062 7567 2069 .======..A bug i │ │ │ │ +0002c430: 6e20 7468 6520 746f 7461 6c20 4578 7420 n the total Ext │ │ │ │ +0002c440: 7363 7269 7074 206d 6561 6e73 2074 6861 script means tha │ │ │ │ +0002c450: 7420 7468 6520 6f64 6445 7874 4d6f 6475 t the oddExtModu │ │ │ │ +0002c460: 6c65 2069 7320 736f 6d65 7469 6d65 7320 le is sometimes │ │ │ │ +0002c470: 7a65 726f 2c0a 616e 6420 7468 6973 2063 zero,.and this c │ │ │ │ +0002c480: 616e 2063 6175 7365 2061 2077 726f 6e67 an cause a wrong │ │ │ │ +0002c490: 2076 616c 7565 2074 6f20 6265 2072 6574 value to be ret │ │ │ │ +0002c4a0: 7572 6e65 642e 0a0a 5365 6520 616c 736f urned...See also │ │ │ │ +0002c4b0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +0002c4c0: 6e6f 7465 2065 7665 6e45 7874 4d6f 6475 note evenExtModu │ │ │ │ +0002c4d0: 6c65 3a20 6576 656e 4578 744d 6f64 756c le: evenExtModul │ │ │ │ +0002c4e0: 652c 202d 2d20 6576 656e 2070 6172 7420 e, -- even part │ │ │ │ +0002c4f0: 6f66 2045 7874 5e2a 284d 2c6b 2920 6f76 of Ext^*(M,k) ov │ │ │ │ +0002c500: 6572 2061 0a20 2020 2063 6f6d 706c 6574 er a. complet │ │ │ │ +0002c510: 6520 696e 7465 7273 6563 7469 6f6e 2061 e intersection a │ │ │ │ +0002c520: 7320 6d6f 6475 6c65 206f 7665 7220 4349 s module over CI │ │ │ │ +0002c530: 206f 7065 7261 746f 7220 7269 6e67 0a20 operator ring. │ │ │ │ +0002c540: 202a 202a 6e6f 7465 206f 6464 4578 744d * *note oddExtM │ │ │ │ +0002c550: 6f64 756c 653a 206f 6464 4578 744d 6f64 odule: oddExtMod │ │ │ │ +0002c560: 756c 652c 202d 2d20 6f64 6420 7061 7274 ule, -- odd part │ │ │ │ +0002c570: 206f 6620 4578 745e 2a28 4d2c 6b29 206f of Ext^*(M,k) o │ │ │ │ +0002c580: 7665 7220 6120 636f 6d70 6c65 7465 0a20 ver a complete. │ │ │ │ +0002c590: 2020 2069 6e74 6572 7365 6374 696f 6e20 intersection │ │ │ │ +0002c5a0: 6173 206d 6f64 756c 6520 6f76 6572 2043 as module over C │ │ │ │ +0002c5b0: 4920 6f70 6572 6174 6f72 2072 696e 670a I operator ring. │ │ │ │ +0002c5c0: 2020 2a20 2a6e 6f74 6520 6d66 426f 756e * *note mfBoun │ │ │ │ +0002c5d0: 643a 206d 6642 6f75 6e64 2c20 2d2d 2064 d: mfBound, -- d │ │ │ │ +0002c5e0: 6574 6572 6d69 6e65 7320 686f 7720 6869 etermines how hi │ │ │ │ +0002c5f0: 6768 2061 2073 797a 7967 7920 746f 2074 gh a syzygy to t │ │ │ │ +0002c600: 616b 6520 666f 720a 2020 2020 226d 6174 ake for. "mat │ │ │ │ +0002c610: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ +0002c620: 220a 2020 2a20 2a6e 6f74 6520 6d61 7472 ". * *note matr │ │ │ │ +0002c630: 6978 4661 6374 6f72 697a 6174 696f 6e3a ixFactorization: │ │ │ │ +0002c640: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ +0002c650: 7469 6f6e 2c20 2d2d 204d 6170 7320 696e tion, -- Maps in │ │ │ │ +0002c660: 2061 2068 6967 6865 720a 2020 2020 636f a higher. co │ │ │ │ +0002c670: 6469 6d65 6e73 696f 6e20 6d61 7472 6978 dimension matrix │ │ │ │ +0002c680: 2066 6163 746f 7269 7a61 7469 6f6e 0a0a factorization.. │ │ │ │ +0002c690: 5761 7973 2074 6f20 7573 6520 6869 6768 Ways to use high │ │ │ │ +0002c6a0: 5379 7a79 6779 3a0a 3d3d 3d3d 3d3d 3d3d Syzygy:.======== │ │ │ │ +0002c6b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0002c6c0: 0a20 202a 2022 6869 6768 5379 7a79 6779 . * "highSyzygy │ │ │ │ +0002c6d0: 284d 6f64 756c 6529 220a 0a46 6f72 2074 (Module)"..For t │ │ │ │ +0002c6e0: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +0002c6f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0002c700: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +0002c710: 7465 2068 6967 6853 797a 7967 793a 2068 te highSyzygy: h │ │ │ │ +0002c720: 6967 6853 797a 7967 792c 2069 7320 6120 ighSyzygy, is a │ │ │ │ +0002c730: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ +0002c740: 6374 696f 6e20 7769 7468 0a6f 7074 696f ction with.optio │ │ │ │ +0002c750: 6e73 3a20 284d 6163 6175 6c61 7932 446f ns: (Macaulay2Do │ │ │ │ +0002c760: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ +0002c770: 5769 7468 4f70 7469 6f6e 732c 2e0a 0a2d WithOptions,...- │ │ │ │ +0002c780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c7d0: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -0002c7e0: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -0002c7f0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -0002c800: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -0002c810: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -0002c820: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -0002c830: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -0002c840: 2f0a 436f 6d70 6c65 7465 496e 7465 7273 /.CompleteInters │ │ │ │ -0002c850: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ -0002c860: 732e 6d32 3a33 3330 393a 302e 0a1f 0a46 s.m2:3309:0....F │ │ │ │ -0002c870: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ -0002c880: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ -0002c890: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ -0002c8a0: 2068 4d61 7073 2c20 4e65 7874 3a20 486f hMaps, Next: Ho │ │ │ │ -0002c8b0: 6d57 6974 6843 6f6d 706f 6e65 6e74 732c mWithComponents, │ │ │ │ -0002c8c0: 2050 7265 763a 2068 6967 6853 797a 7967 Prev: highSyzyg │ │ │ │ -0002c8d0: 792c 2055 703a 2054 6f70 0a0a 684d 6170 y, Up: Top..hMap │ │ │ │ -0002c8e0: 7320 2d2d 206c 6973 7420 7468 6520 6d61 s -- list the ma │ │ │ │ -0002c8f0: 7073 2020 6828 7029 3a20 415f 3028 7029 ps h(p): A_0(p) │ │ │ │ -0002c900: 2d2d 3e20 415f 3128 7029 2069 6e20 6120 --> A_1(p) in a │ │ │ │ -0002c910: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ -0002c920: 696f 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ion.************ │ │ │ │ +0002c7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +0002c7d0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +0002c7e0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +0002c7f0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +0002c800: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +0002c810: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +0002c820: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +0002c830: 6b61 6765 732f 0a43 6f6d 706c 6574 6549 kages/.CompleteI │ │ │ │ +0002c840: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ +0002c850: 7574 696f 6e73 2e6d 323a 3333 3039 3a30 utions.m2:3309:0 │ │ │ │ +0002c860: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ +0002c870: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ +0002c880: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ +0002c890: 4e6f 6465 3a20 684d 6170 732c 204e 6578 Node: hMaps, Nex │ │ │ │ +0002c8a0: 743a 2048 6f6d 5769 7468 436f 6d70 6f6e t: HomWithCompon │ │ │ │ +0002c8b0: 656e 7473 2c20 5072 6576 3a20 6869 6768 ents, Prev: high │ │ │ │ +0002c8c0: 5379 7a79 6779 2c20 5570 3a20 546f 700a Syzygy, Up: Top. │ │ │ │ +0002c8d0: 0a68 4d61 7073 202d 2d20 6c69 7374 2074 .hMaps -- list t │ │ │ │ +0002c8e0: 6865 206d 6170 7320 2068 2870 293a 2041 he maps h(p): A │ │ │ │ +0002c8f0: 5f30 2870 292d 2d3e 2041 5f31 2870 2920 _0(p)--> A_1(p) │ │ │ │ +0002c900: 696e 2061 206d 6174 7269 7846 6163 746f in a matrixFacto │ │ │ │ +0002c910: 7269 7a61 7469 6f6e 0a2a 2a2a 2a2a 2a2a rization.******* │ │ │ │ +0002c920: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002c930: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002c940: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002c950: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002c960: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -0002c970: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -0002c980: 2068 4d61 7073 203d 2068 4d61 7073 206d hMaps = hMaps m │ │ │ │ -0002c990: 660a 2020 2a20 496e 7075 7473 3a0a 2020 f. * Inputs:. │ │ │ │ -0002c9a0: 2020 2020 2a20 6d66 2c20 6120 2a6e 6f74 * mf, a *not │ │ │ │ -0002c9b0: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ -0002c9c0: 7932 446f 6329 4c69 7374 2c2c 206f 7574 y2Doc)List,, out │ │ │ │ -0002c9d0: 7075 7420 6f66 2061 206d 6174 7269 7846 put of a matrixF │ │ │ │ -0002c9e0: 6163 746f 7269 7a61 7469 6f6e 0a20 2020 actorization. │ │ │ │ -0002c9f0: 2020 2020 2063 6f6d 7075 7461 7469 6f6e computation │ │ │ │ -0002ca00: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -0002ca10: 2020 2020 2a20 684d 6170 732c 2061 202a * hMaps, a * │ │ │ │ -0002ca20: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ -0002ca30: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ -0002ca40: 6c69 7374 206d 6174 7269 6365 7320 2468 list matrices $h │ │ │ │ -0002ca50: 5f70 3a20 415f 3028 7029 5c74 6f0a 2020 _p: A_0(p)\to. │ │ │ │ -0002ca60: 2020 2020 2020 415f 3128 7029 242e 2054 A_1(p)$. T │ │ │ │ -0002ca70: 6865 2073 6f75 7263 6573 2061 6e64 2074 he sources and t │ │ │ │ -0002ca80: 6172 6765 7473 206f 6620 7468 6573 6520 argets of these │ │ │ │ -0002ca90: 6d61 7073 2068 6176 6520 7468 6520 636f maps have the co │ │ │ │ -0002caa0: 6d70 6f6e 656e 7473 0a20 2020 2020 2020 mponents. │ │ │ │ -0002cab0: 2042 5f73 2870 292e 0a0a 4465 7363 7269 B_s(p)...Descri │ │ │ │ -0002cac0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -0002cad0: 3d0a 0a53 6565 2074 6865 2064 6f63 756d =..See the docum │ │ │ │ -0002cae0: 656e 7461 7469 6f6e 2066 6f72 206d 6174 entation for mat │ │ │ │ -0002caf0: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -0002cb00: 2066 6f72 2061 6e20 6578 616d 706c 652e for an example. │ │ │ │ -0002cb10: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -0002cb20: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 206d ===.. * *note m │ │ │ │ -0002cb30: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ -0002cb40: 6f6e 3a20 6d61 7472 6978 4661 6374 6f72 on: matrixFactor │ │ │ │ -0002cb50: 697a 6174 696f 6e2c 202d 2d20 4d61 7073 ization, -- Maps │ │ │ │ -0002cb60: 2069 6e20 6120 6869 6768 6572 0a20 2020 in a higher. │ │ │ │ -0002cb70: 2063 6f64 696d 656e 7369 6f6e 206d 6174 codimension mat │ │ │ │ -0002cb80: 7269 7820 6661 6374 6f72 697a 6174 696f rix factorizatio │ │ │ │ -0002cb90: 6e0a 2020 2a20 2a6e 6f74 6520 644d 6170 n. * *note dMap │ │ │ │ -0002cba0: 733a 2064 4d61 7073 2c20 2d2d 206c 6973 s: dMaps, -- lis │ │ │ │ -0002cbb0: 7420 7468 6520 6d61 7073 2020 6428 7029 t the maps d(p) │ │ │ │ -0002cbc0: 3a41 5f31 2870 292d 2d3e 2041 5f30 2870 :A_1(p)--> A_0(p │ │ │ │ -0002cbd0: 2920 696e 2061 0a20 2020 206d 6174 7269 ) in a. matri │ │ │ │ -0002cbe0: 7846 6163 746f 7269 7a61 7469 6f6e 0a20 xFactorization. │ │ │ │ -0002cbf0: 202a 202a 6e6f 7465 2042 5261 6e6b 733a * *note BRanks: │ │ │ │ -0002cc00: 2042 5261 6e6b 732c 202d 2d20 7261 6e6b BRanks, -- rank │ │ │ │ -0002cc10: 7320 6f66 2074 6865 206d 6f64 756c 6573 s of the modules │ │ │ │ -0002cc20: 2042 5f69 2864 2920 696e 2061 0a20 2020 B_i(d) in a. │ │ │ │ -0002cc30: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ -0002cc40: 7469 6f6e 0a20 202a 202a 6e6f 7465 2062 tion. * *note b │ │ │ │ -0002cc50: 4d61 7073 3a20 624d 6170 732c 202d 2d20 Maps: bMaps, -- │ │ │ │ -0002cc60: 6c69 7374 2074 6865 206d 6170 7320 2064 list the maps d │ │ │ │ -0002cc70: 5f70 3a42 5f31 2870 292d 2d3e 425f 3028 _p:B_1(p)-->B_0( │ │ │ │ -0002cc80: 7029 2069 6e20 610a 2020 2020 6d61 7472 p) in a. matr │ │ │ │ -0002cc90: 6978 4661 6374 6f72 697a 6174 696f 6e0a ixFactorization. │ │ │ │ -0002cca0: 2020 2a20 2a6e 6f74 6520 7073 694d 6170 * *note psiMap │ │ │ │ -0002ccb0: 733a 2070 7369 4d61 7073 2c20 2d2d 206c s: psiMaps, -- l │ │ │ │ -0002ccc0: 6973 7420 7468 6520 6d61 7073 2020 7073 ist the maps ps │ │ │ │ -0002ccd0: 6928 7029 3a20 425f 3128 7029 202d 2d3e i(p): B_1(p) --> │ │ │ │ -0002cce0: 2041 5f30 2870 2d31 2920 696e 2061 0a20 A_0(p-1) in a. │ │ │ │ -0002ccf0: 2020 206d 6174 7269 7846 6163 746f 7269 matrixFactori │ │ │ │ -0002cd00: 7a61 7469 6f6e 0a0a 5761 7973 2074 6f20 zation..Ways to │ │ │ │ -0002cd10: 7573 6520 684d 6170 733a 0a3d 3d3d 3d3d use hMaps:.===== │ │ │ │ -0002cd20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ -0002cd30: 202a 2022 684d 6170 7328 4c69 7374 2922 * "hMaps(List)" │ │ │ │ -0002cd40: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -0002cd50: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -0002cd60: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -0002cd70: 6563 7420 2a6e 6f74 6520 684d 6170 733a ect *note hMaps: │ │ │ │ -0002cd80: 2068 4d61 7073 2c20 6973 2061 202a 6e6f hMaps, is a *no │ │ │ │ -0002cd90: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ -0002cda0: 6f6e 3a0a 284d 6163 6175 6c61 7932 446f on:.(Macaulay2Do │ │ │ │ -0002cdb0: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -0002cdc0: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ +0002c960: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +0002c970: 2020 2020 2020 684d 6170 7320 3d20 684d hMaps = hM │ │ │ │ +0002c980: 6170 7320 6d66 0a20 202a 2049 6e70 7574 aps mf. * Input │ │ │ │ +0002c990: 733a 0a20 2020 2020 202a 206d 662c 2061 s:. * mf, a │ │ │ │ +0002c9a0: 202a 6e6f 7465 206c 6973 743a 2028 4d61 *note list: (Ma │ │ │ │ +0002c9b0: 6361 756c 6179 3244 6f63 294c 6973 742c caulay2Doc)List, │ │ │ │ +0002c9c0: 2c20 6f75 7470 7574 206f 6620 6120 6d61 , output of a ma │ │ │ │ +0002c9d0: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ +0002c9e0: 6e0a 2020 2020 2020 2020 636f 6d70 7574 n. comput │ │ │ │ +0002c9f0: 6174 696f 6e0a 2020 2a20 4f75 7470 7574 ation. * Output │ │ │ │ +0002ca00: 733a 0a20 2020 2020 202a 2068 4d61 7073 s:. * hMaps │ │ │ │ +0002ca10: 2c20 6120 2a6e 6f74 6520 6c69 7374 3a20 , a *note list: │ │ │ │ +0002ca20: 284d 6163 6175 6c61 7932 446f 6329 4c69 (Macaulay2Doc)Li │ │ │ │ +0002ca30: 7374 2c2c 206c 6973 7420 6d61 7472 6963 st,, list matric │ │ │ │ +0002ca40: 6573 2024 685f 703a 2041 5f30 2870 295c es $h_p: A_0(p)\ │ │ │ │ +0002ca50: 746f 0a20 2020 2020 2020 2041 5f31 2870 to. A_1(p │ │ │ │ +0002ca60: 2924 2e20 5468 6520 736f 7572 6365 7320 )$. The sources │ │ │ │ +0002ca70: 616e 6420 7461 7267 6574 7320 6f66 2074 and targets of t │ │ │ │ +0002ca80: 6865 7365 206d 6170 7320 6861 7665 2074 hese maps have t │ │ │ │ +0002ca90: 6865 2063 6f6d 706f 6e65 6e74 730a 2020 he components. │ │ │ │ +0002caa0: 2020 2020 2020 425f 7328 7029 2e0a 0a44 B_s(p)...D │ │ │ │ +0002cab0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +0002cac0: 3d3d 3d3d 3d3d 0a0a 5365 6520 7468 6520 ======..See the │ │ │ │ +0002cad0: 646f 6375 6d65 6e74 6174 696f 6e20 666f documentation fo │ │ │ │ +0002cae0: 7220 6d61 7472 6978 4661 6374 6f72 697a r matrixFactoriz │ │ │ │ +0002caf0: 6174 696f 6e20 666f 7220 616e 2065 7861 ation for an exa │ │ │ │ +0002cb00: 6d70 6c65 2e0a 0a53 6565 2061 6c73 6f0a mple...See also. │ │ │ │ +0002cb10: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +0002cb20: 6f74 6520 6d61 7472 6978 4661 6374 6f72 ote matrixFactor │ │ │ │ +0002cb30: 697a 6174 696f 6e3a 206d 6174 7269 7846 ization: matrixF │ │ │ │ +0002cb40: 6163 746f 7269 7a61 7469 6f6e 2c20 2d2d actorization, -- │ │ │ │ +0002cb50: 204d 6170 7320 696e 2061 2068 6967 6865 Maps in a highe │ │ │ │ +0002cb60: 720a 2020 2020 636f 6469 6d65 6e73 696f r. codimensio │ │ │ │ +0002cb70: 6e20 6d61 7472 6978 2066 6163 746f 7269 n matrix factori │ │ │ │ +0002cb80: 7a61 7469 6f6e 0a20 202a 202a 6e6f 7465 zation. * *note │ │ │ │ +0002cb90: 2064 4d61 7073 3a20 644d 6170 732c 202d dMaps: dMaps, - │ │ │ │ +0002cba0: 2d20 6c69 7374 2074 6865 206d 6170 7320 - list the maps │ │ │ │ +0002cbb0: 2064 2870 293a 415f 3128 7029 2d2d 3e20 d(p):A_1(p)--> │ │ │ │ +0002cbc0: 415f 3028 7029 2069 6e20 610a 2020 2020 A_0(p) in a. │ │ │ │ +0002cbd0: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ +0002cbe0: 696f 6e0a 2020 2a20 2a6e 6f74 6520 4252 ion. * *note BR │ │ │ │ +0002cbf0: 616e 6b73 3a20 4252 616e 6b73 2c20 2d2d anks: BRanks, -- │ │ │ │ +0002cc00: 2072 616e 6b73 206f 6620 7468 6520 6d6f ranks of the mo │ │ │ │ +0002cc10: 6475 6c65 7320 425f 6928 6429 2069 6e20 dules B_i(d) in │ │ │ │ +0002cc20: 610a 2020 2020 6d61 7472 6978 4661 6374 a. matrixFact │ │ │ │ +0002cc30: 6f72 697a 6174 696f 6e0a 2020 2a20 2a6e orization. * *n │ │ │ │ +0002cc40: 6f74 6520 624d 6170 733a 2062 4d61 7073 ote bMaps: bMaps │ │ │ │ +0002cc50: 2c20 2d2d 206c 6973 7420 7468 6520 6d61 , -- list the ma │ │ │ │ +0002cc60: 7073 2020 645f 703a 425f 3128 7029 2d2d ps d_p:B_1(p)-- │ │ │ │ +0002cc70: 3e42 5f30 2870 2920 696e 2061 0a20 2020 >B_0(p) in a. │ │ │ │ +0002cc80: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ +0002cc90: 7469 6f6e 0a20 202a 202a 6e6f 7465 2070 tion. * *note p │ │ │ │ +0002cca0: 7369 4d61 7073 3a20 7073 694d 6170 732c siMaps: psiMaps, │ │ │ │ +0002ccb0: 202d 2d20 6c69 7374 2074 6865 206d 6170 -- list the map │ │ │ │ +0002ccc0: 7320 2070 7369 2870 293a 2042 5f31 2870 s psi(p): B_1(p │ │ │ │ +0002ccd0: 2920 2d2d 3e20 415f 3028 702d 3129 2069 ) --> A_0(p-1) i │ │ │ │ +0002cce0: 6e20 610a 2020 2020 6d61 7472 6978 4661 n a. matrixFa │ │ │ │ +0002ccf0: 6374 6f72 697a 6174 696f 6e0a 0a57 6179 ctorization..Way │ │ │ │ +0002cd00: 7320 746f 2075 7365 2068 4d61 7073 3a0a s to use hMaps:. │ │ │ │ +0002cd10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0002cd20: 3d3d 0a0a 2020 2a20 2268 4d61 7073 284c ==.. * "hMaps(L │ │ │ │ +0002cd30: 6973 7429 220a 0a46 6f72 2074 6865 2070 ist)"..For the p │ │ │ │ +0002cd40: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +0002cd50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +0002cd60: 6520 6f62 6a65 6374 202a 6e6f 7465 2068 e object *note h │ │ │ │ +0002cd70: 4d61 7073 3a20 684d 6170 732c 2069 7320 Maps: hMaps, is │ │ │ │ +0002cd80: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ +0002cd90: 756e 6374 696f 6e3a 0a28 4d61 6361 756c unction:.(Macaul │ │ │ │ +0002cda0: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ +0002cdb0: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ +0002cdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ce00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ce10: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -0002ce20: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -0002ce30: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -0002ce40: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -0002ce50: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -0002ce60: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -0002ce70: 322f 7061 636b 6167 6573 2f0a 436f 6d70 2/packages/.Comp │ │ │ │ -0002ce80: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ -0002ce90: 5265 736f 6c75 7469 6f6e 732e 6d32 3a34 Resolutions.m2:4 │ │ │ │ -0002cea0: 3435 373a 302e 0a1f 0a46 696c 653a 2043 457:0....File: C │ │ │ │ -0002ceb0: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ -0002cec0: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ -0002ced0: 6e66 6f2c 204e 6f64 653a 2048 6f6d 5769 nfo, Node: HomWi │ │ │ │ -0002cee0: 7468 436f 6d70 6f6e 656e 7473 2c20 4e65 thComponents, Ne │ │ │ │ -0002cef0: 7874 3a20 696e 6669 6e69 7465 4265 7474 xt: infiniteBett │ │ │ │ -0002cf00: 694e 756d 6265 7273 2c20 5072 6576 3a20 iNumbers, Prev: │ │ │ │ -0002cf10: 684d 6170 732c 2055 703a 2054 6f70 0a0a hMaps, Up: Top.. │ │ │ │ -0002cf20: 486f 6d57 6974 6843 6f6d 706f 6e65 6e74 HomWithComponent │ │ │ │ -0002cf30: 7320 2d2d 2063 6f6d 7075 7465 7320 486f s -- computes Ho │ │ │ │ -0002cf40: 6d2c 2070 7265 7365 7276 696e 6720 6469 m, preserving di │ │ │ │ -0002cf50: 7265 6374 2073 756d 2069 6e66 6f72 6d61 rect sum informa │ │ │ │ -0002cf60: 7469 6f6e 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a tion.*********** │ │ │ │ +0002ce00: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +0002ce10: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +0002ce20: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +0002ce30: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +0002ce40: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +0002ce50: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +0002ce60: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +0002ce70: 0a43 6f6d 706c 6574 6549 6e74 6572 7365 .CompleteInterse │ │ │ │ +0002ce80: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ +0002ce90: 2e6d 323a 3434 3537 3a30 2e0a 1f0a 4669 .m2:4457:0....Fi │ │ │ │ +0002cea0: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ +0002ceb0: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ +0002cec0: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ +0002ced0: 486f 6d57 6974 6843 6f6d 706f 6e65 6e74 HomWithComponent │ │ │ │ +0002cee0: 732c 204e 6578 743a 2069 6e66 696e 6974 s, Next: infinit │ │ │ │ +0002cef0: 6542 6574 7469 4e75 6d62 6572 732c 2050 eBettiNumbers, P │ │ │ │ +0002cf00: 7265 763a 2068 4d61 7073 2c20 5570 3a20 rev: hMaps, Up: │ │ │ │ +0002cf10: 546f 700a 0a48 6f6d 5769 7468 436f 6d70 Top..HomWithComp │ │ │ │ +0002cf20: 6f6e 656e 7473 202d 2d20 636f 6d70 7574 onents -- comput │ │ │ │ +0002cf30: 6573 2048 6f6d 2c20 7072 6573 6572 7669 es Hom, preservi │ │ │ │ +0002cf40: 6e67 2064 6972 6563 7420 7375 6d20 696e ng direct sum in │ │ │ │ +0002cf50: 666f 726d 6174 696f 6e0a 2a2a 2a2a 2a2a formation.****** │ │ │ │ +0002cf60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002cf70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002cf80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002cf90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002cfa0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ -0002cfb0: 7361 6765 3a20 0a20 2020 2020 2020 2048 sage: . H │ │ │ │ -0002cfc0: 203d 2048 6f6d 284d 2c4e 290a 2020 2a20 = Hom(M,N). * │ │ │ │ -0002cfd0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -0002cfe0: 4d2c 2061 202a 6e6f 7465 206d 6f64 756c M, a *note modul │ │ │ │ -0002cff0: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ -0002d000: 294d 6f64 756c 652c 2c20 0a20 2020 2020 )Module,, . │ │ │ │ -0002d010: 202a 204e 2c20 6120 2a6e 6f74 6520 6d6f * N, a *note mo │ │ │ │ -0002d020: 6475 6c65 3a20 284d 6163 6175 6c61 7932 dule: (Macaulay2 │ │ │ │ -0002d030: 446f 6329 4d6f 6475 6c65 2c2c 200a 2020 Doc)Module,, . │ │ │ │ -0002d040: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -0002d050: 202a 2048 2c20 6120 2a6e 6f74 6520 6d6f * H, a *note mo │ │ │ │ -0002d060: 6475 6c65 3a20 284d 6163 6175 6c61 7932 dule: (Macaulay2 │ │ │ │ -0002d070: 446f 6329 4d6f 6475 6c65 2c2c 200a 0a44 Doc)Module,, ..D │ │ │ │ -0002d080: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -0002d090: 3d3d 3d3d 3d3d 0a0a 4966 204d 2061 6e64 ======..If M and │ │ │ │ -0002d0a0: 2f6f 7220 4e20 6172 6520 6469 7265 6374 /or N are direct │ │ │ │ -0002d0b0: 2073 756d 206d 6f64 756c 6573 2028 6973 sum modules (is │ │ │ │ -0002d0c0: 4469 7265 6374 5375 6d20 4d20 3d3d 2074 DirectSum M == t │ │ │ │ -0002d0d0: 7275 6529 2074 6865 6e20 4820 6973 2074 rue) then H is t │ │ │ │ -0002d0e0: 6865 0a64 6972 6563 7420 7375 6d20 6f66 he.direct sum of │ │ │ │ -0002d0f0: 2074 6865 2048 6f6d 7320 6265 7477 6565 the Homs betwee │ │ │ │ -0002d100: 6e20 7468 6520 636f 6d70 6f6e 656e 7473 n the components │ │ │ │ -0002d110: 2e20 5468 6973 2053 484f 554c 4420 6265 . This SHOULD be │ │ │ │ -0002d120: 2062 7569 6c74 2069 6e74 6f0a 486f 6d28 built into.Hom( │ │ │ │ -0002d130: 4d2c 4e29 2c20 6275 7420 6973 6e27 7420 M,N), but isn't │ │ │ │ -0002d140: 6173 206f 6620 4d32 2c20 762e 2031 2e37 as of M2, v. 1.7 │ │ │ │ -0002d150: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -0002d160: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2074 ===.. * *note t │ │ │ │ -0002d170: 656e 736f 7257 6974 6843 6f6d 706f 6e65 ensorWithCompone │ │ │ │ -0002d180: 6e74 733a 2074 656e 736f 7257 6974 6843 nts: tensorWithC │ │ │ │ -0002d190: 6f6d 706f 6e65 6e74 732c 202d 2d20 666f omponents, -- fo │ │ │ │ -0002d1a0: 726d 7320 7468 6520 7465 6e73 6f72 0a20 rms the tensor. │ │ │ │ -0002d1b0: 2020 2070 726f 6475 6374 2c20 7072 6573 product, pres │ │ │ │ -0002d1c0: 6572 7669 6e67 2064 6972 6563 7420 7375 erving direct su │ │ │ │ -0002d1d0: 6d20 696e 666f 726d 6174 696f 6e0a 2020 m information. │ │ │ │ -0002d1e0: 2a20 2a6e 6f74 6520 6475 616c 5769 7468 * *note dualWith │ │ │ │ -0002d1f0: 436f 6d70 6f6e 656e 7473 3a20 6475 616c Components: dual │ │ │ │ -0002d200: 5769 7468 436f 6d70 6f6e 656e 7473 2c20 WithComponents, │ │ │ │ -0002d210: 2d2d 2064 7561 6c20 6d6f 6475 6c65 2070 -- dual module p │ │ │ │ -0002d220: 7265 7365 7276 696e 670a 2020 2020 6469 reserving. di │ │ │ │ -0002d230: 7265 6374 2073 756d 2069 6e66 6f72 6d61 rect sum informa │ │ │ │ -0002d240: 7469 6f6e 0a0a 5761 7973 2074 6f20 7573 tion..Ways to us │ │ │ │ -0002d250: 6520 486f 6d57 6974 6843 6f6d 706f 6e65 e HomWithCompone │ │ │ │ -0002d260: 6e74 733a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d nts:.=========== │ │ │ │ -0002d270: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002d280: 3d3d 3d0a 0a20 202a 2022 486f 6d57 6974 ===.. * "HomWit │ │ │ │ -0002d290: 6843 6f6d 706f 6e65 6e74 7328 4d6f 6475 hComponents(Modu │ │ │ │ -0002d2a0: 6c65 2c4d 6f64 756c 6529 220a 0a46 6f72 le,Module)"..For │ │ │ │ -0002d2b0: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -0002d2c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002d2d0: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -0002d2e0: 6e6f 7465 2048 6f6d 5769 7468 436f 6d70 note HomWithComp │ │ │ │ -0002d2f0: 6f6e 656e 7473 3a20 486f 6d57 6974 6843 onents: HomWithC │ │ │ │ -0002d300: 6f6d 706f 6e65 6e74 732c 2069 7320 6120 omponents, is a │ │ │ │ -0002d310: 2a6e 6f74 6520 6d65 7468 6f64 0a66 756e *note method.fun │ │ │ │ -0002d320: 6374 696f 6e3a 2028 4d61 6361 756c 6179 ction: (Macaulay │ │ │ │ -0002d330: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ -0002d340: 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d ion,...--------- │ │ │ │ +0002cf90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0002cfa0: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +0002cfb0: 2020 2020 4820 3d20 486f 6d28 4d2c 4e29 H = Hom(M,N) │ │ │ │ +0002cfc0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +0002cfd0: 2020 202a 204d 2c20 6120 2a6e 6f74 6520 * M, a *note │ │ │ │ +0002cfe0: 6d6f 6475 6c65 3a20 284d 6163 6175 6c61 module: (Macaula │ │ │ │ +0002cff0: 7932 446f 6329 4d6f 6475 6c65 2c2c 200a y2Doc)Module,, . │ │ │ │ +0002d000: 2020 2020 2020 2a20 4e2c 2061 202a 6e6f * N, a *no │ │ │ │ +0002d010: 7465 206d 6f64 756c 653a 2028 4d61 6361 te module: (Maca │ │ │ │ +0002d020: 756c 6179 3244 6f63 294d 6f64 756c 652c ulay2Doc)Module, │ │ │ │ +0002d030: 2c20 0a20 202a 204f 7574 7075 7473 3a0a , . * Outputs:. │ │ │ │ +0002d040: 2020 2020 2020 2a20 482c 2061 202a 6e6f * H, a *no │ │ │ │ +0002d050: 7465 206d 6f64 756c 653a 2028 4d61 6361 te module: (Maca │ │ │ │ +0002d060: 756c 6179 3244 6f63 294d 6f64 756c 652c ulay2Doc)Module, │ │ │ │ +0002d070: 2c20 0a0a 4465 7363 7269 7074 696f 6e0a , ..Description. │ │ │ │ +0002d080: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a49 6620 ===========..If │ │ │ │ +0002d090: 4d20 616e 642f 6f72 204e 2061 7265 2064 M and/or N are d │ │ │ │ +0002d0a0: 6972 6563 7420 7375 6d20 6d6f 6475 6c65 irect sum module │ │ │ │ +0002d0b0: 7320 2869 7344 6972 6563 7453 756d 204d s (isDirectSum M │ │ │ │ +0002d0c0: 203d 3d20 7472 7565 2920 7468 656e 2048 == true) then H │ │ │ │ +0002d0d0: 2069 7320 7468 650a 6469 7265 6374 2073 is the.direct s │ │ │ │ +0002d0e0: 756d 206f 6620 7468 6520 486f 6d73 2062 um of the Homs b │ │ │ │ +0002d0f0: 6574 7765 656e 2074 6865 2063 6f6d 706f etween the compo │ │ │ │ +0002d100: 6e65 6e74 732e 2054 6869 7320 5348 4f55 nents. This SHOU │ │ │ │ +0002d110: 4c44 2062 6520 6275 696c 7420 696e 746f LD be built into │ │ │ │ +0002d120: 0a48 6f6d 284d 2c4e 292c 2062 7574 2069 .Hom(M,N), but i │ │ │ │ +0002d130: 736e 2774 2061 7320 6f66 204d 322c 2076 sn't as of M2, v │ │ │ │ +0002d140: 2e20 312e 370a 0a53 6565 2061 6c73 6f0a . 1.7..See also. │ │ │ │ +0002d150: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +0002d160: 6f74 6520 7465 6e73 6f72 5769 7468 436f ote tensorWithCo │ │ │ │ +0002d170: 6d70 6f6e 656e 7473 3a20 7465 6e73 6f72 mponents: tensor │ │ │ │ +0002d180: 5769 7468 436f 6d70 6f6e 656e 7473 2c20 WithComponents, │ │ │ │ +0002d190: 2d2d 2066 6f72 6d73 2074 6865 2074 656e -- forms the ten │ │ │ │ +0002d1a0: 736f 720a 2020 2020 7072 6f64 7563 742c sor. product, │ │ │ │ +0002d1b0: 2070 7265 7365 7276 696e 6720 6469 7265 preserving dire │ │ │ │ +0002d1c0: 6374 2073 756d 2069 6e66 6f72 6d61 7469 ct sum informati │ │ │ │ +0002d1d0: 6f6e 0a20 202a 202a 6e6f 7465 2064 7561 on. * *note dua │ │ │ │ +0002d1e0: 6c57 6974 6843 6f6d 706f 6e65 6e74 733a lWithComponents: │ │ │ │ +0002d1f0: 2064 7561 6c57 6974 6843 6f6d 706f 6e65 dualWithCompone │ │ │ │ +0002d200: 6e74 732c 202d 2d20 6475 616c 206d 6f64 nts, -- dual mod │ │ │ │ +0002d210: 756c 6520 7072 6573 6572 7669 6e67 0a20 ule preserving. │ │ │ │ +0002d220: 2020 2064 6972 6563 7420 7375 6d20 696e direct sum in │ │ │ │ +0002d230: 666f 726d 6174 696f 6e0a 0a57 6179 7320 formation..Ways │ │ │ │ +0002d240: 746f 2075 7365 2048 6f6d 5769 7468 436f to use HomWithCo │ │ │ │ +0002d250: 6d70 6f6e 656e 7473 3a0a 3d3d 3d3d 3d3d mponents:.====== │ │ │ │ +0002d260: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0002d270: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2248 ========.. * "H │ │ │ │ +0002d280: 6f6d 5769 7468 436f 6d70 6f6e 656e 7473 omWithComponents │ │ │ │ +0002d290: 284d 6f64 756c 652c 4d6f 6475 6c65 2922 (Module,Module)" │ │ │ │ +0002d2a0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0002d2b0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0002d2c0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0002d2d0: 6563 7420 2a6e 6f74 6520 486f 6d57 6974 ect *note HomWit │ │ │ │ +0002d2e0: 6843 6f6d 706f 6e65 6e74 733a 2048 6f6d hComponents: Hom │ │ │ │ +0002d2f0: 5769 7468 436f 6d70 6f6e 656e 7473 2c20 WithComponents, │ │ │ │ +0002d300: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ +0002d310: 640a 6675 6e63 7469 6f6e 3a20 284d 6163 d.function: (Mac │ │ │ │ +0002d320: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ +0002d330: 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d Function,...---- │ │ │ │ +0002d340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d390: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -0002d3a0: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -0002d3b0: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -0002d3c0: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -0002d3d0: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -0002d3e0: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -0002d3f0: 6c61 7932 2f70 6163 6b61 6765 732f 0a43 lay2/packages/.C │ │ │ │ -0002d400: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ -0002d410: 696f 6e52 6573 6f6c 7574 696f 6e73 2e6d ionResolutions.m │ │ │ │ -0002d420: 323a 3236 3435 3a30 2e0a 1f0a 4669 6c65 2:2645:0....File │ │ │ │ -0002d430: 3a20 436f 6d70 6c65 7465 496e 7465 7273 : CompleteInters │ │ │ │ -0002d440: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ -0002d450: 732e 696e 666f 2c20 4e6f 6465 3a20 696e s.info, Node: in │ │ │ │ -0002d460: 6669 6e69 7465 4265 7474 694e 756d 6265 finiteBettiNumbe │ │ │ │ -0002d470: 7273 2c20 4e65 7874 3a20 6973 4c69 6e65 rs, Next: isLine │ │ │ │ -0002d480: 6172 2c20 5072 6576 3a20 486f 6d57 6974 ar, Prev: HomWit │ │ │ │ -0002d490: 6843 6f6d 706f 6e65 6e74 732c 2055 703a hComponents, Up: │ │ │ │ -0002d4a0: 2054 6f70 0a0a 696e 6669 6e69 7465 4265 Top..infiniteBe │ │ │ │ -0002d4b0: 7474 694e 756d 6265 7273 202d 2d20 6265 ttiNumbers -- be │ │ │ │ -0002d4c0: 7474 6920 6e75 6d62 6572 7320 6f66 2066 tti numbers of f │ │ │ │ -0002d4d0: 696e 6974 6520 7265 736f 6c75 7469 6f6e inite resolution │ │ │ │ -0002d4e0: 2063 6f6d 7075 7465 6420 6672 6f6d 2061 computed from a │ │ │ │ -0002d4f0: 206d 6174 7269 7820 6661 6374 6f72 697a matrix factoriz │ │ │ │ -0002d500: 6174 696f 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a ation.********** │ │ │ │ +0002d380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +0002d390: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +0002d3a0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +0002d3b0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +0002d3c0: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +0002d3d0: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +0002d3e0: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +0002d3f0: 6573 2f0a 436f 6d70 6c65 7465 496e 7465 es/.CompleteInte │ │ │ │ +0002d400: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ +0002d410: 6f6e 732e 6d32 3a32 3634 353a 302e 0a1f ons.m2:2645:0... │ │ │ │ +0002d420: 0a46 696c 653a 2043 6f6d 706c 6574 6549 .File: CompleteI │ │ │ │ +0002d430: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ +0002d440: 7574 696f 6e73 2e69 6e66 6f2c 204e 6f64 utions.info, Nod │ │ │ │ +0002d450: 653a 2069 6e66 696e 6974 6542 6574 7469 e: infiniteBetti │ │ │ │ +0002d460: 4e75 6d62 6572 732c 204e 6578 743a 2069 Numbers, Next: i │ │ │ │ +0002d470: 734c 696e 6561 722c 2050 7265 763a 2048 sLinear, Prev: H │ │ │ │ +0002d480: 6f6d 5769 7468 436f 6d70 6f6e 656e 7473 omWithComponents │ │ │ │ +0002d490: 2c20 5570 3a20 546f 700a 0a69 6e66 696e , Up: Top..infin │ │ │ │ +0002d4a0: 6974 6542 6574 7469 4e75 6d62 6572 7320 iteBettiNumbers │ │ │ │ +0002d4b0: 2d2d 2062 6574 7469 206e 756d 6265 7273 -- betti numbers │ │ │ │ +0002d4c0: 206f 6620 6669 6e69 7465 2072 6573 6f6c of finite resol │ │ │ │ +0002d4d0: 7574 696f 6e20 636f 6d70 7574 6564 2066 ution computed f │ │ │ │ +0002d4e0: 726f 6d20 6120 6d61 7472 6978 2066 6163 rom a matrix fac │ │ │ │ +0002d4f0: 746f 7269 7a61 7469 6f6e 0a2a 2a2a 2a2a torization.***** │ │ │ │ +0002d500: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002d510: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002d520: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002d530: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002d540: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002d550: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002d560: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -0002d570: 3a20 0a20 2020 2020 2020 204c 203d 2066 : . L = f │ │ │ │ -0002d580: 696e 6974 6542 6574 7469 4e75 6d62 6572 initeBettiNumber │ │ │ │ -0002d590: 7320 284d 462c 6c65 6e29 0a20 202a 2049 s (MF,len). * I │ │ │ │ -0002d5a0: 6e70 7574 733a 0a20 2020 2020 202a 204d nputs:. * M │ │ │ │ -0002d5b0: 462c 2061 202a 6e6f 7465 206c 6973 743a F, a *note list: │ │ │ │ -0002d5c0: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ -0002d5d0: 6973 742c 2c20 4c69 7374 206f 6620 4861 ist,, List of Ha │ │ │ │ -0002d5e0: 7368 5461 626c 6573 2061 7320 636f 6d70 shTables as comp │ │ │ │ -0002d5f0: 7574 6564 0a20 2020 2020 2020 2062 7920 uted. by │ │ │ │ -0002d600: 226d 6174 7269 7846 6163 746f 7269 7a61 "matrixFactoriza │ │ │ │ -0002d610: 7469 6f6e 220a 2020 2020 2020 2a20 6c65 tion". * le │ │ │ │ -0002d620: 6e2c 2061 6e20 2a6e 6f74 6520 696e 7465 n, an *note inte │ │ │ │ -0002d630: 6765 723a 2028 4d61 6361 756c 6179 3244 ger: (Macaulay2D │ │ │ │ -0002d640: 6f63 295a 5a2c 2c20 6c65 6e67 7468 206f oc)ZZ,, length o │ │ │ │ -0002d650: 6620 6265 7474 6920 6e75 6d62 6572 0a20 f betti number. │ │ │ │ -0002d660: 2020 2020 2020 2073 6571 7565 6e63 6520 sequence │ │ │ │ -0002d670: 746f 2070 726f 6475 6365 0a20 202a 204f to produce. * O │ │ │ │ -0002d680: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ -0002d690: 4c2c 2061 202a 6e6f 7465 206c 6973 743a L, a *note list: │ │ │ │ -0002d6a0: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ -0002d6b0: 6973 742c 2c20 4c69 7374 206f 6620 6265 ist,, List of be │ │ │ │ -0002d6c0: 7474 6920 6e75 6d62 6572 730a 0a44 6573 tti numbers..Des │ │ │ │ -0002d6d0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0002d6e0: 3d3d 3d3d 0a0a 5573 6573 2074 6865 2072 ====..Uses the r │ │ │ │ -0002d6f0: 616e 6b73 206f 6620 7468 6520 4220 6d61 anks of the B ma │ │ │ │ -0002d700: 7472 6963 6573 2069 6e20 6120 6d61 7472 trices in a matr │ │ │ │ -0002d710: 6978 2066 6163 746f 7269 7a61 7469 6f6e ix factorization │ │ │ │ -0002d720: 2066 6f72 2061 206d 6f64 756c 6520 4d20 for a module M │ │ │ │ -0002d730: 6f76 6572 0a53 2f28 665f 312c 2e2e 2c66 over.S/(f_1,..,f │ │ │ │ -0002d740: 5f63 2920 746f 2063 6f6d 7075 7465 2074 _c) to compute t │ │ │ │ -0002d750: 6865 2062 6574 7469 206e 756d 6265 7273 he betti numbers │ │ │ │ -0002d760: 206f 6620 7468 6520 6d69 6e69 6d61 6c20 of the minimal │ │ │ │ -0002d770: 7265 736f 6c75 7469 6f6e 206f 6620 4d20 resolution of M │ │ │ │ -0002d780: 6f76 6572 0a52 2c20 7768 6963 6820 6973 over.R, which is │ │ │ │ -0002d790: 2074 6865 2073 756d 206f 6620 7468 6520 the sum of the │ │ │ │ -0002d7a0: 6469 7669 6465 6420 706f 7765 7220 616c divided power al │ │ │ │ -0002d7b0: 6765 6272 6173 206f 6e20 632d 6a2b 3120 gebras on c-j+1 │ │ │ │ -0002d7c0: 7661 7269 6162 6c65 7320 7465 6e73 6f72 variables tensor │ │ │ │ -0002d7d0: 6564 0a77 6974 6820 4228 6a29 2e0a 0a2b ed.with B(j)...+ │ │ │ │ +0002d550: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +0002d560: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +0002d570: 4c20 3d20 6669 6e69 7465 4265 7474 694e L = finiteBettiN │ │ │ │ +0002d580: 756d 6265 7273 2028 4d46 2c6c 656e 290a umbers (MF,len). │ │ │ │ +0002d590: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +0002d5a0: 2020 2a20 4d46 2c20 6120 2a6e 6f74 6520 * MF, a *note │ │ │ │ +0002d5b0: 6c69 7374 3a20 284d 6163 6175 6c61 7932 list: (Macaulay2 │ │ │ │ +0002d5c0: 446f 6329 4c69 7374 2c2c 204c 6973 7420 Doc)List,, List │ │ │ │ +0002d5d0: 6f66 2048 6173 6854 6162 6c65 7320 6173 of HashTables as │ │ │ │ +0002d5e0: 2063 6f6d 7075 7465 640a 2020 2020 2020 computed. │ │ │ │ +0002d5f0: 2020 6279 2022 6d61 7472 6978 4661 6374 by "matrixFact │ │ │ │ +0002d600: 6f72 697a 6174 696f 6e22 0a20 2020 2020 orization". │ │ │ │ +0002d610: 202a 206c 656e 2c20 616e 202a 6e6f 7465 * len, an *note │ │ │ │ +0002d620: 2069 6e74 6567 6572 3a20 284d 6163 6175 integer: (Macau │ │ │ │ +0002d630: 6c61 7932 446f 6329 5a5a 2c2c 206c 656e lay2Doc)ZZ,, len │ │ │ │ +0002d640: 6774 6820 6f66 2062 6574 7469 206e 756d gth of betti num │ │ │ │ +0002d650: 6265 720a 2020 2020 2020 2020 7365 7175 ber. sequ │ │ │ │ +0002d660: 656e 6365 2074 6f20 7072 6f64 7563 650a ence to produce. │ │ │ │ +0002d670: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +0002d680: 2020 202a 204c 2c20 6120 2a6e 6f74 6520 * L, a *note │ │ │ │ +0002d690: 6c69 7374 3a20 284d 6163 6175 6c61 7932 list: (Macaulay2 │ │ │ │ +0002d6a0: 446f 6329 4c69 7374 2c2c 204c 6973 7420 Doc)List,, List │ │ │ │ +0002d6b0: 6f66 2062 6574 7469 206e 756d 6265 7273 of betti numbers │ │ │ │ +0002d6c0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +0002d6d0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a55 7365 7320 =========..Uses │ │ │ │ +0002d6e0: 7468 6520 7261 6e6b 7320 6f66 2074 6865 the ranks of the │ │ │ │ +0002d6f0: 2042 206d 6174 7269 6365 7320 696e 2061 B matrices in a │ │ │ │ +0002d700: 206d 6174 7269 7820 6661 6374 6f72 697a matrix factoriz │ │ │ │ +0002d710: 6174 696f 6e20 666f 7220 6120 6d6f 6475 ation for a modu │ │ │ │ +0002d720: 6c65 204d 206f 7665 720a 532f 2866 5f31 le M over.S/(f_1 │ │ │ │ +0002d730: 2c2e 2e2c 665f 6329 2074 6f20 636f 6d70 ,..,f_c) to comp │ │ │ │ +0002d740: 7574 6520 7468 6520 6265 7474 6920 6e75 ute the betti nu │ │ │ │ +0002d750: 6d62 6572 7320 6f66 2074 6865 206d 696e mbers of the min │ │ │ │ +0002d760: 696d 616c 2072 6573 6f6c 7574 696f 6e20 imal resolution │ │ │ │ +0002d770: 6f66 204d 206f 7665 720a 522c 2077 6869 of M over.R, whi │ │ │ │ +0002d780: 6368 2069 7320 7468 6520 7375 6d20 6f66 ch is the sum of │ │ │ │ +0002d790: 2074 6865 2064 6976 6964 6564 2070 6f77 the divided pow │ │ │ │ +0002d7a0: 6572 2061 6c67 6562 7261 7320 6f6e 2063 er algebras on c │ │ │ │ +0002d7b0: 2d6a 2b31 2076 6172 6961 626c 6573 2074 -j+1 variables t │ │ │ │ +0002d7c0: 656e 736f 7265 640a 7769 7468 2042 286a ensored.with B(j │ │ │ │ +0002d7d0: 292e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d )...+----------- │ │ │ │ 0002d7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d810: 2d2d 2b0a 7c69 3120 3a20 7365 7452 616e --+.|i1 : setRan │ │ │ │ -0002d820: 646f 6d53 6565 6420 3020 2020 2020 2020 domSeed 0 │ │ │ │ -0002d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d840: 2020 2020 2020 207c 0a7c 202d 2d20 7365 |.| -- se │ │ │ │ -0002d850: 7474 696e 6720 7261 6e64 6f6d 2073 6565 tting random see │ │ │ │ -0002d860: 6420 746f 2030 2020 2020 2020 2020 2020 d to 0 │ │ │ │ -0002d870: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002d800: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2073 -------+.|i1 : s │ │ │ │ +0002d810: 6574 5261 6e64 6f6d 5365 6564 2030 2020 etRandomSeed 0 │ │ │ │ +0002d820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d830: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002d840: 2d2d 2073 6574 7469 6e67 2072 616e 646f -- setting rando │ │ │ │ +0002d850: 6d20 7365 6564 2074 6f20 3020 2020 2020 m seed to 0 │ │ │ │ +0002d860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d870: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d8b0: 207c 0a7c 6f31 203d 2030 2020 2020 2020 |.|o1 = 0 │ │ │ │ +0002d8a0: 2020 2020 2020 7c0a 7c6f 3120 3d20 3020 |.|o1 = 0 │ │ │ │ +0002d8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d8e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002d8d0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002d8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -0002d920: 203a 206b 6b20 3d20 5a5a 2f31 3031 2020 : kk = ZZ/101 │ │ │ │ +0002d910: 2b0a 7c69 3220 3a20 6b6b 203d 205a 5a2f +.|i2 : kk = ZZ/ │ │ │ │ +0002d920: 3130 3120 2020 2020 2020 2020 2020 2020 101 │ │ │ │ 0002d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d950: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002d940: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d980: 2020 2020 207c 0a7c 6f32 203d 206b 6b20 |.|o2 = kk │ │ │ │ +0002d970: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +0002d980: 3d20 6b6b 2020 2020 2020 2020 2020 2020 = kk │ │ │ │ 0002d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d9b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002d9a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d9b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d9e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002d9f0: 0a7c 6f32 203a 2051 756f 7469 656e 7452 .|o2 : QuotientR │ │ │ │ -0002da00: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ -0002da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002da20: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002d9e0: 2020 2020 7c0a 7c6f 3220 3a20 5175 6f74 |.|o2 : Quot │ │ │ │ +0002d9f0: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ +0002da00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002da10: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0002da20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002da30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002da40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002da50: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -0002da60: 2053 203d 206b 6b5b 612c 622c 752c 765d S = kk[a,b,u,v] │ │ │ │ +0002da40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002da50: 7c69 3320 3a20 5320 3d20 6b6b 5b61 2c62 |i3 : S = kk[a,b │ │ │ │ +0002da60: 2c75 2c76 5d20 2020 2020 2020 2020 2020 ,u,v] │ │ │ │ 0002da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002da80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002da90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002da80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002da90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002daa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dac0: 2020 207c 0a7c 6f33 203d 2053 2020 2020 |.|o3 = S │ │ │ │ +0002dab0: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ +0002dac0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 0002dad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002daf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002dae0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002daf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002db00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002db30: 6f33 203a 2050 6f6c 796e 6f6d 6961 6c52 o3 : PolynomialR │ │ │ │ -0002db40: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ -0002db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db60: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002db20: 2020 7c0a 7c6f 3320 3a20 506f 6c79 6e6f |.|o3 : Polyno │ │ │ │ +0002db30: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ +0002db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002db50: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002db60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002db70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002db80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002db90: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2066 -------+.|i4 : f │ │ │ │ -0002dba0: 6620 3d20 6d61 7472 6978 2261 752c 6276 f = matrix"au,bv │ │ │ │ -0002dbb0: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ -0002dbc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002db80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002db90: 3420 3a20 6666 203d 206d 6174 7269 7822 4 : ff = matrix" │ │ │ │ +0002dba0: 6175 2c62 7622 2020 2020 2020 2020 2020 au,bv" │ │ │ │ +0002dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dbc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc00: 207c 0a7c 6f34 203d 207c 2061 7520 6276 |.|o4 = | au bv │ │ │ │ -0002dc10: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002dbf0: 2020 2020 2020 7c0a 7c6f 3420 3d20 7c20 |.|o4 = | │ │ │ │ +0002dc00: 6175 2062 7620 7c20 2020 2020 2020 2020 au bv | │ │ │ │ +0002dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dc20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002dc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002dc70: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -0002dc80: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dca0: 7c0a 7c6f 3420 3a20 4d61 7472 6978 2053 |.|o4 : Matrix S │ │ │ │ -0002dcb0: 2020 3c2d 2d20 5320 2020 2020 2020 2020 <-- S │ │ │ │ -0002dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dcd0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002dc60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002dc70: 3120 2020 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ +0002dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dc90: 2020 2020 207c 0a7c 6f34 203a 204d 6174 |.|o4 : Mat │ │ │ │ +0002dca0: 7269 7820 5320 203c 2d2d 2053 2020 2020 rix S <-- S │ │ │ │ +0002dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dcc0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002dcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002dce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -0002dd10: 3a20 5220 3d20 532f 6964 6561 6c20 6666 : R = S/ideal ff │ │ │ │ +0002dcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002dd00: 0a7c 6935 203a 2052 203d 2053 2f69 6465 .|i5 : R = S/ide │ │ │ │ +0002dd10: 616c 2066 6620 2020 2020 2020 2020 2020 al ff │ │ │ │ 0002dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002dd40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002dd30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd70: 2020 2020 7c0a 7c6f 3520 3d20 5220 2020 |.|o5 = R │ │ │ │ +0002dd60: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ +0002dd70: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 0002dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dda0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002dd90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002dda0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ddc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ddd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002dde0: 7c6f 3520 3a20 5175 6f74 6965 6e74 5269 |o5 : QuotientRi │ │ │ │ -0002ddf0: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ -0002de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de10: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0002ddd0: 2020 207c 0a7c 6f35 203a 2051 756f 7469 |.|o5 : Quoti │ │ │ │ +0002dde0: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +0002ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002de00: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002de10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002de20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de40: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ -0002de50: 4d30 203d 2052 5e31 2f69 6465 616c 2261 M0 = R^1/ideal"a │ │ │ │ -0002de60: 2c62 2220 2020 2020 2020 2020 2020 2020 ,b" │ │ │ │ -0002de70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002de30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0002de40: 6936 203a 204d 3020 3d20 525e 312f 6964 i6 : M0 = R^1/id │ │ │ │ +0002de50: 6561 6c22 612c 6222 2020 2020 2020 2020 eal"a,b" │ │ │ │ +0002de60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002de70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002de90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002deb0: 2020 7c0a 7c6f 3620 3d20 636f 6b65 726e |.|o6 = cokern │ │ │ │ -0002dec0: 656c 207c 2061 2062 207c 2020 2020 2020 el | a b | │ │ │ │ -0002ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dee0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002dea0: 2020 2020 2020 207c 0a7c 6f36 203d 2063 |.|o6 = c │ │ │ │ +0002deb0: 6f6b 6572 6e65 6c20 7c20 6120 6220 7c20 okernel | a b | │ │ │ │ +0002dec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ded0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002dee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002df10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df30: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -0002df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df50: 207c 0a7c 6f36 203a 2052 2d6d 6f64 756c |.|o6 : R-modul │ │ │ │ -0002df60: 652c 2071 756f 7469 656e 7420 6f66 2052 e, quotient of R │ │ │ │ -0002df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df80: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002df30: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0002df40: 2020 2020 2020 7c0a 7c6f 3620 3a20 522d |.|o6 : R- │ │ │ │ +0002df50: 6d6f 6475 6c65 2c20 7175 6f74 6965 6e74 module, quotient │ │ │ │ +0002df60: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ +0002df70: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002df80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002df90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002dfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ -0002dfc0: 203a 2046 203d 2066 7265 6552 6573 6f6c : F = freeResol │ │ │ │ -0002dfd0: 7574 696f 6e28 4d30 2c20 4c65 6e67 7468 ution(M0, Length │ │ │ │ -0002dfe0: 4c69 6d69 7420 3d3e 3329 2020 2020 2020 Limit =>3) │ │ │ │ -0002dff0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002dfb0: 2b0a 7c69 3720 3a20 4620 3d20 6672 6565 +.|i7 : F = free │ │ │ │ +0002dfc0: 5265 736f 6c75 7469 6f6e 284d 302c 204c Resolution(M0, L │ │ │ │ +0002dfd0: 656e 6774 684c 696d 6974 203d 3e33 2920 engthLimit =>3) │ │ │ │ +0002dfe0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e020: 2020 2020 207c 0a7c 2020 2020 2020 3120 |.| 1 │ │ │ │ -0002e030: 2020 2020 2032 2020 2020 2020 3320 2020 2 3 │ │ │ │ -0002e040: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0002e050: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ -0002e060: 3d20 5220 203c 2d2d 2052 2020 3c2d 2d20 = R <-- R <-- │ │ │ │ -0002e070: 5220 203c 2d2d 2052 2020 2020 2020 2020 R <-- R │ │ │ │ -0002e080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002e090: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e010: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e020: 2020 2031 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ +0002e030: 2033 2020 2020 2020 3420 2020 2020 2020 3 4 │ │ │ │ +0002e040: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e050: 0a7c 6f37 203d 2052 2020 3c2d 2d20 5220 .|o7 = R <-- R │ │ │ │ +0002e060: 203c 2d2d 2052 2020 3c2d 2d20 5220 2020 <-- R <-- R │ │ │ │ +0002e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e080: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e0c0: 2020 2020 7c0a 7c20 2020 2020 3020 2020 |.| 0 │ │ │ │ -0002e0d0: 2020 2031 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ -0002e0e0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0002e0f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002e0b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002e0c0: 2030 2020 2020 2020 3120 2020 2020 2032 0 1 2 │ │ │ │ +0002e0d0: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +0002e0e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002e0f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e120: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002e130: 7c6f 3720 3a20 436f 6d70 6c65 7820 2020 |o7 : Complex │ │ │ │ +0002e120: 2020 207c 0a7c 6f37 203a 2043 6f6d 706c |.|o7 : Compl │ │ │ │ +0002e130: 6578 2020 2020 2020 2020 2020 2020 2020 ex │ │ │ │ 0002e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e160: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0002e150: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002e160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e190: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 --------+.|i8 : │ │ │ │ -0002e1a0: 4d20 3d20 636f 6b65 7220 462e 6464 5f33 M = coker F.dd_3 │ │ │ │ -0002e1b0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -0002e1c0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002e180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0002e190: 6938 203a 204d 203d 2063 6f6b 6572 2046 i8 : M = coker F │ │ │ │ +0002e1a0: 2e64 645f 333b 2020 2020 2020 2020 2020 .dd_3; │ │ │ │ +0002e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e1c0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0002e1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e200: 2d2d 2b0a 7c69 3920 3a20 4d46 203d 206d --+.|i9 : MF = m │ │ │ │ -0002e210: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ -0002e220: 6f6e 2866 662c 4d29 3b20 2020 2020 2020 on(ff,M); │ │ │ │ -0002e230: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002e1f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 204d -------+.|i9 : M │ │ │ │ +0002e200: 4620 3d20 6d61 7472 6978 4661 6374 6f72 F = matrixFactor │ │ │ │ +0002e210: 697a 6174 696f 6e28 6666 2c4d 293b 2020 ization(ff,M); │ │ │ │ +0002e220: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002e230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002e270: 3130 203a 2062 6574 7469 2066 7265 6552 10 : betti freeR │ │ │ │ -0002e280: 6573 6f6c 7574 696f 6e20 7075 7368 466f esolution pushFo │ │ │ │ -0002e290: 7277 6172 6428 6d61 7028 522c 5329 2c4d rward(map(R,S),M │ │ │ │ -0002e2a0: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ +0002e260: 2d2b 0a7c 6931 3020 3a20 6265 7474 6920 -+.|i10 : betti │ │ │ │ +0002e270: 6672 6565 5265 736f 6c75 7469 6f6e 2070 freeResolution p │ │ │ │ +0002e280: 7573 6846 6f72 7761 7264 286d 6170 2852 ushForward(map(R │ │ │ │ +0002e290: 2c53 292c 4d29 7c0a 7c20 2020 2020 2020 ,S),M)|.| │ │ │ │ +0002e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e2d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002e2e0: 2020 2020 2020 3020 3120 3220 2020 2020 0 1 2 │ │ │ │ +0002e2c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002e2d0: 2020 2020 2020 2020 2020 2030 2031 2032 0 1 2 │ │ │ │ +0002e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e300: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -0002e310: 3020 3d20 746f 7461 6c3a 2033 2035 2032 0 = total: 3 5 2 │ │ │ │ +0002e300: 7c0a 7c6f 3130 203d 2074 6f74 616c 3a20 |.|o10 = total: │ │ │ │ +0002e310: 3320 3520 3220 2020 2020 2020 2020 2020 3 5 2 │ │ │ │ 0002e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e340: 7c0a 7c20 2020 2020 2020 2020 2032 3a20 |.| 2: │ │ │ │ -0002e350: 3320 3420 2e20 2020 2020 2020 2020 2020 3 4 . │ │ │ │ -0002e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e370: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002e380: 2020 333a 202e 2031 2032 2020 2020 2020 3: . 1 2 │ │ │ │ -0002e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e3a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e330: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002e340: 2020 323a 2033 2034 202e 2020 2020 2020 2: 3 4 . │ │ │ │ +0002e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e360: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e370: 2020 2020 2020 2033 3a20 2e20 3120 3220 3: . 1 2 │ │ │ │ +0002e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e390: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e3a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e3d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002e3e0: 0a7c 6f31 3020 3a20 4265 7474 6954 616c .|o10 : BettiTal │ │ │ │ -0002e3f0: 6c79 2020 2020 2020 2020 2020 2020 2020 ly │ │ │ │ -0002e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e410: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002e3d0: 2020 2020 7c0a 7c6f 3130 203a 2042 6574 |.|o10 : Bet │ │ │ │ +0002e3e0: 7469 5461 6c6c 7920 2020 2020 2020 2020 tiTally │ │ │ │ +0002e3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e400: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0002e410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e440: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 ---------+.|i11 │ │ │ │ -0002e450: 3a20 6669 6e69 7465 4265 7474 694e 756d : finiteBettiNum │ │ │ │ -0002e460: 6265 7273 204d 4620 2020 2020 2020 2020 bers MF │ │ │ │ -0002e470: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002e480: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002e430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002e440: 7c69 3131 203a 2066 696e 6974 6542 6574 |i11 : finiteBet │ │ │ │ +0002e450: 7469 4e75 6d62 6572 7320 4d46 2020 2020 tiNumbers MF │ │ │ │ +0002e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e470: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e4b0: 2020 207c 0a7c 6f31 3120 3d20 7b33 2c20 |.|o11 = {3, │ │ │ │ -0002e4c0: 352c 2032 7d20 2020 2020 2020 2020 2020 5, 2} │ │ │ │ -0002e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e4e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002e4a0: 2020 2020 2020 2020 7c0a 7c6f 3131 203d |.|o11 = │ │ │ │ +0002e4b0: 207b 332c 2035 2c20 327d 2020 2020 2020 {3, 5, 2} │ │ │ │ +0002e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e4d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e510: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002e520: 6f31 3120 3a20 4c69 7374 2020 2020 2020 o11 : List │ │ │ │ +0002e510: 2020 7c0a 7c6f 3131 203a 204c 6973 7420 |.|o11 : List │ │ │ │ +0002e520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e550: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002e540: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002e550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e580: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 3a20 -------+.|i12 : │ │ │ │ -0002e590: 696e 6669 6e69 7465 4265 7474 694e 756d infiniteBettiNum │ │ │ │ -0002e5a0: 6265 7273 284d 462c 3529 2020 2020 2020 bers(MF,5) │ │ │ │ -0002e5b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002e570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002e580: 3132 203a 2069 6e66 696e 6974 6542 6574 12 : infiniteBet │ │ │ │ +0002e590: 7469 4e75 6d62 6572 7328 4d46 2c35 2920 tiNumbers(MF,5) │ │ │ │ +0002e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e5b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002e5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e5f0: 207c 0a7c 6f31 3220 3d20 7b33 2c20 342c |.|o12 = {3, 4, │ │ │ │ -0002e600: 2035 2c20 362c 2037 2c20 387d 2020 2020 5, 6, 7, 8} │ │ │ │ -0002e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e620: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002e5e0: 2020 2020 2020 7c0a 7c6f 3132 203d 207b |.|o12 = { │ │ │ │ +0002e5f0: 332c 2034 2c20 352c 2036 2c20 372c 2038 3, 4, 5, 6, 7, 8 │ │ │ │ +0002e600: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0002e610: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e650: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -0002e660: 3220 3a20 4c69 7374 2020 2020 2020 2020 2 : List │ │ │ │ +0002e650: 7c0a 7c6f 3132 203a 204c 6973 7420 2020 |.|o12 : List │ │ │ │ +0002e660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e690: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002e680: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002e690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e6c0: 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 6265 -----+.|i13 : be │ │ │ │ -0002e6d0: 7474 6920 6672 6565 5265 736f 6c75 7469 tti freeResoluti │ │ │ │ -0002e6e0: 6f6e 2028 4d2c 204c 656e 6774 684c 696d on (M, LengthLim │ │ │ │ -0002e6f0: 6974 203d 3e20 3529 2020 7c0a 7c20 2020 it => 5) |.| │ │ │ │ +0002e6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 ----------+.|i13 │ │ │ │ +0002e6c0: 203a 2062 6574 7469 2066 7265 6552 6573 : betti freeRes │ │ │ │ +0002e6d0: 6f6c 7574 696f 6e20 284d 2c20 4c65 6e67 olution (M, Leng │ │ │ │ +0002e6e0: 7468 4c69 6d69 7420 3d3e 2035 2920 207c thLimit => 5) | │ │ │ │ +0002e6f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e720: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002e730: 0a7c 2020 2020 2020 2020 2020 2020 2030 .| 0 │ │ │ │ -0002e740: 2031 2032 2033 2034 2035 2020 2020 2020 1 2 3 4 5 │ │ │ │ -0002e750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e760: 2020 2020 7c0a 7c6f 3133 203d 2074 6f74 |.|o13 = tot │ │ │ │ -0002e770: 616c 3a20 3320 3420 3520 3620 3720 3820 al: 3 4 5 6 7 8 │ │ │ │ -0002e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e790: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0002e7a0: 2020 2020 2020 323a 2033 2034 2035 2036 2: 3 4 5 6 │ │ │ │ -0002e7b0: 2037 2038 2020 2020 2020 2020 2020 2020 7 8 │ │ │ │ -0002e7c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002e7d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002e720: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002e730: 2020 2020 3020 3120 3220 3320 3420 3520 0 1 2 3 4 5 │ │ │ │ +0002e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e750: 2020 2020 2020 2020 207c 0a7c 6f31 3320 |.|o13 │ │ │ │ +0002e760: 3d20 746f 7461 6c3a 2033 2034 2035 2036 = total: 3 4 5 6 │ │ │ │ +0002e770: 2037 2038 2020 2020 2020 2020 2020 2020 7 8 │ │ │ │ +0002e780: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002e790: 7c20 2020 2020 2020 2020 2032 3a20 3320 | 2: 3 │ │ │ │ +0002e7a0: 3420 3520 3620 3720 3820 2020 2020 2020 4 5 6 7 8 │ │ │ │ +0002e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e7c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e800: 2020 207c 0a7c 6f31 3320 3a20 4265 7474 |.|o13 : Bett │ │ │ │ -0002e810: 6954 616c 6c79 2020 2020 2020 2020 2020 iTally │ │ │ │ -0002e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e830: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002e7f0: 2020 2020 2020 2020 7c0a 7c6f 3133 203a |.|o13 : │ │ │ │ +0002e800: 2042 6574 7469 5461 6c6c 7920 2020 2020 BettiTally │ │ │ │ +0002e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e820: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002e830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -0002e870: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ -0002e880: 3d0a 0a20 202a 202a 6e6f 7465 206d 6174 =.. * *note mat │ │ │ │ -0002e890: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -0002e8a0: 3a20 6d61 7472 6978 4661 6374 6f72 697a : matrixFactoriz │ │ │ │ -0002e8b0: 6174 696f 6e2c 202d 2d20 4d61 7073 2069 ation, -- Maps i │ │ │ │ -0002e8c0: 6e20 6120 6869 6768 6572 0a20 2020 2063 n a higher. c │ │ │ │ -0002e8d0: 6f64 696d 656e 7369 6f6e 206d 6174 7269 odimension matri │ │ │ │ -0002e8e0: 7820 6661 6374 6f72 697a 6174 696f 6e0a x factorization. │ │ │ │ -0002e8f0: 2020 2a20 2a6e 6f74 6520 6669 6e69 7465 * *note finite │ │ │ │ -0002e900: 4265 7474 694e 756d 6265 7273 3a20 6669 BettiNumbers: fi │ │ │ │ -0002e910: 6e69 7465 4265 7474 694e 756d 6265 7273 niteBettiNumbers │ │ │ │ -0002e920: 2c20 2d2d 2062 6574 7469 206e 756d 6265 , -- betti numbe │ │ │ │ -0002e930: 7273 206f 6620 6669 6e69 7465 0a20 2020 rs of finite. │ │ │ │ -0002e940: 2072 6573 6f6c 7574 696f 6e20 636f 6d70 resolution comp │ │ │ │ -0002e950: 7574 6564 2066 726f 6d20 6120 6d61 7472 uted from a matr │ │ │ │ -0002e960: 6978 2066 6163 746f 7269 7a61 7469 6f6e ix factorization │ │ │ │ -0002e970: 0a0a 5761 7973 2074 6f20 7573 6520 696e ..Ways to use in │ │ │ │ -0002e980: 6669 6e69 7465 4265 7474 694e 756d 6265 finiteBettiNumbe │ │ │ │ -0002e990: 7273 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d rs:.============ │ │ │ │ -0002e9a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002e9b0: 3d3d 3d3d 3d0a 0a20 202a 2022 696e 6669 =====.. * "infi │ │ │ │ -0002e9c0: 6e69 7465 4265 7474 694e 756d 6265 7273 niteBettiNumbers │ │ │ │ -0002e9d0: 284c 6973 742c 5a5a 2922 0a0a 466f 7220 (List,ZZ)"..For │ │ │ │ -0002e9e0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -0002e9f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002ea00: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -0002ea10: 6f74 6520 696e 6669 6e69 7465 4265 7474 ote infiniteBett │ │ │ │ -0002ea20: 694e 756d 6265 7273 3a20 696e 6669 6e69 iNumbers: infini │ │ │ │ -0002ea30: 7465 4265 7474 694e 756d 6265 7273 2c20 teBettiNumbers, │ │ │ │ -0002ea40: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -0002ea50: 640a 6675 6e63 7469 6f6e 3a20 284d 6163 d.function: (Mac │ │ │ │ -0002ea60: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -0002ea70: 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d Function,...---- │ │ │ │ +0002e860: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ +0002e870: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ +0002e880: 6520 6d61 7472 6978 4661 6374 6f72 697a e matrixFactoriz │ │ │ │ +0002e890: 6174 696f 6e3a 206d 6174 7269 7846 6163 ation: matrixFac │ │ │ │ +0002e8a0: 746f 7269 7a61 7469 6f6e 2c20 2d2d 204d torization, -- M │ │ │ │ +0002e8b0: 6170 7320 696e 2061 2068 6967 6865 720a aps in a higher. │ │ │ │ +0002e8c0: 2020 2020 636f 6469 6d65 6e73 696f 6e20 codimension │ │ │ │ +0002e8d0: 6d61 7472 6978 2066 6163 746f 7269 7a61 matrix factoriza │ │ │ │ +0002e8e0: 7469 6f6e 0a20 202a 202a 6e6f 7465 2066 tion. * *note f │ │ │ │ +0002e8f0: 696e 6974 6542 6574 7469 4e75 6d62 6572 initeBettiNumber │ │ │ │ +0002e900: 733a 2066 696e 6974 6542 6574 7469 4e75 s: finiteBettiNu │ │ │ │ +0002e910: 6d62 6572 732c 202d 2d20 6265 7474 6920 mbers, -- betti │ │ │ │ +0002e920: 6e75 6d62 6572 7320 6f66 2066 696e 6974 numbers of finit │ │ │ │ +0002e930: 650a 2020 2020 7265 736f 6c75 7469 6f6e e. resolution │ │ │ │ +0002e940: 2063 6f6d 7075 7465 6420 6672 6f6d 2061 computed from a │ │ │ │ +0002e950: 206d 6174 7269 7820 6661 6374 6f72 697a matrix factoriz │ │ │ │ +0002e960: 6174 696f 6e0a 0a57 6179 7320 746f 2075 ation..Ways to u │ │ │ │ +0002e970: 7365 2069 6e66 696e 6974 6542 6574 7469 se infiniteBetti │ │ │ │ +0002e980: 4e75 6d62 6572 733a 0a3d 3d3d 3d3d 3d3d Numbers:.======= │ │ │ │ +0002e990: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0002e9a0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +0002e9b0: 2269 6e66 696e 6974 6542 6574 7469 4e75 "infiniteBettiNu │ │ │ │ +0002e9c0: 6d62 6572 7328 4c69 7374 2c5a 5a29 220a mbers(List,ZZ)". │ │ │ │ +0002e9d0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +0002e9e0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +0002e9f0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +0002ea00: 6374 202a 6e6f 7465 2069 6e66 696e 6974 ct *note infinit │ │ │ │ +0002ea10: 6542 6574 7469 4e75 6d62 6572 733a 2069 eBettiNumbers: i │ │ │ │ +0002ea20: 6e66 696e 6974 6542 6574 7469 4e75 6d62 nfiniteBettiNumb │ │ │ │ +0002ea30: 6572 732c 2069 7320 6120 2a6e 6f74 6520 ers, is a *note │ │ │ │ +0002ea40: 6d65 7468 6f64 0a66 756e 6374 696f 6e3a method.function: │ │ │ │ +0002ea50: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +0002ea60: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +0002ea70: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 0002ea80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ea90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002eaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002eab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -0002ead0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -0002eae0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -0002eaf0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -0002eb00: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -0002eb10: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -0002eb20: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -0002eb30: 6573 2f0a 436f 6d70 6c65 7465 496e 7465 es/.CompleteInte │ │ │ │ -0002eb40: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ -0002eb50: 6f6e 732e 6d32 3a34 3131 333a 302e 0a1f ons.m2:4113:0... │ │ │ │ -0002eb60: 0a46 696c 653a 2043 6f6d 706c 6574 6549 .File: CompleteI │ │ │ │ -0002eb70: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ -0002eb80: 7574 696f 6e73 2e69 6e66 6f2c 204e 6f64 utions.info, Nod │ │ │ │ -0002eb90: 653a 2069 734c 696e 6561 722c 204e 6578 e: isLinear, Nex │ │ │ │ -0002eba0: 743a 2069 7351 7561 7369 5265 6775 6c61 t: isQuasiRegula │ │ │ │ -0002ebb0: 722c 2050 7265 763a 2069 6e66 696e 6974 r, Prev: infinit │ │ │ │ -0002ebc0: 6542 6574 7469 4e75 6d62 6572 732c 2055 eBettiNumbers, U │ │ │ │ -0002ebd0: 703a 2054 6f70 0a0a 6973 4c69 6e65 6172 p: Top..isLinear │ │ │ │ -0002ebe0: 202d 2d20 6368 6563 6b20 7768 6574 6865 -- check whethe │ │ │ │ -0002ebf0: 7220 6d61 7472 6978 2065 6e74 7269 6573 r matrix entries │ │ │ │ -0002ec00: 2068 6176 6520 6465 6772 6565 2031 0a2a have degree 1.* │ │ │ │ +0002eac0: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +0002ead0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +0002eae0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +0002eaf0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +0002eb00: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +0002eb10: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +0002eb20: 6163 6b61 6765 732f 0a43 6f6d 706c 6574 ackages/.Complet │ │ │ │ +0002eb30: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ +0002eb40: 6f6c 7574 696f 6e73 2e6d 323a 3431 3133 olutions.m2:4113 │ │ │ │ +0002eb50: 3a30 2e0a 1f0a 4669 6c65 3a20 436f 6d70 :0....File: Comp │ │ │ │ +0002eb60: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ +0002eb70: 5265 736f 6c75 7469 6f6e 732e 696e 666f Resolutions.info │ │ │ │ +0002eb80: 2c20 4e6f 6465 3a20 6973 4c69 6e65 6172 , Node: isLinear │ │ │ │ +0002eb90: 2c20 4e65 7874 3a20 6973 5175 6173 6952 , Next: isQuasiR │ │ │ │ +0002eba0: 6567 756c 6172 2c20 5072 6576 3a20 696e egular, Prev: in │ │ │ │ +0002ebb0: 6669 6e69 7465 4265 7474 694e 756d 6265 finiteBettiNumbe │ │ │ │ +0002ebc0: 7273 2c20 5570 3a20 546f 700a 0a69 734c rs, Up: Top..isL │ │ │ │ +0002ebd0: 696e 6561 7220 2d2d 2063 6865 636b 2077 inear -- check w │ │ │ │ +0002ebe0: 6865 7468 6572 206d 6174 7269 7820 656e hether matrix en │ │ │ │ +0002ebf0: 7472 6965 7320 6861 7665 2064 6567 7265 tries have degre │ │ │ │ +0002ec00: 6520 310a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a e 1.************ │ │ │ │ 0002ec10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002ec20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002ec30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002ec40: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -0002ec50: 3a20 0a20 2020 2020 2020 2062 203d 2069 : . b = i │ │ │ │ -0002ec60: 734c 696e 6561 7220 4d0a 2020 2a20 496e sLinear M. * In │ │ │ │ -0002ec70: 7075 7473 3a0a 2020 2020 2020 2a20 4d2c puts:. * M, │ │ │ │ -0002ec80: 2061 202a 6e6f 7465 206d 6174 7269 783a a *note matrix: │ │ │ │ -0002ec90: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ -0002eca0: 6174 7269 782c 2c20 0a20 202a 204f 7574 atrix,, . * Out │ │ │ │ -0002ecb0: 7075 7473 3a0a 2020 2020 2020 2a20 622c puts:. * b, │ │ │ │ -0002ecc0: 2061 202a 6e6f 7465 2042 6f6f 6c65 616e a *note Boolean │ │ │ │ -0002ecd0: 2076 616c 7565 3a20 284d 6163 6175 6c61 value: (Macaula │ │ │ │ -0002ece0: 7932 446f 6329 426f 6f6c 6561 6e2c 2c20 y2Doc)Boolean,, │ │ │ │ -0002ecf0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -0002ed00: 3d3d 3d3d 3d3d 3d3d 3d0a 0a4e 6f74 6520 =========..Note │ │ │ │ -0002ed10: 7468 6174 2061 206c 696e 6561 7220 6d61 that a linear ma │ │ │ │ -0002ed20: 7472 6978 2c20 696e 2074 6869 7320 7365 trix, in this se │ │ │ │ -0002ed30: 6e73 652c 2063 616e 2073 7469 6c6c 2068 nse, can still h │ │ │ │ -0002ed40: 6176 6520 6469 6666 6572 656e 7420 7461 ave different ta │ │ │ │ -0002ed50: 7267 6574 0a64 6567 7265 6573 2028 696e rget.degrees (in │ │ │ │ -0002ed60: 2077 6869 6368 2063 6173 6520 7468 6520 which case the │ │ │ │ -0002ed70: 636f 6b65 726e 656c 2064 6563 6f6d 706f cokernel decompo │ │ │ │ -0002ed80: 7365 7320 696e 746f 2061 2064 6972 6563 ses into a direc │ │ │ │ -0002ed90: 7420 7375 6d20 6279 2067 656e 6572 6174 t sum by generat │ │ │ │ -0002eda0: 6f72 0a64 6567 7265 652e 290a 0a57 6179 or.degree.)..Way │ │ │ │ -0002edb0: 7320 746f 2075 7365 2069 734c 696e 6561 s to use isLinea │ │ │ │ -0002edc0: 723a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r:.============= │ │ │ │ -0002edd0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2269 ========.. * "i │ │ │ │ -0002ede0: 734c 696e 6561 7228 4d61 7472 6978 2922 sLinear(Matrix)" │ │ │ │ -0002edf0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -0002ee00: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -0002ee10: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -0002ee20: 6563 7420 2a6e 6f74 6520 6973 4c69 6e65 ect *note isLine │ │ │ │ -0002ee30: 6172 3a20 6973 4c69 6e65 6172 2c20 6973 ar: isLinear, is │ │ │ │ -0002ee40: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ -0002ee50: 6675 6e63 7469 6f6e 3a0a 284d 6163 6175 function:.(Macau │ │ │ │ -0002ee60: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ -0002ee70: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ +0002ec30: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +0002ec40: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +0002ec50: 6220 3d20 6973 4c69 6e65 6172 204d 0a20 b = isLinear M. │ │ │ │ +0002ec60: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +0002ec70: 202a 204d 2c20 6120 2a6e 6f74 6520 6d61 * M, a *note ma │ │ │ │ +0002ec80: 7472 6978 3a20 284d 6163 6175 6c61 7932 trix: (Macaulay2 │ │ │ │ +0002ec90: 446f 6329 4d61 7472 6978 2c2c 200a 2020 Doc)Matrix,, . │ │ │ │ +0002eca0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +0002ecb0: 202a 2062 2c20 6120 2a6e 6f74 6520 426f * b, a *note Bo │ │ │ │ +0002ecc0: 6f6c 6561 6e20 7661 6c75 653a 2028 4d61 olean value: (Ma │ │ │ │ +0002ecd0: 6361 756c 6179 3244 6f63 2942 6f6f 6c65 caulay2Doc)Boole │ │ │ │ +0002ece0: 616e 2c2c 200a 0a44 6573 6372 6970 7469 an,, ..Descripti │ │ │ │ +0002ecf0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +0002ed00: 4e6f 7465 2074 6861 7420 6120 6c69 6e65 Note that a line │ │ │ │ +0002ed10: 6172 206d 6174 7269 782c 2069 6e20 7468 ar matrix, in th │ │ │ │ +0002ed20: 6973 2073 656e 7365 2c20 6361 6e20 7374 is sense, can st │ │ │ │ +0002ed30: 696c 6c20 6861 7665 2064 6966 6665 7265 ill have differe │ │ │ │ +0002ed40: 6e74 2074 6172 6765 740a 6465 6772 6565 nt target.degree │ │ │ │ +0002ed50: 7320 2869 6e20 7768 6963 6820 6361 7365 s (in which case │ │ │ │ +0002ed60: 2074 6865 2063 6f6b 6572 6e65 6c20 6465 the cokernel de │ │ │ │ +0002ed70: 636f 6d70 6f73 6573 2069 6e74 6f20 6120 composes into a │ │ │ │ +0002ed80: 6469 7265 6374 2073 756d 2062 7920 6765 direct sum by ge │ │ │ │ +0002ed90: 6e65 7261 746f 720a 6465 6772 6565 2e29 nerator.degree.) │ │ │ │ +0002eda0: 0a0a 5761 7973 2074 6f20 7573 6520 6973 ..Ways to use is │ │ │ │ +0002edb0: 4c69 6e65 6172 3a0a 3d3d 3d3d 3d3d 3d3d Linear:.======== │ │ │ │ +0002edc0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +0002edd0: 202a 2022 6973 4c69 6e65 6172 284d 6174 * "isLinear(Mat │ │ │ │ +0002ede0: 7269 7829 220a 0a46 6f72 2074 6865 2070 rix)"..For the p │ │ │ │ +0002edf0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +0002ee00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +0002ee10: 6520 6f62 6a65 6374 202a 6e6f 7465 2069 e object *note i │ │ │ │ +0002ee20: 734c 696e 6561 723a 2069 734c 696e 6561 sLinear: isLinea │ │ │ │ +0002ee30: 722c 2069 7320 6120 2a6e 6f74 6520 6d65 r, is a *note me │ │ │ │ +0002ee40: 7468 6f64 2066 756e 6374 696f 6e3a 0a28 thod function:.( │ │ │ │ +0002ee50: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ +0002ee60: 686f 6446 756e 6374 696f 6e2c 2e0a 0a2d hodFunction,...- │ │ │ │ +0002ee70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ee80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ee90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002eea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eec0: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -0002eed0: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -0002eee0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -0002eef0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -0002ef00: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -0002ef10: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -0002ef20: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -0002ef30: 2f0a 436f 6d70 6c65 7465 496e 7465 7273 /.CompleteInters │ │ │ │ -0002ef40: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ -0002ef50: 732e 6d32 3a33 3436 333a 302e 0a1f 0a46 s.m2:3463:0....F │ │ │ │ -0002ef60: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ -0002ef70: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ -0002ef80: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ -0002ef90: 2069 7351 7561 7369 5265 6775 6c61 722c isQuasiRegular, │ │ │ │ -0002efa0: 204e 6578 743a 2069 7353 7461 626c 7954 Next: isStablyT │ │ │ │ -0002efb0: 7269 7669 616c 2c20 5072 6576 3a20 6973 rivial, Prev: is │ │ │ │ -0002efc0: 4c69 6e65 6172 2c20 5570 3a20 546f 700a Linear, Up: Top. │ │ │ │ -0002efd0: 0a69 7351 7561 7369 5265 6775 6c61 7220 .isQuasiRegular │ │ │ │ -0002efe0: 2d2d 2074 6573 7473 2061 206d 6174 7269 -- tests a matri │ │ │ │ -0002eff0: 7820 6f72 2073 6571 7565 6e63 6520 6f72 x or sequence or │ │ │ │ -0002f000: 206c 6973 7420 666f 7220 7175 6173 692d list for quasi- │ │ │ │ -0002f010: 7265 6775 6c61 7269 7479 206f 6e20 6120 regularity on a │ │ │ │ -0002f020: 6d6f 6475 6c65 0a2a 2a2a 2a2a 2a2a 2a2a module.********* │ │ │ │ +0002eeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +0002eec0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +0002eed0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +0002eee0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +0002eef0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +0002ef00: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +0002ef10: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +0002ef20: 6b61 6765 732f 0a43 6f6d 706c 6574 6549 kages/.CompleteI │ │ │ │ +0002ef30: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ +0002ef40: 7574 696f 6e73 2e6d 323a 3334 3633 3a30 utions.m2:3463:0 │ │ │ │ +0002ef50: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ +0002ef60: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ +0002ef70: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ +0002ef80: 4e6f 6465 3a20 6973 5175 6173 6952 6567 Node: isQuasiReg │ │ │ │ +0002ef90: 756c 6172 2c20 4e65 7874 3a20 6973 5374 ular, Next: isSt │ │ │ │ +0002efa0: 6162 6c79 5472 6976 6961 6c2c 2050 7265 ablyTrivial, Pre │ │ │ │ +0002efb0: 763a 2069 734c 696e 6561 722c 2055 703a v: isLinear, Up: │ │ │ │ +0002efc0: 2054 6f70 0a0a 6973 5175 6173 6952 6567 Top..isQuasiReg │ │ │ │ +0002efd0: 756c 6172 202d 2d20 7465 7374 7320 6120 ular -- tests a │ │ │ │ +0002efe0: 6d61 7472 6978 206f 7220 7365 7175 656e matrix or sequen │ │ │ │ +0002eff0: 6365 206f 7220 6c69 7374 2066 6f72 2071 ce or list for q │ │ │ │ +0002f000: 7561 7369 2d72 6567 756c 6172 6974 7920 uasi-regularity │ │ │ │ +0002f010: 6f6e 2061 206d 6f64 756c 650a 2a2a 2a2a on a module.**** │ │ │ │ +0002f020: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002f030: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002f040: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002f050: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002f060: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002f070: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ -0002f080: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -0002f090: 2020 7420 3d20 6973 5175 6173 6952 6567 t = isQuasiReg │ │ │ │ -0002f0a0: 756c 6172 2866 662c 4d29 0a20 202a 2049 ular(ff,M). * I │ │ │ │ -0002f0b0: 6e70 7574 733a 0a20 2020 2020 202a 2066 nputs:. * f │ │ │ │ -0002f0c0: 662c 2061 202a 6e6f 7465 206d 6174 7269 f, a *note matri │ │ │ │ -0002f0d0: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ -0002f0e0: 294d 6174 7269 782c 2c20 0a20 2020 2020 )Matrix,, . │ │ │ │ -0002f0f0: 202a 2066 662c 2061 202a 6e6f 7465 206c * ff, a *note l │ │ │ │ -0002f100: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ -0002f110: 6f63 294c 6973 742c 2c20 0a20 2020 2020 oc)List,, . │ │ │ │ -0002f120: 202a 2066 662c 2061 202a 6e6f 7465 2073 * ff, a *note s │ │ │ │ -0002f130: 6571 7565 6e63 653a 2028 4d61 6361 756c equence: (Macaul │ │ │ │ -0002f140: 6179 3244 6f63 2953 6571 7565 6e63 652c ay2Doc)Sequence, │ │ │ │ -0002f150: 2c20 0a20 2020 2020 202a 204d 2c20 6120 , . * M, a │ │ │ │ -0002f160: 2a6e 6f74 6520 6d6f 6475 6c65 3a20 284d *note module: (M │ │ │ │ -0002f170: 6163 6175 6c61 7932 446f 6329 4d6f 6475 acaulay2Doc)Modu │ │ │ │ -0002f180: 6c65 2c2c 200a 2020 2a20 4f75 7470 7574 le,, . * Output │ │ │ │ -0002f190: 733a 0a20 2020 2020 202a 2074 2c20 6120 s:. * t, a │ │ │ │ -0002f1a0: 2a6e 6f74 6520 426f 6f6c 6561 6e20 7661 *note Boolean va │ │ │ │ -0002f1b0: 6c75 653a 2028 4d61 6361 756c 6179 3244 lue: (Macaulay2D │ │ │ │ -0002f1c0: 6f63 2942 6f6f 6c65 616e 2c2c 200a 0a44 oc)Boolean,, ..D │ │ │ │ -0002f1d0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -0002f1e0: 3d3d 3d3d 3d3d 0a0a 6666 2069 7320 7175 ======..ff is qu │ │ │ │ -0002f1f0: 6173 692d 7265 6775 6c61 7220 6966 2074 asi-regular if t │ │ │ │ -0002f200: 6865 206c 656e 6774 6820 6f66 2066 6620 he length of ff │ │ │ │ -0002f210: 6973 203c 3d20 6469 6d20 4d20 616e 6420 is <= dim M and │ │ │ │ -0002f220: 7468 6520 616e 6e69 6869 6c61 746f 7220 the annihilator │ │ │ │ -0002f230: 6f66 2066 665f 690a 6f6e 204d 2f28 6666 of ff_i.on M/(ff │ │ │ │ -0002f240: 5f30 2e2e 6666 5f7b 2869 2d31 2929 7d4d _0..ff_{(i-1))}M │ │ │ │ -0002f250: 2068 6173 2066 696e 6974 6520 6c65 6e67 has finite leng │ │ │ │ -0002f260: 7468 2066 6f72 2061 6c6c 2069 3d30 2e2e th for all i=0.. │ │ │ │ -0002f270: 286c 656e 6774 6820 6666 292d 312e 0a0a (length ff)-1... │ │ │ │ -0002f280: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0002f290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ -0002f2b0: 3a20 6b6b 3d5a 5a2f 3130 313b 2020 2020 : kk=ZZ/101; │ │ │ │ -0002f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f2d0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002f070: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ +0002f080: 2020 2020 2020 2074 203d 2069 7351 7561 t = isQua │ │ │ │ +0002f090: 7369 5265 6775 6c61 7228 6666 2c4d 290a siRegular(ff,M). │ │ │ │ +0002f0a0: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +0002f0b0: 2020 2a20 6666 2c20 6120 2a6e 6f74 6520 * ff, a *note │ │ │ │ +0002f0c0: 6d61 7472 6978 3a20 284d 6163 6175 6c61 matrix: (Macaula │ │ │ │ +0002f0d0: 7932 446f 6329 4d61 7472 6978 2c2c 200a y2Doc)Matrix,, . │ │ │ │ +0002f0e0: 2020 2020 2020 2a20 6666 2c20 6120 2a6e * ff, a *n │ │ │ │ +0002f0f0: 6f74 6520 6c69 7374 3a20 284d 6163 6175 ote list: (Macau │ │ │ │ +0002f100: 6c61 7932 446f 6329 4c69 7374 2c2c 200a lay2Doc)List,, . │ │ │ │ +0002f110: 2020 2020 2020 2a20 6666 2c20 6120 2a6e * ff, a *n │ │ │ │ +0002f120: 6f74 6520 7365 7175 656e 6365 3a20 284d ote sequence: (M │ │ │ │ +0002f130: 6163 6175 6c61 7932 446f 6329 5365 7175 acaulay2Doc)Sequ │ │ │ │ +0002f140: 656e 6365 2c2c 200a 2020 2020 2020 2a20 ence,, . * │ │ │ │ +0002f150: 4d2c 2061 202a 6e6f 7465 206d 6f64 756c M, a *note modul │ │ │ │ +0002f160: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ +0002f170: 294d 6f64 756c 652c 2c20 0a20 202a 204f )Module,, . * O │ │ │ │ +0002f180: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ +0002f190: 742c 2061 202a 6e6f 7465 2042 6f6f 6c65 t, a *note Boole │ │ │ │ +0002f1a0: 616e 2076 616c 7565 3a20 284d 6163 6175 an value: (Macau │ │ │ │ +0002f1b0: 6c61 7932 446f 6329 426f 6f6c 6561 6e2c lay2Doc)Boolean, │ │ │ │ +0002f1c0: 2c20 0a0a 4465 7363 7269 7074 696f 6e0a , ..Description. │ │ │ │ +0002f1d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a66 6620 ===========..ff │ │ │ │ +0002f1e0: 6973 2071 7561 7369 2d72 6567 756c 6172 is quasi-regular │ │ │ │ +0002f1f0: 2069 6620 7468 6520 6c65 6e67 7468 206f if the length o │ │ │ │ +0002f200: 6620 6666 2069 7320 3c3d 2064 696d 204d f ff is <= dim M │ │ │ │ +0002f210: 2061 6e64 2074 6865 2061 6e6e 6968 696c and the annihil │ │ │ │ +0002f220: 6174 6f72 206f 6620 6666 5f69 0a6f 6e20 ator of ff_i.on │ │ │ │ +0002f230: 4d2f 2866 665f 302e 2e66 665f 7b28 692d M/(ff_0..ff_{(i- │ │ │ │ +0002f240: 3129 297d 4d20 6861 7320 6669 6e69 7465 1))}M has finite │ │ │ │ +0002f250: 206c 656e 6774 6820 666f 7220 616c 6c20 length for all │ │ │ │ +0002f260: 693d 302e 2e28 6c65 6e67 7468 2066 6629 i=0..(length ff) │ │ │ │ +0002f270: 2d31 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d -1...+---------- │ │ │ │ +0002f280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002f2a0: 0a7c 6931 203a 206b 6b3d 5a5a 2f31 3031 .|i1 : kk=ZZ/101 │ │ │ │ +0002f2b0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +0002f2c0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002f2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f300: 2d2d 2b0a 7c69 3220 3a20 5320 3d20 6b6b --+.|i2 : S = kk │ │ │ │ -0002f310: 5b61 2c62 2c63 5d3b 2020 2020 2020 2020 [a,b,c]; │ │ │ │ -0002f320: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002f330: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0002f340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f350: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ -0002f360: 3a20 4520 3d20 535e 312f 6964 6561 6c22 : E = S^1/ideal" │ │ │ │ -0002f370: 6162 222b 2b53 5e31 2f69 6465 616c 2076 ab"++S^1/ideal v │ │ │ │ -0002f380: 6172 7320 533b 7c0a 2b2d 2d2d 2d2d 2d2d ars S;|.+------- │ │ │ │ +0002f2f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2053 -------+.|i2 : S │ │ │ │ +0002f300: 203d 206b 6b5b 612c 622c 635d 3b20 2020 = kk[a,b,c]; │ │ │ │ +0002f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f320: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0002f330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002f350: 0a7c 6933 203a 2045 203d 2053 5e31 2f69 .|i3 : E = S^1/i │ │ │ │ +0002f360: 6465 616c 2261 6222 2b2b 535e 312f 6964 deal"ab"++S^1/id │ │ │ │ +0002f370: 6561 6c20 7661 7273 2053 3b7c 0a2b 2d2d eal vars S;|.+-- │ │ │ │ +0002f380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f3b0: 2d2d 2b0a 7c69 3420 3a20 6631 203d 6d61 --+.|i4 : f1 =ma │ │ │ │ -0002f3c0: 7472 6978 2261 223b 2020 2020 2020 2020 trix"a"; │ │ │ │ -0002f3d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002f3e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002f3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f400: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f410: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -0002f420: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0002f430: 2020 2020 2020 7c0a 7c6f 3420 3a20 4d61 |.|o4 : Ma │ │ │ │ -0002f440: 7472 6978 2053 2020 3c2d 2d20 5320 2020 trix S <-- S │ │ │ │ -0002f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f460: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002f3a0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2066 -------+.|i4 : f │ │ │ │ +0002f3b0: 3120 3d6d 6174 7269 7822 6122 3b20 2020 1 =matrix"a"; │ │ │ │ +0002f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f3d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002f3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f3f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f400: 0a7c 2020 2020 2020 2020 2020 2020 2031 .| 1 │ │ │ │ +0002f410: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +0002f420: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +0002f430: 203a 204d 6174 7269 7820 5320 203c 2d2d : Matrix S <-- │ │ │ │ +0002f440: 2053 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +0002f450: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002f460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0002f490: 7c69 3520 3a20 6632 203d 6d61 7472 6978 |i5 : f2 =matrix │ │ │ │ -0002f4a0: 2261 2b62 2c63 223b 2020 2020 2020 2020 "a+b,c"; │ │ │ │ -0002f4b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002f480: 2d2d 2d2b 0a7c 6935 203a 2066 3220 3d6d ---+.|i5 : f2 =m │ │ │ │ +0002f490: 6174 7269 7822 612b 622c 6322 3b20 2020 atrix"a+b,c"; │ │ │ │ +0002f4a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f4b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f4e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002f4f0: 2020 2020 2020 3120 2020 2020 2032 2020 1 2 │ │ │ │ -0002f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f510: 2020 7c0a 7c6f 3520 3a20 4d61 7472 6978 |.|o5 : Matrix │ │ │ │ -0002f520: 2053 2020 3c2d 2d20 5320 2020 2020 2020 S <-- S │ │ │ │ -0002f530: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002f540: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0002f550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f560: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ -0002f570: 3a20 6633 203d 206d 6174 7269 7822 612b : f3 = matrix"a+ │ │ │ │ -0002f580: 6222 3b20 2020 2020 2020 2020 2020 2020 b"; │ │ │ │ -0002f590: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002f4d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002f4e0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +0002f4f0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002f500: 2020 2020 2020 207c 0a7c 6f35 203a 204d |.|o5 : M │ │ │ │ +0002f510: 6174 7269 7820 5320 203c 2d2d 2053 2020 atrix S <-- S │ │ │ │ +0002f520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f530: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0002f540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002f560: 0a7c 6936 203a 2066 3320 3d20 6d61 7472 .|i6 : f3 = matr │ │ │ │ +0002f570: 6978 2261 2b62 223b 2020 2020 2020 2020 ix"a+b"; │ │ │ │ +0002f580: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002f590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f5c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002f5d0: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -0002f5e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002f5f0: 7c6f 3620 3a20 4d61 7472 6978 2053 2020 |o6 : Matrix S │ │ │ │ -0002f600: 3c2d 2d20 5320 2020 2020 2020 2020 2020 <-- S │ │ │ │ -0002f610: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002f5b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f5c0: 2020 2020 2020 2031 2020 2020 2020 3120 1 1 │ │ │ │ +0002f5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f5e0: 2020 207c 0a7c 6f36 203a 204d 6174 7269 |.|o6 : Matri │ │ │ │ +0002f5f0: 7820 5320 203c 2d2d 2053 2020 2020 2020 x S <-- S │ │ │ │ +0002f600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f610: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0002f620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f640: 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 6634 ------+.|i7 : f4 │ │ │ │ -0002f650: 203d 206d 6174 7269 7822 612b 622c 2061 = matrix"a+b, a │ │ │ │ -0002f660: 322b 6222 3b20 2020 2020 2020 2020 2020 2+b"; │ │ │ │ -0002f670: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002f630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ +0002f640: 203a 2066 3420 3d20 6d61 7472 6978 2261 : f4 = matrix"a │ │ │ │ +0002f650: 2b62 2c20 6132 2b62 223b 2020 2020 2020 +b, a2+b"; │ │ │ │ +0002f660: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f690: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002f6a0: 7c20 2020 2020 2020 2020 2020 2020 3120 | 1 │ │ │ │ -0002f6b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -0002f6c0: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ -0002f6d0: 3a20 4d61 7472 6978 2053 2020 3c2d 2d20 : Matrix S <-- │ │ │ │ -0002f6e0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ -0002f6f0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002f690: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002f6a0: 2020 2031 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ +0002f6b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f6c0: 0a7c 6f37 203a 204d 6174 7269 7820 5320 .|o7 : Matrix S │ │ │ │ +0002f6d0: 203c 2d2d 2053 2020 2020 2020 2020 2020 <-- S │ │ │ │ +0002f6e0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002f6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f720: 2d2d 2b0a 7c69 3820 3a20 6973 5175 6173 --+.|i8 : isQuas │ │ │ │ -0002f730: 6952 6567 756c 6172 2866 312c 4529 2020 iRegular(f1,E) │ │ │ │ -0002f740: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002f750: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f770: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ -0002f780: 3d20 6661 6c73 6520 2020 2020 2020 2020 = false │ │ │ │ -0002f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f7a0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002f710: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2069 -------+.|i8 : i │ │ │ │ +0002f720: 7351 7561 7369 5265 6775 6c61 7228 6631 sQuasiRegular(f1 │ │ │ │ +0002f730: 2c45 2920 2020 2020 2020 2020 2020 2020 ,E) │ │ │ │ +0002f740: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f760: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f770: 0a7c 6f38 203d 2066 616c 7365 2020 2020 .|o8 = false │ │ │ │ +0002f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f790: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002f7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f7d0: 2d2d 2b0a 7c69 3920 3a20 6973 5175 6173 --+.|i9 : isQuas │ │ │ │ -0002f7e0: 6952 6567 756c 6172 2866 322c 4529 2020 iRegular(f2,E) │ │ │ │ -0002f7f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002f800: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f820: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ -0002f830: 3d20 7472 7565 2020 2020 2020 2020 2020 = true │ │ │ │ -0002f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f850: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002f7c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2069 -------+.|i9 : i │ │ │ │ +0002f7d0: 7351 7561 7369 5265 6775 6c61 7228 6632 sQuasiRegular(f2 │ │ │ │ +0002f7e0: 2c45 2920 2020 2020 2020 2020 2020 2020 ,E) │ │ │ │ +0002f7f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f810: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f820: 0a7c 6f39 203d 2074 7275 6520 2020 2020 .|o9 = true │ │ │ │ +0002f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f840: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002f850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f880: 2d2d 2b0a 7c69 3130 203a 2069 7351 7561 --+.|i10 : isQua │ │ │ │ -0002f890: 7369 5265 6775 6c61 7228 6633 2c45 2920 siRegular(f3,E) │ │ │ │ -0002f8a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002f8b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f8d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3130 |.|o10 │ │ │ │ -0002f8e0: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ -0002f8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f900: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002f870: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ +0002f880: 6973 5175 6173 6952 6567 756c 6172 2866 isQuasiRegular(f │ │ │ │ +0002f890: 332c 4529 2020 2020 2020 2020 2020 2020 3,E) │ │ │ │ +0002f8a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f8c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f8d0: 0a7c 6f31 3020 3d20 7472 7565 2020 2020 .|o10 = true │ │ │ │ +0002f8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f8f0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002f900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f930: 2d2d 2b0a 7c69 3131 203a 2069 7351 7561 --+.|i11 : isQua │ │ │ │ -0002f940: 7369 5265 6775 6c61 7228 6634 2c45 2920 siRegular(f4,E) │ │ │ │ -0002f950: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002f960: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f980: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -0002f990: 203d 2066 616c 7365 2020 2020 2020 2020 = false │ │ │ │ -0002f9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f9b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002f920: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 -------+.|i11 : │ │ │ │ +0002f930: 6973 5175 6173 6952 6567 756c 6172 2866 isQuasiRegular(f │ │ │ │ +0002f940: 342c 4529 2020 2020 2020 2020 2020 2020 4,E) │ │ │ │ +0002f950: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f980: 0a7c 6f31 3120 3d20 6661 6c73 6520 2020 .|o11 = false │ │ │ │ +0002f990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f9a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002f9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f9e0: 2d2d 2b0a 0a57 6179 7320 746f 2075 7365 --+..Ways to use │ │ │ │ -0002f9f0: 2069 7351 7561 7369 5265 6775 6c61 723a isQuasiRegular: │ │ │ │ -0002fa00: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0002fa10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -0002fa20: 2a20 2269 7351 7561 7369 5265 6775 6c61 * "isQuasiRegula │ │ │ │ -0002fa30: 7228 4c69 7374 2c4d 6f64 756c 6529 220a r(List,Module)". │ │ │ │ -0002fa40: 2020 2a20 2269 7351 7561 7369 5265 6775 * "isQuasiRegu │ │ │ │ -0002fa50: 6c61 7228 4d61 7472 6978 2c4d 6f64 756c lar(Matrix,Modul │ │ │ │ -0002fa60: 6529 220a 2020 2a20 2269 7351 7561 7369 e)". * "isQuasi │ │ │ │ -0002fa70: 5265 6775 6c61 7228 5365 7175 656e 6365 Regular(Sequence │ │ │ │ -0002fa80: 2c4d 6f64 756c 6529 220a 0a46 6f72 2074 ,Module)"..For t │ │ │ │ -0002fa90: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -0002faa0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002fab0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -0002fac0: 7465 2069 7351 7561 7369 5265 6775 6c61 te isQuasiRegula │ │ │ │ -0002fad0: 723a 2069 7351 7561 7369 5265 6775 6c61 r: isQuasiRegula │ │ │ │ -0002fae0: 722c 2069 7320 6120 2a6e 6f74 6520 6d65 r, is a *note me │ │ │ │ -0002faf0: 7468 6f64 2066 756e 6374 696f 6e3a 0a28 thod function:.( │ │ │ │ -0002fb00: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ -0002fb10: 686f 6446 756e 6374 696f 6e2c 2e0a 0a2d hodFunction,...- │ │ │ │ +0002f9d0: 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 -------+..Ways t │ │ │ │ +0002f9e0: 6f20 7573 6520 6973 5175 6173 6952 6567 o use isQuasiReg │ │ │ │ +0002f9f0: 756c 6172 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d ular:.========== │ │ │ │ +0002fa00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0002fa10: 3d0a 0a20 202a 2022 6973 5175 6173 6952 =.. * "isQuasiR │ │ │ │ +0002fa20: 6567 756c 6172 284c 6973 742c 4d6f 6475 egular(List,Modu │ │ │ │ +0002fa30: 6c65 2922 0a20 202a 2022 6973 5175 6173 le)". * "isQuas │ │ │ │ +0002fa40: 6952 6567 756c 6172 284d 6174 7269 782c iRegular(Matrix, │ │ │ │ +0002fa50: 4d6f 6475 6c65 2922 0a20 202a 2022 6973 Module)". * "is │ │ │ │ +0002fa60: 5175 6173 6952 6567 756c 6172 2853 6571 QuasiRegular(Seq │ │ │ │ +0002fa70: 7565 6e63 652c 4d6f 6475 6c65 2922 0a0a uence,Module)".. │ │ │ │ +0002fa80: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +0002fa90: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +0002faa0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +0002fab0: 7420 2a6e 6f74 6520 6973 5175 6173 6952 t *note isQuasiR │ │ │ │ +0002fac0: 6567 756c 6172 3a20 6973 5175 6173 6952 egular: isQuasiR │ │ │ │ +0002fad0: 6567 756c 6172 2c20 6973 2061 202a 6e6f egular, is a *no │ │ │ │ +0002fae0: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +0002faf0: 6f6e 3a0a 284d 6163 6175 6c61 7932 446f on:.(Macaulay2Do │ │ │ │ +0002fb00: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ +0002fb10: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ 0002fb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002fb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002fb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002fb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -0002fb70: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -0002fb80: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -0002fb90: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -0002fba0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -0002fbb0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -0002fbc0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -0002fbd0: 6b61 6765 732f 0a43 6f6d 706c 6574 6549 kages/.CompleteI │ │ │ │ -0002fbe0: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ -0002fbf0: 7574 696f 6e73 2e6d 323a 3436 3237 3a30 utions.m2:4627:0 │ │ │ │ -0002fc00: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ -0002fc10: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ -0002fc20: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ -0002fc30: 4e6f 6465 3a20 6973 5374 6162 6c79 5472 Node: isStablyTr │ │ │ │ -0002fc40: 6976 6961 6c2c 204e 6578 743a 206b 6f73 ivial, Next: kos │ │ │ │ -0002fc50: 7a75 6c45 7874 656e 7369 6f6e 2c20 5072 zulExtension, Pr │ │ │ │ -0002fc60: 6576 3a20 6973 5175 6173 6952 6567 756c ev: isQuasiRegul │ │ │ │ -0002fc70: 6172 2c20 5570 3a20 546f 700a 0a69 7353 ar, Up: Top..isS │ │ │ │ -0002fc80: 7461 626c 7954 7269 7669 616c 202d 2d20 tablyTrivial -- │ │ │ │ -0002fc90: 7265 7475 726e 7320 7472 7565 2069 6620 returns true if │ │ │ │ -0002fca0: 7468 6520 6d61 7020 676f 6573 2074 6f20 the map goes to │ │ │ │ -0002fcb0: 3020 756e 6465 7220 7374 6162 6c65 486f 0 under stableHo │ │ │ │ -0002fcc0: 6d0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a m.************** │ │ │ │ +0002fb60: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +0002fb70: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +0002fb80: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +0002fb90: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +0002fba0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +0002fbb0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +0002fbc0: 322f 7061 636b 6167 6573 2f0a 436f 6d70 2/packages/.Comp │ │ │ │ +0002fbd0: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ +0002fbe0: 5265 736f 6c75 7469 6f6e 732e 6d32 3a34 Resolutions.m2:4 │ │ │ │ +0002fbf0: 3632 373a 302e 0a1f 0a46 696c 653a 2043 627:0....File: C │ │ │ │ +0002fc00: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ +0002fc10: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ +0002fc20: 6e66 6f2c 204e 6f64 653a 2069 7353 7461 nfo, Node: isSta │ │ │ │ +0002fc30: 626c 7954 7269 7669 616c 2c20 4e65 7874 blyTrivial, Next │ │ │ │ +0002fc40: 3a20 6b6f 737a 756c 4578 7465 6e73 696f : koszulExtensio │ │ │ │ +0002fc50: 6e2c 2050 7265 763a 2069 7351 7561 7369 n, Prev: isQuasi │ │ │ │ +0002fc60: 5265 6775 6c61 722c 2055 703a 2054 6f70 Regular, Up: Top │ │ │ │ +0002fc70: 0a0a 6973 5374 6162 6c79 5472 6976 6961 ..isStablyTrivia │ │ │ │ +0002fc80: 6c20 2d2d 2072 6574 7572 6e73 2074 7275 l -- returns tru │ │ │ │ +0002fc90: 6520 6966 2074 6865 206d 6170 2067 6f65 e if the map goe │ │ │ │ +0002fca0: 7320 746f 2030 2075 6e64 6572 2073 7461 s to 0 under sta │ │ │ │ +0002fcb0: 626c 6548 6f6d 0a2a 2a2a 2a2a 2a2a 2a2a bleHom.********* │ │ │ │ +0002fcc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002fcd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002fce0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002fcf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002fd00: 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 6167 ******.. * Usag │ │ │ │ -0002fd10: 653a 200a 2020 2020 2020 2020 6220 3d20 e: . b = │ │ │ │ -0002fd20: 6973 5374 6162 6c79 5472 6976 6961 6c20 isStablyTrivial │ │ │ │ -0002fd30: 660a 2020 2a20 496e 7075 7473 3a0a 2020 f. * Inputs:. │ │ │ │ -0002fd40: 2020 2020 2a20 662c 2061 202a 6e6f 7465 * f, a *note │ │ │ │ -0002fd50: 206d 6174 7269 783a 2028 4d61 6361 756c matrix: (Macaul │ │ │ │ -0002fd60: 6179 3244 6f63 294d 6174 7269 782c 2c20 ay2Doc)Matrix,, │ │ │ │ -0002fd70: 6d61 7020 4d20 746f 204e 0a20 202a 204f map M to N. * O │ │ │ │ -0002fd80: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ -0002fd90: 622c 2061 202a 6e6f 7465 2042 6f6f 6c65 b, a *note Boole │ │ │ │ -0002fda0: 616e 2076 616c 7565 3a20 284d 6163 6175 an value: (Macau │ │ │ │ -0002fdb0: 6c61 7932 446f 6329 426f 6f6c 6561 6e2c lay2Doc)Boolean, │ │ │ │ -0002fdc0: 2c20 7472 7565 2069 6666 2066 2066 6163 , true iff f fac │ │ │ │ -0002fdd0: 746f 7273 0a20 2020 2020 2020 2074 6872 tors. thr │ │ │ │ -0002fde0: 6f75 6768 2061 2070 726f 6a65 6374 6976 ough a projectiv │ │ │ │ -0002fdf0: 650a 0a44 6573 6372 6970 7469 6f6e 0a3d e..Description.= │ │ │ │ -0002fe00: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4120 706f ==========..A po │ │ │ │ -0002fe10: 7373 6962 6c65 206f 6273 7472 7563 7469 ssible obstructi │ │ │ │ -0002fe20: 6f6e 2074 6f20 7468 6520 636f 6d6d 7574 on to the commut │ │ │ │ -0002fe30: 6174 6976 6974 7920 6f66 2074 6865 2043 ativity of the C │ │ │ │ -0002fe40: 4920 6f70 6572 6174 6f72 7320 696e 2063 I operators in c │ │ │ │ -0002fe50: 6f64 696d 2063 2c0a 6576 656e 2061 7379 odim c,.even asy │ │ │ │ -0002fe60: 6d70 746f 7469 6361 6c6c 792c 2077 6f75 mptotically, wou │ │ │ │ -0002fe70: 6c64 2062 6520 7468 6520 6e6f 6e2d 7472 ld be the non-tr │ │ │ │ -0002fe80: 6976 6961 6c69 7479 206f 6620 7468 6520 iviality of the │ │ │ │ -0002fe90: 6d61 7020 4d5f 7b28 6b2b 3429 7d20 2d2d map M_{(k+4)} -- │ │ │ │ -0002fea0: 3e20 4d5f 6b0a 5c6f 7469 6d65 7320 5c77 > M_k.\otimes \w │ │ │ │ -0002feb0: 6564 6765 5e32 2853 5e63 2920 696e 2074 edge^2(S^c) in t │ │ │ │ -0002fec0: 6865 2073 7461 626c 6520 6361 7465 676f he stable catego │ │ │ │ -0002fed0: 7279 206f 6620 6d61 7869 6d61 6c20 436f ry of maximal Co │ │ │ │ -0002fee0: 6865 6e2d 4d61 6361 756c 6179 206d 6f64 hen-Macaulay mod │ │ │ │ -0002fef0: 756c 6573 2e0a 0a49 6e20 7468 6520 666f ules...In the fo │ │ │ │ -0002ff00: 6c6c 6f77 696e 6720 6578 616d 706c 652c llowing example, │ │ │ │ -0002ff10: 2073 7475 6469 6564 2069 6e20 7468 6520 studied in the │ │ │ │ -0002ff20: 7061 7065 7220 2254 6f72 2061 7320 6120 paper "Tor as a │ │ │ │ -0002ff30: 6d6f 6475 6c65 206f 7665 7220 616e 0a65 module over an.e │ │ │ │ -0002ff40: 7874 6572 696f 7220 616c 6765 6272 6122 xterior algebra" │ │ │ │ -0002ff50: 206f 6620 4569 7365 6e62 7564 2c20 5065 of Eisenbud, Pe │ │ │ │ -0002ff60: 6576 6120 616e 6420 5363 6872 6579 6572 eva and Schreyer │ │ │ │ -0002ff70: 2c20 7468 6520 6d61 7020 6973 206e 6f6e , the map is non │ │ │ │ -0002ff80: 2d74 7269 7669 616c 2e2e 2e62 7574 0a69 -trivial...but.i │ │ │ │ -0002ff90: 7420 6973 2073 7461 626c 7920 7472 6976 t is stably triv │ │ │ │ -0002ffa0: 6961 6c2e 2054 6865 2073 616d 6520 676f ial. The same go │ │ │ │ -0002ffb0: 6573 2066 6f72 2068 6967 6865 7220 7661 es for higher va │ │ │ │ -0002ffc0: 6c75 6573 206f 6620 6b20 2877 6869 6368 lues of k (which │ │ │ │ -0002ffd0: 2074 616b 6520 6c6f 6e67 6572 0a74 6f20 take longer.to │ │ │ │ -0002ffe0: 636f 6d70 7574 6529 2e20 286e 6f74 6520 compute). (note │ │ │ │ -0002fff0: 7468 6174 2069 6e20 7468 6973 2063 6173 that in this cas │ │ │ │ -00030000: 652c 2077 6974 6820 6320 3d20 332c 2074 e, with c = 3, t │ │ │ │ -00030010: 776f 206f 6620 7468 6520 7468 7265 6520 wo of the three │ │ │ │ -00030020: 616c 7465 726e 6174 696e 670a 7072 6f64 alternating.prod │ │ │ │ -00030030: 7563 7473 2061 7265 2061 6374 7561 6c6c ucts are actuall │ │ │ │ -00030040: 7920 6571 7561 6c20 746f 2030 2c20 736f y equal to 0, so │ │ │ │ -00030050: 2077 6520 7465 7374 206f 6e6c 7920 7468 we test only th │ │ │ │ -00030060: 6520 7468 6972 642e 290a 0a4e 6f74 6520 e third.)..Note │ │ │ │ -00030070: 7468 6174 2054 2069 7320 7765 6c6c 2d64 that T is well-d │ │ │ │ -00030080: 6566 696e 6564 2075 7020 746f 2068 6f6d efined up to hom │ │ │ │ -00030090: 6f74 6f70 793b 2073 6f20 545e 3220 6973 otopy; so T^2 is │ │ │ │ -000300a0: 2077 656c 6c2d 6465 6669 6e65 6420 6d6f well-defined mo │ │ │ │ -000300b0: 6420 6d6d 5e32 2e0a 0a2b 2d2d 2d2d 2d2d d mm^2...+------ │ │ │ │ +0002fcf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +0002fd00: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +0002fd10: 2062 203d 2069 7353 7461 626c 7954 7269 b = isStablyTri │ │ │ │ +0002fd20: 7669 616c 2066 0a20 202a 2049 6e70 7574 vial f. * Input │ │ │ │ +0002fd30: 733a 0a20 2020 2020 202a 2066 2c20 6120 s:. * f, a │ │ │ │ +0002fd40: 2a6e 6f74 6520 6d61 7472 6978 3a20 284d *note matrix: (M │ │ │ │ +0002fd50: 6163 6175 6c61 7932 446f 6329 4d61 7472 acaulay2Doc)Matr │ │ │ │ +0002fd60: 6978 2c2c 206d 6170 204d 2074 6f20 4e0a ix,, map M to N. │ │ │ │ +0002fd70: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +0002fd80: 2020 202a 2062 2c20 6120 2a6e 6f74 6520 * b, a *note │ │ │ │ +0002fd90: 426f 6f6c 6561 6e20 7661 6c75 653a 2028 Boolean value: ( │ │ │ │ +0002fda0: 4d61 6361 756c 6179 3244 6f63 2942 6f6f Macaulay2Doc)Boo │ │ │ │ +0002fdb0: 6c65 616e 2c2c 2074 7275 6520 6966 6620 lean,, true iff │ │ │ │ +0002fdc0: 6620 6661 6374 6f72 730a 2020 2020 2020 f factors. │ │ │ │ +0002fdd0: 2020 7468 726f 7567 6820 6120 7072 6f6a through a proj │ │ │ │ +0002fde0: 6563 7469 7665 0a0a 4465 7363 7269 7074 ective..Descript │ │ │ │ +0002fdf0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +0002fe00: 0a41 2070 6f73 7369 626c 6520 6f62 7374 .A possible obst │ │ │ │ +0002fe10: 7275 6374 696f 6e20 746f 2074 6865 2063 ruction to the c │ │ │ │ +0002fe20: 6f6d 6d75 7461 7469 7669 7479 206f 6620 ommutativity of │ │ │ │ +0002fe30: 7468 6520 4349 206f 7065 7261 746f 7273 the CI operators │ │ │ │ +0002fe40: 2069 6e20 636f 6469 6d20 632c 0a65 7665 in codim c,.eve │ │ │ │ +0002fe50: 6e20 6173 796d 7074 6f74 6963 616c 6c79 n asymptotically │ │ │ │ +0002fe60: 2c20 776f 756c 6420 6265 2074 6865 206e , would be the n │ │ │ │ +0002fe70: 6f6e 2d74 7269 7669 616c 6974 7920 6f66 on-triviality of │ │ │ │ +0002fe80: 2074 6865 206d 6170 204d 5f7b 286b 2b34 the map M_{(k+4 │ │ │ │ +0002fe90: 297d 202d 2d3e 204d 5f6b 0a5c 6f74 696d )} --> M_k.\otim │ │ │ │ +0002fea0: 6573 205c 7765 6467 655e 3228 535e 6329 es \wedge^2(S^c) │ │ │ │ +0002feb0: 2069 6e20 7468 6520 7374 6162 6c65 2063 in the stable c │ │ │ │ +0002fec0: 6174 6567 6f72 7920 6f66 206d 6178 696d ategory of maxim │ │ │ │ +0002fed0: 616c 2043 6f68 656e 2d4d 6163 6175 6c61 al Cohen-Macaula │ │ │ │ +0002fee0: 7920 6d6f 6475 6c65 732e 0a0a 496e 2074 y modules...In t │ │ │ │ +0002fef0: 6865 2066 6f6c 6c6f 7769 6e67 2065 7861 he following exa │ │ │ │ +0002ff00: 6d70 6c65 2c20 7374 7564 6965 6420 696e mple, studied in │ │ │ │ +0002ff10: 2074 6865 2070 6170 6572 2022 546f 7220 the paper "Tor │ │ │ │ +0002ff20: 6173 2061 206d 6f64 756c 6520 6f76 6572 as a module over │ │ │ │ +0002ff30: 2061 6e0a 6578 7465 7269 6f72 2061 6c67 an.exterior alg │ │ │ │ +0002ff40: 6562 7261 2220 6f66 2045 6973 656e 6275 ebra" of Eisenbu │ │ │ │ +0002ff50: 642c 2050 6565 7661 2061 6e64 2053 6368 d, Peeva and Sch │ │ │ │ +0002ff60: 7265 7965 722c 2074 6865 206d 6170 2069 reyer, the map i │ │ │ │ +0002ff70: 7320 6e6f 6e2d 7472 6976 6961 6c2e 2e2e s non-trivial... │ │ │ │ +0002ff80: 6275 740a 6974 2069 7320 7374 6162 6c79 but.it is stably │ │ │ │ +0002ff90: 2074 7269 7669 616c 2e20 5468 6520 7361 trivial. The sa │ │ │ │ +0002ffa0: 6d65 2067 6f65 7320 666f 7220 6869 6768 me goes for high │ │ │ │ +0002ffb0: 6572 2076 616c 7565 7320 6f66 206b 2028 er values of k ( │ │ │ │ +0002ffc0: 7768 6963 6820 7461 6b65 206c 6f6e 6765 which take longe │ │ │ │ +0002ffd0: 720a 746f 2063 6f6d 7075 7465 292e 2028 r.to compute). ( │ │ │ │ +0002ffe0: 6e6f 7465 2074 6861 7420 696e 2074 6869 note that in thi │ │ │ │ +0002fff0: 7320 6361 7365 2c20 7769 7468 2063 203d s case, with c = │ │ │ │ +00030000: 2033 2c20 7477 6f20 6f66 2074 6865 2074 3, two of the t │ │ │ │ +00030010: 6872 6565 2061 6c74 6572 6e61 7469 6e67 hree alternating │ │ │ │ +00030020: 0a70 726f 6475 6374 7320 6172 6520 6163 .products are ac │ │ │ │ +00030030: 7475 616c 6c79 2065 7175 616c 2074 6f20 tually equal to │ │ │ │ +00030040: 302c 2073 6f20 7765 2074 6573 7420 6f6e 0, so we test on │ │ │ │ +00030050: 6c79 2074 6865 2074 6869 7264 2e29 0a0a ly the third.).. │ │ │ │ +00030060: 4e6f 7465 2074 6861 7420 5420 6973 2077 Note that T is w │ │ │ │ +00030070: 656c 6c2d 6465 6669 6e65 6420 7570 2074 ell-defined up t │ │ │ │ +00030080: 6f20 686f 6d6f 746f 7079 3b20 736f 2054 o homotopy; so T │ │ │ │ +00030090: 5e32 2069 7320 7765 6c6c 2d64 6566 696e ^2 is well-defin │ │ │ │ +000300a0: 6564 206d 6f64 206d 6d5e 322e 0a0a 2b2d ed mod mm^2...+- │ │ │ │ +000300b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000300c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000300d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000300e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000300f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030100: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 206b -------+.|i1 : k │ │ │ │ -00030110: 6b20 3d20 5a5a 2f31 3031 2020 2020 2020 k = ZZ/101 │ │ │ │ +000300f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00030100: 3120 3a20 6b6b 203d 205a 5a2f 3130 3120 1 : kk = ZZ/101 │ │ │ │ +00030110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030150: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00030140: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000301a0: 2020 2020 2020 207c 0a7c 6f31 203d 206b |.|o1 = k │ │ │ │ -000301b0: 6b20 2020 2020 2020 2020 2020 2020 2020 k │ │ │ │ +00030190: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000301a0: 3120 3d20 6b6b 2020 2020 2020 2020 2020 1 = kk │ │ │ │ +000301b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000301c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000301d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000301e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000301f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000301e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000301f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030240: 2020 2020 2020 207c 0a7c 6f31 203a 2051 |.|o1 : Q │ │ │ │ -00030250: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +00030230: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00030240: 3120 3a20 5175 6f74 6965 6e74 5269 6e67 1 : QuotientRing │ │ │ │ +00030250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030290: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00030280: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00030290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000302a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000302b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000302c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000302d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000302e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2053 -------+.|i2 : S │ │ │ │ -000302f0: 203d 206b 6b5b 612c 622c 635d 2020 2020 = kk[a,b,c] │ │ │ │ +000302d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000302e0: 3220 3a20 5320 3d20 6b6b 5b61 2c62 2c63 2 : S = kk[a,b,c │ │ │ │ +000302f0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 00030300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030330: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00030320: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030380: 2020 2020 2020 207c 0a7c 6f32 203d 2053 |.|o2 = S │ │ │ │ +00030370: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00030380: 3220 3d20 5320 2020 2020 2020 2020 2020 2 = S │ │ │ │ 00030390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000303a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000303b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000303c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000303d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000303c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000303d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000303e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000303f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030420: 2020 2020 2020 207c 0a7c 6f32 203a 2050 |.|o2 : P │ │ │ │ -00030430: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +00030410: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00030420: 3220 3a20 506f 6c79 6e6f 6d69 616c 5269 2 : PolynomialRi │ │ │ │ +00030430: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 00030440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030470: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00030460: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00030470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000304a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000304b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000304c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2066 -------+.|i3 : f │ │ │ │ -000304d0: 6620 3d20 6d61 7472 6978 2261 322c 6232 f = matrix"a2,b2 │ │ │ │ -000304e0: 2c63 3222 2020 2020 2020 2020 2020 2020 ,c2" │ │ │ │ +000304b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000304c0: 3320 3a20 6666 203d 206d 6174 7269 7822 3 : ff = matrix" │ │ │ │ +000304d0: 6132 2c62 322c 6332 2220 2020 2020 2020 a2,b2,c2" │ │ │ │ +000304e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000304f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030510: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00030500: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030560: 2020 2020 2020 207c 0a7c 6f33 203d 207c |.|o3 = | │ │ │ │ -00030570: 2061 3220 6232 2063 3220 7c20 2020 2020 a2 b2 c2 | │ │ │ │ +00030550: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00030560: 3320 3d20 7c20 6132 2062 3220 6332 207c 3 = | a2 b2 c2 | │ │ │ │ +00030570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000305a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000305b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000305a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000305b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000305c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000305d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000305e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000305f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030600: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00030610: 2020 2020 2020 2031 2020 2020 2020 3320 1 3 │ │ │ │ +000305f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030600: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +00030610: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 00030620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030650: 2020 2020 2020 207c 0a7c 6f33 203a 204d |.|o3 : M │ │ │ │ -00030660: 6174 7269 7820 5320 203c 2d2d 2053 2020 atrix S <-- S │ │ │ │ +00030640: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00030650: 3320 3a20 4d61 7472 6978 2053 2020 3c2d 3 : Matrix S <- │ │ │ │ +00030660: 2d20 5320 2020 2020 2020 2020 2020 2020 - S │ │ │ │ 00030670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000306a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00030690: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000306a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000306b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000306c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000306d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000306e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000306f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2052 -------+.|i4 : R │ │ │ │ -00030700: 203d 2053 2f69 6465 616c 2066 6620 2020 = S/ideal ff │ │ │ │ +000306e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000306f0: 3420 3a20 5220 3d20 532f 6964 6561 6c20 4 : R = S/ideal │ │ │ │ +00030700: 6666 2020 2020 2020 2020 2020 2020 2020 ff │ │ │ │ 00030710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030740: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00030730: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030790: 2020 2020 2020 207c 0a7c 6f34 203d 2052 |.|o4 = R │ │ │ │ +00030780: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00030790: 3420 3d20 5220 2020 2020 2020 2020 2020 4 = R │ │ │ │ 000307a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000307d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000307e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000307d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000307e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030830: 2020 2020 2020 207c 0a7c 6f34 203a 2051 |.|o4 : Q │ │ │ │ -00030840: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +00030820: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00030830: 3420 3a20 5175 6f74 6965 6e74 5269 6e67 4 : QuotientRing │ │ │ │ +00030840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030880: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00030870: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00030880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000308a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000308b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000308c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000308d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 204d -------+.|i5 : M │ │ │ │ -000308e0: 203d 2052 5e31 2f69 6465 616c 2261 2c62 = R^1/ideal"a,b │ │ │ │ -000308f0: 6322 2020 2020 2020 2020 2020 2020 2020 c" │ │ │ │ +000308c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000308d0: 3520 3a20 4d20 3d20 525e 312f 6964 6561 5 : M = R^1/idea │ │ │ │ +000308e0: 6c22 612c 6263 2220 2020 2020 2020 2020 l"a,bc" │ │ │ │ +000308f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030920: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00030910: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030970: 2020 2020 2020 207c 0a7c 6f35 203d 2063 |.|o5 = c │ │ │ │ -00030980: 6f6b 6572 6e65 6c20 7c20 6120 6263 207c okernel | a bc | │ │ │ │ +00030960: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00030970: 3520 3d20 636f 6b65 726e 656c 207c 2061 5 = cokernel | a │ │ │ │ +00030980: 2062 6320 7c20 2020 2020 2020 2020 2020 bc | │ │ │ │ 00030990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000309a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000309b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000309c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000309b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000309c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000309d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000309e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000309f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00030a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a30: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +00030a00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030a20: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +00030a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a60: 2020 2020 2020 207c 0a7c 6f35 203a 2052 |.|o5 : R │ │ │ │ -00030a70: 2d6d 6f64 756c 652c 2071 756f 7469 656e -module, quotien │ │ │ │ -00030a80: 7420 6f66 2052 2020 2020 2020 2020 2020 t of R │ │ │ │ +00030a50: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00030a60: 3520 3a20 522d 6d6f 6475 6c65 2c20 7175 5 : R-module, qu │ │ │ │ +00030a70: 6f74 6965 6e74 206f 6620 5220 2020 2020 otient of R │ │ │ │ +00030a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ab0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00030aa0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00030ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030b00: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 206b -------+.|i6 : k │ │ │ │ -00030b10: 203d 2031 2020 2020 2020 2020 2020 2020 = 1 │ │ │ │ +00030af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00030b00: 3620 3a20 6b20 3d20 3120 2020 2020 2020 6 : k = 1 │ │ │ │ +00030b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030b50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00030b40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ba0: 2020 2020 2020 207c 0a7c 6f36 203d 2031 |.|o6 = 1 │ │ │ │ +00030b90: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00030ba0: 3620 3d20 3120 2020 2020 2020 2020 2020 6 = 1 │ │ │ │ 00030bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030bf0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00030be0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00030bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030c40: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 206d -------+.|i7 : m │ │ │ │ -00030c50: 203d 206b 2b35 2020 2020 2020 2020 2020 = k+5 │ │ │ │ +00030c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00030c40: 3720 3a20 6d20 3d20 6b2b 3520 2020 2020 7 : m = k+5 │ │ │ │ +00030c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030c90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00030c80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ce0: 2020 2020 2020 207c 0a7c 6f37 203d 2036 |.|o7 = 6 │ │ │ │ +00030cd0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00030ce0: 3720 3d20 3620 2020 2020 2020 2020 2020 7 = 6 │ │ │ │ 00030cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030d30: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00030d20: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00030d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030d80: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2046 -------+.|i8 : F │ │ │ │ -00030d90: 203d 2066 7265 6552 6573 6f6c 7574 696f = freeResolutio │ │ │ │ -00030da0: 6e28 4d2c 204c 656e 6774 684c 696d 6974 n(M, LengthLimit │ │ │ │ -00030db0: 203d 3e20 6d29 2020 2020 2020 2020 2020 => m) │ │ │ │ -00030dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030dd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00030d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00030d80: 3820 3a20 4620 3d20 6672 6565 5265 736f 8 : F = freeReso │ │ │ │ +00030d90: 6c75 7469 6f6e 284d 2c20 4c65 6e67 7468 lution(M, Length │ │ │ │ +00030da0: 4c69 6d69 7420 3d3e 206d 2920 2020 2020 Limit => m) │ │ │ │ +00030db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030dc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030e20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00030e30: 3120 2020 2020 2032 2020 2020 2020 3420 1 2 4 │ │ │ │ -00030e40: 2020 2020 2037 2020 2020 2020 3131 2020 7 11 │ │ │ │ -00030e50: 2020 2020 3136 2020 2020 2020 3232 2020 16 22 │ │ │ │ -00030e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030e70: 2020 2020 2020 207c 0a7c 6f38 203d 2052 |.|o8 = R │ │ │ │ -00030e80: 2020 3c2d 2d20 5220 203c 2d2d 2052 2020 <-- R <-- R │ │ │ │ -00030e90: 3c2d 2d20 5220 203c 2d2d 2052 2020 203c <-- R <-- R < │ │ │ │ -00030ea0: 2d2d 2052 2020 203c 2d2d 2052 2020 2020 -- R <-- R │ │ │ │ -00030eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ec0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00030e10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030e20: 2020 2020 2031 2020 2020 2020 3220 2020 1 2 │ │ │ │ +00030e30: 2020 2034 2020 2020 2020 3720 2020 2020 4 7 │ │ │ │ +00030e40: 2031 3120 2020 2020 2031 3620 2020 2020 11 16 │ │ │ │ +00030e50: 2032 3220 2020 2020 2020 2020 2020 2020 22 │ │ │ │ +00030e60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00030e70: 3820 3d20 5220 203c 2d2d 2052 2020 3c2d 8 = R <-- R <- │ │ │ │ +00030e80: 2d20 5220 203c 2d2d 2052 2020 3c2d 2d20 - R <-- R <-- │ │ │ │ +00030e90: 5220 2020 3c2d 2d20 5220 2020 3c2d 2d20 R <-- R <-- │ │ │ │ +00030ea0: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00030eb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030f10: 2020 2020 2020 207c 0a7c 2020 2020 2030 |.| 0 │ │ │ │ -00030f20: 2020 2020 2020 3120 2020 2020 2032 2020 1 2 │ │ │ │ -00030f30: 2020 2020 3320 2020 2020 2034 2020 2020 3 4 │ │ │ │ -00030f40: 2020 2035 2020 2020 2020 2036 2020 2020 5 6 │ │ │ │ -00030f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030f60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00030f00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030f10: 2020 2020 3020 2020 2020 2031 2020 2020 0 1 │ │ │ │ +00030f20: 2020 3220 2020 2020 2033 2020 2020 2020 2 3 │ │ │ │ +00030f30: 3420 2020 2020 2020 3520 2020 2020 2020 4 5 │ │ │ │ +00030f40: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +00030f50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00030f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030fb0: 2020 2020 2020 207c 0a7c 6f38 203a 2043 |.|o8 : C │ │ │ │ -00030fc0: 6f6d 706c 6578 2020 2020 2020 2020 2020 omplex │ │ │ │ +00030fa0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00030fb0: 3820 3a20 436f 6d70 6c65 7820 2020 2020 8 : Complex │ │ │ │ +00030fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031000: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00030ff0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00031000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031050: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2073 -------+.|i9 : s │ │ │ │ -00031060: 797a 7967 6965 7320 3d20 6170 706c 7928 yzygies = apply( │ │ │ │ -00031070: 312e 2e6d 2c20 692d 3e63 6f6b 6572 2046 1..m, i->coker F │ │ │ │ -00031080: 2e64 645f 6929 3b20 2020 2020 2020 2020 .dd_i); │ │ │ │ -00031090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000310a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00031040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00031050: 3920 3a20 7379 7a79 6769 6573 203d 2061 9 : syzygies = a │ │ │ │ +00031060: 7070 6c79 2831 2e2e 6d2c 2069 2d3e 636f pply(1..m, i->co │ │ │ │ +00031070: 6b65 7220 462e 6464 5f69 293b 2020 2020 ker F.dd_i); │ │ │ │ +00031080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031090: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000310a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000310b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000310c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000310d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000310e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000310f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ -00031100: 7431 203d 206d 616b 6554 2866 662c 462c t1 = makeT(ff,F, │ │ │ │ -00031110: 6b2b 3429 3b20 2020 2020 2020 2020 2020 k+4); │ │ │ │ +000310e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000310f0: 3130 203a 2074 3120 3d20 6d61 6b65 5428 10 : t1 = makeT( │ │ │ │ +00031100: 6666 2c46 2c6b 2b34 293b 2020 2020 2020 ff,F,k+4); │ │ │ │ +00031110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031140: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00031130: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00031140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031190: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 -------+.|i11 : │ │ │ │ -000311a0: 7432 203d 206d 616b 6554 2866 662c 462c t2 = makeT(ff,F, │ │ │ │ -000311b0: 6b2b 3229 3b20 2020 2020 2020 2020 2020 k+2); │ │ │ │ +00031180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00031190: 3131 203a 2074 3220 3d20 6d61 6b65 5428 11 : t2 = makeT( │ │ │ │ +000311a0: 6666 2c46 2c6b 2b32 293b 2020 2020 2020 ff,F,k+2); │ │ │ │ +000311b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000311c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000311d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000311e0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000311d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000311e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000311f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031230: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 3a20 -------+.|i12 : │ │ │ │ -00031240: 5432 436f 6d70 6f6e 656e 7473 203d 2066 T2Components = f │ │ │ │ -00031250: 6c61 7474 656e 2066 6f72 2069 2066 726f latten for i fro │ │ │ │ -00031260: 6d20 3020 746f 2031 206c 6973 7428 666f m 0 to 1 list(fo │ │ │ │ -00031270: 7220 6a20 6672 6f6d 2069 2b31 2074 6f20 r j from i+1 to │ │ │ │ -00031280: 3220 6c69 7374 207c 0a7c 2d2d 2d2d 2d2d 2 list |.|------ │ │ │ │ +00031220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00031230: 3132 203a 2054 3243 6f6d 706f 6e65 6e74 12 : T2Component │ │ │ │ +00031240: 7320 3d20 666c 6174 7465 6e20 666f 7220 s = flatten for │ │ │ │ +00031250: 6920 6672 6f6d 2030 2074 6f20 3120 6c69 i from 0 to 1 li │ │ │ │ +00031260: 7374 2866 6f72 206a 2066 726f 6d20 692b st(for j from i+ │ │ │ │ +00031270: 3120 746f 2032 206c 6973 7420 7c0a 7c2d 1 to 2 list |.|- │ │ │ │ +00031280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000312a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000312b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000312c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000312d0: 2d2d 2d2d 2d2d 2d7c 0a7c 6d61 7028 465f -------|.|map(F_ │ │ │ │ -000312e0: 6b2c 2046 5f28 6b2b 3429 2c20 7432 5f69 k, F_(k+4), t2_i │ │ │ │ -000312f0: 2a74 315f 6a2d 7432 5f6a 2a74 315f 6929 *t1_j-t2_j*t1_i) │ │ │ │ -00031300: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ -00031310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031320: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000312c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c6d ------------|.|m │ │ │ │ +000312d0: 6170 2846 5f6b 2c20 465f 286b 2b34 292c ap(F_k, F_(k+4), │ │ │ │ +000312e0: 2074 325f 692a 7431 5f6a 2d74 325f 6a2a t2_i*t1_j-t2_j* │ │ │ │ +000312f0: 7431 5f69 2929 3b20 2020 2020 2020 2020 t1_i)); │ │ │ │ +00031300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031310: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00031320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031370: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 -------+.|i13 : │ │ │ │ -00031380: 6720 3d20 6d61 7028 7379 7a79 6769 6573 g = map(syzygies │ │ │ │ -00031390: 5f6b 2c20 7379 7a79 6769 6573 5f28 6b2b _k, syzygies_(k+ │ │ │ │ -000313a0: 3429 2c20 5432 436f 6d70 6f6e 656e 7473 4), T2Components │ │ │ │ -000313b0: 5f32 2920 2020 2020 2020 2020 2020 2020 _2) │ │ │ │ -000313c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00031360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00031370: 3133 203a 2067 203d 206d 6170 2873 797a 13 : g = map(syz │ │ │ │ +00031380: 7967 6965 735f 6b2c 2073 797a 7967 6965 ygies_k, syzygie │ │ │ │ +00031390: 735f 286b 2b34 292c 2054 3243 6f6d 706f s_(k+4), T2Compo │ │ │ │ +000313a0: 6e65 6e74 735f 3229 2020 2020 2020 2020 nents_2) │ │ │ │ +000313b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000313c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000313d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000313e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000313f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031410: 2020 2020 2020 207c 0a7c 6f31 3320 3d20 |.|o13 = │ │ │ │ -00031420: 7b31 7d20 7c20 3020 3020 3020 3020 3020 {1} | 0 0 0 0 0 │ │ │ │ -00031430: 2d63 2030 2030 2062 2030 2030 2030 2030 -c 0 0 b 0 0 0 0 │ │ │ │ -00031440: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ -00031450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031460: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00031470: 7b32 7d20 7c20 3020 3020 3020 3020 3020 {2} | 0 0 0 0 0 │ │ │ │ -00031480: 3020 2030 2030 2030 2030 2030 2030 2030 0 0 0 0 0 0 0 0 │ │ │ │ -00031490: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ -000314a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000314b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00031400: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00031410: 3133 203d 207b 317d 207c 2030 2030 2030 13 = {1} | 0 0 0 │ │ │ │ +00031420: 2030 2030 202d 6320 3020 3020 6220 3020 0 0 -c 0 0 b 0 │ │ │ │ +00031430: 3020 3020 3020 3020 3020 3020 7c20 2020 0 0 0 0 0 0 | │ │ │ │ +00031440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031450: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00031460: 2020 2020 207b 327d 207c 2030 2030 2030 {2} | 0 0 0 │ │ │ │ +00031470: 2030 2030 2030 2020 3020 3020 3020 3020 0 0 0 0 0 0 0 │ │ │ │ +00031480: 3020 3020 3020 3020 3020 3020 7c20 2020 0 0 0 0 0 0 | │ │ │ │ +00031490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000314a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000314b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000314c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000314d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000314e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000314f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031500: 2020 2020 2020 207c 0a7c 6f31 3320 3a20 |.|o13 : │ │ │ │ -00031510: 4d61 7472 6978 2020 2020 2020 2020 2020 Matrix │ │ │ │ +000314f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00031500: 3133 203a 204d 6174 7269 7820 2020 2020 13 : Matrix │ │ │ │ +00031510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031550: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00031540: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00031550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000315a0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 -------+.|i14 : │ │ │ │ -000315b0: 6973 5374 6162 6c79 5472 6976 6961 6c20 isStablyTrivial │ │ │ │ -000315c0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +00031590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000315a0: 3134 203a 2069 7353 7461 626c 7954 7269 14 : isStablyTri │ │ │ │ +000315b0: 7669 616c 2067 2020 2020 2020 2020 2020 vial g │ │ │ │ +000315c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000315d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000315e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000315f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000315e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000315f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031640: 2020 2020 2020 207c 0a7c 6f31 3420 3d20 |.|o14 = │ │ │ │ -00031650: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +00031630: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00031640: 3134 203d 2074 7275 6520 2020 2020 2020 14 = true │ │ │ │ +00031650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031690: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00031680: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00031690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000316a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000316b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000316c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000316d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000316e0: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ -000316f0: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -00031700: 202a 6e6f 7465 2073 7461 626c 6548 6f6d *note stableHom │ │ │ │ -00031710: 3a20 7374 6162 6c65 486f 6d2c 202d 2d20 : stableHom, -- │ │ │ │ -00031720: 6d61 7020 6672 6f6d 2048 6f6d 284d 2c4e map from Hom(M,N │ │ │ │ -00031730: 2920 746f 2074 6865 2073 7461 626c 6520 ) to the stable │ │ │ │ -00031740: 486f 6d20 6d6f 6475 6c65 0a0a 5761 7973 Hom module..Ways │ │ │ │ -00031750: 2074 6f20 7573 6520 6973 5374 6162 6c79 to use isStably │ │ │ │ -00031760: 5472 6976 6961 6c3a 0a3d 3d3d 3d3d 3d3d Trivial:.======= │ │ │ │ -00031770: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00031780: 3d3d 3d3d 3d0a 0a20 202a 2022 6973 5374 =====.. * "isSt │ │ │ │ -00031790: 6162 6c79 5472 6976 6961 6c28 4d61 7472 ablyTrivial(Matr │ │ │ │ -000317a0: 6978 2922 0a0a 466f 7220 7468 6520 7072 ix)"..For the pr │ │ │ │ -000317b0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -000317c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -000317d0: 206f 626a 6563 7420 2a6e 6f74 6520 6973 object *note is │ │ │ │ -000317e0: 5374 6162 6c79 5472 6976 6961 6c3a 2069 StablyTrivial: i │ │ │ │ -000317f0: 7353 7461 626c 7954 7269 7669 616c 2c20 sStablyTrivial, │ │ │ │ -00031800: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -00031810: 6420 6675 6e63 7469 6f6e 3a0a 284d 6163 d function:.(Mac │ │ │ │ -00031820: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -00031830: 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d Function,...---- │ │ │ │ +000316d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ +000316e0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +000316f0: 0a0a 2020 2a20 2a6e 6f74 6520 7374 6162 .. * *note stab │ │ │ │ +00031700: 6c65 486f 6d3a 2073 7461 626c 6548 6f6d leHom: stableHom │ │ │ │ +00031710: 2c20 2d2d 206d 6170 2066 726f 6d20 486f , -- map from Ho │ │ │ │ +00031720: 6d28 4d2c 4e29 2074 6f20 7468 6520 7374 m(M,N) to the st │ │ │ │ +00031730: 6162 6c65 2048 6f6d 206d 6f64 756c 650a able Hom module. │ │ │ │ +00031740: 0a57 6179 7320 746f 2075 7365 2069 7353 .Ways to use isS │ │ │ │ +00031750: 7461 626c 7954 7269 7669 616c 3a0a 3d3d tablyTrivial:.== │ │ │ │ +00031760: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00031770: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +00031780: 2269 7353 7461 626c 7954 7269 7669 616c "isStablyTrivial │ │ │ │ +00031790: 284d 6174 7269 7829 220a 0a46 6f72 2074 (Matrix)"..For t │ │ │ │ +000317a0: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +000317b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000317c0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +000317d0: 7465 2069 7353 7461 626c 7954 7269 7669 te isStablyTrivi │ │ │ │ +000317e0: 616c 3a20 6973 5374 6162 6c79 5472 6976 al: isStablyTriv │ │ │ │ +000317f0: 6961 6c2c 2069 7320 6120 2a6e 6f74 6520 ial, is a *note │ │ │ │ +00031800: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ +00031810: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +00031820: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +00031830: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 00031840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -00031890: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -000318a0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -000318b0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -000318c0: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -000318d0: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -000318e0: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -000318f0: 6573 2f0a 436f 6d70 6c65 7465 496e 7465 es/.CompleteInte │ │ │ │ -00031900: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ -00031910: 6f6e 732e 6d32 3a34 3639 393a 302e 0a1f ons.m2:4699:0... │ │ │ │ -00031920: 0a46 696c 653a 2043 6f6d 706c 6574 6549 .File: CompleteI │ │ │ │ -00031930: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ -00031940: 7574 696f 6e73 2e69 6e66 6f2c 204e 6f64 utions.info, Nod │ │ │ │ -00031950: 653a 206b 6f73 7a75 6c45 7874 656e 7369 e: koszulExtensi │ │ │ │ -00031960: 6f6e 2c20 4e65 7874 3a20 4c61 7965 7265 on, Next: Layere │ │ │ │ -00031970: 642c 2050 7265 763a 2069 7353 7461 626c d, Prev: isStabl │ │ │ │ -00031980: 7954 7269 7669 616c 2c20 5570 3a20 546f yTrivial, Up: To │ │ │ │ -00031990: 700a 0a6b 6f73 7a75 6c45 7874 656e 7369 p..koszulExtensi │ │ │ │ -000319a0: 6f6e 202d 2d20 6372 6561 7465 7320 7468 on -- creates th │ │ │ │ -000319b0: 6520 4b6f 737a 756c 2065 7874 656e 7369 e Koszul extensi │ │ │ │ -000319c0: 6f6e 2063 6f6d 706c 6578 206f 6620 6120 on complex of a │ │ │ │ -000319d0: 6d61 700a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a map.************ │ │ │ │ +00031880: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +00031890: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +000318a0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +000318b0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +000318c0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +000318d0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +000318e0: 6163 6b61 6765 732f 0a43 6f6d 706c 6574 ackages/.Complet │ │ │ │ +000318f0: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ +00031900: 6f6c 7574 696f 6e73 2e6d 323a 3436 3939 olutions.m2:4699 │ │ │ │ +00031910: 3a30 2e0a 1f0a 4669 6c65 3a20 436f 6d70 :0....File: Comp │ │ │ │ +00031920: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ +00031930: 5265 736f 6c75 7469 6f6e 732e 696e 666f Resolutions.info │ │ │ │ +00031940: 2c20 4e6f 6465 3a20 6b6f 737a 756c 4578 , Node: koszulEx │ │ │ │ +00031950: 7465 6e73 696f 6e2c 204e 6578 743a 204c tension, Next: L │ │ │ │ +00031960: 6179 6572 6564 2c20 5072 6576 3a20 6973 ayered, Prev: is │ │ │ │ +00031970: 5374 6162 6c79 5472 6976 6961 6c2c 2055 StablyTrivial, U │ │ │ │ +00031980: 703a 2054 6f70 0a0a 6b6f 737a 756c 4578 p: Top..koszulEx │ │ │ │ +00031990: 7465 6e73 696f 6e20 2d2d 2063 7265 6174 tension -- creat │ │ │ │ +000319a0: 6573 2074 6865 204b 6f73 7a75 6c20 6578 es the Koszul ex │ │ │ │ +000319b0: 7465 6e73 696f 6e20 636f 6d70 6c65 7820 tension complex │ │ │ │ +000319c0: 6f66 2061 206d 6170 0a2a 2a2a 2a2a 2a2a of a map.******* │ │ │ │ +000319d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000319e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000319f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00031a00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00031a10: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ -00031a20: 200a 2020 2020 2020 2020 4d4d 203d 206b . MM = k │ │ │ │ -00031a30: 6f73 7a75 6c45 7874 656e 7369 6f6e 2846 oszulExtension(F │ │ │ │ -00031a40: 462c 4242 2c70 7369 312c 6666 290a 2020 F,BB,psi1,ff). │ │ │ │ -00031a50: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -00031a60: 2a20 4646 2c20 6120 2a6e 6f74 6520 636f * FF, a *note co │ │ │ │ -00031a70: 6d70 6c65 783a 2028 436f 6d70 6c65 7865 mplex: (Complexe │ │ │ │ -00031a80: 7329 436f 6d70 6c65 782c 2c20 7265 736f s)Complex,, reso │ │ │ │ -00031a90: 6c75 7469 6f6e 206f 7665 7220 530a 2020 lution over S. │ │ │ │ -00031aa0: 2020 2020 2a20 4242 2c20 6120 2a6e 6f74 * BB, a *not │ │ │ │ -00031ab0: 6520 636f 6d70 6c65 783a 2028 436f 6d70 e complex: (Comp │ │ │ │ -00031ac0: 6c65 7865 7329 436f 6d70 6c65 782c 2c20 lexes)Complex,, │ │ │ │ -00031ad0: 7477 6f2d 7465 726d 2063 6f6d 706c 6578 two-term complex │ │ │ │ -00031ae0: 2042 425f 312d 2d3e 4242 5f30 0a20 2020 BB_1-->BB_0. │ │ │ │ -00031af0: 2020 202a 2070 7369 312c 2061 202a 6e6f * psi1, a *no │ │ │ │ -00031b00: 7465 206d 6174 7269 783a 2028 4d61 6361 te matrix: (Maca │ │ │ │ -00031b10: 756c 6179 3244 6f63 294d 6174 7269 782c ulay2Doc)Matrix, │ │ │ │ -00031b20: 2c20 6672 6f6d 2042 425f 3120 746f 2046 , from BB_1 to F │ │ │ │ -00031b30: 465f 300a 2020 2020 2020 2a20 6666 2c20 F_0. * ff, │ │ │ │ -00031b40: 6120 2a6e 6f74 6520 6d61 7472 6978 3a20 a *note matrix: │ │ │ │ -00031b50: 284d 6163 6175 6c61 7932 446f 6329 4d61 (Macaulay2Doc)Ma │ │ │ │ -00031b60: 7472 6978 2c2c 2072 6567 756c 6172 2073 trix,, regular s │ │ │ │ -00031b70: 6571 7565 6e63 650a 2020 2020 2020 2020 equence. │ │ │ │ -00031b80: 616e 6e69 6869 6c61 7469 6e67 2074 6865 annihilating the │ │ │ │ -00031b90: 206d 6f64 756c 6520 7265 736f 6c76 6564 module resolved │ │ │ │ -00031ba0: 2062 7920 4646 0a20 202a 204f 7574 7075 by FF. * Outpu │ │ │ │ -00031bb0: 7473 3a0a 2020 2020 2020 2a20 4d4d 2c20 ts:. * MM, │ │ │ │ -00031bc0: 6120 2a6e 6f74 6520 636f 6d70 6c65 783a a *note complex: │ │ │ │ -00031bd0: 2028 436f 6d70 6c65 7865 7329 436f 6d70 (Complexes)Comp │ │ │ │ -00031be0: 6c65 782c 2c20 7468 6520 6d61 7070 696e lex,, the mappin │ │ │ │ -00031bf0: 6720 636f 6e65 206f 6620 7468 650a 2020 g cone of the. │ │ │ │ -00031c00: 2020 2020 2020 696e 6475 6365 6420 6d61 induced ma │ │ │ │ -00031c10: 7020 425b 2d31 5d5c 6f74 696d 6573 204b p B[-1]\otimes K │ │ │ │ -00031c20: 4b28 6666 2920 746f 2057 2065 7874 656e K(ff) to W exten │ │ │ │ -00031c30: 6469 6e67 2070 7369 0a0a 4465 7363 7269 ding psi..Descri │ │ │ │ -00031c40: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -00031c50: 3d0a 0a49 6d70 6c65 6d65 6e74 7320 7468 =..Implements th │ │ │ │ -00031c60: 6520 636f 6e73 7472 7563 7469 6f6e 2069 e construction i │ │ │ │ -00031c70: 6e20 7468 6520 7061 7065 7220 224d 6174 n the paper "Mat │ │ │ │ -00031c80: 7269 7820 4661 6374 6f72 697a 6174 696f rix Factorizatio │ │ │ │ -00031c90: 6e73 2069 6e20 4869 6768 6572 0a43 6f64 ns in Higher.Cod │ │ │ │ -00031ca0: 696d 656e 7369 6f6e 2220 6279 2045 6973 imension" by Eis │ │ │ │ -00031cb0: 656e 6275 6420 616e 6420 5065 6576 612e enbud and Peeva. │ │ │ │ -00031cc0: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -00031cd0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 206d ===.. * *note m │ │ │ │ -00031ce0: 616b 6546 696e 6974 6552 6573 6f6c 7574 akeFiniteResolut │ │ │ │ -00031cf0: 696f 6e3a 206d 616b 6546 696e 6974 6552 ion: makeFiniteR │ │ │ │ -00031d00: 6573 6f6c 7574 696f 6e2c 202d 2d20 6669 esolution, -- fi │ │ │ │ -00031d10: 6e69 7465 2072 6573 6f6c 7574 696f 6e20 nite resolution │ │ │ │ -00031d20: 6f66 2061 0a20 2020 206d 6174 7269 7820 of a. matrix │ │ │ │ -00031d30: 6661 6374 6f72 697a 6174 696f 6e20 6d6f factorization mo │ │ │ │ -00031d40: 6475 6c65 204d 0a0a 5761 7973 2074 6f20 dule M..Ways to │ │ │ │ -00031d50: 7573 6520 6b6f 737a 756c 4578 7465 6e73 use koszulExtens │ │ │ │ -00031d60: 696f 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ion:.=========== │ │ │ │ -00031d70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00031d80: 3d0a 0a20 202a 2022 6b6f 737a 756c 4578 =.. * "koszulEx │ │ │ │ -00031d90: 7465 6e73 696f 6e28 436f 6d70 6c65 782c tension(Complex, │ │ │ │ -00031da0: 436f 6d70 6c65 782c 4d61 7472 6978 2c4d Complex,Matrix,M │ │ │ │ -00031db0: 6174 7269 7829 220a 0a46 6f72 2074 6865 atrix)"..For the │ │ │ │ -00031dc0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00031dd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00031de0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00031df0: 206b 6f73 7a75 6c45 7874 656e 7369 6f6e koszulExtension │ │ │ │ -00031e00: 3a20 6b6f 737a 756c 4578 7465 6e73 696f : koszulExtensio │ │ │ │ -00031e10: 6e2c 2069 7320 6120 2a6e 6f74 6520 6d65 n, is a *note me │ │ │ │ -00031e20: 7468 6f64 2066 756e 6374 696f 6e3a 0a28 thod function:.( │ │ │ │ -00031e30: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ -00031e40: 686f 6446 756e 6374 696f 6e2c 2e0a 0a2d hodFunction,...- │ │ │ │ +00031a00: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ +00031a10: 7361 6765 3a20 0a20 2020 2020 2020 204d sage: . M │ │ │ │ +00031a20: 4d20 3d20 6b6f 737a 756c 4578 7465 6e73 M = koszulExtens │ │ │ │ +00031a30: 696f 6e28 4646 2c42 422c 7073 6931 2c66 ion(FF,BB,psi1,f │ │ │ │ +00031a40: 6629 0a20 202a 2049 6e70 7574 733a 0a20 f). * Inputs:. │ │ │ │ +00031a50: 2020 2020 202a 2046 462c 2061 202a 6e6f * FF, a *no │ │ │ │ +00031a60: 7465 2063 6f6d 706c 6578 3a20 2843 6f6d te complex: (Com │ │ │ │ +00031a70: 706c 6578 6573 2943 6f6d 706c 6578 2c2c plexes)Complex,, │ │ │ │ +00031a80: 2072 6573 6f6c 7574 696f 6e20 6f76 6572 resolution over │ │ │ │ +00031a90: 2053 0a20 2020 2020 202a 2042 422c 2061 S. * BB, a │ │ │ │ +00031aa0: 202a 6e6f 7465 2063 6f6d 706c 6578 3a20 *note complex: │ │ │ │ +00031ab0: 2843 6f6d 706c 6578 6573 2943 6f6d 706c (Complexes)Compl │ │ │ │ +00031ac0: 6578 2c2c 2074 776f 2d74 6572 6d20 636f ex,, two-term co │ │ │ │ +00031ad0: 6d70 6c65 7820 4242 5f31 2d2d 3e42 425f mplex BB_1-->BB_ │ │ │ │ +00031ae0: 300a 2020 2020 2020 2a20 7073 6931 2c20 0. * psi1, │ │ │ │ +00031af0: 6120 2a6e 6f74 6520 6d61 7472 6978 3a20 a *note matrix: │ │ │ │ +00031b00: 284d 6163 6175 6c61 7932 446f 6329 4d61 (Macaulay2Doc)Ma │ │ │ │ +00031b10: 7472 6978 2c2c 2066 726f 6d20 4242 5f31 trix,, from BB_1 │ │ │ │ +00031b20: 2074 6f20 4646 5f30 0a20 2020 2020 202a to FF_0. * │ │ │ │ +00031b30: 2066 662c 2061 202a 6e6f 7465 206d 6174 ff, a *note mat │ │ │ │ +00031b40: 7269 783a 2028 4d61 6361 756c 6179 3244 rix: (Macaulay2D │ │ │ │ +00031b50: 6f63 294d 6174 7269 782c 2c20 7265 6775 oc)Matrix,, regu │ │ │ │ +00031b60: 6c61 7220 7365 7175 656e 6365 0a20 2020 lar sequence. │ │ │ │ +00031b70: 2020 2020 2061 6e6e 6968 696c 6174 696e annihilatin │ │ │ │ +00031b80: 6720 7468 6520 6d6f 6475 6c65 2072 6573 g the module res │ │ │ │ +00031b90: 6f6c 7665 6420 6279 2046 460a 2020 2a20 olved by FF. * │ │ │ │ +00031ba0: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ +00031bb0: 204d 4d2c 2061 202a 6e6f 7465 2063 6f6d MM, a *note com │ │ │ │ +00031bc0: 706c 6578 3a20 2843 6f6d 706c 6578 6573 plex: (Complexes │ │ │ │ +00031bd0: 2943 6f6d 706c 6578 2c2c 2074 6865 206d )Complex,, the m │ │ │ │ +00031be0: 6170 7069 6e67 2063 6f6e 6520 6f66 2074 apping cone of t │ │ │ │ +00031bf0: 6865 0a20 2020 2020 2020 2069 6e64 7563 he. induc │ │ │ │ +00031c00: 6564 206d 6170 2042 5b2d 315d 5c6f 7469 ed map B[-1]\oti │ │ │ │ +00031c10: 6d65 7320 4b4b 2866 6629 2074 6f20 5720 mes KK(ff) to W │ │ │ │ +00031c20: 6578 7465 6e64 696e 6720 7073 690a 0a44 extending psi..D │ │ │ │ +00031c30: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +00031c40: 3d3d 3d3d 3d3d 0a0a 496d 706c 656d 656e ======..Implemen │ │ │ │ +00031c50: 7473 2074 6865 2063 6f6e 7374 7275 6374 ts the construct │ │ │ │ +00031c60: 696f 6e20 696e 2074 6865 2070 6170 6572 ion in the paper │ │ │ │ +00031c70: 2022 4d61 7472 6978 2046 6163 746f 7269 "Matrix Factori │ │ │ │ +00031c80: 7a61 7469 6f6e 7320 696e 2048 6967 6865 zations in Highe │ │ │ │ +00031c90: 720a 436f 6469 6d65 6e73 696f 6e22 2062 r.Codimension" b │ │ │ │ +00031ca0: 7920 4569 7365 6e62 7564 2061 6e64 2050 y Eisenbud and P │ │ │ │ +00031cb0: 6565 7661 2e0a 0a53 6565 2061 6c73 6f0a eeva...See also. │ │ │ │ +00031cc0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +00031cd0: 6f74 6520 6d61 6b65 4669 6e69 7465 5265 ote makeFiniteRe │ │ │ │ +00031ce0: 736f 6c75 7469 6f6e 3a20 6d61 6b65 4669 solution: makeFi │ │ │ │ +00031cf0: 6e69 7465 5265 736f 6c75 7469 6f6e 2c20 niteResolution, │ │ │ │ +00031d00: 2d2d 2066 696e 6974 6520 7265 736f 6c75 -- finite resolu │ │ │ │ +00031d10: 7469 6f6e 206f 6620 610a 2020 2020 6d61 tion of a. ma │ │ │ │ +00031d20: 7472 6978 2066 6163 746f 7269 7a61 7469 trix factorizati │ │ │ │ +00031d30: 6f6e 206d 6f64 756c 6520 4d0a 0a57 6179 on module M..Way │ │ │ │ +00031d40: 7320 746f 2075 7365 206b 6f73 7a75 6c45 s to use koszulE │ │ │ │ +00031d50: 7874 656e 7369 6f6e 3a0a 3d3d 3d3d 3d3d xtension:.====== │ │ │ │ +00031d60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00031d70: 3d3d 3d3d 3d3d 0a0a 2020 2a20 226b 6f73 ======.. * "kos │ │ │ │ +00031d80: 7a75 6c45 7874 656e 7369 6f6e 2843 6f6d zulExtension(Com │ │ │ │ +00031d90: 706c 6578 2c43 6f6d 706c 6578 2c4d 6174 plex,Complex,Mat │ │ │ │ +00031da0: 7269 782c 4d61 7472 6978 2922 0a0a 466f rix,Matrix)"..Fo │ │ │ │ +00031db0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00031dc0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00031dd0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00031de0: 2a6e 6f74 6520 6b6f 737a 756c 4578 7465 *note koszulExte │ │ │ │ +00031df0: 6e73 696f 6e3a 206b 6f73 7a75 6c45 7874 nsion: koszulExt │ │ │ │ +00031e00: 656e 7369 6f6e 2c20 6973 2061 202a 6e6f ension, is a *no │ │ │ │ +00031e10: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +00031e20: 6f6e 3a0a 284d 6163 6175 6c61 7932 446f on:.(Macaulay2Do │ │ │ │ +00031e30: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ +00031e40: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ 00031e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00031ea0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00031eb0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00031ec0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -00031ed0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -00031ee0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -00031ef0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -00031f00: 6b61 6765 732f 0a43 6f6d 706c 6574 6549 kages/.CompleteI │ │ │ │ -00031f10: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ -00031f20: 7574 696f 6e73 2e6d 323a 3330 3038 3a30 utions.m2:3008:0 │ │ │ │ -00031f30: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ -00031f40: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ -00031f50: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ -00031f60: 4e6f 6465 3a20 4c61 7965 7265 642c 204e Node: Layered, N │ │ │ │ -00031f70: 6578 743a 206c 6179 6572 6564 5265 736f ext: layeredReso │ │ │ │ -00031f80: 6c75 7469 6f6e 2c20 5072 6576 3a20 6b6f lution, Prev: ko │ │ │ │ -00031f90: 737a 756c 4578 7465 6e73 696f 6e2c 2055 szulExtension, U │ │ │ │ -00031fa0: 703a 2054 6f70 0a0a 4c61 7965 7265 6420 p: Top..Layered │ │ │ │ -00031fb0: 2d2d 204f 7074 696f 6e20 666f 7220 6d61 -- Option for ma │ │ │ │ -00031fc0: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ -00031fd0: 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a n.************** │ │ │ │ +00031e90: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +00031ea0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +00031eb0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +00031ec0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +00031ed0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +00031ee0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +00031ef0: 322f 7061 636b 6167 6573 2f0a 436f 6d70 2/packages/.Comp │ │ │ │ +00031f00: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ +00031f10: 5265 736f 6c75 7469 6f6e 732e 6d32 3a33 Resolutions.m2:3 │ │ │ │ +00031f20: 3030 383a 302e 0a1f 0a46 696c 653a 2043 008:0....File: C │ │ │ │ +00031f30: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ +00031f40: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ +00031f50: 6e66 6f2c 204e 6f64 653a 204c 6179 6572 nfo, Node: Layer │ │ │ │ +00031f60: 6564 2c20 4e65 7874 3a20 6c61 7965 7265 ed, Next: layere │ │ │ │ +00031f70: 6452 6573 6f6c 7574 696f 6e2c 2050 7265 dResolution, Pre │ │ │ │ +00031f80: 763a 206b 6f73 7a75 6c45 7874 656e 7369 v: koszulExtensi │ │ │ │ +00031f90: 6f6e 2c20 5570 3a20 546f 700a 0a4c 6179 on, Up: Top..Lay │ │ │ │ +00031fa0: 6572 6564 202d 2d20 4f70 7469 6f6e 2066 ered -- Option f │ │ │ │ +00031fb0: 6f72 206d 6174 7269 7846 6163 746f 7269 or matrixFactori │ │ │ │ +00031fc0: 7a61 7469 6f6e 0a2a 2a2a 2a2a 2a2a 2a2a zation.********* │ │ │ │ +00031fd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00031fe0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00031ff0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -00032000: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -00032010: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ -00032020: 7469 6f6e 2866 662c 6d2c 4c61 7965 7265 tion(ff,m,Layere │ │ │ │ -00032030: 6420 3d3e 2074 7275 6529 0a20 202a 2049 d => true). * I │ │ │ │ -00032040: 6e70 7574 733a 0a20 2020 2020 202a 2043 nputs:. * C │ │ │ │ -00032050: 6865 636b 2c20 6120 2a6e 6f74 6520 426f heck, a *note Bo │ │ │ │ -00032060: 6f6c 6561 6e20 7661 6c75 653a 2028 4d61 olean value: (Ma │ │ │ │ -00032070: 6361 756c 6179 3244 6f63 2942 6f6f 6c65 caulay2Doc)Boole │ │ │ │ -00032080: 616e 2c2c 200a 0a44 6573 6372 6970 7469 an,, ..Descripti │ │ │ │ -00032090: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -000320a0: 4d61 6b65 7320 6d61 7472 6978 4661 6374 Makes matrixFact │ │ │ │ -000320b0: 6f72 697a 6174 696f 6e20 7573 6520 7468 orization use th │ │ │ │ -000320c0: 6520 226c 6179 6572 6564 2220 616c 676f e "layered" algo │ │ │ │ -000320d0: 7269 7468 6d2c 2077 6869 6368 2077 6f72 rithm, which wor │ │ │ │ -000320e0: 6b73 2066 6f72 2061 6e79 204d 434d 0a6d ks for any MCM.m │ │ │ │ -000320f0: 6f64 756c 652c 2062 7574 2072 6574 7572 odule, but retur │ │ │ │ -00032100: 6e73 2073 6f6d 6574 6869 6e67 206e 6f6e ns something non │ │ │ │ -00032110: 2d6d 696e 696d 616c 2069 6620 7468 6520 -minimal if the │ │ │ │ -00032120: 6d6f 6475 6c65 2069 7320 6e6f 7420 6120 module is not a │ │ │ │ -00032130: 2268 6967 6820 7379 7a79 6779 220a 696e "high syzygy".in │ │ │ │ -00032140: 2061 2073 7569 7461 626c 6520 7365 6e73 a suitable sens │ │ │ │ -00032150: 652e 2044 6566 6175 6c74 2069 7320 2274 e. Default is "t │ │ │ │ -00032160: 7275 6522 2e20 4e6f 7465 2074 6861 7420 rue". Note that │ │ │ │ -00032170: 7768 656e 2074 6865 206d 6f64 756c 6520 when the module │ │ │ │ -00032180: 6973 2061 2068 6967 680a 7379 7a79 6779 is a high.syzygy │ │ │ │ -00032190: 2c20 4c61 7965 7265 643d 3e20 6661 6c73 , Layered=> fals │ │ │ │ -000321a0: 6520 6973 206d 7563 6820 6661 7374 6572 e is much faster │ │ │ │ -000321b0: 2e0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d ...See also.==== │ │ │ │ -000321c0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -000321d0: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ -000321e0: 696f 6e3a 206d 6174 7269 7846 6163 746f ion: matrixFacto │ │ │ │ -000321f0: 7269 7a61 7469 6f6e 2c20 2d2d 204d 6170 rization, -- Map │ │ │ │ -00032200: 7320 696e 2061 2068 6967 6865 720a 2020 s in a higher. │ │ │ │ -00032210: 2020 636f 6469 6d65 6e73 696f 6e20 6d61 codimension ma │ │ │ │ -00032220: 7472 6978 2066 6163 746f 7269 7a61 7469 trix factorizati │ │ │ │ -00032230: 6f6e 0a0a 4675 6e63 7469 6f6e 7320 7769 on..Functions wi │ │ │ │ -00032240: 7468 206f 7074 696f 6e61 6c20 6172 6775 th optional argu │ │ │ │ -00032250: 6d65 6e74 206e 616d 6564 204c 6179 6572 ment named Layer │ │ │ │ -00032260: 6564 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ed:.============ │ │ │ │ +00031ff0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +00032000: 2020 2020 2020 6d61 7472 6978 4661 6374 matrixFact │ │ │ │ +00032010: 6f72 697a 6174 696f 6e28 6666 2c6d 2c4c orization(ff,m,L │ │ │ │ +00032020: 6179 6572 6564 203d 3e20 7472 7565 290a ayered => true). │ │ │ │ +00032030: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +00032040: 2020 2a20 4368 6563 6b2c 2061 202a 6e6f * Check, a *no │ │ │ │ +00032050: 7465 2042 6f6f 6c65 616e 2076 616c 7565 te Boolean value │ │ │ │ +00032060: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00032070: 426f 6f6c 6561 6e2c 2c20 0a0a 4465 7363 Boolean,, ..Desc │ │ │ │ +00032080: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +00032090: 3d3d 3d0a 0a4d 616b 6573 206d 6174 7269 ===..Makes matri │ │ │ │ +000320a0: 7846 6163 746f 7269 7a61 7469 6f6e 2075 xFactorization u │ │ │ │ +000320b0: 7365 2074 6865 2022 6c61 7965 7265 6422 se the "layered" │ │ │ │ +000320c0: 2061 6c67 6f72 6974 686d 2c20 7768 6963 algorithm, whic │ │ │ │ +000320d0: 6820 776f 726b 7320 666f 7220 616e 7920 h works for any │ │ │ │ +000320e0: 4d43 4d0a 6d6f 6475 6c65 2c20 6275 7420 MCM.module, but │ │ │ │ +000320f0: 7265 7475 726e 7320 736f 6d65 7468 696e returns somethin │ │ │ │ +00032100: 6720 6e6f 6e2d 6d69 6e69 6d61 6c20 6966 g non-minimal if │ │ │ │ +00032110: 2074 6865 206d 6f64 756c 6520 6973 206e the module is n │ │ │ │ +00032120: 6f74 2061 2022 6869 6768 2073 797a 7967 ot a "high syzyg │ │ │ │ +00032130: 7922 0a69 6e20 6120 7375 6974 6162 6c65 y".in a suitable │ │ │ │ +00032140: 2073 656e 7365 2e20 4465 6661 756c 7420 sense. Default │ │ │ │ +00032150: 6973 2022 7472 7565 222e 204e 6f74 6520 is "true". Note │ │ │ │ +00032160: 7468 6174 2077 6865 6e20 7468 6520 6d6f that when the mo │ │ │ │ +00032170: 6475 6c65 2069 7320 6120 6869 6768 0a73 dule is a high.s │ │ │ │ +00032180: 797a 7967 792c 204c 6179 6572 6564 3d3e yzygy, Layered=> │ │ │ │ +00032190: 2066 616c 7365 2069 7320 6d75 6368 2066 false is much f │ │ │ │ +000321a0: 6173 7465 722e 0a0a 5365 6520 616c 736f aster...See also │ │ │ │ +000321b0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +000321c0: 6e6f 7465 206d 6174 7269 7846 6163 746f note matrixFacto │ │ │ │ +000321d0: 7269 7a61 7469 6f6e 3a20 6d61 7472 6978 rization: matrix │ │ │ │ +000321e0: 4661 6374 6f72 697a 6174 696f 6e2c 202d Factorization, - │ │ │ │ +000321f0: 2d20 4d61 7073 2069 6e20 6120 6869 6768 - Maps in a high │ │ │ │ +00032200: 6572 0a20 2020 2063 6f64 696d 656e 7369 er. codimensi │ │ │ │ +00032210: 6f6e 206d 6174 7269 7820 6661 6374 6f72 on matrix factor │ │ │ │ +00032220: 697a 6174 696f 6e0a 0a46 756e 6374 696f ization..Functio │ │ │ │ +00032230: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ +00032240: 2061 7267 756d 656e 7420 6e61 6d65 6420 argument named │ │ │ │ +00032250: 4c61 7965 7265 643a 0a3d 3d3d 3d3d 3d3d Layered:.======= │ │ │ │ +00032260: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00032270: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00032280: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00032290: 3d3d 3d0a 0a20 202a 2022 6d61 7472 6978 ===.. * "matrix │ │ │ │ -000322a0: 4661 6374 6f72 697a 6174 696f 6e28 2e2e Factorization(.. │ │ │ │ -000322b0: 2e2c 4c61 7965 7265 643d 3e2e 2e2e 2922 .,Layered=>...)" │ │ │ │ -000322c0: 202d 2d20 7365 6520 2a6e 6f74 6520 6d61 -- see *note ma │ │ │ │ -000322d0: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ -000322e0: 6e3a 0a20 2020 206d 6174 7269 7846 6163 n:. matrixFac │ │ │ │ -000322f0: 746f 7269 7a61 7469 6f6e 2c20 2d2d 204d torization, -- M │ │ │ │ -00032300: 6170 7320 696e 2061 2068 6967 6865 7220 aps in a higher │ │ │ │ -00032310: 636f 6469 6d65 6e73 696f 6e20 6d61 7472 codimension matr │ │ │ │ -00032320: 6978 2066 6163 746f 7269 7a61 7469 6f6e ix factorization │ │ │ │ -00032330: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -00032340: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -00032350: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -00032360: 6563 7420 2a6e 6f74 6520 4c61 7965 7265 ect *note Layere │ │ │ │ -00032370: 643a 204c 6179 6572 6564 2c20 6973 2061 d: Layered, is a │ │ │ │ -00032380: 202a 6e6f 7465 2073 796d 626f 6c3a 2028 *note symbol: ( │ │ │ │ -00032390: 4d61 6361 756c 6179 3244 6f63 2953 796d Macaulay2Doc)Sym │ │ │ │ -000323a0: 626f 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d bol,...--------- │ │ │ │ +00032280: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 226d ========.. * "m │ │ │ │ +00032290: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ +000322a0: 6f6e 282e 2e2e 2c4c 6179 6572 6564 3d3e on(...,Layered=> │ │ │ │ +000322b0: 2e2e 2e29 2220 2d2d 2073 6565 202a 6e6f ...)" -- see *no │ │ │ │ +000322c0: 7465 206d 6174 7269 7846 6163 746f 7269 te matrixFactori │ │ │ │ +000322d0: 7a61 7469 6f6e 3a0a 2020 2020 6d61 7472 zation:. matr │ │ │ │ +000322e0: 6978 4661 6374 6f72 697a 6174 696f 6e2c ixFactorization, │ │ │ │ +000322f0: 202d 2d20 4d61 7073 2069 6e20 6120 6869 -- Maps in a hi │ │ │ │ +00032300: 6768 6572 2063 6f64 696d 656e 7369 6f6e gher codimension │ │ │ │ +00032310: 206d 6174 7269 7820 6661 6374 6f72 697a matrix factoriz │ │ │ │ +00032320: 6174 696f 6e0a 0a46 6f72 2074 6865 2070 ation..For the p │ │ │ │ +00032330: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00032340: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00032350: 6520 6f62 6a65 6374 202a 6e6f 7465 204c e object *note L │ │ │ │ +00032360: 6179 6572 6564 3a20 4c61 7965 7265 642c ayered: Layered, │ │ │ │ +00032370: 2069 7320 6120 2a6e 6f74 6520 7379 6d62 is a *note symb │ │ │ │ +00032380: 6f6c 3a20 284d 6163 6175 6c61 7932 446f ol: (Macaulay2Do │ │ │ │ +00032390: 6329 5379 6d62 6f6c 2c2e 0a0a 2d2d 2d2d c)Symbol,...---- │ │ │ │ +000323a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000323b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000323c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000323d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000323e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000323f0: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -00032400: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -00032410: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -00032420: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -00032430: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -00032440: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -00032450: 6c61 7932 2f70 6163 6b61 6765 732f 0a43 lay2/packages/.C │ │ │ │ -00032460: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ -00032470: 696f 6e52 6573 6f6c 7574 696f 6e73 2e6d ionResolutions.m │ │ │ │ -00032480: 323a 3332 3531 3a30 2e0a 1f0a 4669 6c65 2:3251:0....File │ │ │ │ -00032490: 3a20 436f 6d70 6c65 7465 496e 7465 7273 : CompleteInters │ │ │ │ -000324a0: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ -000324b0: 732e 696e 666f 2c20 4e6f 6465 3a20 6c61 s.info, Node: la │ │ │ │ -000324c0: 7965 7265 6452 6573 6f6c 7574 696f 6e2c yeredResolution, │ │ │ │ -000324d0: 204e 6578 743a 204c 6966 742c 2050 7265 Next: Lift, Pre │ │ │ │ -000324e0: 763a 204c 6179 6572 6564 2c20 5570 3a20 v: Layered, Up: │ │ │ │ -000324f0: 546f 700a 0a6c 6179 6572 6564 5265 736f Top..layeredReso │ │ │ │ -00032500: 6c75 7469 6f6e 202d 2d20 6c61 7965 7265 lution -- layere │ │ │ │ -00032510: 6420 6669 6e69 7465 2061 6e64 2069 6e66 d finite and inf │ │ │ │ -00032520: 696e 6974 6520 6c61 7965 7265 6420 7265 inite layered re │ │ │ │ -00032530: 736f 6c75 7469 6f6e 7320 6f66 2043 4d20 solutions of CM │ │ │ │ -00032540: 6d6f 6475 6c65 730a 2a2a 2a2a 2a2a 2a2a modules.******** │ │ │ │ +000323e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +000323f0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +00032400: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +00032410: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +00032420: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00032430: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00032440: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +00032450: 6573 2f0a 436f 6d70 6c65 7465 496e 7465 es/.CompleteInte │ │ │ │ +00032460: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ +00032470: 6f6e 732e 6d32 3a33 3235 313a 302e 0a1f ons.m2:3251:0... │ │ │ │ +00032480: 0a46 696c 653a 2043 6f6d 706c 6574 6549 .File: CompleteI │ │ │ │ +00032490: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ +000324a0: 7574 696f 6e73 2e69 6e66 6f2c 204e 6f64 utions.info, Nod │ │ │ │ +000324b0: 653a 206c 6179 6572 6564 5265 736f 6c75 e: layeredResolu │ │ │ │ +000324c0: 7469 6f6e 2c20 4e65 7874 3a20 4c69 6674 tion, Next: Lift │ │ │ │ +000324d0: 2c20 5072 6576 3a20 4c61 7965 7265 642c , Prev: Layered, │ │ │ │ +000324e0: 2055 703a 2054 6f70 0a0a 6c61 7965 7265 Up: Top..layere │ │ │ │ +000324f0: 6452 6573 6f6c 7574 696f 6e20 2d2d 206c dResolution -- l │ │ │ │ +00032500: 6179 6572 6564 2066 696e 6974 6520 616e ayered finite an │ │ │ │ +00032510: 6420 696e 6669 6e69 7465 206c 6179 6572 d infinite layer │ │ │ │ +00032520: 6564 2072 6573 6f6c 7574 696f 6e73 206f ed resolutions o │ │ │ │ +00032530: 6620 434d 206d 6f64 756c 6573 0a2a 2a2a f CM modules.*** │ │ │ │ +00032540: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00032550: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00032560: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00032570: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00032580: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00032590: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -000325a0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -000325b0: 2846 462c 2061 7567 2920 3d20 6c61 7965 (FF, aug) = laye │ │ │ │ -000325c0: 7265 6452 6573 6f6c 7574 696f 6e28 6666 redResolution(ff │ │ │ │ -000325d0: 2c4d 290a 2020 2020 2020 2020 2846 462c ,M). (FF, │ │ │ │ -000325e0: 2061 7567 2920 3d20 6c61 7965 7265 6452 aug) = layeredR │ │ │ │ -000325f0: 6573 6f6c 7574 696f 6e28 6666 2c4d 2c6c esolution(ff,M,l │ │ │ │ -00032600: 656e 290a 2020 2a20 496e 7075 7473 3a0a en). * Inputs:. │ │ │ │ -00032610: 2020 2020 2020 2a20 6666 2c20 6120 2a6e * ff, a *n │ │ │ │ -00032620: 6f74 6520 6d61 7472 6978 3a20 284d 6163 ote matrix: (Mac │ │ │ │ -00032630: 6175 6c61 7932 446f 6329 4d61 7472 6978 aulay2Doc)Matrix │ │ │ │ -00032640: 2c2c 2031 2078 2063 206d 6174 7269 7820 ,, 1 x c matrix │ │ │ │ -00032650: 7768 6f73 6520 656e 7472 6965 730a 2020 whose entries. │ │ │ │ -00032660: 2020 2020 2020 6172 6520 6120 7265 6775 are a regu │ │ │ │ -00032670: 6c61 7220 7365 7175 656e 6365 2069 6e20 lar sequence in │ │ │ │ -00032680: 7468 6520 476f 7265 6e73 7465 696e 2072 the Gorenstein r │ │ │ │ -00032690: 696e 6720 530a 2020 2020 2020 2a20 4d2c ing S. * M, │ │ │ │ -000326a0: 2061 202a 6e6f 7465 206d 6f64 756c 653a a *note module: │ │ │ │ -000326b0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ -000326c0: 6f64 756c 652c 2c20 4d43 4d20 6d6f 6475 odule,, MCM modu │ │ │ │ -000326d0: 6c65 206f 7665 7220 522c 0a20 2020 2020 le over R,. │ │ │ │ -000326e0: 2020 2072 6570 7265 7365 6e74 6564 2061 represented a │ │ │ │ -000326f0: 7320 616e 2053 2d6d 6f64 756c 6520 696e s an S-module in │ │ │ │ -00032700: 2074 6865 2066 6972 7374 2063 6173 6520 the first case │ │ │ │ -00032710: 616e 6420 6173 2061 6e20 522d 6d6f 6475 and as an R-modu │ │ │ │ -00032720: 6c65 2069 6e20 7468 650a 2020 2020 2020 le in the. │ │ │ │ -00032730: 2020 7365 636f 6e64 0a20 2020 2020 202a second. * │ │ │ │ -00032740: 206c 656e 2c20 616e 202a 6e6f 7465 2069 len, an *note i │ │ │ │ -00032750: 6e74 6567 6572 3a20 284d 6163 6175 6c61 nteger: (Macaula │ │ │ │ -00032760: 7932 446f 6329 5a5a 2c2c 206c 656e 6774 y2Doc)ZZ,, lengt │ │ │ │ -00032770: 6820 6f66 2074 6865 2073 6567 6d65 6e74 h of the segment │ │ │ │ -00032780: 206f 6620 7468 650a 2020 2020 2020 2020 of the. │ │ │ │ -00032790: 7265 736f 6c75 7469 6f6e 2074 6f20 6265 resolution to be │ │ │ │ -000327a0: 2063 6f6d 7075 7465 6420 6f76 6572 2052 computed over R │ │ │ │ -000327b0: 2c20 696e 2074 6865 2073 6563 6f6e 6420 , in the second │ │ │ │ -000327c0: 666f 726d 2e0a 2020 2a20 2a6e 6f74 6520 form.. * *note │ │ │ │ -000327d0: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ -000327e0: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ -000327f0: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ -00032800: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ -00032810: 7574 732c 3a0a 2020 2020 2020 2a20 4368 uts,:. * Ch │ │ │ │ -00032820: 6563 6b20 3d3e 202e 2e2e 2c20 6465 6661 eck => ..., defa │ │ │ │ -00032830: 756c 7420 7661 6c75 6520 6661 6c73 650a ult value false. │ │ │ │ -00032840: 2020 2020 2020 2a20 5665 7262 6f73 6520 * Verbose │ │ │ │ -00032850: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ -00032860: 7661 6c75 6520 6661 6c73 650a 2020 2a20 value false. * │ │ │ │ -00032870: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -00032880: 2046 462c 2061 202a 6e6f 7465 2063 6f6d FF, a *note com │ │ │ │ -00032890: 706c 6578 3a20 2843 6f6d 706c 6578 6573 plex: (Complexes │ │ │ │ -000328a0: 2943 6f6d 706c 6578 2c2c 2072 6573 6f6c )Complex,, resol │ │ │ │ -000328b0: 7574 696f 6e20 6f66 204d 206f 7665 7220 ution of M over │ │ │ │ -000328c0: 5320 696e 2074 6865 0a20 2020 2020 2020 S in the. │ │ │ │ -000328d0: 2066 6972 7374 2063 6173 653b 206c 656e first case; len │ │ │ │ -000328e0: 6774 6820 6c65 6e20 7365 676d 656e 7420 gth len segment │ │ │ │ -000328f0: 6f66 2074 6865 2072 6573 6f6c 7574 696f of the resolutio │ │ │ │ -00032900: 6e20 6f76 6572 2052 2069 6e20 7468 6520 n over R in the │ │ │ │ -00032910: 7365 636f 6e64 2e0a 0a44 6573 6372 6970 second...Descrip │ │ │ │ -00032920: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -00032930: 0a0a 5468 6520 7265 736f 6c75 7469 6f6e ..The resolution │ │ │ │ -00032940: 7320 636f 6d70 7574 6564 2061 7265 2074 s computed are t │ │ │ │ -00032950: 686f 7365 2064 6573 6372 6962 6564 2069 hose described i │ │ │ │ -00032960: 6e20 7468 6520 7061 7065 7220 224c 6179 n the paper "Lay │ │ │ │ -00032970: 6572 6564 2052 6573 6f6c 7574 696f 6e73 ered Resolutions │ │ │ │ -00032980: 0a6f 6620 436f 6865 6e2d 4d61 6361 756c .of Cohen-Macaul │ │ │ │ -00032990: 6179 206d 6f64 756c 6573 2220 6279 2045 ay modules" by E │ │ │ │ -000329a0: 6973 656e 6275 6420 616e 6420 5065 6576 isenbud and Peev │ │ │ │ -000329b0: 612e 2054 6865 7920 6172 6520 626f 7468 a. They are both │ │ │ │ -000329c0: 206d 696e 696d 616c 2077 6865 6e20 4d0a minimal when M. │ │ │ │ -000329d0: 6973 2061 2073 7566 6669 6369 656e 746c is a sufficientl │ │ │ │ -000329e0: 7920 6869 6768 2073 797a 7967 7920 6f66 y high syzygy of │ │ │ │ -000329f0: 2061 206d 6f64 756c 6520 4e2e 2049 6620 a module N. If │ │ │ │ -00032a00: 7468 6520 6f70 7469 6f6e 2056 6572 626f the option Verbo │ │ │ │ -00032a10: 7365 3d3e 7472 7565 2069 730a 7365 742c se=>true is.set, │ │ │ │ -00032a20: 2074 6865 6e20 2869 6e20 7468 6520 6361 then (in the ca │ │ │ │ -00032a30: 7365 206f 6620 7468 6520 7265 736f 6c75 se of the resolu │ │ │ │ -00032a40: 7469 6f6e 206f 7665 7220 5329 2074 6865 tion over S) the │ │ │ │ -00032a50: 2072 616e 6b73 206f 6620 7468 6520 6d6f ranks of the mo │ │ │ │ -00032a60: 6475 6c65 7320 425f 730a 696e 2074 6865 dules B_s.in the │ │ │ │ -00032a70: 2072 6573 6f6c 7574 696f 6e20 6172 6520 resolution are │ │ │ │ -00032a80: 6f75 7470 7574 2e0a 0a48 6572 6520 6973 output...Here is │ │ │ │ -00032a90: 2061 6e20 6578 616d 706c 6520 636f 6d70 an example comp │ │ │ │ -00032aa0: 7574 696e 6720 3520 7465 726d 7320 6f66 uting 5 terms of │ │ │ │ -00032ab0: 2061 6e20 696e 6669 6e69 7465 2072 6573 an infinite res │ │ │ │ -00032ac0: 6f6c 7574 696f 6e3a 0a0a 2b2d 2d2d 2d2d olution:..+----- │ │ │ │ +00032580: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00032590: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +000325a0: 2020 2020 2028 4646 2c20 6175 6729 203d (FF, aug) = │ │ │ │ +000325b0: 206c 6179 6572 6564 5265 736f 6c75 7469 layeredResoluti │ │ │ │ +000325c0: 6f6e 2866 662c 4d29 0a20 2020 2020 2020 on(ff,M). │ │ │ │ +000325d0: 2028 4646 2c20 6175 6729 203d 206c 6179 (FF, aug) = lay │ │ │ │ +000325e0: 6572 6564 5265 736f 6c75 7469 6f6e 2866 eredResolution(f │ │ │ │ +000325f0: 662c 4d2c 6c65 6e29 0a20 202a 2049 6e70 f,M,len). * Inp │ │ │ │ +00032600: 7574 733a 0a20 2020 2020 202a 2066 662c uts:. * ff, │ │ │ │ +00032610: 2061 202a 6e6f 7465 206d 6174 7269 783a a *note matrix: │ │ │ │ +00032620: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +00032630: 6174 7269 782c 2c20 3120 7820 6320 6d61 atrix,, 1 x c ma │ │ │ │ +00032640: 7472 6978 2077 686f 7365 2065 6e74 7269 trix whose entri │ │ │ │ +00032650: 6573 0a20 2020 2020 2020 2061 7265 2061 es. are a │ │ │ │ +00032660: 2072 6567 756c 6172 2073 6571 7565 6e63 regular sequenc │ │ │ │ +00032670: 6520 696e 2074 6865 2047 6f72 656e 7374 e in the Gorenst │ │ │ │ +00032680: 6569 6e20 7269 6e67 2053 0a20 2020 2020 ein ring S. │ │ │ │ +00032690: 202a 204d 2c20 6120 2a6e 6f74 6520 6d6f * M, a *note mo │ │ │ │ +000326a0: 6475 6c65 3a20 284d 6163 6175 6c61 7932 dule: (Macaulay2 │ │ │ │ +000326b0: 446f 6329 4d6f 6475 6c65 2c2c 204d 434d Doc)Module,, MCM │ │ │ │ +000326c0: 206d 6f64 756c 6520 6f76 6572 2052 2c0a module over R,. │ │ │ │ +000326d0: 2020 2020 2020 2020 7265 7072 6573 656e represen │ │ │ │ +000326e0: 7465 6420 6173 2061 6e20 532d 6d6f 6475 ted as an S-modu │ │ │ │ +000326f0: 6c65 2069 6e20 7468 6520 6669 7273 7420 le in the first │ │ │ │ +00032700: 6361 7365 2061 6e64 2061 7320 616e 2052 case and as an R │ │ │ │ +00032710: 2d6d 6f64 756c 6520 696e 2074 6865 0a20 -module in the. │ │ │ │ +00032720: 2020 2020 2020 2073 6563 6f6e 640a 2020 second. │ │ │ │ +00032730: 2020 2020 2a20 6c65 6e2c 2061 6e20 2a6e * len, an *n │ │ │ │ +00032740: 6f74 6520 696e 7465 6765 723a 2028 4d61 ote integer: (Ma │ │ │ │ +00032750: 6361 756c 6179 3244 6f63 295a 5a2c 2c20 caulay2Doc)ZZ,, │ │ │ │ +00032760: 6c65 6e67 7468 206f 6620 7468 6520 7365 length of the se │ │ │ │ +00032770: 676d 656e 7420 6f66 2074 6865 0a20 2020 gment of the. │ │ │ │ +00032780: 2020 2020 2072 6573 6f6c 7574 696f 6e20 resolution │ │ │ │ +00032790: 746f 2062 6520 636f 6d70 7574 6564 206f to be computed o │ │ │ │ +000327a0: 7665 7220 522c 2069 6e20 7468 6520 7365 ver R, in the se │ │ │ │ +000327b0: 636f 6e64 2066 6f72 6d2e 0a20 202a 202a cond form.. * * │ │ │ │ +000327c0: 6e6f 7465 204f 7074 696f 6e61 6c20 696e note Optional in │ │ │ │ +000327d0: 7075 7473 3a20 284d 6163 6175 6c61 7932 puts: (Macaulay2 │ │ │ │ +000327e0: 446f 6329 7573 696e 6720 6675 6e63 7469 Doc)using functi │ │ │ │ +000327f0: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ +00032800: 6c20 696e 7075 7473 2c3a 0a20 2020 2020 l inputs,:. │ │ │ │ +00032810: 202a 2043 6865 636b 203d 3e20 2e2e 2e2c * Check => ..., │ │ │ │ +00032820: 2064 6566 6175 6c74 2076 616c 7565 2066 default value f │ │ │ │ +00032830: 616c 7365 0a20 2020 2020 202a 2056 6572 alse. * Ver │ │ │ │ +00032840: 626f 7365 203d 3e20 2e2e 2e2c 2064 6566 bose => ..., def │ │ │ │ +00032850: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ +00032860: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +00032870: 2020 2020 2a20 4646 2c20 6120 2a6e 6f74 * FF, a *not │ │ │ │ +00032880: 6520 636f 6d70 6c65 783a 2028 436f 6d70 e complex: (Comp │ │ │ │ +00032890: 6c65 7865 7329 436f 6d70 6c65 782c 2c20 lexes)Complex,, │ │ │ │ +000328a0: 7265 736f 6c75 7469 6f6e 206f 6620 4d20 resolution of M │ │ │ │ +000328b0: 6f76 6572 2053 2069 6e20 7468 650a 2020 over S in the. │ │ │ │ +000328c0: 2020 2020 2020 6669 7273 7420 6361 7365 first case │ │ │ │ +000328d0: 3b20 6c65 6e67 7468 206c 656e 2073 6567 ; length len seg │ │ │ │ +000328e0: 6d65 6e74 206f 6620 7468 6520 7265 736f ment of the reso │ │ │ │ +000328f0: 6c75 7469 6f6e 206f 7665 7220 5220 696e lution over R in │ │ │ │ +00032900: 2074 6865 2073 6563 6f6e 642e 0a0a 4465 the second...De │ │ │ │ +00032910: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +00032920: 3d3d 3d3d 3d0a 0a54 6865 2072 6573 6f6c =====..The resol │ │ │ │ +00032930: 7574 696f 6e73 2063 6f6d 7075 7465 6420 utions computed │ │ │ │ +00032940: 6172 6520 7468 6f73 6520 6465 7363 7269 are those descri │ │ │ │ +00032950: 6265 6420 696e 2074 6865 2070 6170 6572 bed in the paper │ │ │ │ +00032960: 2022 4c61 7965 7265 6420 5265 736f 6c75 "Layered Resolu │ │ │ │ +00032970: 7469 6f6e 730a 6f66 2043 6f68 656e 2d4d tions.of Cohen-M │ │ │ │ +00032980: 6163 6175 6c61 7920 6d6f 6475 6c65 7322 acaulay modules" │ │ │ │ +00032990: 2062 7920 4569 7365 6e62 7564 2061 6e64 by Eisenbud and │ │ │ │ +000329a0: 2050 6565 7661 2e20 5468 6579 2061 7265 Peeva. They are │ │ │ │ +000329b0: 2062 6f74 6820 6d69 6e69 6d61 6c20 7768 both minimal wh │ │ │ │ +000329c0: 656e 204d 0a69 7320 6120 7375 6666 6963 en M.is a suffic │ │ │ │ +000329d0: 6965 6e74 6c79 2068 6967 6820 7379 7a79 iently high syzy │ │ │ │ +000329e0: 6779 206f 6620 6120 6d6f 6475 6c65 204e gy of a module N │ │ │ │ +000329f0: 2e20 4966 2074 6865 206f 7074 696f 6e20 . If the option │ │ │ │ +00032a00: 5665 7262 6f73 653d 3e74 7275 6520 6973 Verbose=>true is │ │ │ │ +00032a10: 0a73 6574 2c20 7468 656e 2028 696e 2074 .set, then (in t │ │ │ │ +00032a20: 6865 2063 6173 6520 6f66 2074 6865 2072 he case of the r │ │ │ │ +00032a30: 6573 6f6c 7574 696f 6e20 6f76 6572 2053 esolution over S │ │ │ │ +00032a40: 2920 7468 6520 7261 6e6b 7320 6f66 2074 ) the ranks of t │ │ │ │ +00032a50: 6865 206d 6f64 756c 6573 2042 5f73 0a69 he modules B_s.i │ │ │ │ +00032a60: 6e20 7468 6520 7265 736f 6c75 7469 6f6e n the resolution │ │ │ │ +00032a70: 2061 7265 206f 7574 7075 742e 0a0a 4865 are output...He │ │ │ │ +00032a80: 7265 2069 7320 616e 2065 7861 6d70 6c65 re is an example │ │ │ │ +00032a90: 2063 6f6d 7075 7469 6e67 2035 2074 6572 computing 5 ter │ │ │ │ +00032aa0: 6d73 206f 6620 616e 2069 6e66 696e 6974 ms of an infinit │ │ │ │ +00032ab0: 6520 7265 736f 6c75 7469 6f6e 3a0a 0a2b e resolution:..+ │ │ │ │ +00032ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032b10: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00032b20: 5320 3d20 5a5a 2f31 3031 5b61 2c62 2c63 S = ZZ/101[a,b,c │ │ │ │ -00032b30: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +00032b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00032b10: 6931 203a 2053 203d 205a 5a2f 3130 315b i1 : S = ZZ/101[ │ │ │ │ +00032b20: 612c 622c 635d 2020 2020 2020 2020 2020 a,b,c] │ │ │ │ +00032b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032b60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00032b50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032bb0: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ -00032bc0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +00032ba0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032bb0: 6f31 203d 2053 2020 2020 2020 2020 2020 o1 = S │ │ │ │ +00032bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032c00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00032bf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032c50: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ -00032c60: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ +00032c40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032c50: 6f31 203a 2050 6f6c 796e 6f6d 6961 6c52 o1 : PolynomialR │ │ │ │ +00032c60: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ 00032c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032ca0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00032c90: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00032ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032cf0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ -00032d00: 6666 203d 206d 6174 7269 7822 6133 2c20 ff = matrix"a3, │ │ │ │ -00032d10: 6233 2c20 6333 2220 2020 2020 2020 2020 b3, c3" │ │ │ │ +00032ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00032cf0: 6932 203a 2066 6620 3d20 6d61 7472 6978 i2 : ff = matrix │ │ │ │ +00032d00: 2261 332c 2062 332c 2063 3322 2020 2020 "a3, b3, c3" │ │ │ │ +00032d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032d40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00032d30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032d90: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -00032da0: 7c20 6133 2062 3320 6333 207c 2020 2020 | a3 b3 c3 | │ │ │ │ +00032d80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032d90: 6f32 203d 207c 2061 3320 6233 2063 3320 o2 = | a3 b3 c3 │ │ │ │ +00032da0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00032db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032de0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00032dd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00032e40: 2020 2020 2020 2020 3120 2020 2020 2033 1 3 │ │ │ │ +00032e20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032e30: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +00032e40: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ 00032e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032e80: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ -00032e90: 4d61 7472 6978 2053 2020 3c2d 2d20 5320 Matrix S <-- S │ │ │ │ +00032e70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032e80: 6f32 203a 204d 6174 7269 7820 5320 203c o2 : Matrix S < │ │ │ │ +00032e90: 2d2d 2053 2020 2020 2020 2020 2020 2020 -- S │ │ │ │ 00032ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032ed0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00032ec0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00032ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032f20: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ -00032f30: 5220 3d20 532f 6964 6561 6c20 6666 2020 R = S/ideal ff │ │ │ │ +00032f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00032f20: 6933 203a 2052 203d 2053 2f69 6465 616c i3 : R = S/ideal │ │ │ │ +00032f30: 2066 6620 2020 2020 2020 2020 2020 2020 ff │ │ │ │ 00032f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032f70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00032f60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032fc0: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -00032fd0: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00032fb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032fc0: 6f33 203d 2052 2020 2020 2020 2020 2020 o3 = R │ │ │ │ +00032fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033010: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00033000: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033060: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ -00033070: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +00033050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033060: 6f33 203a 2051 756f 7469 656e 7452 696e o3 : QuotientRin │ │ │ │ +00033070: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ 00033080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000330a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000330b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000330a0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000330b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000330c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000330d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000330e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000330f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033100: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ -00033110: 4d20 3d20 7379 7a79 6779 4d6f 6475 6c65 M = syzygyModule │ │ │ │ -00033120: 2832 2c63 6f6b 6572 2076 6172 7320 5229 (2,coker vars R) │ │ │ │ +000330f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00033100: 6934 203a 204d 203d 2073 797a 7967 794d i4 : M = syzygyM │ │ │ │ +00033110: 6f64 756c 6528 322c 636f 6b65 7220 7661 odule(2,coker va │ │ │ │ +00033120: 7273 2052 2920 2020 2020 2020 2020 2020 rs R) │ │ │ │ 00033130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033150: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00033140: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000331a0: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ -000331b0: 636f 6b65 726e 656c 207b 327d 207c 2061 cokernel {2} | a │ │ │ │ -000331c0: 2020 3020 2d63 3220 3020 2020 6232 2030 0 -c2 0 b2 0 │ │ │ │ -000331d0: 2030 2020 2030 2020 3020 2030 207c 2020 0 0 0 0 | │ │ │ │ -000331e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000331f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033200: 2020 2020 2020 2020 207b 327d 207c 202d {2} | - │ │ │ │ -00033210: 6220 3020 3020 2020 2d63 3220 3020 2030 b 0 0 -c2 0 0 │ │ │ │ -00033220: 2030 2020 2061 3220 3020 2030 207c 2020 0 a2 0 0 | │ │ │ │ -00033230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033240: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033250: 2020 2020 2020 2020 207b 327d 207c 2063 {2} | c │ │ │ │ -00033260: 2020 3020 3020 2020 3020 2020 3020 2030 0 0 0 0 0 │ │ │ │ -00033270: 202d 6232 2030 2020 6132 2030 207c 2020 -b2 0 a2 0 | │ │ │ │ -00033280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033290: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000332a0: 2020 2020 2020 2020 207b 337d 207c 2030 {3} | 0 │ │ │ │ -000332b0: 2020 6320 6220 2020 6120 2020 3020 2030 c b a 0 0 │ │ │ │ -000332c0: 2030 2020 2030 2020 3020 2030 207c 2020 0 0 0 0 | │ │ │ │ -000332d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000332e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000332f0: 2020 2020 2020 2020 207b 337d 207c 2030 {3} | 0 │ │ │ │ -00033300: 2020 3020 3020 2020 3020 2020 6320 2062 0 0 0 c b │ │ │ │ -00033310: 2061 2020 2030 2020 3020 2030 207c 2020 a 0 0 0 | │ │ │ │ -00033320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033330: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033340: 2020 2020 2020 2020 207b 337d 207c 2030 {3} | 0 │ │ │ │ -00033350: 2020 3020 3020 2020 3020 2020 3020 2030 0 0 0 0 0 │ │ │ │ -00033360: 2030 2020 2063 2020 6220 2061 207c 2020 0 c b a | │ │ │ │ -00033370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033380: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00033190: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000331a0: 6f34 203d 2063 6f6b 6572 6e65 6c20 7b32 o4 = cokernel {2 │ │ │ │ +000331b0: 7d20 7c20 6120 2030 202d 6332 2030 2020 } | a 0 -c2 0 │ │ │ │ +000331c0: 2062 3220 3020 3020 2020 3020 2030 2020 b2 0 0 0 0 │ │ │ │ +000331d0: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +000331e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000331f0: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ +00033200: 7d20 7c20 2d62 2030 2030 2020 202d 6332 } | -b 0 0 -c2 │ │ │ │ +00033210: 2030 2020 3020 3020 2020 6132 2030 2020 0 0 0 a2 0 │ │ │ │ +00033220: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00033230: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033240: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ +00033250: 7d20 7c20 6320 2030 2030 2020 2030 2020 } | c 0 0 0 │ │ │ │ +00033260: 2030 2020 3020 2d62 3220 3020 2061 3220 0 0 -b2 0 a2 │ │ │ │ +00033270: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00033280: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033290: 2020 2020 2020 2020 2020 2020 2020 7b33 {3 │ │ │ │ +000332a0: 7d20 7c20 3020 2063 2062 2020 2061 2020 } | 0 c b a │ │ │ │ +000332b0: 2030 2020 3020 3020 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ +000332c0: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +000332d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000332e0: 2020 2020 2020 2020 2020 2020 2020 7b33 {3 │ │ │ │ +000332f0: 7d20 7c20 3020 2030 2030 2020 2030 2020 } | 0 0 0 0 │ │ │ │ +00033300: 2063 2020 6220 6120 2020 3020 2030 2020 c b a 0 0 │ │ │ │ +00033310: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00033320: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033330: 2020 2020 2020 2020 2020 2020 2020 7b33 {3 │ │ │ │ +00033340: 7d20 7c20 3020 2030 2030 2020 2030 2020 } | 0 0 0 0 │ │ │ │ +00033350: 2030 2020 3020 3020 2020 6320 2062 2020 0 0 0 c b │ │ │ │ +00033360: 6120 7c20 2020 2020 2020 2020 2020 2020 a | │ │ │ │ +00033370: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000333a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000333b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000333c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000333d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000333e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000333f0: 2020 2020 2020 2036 2020 2020 2020 2020 6 │ │ │ │ +000333c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000333d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000333e0: 2020 2020 2020 2020 2020 2020 3620 2020 6 │ │ │ │ +000333f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033420: 2020 2020 2020 2020 7c0a 7c6f 3420 3a20 |.|o4 : │ │ │ │ -00033430: 522d 6d6f 6475 6c65 2c20 7175 6f74 6965 R-module, quotie │ │ │ │ -00033440: 6e74 206f 6620 5220 2020 2020 2020 2020 nt of R │ │ │ │ +00033410: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033420: 6f34 203a 2052 2d6d 6f64 756c 652c 2071 o4 : R-module, q │ │ │ │ +00033430: 756f 7469 656e 7420 6f66 2052 2020 2020 uotient of R │ │ │ │ +00033440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033470: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00033460: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00033470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000334a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000334b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000334c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ -000334d0: 2846 462c 2061 7567 2920 3d20 6c61 7965 (FF, aug) = laye │ │ │ │ -000334e0: 7265 6452 6573 6f6c 7574 696f 6e28 6666 redResolution(ff │ │ │ │ -000334f0: 2c4d 2c35 2920 2020 2020 2020 2020 2020 ,M,5) │ │ │ │ -00033500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033510: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033520: 2020 3020 3120 3220 3320 3420 3520 2020 0 1 2 3 4 5 │ │ │ │ +000334b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000334c0: 6935 203a 2028 4646 2c20 6175 6729 203d i5 : (FF, aug) = │ │ │ │ +000334d0: 206c 6179 6572 6564 5265 736f 6c75 7469 layeredResoluti │ │ │ │ +000334e0: 6f6e 2866 662c 4d2c 3529 2020 2020 2020 on(ff,M,5) │ │ │ │ +000334f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033500: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033510: 2020 2020 2020 2030 2031 2032 2033 2034 0 1 2 3 4 │ │ │ │ +00033520: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 00033530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033560: 2020 2020 2020 2020 7c0a 7c74 6f74 616c |.|total │ │ │ │ -00033570: 3a20 3420 3420 3420 3420 3420 3420 2020 : 4 4 4 4 4 4 │ │ │ │ +00033550: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033560: 746f 7461 6c3a 2034 2034 2034 2034 2034 total: 4 4 4 4 4 │ │ │ │ +00033570: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 00033580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000335a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000335b0: 2020 2020 2020 2020 7c0a 7c20 2020 2032 |.| 2 │ │ │ │ -000335c0: 3a20 3320 3120 2e20 2e20 2e20 2e20 2020 : 3 1 . . . . │ │ │ │ +000335a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000335b0: 2020 2020 323a 2033 2031 202e 202e 202e 2: 3 1 . . . │ │ │ │ +000335c0: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 000335d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000335e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000335f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033600: 2020 2020 2020 2020 7c0a 7c20 2020 2033 |.| 3 │ │ │ │ -00033610: 3a20 3120 3320 3320 3120 2e20 2e20 2020 : 1 3 3 1 . . │ │ │ │ +000335f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033600: 2020 2020 333a 2031 2033 2033 2031 202e 3: 1 3 3 1 . │ │ │ │ +00033610: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 00033620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033650: 2020 2020 2020 2020 7c0a 7c20 2020 2034 |.| 4 │ │ │ │ -00033660: 3a20 2e20 2e20 3120 3320 3320 3120 2020 : . . 1 3 3 1 │ │ │ │ +00033640: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033650: 2020 2020 343a 202e 202e 2031 2033 2033 4: . . 1 3 3 │ │ │ │ +00033660: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00033670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000336a0: 2020 2020 2020 2020 7c0a 7c20 2020 2035 |.| 5 │ │ │ │ -000336b0: 3a20 2e20 2e20 2e20 2e20 3120 3320 2020 : . . . . 1 3 │ │ │ │ +00033690: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000336a0: 2020 2020 353a 202e 202e 202e 202e 2031 5: . . . . 1 │ │ │ │ +000336b0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 000336c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000336d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000336e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000336f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033700: 2020 3020 3120 3220 2033 2020 3420 2035 0 1 2 3 4 5 │ │ │ │ +000336e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000336f0: 2020 2020 2020 2030 2031 2032 2020 3320 0 1 2 3 │ │ │ │ +00033700: 2034 2020 3520 2020 2020 2020 2020 2020 4 5 │ │ │ │ 00033710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033740: 2020 2020 2020 2020 7c0a 7c74 6f74 616c |.|total │ │ │ │ -00033750: 3a20 3520 3720 3920 3131 2031 3320 3135 : 5 7 9 11 13 15 │ │ │ │ +00033730: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033740: 746f 7461 6c3a 2035 2037 2039 2031 3120 total: 5 7 9 11 │ │ │ │ +00033750: 3133 2031 3520 2020 2020 2020 2020 2020 13 15 │ │ │ │ 00033760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033790: 2020 2020 2020 2020 7c0a 7c20 2020 2032 |.| 2 │ │ │ │ -000337a0: 3a20 3320 3120 2e20 202e 2020 2e20 202e : 3 1 . . . . │ │ │ │ +00033780: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033790: 2020 2020 323a 2033 2031 202e 2020 2e20 2: 3 1 . . │ │ │ │ +000337a0: 202e 2020 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ 000337b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000337c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000337d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000337e0: 2020 2020 2020 2020 7c0a 7c20 2020 2033 |.| 3 │ │ │ │ -000337f0: 3a20 3220 3620 3620 2032 2020 2e20 202e : 2 6 6 2 . . │ │ │ │ +000337d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000337e0: 2020 2020 333a 2032 2036 2036 2020 3220 3: 2 6 6 2 │ │ │ │ +000337f0: 202e 2020 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ 00033800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033830: 2020 2020 2020 2020 7c0a 7c20 2020 2034 |.| 4 │ │ │ │ -00033840: 3a20 2e20 2e20 3320 2039 2020 3920 2033 : . . 3 9 9 3 │ │ │ │ +00033820: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033830: 2020 2020 343a 202e 202e 2033 2020 3920 4: . . 3 9 │ │ │ │ +00033840: 2039 2020 3320 2020 2020 2020 2020 2020 9 3 │ │ │ │ 00033850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033880: 2020 2020 2020 2020 7c0a 7c20 2020 2035 |.| 5 │ │ │ │ -00033890: 3a20 2e20 2e20 2e20 202e 2020 3420 3132 : . . . . 4 12 │ │ │ │ +00033870: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033880: 2020 2020 353a 202e 202e 202e 2020 2e20 5: . . . . │ │ │ │ +00033890: 2034 2031 3220 2020 2020 2020 2020 2020 4 12 │ │ │ │ 000338a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000338b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000338c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000338d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000338e0: 2020 3020 2031 2020 3220 2033 2020 3420 0 1 2 3 4 │ │ │ │ -000338f0: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +000338c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000338d0: 2020 2020 2020 2030 2020 3120 2032 2020 0 1 2 │ │ │ │ +000338e0: 3320 2034 2020 3520 2020 2020 2020 2020 3 4 5 │ │ │ │ +000338f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033920: 2020 2020 2020 2020 7c0a 7c74 6f74 616c |.|total │ │ │ │ -00033930: 3a20 3620 3130 2031 3520 3231 2032 3820 : 6 10 15 21 28 │ │ │ │ -00033940: 3336 2020 2020 2020 2020 2020 2020 2020 36 │ │ │ │ +00033910: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033920: 746f 7461 6c3a 2036 2031 3020 3135 2032 total: 6 10 15 2 │ │ │ │ +00033930: 3120 3238 2033 3620 2020 2020 2020 2020 1 28 36 │ │ │ │ +00033940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033970: 2020 2020 2020 2020 7c0a 7c20 2020 2032 |.| 2 │ │ │ │ -00033980: 3a20 3320 2031 2020 2e20 202e 2020 2e20 : 3 1 . . . │ │ │ │ -00033990: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +00033960: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033970: 2020 2020 323a 2033 2020 3120 202e 2020 2: 3 1 . │ │ │ │ +00033980: 2e20 202e 2020 2e20 2020 2020 2020 2020 . . . │ │ │ │ +00033990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000339a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000339b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000339c0: 2020 2020 2020 2020 7c0a 7c20 2020 2033 |.| 3 │ │ │ │ -000339d0: 3a20 3320 2039 2020 3920 2033 2020 2e20 : 3 9 9 3 . │ │ │ │ -000339e0: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +000339b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000339c0: 2020 2020 333a 2033 2020 3920 2039 2020 3: 3 9 9 │ │ │ │ +000339d0: 3320 202e 2020 2e20 2020 2020 2020 2020 3 . . │ │ │ │ +000339e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000339f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a10: 2020 2020 2020 2020 7c0a 7c20 2020 2034 |.| 4 │ │ │ │ -00033a20: 3a20 2e20 202e 2020 3620 3138 2031 3820 : . . 6 18 18 │ │ │ │ -00033a30: 2036 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +00033a00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033a10: 2020 2020 343a 202e 2020 2e20 2036 2031 4: . . 6 1 │ │ │ │ +00033a20: 3820 3138 2020 3620 2020 2020 2020 2020 8 18 6 │ │ │ │ +00033a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a60: 2020 2020 2020 2020 7c0a 7c20 2020 2035 |.| 5 │ │ │ │ -00033a70: 3a20 2e20 202e 2020 2e20 202e 2031 3020 : . . . . 10 │ │ │ │ -00033a80: 3330 2020 2020 2020 2020 2020 2020 2020 30 │ │ │ │ +00033a50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033a60: 2020 2020 353a 202e 2020 2e20 202e 2020 5: . . . │ │ │ │ +00033a70: 2e20 3130 2033 3020 2020 2020 2020 2020 . 10 30 │ │ │ │ +00033a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033ab0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00033aa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033b00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033b10: 2020 3620 2020 2020 2031 3020 2020 2020 6 10 │ │ │ │ -00033b20: 2031 3520 2020 2020 2032 3120 2020 2020 15 21 │ │ │ │ -00033b30: 2032 3820 2020 2020 2033 3620 2020 2020 28 36 │ │ │ │ -00033b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033b50: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ -00033b60: 2852 2020 3c2d 2d20 5220 2020 3c2d 2d20 (R <-- R <-- │ │ │ │ -00033b70: 5220 2020 3c2d 2d20 5220 2020 3c2d 2d20 R <-- R <-- │ │ │ │ -00033b80: 5220 2020 3c2d 2d20 5220 202c 207b 327d R <-- R , {2} │ │ │ │ -00033b90: 207c 2030 2030 2020 3020 2031 2030 2030 | 0 0 0 1 0 0 │ │ │ │ -00033ba0: 207c 2920 2020 2020 7c0a 7c20 2020 2020 |) |.| │ │ │ │ +00033af0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033b00: 2020 2020 2020 2036 2020 2020 2020 3130 6 10 │ │ │ │ +00033b10: 2020 2020 2020 3135 2020 2020 2020 3231 15 21 │ │ │ │ +00033b20: 2020 2020 2020 3238 2020 2020 2020 3336 28 36 │ │ │ │ +00033b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033b40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033b50: 6f35 203d 2028 5220 203c 2d2d 2052 2020 o5 = (R <-- R │ │ │ │ +00033b60: 203c 2d2d 2052 2020 203c 2d2d 2052 2020 <-- R <-- R │ │ │ │ +00033b70: 203c 2d2d 2052 2020 203c 2d2d 2052 2020 <-- R <-- R │ │ │ │ +00033b80: 2c20 7b32 7d20 7c20 3020 3020 2030 2020 , {2} | 0 0 0 │ │ │ │ +00033b90: 3120 3020 3020 7c29 2020 2020 207c 0a7c 1 0 0 |) |.| │ │ │ │ +00033ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033bd0: 2020 2020 2020 2020 2020 2020 207b 327d {2} │ │ │ │ -00033be0: 207c 2030 202d 3120 3020 2030 2030 2030 | 0 -1 0 0 0 0 │ │ │ │ -00033bf0: 207c 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ -00033c00: 2030 2020 2020 2020 3120 2020 2020 2020 0 1 │ │ │ │ -00033c10: 3220 2020 2020 2020 3320 2020 2020 2020 2 3 │ │ │ │ -00033c20: 3420 2020 2020 2020 3520 2020 207b 327d 4 5 {2} │ │ │ │ -00033c30: 207c 2030 2030 2020 2d31 2030 2030 2030 | 0 0 -1 0 0 0 │ │ │ │ -00033c40: 207c 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +00033bd0: 2020 7b32 7d20 7c20 3020 2d31 2030 2020 {2} | 0 -1 0 │ │ │ │ +00033be0: 3020 3020 3020 7c20 2020 2020 207c 0a7c 0 0 0 | |.| │ │ │ │ +00033bf0: 2020 2020 2020 3020 2020 2020 2031 2020 0 1 │ │ │ │ +00033c00: 2020 2020 2032 2020 2020 2020 2033 2020 2 3 │ │ │ │ +00033c10: 2020 2020 2034 2020 2020 2020 2035 2020 4 5 │ │ │ │ +00033c20: 2020 7b32 7d20 7c20 3020 3020 202d 3120 {2} | 0 0 -1 │ │ │ │ +00033c30: 3020 3020 3020 7c20 2020 2020 207c 0a7c 0 0 0 | |.| │ │ │ │ +00033c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033c70: 2020 2020 2020 2020 2020 2020 207b 337d {3} │ │ │ │ -00033c80: 207c 2030 2030 2020 3020 2030 2030 2031 | 0 0 0 0 0 1 │ │ │ │ -00033c90: 207c 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +00033c70: 2020 7b33 7d20 7c20 3020 3020 2030 2020 {3} | 0 0 0 │ │ │ │ +00033c80: 3020 3020 3120 7c20 2020 2020 207c 0a7c 0 0 1 | |.| │ │ │ │ +00033c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033cc0: 2020 2020 2020 2020 2020 2020 207b 337d {3} │ │ │ │ -00033cd0: 207c 2030 2030 2020 3020 2030 2031 2030 | 0 0 0 0 1 0 │ │ │ │ -00033ce0: 207c 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +00033cc0: 2020 7b33 7d20 7c20 3020 3020 2030 2020 {3} | 0 0 0 │ │ │ │ +00033cd0: 3020 3120 3020 7c20 2020 2020 207c 0a7c 0 1 0 | |.| │ │ │ │ +00033ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033d10: 2020 2020 2020 2020 2020 2020 207b 337d {3} │ │ │ │ -00033d20: 207c 2031 2030 2020 3020 2030 2030 2030 | 1 0 0 0 0 0 │ │ │ │ -00033d30: 207c 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +00033d10: 2020 7b33 7d20 7c20 3120 3020 2030 2020 {3} | 1 0 0 │ │ │ │ +00033d20: 3020 3020 3020 7c20 2020 2020 207c 0a7c 0 0 0 | |.| │ │ │ │ +00033d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033d80: 2020 2020 2020 2020 7c0a 7c6f 3520 3a20 |.|o5 : │ │ │ │ -00033d90: 5365 7175 656e 6365 2020 2020 2020 2020 Sequence │ │ │ │ +00033d70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033d80: 6f35 203a 2053 6571 7565 6e63 6520 2020 o5 : Sequence │ │ │ │ +00033d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033dd0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00033dc0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00033dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033e20: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ -00033e30: 6265 7474 6920 4646 2020 2020 2020 2020 betti FF │ │ │ │ +00033e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00033e20: 6936 203a 2062 6574 7469 2046 4620 2020 i6 : betti FF │ │ │ │ +00033e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00033e60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033ec0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033ed0: 2020 2020 2020 2030 2020 3120 2032 2020 0 1 2 │ │ │ │ -00033ee0: 3320 2034 2020 3520 2020 2020 2020 2020 3 4 5 │ │ │ │ +00033eb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033ec0: 2020 2020 2020 2020 2020 2020 3020 2031 0 1 │ │ │ │ +00033ed0: 2020 3220 2033 2020 3420 2035 2020 2020 2 3 4 5 │ │ │ │ +00033ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033f10: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ -00033f20: 746f 7461 6c3a 2036 2031 3020 3135 2032 total: 6 10 15 2 │ │ │ │ -00033f30: 3120 3238 2033 3620 2020 2020 2020 2020 1 28 36 │ │ │ │ +00033f00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033f10: 6f36 203d 2074 6f74 616c 3a20 3620 3130 o6 = total: 6 10 │ │ │ │ +00033f20: 2031 3520 3231 2032 3820 3336 2020 2020 15 21 28 36 │ │ │ │ +00033f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033f60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033f70: 2020 2020 323a 2033 2020 3120 202e 2020 2: 3 1 . │ │ │ │ -00033f80: 2e20 202e 2020 2e20 2020 2020 2020 2020 . . . │ │ │ │ +00033f50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033f60: 2020 2020 2020 2020 2032 3a20 3320 2031 2: 3 1 │ │ │ │ +00033f70: 2020 2e20 202e 2020 2e20 202e 2020 2020 . . . . │ │ │ │ +00033f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033fb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033fc0: 2020 2020 333a 2033 2020 3920 2039 2020 3: 3 9 9 │ │ │ │ -00033fd0: 3320 202e 2020 2e20 2020 2020 2020 2020 3 . . │ │ │ │ +00033fa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033fb0: 2020 2020 2020 2020 2033 3a20 3320 2039 3: 3 9 │ │ │ │ +00033fc0: 2020 3920 2033 2020 2e20 202e 2020 2020 9 3 . . │ │ │ │ +00033fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034000: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00034010: 2020 2020 343a 202e 2020 2e20 2036 2031 4: . . 6 1 │ │ │ │ -00034020: 3820 3138 2020 3620 2020 2020 2020 2020 8 18 6 │ │ │ │ +00033ff0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034000: 2020 2020 2020 2020 2034 3a20 2e20 202e 4: . . │ │ │ │ +00034010: 2020 3620 3138 2031 3820 2036 2020 2020 6 18 18 6 │ │ │ │ +00034020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034050: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00034060: 2020 2020 353a 202e 2020 2e20 202e 2020 5: . . . │ │ │ │ -00034070: 2e20 3130 2033 3020 2020 2020 2020 2020 . 10 30 │ │ │ │ +00034040: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034050: 2020 2020 2020 2020 2035 3a20 2e20 202e 5: . . │ │ │ │ +00034060: 2020 2e20 202e 2031 3020 3330 2020 2020 . . 10 30 │ │ │ │ +00034070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000340a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034090: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000340a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000340b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000340c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000340d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000340e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000340f0: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ -00034100: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +000340e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000340f0: 6f36 203a 2042 6574 7469 5461 6c6c 7920 o6 : BettiTally │ │ │ │ +00034100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034140: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00034130: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00034140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034190: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 --------+.|i7 : │ │ │ │ -000341a0: 6265 7474 6920 6672 6565 5265 736f 6c75 betti freeResolu │ │ │ │ -000341b0: 7469 6f6e 284d 2c20 4c65 6e67 7468 4c69 tion(M, LengthLi │ │ │ │ -000341c0: 6d69 743d 3e35 2920 2020 2020 2020 2020 mit=>5) │ │ │ │ -000341d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000341e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00034190: 6937 203a 2062 6574 7469 2066 7265 6552 i7 : betti freeR │ │ │ │ +000341a0: 6573 6f6c 7574 696f 6e28 4d2c 204c 656e esolution(M, Len │ │ │ │ +000341b0: 6774 684c 696d 6974 3d3e 3529 2020 2020 gthLimit=>5) │ │ │ │ +000341c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000341d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000341e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000341f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034230: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00034240: 2020 2020 2020 2030 2020 3120 2032 2020 0 1 2 │ │ │ │ -00034250: 3320 2034 2020 3520 2020 2020 2020 2020 3 4 5 │ │ │ │ +00034220: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034230: 2020 2020 2020 2020 2020 2020 3020 2031 0 1 │ │ │ │ +00034240: 2020 3220 2033 2020 3420 2035 2020 2020 2 3 4 5 │ │ │ │ +00034250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034280: 2020 2020 2020 2020 7c0a 7c6f 3720 3d20 |.|o7 = │ │ │ │ -00034290: 746f 7461 6c3a 2036 2031 3020 3135 2032 total: 6 10 15 2 │ │ │ │ -000342a0: 3120 3238 2033 3620 2020 2020 2020 2020 1 28 36 │ │ │ │ +00034270: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034280: 6f37 203d 2074 6f74 616c 3a20 3620 3130 o7 = total: 6 10 │ │ │ │ +00034290: 2031 3520 3231 2032 3820 3336 2020 2020 15 21 28 36 │ │ │ │ +000342a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000342b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000342c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000342d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000342e0: 2020 2020 323a 2033 2020 3120 202e 2020 2: 3 1 . │ │ │ │ -000342f0: 2e20 202e 2020 2e20 2020 2020 2020 2020 . . . │ │ │ │ +000342c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000342d0: 2020 2020 2020 2020 2032 3a20 3320 2031 2: 3 1 │ │ │ │ +000342e0: 2020 2e20 202e 2020 2e20 202e 2020 2020 . . . . │ │ │ │ +000342f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034320: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00034330: 2020 2020 333a 2033 2020 3920 2039 2020 3: 3 9 9 │ │ │ │ -00034340: 3320 202e 2020 2e20 2020 2020 2020 2020 3 . . │ │ │ │ +00034310: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034320: 2020 2020 2020 2020 2033 3a20 3320 2039 3: 3 9 │ │ │ │ +00034330: 2020 3920 2033 2020 2e20 202e 2020 2020 9 3 . . │ │ │ │ +00034340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034370: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00034380: 2020 2020 343a 202e 2020 2e20 2036 2031 4: . . 6 1 │ │ │ │ -00034390: 3820 3138 2020 3620 2020 2020 2020 2020 8 18 6 │ │ │ │ +00034360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034370: 2020 2020 2020 2020 2034 3a20 2e20 202e 4: . . │ │ │ │ +00034380: 2020 3620 3138 2031 3820 2036 2020 2020 6 18 18 6 │ │ │ │ +00034390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000343a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000343b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000343c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000343d0: 2020 2020 353a 202e 2020 2e20 202e 2020 5: . . . │ │ │ │ -000343e0: 2e20 3130 2033 3020 2020 2020 2020 2020 . 10 30 │ │ │ │ +000343b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000343c0: 2020 2020 2020 2020 2035 3a20 2e20 202e 5: . . │ │ │ │ +000343d0: 2020 2e20 202e 2031 3020 3330 2020 2020 . . 10 30 │ │ │ │ +000343e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000343f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034410: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034400: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034460: 2020 2020 2020 2020 7c0a 7c6f 3720 3a20 |.|o7 : │ │ │ │ -00034470: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +00034450: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034460: 6f37 203a 2042 6574 7469 5461 6c6c 7920 o7 : BettiTally │ │ │ │ +00034470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000344a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000344b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000344a0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000344b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000344c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000344d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000344e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000344f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034500: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 --------+.|i8 : │ │ │ │ -00034510: 4320 3d20 636f 6d70 6c65 7820 666c 6174 C = complex flat │ │ │ │ -00034520: 7465 6e20 7b7b 6175 677d 207c 6170 706c ten {{aug} |appl │ │ │ │ -00034530: 7928 342c 2069 2d3e 2046 462e 6464 5f28 y(4, i-> FF.dd_( │ │ │ │ -00034540: 692b 3129 297d 2020 2020 2020 2020 2020 i+1))} │ │ │ │ -00034550: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000344f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00034500: 6938 203a 2043 203d 2063 6f6d 706c 6578 i8 : C = complex │ │ │ │ +00034510: 2066 6c61 7474 656e 207b 7b61 7567 7d20 flatten {{aug} │ │ │ │ +00034520: 7c61 7070 6c79 2834 2c20 692d 3e20 4646 |apply(4, i-> FF │ │ │ │ +00034530: 2e64 645f 2869 2b31 2929 7d20 2020 2020 .dd_(i+1))} │ │ │ │ +00034540: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000345a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000345b0: 2020 2020 2020 2036 2020 2020 2020 3130 6 10 │ │ │ │ -000345c0: 2020 2020 2020 3135 2020 2020 2020 3231 15 21 │ │ │ │ -000345d0: 2020 2020 2020 3238 2020 2020 2020 2020 28 │ │ │ │ -000345e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000345f0: 2020 2020 2020 2020 7c0a 7c6f 3820 3d20 |.|o8 = │ │ │ │ -00034600: 4d20 3c2d 2d20 5220 203c 2d2d 2052 2020 M <-- R <-- R │ │ │ │ -00034610: 203c 2d2d 2052 2020 203c 2d2d 2052 2020 <-- R <-- R │ │ │ │ -00034620: 203c 2d2d 2052 2020 2020 2020 2020 2020 <-- R │ │ │ │ -00034630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034640: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034590: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000345a0: 2020 2020 2020 2020 2020 2020 3620 2020 6 │ │ │ │ +000345b0: 2020 2031 3020 2020 2020 2031 3520 2020 10 15 │ │ │ │ +000345c0: 2020 2032 3120 2020 2020 2032 3820 2020 21 28 │ │ │ │ +000345d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000345e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000345f0: 6f38 203d 204d 203c 2d2d 2052 2020 3c2d o8 = M <-- R <- │ │ │ │ +00034600: 2d20 5220 2020 3c2d 2d20 5220 2020 3c2d - R <-- R <- │ │ │ │ +00034610: 2d20 5220 2020 3c2d 2d20 5220 2020 2020 - R <-- R │ │ │ │ +00034620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034630: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034690: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000346a0: 3020 2020 2020 3120 2020 2020 2032 2020 0 1 2 │ │ │ │ -000346b0: 2020 2020 2033 2020 2020 2020 2034 2020 3 4 │ │ │ │ -000346c0: 2020 2020 2035 2020 2020 2020 2020 2020 5 │ │ │ │ -000346d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000346e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034680: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034690: 2020 2020 2030 2020 2020 2031 2020 2020 0 1 │ │ │ │ +000346a0: 2020 3220 2020 2020 2020 3320 2020 2020 2 3 │ │ │ │ +000346b0: 2020 3420 2020 2020 2020 3520 2020 2020 4 5 │ │ │ │ +000346c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000346d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000346e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000346f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034730: 2020 2020 2020 2020 7c0a 7c6f 3820 3a20 |.|o8 : │ │ │ │ -00034740: 436f 6d70 6c65 7820 2020 2020 2020 2020 Complex │ │ │ │ +00034720: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034730: 6f38 203a 2043 6f6d 706c 6578 2020 2020 o8 : Complex │ │ │ │ +00034740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034780: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00034770: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00034780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000347a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000347b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000347c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000347d0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 --------+.|i9 : │ │ │ │ -000347e0: 6170 706c 7928 342c 2069 202d 3e46 462e apply(4, i ->FF. │ │ │ │ -000347f0: 6464 5f28 692b 3129 2920 2020 2020 2020 dd_(i+1)) │ │ │ │ +000347c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000347d0: 6939 203a 2061 7070 6c79 2834 2c20 6920 i9 : apply(4, i │ │ │ │ +000347e0: 2d3e 4646 2e64 645f 2869 2b31 2929 2020 ->FF.dd_(i+1)) │ │ │ │ +000347f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034820: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034810: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034870: 2020 2020 2020 2020 7c0a 7c6f 3920 3d20 |.|o9 = │ │ │ │ -00034880: 7b7b 337d 207c 2063 202d 6220 6120 2030 {{3} | c -b a 0 │ │ │ │ -00034890: 2020 3020 3020 2030 2020 3020 3020 2030 0 0 0 0 0 0 │ │ │ │ -000348a0: 2020 7c2c 207b 347d 207c 2063 3220 3020 |, {4} | c2 0 │ │ │ │ -000348b0: 2d61 2030 2062 2030 2030 2020 3020 2020 -a 0 b 0 0 0 │ │ │ │ -000348c0: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -000348d0: 207b 337d 207c 2030 2030 2020 3020 2063 {3} | 0 0 0 c │ │ │ │ -000348e0: 2020 6220 6120 2030 2020 3020 3020 2030 b a 0 0 0 0 │ │ │ │ -000348f0: 2020 7c20 207b 347d 207c 2030 2020 3020 | {4} | 0 0 │ │ │ │ -00034900: 3020 2030 2063 2030 2030 2020 3020 2020 0 0 c 0 0 0 │ │ │ │ -00034910: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00034920: 207b 337d 207c 2030 2030 2020 6332 2030 {3} | 0 0 c2 0 │ │ │ │ -00034930: 2020 3020 3020 2030 2020 6120 2d63 202d 0 0 0 a -c - │ │ │ │ -00034940: 6220 7c20 207b 347d 207c 2030 2020 3020 b | {4} | 0 0 │ │ │ │ -00034950: 6320 2030 2030 2030 2030 2020 3020 2020 c 0 0 0 0 0 │ │ │ │ -00034960: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00034970: 207b 327d 207c 2030 2030 2020 3020 2030 {2} | 0 0 0 0 │ │ │ │ -00034980: 2020 3020 3020 2062 2020 3020 6132 2030 0 0 b 0 a2 0 │ │ │ │ -00034990: 2020 7c20 207b 347d 207c 2030 2020 3020 | {4} | 0 0 │ │ │ │ -000349a0: 3020 2030 2030 2030 2030 2020 3020 2020 0 0 0 0 0 0 │ │ │ │ -000349b0: 2d61 2030 2020 6220 7c0a 7c20 2020 2020 -a 0 b |.| │ │ │ │ -000349c0: 207b 327d 207c 2030 2063 3220 3020 2030 {2} | 0 c2 0 0 │ │ │ │ -000349d0: 2020 3020 6232 202d 6320 3020 3020 2061 0 b2 -c 0 0 a │ │ │ │ -000349e0: 3220 7c20 207b 347d 207c 2030 2020 3020 2 | {4} | 0 0 │ │ │ │ -000349f0: 3020 2030 2030 2030 2062 3220 3020 2020 0 0 0 0 b2 0 │ │ │ │ -00034a00: 3020 202d 6120 2d63 7c0a 7c20 2020 2020 0 -a -c|.| │ │ │ │ -00034a10: 207b 327d 207c 2030 2030 2020 3020 2062 {2} | 0 0 0 b │ │ │ │ -00034a20: 3220 3020 3020 2061 2020 3020 3020 2030 2 0 0 a 0 0 0 │ │ │ │ -00034a30: 2020 7c20 207b 347d 207c 2030 2020 3020 | {4} | 0 0 │ │ │ │ -00034a40: 3020 2030 2030 2030 2030 2020 6132 2020 0 0 0 0 0 a2 │ │ │ │ -00034a50: 6320 2062 2020 3020 7c0a 7c20 2020 2020 c b 0 |.| │ │ │ │ +00034860: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034870: 6f39 203d 207b 7b33 7d20 7c20 6320 2d62 o9 = {{3} | c -b │ │ │ │ +00034880: 2061 2020 3020 2030 2030 2020 3020 2030 a 0 0 0 0 0 │ │ │ │ +00034890: 2030 2020 3020 207c 2c20 7b34 7d20 7c20 0 0 |, {4} | │ │ │ │ +000348a0: 6332 2030 202d 6120 3020 6220 3020 3020 c2 0 -a 0 b 0 0 │ │ │ │ +000348b0: 2030 2020 2030 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +000348c0: 2020 2020 2020 7b33 7d20 7c20 3020 3020 {3} | 0 0 │ │ │ │ +000348d0: 2030 2020 6320 2062 2061 2020 3020 2030 0 c b a 0 0 │ │ │ │ +000348e0: 2030 2020 3020 207c 2020 7b34 7d20 7c20 0 0 | {4} | │ │ │ │ +000348f0: 3020 2030 2030 2020 3020 6320 3020 3020 0 0 0 0 c 0 0 │ │ │ │ +00034900: 2030 2020 2030 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00034910: 2020 2020 2020 7b33 7d20 7c20 3020 3020 {3} | 0 0 │ │ │ │ +00034920: 2063 3220 3020 2030 2030 2020 3020 2061 c2 0 0 0 0 a │ │ │ │ +00034930: 202d 6320 2d62 207c 2020 7b34 7d20 7c20 -c -b | {4} | │ │ │ │ +00034940: 3020 2030 2063 2020 3020 3020 3020 3020 0 0 c 0 0 0 0 │ │ │ │ +00034950: 2030 2020 2030 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00034960: 2020 2020 2020 7b32 7d20 7c20 3020 3020 {2} | 0 0 │ │ │ │ +00034970: 2030 2020 3020 2030 2030 2020 6220 2030 0 0 0 0 b 0 │ │ │ │ +00034980: 2061 3220 3020 207c 2020 7b34 7d20 7c20 a2 0 | {4} | │ │ │ │ +00034990: 3020 2030 2030 2020 3020 3020 3020 3020 0 0 0 0 0 0 0 │ │ │ │ +000349a0: 2030 2020 202d 6120 3020 2062 207c 0a7c 0 -a 0 b |.| │ │ │ │ +000349b0: 2020 2020 2020 7b32 7d20 7c20 3020 6332 {2} | 0 c2 │ │ │ │ +000349c0: 2030 2020 3020 2030 2062 3220 2d63 2030 0 0 0 b2 -c 0 │ │ │ │ +000349d0: 2030 2020 6132 207c 2020 7b34 7d20 7c20 0 a2 | {4} | │ │ │ │ +000349e0: 3020 2030 2030 2020 3020 3020 3020 6232 0 0 0 0 0 0 b2 │ │ │ │ +000349f0: 2030 2020 2030 2020 2d61 202d 637c 0a7c 0 0 -a -c|.| │ │ │ │ +00034a00: 2020 2020 2020 7b32 7d20 7c20 3020 3020 {2} | 0 0 │ │ │ │ +00034a10: 2030 2020 6232 2030 2030 2020 6120 2030 0 b2 0 0 a 0 │ │ │ │ +00034a20: 2030 2020 3020 207c 2020 7b34 7d20 7c20 0 0 | {4} | │ │ │ │ +00034a30: 3020 2030 2030 2020 3020 3020 3020 3020 0 0 0 0 0 0 0 │ │ │ │ +00034a40: 2061 3220 2063 2020 6220 2030 207c 0a7c a2 c b 0 |.| │ │ │ │ +00034a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034a80: 2020 2020 207b 337d 207c 2030 2020 3020 {3} | 0 0 │ │ │ │ -00034a90: 3020 2030 2030 2030 2030 2020 3020 2020 0 0 0 0 0 0 │ │ │ │ -00034aa0: 6232 2030 2020 3020 7c0a 7c20 2020 2020 b2 0 0 |.| │ │ │ │ +00034a70: 2020 2020 2020 2020 2020 7b33 7d20 7c20 {3} | │ │ │ │ +00034a80: 3020 2030 2030 2020 3020 3020 3020 3020 0 0 0 0 0 0 0 │ │ │ │ +00034a90: 2030 2020 2062 3220 3020 2030 207c 0a7c 0 b2 0 0 |.| │ │ │ │ +00034aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034ad0: 2020 2020 207b 347d 207c 2030 2020 3020 {4} | 0 0 │ │ │ │ -00034ae0: 3020 2030 2030 2030 2030 2020 3020 2020 0 0 0 0 0 0 │ │ │ │ -00034af0: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ +00034ac0: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +00034ad0: 3020 2030 2030 2020 3020 3020 3020 3020 0 0 0 0 0 0 0 │ │ │ │ +00034ae0: 2030 2020 2030 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00034af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034b20: 2020 2020 207b 347d 207c 2030 2020 3020 {4} | 0 0 │ │ │ │ -00034b30: 3020 2030 2030 2030 2030 2020 3020 2020 0 0 0 0 0 0 │ │ │ │ -00034b40: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ +00034b10: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +00034b20: 3020 2030 2030 2020 3020 3020 3020 3020 0 0 0 0 0 0 0 │ │ │ │ +00034b30: 2030 2020 2030 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00034b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034b70: 2020 2020 207b 347d 207c 2030 2020 3020 {4} | 0 0 │ │ │ │ -00034b80: 3020 2030 2030 2030 2030 2020 2d62 3220 0 0 0 0 0 -b2 │ │ │ │ -00034b90: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ +00034b60: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +00034b70: 3020 2030 2030 2020 3020 3020 3020 3020 0 0 0 0 0 0 0 │ │ │ │ +00034b80: 202d 6232 2030 2020 3020 2030 207c 0a7c -b2 0 0 0 |.| │ │ │ │ +00034b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034be0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034bd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034c30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034c20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034c80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034cd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034cc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034d20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034d10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034d70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034d60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034dc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034db0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034e10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034e00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034e60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034e50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034eb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034ea0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034f00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034ef0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034f00: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ 00034f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034f50: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ -00034f60: 3020 2030 2030 2030 2020 7c2c 207b 367d 0 0 0 0 |, {6} │ │ │ │ -00034f70: 207c 2063 202d 6220 6120 2030 2020 3020 | c -b a 0 0 │ │ │ │ +00034f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00034f50: 2020 2020 2030 2020 3020 3020 3020 207c 0 0 0 0 | │ │ │ │ +00034f60: 2c20 7b36 7d20 7c20 6320 2d62 2061 2020 , {6} | c -b a │ │ │ │ +00034f70: 3020 2030 2030 2020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ 00034f80: 3020 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -00034f90: 2030 2030 2020 3020 2030 2020 3020 2020 0 0 0 0 0 │ │ │ │ -00034fa0: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00034fb0: 3020 2030 2030 2030 2020 7c20 207b 367d 0 0 0 0 | {6} │ │ │ │ -00034fc0: 207c 2030 2030 2020 3020 2063 2020 6220 | 0 0 0 c b │ │ │ │ -00034fd0: 6120 2030 2020 3020 3020 2030 2020 3020 a 0 0 0 0 0 │ │ │ │ -00034fe0: 2030 2030 2020 3020 2030 2020 3020 2020 0 0 0 0 0 │ │ │ │ -00034ff0: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00035000: 3020 2030 2030 2030 2020 7c20 207b 367d 0 0 0 0 | {6} │ │ │ │ -00035010: 207c 2030 2030 2020 6332 2030 2020 3020 | 0 0 c2 0 0 │ │ │ │ -00035020: 3020 2030 2020 6120 2d63 202d 6220 3020 0 0 a -c -b 0 │ │ │ │ -00035030: 2030 2030 2020 3020 2030 2020 3020 2020 0 0 0 0 0 │ │ │ │ -00035040: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00035050: 3020 2030 2030 2030 2020 7c20 207b 357d 0 0 0 0 | {5} │ │ │ │ -00035060: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ -00035070: 3020 2062 2020 3020 6132 2030 2020 3020 0 b 0 a2 0 0 │ │ │ │ -00035080: 2030 2030 2020 3020 2030 2020 3020 2020 0 0 0 0 0 │ │ │ │ -00035090: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -000350a0: 3020 2030 2030 2030 2020 7c20 207b 357d 0 0 0 0 | {5} │ │ │ │ -000350b0: 207c 2030 2063 3220 3020 2030 2020 3020 | 0 c2 0 0 0 │ │ │ │ -000350c0: 6232 202d 6320 3020 3020 2061 3220 3020 b2 -c 0 0 a2 0 │ │ │ │ -000350d0: 2030 2030 2020 3020 2030 2020 3020 2020 0 0 0 0 0 │ │ │ │ -000350e0: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -000350f0: 3020 2030 2030 2030 2020 7c20 207b 357d 0 0 0 0 | {5} │ │ │ │ -00035100: 207c 2030 2030 2020 3020 2062 3220 3020 | 0 0 0 b2 0 │ │ │ │ -00035110: 3020 2061 2020 3020 3020 2030 2020 3020 0 a 0 0 0 0 │ │ │ │ -00035120: 2030 2030 2020 3020 2030 2020 3020 2020 0 0 0 0 0 │ │ │ │ -00035130: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00035140: 3020 2030 2030 2061 3220 7c20 207b 367d 0 0 0 a2 | {6} │ │ │ │ -00035150: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ -00035160: 3020 2030 2020 3020 3020 2030 2020 6320 0 0 0 0 0 c │ │ │ │ -00035170: 2062 2061 2020 3020 2030 2020 3020 2020 b a 0 0 0 │ │ │ │ -00035180: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00035190: 6132 2063 2062 2030 2020 7c20 207b 367d a2 c b 0 | {6} │ │ │ │ -000351a0: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ -000351b0: 3020 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -000351c0: 2030 2030 2020 3020 2061 2020 2d63 2020 0 0 0 a -c │ │ │ │ -000351d0: 2d62 2030 2020 3020 7c0a 7c20 2020 2020 -b 0 0 |.| │ │ │ │ -000351e0: 3020 2061 2030 202d 6220 7c20 207b 357d 0 a 0 -b | {5} │ │ │ │ -000351f0: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ -00035200: 3020 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035210: 2030 2030 2020 6220 2030 2020 6132 2020 0 0 b 0 a2 │ │ │ │ -00035220: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00035230: 3020 2030 2061 2063 2020 7c20 207b 357d 0 0 a c | {5} │ │ │ │ -00035240: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ -00035250: 3020 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035260: 2030 2062 3220 2d63 2030 2020 3020 2020 0 b2 -c 0 0 │ │ │ │ -00035270: 6132 2030 2020 3020 7c0a 7c20 2020 2020 a2 0 0 |.| │ │ │ │ -00035280: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ -00035290: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ -000352a0: 3020 2030 2020 3020 3020 2030 2020 6232 0 0 0 0 0 b2 │ │ │ │ -000352b0: 2030 2030 2020 6120 2030 2020 3020 2020 0 0 a 0 0 │ │ │ │ -000352c0: 3020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -000352d0: 2020 2020 2020 2020 2020 2020 207b 367d {6} │ │ │ │ -000352e0: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ +00034f90: 2030 2020 2030 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00034fa0: 2020 2020 2030 2020 3020 3020 3020 207c 0 0 0 0 | │ │ │ │ +00034fb0: 2020 7b36 7d20 7c20 3020 3020 2030 2020 {6} | 0 0 0 │ │ │ │ +00034fc0: 6320 2062 2061 2020 3020 2030 2030 2020 c b a 0 0 0 │ │ │ │ +00034fd0: 3020 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ +00034fe0: 2030 2020 2030 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00034ff0: 2020 2020 2030 2020 3020 3020 3020 207c 0 0 0 0 | │ │ │ │ +00035000: 2020 7b36 7d20 7c20 3020 3020 2063 3220 {6} | 0 0 c2 │ │ │ │ +00035010: 3020 2030 2030 2020 3020 2061 202d 6320 0 0 0 0 a -c │ │ │ │ +00035020: 2d62 2030 2020 3020 3020 2030 2020 3020 -b 0 0 0 0 0 │ │ │ │ +00035030: 2030 2020 2030 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00035040: 2020 2020 2030 2020 3020 3020 3020 207c 0 0 0 0 | │ │ │ │ +00035050: 2020 7b35 7d20 7c20 3020 3020 2030 2020 {5} | 0 0 0 │ │ │ │ +00035060: 3020 2030 2030 2020 6220 2030 2061 3220 0 0 0 b 0 a2 │ │ │ │ +00035070: 3020 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ +00035080: 2030 2020 2030 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00035090: 2020 2020 2030 2020 3020 3020 3020 207c 0 0 0 0 | │ │ │ │ +000350a0: 2020 7b35 7d20 7c20 3020 6332 2030 2020 {5} | 0 c2 0 │ │ │ │ +000350b0: 3020 2030 2062 3220 2d63 2030 2030 2020 0 0 b2 -c 0 0 │ │ │ │ +000350c0: 6132 2030 2020 3020 3020 2030 2020 3020 a2 0 0 0 0 0 │ │ │ │ +000350d0: 2030 2020 2030 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +000350e0: 2020 2020 2030 2020 3020 3020 3020 207c 0 0 0 0 | │ │ │ │ +000350f0: 2020 7b35 7d20 7c20 3020 3020 2030 2020 {5} | 0 0 0 │ │ │ │ +00035100: 6232 2030 2030 2020 6120 2030 2030 2020 b2 0 0 a 0 0 │ │ │ │ +00035110: 3020 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ +00035120: 2030 2020 2030 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00035130: 2020 2020 2030 2020 3020 3020 6132 207c 0 0 0 a2 | │ │ │ │ +00035140: 2020 7b36 7d20 7c20 3020 3020 2030 2020 {6} | 0 0 0 │ │ │ │ +00035150: 3020 2030 2030 2020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ +00035160: 3020 2063 2020 6220 6120 2030 2020 3020 0 c b a 0 0 │ │ │ │ +00035170: 2030 2020 2030 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00035180: 2020 2020 2061 3220 6320 6220 3020 207c a2 c b 0 | │ │ │ │ +00035190: 2020 7b36 7d20 7c20 3020 3020 2030 2020 {6} | 0 0 0 │ │ │ │ +000351a0: 3020 2030 2030 2020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ +000351b0: 3020 2030 2020 3020 3020 2030 2020 6120 0 0 0 0 0 a │ │ │ │ +000351c0: 202d 6320 202d 6220 3020 2030 207c 0a7c -c -b 0 0 |.| │ │ │ │ +000351d0: 2020 2020 2030 2020 6120 3020 2d62 207c 0 a 0 -b | │ │ │ │ +000351e0: 2020 7b35 7d20 7c20 3020 3020 2030 2020 {5} | 0 0 0 │ │ │ │ +000351f0: 3020 2030 2030 2020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ +00035200: 3020 2030 2020 3020 3020 2062 2020 3020 0 0 0 0 b 0 │ │ │ │ +00035210: 2061 3220 2030 2020 3020 2030 207c 0a7c a2 0 0 0 |.| │ │ │ │ +00035220: 2020 2020 2030 2020 3020 6120 6320 207c 0 0 a c | │ │ │ │ +00035230: 2020 7b35 7d20 7c20 3020 3020 2030 2020 {5} | 0 0 0 │ │ │ │ +00035240: 3020 2030 2030 2020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ +00035250: 3020 2030 2020 3020 6232 202d 6320 3020 0 0 0 b2 -c 0 │ │ │ │ +00035260: 2030 2020 2061 3220 3020 2030 207c 0a7c 0 a2 0 0 |.| │ │ │ │ +00035270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035280: 2020 7b35 7d20 7c20 3020 3020 2030 2020 {5} | 0 0 0 │ │ │ │ +00035290: 3020 2030 2030 2020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ +000352a0: 3020 2062 3220 3020 3020 2061 2020 3020 0 b2 0 0 a 0 │ │ │ │ +000352b0: 2030 2020 2030 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +000352c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000352d0: 2020 7b36 7d20 7c20 3020 3020 2030 2020 {6} | 0 0 0 │ │ │ │ +000352e0: 3020 2030 2030 2020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ 000352f0: 3020 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035300: 2030 2030 2020 3020 2030 2020 3020 2020 0 0 0 0 0 │ │ │ │ -00035310: 3020 2030 2020 6120 7c0a 7c20 2020 2020 0 0 a |.| │ │ │ │ -00035320: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ -00035330: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ +00035300: 2030 2020 2030 2020 3020 2061 207c 0a7c 0 0 0 a |.| │ │ │ │ +00035310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035320: 2020 7b35 7d20 7c20 3020 3020 2030 2020 {5} | 0 0 0 │ │ │ │ +00035330: 3020 2030 2030 2020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ 00035340: 3020 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035350: 2030 2030 2020 3020 2030 2020 3020 2020 0 0 0 0 0 │ │ │ │ -00035360: 3020 2062 2020 3020 7c0a 7c20 2020 2020 0 b 0 |.| │ │ │ │ -00035370: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ -00035380: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ -00035390: 3020 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -000353a0: 2030 2030 2020 3020 2062 3220 3020 2020 0 0 0 b2 0 │ │ │ │ -000353b0: 3020 202d 6320 3020 7c0a 7c20 2020 2020 0 -c 0 |.| │ │ │ │ -000353c0: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ -000353d0: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ +00035350: 2030 2020 2030 2020 6220 2030 207c 0a7c 0 0 b 0 |.| │ │ │ │ +00035360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035370: 2020 7b35 7d20 7c20 3020 3020 2030 2020 {5} | 0 0 0 │ │ │ │ +00035380: 3020 2030 2030 2020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ +00035390: 3020 2030 2020 3020 3020 2030 2020 6232 0 0 0 0 0 b2 │ │ │ │ +000353a0: 2030 2020 2030 2020 2d63 2030 207c 0a7c 0 0 -c 0 |.| │ │ │ │ +000353b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000353c0: 2020 7b35 7d20 7c20 3020 3020 2030 2020 {5} | 0 0 0 │ │ │ │ +000353d0: 3020 2030 2030 2020 3020 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ 000353e0: 3020 2030 2020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -000353f0: 2030 2030 2020 3020 2030 2020 2d62 3220 0 0 0 0 -b2 │ │ │ │ -00035400: 3020 2061 2020 3020 7c0a 7c20 2020 2020 0 a 0 |.| │ │ │ │ +000353f0: 202d 6232 2030 2020 6120 2030 207c 0a7c -b2 0 a 0 |.| │ │ │ │ +00035400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035450: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00035440: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00035450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000354a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00035490: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000354a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000354b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000354c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000354d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000354e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000354f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000354e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000354f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035540: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00035530: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00035540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035590: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00035580: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00035590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000355a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000355b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000355c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000355d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000355e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000355d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000355e0: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ 000355f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035630: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ -00035640: 3020 2030 2020 7c2c 207b 377d 207c 2063 0 0 |, {7} | c │ │ │ │ -00035650: 3220 3020 2d61 2030 2062 2030 2030 2020 2 0 -a 0 b 0 0 │ │ │ │ -00035660: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035670: 3020 3020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035680: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035690: 3020 2030 2020 7c20 207b 377d 207c 2030 0 0 | {7} | 0 │ │ │ │ -000356a0: 2020 3020 3020 2030 2063 2030 2030 2020 0 0 0 c 0 0 │ │ │ │ -000356b0: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -000356c0: 3020 3020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 0 │ │ │ │ -000356d0: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -000356e0: 3020 2030 2020 7c20 207b 377d 207c 2030 0 0 | {7} | 0 │ │ │ │ -000356f0: 2020 3020 6320 2030 2030 2030 2030 2020 0 c 0 0 0 0 │ │ │ │ -00035700: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035710: 3020 3020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035720: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035730: 3020 2030 2020 7c20 207b 377d 207c 2030 0 0 | {7} | 0 │ │ │ │ -00035740: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035750: 3020 2020 2d61 2030 2020 6220 2030 2020 0 -a 0 b 0 │ │ │ │ -00035760: 3020 3020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035770: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035780: 3020 2030 2020 7c20 207b 377d 207c 2030 0 0 | {7} | 0 │ │ │ │ -00035790: 2020 3020 3020 2030 2030 2030 2062 3220 0 0 0 0 0 b2 │ │ │ │ -000357a0: 3020 2020 3020 202d 6120 2d63 2030 2020 0 0 -a -c 0 │ │ │ │ -000357b0: 3020 3020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 0 │ │ │ │ -000357c0: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -000357d0: 3020 2030 2020 7c20 207b 377d 207c 2030 0 0 | {7} | 0 │ │ │ │ -000357e0: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -000357f0: 6132 2020 6320 2062 2020 3020 2030 2020 a2 c b 0 0 │ │ │ │ -00035800: 3020 3020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035810: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035820: 3020 2030 2020 7c20 207b 367d 207c 2030 0 0 | {6} | 0 │ │ │ │ -00035830: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035840: 3020 2020 6232 2030 2020 3020 2030 2020 0 b2 0 0 0 │ │ │ │ -00035850: 3020 3020 6132 2030 2020 3020 2020 3020 0 0 a2 0 0 0 │ │ │ │ -00035860: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035870: 3020 2030 2020 7c20 207b 377d 207c 2030 0 0 | {7} | 0 │ │ │ │ -00035880: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035890: 3020 2020 3020 2030 2020 3020 2061 3220 0 0 0 0 a2 │ │ │ │ -000358a0: 6320 6220 3020 2030 2020 3020 2020 3020 c b 0 0 0 0 │ │ │ │ -000358b0: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -000358c0: 3020 2030 2020 7c20 207b 377d 207c 2030 0 0 | {7} | 0 │ │ │ │ -000358d0: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -000358e0: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -000358f0: 6120 3020 2d62 2030 2020 3020 2020 3020 a 0 -b 0 0 0 │ │ │ │ -00035900: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035910: 3020 2030 2020 7c20 207b 377d 207c 2030 0 0 | {7} | 0 │ │ │ │ -00035920: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035930: 2d62 3220 3020 2030 2020 3020 2030 2020 -b2 0 0 0 0 │ │ │ │ -00035940: 3020 6120 6320 2030 2020 3020 2020 3020 0 a c 0 0 0 │ │ │ │ -00035950: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035960: 3020 2030 2020 7c20 207b 377d 207c 2030 0 0 | {7} | 0 │ │ │ │ -00035970: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035980: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035990: 3020 3020 3020 2030 2020 3020 2020 2d61 0 0 0 0 0 -a │ │ │ │ -000359a0: 2030 2020 6220 2020 7c0a 7c20 2020 2020 0 b |.| │ │ │ │ -000359b0: 2d63 202d 6220 7c20 207b 377d 207c 2030 -c -b | {7} | 0 │ │ │ │ -000359c0: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -000359d0: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -000359e0: 3020 3020 3020 2062 3220 3020 2020 3020 0 0 0 b2 0 0 │ │ │ │ -000359f0: 202d 6120 2d63 2020 7c0a 7c20 2020 2020 -a -c |.| │ │ │ │ -00035a00: 6132 2030 2020 7c20 207b 377d 207c 2030 a2 0 | {7} | 0 │ │ │ │ -00035a10: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035a20: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035a30: 3020 3020 3020 2030 2020 6132 2020 6320 0 0 0 0 a2 c │ │ │ │ -00035a40: 2062 2020 3020 2020 7c0a 7c20 2020 2020 b 0 |.| │ │ │ │ -00035a50: 3020 2061 3220 7c20 207b 367d 207c 2030 0 a2 | {6} | 0 │ │ │ │ -00035a60: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035a70: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035a80: 3020 3020 3020 2030 2020 3020 2020 6232 0 0 0 0 0 b2 │ │ │ │ -00035a90: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035aa0: 3020 2030 2020 7c20 207b 377d 207c 2030 0 0 | {7} | 0 │ │ │ │ -00035ab0: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035ac0: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035ad0: 3020 3020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035ae0: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035af0: 2020 2020 2020 2020 207b 377d 207c 2030 {7} | 0 │ │ │ │ -00035b00: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035b10: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035b20: 3020 3020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035b30: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035b40: 2020 2020 2020 2020 207b 377d 207c 2030 {7} | 0 │ │ │ │ -00035b50: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035b60: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035b70: 3020 3020 3020 2030 2020 2d62 3220 3020 0 0 0 0 -b2 0 │ │ │ │ -00035b80: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035b90: 2020 2020 2020 2020 207b 367d 207c 2030 {6} | 0 │ │ │ │ -00035ba0: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035bb0: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035bc0: 3020 3020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035bd0: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035be0: 2020 2020 2020 2020 207b 377d 207c 2030 {7} | 0 │ │ │ │ -00035bf0: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035c00: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035c10: 3020 3020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035c20: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035c30: 2020 2020 2020 2020 207b 377d 207c 2030 {7} | 0 │ │ │ │ -00035c40: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035c50: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035c60: 3020 3020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035c70: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00035c80: 2020 2020 2020 2020 207b 377d 207c 2030 {7} | 0 │ │ │ │ -00035c90: 2020 3020 3020 2030 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00035ca0: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035cb0: 3020 3020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 0 │ │ │ │ -00035cc0: 2030 2020 3020 2020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ +00035620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00035630: 2020 2020 2030 2020 3020 207c 2c20 7b37 0 0 |, {7 │ │ │ │ +00035640: 7d20 7c20 6332 2030 202d 6120 3020 6220 } | c2 0 -a 0 b │ │ │ │ +00035650: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035660: 2020 3020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035670: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +00035680: 2020 2020 2030 2020 3020 207c 2020 7b37 0 0 | {7 │ │ │ │ +00035690: 7d20 7c20 3020 2030 2030 2020 3020 6320 } | 0 0 0 0 c │ │ │ │ +000356a0: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +000356b0: 2020 3020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +000356c0: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +000356d0: 2020 2020 2030 2020 3020 207c 2020 7b37 0 0 | {7 │ │ │ │ +000356e0: 7d20 7c20 3020 2030 2063 2020 3020 3020 } | 0 0 c 0 0 │ │ │ │ +000356f0: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035700: 2020 3020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035710: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +00035720: 2020 2020 2030 2020 3020 207c 2020 7b37 0 0 | {7 │ │ │ │ +00035730: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035740: 3020 3020 2030 2020 202d 6120 3020 2062 0 0 0 -a 0 b │ │ │ │ +00035750: 2020 3020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035760: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +00035770: 2020 2020 2030 2020 3020 207c 2020 7b37 0 0 | {7 │ │ │ │ +00035780: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035790: 3020 6232 2030 2020 2030 2020 2d61 202d 0 b2 0 0 -a - │ │ │ │ +000357a0: 6320 3020 2030 2030 2030 2020 3020 2030 c 0 0 0 0 0 0 │ │ │ │ +000357b0: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +000357c0: 2020 2020 2030 2020 3020 207c 2020 7b37 0 0 | {7 │ │ │ │ +000357d0: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +000357e0: 3020 3020 2061 3220 2063 2020 6220 2030 0 0 a2 c b 0 │ │ │ │ +000357f0: 2020 3020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035800: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +00035810: 2020 2020 2030 2020 3020 207c 2020 7b36 0 0 | {6 │ │ │ │ +00035820: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035830: 3020 3020 2030 2020 2062 3220 3020 2030 0 0 0 b2 0 0 │ │ │ │ +00035840: 2020 3020 2030 2030 2061 3220 3020 2030 0 0 0 a2 0 0 │ │ │ │ +00035850: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +00035860: 2020 2020 2030 2020 3020 207c 2020 7b37 0 0 | {7 │ │ │ │ +00035870: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035880: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035890: 2020 6132 2063 2062 2030 2020 3020 2030 a2 c b 0 0 0 │ │ │ │ +000358a0: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +000358b0: 2020 2020 2030 2020 3020 207c 2020 7b37 0 0 | {7 │ │ │ │ +000358c0: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +000358d0: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +000358e0: 2020 3020 2061 2030 202d 6220 3020 2030 0 a 0 -b 0 0 │ │ │ │ +000358f0: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +00035900: 2020 2020 2030 2020 3020 207c 2020 7b37 0 0 | {7 │ │ │ │ +00035910: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035920: 3020 3020 202d 6232 2030 2020 3020 2030 0 0 -b2 0 0 0 │ │ │ │ +00035930: 2020 3020 2030 2061 2063 2020 3020 2030 0 0 a c 0 0 │ │ │ │ +00035940: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +00035950: 2020 2020 2030 2020 3020 207c 2020 7b37 0 0 | {7 │ │ │ │ +00035960: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035970: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035980: 2020 3020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035990: 2020 202d 6120 3020 2062 2020 207c 0a7c -a 0 b |.| │ │ │ │ +000359a0: 2020 2020 202d 6320 2d62 207c 2020 7b37 -c -b | {7 │ │ │ │ +000359b0: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +000359c0: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +000359d0: 2020 3020 2030 2030 2030 2020 6232 2030 0 0 0 0 b2 0 │ │ │ │ +000359e0: 2020 2030 2020 2d61 202d 6320 207c 0a7c 0 -a -c |.| │ │ │ │ +000359f0: 2020 2020 2061 3220 3020 207c 2020 7b37 a2 0 | {7 │ │ │ │ +00035a00: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035a10: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035a20: 2020 3020 2030 2030 2030 2020 3020 2061 0 0 0 0 0 a │ │ │ │ +00035a30: 3220 2063 2020 6220 2030 2020 207c 0a7c 2 c b 0 |.| │ │ │ │ +00035a40: 2020 2020 2030 2020 6132 207c 2020 7b36 0 a2 | {6 │ │ │ │ +00035a50: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035a60: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035a70: 2020 3020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035a80: 2020 2062 3220 3020 2030 2020 207c 0a7c b2 0 0 |.| │ │ │ │ +00035a90: 2020 2020 2030 2020 3020 207c 2020 7b37 0 0 | {7 │ │ │ │ +00035aa0: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035ab0: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035ac0: 2020 3020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035ad0: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +00035ae0: 2020 2020 2020 2020 2020 2020 2020 7b37 {7 │ │ │ │ +00035af0: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035b00: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035b10: 2020 3020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035b20: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +00035b30: 2020 2020 2020 2020 2020 2020 2020 7b37 {7 │ │ │ │ +00035b40: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035b50: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035b60: 2020 3020 2030 2030 2030 2020 3020 202d 0 0 0 0 0 - │ │ │ │ +00035b70: 6232 2030 2020 3020 2030 2020 207c 0a7c b2 0 0 0 |.| │ │ │ │ +00035b80: 2020 2020 2020 2020 2020 2020 2020 7b36 {6 │ │ │ │ +00035b90: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035ba0: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035bb0: 2020 3020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035bc0: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +00035bd0: 2020 2020 2020 2020 2020 2020 2020 7b37 {7 │ │ │ │ +00035be0: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035bf0: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035c00: 2020 3020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035c10: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +00035c20: 2020 2020 2020 2020 2020 2020 2020 7b37 {7 │ │ │ │ +00035c30: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035c40: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035c50: 2020 3020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035c60: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +00035c70: 2020 2020 2020 2020 2020 2020 2020 7b37 {7 │ │ │ │ +00035c80: 7d20 7c20 3020 2030 2030 2020 3020 3020 } | 0 0 0 0 0 │ │ │ │ +00035c90: 3020 3020 2030 2020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035ca0: 2020 3020 2030 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00035cb0: 2020 2030 2020 3020 2030 2020 207c 0a7c 0 0 0 |.| │ │ │ │ +00035cc0: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ 00035cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035d10: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ -00035d20: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00035d30: 2030 2030 2020 7c7d 2020 2020 2020 2020 0 0 |} │ │ │ │ +00035d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00035d10: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +00035d20: 2030 2020 3020 3020 3020 207c 7d20 2020 0 0 0 0 |} │ │ │ │ +00035d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035d60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00035d70: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00035d80: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00035d50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00035d60: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +00035d70: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00035d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035db0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00035dc0: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00035dd0: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00035da0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00035db0: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +00035dc0: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00035dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035e00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00035e10: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00035e20: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00035df0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00035e00: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +00035e10: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00035e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035e50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00035e60: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00035e70: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00035e40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00035e50: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +00035e60: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00035e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035ea0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00035eb0: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00035ec0: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00035e90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00035ea0: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +00035eb0: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00035ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035ef0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00035f00: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00035f10: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00035ee0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00035ef0: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +00035f00: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00035f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035f40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00035f50: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00035f60: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00035f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00035f40: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +00035f50: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00035f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035f90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00035fa0: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00035fb0: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00035f80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00035f90: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +00035fa0: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00035fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035fe0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00035ff0: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00036000: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00035fd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00035fe0: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +00035ff0: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00036000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036030: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00036040: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00036050: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00036020: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036030: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +00036040: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00036050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036080: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00036090: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -000360a0: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00036070: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036080: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +00036090: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +000360a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000360b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000360c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000360d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000360e0: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -000360f0: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +000360c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000360d0: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +000360e0: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +000360f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036120: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00036130: 3020 2020 3020 2030 2061 3220 3020 2030 0 0 0 a2 0 0 │ │ │ │ -00036140: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00036110: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036120: 2020 2020 2030 2020 2030 2020 3020 6132 0 0 0 a2 │ │ │ │ +00036130: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00036140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036170: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00036180: 6132 2020 6320 2062 2030 2020 3020 2030 a2 c b 0 0 0 │ │ │ │ -00036190: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00036160: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036170: 2020 2020 2061 3220 2063 2020 6220 3020 a2 c b 0 │ │ │ │ +00036180: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00036190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000361a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000361b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000361c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000361d0: 3020 2020 6120 2030 202d 6220 3020 2030 0 a 0 -b 0 0 │ │ │ │ -000361e0: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +000361b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000361c0: 2020 2020 2030 2020 2061 2020 3020 2d62 0 a 0 -b │ │ │ │ +000361d0: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +000361e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000361f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036210: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00036220: 3020 2020 3020 2061 2063 2020 3020 2030 0 0 a c 0 0 │ │ │ │ -00036230: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00036200: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036210: 2020 2020 2030 2020 2030 2020 6120 6320 0 0 a c │ │ │ │ +00036220: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00036230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036260: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00036270: 3020 2020 6232 2030 2030 2020 3020 2030 0 b2 0 0 0 0 │ │ │ │ -00036280: 2030 2061 3220 7c20 2020 2020 2020 2020 0 a2 | │ │ │ │ +00036250: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036260: 2020 2020 2030 2020 2062 3220 3020 3020 0 b2 0 0 │ │ │ │ +00036270: 2030 2020 3020 3020 6132 207c 2020 2020 0 0 0 a2 | │ │ │ │ +00036280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000362a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000362b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000362c0: 3020 2020 3020 2030 2030 2020 6132 2063 0 0 0 0 a2 c │ │ │ │ -000362d0: 2062 2030 2020 7c20 2020 2020 2020 2020 b 0 | │ │ │ │ +000362a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000362b0: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +000362c0: 2061 3220 6320 6220 3020 207c 2020 2020 a2 c b 0 | │ │ │ │ +000362d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000362e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000362f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036300: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00036310: 3020 2020 3020 2030 2030 2020 3020 2061 0 0 0 0 0 a │ │ │ │ -00036320: 2030 202d 6220 7c20 2020 2020 2020 2020 0 -b | │ │ │ │ +000362f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036300: 2020 2020 2030 2020 2030 2020 3020 3020 0 0 0 0 │ │ │ │ +00036310: 2030 2020 6120 3020 2d62 207c 2020 2020 0 a 0 -b | │ │ │ │ +00036320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036350: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00036360: 2d62 3220 3020 2030 2030 2020 3020 2030 -b2 0 0 0 0 0 │ │ │ │ -00036370: 2061 2063 2020 7c20 2020 2020 2020 2020 a c | │ │ │ │ +00036340: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036350: 2020 2020 202d 6232 2030 2020 3020 3020 -b2 0 0 0 │ │ │ │ +00036360: 2030 2020 3020 6120 6320 207c 2020 2020 0 0 a c | │ │ │ │ +00036370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000363a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00036390: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000363a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000363b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000363c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000363d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000363e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000363f0: 2020 2020 2020 2020 7c0a 7c6f 3920 3a20 |.|o9 : │ │ │ │ -00036400: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ +000363e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000363f0: 6f39 203a 204c 6973 7420 2020 2020 2020 o9 : List │ │ │ │ +00036400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036440: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00036430: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00036440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036490: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a --------+.|i10 : │ │ │ │ -000364a0: 2061 7070 6c79 2835 2c20 6a2d 3e20 7072 apply(5, j-> pr │ │ │ │ -000364b0: 756e 6520 4848 5f6a 2043 203d 3d20 3029 une HH_j C == 0) │ │ │ │ +00036480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00036490: 6931 3020 3a20 6170 706c 7928 352c 206a i10 : apply(5, j │ │ │ │ +000364a0: 2d3e 2070 7275 6e65 2048 485f 6a20 4320 -> prune HH_j C │ │ │ │ +000364b0: 3d3d 2030 2920 2020 2020 2020 2020 2020 == 0) │ │ │ │ 000364c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000364d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000364e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000364d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000364e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000364f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036530: 2020 2020 2020 2020 7c0a 7c6f 3130 203d |.|o10 = │ │ │ │ -00036540: 207b 7472 7565 2c20 6661 6c73 652c 2066 {true, false, f │ │ │ │ -00036550: 616c 7365 2c20 6661 6c73 652c 2066 616c alse, false, fal │ │ │ │ -00036560: 7365 7d20 2020 2020 2020 2020 2020 2020 se} │ │ │ │ -00036570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036580: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00036520: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036530: 6f31 3020 3d20 7b74 7275 652c 2066 616c o10 = {true, fal │ │ │ │ +00036540: 7365 2c20 6661 6c73 652c 2066 616c 7365 se, false, false │ │ │ │ +00036550: 2c20 6661 6c73 657d 2020 2020 2020 2020 , false} │ │ │ │ +00036560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036570: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000365a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000365b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000365c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000365d0: 2020 2020 2020 2020 7c0a 7c6f 3130 203a |.|o10 : │ │ │ │ -000365e0: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ +000365c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000365d0: 6f31 3020 3a20 4c69 7374 2020 2020 2020 o10 : List │ │ │ │ +000365e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000365f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036620: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00036610: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00036620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036670: 2d2d 2d2d 2d2d 2d2d 2b0a 0a41 6e64 206f --------+..And o │ │ │ │ -00036680: 6e65 2063 6f6d 7075 7469 6e67 2074 6865 ne computing the │ │ │ │ -00036690: 2077 686f 6c65 2066 696e 6974 6520 7265 whole finite re │ │ │ │ -000366a0: 736f 6c75 7469 6f6e 3a0a 0a2b 2d2d 2d2d solution:..+---- │ │ │ │ +00036660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00036670: 416e 6420 6f6e 6520 636f 6d70 7574 696e And one computin │ │ │ │ +00036680: 6720 7468 6520 7768 6f6c 6520 6669 6e69 g the whole fini │ │ │ │ +00036690: 7465 2072 6573 6f6c 7574 696f 6e3a 0a0a te resolution:.. │ │ │ │ +000366a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000366b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000366c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000366d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000366e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000366f0: 2d2d 2d2b 0a7c 6931 3120 3a20 4d53 203d ---+.|i11 : MS = │ │ │ │ -00036700: 2070 7573 6846 6f72 7761 7264 286d 6170 pushForward(map │ │ │ │ -00036710: 2852 2c53 292c 204d 293b 2020 2020 2020 (R,S), M); │ │ │ │ +000366e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a --------+.|i11 : │ │ │ │ +000366f0: 204d 5320 3d20 7075 7368 466f 7277 6172 MS = pushForwar │ │ │ │ +00036700: 6428 6d61 7028 522c 5329 2c20 4d29 3b20 d(map(R,S), M); │ │ │ │ +00036710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036730: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00036730: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00036740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036780: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 3a20 -------+.|i12 : │ │ │ │ -00036790: 2847 472c 2061 7567 2920 3d20 6c61 7965 (GG, aug) = laye │ │ │ │ -000367a0: 7265 6452 6573 6f6c 7574 696f 6e28 6666 redResolution(ff │ │ │ │ -000367b0: 2c4d 5329 2020 2020 2020 2020 2020 2020 ,MS) │ │ │ │ -000367c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000367d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00036780: 3132 203a 2028 4747 2c20 6175 6729 203d 12 : (GG, aug) = │ │ │ │ +00036790: 206c 6179 6572 6564 5265 736f 6c75 7469 layeredResoluti │ │ │ │ +000367a0: 6f6e 2866 662c 4d53 2920 2020 2020 2020 on(ff,MS) │ │ │ │ +000367b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000367c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000367d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000367e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000367f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036810: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00036820: 2020 2020 2020 3620 2020 2020 2031 3320 6 13 │ │ │ │ -00036830: 2020 2020 2031 3020 2020 2020 2033 2020 10 3 │ │ │ │ +00036810: 7c0a 7c20 2020 2020 2020 2036 2020 2020 |.| 6 │ │ │ │ +00036820: 2020 3133 2020 2020 2020 3130 2020 2020 13 10 │ │ │ │ +00036830: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 00036840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036860: 2020 2020 207c 0a7c 6f31 3220 3d20 2853 |.|o12 = (S │ │ │ │ -00036870: 2020 3c2d 2d20 5320 2020 3c2d 2d20 5320 <-- S <-- S │ │ │ │ -00036880: 2020 3c2d 2d20 5320 2c20 7b32 7d20 7c20 <-- S , {2} | │ │ │ │ -00036890: 3020 3020 3020 3020 2030 2020 3120 7c29 0 0 0 0 0 1 |) │ │ │ │ -000368a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000368b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000368c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000368d0: 2020 2020 7b32 7d20 7c20 3020 3020 3020 {2} | 0 0 0 │ │ │ │ -000368e0: 2d31 2030 2020 3020 7c20 2020 2020 2020 -1 0 0 | │ │ │ │ -000368f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00036900: 2020 2030 2020 2020 2020 3120 2020 2020 0 1 │ │ │ │ -00036910: 2020 3220 2020 2020 2020 3320 2020 7b32 2 3 {2 │ │ │ │ -00036920: 7d20 7c20 3020 3020 3020 3020 202d 3120 } | 0 0 0 0 -1 │ │ │ │ -00036930: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00036940: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00036950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036960: 2020 2020 2020 2020 7b33 7d20 7c20 3120 {3} | 1 │ │ │ │ -00036970: 3020 3020 3020 2030 2020 3020 7c20 2020 0 0 0 0 0 | │ │ │ │ -00036980: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036850: 2020 2020 2020 2020 2020 7c0a 7c6f 3132 |.|o12 │ │ │ │ +00036860: 203d 2028 5320 203c 2d2d 2053 2020 203c = (S <-- S < │ │ │ │ +00036870: 2d2d 2053 2020 203c 2d2d 2053 202c 207b -- S <-- S , { │ │ │ │ +00036880: 327d 207c 2030 2030 2030 2030 2020 3020 2} | 0 0 0 0 0 │ │ │ │ +00036890: 2031 207c 2920 2020 2020 2020 2020 2020 1 |) │ │ │ │ +000368a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000368b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000368c0: 2020 2020 2020 2020 207b 327d 207c 2030 {2} | 0 │ │ │ │ +000368d0: 2030 2030 202d 3120 3020 2030 207c 2020 0 0 -1 0 0 | │ │ │ │ +000368e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000368f0: 7c20 2020 2020 2020 3020 2020 2020 2031 | 0 1 │ │ │ │ +00036900: 2020 2020 2020 2032 2020 2020 2020 2033 2 3 │ │ │ │ +00036910: 2020 207b 327d 207c 2030 2030 2030 2030 {2} | 0 0 0 0 │ │ │ │ +00036920: 2020 2d31 2030 207c 2020 2020 2020 2020 -1 0 | │ │ │ │ +00036930: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00036940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036950: 2020 2020 2020 2020 2020 2020 207b 337d {3} │ │ │ │ +00036960: 207c 2031 2030 2030 2030 2020 3020 2030 | 1 0 0 0 0 0 │ │ │ │ +00036970: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00036980: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00036990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000369a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000369b0: 2020 7b33 7d20 7c20 3020 3120 3020 3020 {3} | 0 1 0 0 │ │ │ │ -000369c0: 2030 2020 3020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -000369d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000369a0: 2020 2020 2020 207b 337d 207c 2030 2031 {3} | 0 1 │ │ │ │ +000369b0: 2030 2030 2020 3020 2030 207c 2020 2020 0 0 0 0 | │ │ │ │ +000369c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000369d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000369e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000369f0: 2020 2020 2020 2020 2020 2020 7b33 7d20 {3} │ │ │ │ -00036a00: 7c20 3020 3020 3120 3020 2030 2020 3020 | 0 0 1 0 0 0 │ │ │ │ -00036a10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00036a20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000369f0: 207b 337d 207c 2030 2030 2031 2030 2020 {3} | 0 0 1 0 │ │ │ │ +00036a00: 3020 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +00036a10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00036a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036a60: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00036a70: 3220 3a20 5365 7175 656e 6365 2020 2020 2 : Sequence │ │ │ │ +00036a60: 7c0a 7c6f 3132 203a 2053 6571 7565 6e63 |.|o12 : Sequenc │ │ │ │ +00036a70: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ 00036a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036ab0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00036aa0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00036ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00036b00: 0a7c 6931 3320 3a20 2847 472c 2061 7567 .|i13 : (GG, aug │ │ │ │ -00036b10: 2920 3d20 6c61 7965 7265 6452 6573 6f6c ) = layeredResol │ │ │ │ -00036b20: 7574 696f 6e28 6666 2c4d 532c 2056 6572 ution(ff,MS, Ver │ │ │ │ -00036b30: 626f 7365 203d 3e74 7275 6529 2020 2020 bose =>true) │ │ │ │ -00036b40: 2020 2020 2020 2020 207c 0a7c 7b33 2c20 |.|{3, │ │ │ │ -00036b50: 317d 2069 6e20 636f 6469 6d65 6e73 696f 1} in codimensio │ │ │ │ -00036b60: 6e20 3320 2020 2020 2020 2020 2020 2020 n 3 │ │ │ │ +00036af0: 2d2d 2d2d 2b0a 7c69 3133 203a 2028 4747 ----+.|i13 : (GG │ │ │ │ +00036b00: 2c20 6175 6729 203d 206c 6179 6572 6564 , aug) = layered │ │ │ │ +00036b10: 5265 736f 6c75 7469 6f6e 2866 662c 4d53 Resolution(ff,MS │ │ │ │ +00036b20: 2c20 5665 7262 6f73 6520 3d3e 7472 7565 , Verbose =>true │ │ │ │ +00036b30: 2920 2020 2020 2020 2020 2020 2020 7c0a ) |. │ │ │ │ +00036b40: 7c7b 332c 2031 7d20 696e 2063 6f64 696d |{3, 1} in codim │ │ │ │ +00036b50: 656e 7369 6f6e 2033 2020 2020 2020 2020 ension 3 │ │ │ │ +00036b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036b90: 2020 207c 0a7c 7b33 2c20 317d 2069 6e20 |.|{3, 1} in │ │ │ │ -00036ba0: 636f 6469 6d65 6e73 696f 6e20 3220 2020 codimension 2 │ │ │ │ +00036b80: 2020 2020 2020 2020 7c0a 7c7b 332c 2031 |.|{3, 1 │ │ │ │ +00036b90: 7d20 696e 2063 6f64 696d 656e 7369 6f6e } in codimension │ │ │ │ +00036ba0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00036bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036bd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036bd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00036be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00036c30: 2020 3620 2020 2020 2031 3320 2020 2020 6 13 │ │ │ │ -00036c40: 2031 3020 2020 2020 2033 2020 2020 2020 10 3 │ │ │ │ +00036c10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00036c20: 2020 2020 2020 2036 2020 2020 2020 3133 6 13 │ │ │ │ +00036c30: 2020 2020 2020 3130 2020 2020 2020 3320 10 3 │ │ │ │ +00036c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c70: 207c 0a7c 6f31 3320 3d20 2853 2020 3c2d |.|o13 = (S <- │ │ │ │ -00036c80: 2d20 5320 2020 3c2d 2d20 5320 2020 3c2d - S <-- S <- │ │ │ │ -00036c90: 2d20 5320 2c20 7b32 7d20 7c20 3020 3020 - S , {2} | 0 0 │ │ │ │ -00036ca0: 3020 3020 2030 2020 3120 7c29 2020 2020 0 0 0 1 |) │ │ │ │ -00036cb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00036c60: 2020 2020 2020 7c0a 7c6f 3133 203d 2028 |.|o13 = ( │ │ │ │ +00036c70: 5320 203c 2d2d 2053 2020 203c 2d2d 2053 S <-- S <-- S │ │ │ │ +00036c80: 2020 203c 2d2d 2053 202c 207b 327d 207c <-- S , {2} | │ │ │ │ +00036c90: 2030 2030 2030 2030 2020 3020 2031 207c 0 0 0 0 0 1 | │ │ │ │ +00036ca0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00036cb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00036cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036ce0: 7b32 7d20 7c20 3020 3020 3020 2d31 2030 {2} | 0 0 0 -1 0 │ │ │ │ -00036cf0: 2020 3020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ -00036d00: 2020 2020 207c 0a7c 2020 2020 2020 2030 |.| 0 │ │ │ │ -00036d10: 2020 2020 2020 3120 2020 2020 2020 3220 1 2 │ │ │ │ -00036d20: 2020 2020 2020 3320 2020 7b32 7d20 7c20 3 {2} | │ │ │ │ -00036d30: 3020 3020 3020 3020 202d 3120 3020 7c20 0 0 0 0 -1 0 | │ │ │ │ -00036d40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00036d50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00036d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036d70: 2020 2020 7b33 7d20 7c20 3120 3020 3020 {3} | 1 0 0 │ │ │ │ -00036d80: 3020 2030 2020 3020 7c20 2020 2020 2020 0 0 0 | │ │ │ │ -00036d90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00036cd0: 2020 2020 207b 327d 207c 2030 2030 2030 {2} | 0 0 0 │ │ │ │ +00036ce0: 202d 3120 3020 2030 207c 2020 2020 2020 -1 0 0 | │ │ │ │ +00036cf0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00036d00: 2020 2020 3020 2020 2020 2031 2020 2020 0 1 │ │ │ │ +00036d10: 2020 2032 2020 2020 2020 2033 2020 207b 2 3 { │ │ │ │ +00036d20: 327d 207c 2030 2030 2030 2030 2020 2d31 2} | 0 0 0 0 -1 │ │ │ │ +00036d30: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00036d40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00036d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036d60: 2020 2020 2020 2020 207b 337d 207c 2031 {3} | 1 │ │ │ │ +00036d70: 2030 2030 2030 2020 3020 2030 207c 2020 0 0 0 0 0 | │ │ │ │ +00036d80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00036d90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00036da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036db0: 2020 2020 2020 2020 2020 2020 2020 7b33 {3 │ │ │ │ -00036dc0: 7d20 7c20 3020 3120 3020 3020 2030 2020 } | 0 1 0 0 0 │ │ │ │ -00036dd0: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00036de0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00036df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e00: 2020 2020 2020 2020 7b33 7d20 7c20 3020 {3} | 0 │ │ │ │ -00036e10: 3020 3120 3020 2030 2020 3020 7c20 2020 0 1 0 0 0 | │ │ │ │ -00036e20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036db0: 2020 207b 337d 207c 2030 2031 2030 2030 {3} | 0 1 0 0 │ │ │ │ +00036dc0: 2020 3020 2030 207c 2020 2020 2020 2020 0 0 | │ │ │ │ +00036dd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00036de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036df0: 2020 2020 2020 2020 2020 2020 207b 337d {3} │ │ │ │ +00036e00: 207c 2030 2030 2031 2030 2020 3020 2030 | 0 0 1 0 0 0 │ │ │ │ +00036e10: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00036e20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00036e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e70: 2020 2020 2020 207c 0a7c 6f31 3320 3a20 |.|o13 : │ │ │ │ -00036e80: 5365 7175 656e 6365 2020 2020 2020 2020 Sequence │ │ │ │ +00036e60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00036e70: 3133 203a 2053 6571 7565 6e63 6520 2020 13 : Sequence │ │ │ │ +00036e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036ec0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00036eb0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00036ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00036f10: 3420 3a20 6265 7474 6920 4747 2020 2020 4 : betti GG │ │ │ │ +00036f00: 2b0a 7c69 3134 203a 2062 6574 7469 2047 +.|i14 : betti G │ │ │ │ +00036f10: 4720 2020 2020 2020 2020 2020 2020 2020 G │ │ │ │ 00036f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00036f40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00036f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00036fa0: 0a7c 2020 2020 2020 2020 2020 2020 2030 .| 0 │ │ │ │ -00036fb0: 2020 3120 2032 2033 2020 2020 2020 2020 1 2 3 │ │ │ │ +00036f90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00036fa0: 2020 2020 3020 2031 2020 3220 3320 2020 0 1 2 3 │ │ │ │ +00036fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036fe0: 2020 2020 2020 2020 207c 0a7c 6f31 3420 |.|o14 │ │ │ │ -00036ff0: 3d20 746f 7461 6c3a 2036 2031 3320 3130 = total: 6 13 10 │ │ │ │ -00037000: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00036fd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00036fe0: 7c6f 3134 203d 2074 6f74 616c 3a20 3620 |o14 = total: 6 │ │ │ │ +00036ff0: 3133 2031 3020 3320 2020 2020 2020 2020 13 10 3 │ │ │ │ +00037000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037030: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00037040: 323a 2033 2020 3120 202e 202e 2020 2020 2: 3 1 . . │ │ │ │ +00037020: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037030: 2020 2020 2032 3a20 3320 2031 2020 2e20 2: 3 1 . │ │ │ │ +00037040: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 00037050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037070: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00037080: 2020 2020 2020 2020 2020 333a 2033 2020 3: 3 │ │ │ │ -00037090: 3920 202e 202e 2020 2020 2020 2020 2020 9 . . │ │ │ │ +00037070: 2020 7c0a 7c20 2020 2020 2020 2020 2033 |.| 3 │ │ │ │ +00037080: 3a20 3320 2039 2020 2e20 2e20 2020 2020 : 3 9 . . │ │ │ │ +00037090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000370a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000370b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000370c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000370d0: 2020 2020 343a 202e 2020 2e20 202e 202e 4: . . . . │ │ │ │ +000370b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000370c0: 2020 2020 2020 2020 2034 3a20 2e20 202e 4: . . │ │ │ │ +000370d0: 2020 2e20 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ 000370e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000370f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037110: 207c 0a7c 2020 2020 2020 2020 2020 353a |.| 5: │ │ │ │ -00037120: 202e 2020 3320 2039 202e 2020 2020 2020 . 3 9 . │ │ │ │ +00037100: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00037110: 2020 2035 3a20 2e20 2033 2020 3920 2e20 5: . 3 9 . │ │ │ │ +00037120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037150: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00037160: 2020 2020 2020 2020 363a 202e 2020 2e20 6: . . │ │ │ │ -00037170: 202e 202e 2020 2020 2020 2020 2020 2020 . . │ │ │ │ +00037150: 7c0a 7c20 2020 2020 2020 2020 2036 3a20 |.| 6: │ │ │ │ +00037160: 2e20 202e 2020 2e20 2e20 2020 2020 2020 . . . . │ │ │ │ +00037170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000371a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000371b0: 2020 373a 202e 2020 2e20 2031 2033 2020 7: . . 1 3 │ │ │ │ +00037190: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000371a0: 2020 2020 2020 2037 3a20 2e20 202e 2020 7: . . │ │ │ │ +000371b0: 3120 3320 2020 2020 2020 2020 2020 2020 1 3 │ │ │ │ 000371c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000371d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000371e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000371f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000371e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000371f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037230: 2020 2020 2020 2020 207c 0a7c 6f31 3420 |.|o14 │ │ │ │ -00037240: 3a20 4265 7474 6954 616c 6c79 2020 2020 : BettiTally │ │ │ │ +00037220: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00037230: 7c6f 3134 203a 2042 6574 7469 5461 6c6c |o14 : BettiTall │ │ │ │ +00037240: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ 00037250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037280: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00037270: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00037280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000372a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000372b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000372c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000372d0: 6931 3520 3a20 6265 7474 6920 6672 6565 i15 : betti free │ │ │ │ -000372e0: 5265 736f 6c75 7469 6f6e 204d 5320 2020 Resolution MS │ │ │ │ +000372c0: 2d2d 2b0a 7c69 3135 203a 2062 6574 7469 --+.|i15 : betti │ │ │ │ +000372d0: 2066 7265 6552 6573 6f6c 7574 696f 6e20 freeResolution │ │ │ │ +000372e0: 4d53 2020 2020 2020 2020 2020 2020 2020 MS │ │ │ │ 000372f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037310: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00037300: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00037310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037360: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00037370: 2030 2020 3120 2032 2033 2020 2020 2020 0 1 2 3 │ │ │ │ +00037350: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00037360: 2020 2020 2020 3020 2031 2020 3220 3320 0 1 2 3 │ │ │ │ +00037370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000373a0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -000373b0: 3520 3d20 746f 7461 6c3a 2036 2031 3320 5 = total: 6 13 │ │ │ │ -000373c0: 3130 2033 2020 2020 2020 2020 2020 2020 10 3 │ │ │ │ +000373a0: 7c0a 7c6f 3135 203d 2074 6f74 616c 3a20 |.|o15 = total: │ │ │ │ +000373b0: 3620 3133 2031 3020 3320 2020 2020 2020 6 13 10 3 │ │ │ │ +000373c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000373d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000373e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000373f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00037400: 2020 323a 2033 2020 3120 202e 202e 2020 2: 3 1 . . │ │ │ │ +000373e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000373f0: 2020 2020 2020 2032 3a20 3320 2031 2020 2: 3 1 │ │ │ │ +00037400: 2e20 2e20 2020 2020 2020 2020 2020 2020 . . │ │ │ │ 00037410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00037440: 0a7c 2020 2020 2020 2020 2020 333a 2033 .| 3: 3 │ │ │ │ -00037450: 2020 3920 202e 202e 2020 2020 2020 2020 9 . . │ │ │ │ +00037430: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00037440: 2033 3a20 3320 2039 2020 2e20 2e20 2020 3: 3 9 . . │ │ │ │ +00037450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037480: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00037490: 2020 2020 2020 343a 202e 2020 2e20 202e 4: . . . │ │ │ │ -000374a0: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +00037470: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00037480: 7c20 2020 2020 2020 2020 2034 3a20 2e20 | 4: . │ │ │ │ +00037490: 202e 2020 2e20 2e20 2020 2020 2020 2020 . . . │ │ │ │ +000374a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000374b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000374c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000374d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000374e0: 353a 202e 2020 3320 2039 202e 2020 2020 5: . 3 9 . │ │ │ │ +000374c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000374d0: 2020 2020 2035 3a20 2e20 2033 2020 3920 5: . 3 9 │ │ │ │ +000374e0: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 000374f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037510: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00037520: 2020 2020 2020 2020 2020 363a 202e 2020 6: . │ │ │ │ -00037530: 2e20 202e 202e 2020 2020 2020 2020 2020 . . . │ │ │ │ +00037510: 2020 7c0a 7c20 2020 2020 2020 2020 2036 |.| 6 │ │ │ │ +00037520: 3a20 2e20 202e 2020 2e20 2e20 2020 2020 : . . . . │ │ │ │ +00037530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037560: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00037570: 2020 2020 373a 202e 2020 2e20 2031 2033 7: . . 1 3 │ │ │ │ +00037550: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00037560: 2020 2020 2020 2020 2037 3a20 2e20 202e 7: . . │ │ │ │ +00037570: 2020 3120 3320 2020 2020 2020 2020 2020 1 3 │ │ │ │ 00037580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000375a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000375b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000375a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000375b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000375c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000375d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000375e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000375f0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00037600: 3520 3a20 4265 7474 6954 616c 6c79 2020 5 : BettiTally │ │ │ │ +000375f0: 7c0a 7c6f 3135 203a 2042 6574 7469 5461 |.|o15 : BettiTa │ │ │ │ +00037600: 6c6c 7920 2020 2020 2020 2020 2020 2020 lly │ │ │ │ 00037610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037640: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00037630: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00037640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00037690: 0a7c 6931 3620 3a20 4320 3d20 636f 6d70 .|i16 : C = comp │ │ │ │ -000376a0: 6c65 7820 666c 6174 7465 6e20 7b7b 6175 lex flatten {{au │ │ │ │ -000376b0: 677d 207c 6170 706c 7928 6c65 6e67 7468 g} |apply(length │ │ │ │ -000376c0: 2047 4720 2d31 2c20 692d 3e20 4747 2e64 GG -1, i-> GG.d │ │ │ │ -000376d0: 645f 2869 2b31 2929 7d7c 0a7c 2020 2020 d_(i+1))}|.| │ │ │ │ +00037680: 2d2d 2d2d 2b0a 7c69 3136 203a 2043 203d ----+.|i16 : C = │ │ │ │ +00037690: 2063 6f6d 706c 6578 2066 6c61 7474 656e complex flatten │ │ │ │ +000376a0: 207b 7b61 7567 7d20 7c61 7070 6c79 286c {{aug} |apply(l │ │ │ │ +000376b0: 656e 6774 6820 4747 202d 312c 2069 2d3e ength GG -1, i-> │ │ │ │ +000376c0: 2047 472e 6464 5f28 692b 3129 297d 7c0a GG.dd_(i+1))}|. │ │ │ │ +000376d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000376e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000376f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037720: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00037730: 2020 2020 3620 2020 2020 2031 3320 2020 6 13 │ │ │ │ -00037740: 2020 2031 3020 2020 2020 2020 2020 2020 10 │ │ │ │ +00037710: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037720: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ +00037730: 3133 2020 2020 2020 3130 2020 2020 2020 13 10 │ │ │ │ +00037740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037760: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00037770: 6f31 3620 3d20 4d53 203c 2d2d 2053 2020 o16 = MS <-- S │ │ │ │ -00037780: 3c2d 2d20 5320 2020 3c2d 2d20 5320 2020 <-- S <-- S │ │ │ │ +00037760: 2020 7c0a 7c6f 3136 203d 204d 5320 3c2d |.|o16 = MS <- │ │ │ │ +00037770: 2d20 5320 203c 2d2d 2053 2020 203c 2d2d - S <-- S <-- │ │ │ │ +00037780: 2053 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 00037790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000377a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000377b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000377a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000377b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000377c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000377d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000377e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000377f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037800: 207c 0a7c 2020 2020 2020 3020 2020 2020 |.| 0 │ │ │ │ -00037810: 2031 2020 2020 2020 3220 2020 2020 2020 1 2 │ │ │ │ -00037820: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000377f0: 2020 2020 2020 7c0a 7c20 2020 2020 2030 |.| 0 │ │ │ │ +00037800: 2020 2020 2020 3120 2020 2020 2032 2020 1 2 │ │ │ │ +00037810: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ +00037820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037840: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00037840: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00037850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037890: 2020 2020 207c 0a7c 6f31 3620 3a20 436f |.|o16 : Co │ │ │ │ -000378a0: 6d70 6c65 7820 2020 2020 2020 2020 2020 mplex │ │ │ │ +00037880: 2020 2020 2020 2020 2020 7c0a 7c6f 3136 |.|o16 │ │ │ │ +00037890: 203a 2043 6f6d 706c 6578 2020 2020 2020 : Complex │ │ │ │ +000378a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000378b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000378c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000378d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000378e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000378d0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000378e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000378f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037920: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3720 ---------+.|i17 │ │ │ │ -00037930: 3a20 6170 706c 7928 6c65 6e67 7468 2047 : apply(length G │ │ │ │ -00037940: 4720 2b31 202c 206a 2d3e 2070 7275 6e65 G +1 , j-> prune │ │ │ │ -00037950: 2048 485f 6a20 4320 3d3d 2030 2920 2020 HH_j C == 0) │ │ │ │ -00037960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037970: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00037920: 7c69 3137 203a 2061 7070 6c79 286c 656e |i17 : apply(len │ │ │ │ +00037930: 6774 6820 4747 202b 3120 2c20 6a2d 3e20 gth GG +1 , j-> │ │ │ │ +00037940: 7072 756e 6520 4848 5f6a 2043 203d 3d20 prune HH_j C == │ │ │ │ +00037950: 3029 2020 2020 2020 2020 2020 2020 2020 0) │ │ │ │ +00037960: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000379a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000379b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000379c0: 6f31 3720 3d20 7b74 7275 652c 2074 7275 o17 = {true, tru │ │ │ │ -000379d0: 652c 2074 7275 652c 2066 616c 7365 7d20 e, true, false} │ │ │ │ +000379b0: 2020 7c0a 7c6f 3137 203d 207b 7472 7565 |.|o17 = {true │ │ │ │ +000379c0: 2c20 7472 7565 2c20 7472 7565 2c20 6661 , true, true, fa │ │ │ │ +000379d0: 6c73 657d 2020 2020 2020 2020 2020 2020 lse} │ │ │ │ 000379e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000379f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000379f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00037a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a50: 207c 0a7c 6f31 3720 3a20 4c69 7374 2020 |.|o17 : List │ │ │ │ +00037a40: 2020 2020 2020 7c0a 7c6f 3137 203a 204c |.|o17 : L │ │ │ │ +00037a50: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ 00037a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a90: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00037a90: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00037aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037ae0: 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 6f20 -----+..Ways to │ │ │ │ -00037af0: 7573 6520 6c61 7965 7265 6452 6573 6f6c use layeredResol │ │ │ │ -00037b00: 7574 696f 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d ution:.========= │ │ │ │ -00037b10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00037b20: 3d3d 3d3d 3d0a 0a20 202a 2022 6c61 7965 =====.. * "laye │ │ │ │ -00037b30: 7265 6452 6573 6f6c 7574 696f 6e28 4d61 redResolution(Ma │ │ │ │ -00037b40: 7472 6978 2c4d 6f64 756c 6529 220a 2020 trix,Module)". │ │ │ │ -00037b50: 2a20 226c 6179 6572 6564 5265 736f 6c75 * "layeredResolu │ │ │ │ -00037b60: 7469 6f6e 284d 6174 7269 782c 4d6f 6475 tion(Matrix,Modu │ │ │ │ -00037b70: 6c65 2c5a 5a29 220a 0a46 6f72 2074 6865 le,ZZ)"..For the │ │ │ │ -00037b80: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00037b90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00037ba0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00037bb0: 206c 6179 6572 6564 5265 736f 6c75 7469 layeredResoluti │ │ │ │ -00037bc0: 6f6e 3a20 6c61 7965 7265 6452 6573 6f6c on: layeredResol │ │ │ │ -00037bd0: 7574 696f 6e2c 2069 7320 6120 2a6e 6f74 ution, is a *not │ │ │ │ -00037be0: 6520 6d65 7468 6f64 0a66 756e 6374 696f e method.functio │ │ │ │ -00037bf0: 6e20 7769 7468 206f 7074 696f 6e73 3a20 n with options: │ │ │ │ -00037c00: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ -00037c10: 7468 6f64 4675 6e63 7469 6f6e 5769 7468 thodFunctionWith │ │ │ │ -00037c20: 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d Options,...----- │ │ │ │ +00037ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6179 ----------+..Way │ │ │ │ +00037ae0: 7320 746f 2075 7365 206c 6179 6572 6564 s to use layered │ │ │ │ +00037af0: 5265 736f 6c75 7469 6f6e 3a0a 3d3d 3d3d Resolution:.==== │ │ │ │ +00037b00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00037b10: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +00037b20: 226c 6179 6572 6564 5265 736f 6c75 7469 "layeredResoluti │ │ │ │ +00037b30: 6f6e 284d 6174 7269 782c 4d6f 6475 6c65 on(Matrix,Module │ │ │ │ +00037b40: 2922 0a20 202a 2022 6c61 7965 7265 6452 )". * "layeredR │ │ │ │ +00037b50: 6573 6f6c 7574 696f 6e28 4d61 7472 6978 esolution(Matrix │ │ │ │ +00037b60: 2c4d 6f64 756c 652c 5a5a 2922 0a0a 466f ,Module,ZZ)"..Fo │ │ │ │ +00037b70: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00037b80: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00037b90: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00037ba0: 2a6e 6f74 6520 6c61 7965 7265 6452 6573 *note layeredRes │ │ │ │ +00037bb0: 6f6c 7574 696f 6e3a 206c 6179 6572 6564 olution: layered │ │ │ │ +00037bc0: 5265 736f 6c75 7469 6f6e 2c20 6973 2061 Resolution, is a │ │ │ │ +00037bd0: 202a 6e6f 7465 206d 6574 686f 640a 6675 *note method.fu │ │ │ │ +00037be0: 6e63 7469 6f6e 2077 6974 6820 6f70 7469 nction with opti │ │ │ │ +00037bf0: 6f6e 733a 2028 4d61 6361 756c 6179 3244 ons: (Macaulay2D │ │ │ │ +00037c00: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +00037c10: 6e57 6974 684f 7074 696f 6e73 2c2e 0a0a nWithOptions,... │ │ │ │ +00037c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037c70: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -00037c80: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -00037c90: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -00037ca0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -00037cb0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -00037cc0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -00037cd0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -00037ce0: 732f 0a43 6f6d 706c 6574 6549 6e74 6572 s/.CompleteInter │ │ │ │ -00037cf0: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -00037d00: 6e73 2e6d 323a 3438 3935 3a30 2e0a 1f0a ns.m2:4895:0.... │ │ │ │ -00037d10: 4669 6c65 3a20 436f 6d70 6c65 7465 496e File: CompleteIn │ │ │ │ -00037d20: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ -00037d30: 7469 6f6e 732e 696e 666f 2c20 4e6f 6465 tions.info, Node │ │ │ │ -00037d40: 3a20 4c69 6674 2c20 4e65 7874 3a20 6d61 : Lift, Next: ma │ │ │ │ -00037d50: 6b65 4669 6e69 7465 5265 736f 6c75 7469 keFiniteResoluti │ │ │ │ -00037d60: 6f6e 2c20 5072 6576 3a20 6c61 7965 7265 on, Prev: layere │ │ │ │ -00037d70: 6452 6573 6f6c 7574 696f 6e2c 2055 703a dResolution, Up: │ │ │ │ -00037d80: 2054 6f70 0a0a 4c69 6674 202d 2d20 4f70 Top..Lift -- Op │ │ │ │ -00037d90: 7469 6f6e 2066 6f72 206e 6577 4578 740a tion for newExt. │ │ │ │ -00037da0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00037db0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ -00037dc0: 7361 6765 3a20 0a20 2020 2020 2020 206e sage: . n │ │ │ │ -00037dd0: 6577 4578 7428 4d2c 4e2c 4368 6563 6b20 ewExt(M,N,Check │ │ │ │ -00037de0: 3d3e 7472 7565 290a 2020 2a20 496e 7075 =>true). * Inpu │ │ │ │ -00037df0: 7473 3a0a 2020 2020 2020 2a20 4368 6563 ts:. * Chec │ │ │ │ -00037e00: 6b2c 2061 202a 6e6f 7465 2042 6f6f 6c65 k, a *note Boole │ │ │ │ -00037e10: 616e 2076 616c 7565 3a20 284d 6163 6175 an value: (Macau │ │ │ │ -00037e20: 6c61 7932 446f 6329 426f 6f6c 6561 6e2c lay2Doc)Boolean, │ │ │ │ -00037e30: 2c20 0a0a 4465 7363 7269 7074 696f 6e0a , ..Description. │ │ │ │ -00037e40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a4d 616b ===========..Mak │ │ │ │ -00037e50: 6573 206e 6577 4578 7420 7065 7266 6f72 es newExt perfor │ │ │ │ -00037e60: 6d20 7661 7269 6f75 7320 6368 6563 6b73 m various checks │ │ │ │ -00037e70: 2061 7320 6974 2063 6f6d 7075 7465 732e as it computes. │ │ │ │ -00037e80: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -00037e90: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 206e ===.. * *note n │ │ │ │ -00037ea0: 6577 4578 743a 206e 6577 4578 742c 202d ewExt: newExt, - │ │ │ │ -00037eb0: 2d20 476c 6f62 616c 2045 7874 2066 6f72 - Global Ext for │ │ │ │ -00037ec0: 206d 6f64 756c 6573 206f 7665 7220 6120 modules over a │ │ │ │ -00037ed0: 636f 6d70 6c65 7465 0a20 2020 2049 6e74 complete. Int │ │ │ │ -00037ee0: 6572 7365 6374 696f 6e0a 0a46 756e 6374 ersection..Funct │ │ │ │ -00037ef0: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ -00037f00: 616c 2061 7267 756d 656e 7420 6e61 6d65 al argument name │ │ │ │ -00037f10: 6420 4c69 6674 3a0a 3d3d 3d3d 3d3d 3d3d d Lift:.======== │ │ │ │ +00037c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +00037c70: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +00037c80: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +00037c90: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +00037ca0: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +00037cb0: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +00037cc0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +00037cd0: 636b 6167 6573 2f0a 436f 6d70 6c65 7465 ckages/.Complete │ │ │ │ +00037ce0: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +00037cf0: 6c75 7469 6f6e 732e 6d32 3a34 3839 353a lutions.m2:4895: │ │ │ │ +00037d00: 302e 0a1f 0a46 696c 653a 2043 6f6d 706c 0....File: Compl │ │ │ │ +00037d10: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ +00037d20: 6573 6f6c 7574 696f 6e73 2e69 6e66 6f2c esolutions.info, │ │ │ │ +00037d30: 204e 6f64 653a 204c 6966 742c 204e 6578 Node: Lift, Nex │ │ │ │ +00037d40: 743a 206d 616b 6546 696e 6974 6552 6573 t: makeFiniteRes │ │ │ │ +00037d50: 6f6c 7574 696f 6e2c 2050 7265 763a 206c olution, Prev: l │ │ │ │ +00037d60: 6179 6572 6564 5265 736f 6c75 7469 6f6e ayeredResolution │ │ │ │ +00037d70: 2c20 5570 3a20 546f 700a 0a4c 6966 7420 , Up: Top..Lift │ │ │ │ +00037d80: 2d2d 204f 7074 696f 6e20 666f 7220 6e65 -- Option for ne │ │ │ │ +00037d90: 7745 7874 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a wExt.*********** │ │ │ │ +00037da0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00037db0: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +00037dc0: 2020 2020 6e65 7745 7874 284d 2c4e 2c43 newExt(M,N,C │ │ │ │ +00037dd0: 6865 636b 203d 3e74 7275 6529 0a20 202a heck =>true). * │ │ │ │ +00037de0: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +00037df0: 2043 6865 636b 2c20 6120 2a6e 6f74 6520 Check, a *note │ │ │ │ +00037e00: 426f 6f6c 6561 6e20 7661 6c75 653a 2028 Boolean value: ( │ │ │ │ +00037e10: 4d61 6361 756c 6179 3244 6f63 2942 6f6f Macaulay2Doc)Boo │ │ │ │ +00037e20: 6c65 616e 2c2c 200a 0a44 6573 6372 6970 lean,, ..Descrip │ │ │ │ +00037e30: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +00037e40: 0a0a 4d61 6b65 7320 6e65 7745 7874 2070 ..Makes newExt p │ │ │ │ +00037e50: 6572 666f 726d 2076 6172 696f 7573 2063 erform various c │ │ │ │ +00037e60: 6865 636b 7320 6173 2069 7420 636f 6d70 hecks as it comp │ │ │ │ +00037e70: 7574 6573 2e0a 0a53 6565 2061 6c73 6f0a utes...See also. │ │ │ │ +00037e80: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +00037e90: 6f74 6520 6e65 7745 7874 3a20 6e65 7745 ote newExt: newE │ │ │ │ +00037ea0: 7874 2c20 2d2d 2047 6c6f 6261 6c20 4578 xt, -- Global Ex │ │ │ │ +00037eb0: 7420 666f 7220 6d6f 6475 6c65 7320 6f76 t for modules ov │ │ │ │ +00037ec0: 6572 2061 2063 6f6d 706c 6574 650a 2020 er a complete. │ │ │ │ +00037ed0: 2020 496e 7465 7273 6563 7469 6f6e 0a0a Intersection.. │ │ │ │ +00037ee0: 4675 6e63 7469 6f6e 7320 7769 7468 206f Functions with o │ │ │ │ +00037ef0: 7074 696f 6e61 6c20 6172 6775 6d65 6e74 ptional argument │ │ │ │ +00037f00: 206e 616d 6564 204c 6966 743a 0a3d 3d3d named Lift:.=== │ │ │ │ +00037f10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00037f20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00037f30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00037f40: 3d3d 3d3d 0a0a 2020 2a20 226e 6577 4578 ====.. * "newEx │ │ │ │ -00037f50: 7428 2e2e 2e2c 4c69 6674 3d3e 2e2e 2e29 t(...,Lift=>...) │ │ │ │ -00037f60: 2220 2d2d 2073 6565 202a 6e6f 7465 206e " -- see *note n │ │ │ │ -00037f70: 6577 4578 743a 206e 6577 4578 742c 202d ewExt: newExt, - │ │ │ │ -00037f80: 2d20 476c 6f62 616c 2045 7874 2066 6f72 - Global Ext for │ │ │ │ -00037f90: 0a20 2020 206d 6f64 756c 6573 206f 7665 . modules ove │ │ │ │ -00037fa0: 7220 6120 636f 6d70 6c65 7465 2049 6e74 r a complete Int │ │ │ │ -00037fb0: 6572 7365 6374 696f 6e0a 0a46 6f72 2074 ersection..For t │ │ │ │ -00037fc0: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -00037fd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00037fe0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -00037ff0: 7465 204c 6966 743a 204c 6966 742c 2069 te Lift: Lift, i │ │ │ │ -00038000: 7320 6120 2a6e 6f74 6520 7379 6d62 6f6c s a *note symbol │ │ │ │ -00038010: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00038020: 5379 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d Symbol,...------ │ │ │ │ +00037f30: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ +00037f40: 6e65 7745 7874 282e 2e2e 2c4c 6966 743d newExt(...,Lift= │ │ │ │ +00037f50: 3e2e 2e2e 2922 202d 2d20 7365 6520 2a6e >...)" -- see *n │ │ │ │ +00037f60: 6f74 6520 6e65 7745 7874 3a20 6e65 7745 ote newExt: newE │ │ │ │ +00037f70: 7874 2c20 2d2d 2047 6c6f 6261 6c20 4578 xt, -- Global Ex │ │ │ │ +00037f80: 7420 666f 720a 2020 2020 6d6f 6475 6c65 t for. module │ │ │ │ +00037f90: 7320 6f76 6572 2061 2063 6f6d 706c 6574 s over a complet │ │ │ │ +00037fa0: 6520 496e 7465 7273 6563 7469 6f6e 0a0a e Intersection.. │ │ │ │ +00037fb0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +00037fc0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +00037fd0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +00037fe0: 7420 2a6e 6f74 6520 4c69 6674 3a20 4c69 t *note Lift: Li │ │ │ │ +00037ff0: 6674 2c20 6973 2061 202a 6e6f 7465 2073 ft, is a *note s │ │ │ │ +00038000: 796d 626f 6c3a 2028 4d61 6361 756c 6179 ymbol: (Macaulay │ │ │ │ +00038010: 3244 6f63 2953 796d 626f 6c2c 2e0a 0a2d 2Doc)Symbol,...- │ │ │ │ +00038020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038070: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -00038080: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -00038090: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -000380a0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -000380b0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -000380c0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -000380d0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -000380e0: 2f0a 436f 6d70 6c65 7465 496e 7465 7273 /.CompleteInters │ │ │ │ -000380f0: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ -00038100: 732e 6d32 3a33 3139 383a 302e 0a1f 0a46 s.m2:3198:0....F │ │ │ │ -00038110: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ -00038120: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ -00038130: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ -00038140: 206d 616b 6546 696e 6974 6552 6573 6f6c makeFiniteResol │ │ │ │ -00038150: 7574 696f 6e2c 204e 6578 743a 206d 616b ution, Next: mak │ │ │ │ -00038160: 6546 696e 6974 6552 6573 6f6c 7574 696f eFiniteResolutio │ │ │ │ -00038170: 6e43 6f64 696d 322c 2050 7265 763a 204c nCodim2, Prev: L │ │ │ │ -00038180: 6966 742c 2055 703a 2054 6f70 0a0a 6d61 ift, Up: Top..ma │ │ │ │ -00038190: 6b65 4669 6e69 7465 5265 736f 6c75 7469 keFiniteResoluti │ │ │ │ -000381a0: 6f6e 202d 2d20 6669 6e69 7465 2072 6573 on -- finite res │ │ │ │ -000381b0: 6f6c 7574 696f 6e20 6f66 2061 206d 6174 olution of a mat │ │ │ │ -000381c0: 7269 7820 6661 6374 6f72 697a 6174 696f rix factorizatio │ │ │ │ -000381d0: 6e20 6d6f 6475 6c65 204d 0a2a 2a2a 2a2a n module M.***** │ │ │ │ +00038060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +00038070: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +00038080: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +00038090: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +000380a0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +000380b0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +000380c0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +000380d0: 6b61 6765 732f 0a43 6f6d 706c 6574 6549 kages/.CompleteI │ │ │ │ +000380e0: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ +000380f0: 7574 696f 6e73 2e6d 323a 3331 3938 3a30 utions.m2:3198:0 │ │ │ │ +00038100: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ +00038110: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ +00038120: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ +00038130: 4e6f 6465 3a20 6d61 6b65 4669 6e69 7465 Node: makeFinite │ │ │ │ +00038140: 5265 736f 6c75 7469 6f6e 2c20 4e65 7874 Resolution, Next │ │ │ │ +00038150: 3a20 6d61 6b65 4669 6e69 7465 5265 736f : makeFiniteReso │ │ │ │ +00038160: 6c75 7469 6f6e 436f 6469 6d32 2c20 5072 lutionCodim2, Pr │ │ │ │ +00038170: 6576 3a20 4c69 6674 2c20 5570 3a20 546f ev: Lift, Up: To │ │ │ │ +00038180: 700a 0a6d 616b 6546 696e 6974 6552 6573 p..makeFiniteRes │ │ │ │ +00038190: 6f6c 7574 696f 6e20 2d2d 2066 696e 6974 olution -- finit │ │ │ │ +000381a0: 6520 7265 736f 6c75 7469 6f6e 206f 6620 e resolution of │ │ │ │ +000381b0: 6120 6d61 7472 6978 2066 6163 746f 7269 a matrix factori │ │ │ │ +000381c0: 7a61 7469 6f6e 206d 6f64 756c 6520 4d0a zation module M. │ │ │ │ +000381d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000381e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000381f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00038200: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00038210: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00038220: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ -00038230: 6765 3a20 0a20 2020 2020 2020 2041 203d ge: . A = │ │ │ │ -00038240: 206d 616b 6546 696e 6974 6552 6573 6f6c makeFiniteResol │ │ │ │ -00038250: 7574 696f 6e28 6666 2c6d 6629 0a20 202a ution(ff,mf). * │ │ │ │ -00038260: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -00038270: 206d 662c 2061 202a 6e6f 7465 206c 6973 mf, a *note lis │ │ │ │ -00038280: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ -00038290: 294c 6973 742c 2c20 6f75 7470 7574 206f )List,, output o │ │ │ │ -000382a0: 6620 6d61 7472 6978 4661 6374 6f72 697a f matrixFactoriz │ │ │ │ -000382b0: 6174 696f 6e0a 2020 2020 2020 2a20 6666 ation. * ff │ │ │ │ -000382c0: 2c20 6120 2a6e 6f74 6520 6d61 7472 6978 , a *note matrix │ │ │ │ -000382d0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -000382e0: 4d61 7472 6978 2c2c 2074 6865 2072 6567 Matrix,, the reg │ │ │ │ -000382f0: 756c 6172 2073 6571 7565 6e63 6520 7573 ular sequence us │ │ │ │ -00038300: 6564 0a20 2020 2020 2020 2066 6f72 2074 ed. for t │ │ │ │ -00038310: 6865 206d 6174 7269 7846 6163 746f 7269 he matrixFactori │ │ │ │ -00038320: 7a61 7469 6f6e 2063 6f6d 7075 7461 7469 zation computati │ │ │ │ -00038330: 6f6e 0a20 202a 204f 7574 7075 7473 3a0a on. * Outputs:. │ │ │ │ -00038340: 2020 2020 2020 2a20 412c 2061 202a 6e6f * A, a *no │ │ │ │ -00038350: 7465 2063 6f6d 706c 6578 3a20 2843 6f6d te complex: (Com │ │ │ │ -00038360: 706c 6578 6573 2943 6f6d 706c 6578 2c2c plexes)Complex,, │ │ │ │ -00038370: 2041 2069 7320 7468 6520 6d69 6e69 6d61 A is the minima │ │ │ │ -00038380: 6c20 6669 6e69 7465 0a20 2020 2020 2020 l finite. │ │ │ │ -00038390: 2072 6573 6f6c 7574 696f 6e20 6f66 204d resolution of M │ │ │ │ -000383a0: 206f 7665 7220 522e 0a0a 4465 7363 7269 over R...Descri │ │ │ │ -000383b0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -000383c0: 3d0a 0a53 7570 706f 7365 2074 6861 7420 =..Suppose that │ │ │ │ -000383d0: 665f 312e 2e66 5f63 2069 7320 6120 686f f_1..f_c is a ho │ │ │ │ -000383e0: 6d6f 6765 6e65 6f75 7320 7265 6775 6c61 mogeneous regula │ │ │ │ -000383f0: 7220 7365 7175 656e 6365 206f 6620 666f r sequence of fo │ │ │ │ -00038400: 726d 7320 6f66 2074 6865 2073 616d 650a rms of the same. │ │ │ │ -00038410: 6465 6772 6565 2069 6e20 6120 706f 6c79 degree in a poly │ │ │ │ -00038420: 6e6f 6d69 616c 2072 696e 6720 5320 616e nomial ring S an │ │ │ │ -00038430: 6420 4d20 6973 2061 2068 6967 6820 7379 d M is a high sy │ │ │ │ -00038440: 7a79 6779 206d 6f64 756c 6520 6f76 6572 zygy module over │ │ │ │ -00038450: 2053 2f28 665f 312c 2e2e 2c66 5f63 290a S/(f_1,..,f_c). │ │ │ │ -00038460: 3d20 5228 6329 2c20 616e 6420 6d66 203d = R(c), and mf = │ │ │ │ -00038470: 2028 642c 6829 2069 7320 7468 6520 6f75 (d,h) is the ou │ │ │ │ -00038480: 7470 7574 206f 6620 6d61 7472 6978 4661 tput of matrixFa │ │ │ │ -00038490: 6374 6f72 697a 6174 696f 6e28 4d2c 6666 ctorization(M,ff │ │ │ │ -000384a0: 292e 2049 6620 7468 650a 636f 6d70 6c65 ). If the.comple │ │ │ │ -000384b0: 7869 7479 206f 6620 4d20 6973 2063 272c xity of M is c', │ │ │ │ -000384c0: 2074 6865 6e20 4d20 6861 7320 6120 6669 then M has a fi │ │ │ │ -000384d0: 6e69 7465 2066 7265 6520 7265 736f 6c75 nite free resolu │ │ │ │ -000384e0: 7469 6f6e 206f 7665 7220 5220 3d0a 532f tion over R =.S/ │ │ │ │ -000384f0: 2866 5f31 2c2e 2e2c 665f 7b28 632d 6327 (f_1,..,f_{(c-c' │ │ │ │ -00038500: 297d 2920 2861 6e64 2c20 6d6f 7265 2067 )}) (and, more g │ │ │ │ -00038510: 656e 6572 616c 6c79 2c20 6861 7320 636f enerally, has co │ │ │ │ -00038520: 6d70 6c65 7869 7479 2063 2d64 206f 7665 mplexity c-d ove │ │ │ │ -00038530: 720a 532f 2866 5f31 2c2e 2e2c 665f 7b28 r.S/(f_1,..,f_{( │ │ │ │ -00038540: 632d 6429 7d29 2066 6f72 2064 3e3d 6327 c-d)}) for d>=c' │ │ │ │ -00038550: 292e 0a0a 5468 6520 636f 6d70 6c65 7820 )...The complex │ │ │ │ -00038560: 4120 6973 2074 6865 206d 696e 696d 616c A is the minimal │ │ │ │ -00038570: 2066 696e 6974 6520 6672 6565 2072 6573 finite free res │ │ │ │ -00038580: 6f6c 7574 696f 6e20 6f66 204d 206f 7665 olution of M ove │ │ │ │ -00038590: 7220 412c 2063 6f6e 7374 7275 6374 6564 r A, constructed │ │ │ │ -000385a0: 2061 730a 616e 2069 7465 7261 7465 6420 as.an iterated │ │ │ │ -000385b0: 4b6f 737a 756c 2065 7874 656e 7369 6f6e Koszul extension │ │ │ │ -000385c0: 2c20 6d61 6465 2066 726f 6d20 7468 6520 , made from the │ │ │ │ -000385d0: 6d61 7073 2069 6e20 624d 6170 7320 6d66 maps in bMaps mf │ │ │ │ -000385e0: 2061 6e64 2070 7369 4d61 7073 206d 662c and psiMaps mf, │ │ │ │ -000385f0: 2061 730a 6465 7363 7269 6265 6420 696e as.described in │ │ │ │ -00038600: 2045 6973 656e 6275 642d 5065 6576 612e Eisenbud-Peeva. │ │ │ │ -00038610: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +00038210: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ +00038220: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +00038230: 2020 4120 3d20 6d61 6b65 4669 6e69 7465 A = makeFinite │ │ │ │ +00038240: 5265 736f 6c75 7469 6f6e 2866 662c 6d66 Resolution(ff,mf │ │ │ │ +00038250: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ +00038260: 2020 2020 2a20 6d66 2c20 6120 2a6e 6f74 * mf, a *not │ │ │ │ +00038270: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ +00038280: 7932 446f 6329 4c69 7374 2c2c 206f 7574 y2Doc)List,, out │ │ │ │ +00038290: 7075 7420 6f66 206d 6174 7269 7846 6163 put of matrixFac │ │ │ │ +000382a0: 746f 7269 7a61 7469 6f6e 0a20 2020 2020 torization. │ │ │ │ +000382b0: 202a 2066 662c 2061 202a 6e6f 7465 206d * ff, a *note m │ │ │ │ +000382c0: 6174 7269 783a 2028 4d61 6361 756c 6179 atrix: (Macaulay │ │ │ │ +000382d0: 3244 6f63 294d 6174 7269 782c 2c20 7468 2Doc)Matrix,, th │ │ │ │ +000382e0: 6520 7265 6775 6c61 7220 7365 7175 656e e regular sequen │ │ │ │ +000382f0: 6365 2075 7365 640a 2020 2020 2020 2020 ce used. │ │ │ │ +00038300: 666f 7220 7468 6520 6d61 7472 6978 4661 for the matrixFa │ │ │ │ +00038310: 6374 6f72 697a 6174 696f 6e20 636f 6d70 ctorization comp │ │ │ │ +00038320: 7574 6174 696f 6e0a 2020 2a20 4f75 7470 utation. * Outp │ │ │ │ +00038330: 7574 733a 0a20 2020 2020 202a 2041 2c20 uts:. * A, │ │ │ │ +00038340: 6120 2a6e 6f74 6520 636f 6d70 6c65 783a a *note complex: │ │ │ │ +00038350: 2028 436f 6d70 6c65 7865 7329 436f 6d70 (Complexes)Comp │ │ │ │ +00038360: 6c65 782c 2c20 4120 6973 2074 6865 206d lex,, A is the m │ │ │ │ +00038370: 696e 696d 616c 2066 696e 6974 650a 2020 inimal finite. │ │ │ │ +00038380: 2020 2020 2020 7265 736f 6c75 7469 6f6e resolution │ │ │ │ +00038390: 206f 6620 4d20 6f76 6572 2052 2e0a 0a44 of M over R...D │ │ │ │ +000383a0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +000383b0: 3d3d 3d3d 3d3d 0a0a 5375 7070 6f73 6520 ======..Suppose │ │ │ │ +000383c0: 7468 6174 2066 5f31 2e2e 665f 6320 6973 that f_1..f_c is │ │ │ │ +000383d0: 2061 2068 6f6d 6f67 656e 656f 7573 2072 a homogeneous r │ │ │ │ +000383e0: 6567 756c 6172 2073 6571 7565 6e63 6520 egular sequence │ │ │ │ +000383f0: 6f66 2066 6f72 6d73 206f 6620 7468 6520 of forms of the │ │ │ │ +00038400: 7361 6d65 0a64 6567 7265 6520 696e 2061 same.degree in a │ │ │ │ +00038410: 2070 6f6c 796e 6f6d 6961 6c20 7269 6e67 polynomial ring │ │ │ │ +00038420: 2053 2061 6e64 204d 2069 7320 6120 6869 S and M is a hi │ │ │ │ +00038430: 6768 2073 797a 7967 7920 6d6f 6475 6c65 gh syzygy module │ │ │ │ +00038440: 206f 7665 7220 532f 2866 5f31 2c2e 2e2c over S/(f_1,.., │ │ │ │ +00038450: 665f 6329 0a3d 2052 2863 292c 2061 6e64 f_c).= R(c), and │ │ │ │ +00038460: 206d 6620 3d20 2864 2c68 2920 6973 2074 mf = (d,h) is t │ │ │ │ +00038470: 6865 206f 7574 7075 7420 6f66 206d 6174 he output of mat │ │ │ │ +00038480: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ +00038490: 284d 2c66 6629 2e20 4966 2074 6865 0a63 (M,ff). If the.c │ │ │ │ +000384a0: 6f6d 706c 6578 6974 7920 6f66 204d 2069 omplexity of M i │ │ │ │ +000384b0: 7320 6327 2c20 7468 656e 204d 2068 6173 s c', then M has │ │ │ │ +000384c0: 2061 2066 696e 6974 6520 6672 6565 2072 a finite free r │ │ │ │ +000384d0: 6573 6f6c 7574 696f 6e20 6f76 6572 2052 esolution over R │ │ │ │ +000384e0: 203d 0a53 2f28 665f 312c 2e2e 2c66 5f7b =.S/(f_1,..,f_{ │ │ │ │ +000384f0: 2863 2d63 2729 7d29 2028 616e 642c 206d (c-c')}) (and, m │ │ │ │ +00038500: 6f72 6520 6765 6e65 7261 6c6c 792c 2068 ore generally, h │ │ │ │ +00038510: 6173 2063 6f6d 706c 6578 6974 7920 632d as complexity c- │ │ │ │ +00038520: 6420 6f76 6572 0a53 2f28 665f 312c 2e2e d over.S/(f_1,.. │ │ │ │ +00038530: 2c66 5f7b 2863 2d64 297d 2920 666f 7220 ,f_{(c-d)}) for │ │ │ │ +00038540: 643e 3d63 2729 2e0a 0a54 6865 2063 6f6d d>=c')...The com │ │ │ │ +00038550: 706c 6578 2041 2069 7320 7468 6520 6d69 plex A is the mi │ │ │ │ +00038560: 6e69 6d61 6c20 6669 6e69 7465 2066 7265 nimal finite fre │ │ │ │ +00038570: 6520 7265 736f 6c75 7469 6f6e 206f 6620 e resolution of │ │ │ │ +00038580: 4d20 6f76 6572 2041 2c20 636f 6e73 7472 M over A, constr │ │ │ │ +00038590: 7563 7465 6420 6173 0a61 6e20 6974 6572 ucted as.an iter │ │ │ │ +000385a0: 6174 6564 204b 6f73 7a75 6c20 6578 7465 ated Koszul exte │ │ │ │ +000385b0: 6e73 696f 6e2c 206d 6164 6520 6672 6f6d nsion, made from │ │ │ │ +000385c0: 2074 6865 206d 6170 7320 696e 2062 4d61 the maps in bMa │ │ │ │ +000385d0: 7073 206d 6620 616e 6420 7073 694d 6170 ps mf and psiMap │ │ │ │ +000385e0: 7320 6d66 2c20 6173 0a64 6573 6372 6962 s mf, as.describ │ │ │ │ +000385f0: 6564 2069 6e20 4569 7365 6e62 7564 2d50 ed in Eisenbud-P │ │ │ │ +00038600: 6565 7661 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d eeva...+-------- │ │ │ │ +00038610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038660: 2b0a 7c69 3120 3a20 7365 7452 616e 646f +.|i1 : setRando │ │ │ │ -00038670: 6d53 6565 6420 3020 2020 2020 2020 2020 mSeed 0 │ │ │ │ +00038650: 2d2d 2d2d 2d2b 0a7c 6931 203a 2073 6574 -----+.|i1 : set │ │ │ │ +00038660: 5261 6e64 6f6d 5365 6564 2030 2020 2020 RandomSeed 0 │ │ │ │ +00038670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000386a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000386b0: 7c0a 7c20 2d2d 2073 6574 7469 6e67 2072 |.| -- setting r │ │ │ │ -000386c0: 616e 646f 6d20 7365 6564 2074 6f20 3020 andom seed to 0 │ │ │ │ +000386a0: 2020 2020 207c 0a7c 202d 2d20 7365 7474 |.| -- sett │ │ │ │ +000386b0: 696e 6720 7261 6e64 6f6d 2073 6565 6420 ing random seed │ │ │ │ +000386c0: 746f 2030 2020 2020 2020 2020 2020 2020 to 0 │ │ │ │ 000386d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000386e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000386f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038700: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000386f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00038700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038750: 7c0a 7c6f 3120 3d20 3020 2020 2020 2020 |.|o1 = 0 │ │ │ │ +00038740: 2020 2020 207c 0a7c 6f31 203d 2030 2020 |.|o1 = 0 │ │ │ │ +00038750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000387a0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00038790: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000387a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000387b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000387c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000387d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000387e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000387f0: 2b0a 7c69 3220 3a20 5320 3d20 5a5a 2f31 +.|i2 : S = ZZ/1 │ │ │ │ -00038800: 3031 5b61 2c62 2c63 5d3b 2020 2020 2020 01[a,b,c]; │ │ │ │ +000387e0: 2d2d 2d2d 2d2b 0a7c 6932 203a 2053 203d -----+.|i2 : S = │ │ │ │ +000387f0: 205a 5a2f 3130 315b 612c 622c 635d 3b20 ZZ/101[a,b,c]; │ │ │ │ +00038800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038840: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00038830: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00038840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038890: 2b0a 7c69 3320 3a20 6666 203d 206d 6174 +.|i3 : ff = mat │ │ │ │ -000388a0: 7269 7822 6133 2c62 3322 3b20 2020 2020 rix"a3,b3"; │ │ │ │ +00038880: 2d2d 2d2d 2d2b 0a7c 6933 203a 2066 6620 -----+.|i3 : ff │ │ │ │ +00038890: 3d20 6d61 7472 6978 2261 332c 6233 223b = matrix"a3,b3"; │ │ │ │ +000388a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000388b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000388c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000388d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000388e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000388d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000388e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000388f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038930: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00038940: 3120 2020 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ +00038920: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00038930: 2020 2020 2031 2020 2020 2020 3220 2020 1 2 │ │ │ │ +00038940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038980: 7c0a 7c6f 3320 3a20 4d61 7472 6978 2053 |.|o3 : Matrix S │ │ │ │ -00038990: 2020 3c2d 2d20 5320 2020 2020 2020 2020 <-- S │ │ │ │ +00038970: 2020 2020 207c 0a7c 6f33 203a 204d 6174 |.|o3 : Mat │ │ │ │ +00038980: 7269 7820 5320 203c 2d2d 2053 2020 2020 rix S <-- S │ │ │ │ +00038990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000389a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000389b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000389c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000389d0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +000389c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000389d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000389e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000389f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038a20: 2b0a 7c69 3420 3a20 5220 3d20 532f 6964 +.|i4 : R = S/id │ │ │ │ -00038a30: 6561 6c20 6666 3b20 2020 2020 2020 2020 eal ff; │ │ │ │ +00038a10: 2d2d 2d2d 2d2b 0a7c 6934 203a 2052 203d -----+.|i4 : R = │ │ │ │ +00038a20: 2053 2f69 6465 616c 2066 663b 2020 2020 S/ideal ff; │ │ │ │ +00038a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038a70: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00038a60: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00038a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038ac0: 2b0a 7c69 3520 3a20 4d20 3d20 6869 6768 +.|i5 : M = high │ │ │ │ -00038ad0: 5379 7a79 6779 2028 525e 312f 6964 6561 Syzygy (R^1/idea │ │ │ │ -00038ae0: 6c20 7661 7273 2052 293b 2020 2020 2020 l vars R); │ │ │ │ +00038ab0: 2d2d 2d2d 2d2b 0a7c 6935 203a 204d 203d -----+.|i5 : M = │ │ │ │ +00038ac0: 2068 6967 6853 797a 7967 7920 2852 5e31 highSyzygy (R^1 │ │ │ │ +00038ad0: 2f69 6465 616c 2076 6172 7320 5229 3b20 /ideal vars R); │ │ │ │ +00038ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038b10: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00038b00: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00038b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038b60: 2b0a 7c69 3620 3a20 6d66 203d 206d 6174 +.|i6 : mf = mat │ │ │ │ -00038b70: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -00038b80: 2028 6666 2c20 4d29 2020 2020 2020 2020 (ff, M) │ │ │ │ +00038b50: 2d2d 2d2d 2d2b 0a7c 6936 203a 206d 6620 -----+.|i6 : mf │ │ │ │ +00038b60: 3d20 6d61 7472 6978 4661 6374 6f72 697a = matrixFactoriz │ │ │ │ +00038b70: 6174 696f 6e20 2866 662c 204d 2920 2020 ation (ff, M) │ │ │ │ +00038b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038bb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00038ba0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00038bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c00: 7c0a 7c6f 3620 3d20 7b7b 347d 207c 202d |.|o6 = {{4} | - │ │ │ │ -00038c10: 6320 6220 3020 2061 3220 3020 2030 2020 c b 0 a2 0 0 │ │ │ │ -00038c20: 3020 2030 2020 3020 2020 7c2c 207b 357d 0 0 0 |, {5} │ │ │ │ -00038c30: 207c 2030 2061 3220 3020 202d 6220 3020 | 0 a2 0 -b 0 │ │ │ │ -00038c40: 2030 2020 2030 2020 2030 2030 2020 3020 0 0 0 0 0 │ │ │ │ -00038c50: 7c0a 7c20 2020 2020 207b 347d 207c 2061 |.| {4} | a │ │ │ │ -00038c60: 2020 3020 6220 2030 2020 3020 2030 2020 0 b 0 0 0 │ │ │ │ -00038c70: 3020 2030 2020 3020 2020 7c20 207b 357d 0 0 0 | {5} │ │ │ │ -00038c80: 207c 2030 2030 2020 6132 202d 6320 6232 | 0 0 a2 -c b2 │ │ │ │ -00038c90: 2030 2020 2030 2020 2030 2030 2020 3020 0 0 0 0 0 │ │ │ │ -00038ca0: 7c0a 7c20 2020 2020 207b 347d 207c 2030 |.| {4} | 0 │ │ │ │ -00038cb0: 2020 6120 6320 2030 2020 3020 2030 2020 a c 0 0 0 │ │ │ │ -00038cc0: 3020 2030 2020 2d62 3220 7c20 207b 357d 0 0 -b2 | {5} │ │ │ │ -00038cd0: 207c 2030 2030 2020 3020 2061 2020 3020 | 0 0 0 a 0 │ │ │ │ -00038ce0: 2062 3220 2030 2020 2030 2030 2020 3020 b2 0 0 0 0 │ │ │ │ -00038cf0: 7c0a 7c20 2020 2020 207b 337d 207c 2030 |.| {3} | 0 │ │ │ │ -00038d00: 2020 3020 6132 2030 2020 3020 2062 3220 0 a2 0 0 b2 │ │ │ │ -00038d10: 3020 2030 2020 3020 2020 7c20 207b 367d 0 0 0 | {6} │ │ │ │ -00038d20: 207c 2061 2063 2020 2d62 2030 2020 3020 | a c -b 0 0 │ │ │ │ -00038d30: 2030 2020 2030 2020 2030 2030 2020 3020 0 0 0 0 0 │ │ │ │ -00038d40: 7c0a 7c20 2020 2020 207b 347d 207c 2030 |.| {4} | 0 │ │ │ │ -00038d50: 2020 3020 3020 2030 2020 6220 202d 6120 0 0 0 b -a │ │ │ │ -00038d60: 3020 2030 2020 3020 2020 7c20 207b 357d 0 0 0 | {5} │ │ │ │ -00038d70: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ -00038d80: 2030 2020 2030 2020 2061 2062 3220 3020 0 0 a b2 0 │ │ │ │ -00038d90: 7c0a 7c20 2020 2020 207b 347d 207c 2030 |.| {4} | 0 │ │ │ │ -00038da0: 2020 3020 3020 2030 2020 2d63 2030 2020 0 0 0 -c 0 │ │ │ │ -00038db0: 6120 2062 3220 3020 2020 7c20 207b 357d a b2 0 | {5} │ │ │ │ -00038dc0: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ -00038dd0: 202d 6132 2030 2020 2062 2030 2020 3020 -a2 0 b 0 0 │ │ │ │ -00038de0: 7c0a 7c20 2020 2020 207b 347d 207c 2030 |.| {4} | 0 │ │ │ │ -00038df0: 2020 3020 3020 2030 2020 3020 2063 2020 0 0 0 0 c │ │ │ │ -00038e00: 2d62 2030 2020 6132 2020 7c20 207b 357d -b 0 a2 | {5} │ │ │ │ -00038e10: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ -00038e20: 2030 2020 202d 6132 2063 2030 2020 3020 0 -a2 c 0 0 │ │ │ │ -00038e30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00038bf0: 2020 2020 207c 0a7c 6f36 203d 207b 7b34 |.|o6 = {{4 │ │ │ │ +00038c00: 7d20 7c20 2d63 2062 2030 2020 6132 2030 } | -c b 0 a2 0 │ │ │ │ +00038c10: 2020 3020 2030 2020 3020 2030 2020 207c 0 0 0 0 | │ │ │ │ +00038c20: 2c20 7b35 7d20 7c20 3020 6132 2030 2020 , {5} | 0 a2 0 │ │ │ │ +00038c30: 2d62 2030 2020 3020 2020 3020 2020 3020 -b 0 0 0 0 │ │ │ │ +00038c40: 3020 2030 207c 0a7c 2020 2020 2020 7b34 0 0 |.| {4 │ │ │ │ +00038c50: 7d20 7c20 6120 2030 2062 2020 3020 2030 } | a 0 b 0 0 │ │ │ │ +00038c60: 2020 3020 2030 2020 3020 2030 2020 207c 0 0 0 0 | │ │ │ │ +00038c70: 2020 7b35 7d20 7c20 3020 3020 2061 3220 {5} | 0 0 a2 │ │ │ │ +00038c80: 2d63 2062 3220 3020 2020 3020 2020 3020 -c b2 0 0 0 │ │ │ │ +00038c90: 3020 2030 207c 0a7c 2020 2020 2020 7b34 0 0 |.| {4 │ │ │ │ +00038ca0: 7d20 7c20 3020 2061 2063 2020 3020 2030 } | 0 a c 0 0 │ │ │ │ +00038cb0: 2020 3020 2030 2020 3020 202d 6232 207c 0 0 0 -b2 | │ │ │ │ +00038cc0: 2020 7b35 7d20 7c20 3020 3020 2030 2020 {5} | 0 0 0 │ │ │ │ +00038cd0: 6120 2030 2020 6232 2020 3020 2020 3020 a 0 b2 0 0 │ │ │ │ +00038ce0: 3020 2030 207c 0a7c 2020 2020 2020 7b33 0 0 |.| {3 │ │ │ │ +00038cf0: 7d20 7c20 3020 2030 2061 3220 3020 2030 } | 0 0 a2 0 0 │ │ │ │ +00038d00: 2020 6232 2030 2020 3020 2030 2020 207c b2 0 0 0 | │ │ │ │ +00038d10: 2020 7b36 7d20 7c20 6120 6320 202d 6220 {6} | a c -b │ │ │ │ +00038d20: 3020 2030 2020 3020 2020 3020 2020 3020 0 0 0 0 0 │ │ │ │ +00038d30: 3020 2030 207c 0a7c 2020 2020 2020 7b34 0 0 |.| {4 │ │ │ │ +00038d40: 7d20 7c20 3020 2030 2030 2020 3020 2062 } | 0 0 0 0 b │ │ │ │ +00038d50: 2020 2d61 2030 2020 3020 2030 2020 207c -a 0 0 0 | │ │ │ │ +00038d60: 2020 7b35 7d20 7c20 3020 3020 2030 2020 {5} | 0 0 0 │ │ │ │ +00038d70: 3020 2030 2020 3020 2020 3020 2020 6120 0 0 0 0 a │ │ │ │ +00038d80: 6232 2030 207c 0a7c 2020 2020 2020 7b34 b2 0 |.| {4 │ │ │ │ +00038d90: 7d20 7c20 3020 2030 2030 2020 3020 202d } | 0 0 0 0 - │ │ │ │ +00038da0: 6320 3020 2061 2020 6232 2030 2020 207c c 0 a b2 0 | │ │ │ │ +00038db0: 2020 7b35 7d20 7c20 3020 3020 2030 2020 {5} | 0 0 0 │ │ │ │ +00038dc0: 3020 2030 2020 2d61 3220 3020 2020 6220 0 0 -a2 0 b │ │ │ │ +00038dd0: 3020 2030 207c 0a7c 2020 2020 2020 7b34 0 0 |.| {4 │ │ │ │ +00038de0: 7d20 7c20 3020 2030 2030 2020 3020 2030 } | 0 0 0 0 0 │ │ │ │ +00038df0: 2020 6320 202d 6220 3020 2061 3220 207c c -b 0 a2 | │ │ │ │ +00038e00: 2020 7b35 7d20 7c20 3020 3020 2030 2020 {5} | 0 0 0 │ │ │ │ +00038e10: 3020 2030 2020 3020 2020 2d61 3220 6320 0 0 0 -a2 c │ │ │ │ +00038e20: 3020 2030 207c 0a7c 2020 2020 2020 2020 0 0 |.| │ │ │ │ +00038e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038e50: 2020 2020 2020 2020 2020 2020 207b 367d {6} │ │ │ │ -00038e60: 207c 2030 2030 2020 3020 2030 2020 3020 | 0 0 0 0 0 │ │ │ │ -00038e70: 2030 2020 2030 2020 2030 2063 2020 6220 0 0 0 c b │ │ │ │ -00038e80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00038e50: 2020 7b36 7d20 7c20 3020 3020 2030 2020 {6} | 0 0 0 │ │ │ │ +00038e60: 3020 2030 2020 3020 2020 3020 2020 3020 0 0 0 0 0 │ │ │ │ +00038e70: 6320 2062 207c 0a7c 2020 2020 2020 2020 c b |.| │ │ │ │ +00038e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038ea0: 2020 2020 2020 2020 2020 2020 207b 367d {6} │ │ │ │ -00038eb0: 207c 2030 2030 2020 3020 2030 2020 6120 | 0 0 0 0 a │ │ │ │ -00038ec0: 2063 2020 202d 6220 2030 2030 2020 3020 c -b 0 0 0 │ │ │ │ -00038ed0: 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d |.| -------- │ │ │ │ +00038ea0: 2020 7b36 7d20 7c20 3020 3020 2030 2020 {6} | 0 0 0 │ │ │ │ +00038eb0: 3020 2061 2020 6320 2020 2d62 2020 3020 0 a c -b 0 │ │ │ │ +00038ec0: 3020 2030 207c 0a7c 2020 2020 202d 2d2d 0 0 |.| --- │ │ │ │ +00038ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038f20: 7c0a 7c20 2020 2020 3020 2020 7c2c 207b |.| 0 |, { │ │ │ │ -00038f30: 337d 207c 2030 2030 2030 2020 3120 3020 3} | 0 0 0 1 0 │ │ │ │ -00038f40: 3020 3020 7c7d 2020 2020 2020 2020 2020 0 0 |} │ │ │ │ +00038f10: 2d2d 2d2d 2d7c 0a7c 2020 2020 2030 2020 -----|.| 0 │ │ │ │ +00038f20: 207c 2c20 7b33 7d20 7c20 3020 3020 3020 |, {3} | 0 0 0 │ │ │ │ +00038f30: 2031 2030 2030 2030 207c 7d20 2020 2020 1 0 0 0 |} │ │ │ │ +00038f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038f70: 7c0a 7c20 2020 2020 3020 2020 7c20 207b |.| 0 | { │ │ │ │ -00038f80: 347d 207c 2030 2030 2030 2020 3020 3120 4} | 0 0 0 0 1 │ │ │ │ -00038f90: 3020 3020 7c20 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +00038f60: 2020 2020 207c 0a7c 2020 2020 2030 2020 |.| 0 │ │ │ │ +00038f70: 207c 2020 7b34 7d20 7c20 3020 3020 3020 | {4} | 0 0 0 │ │ │ │ +00038f80: 2030 2031 2030 2030 207c 2020 2020 2020 0 1 0 0 | │ │ │ │ +00038f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038fc0: 7c0a 7c20 2020 2020 3020 2020 7c20 207b |.| 0 | { │ │ │ │ -00038fd0: 347d 207c 2030 2030 2030 2020 3020 3020 4} | 0 0 0 0 0 │ │ │ │ -00038fe0: 3120 3020 7c20 2020 2020 2020 2020 2020 1 0 | │ │ │ │ +00038fb0: 2020 2020 207c 0a7c 2020 2020 2030 2020 |.| 0 │ │ │ │ +00038fc0: 207c 2020 7b34 7d20 7c20 3020 3020 3020 | {4} | 0 0 0 │ │ │ │ +00038fd0: 2030 2030 2031 2030 207c 2020 2020 2020 0 0 1 0 | │ │ │ │ +00038fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039010: 7c0a 7c20 2020 2020 3020 2020 7c20 207b |.| 0 | { │ │ │ │ -00039020: 347d 207c 2030 2030 2030 2020 3020 3020 4} | 0 0 0 0 0 │ │ │ │ -00039030: 3020 3120 7c20 2020 2020 2020 2020 2020 0 1 | │ │ │ │ +00039000: 2020 2020 207c 0a7c 2020 2020 2030 2020 |.| 0 │ │ │ │ +00039010: 207c 2020 7b34 7d20 7c20 3020 3020 3020 | {4} | 0 0 0 │ │ │ │ +00039020: 2030 2030 2030 2031 207c 2020 2020 2020 0 0 0 1 | │ │ │ │ +00039030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039060: 7c0a 7c20 2020 2020 3020 2020 7c20 207b |.| 0 | { │ │ │ │ -00039070: 347d 207c 2030 2031 2030 2020 3020 3020 4} | 0 1 0 0 0 │ │ │ │ -00039080: 3020 3020 7c20 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +00039050: 2020 2020 207c 0a7c 2020 2020 2030 2020 |.| 0 │ │ │ │ +00039060: 207c 2020 7b34 7d20 7c20 3020 3120 3020 | {4} | 0 1 0 │ │ │ │ +00039070: 2030 2030 2030 2030 207c 2020 2020 2020 0 0 0 0 | │ │ │ │ +00039080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000390a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000390b0: 7c0a 7c20 2020 2020 3020 2020 7c20 207b |.| 0 | { │ │ │ │ -000390c0: 347d 207c 2030 2030 202d 3120 3020 3020 4} | 0 0 -1 0 0 │ │ │ │ -000390d0: 3020 3020 7c20 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +000390a0: 2020 2020 207c 0a7c 2020 2020 2030 2020 |.| 0 │ │ │ │ +000390b0: 207c 2020 7b34 7d20 7c20 3020 3020 2d31 | {4} | 0 0 -1 │ │ │ │ +000390c0: 2030 2030 2030 2030 207c 2020 2020 2020 0 0 0 0 | │ │ │ │ +000390d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000390e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000390f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039100: 7c0a 7c20 2020 2020 2d62 3220 7c20 207b |.| -b2 | { │ │ │ │ -00039110: 347d 207c 2031 2030 2030 2020 3020 3020 4} | 1 0 0 0 0 │ │ │ │ -00039120: 3020 3020 7c20 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +000390f0: 2020 2020 207c 0a7c 2020 2020 202d 6232 |.| -b2 │ │ │ │ +00039100: 207c 2020 7b34 7d20 7c20 3120 3020 3020 | {4} | 1 0 0 │ │ │ │ +00039110: 2030 2030 2030 2030 207c 2020 2020 2020 0 0 0 0 | │ │ │ │ +00039120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039150: 7c0a 7c20 2020 2020 6120 2020 7c20 2020 |.| a | │ │ │ │ +00039140: 2020 2020 207c 0a7c 2020 2020 2061 2020 |.| a │ │ │ │ +00039150: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00039160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000391a0: 7c0a 7c20 2020 2020 3020 2020 7c20 2020 |.| 0 | │ │ │ │ +00039190: 2020 2020 207c 0a7c 2020 2020 2030 2020 |.| 0 │ │ │ │ +000391a0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000391b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000391c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000391d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000391e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000391f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000391e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000391f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039240: 7c0a 7c6f 3620 3a20 4c69 7374 2020 2020 |.|o6 : List │ │ │ │ +00039230: 2020 2020 207c 0a7c 6f36 203a 204c 6973 |.|o6 : Lis │ │ │ │ +00039240: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 00039250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039290: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00039280: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00039290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000392a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000392b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000392c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000392d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000392e0: 2b0a 7c69 3720 3a20 4720 3d20 6d61 6b65 +.|i7 : G = make │ │ │ │ -000392f0: 4669 6e69 7465 5265 736f 6c75 7469 6f6e FiniteResolution │ │ │ │ -00039300: 2866 662c 6d66 2920 2020 2020 2020 2020 (ff,mf) │ │ │ │ +000392d0: 2d2d 2d2d 2d2b 0a7c 6937 203a 2047 203d -----+.|i7 : G = │ │ │ │ +000392e0: 206d 616b 6546 696e 6974 6552 6573 6f6c makeFiniteResol │ │ │ │ +000392f0: 7574 696f 6e28 6666 2c6d 6629 2020 2020 ution(ff,mf) │ │ │ │ +00039300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039330: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039320: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00039330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039380: 7c0a 7c20 2020 2020 2037 2020 2020 2020 |.| 7 │ │ │ │ -00039390: 3132 2020 2020 2020 3520 2020 2020 2020 12 5 │ │ │ │ +00039370: 2020 2020 207c 0a7c 2020 2020 2020 3720 |.| 7 │ │ │ │ +00039380: 2020 2020 2031 3220 2020 2020 2035 2020 12 5 │ │ │ │ +00039390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000393a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000393b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000393c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000393d0: 7c0a 7c6f 3720 3d20 5320 203c 2d2d 2053 |.|o7 = S <-- S │ │ │ │ -000393e0: 2020 203c 2d2d 2053 2020 2020 2020 2020 <-- S │ │ │ │ +000393c0: 2020 2020 207c 0a7c 6f37 203d 2053 2020 |.|o7 = S │ │ │ │ +000393d0: 3c2d 2d20 5320 2020 3c2d 2d20 5320 2020 <-- S <-- S │ │ │ │ +000393e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000393f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039420: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039410: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00039420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039470: 7c0a 7c20 2020 2020 3020 2020 2020 2031 |.| 0 1 │ │ │ │ -00039480: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00039460: 2020 2020 207c 0a7c 2020 2020 2030 2020 |.| 0 │ │ │ │ +00039470: 2020 2020 3120 2020 2020 2020 3220 2020 1 2 │ │ │ │ +00039480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000394a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000394b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000394c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000394b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000394c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000394d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000394e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000394f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039510: 7c0a 7c6f 3720 3a20 436f 6d70 6c65 7820 |.|o7 : Complex │ │ │ │ +00039500: 2020 2020 207c 0a7c 6f37 203a 2043 6f6d |.|o7 : Com │ │ │ │ +00039510: 706c 6578 2020 2020 2020 2020 2020 2020 plex │ │ │ │ 00039520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039560: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00039550: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00039560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000395a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000395b0: 2b0a 7c69 3820 3a20 4620 3d20 6672 6565 +.|i8 : F = free │ │ │ │ -000395c0: 5265 736f 6c75 7469 6f6e 2070 7573 6846 Resolution pushF │ │ │ │ -000395d0: 6f72 7761 7264 286d 6170 2852 2c53 292c orward(map(R,S), │ │ │ │ -000395e0: 4d29 2020 2020 2020 2020 2020 2020 2020 M) │ │ │ │ -000395f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039600: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000395a0: 2d2d 2d2d 2d2b 0a7c 6938 203a 2046 203d -----+.|i8 : F = │ │ │ │ +000395b0: 2066 7265 6552 6573 6f6c 7574 696f 6e20 freeResolution │ │ │ │ +000395c0: 7075 7368 466f 7277 6172 6428 6d61 7028 pushForward(map( │ │ │ │ +000395d0: 522c 5329 2c4d 2920 2020 2020 2020 2020 R,S),M) │ │ │ │ +000395e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000395f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00039600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039650: 7c0a 7c20 2020 2020 2037 2020 2020 2020 |.| 7 │ │ │ │ -00039660: 3132 2020 2020 2020 3520 2020 2020 2020 12 5 │ │ │ │ +00039640: 2020 2020 207c 0a7c 2020 2020 2020 3720 |.| 7 │ │ │ │ +00039650: 2020 2020 2031 3220 2020 2020 2035 2020 12 5 │ │ │ │ +00039660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000396a0: 7c0a 7c6f 3820 3d20 5320 203c 2d2d 2053 |.|o8 = S <-- S │ │ │ │ -000396b0: 2020 203c 2d2d 2053 2020 2020 2020 2020 <-- S │ │ │ │ +00039690: 2020 2020 207c 0a7c 6f38 203d 2053 2020 |.|o8 = S │ │ │ │ +000396a0: 3c2d 2d20 5320 2020 3c2d 2d20 5320 2020 <-- S <-- S │ │ │ │ +000396b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000396c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000396d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000396e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000396f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000396e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000396f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039740: 7c0a 7c20 2020 2020 3020 2020 2020 2031 |.| 0 1 │ │ │ │ -00039750: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00039730: 2020 2020 207c 0a7c 2020 2020 2030 2020 |.| 0 │ │ │ │ +00039740: 2020 2020 3120 2020 2020 2020 3220 2020 1 2 │ │ │ │ +00039750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039790: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039780: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00039790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000397a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000397b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000397c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000397d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000397e0: 7c0a 7c6f 3820 3a20 436f 6d70 6c65 7820 |.|o8 : Complex │ │ │ │ +000397d0: 2020 2020 207c 0a7c 6f38 203a 2043 6f6d |.|o8 : Com │ │ │ │ +000397e0: 706c 6578 2020 2020 2020 2020 2020 2020 plex │ │ │ │ 000397f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039830: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00039820: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00039830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039880: 2b0a 7c69 3920 3a20 472e 6464 5f31 2020 +.|i9 : G.dd_1 │ │ │ │ +00039870: 2d2d 2d2d 2d2b 0a7c 6939 203a 2047 2e64 -----+.|i9 : G.d │ │ │ │ +00039880: 645f 3120 2020 2020 2020 2020 2020 2020 d_1 │ │ │ │ 00039890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000398a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000398b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000398c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000398d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000398c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000398d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000398e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000398f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039920: 7c0a 7c6f 3920 3d20 7b34 7d20 7c20 6220 |.|o9 = {4} | b │ │ │ │ -00039930: 202d 6120 3020 2030 2020 3020 2020 2d61 -a 0 0 0 -a │ │ │ │ -00039940: 3320 3020 2020 3020 2020 3020 2030 2030 3 0 0 0 0 0 │ │ │ │ -00039950: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ -00039960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039970: 7c0a 7c20 2020 2020 7b34 7d20 7c20 2d63 |.| {4} | -c │ │ │ │ -00039980: 2030 2020 6120 2062 3220 3020 2020 3020 0 a b2 0 0 │ │ │ │ -00039990: 2020 2d61 3320 3020 2020 3020 2030 2030 -a3 0 0 0 0 │ │ │ │ -000399a0: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ -000399b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000399c0: 7c0a 7c20 2020 2020 7b34 7d20 7c20 3020 |.| {4} | 0 │ │ │ │ -000399d0: 2063 2020 2d62 2030 2020 6132 2020 3020 c -b 0 a2 0 │ │ │ │ -000399e0: 2020 3020 2020 2d61 3320 3020 2030 2030 0 -a3 0 0 0 │ │ │ │ -000399f0: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ -00039a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039a10: 7c0a 7c20 2020 2020 7b34 7d20 7c20 3020 |.| {4} | 0 │ │ │ │ -00039a20: 2030 2020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 │ │ │ │ -00039a30: 2020 3020 2020 3020 2020 2d63 2062 2030 0 0 -c b 0 │ │ │ │ -00039a40: 2020 6132 207c 2020 2020 2020 2020 2020 a2 | │ │ │ │ -00039a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039a60: 7c0a 7c20 2020 2020 7b34 7d20 7c20 3020 |.| {4} | 0 │ │ │ │ -00039a70: 2030 2020 3020 2030 2020 3020 2020 3020 0 0 0 0 0 │ │ │ │ -00039a80: 2020 3020 2020 3020 2020 6120 2030 2062 0 0 a 0 b │ │ │ │ -00039a90: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ -00039aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039ab0: 7c0a 7c20 2020 2020 7b34 7d20 7c20 3020 |.| {4} | 0 │ │ │ │ -00039ac0: 2030 2020 3020 2030 2020 2d62 3220 3020 0 0 0 -b2 0 │ │ │ │ -00039ad0: 2020 3020 2020 3020 2020 3020 2061 2063 0 0 0 a c │ │ │ │ -00039ae0: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ -00039af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039b00: 7c0a 7c20 2020 2020 7b33 7d20 7c20 3020 |.| {3} | 0 │ │ │ │ -00039b10: 2062 3220 3020 2030 2020 3020 2020 3020 b2 0 0 0 0 │ │ │ │ -00039b20: 2020 3020 2020 3020 2020 3020 2030 2061 0 0 0 0 a │ │ │ │ -00039b30: 3220 3020 207c 2020 2020 2020 2020 2020 2 0 | │ │ │ │ -00039b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039b50: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039910: 2020 2020 207c 0a7c 6f39 203d 207b 347d |.|o9 = {4} │ │ │ │ +00039920: 207c 2062 2020 2d61 2030 2020 3020 2030 | b -a 0 0 0 │ │ │ │ +00039930: 2020 202d 6133 2030 2020 2030 2020 2030 -a3 0 0 0 │ │ │ │ +00039940: 2020 3020 3020 2030 2020 7c20 2020 2020 0 0 0 | │ │ │ │ +00039950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039960: 2020 2020 207c 0a7c 2020 2020 207b 347d |.| {4} │ │ │ │ +00039970: 207c 202d 6320 3020 2061 2020 6232 2030 | -c 0 a b2 0 │ │ │ │ +00039980: 2020 2030 2020 202d 6133 2030 2020 2030 0 -a3 0 0 │ │ │ │ +00039990: 2020 3020 3020 2030 2020 7c20 2020 2020 0 0 0 | │ │ │ │ +000399a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000399b0: 2020 2020 207c 0a7c 2020 2020 207b 347d |.| {4} │ │ │ │ +000399c0: 207c 2030 2020 6320 202d 6220 3020 2061 | 0 c -b 0 a │ │ │ │ +000399d0: 3220 2030 2020 2030 2020 202d 6133 2030 2 0 0 -a3 0 │ │ │ │ +000399e0: 2020 3020 3020 2030 2020 7c20 2020 2020 0 0 0 | │ │ │ │ +000399f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039a00: 2020 2020 207c 0a7c 2020 2020 207b 347d |.| {4} │ │ │ │ +00039a10: 207c 2030 2020 3020 2030 2020 3020 2030 | 0 0 0 0 0 │ │ │ │ +00039a20: 2020 2030 2020 2030 2020 2030 2020 202d 0 0 0 - │ │ │ │ +00039a30: 6320 6220 3020 2061 3220 7c20 2020 2020 c b 0 a2 | │ │ │ │ +00039a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039a50: 2020 2020 207c 0a7c 2020 2020 207b 347d |.| {4} │ │ │ │ +00039a60: 207c 2030 2020 3020 2030 2020 3020 2030 | 0 0 0 0 0 │ │ │ │ +00039a70: 2020 2030 2020 2030 2020 2030 2020 2061 0 0 0 a │ │ │ │ +00039a80: 2020 3020 6220 2030 2020 7c20 2020 2020 0 b 0 | │ │ │ │ +00039a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039aa0: 2020 2020 207c 0a7c 2020 2020 207b 347d |.| {4} │ │ │ │ +00039ab0: 207c 2030 2020 3020 2030 2020 3020 202d | 0 0 0 0 - │ │ │ │ +00039ac0: 6232 2030 2020 2030 2020 2030 2020 2030 b2 0 0 0 0 │ │ │ │ +00039ad0: 2020 6120 6320 2030 2020 7c20 2020 2020 a c 0 | │ │ │ │ +00039ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039af0: 2020 2020 207c 0a7c 2020 2020 207b 337d |.| {3} │ │ │ │ +00039b00: 207c 2030 2020 6232 2030 2020 3020 2030 | 0 b2 0 0 0 │ │ │ │ +00039b10: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +00039b20: 2020 3020 6132 2030 2020 7c20 2020 2020 0 a2 0 | │ │ │ │ +00039b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039b40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00039b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039ba0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00039bb0: 3720 2020 2020 2031 3220 2020 2020 2020 7 12 │ │ │ │ +00039b90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00039ba0: 2020 2020 2037 2020 2020 2020 3132 2020 7 12 │ │ │ │ +00039bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039bf0: 7c0a 7c6f 3920 3a20 4d61 7472 6978 2053 |.|o9 : Matrix S │ │ │ │ -00039c00: 2020 3c2d 2d20 5320 2020 2020 2020 2020 <-- S │ │ │ │ +00039be0: 2020 2020 207c 0a7c 6f39 203a 204d 6174 |.|o9 : Mat │ │ │ │ +00039bf0: 7269 7820 5320 203c 2d2d 2053 2020 2020 rix S <-- S │ │ │ │ +00039c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039c40: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00039c30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00039c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039c90: 2b0a 7c69 3130 203a 2046 2e64 645f 3120 +.|i10 : F.dd_1 │ │ │ │ +00039c80: 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 462e -----+.|i10 : F. │ │ │ │ +00039c90: 6464 5f31 2020 2020 2020 2020 2020 2020 dd_1 │ │ │ │ 00039ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039ce0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039cd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00039ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039d30: 7c0a 7c6f 3130 203d 207b 337d 207c 2061 |.|o10 = {3} | a │ │ │ │ -00039d40: 3220 6232 2030 2020 3020 2030 2020 3020 2 b2 0 0 0 0 │ │ │ │ -00039d50: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00039d60: 3020 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00039d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039d80: 7c0a 7c20 2020 2020 207b 347d 207c 2030 |.| {4} | 0 │ │ │ │ -00039d90: 2020 2d61 2030 2020 3020 2030 2020 6220 -a 0 0 0 b │ │ │ │ -00039da0: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00039db0: 3020 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00039dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039dd0: 7c0a 7c20 2020 2020 207b 347d 207c 2030 |.| {4} | 0 │ │ │ │ -00039de0: 2020 3020 2061 2020 3020 2030 2020 2d63 0 a 0 0 -c │ │ │ │ -00039df0: 2030 2020 3020 2062 3220 3020 2030 2020 0 0 b2 0 0 │ │ │ │ -00039e00: 3020 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00039e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039e20: 7c0a 7c20 2020 2020 207b 347d 207c 2030 |.| {4} | 0 │ │ │ │ -00039e30: 2020 6320 202d 6220 3020 2030 2020 3020 c -b 0 0 0 │ │ │ │ -00039e40: 2061 3220 3020 2030 2020 3020 2030 2020 a2 0 0 0 0 │ │ │ │ -00039e50: 3020 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00039e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039e70: 7c0a 7c20 2020 2020 207b 347d 207c 2062 |.| {4} | b │ │ │ │ -00039e80: 2020 3020 2030 2020 6120 2030 2020 3020 0 0 a 0 0 │ │ │ │ -00039e90: 2030 2020 3020 2030 2020 6233 2030 2020 0 0 0 b3 0 │ │ │ │ -00039ea0: 3020 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00039eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039ec0: 7c0a 7c20 2020 2020 207b 347d 207c 202d |.| {4} | - │ │ │ │ -00039ed0: 6320 3020 2030 2020 3020 2061 2020 3020 c 0 0 0 a 0 │ │ │ │ -00039ee0: 2062 3220 3020 2030 2020 3020 2062 3320 b2 0 0 0 b3 │ │ │ │ -00039ef0: 3020 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00039f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039f10: 7c0a 7c20 2020 2020 207b 347d 207c 2030 |.| {4} | 0 │ │ │ │ -00039f20: 2020 3020 2030 2020 2d63 202d 6220 3020 0 0 -c -b 0 │ │ │ │ -00039f30: 2030 2020 6132 2030 2020 3020 2030 2020 0 a2 0 0 0 │ │ │ │ -00039f40: 6233 207c 2020 2020 2020 2020 2020 2020 b3 | │ │ │ │ -00039f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039f60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039d20: 2020 2020 207c 0a7c 6f31 3020 3d20 7b33 |.|o10 = {3 │ │ │ │ +00039d30: 7d20 7c20 6132 2062 3220 3020 2030 2020 } | a2 b2 0 0 │ │ │ │ +00039d40: 3020 2030 2020 3020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00039d50: 2020 3020 2030 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ +00039d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039d70: 2020 2020 207c 0a7c 2020 2020 2020 7b34 |.| {4 │ │ │ │ +00039d80: 7d20 7c20 3020 202d 6120 3020 2030 2020 } | 0 -a 0 0 │ │ │ │ +00039d90: 3020 2062 2020 3020 2030 2020 3020 2030 0 b 0 0 0 0 │ │ │ │ +00039da0: 2020 3020 2030 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ +00039db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039dc0: 2020 2020 207c 0a7c 2020 2020 2020 7b34 |.| {4 │ │ │ │ +00039dd0: 7d20 7c20 3020 2030 2020 6120 2030 2020 } | 0 0 a 0 │ │ │ │ +00039de0: 3020 202d 6320 3020 2030 2020 6232 2030 0 -c 0 0 b2 0 │ │ │ │ +00039df0: 2020 3020 2030 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ +00039e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039e10: 2020 2020 207c 0a7c 2020 2020 2020 7b34 |.| {4 │ │ │ │ +00039e20: 7d20 7c20 3020 2063 2020 2d62 2030 2020 } | 0 c -b 0 │ │ │ │ +00039e30: 3020 2030 2020 6132 2030 2020 3020 2030 0 0 a2 0 0 0 │ │ │ │ +00039e40: 2020 3020 2030 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ +00039e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039e60: 2020 2020 207c 0a7c 2020 2020 2020 7b34 |.| {4 │ │ │ │ +00039e70: 7d20 7c20 6220 2030 2020 3020 2061 2020 } | b 0 0 a │ │ │ │ +00039e80: 3020 2030 2020 3020 2030 2020 3020 2062 0 0 0 0 0 b │ │ │ │ +00039e90: 3320 3020 2030 2020 7c20 2020 2020 2020 3 0 0 | │ │ │ │ +00039ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039eb0: 2020 2020 207c 0a7c 2020 2020 2020 7b34 |.| {4 │ │ │ │ +00039ec0: 7d20 7c20 2d63 2030 2020 3020 2030 2020 } | -c 0 0 0 │ │ │ │ +00039ed0: 6120 2030 2020 6232 2030 2020 3020 2030 a 0 b2 0 0 0 │ │ │ │ +00039ee0: 2020 6233 2030 2020 7c20 2020 2020 2020 b3 0 | │ │ │ │ +00039ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039f00: 2020 2020 207c 0a7c 2020 2020 2020 7b34 |.| {4 │ │ │ │ +00039f10: 7d20 7c20 3020 2030 2020 3020 202d 6320 } | 0 0 0 -c │ │ │ │ +00039f20: 2d62 2030 2020 3020 2061 3220 3020 2030 -b 0 0 a2 0 0 │ │ │ │ +00039f30: 2020 3020 2062 3320 7c20 2020 2020 2020 0 b3 | │ │ │ │ +00039f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039f50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00039f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039fb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00039fc0: 2037 2020 2020 2020 3132 2020 2020 2020 7 12 │ │ │ │ +00039fa0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00039fb0: 2020 2020 2020 3720 2020 2020 2031 3220 7 12 │ │ │ │ +00039fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a000: 7c0a 7c6f 3130 203a 204d 6174 7269 7820 |.|o10 : Matrix │ │ │ │ -0003a010: 5320 203c 2d2d 2053 2020 2020 2020 2020 S <-- S │ │ │ │ +00039ff0: 2020 2020 207c 0a7c 6f31 3020 3a20 4d61 |.|o10 : Ma │ │ │ │ +0003a000: 7472 6978 2053 2020 3c2d 2d20 5320 2020 trix S <-- S │ │ │ │ +0003a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a050: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0003a040: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0003a050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a0a0: 2b0a 7c69 3131 203a 2047 2e64 645f 3220 +.|i11 : G.dd_2 │ │ │ │ +0003a090: 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 472e -----+.|i11 : G. │ │ │ │ +0003a0a0: 6464 5f32 2020 2020 2020 2020 2020 2020 dd_2 │ │ │ │ 0003a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a0f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003a0e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a140: 7c0a 7c6f 3131 203d 207b 357d 207c 202d |.|o11 = {5} | - │ │ │ │ -0003a150: 6133 2030 2020 2020 3020 2020 3020 2020 a3 0 0 0 │ │ │ │ -0003a160: 3020 2020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a130: 2020 2020 207c 0a7c 6f31 3120 3d20 7b35 |.|o11 = {5 │ │ │ │ +0003a140: 7d20 7c20 2d61 3320 3020 2020 2030 2020 } | -a3 0 0 │ │ │ │ +0003a150: 2030 2020 2030 2020 2020 207c 2020 2020 0 0 | │ │ │ │ +0003a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a190: 7c0a 7c20 2020 2020 207b 357d 207c 2030 |.| {5} | 0 │ │ │ │ -0003a1a0: 2020 202d 6133 2020 3020 2020 3020 2020 -a3 0 0 │ │ │ │ -0003a1b0: 3020 2020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a180: 2020 2020 207c 0a7c 2020 2020 2020 7b35 |.| {5 │ │ │ │ +0003a190: 7d20 7c20 3020 2020 2d61 3320 2030 2020 } | 0 -a3 0 │ │ │ │ +0003a1a0: 2030 2020 2030 2020 2020 207c 2020 2020 0 0 | │ │ │ │ +0003a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a1e0: 7c0a 7c20 2020 2020 207b 357d 207c 2030 |.| {5} | 0 │ │ │ │ -0003a1f0: 2020 2030 2020 2020 2d61 3320 3020 2020 0 -a3 0 │ │ │ │ -0003a200: 3020 2020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a1d0: 2020 2020 207c 0a7c 2020 2020 2020 7b35 |.| {5 │ │ │ │ +0003a1e0: 7d20 7c20 3020 2020 3020 2020 202d 6133 } | 0 0 -a3 │ │ │ │ +0003a1f0: 2030 2020 2030 2020 2020 207c 2020 2020 0 0 | │ │ │ │ +0003a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a230: 7c0a 7c20 2020 2020 207b 367d 207c 2030 |.| {6} | 0 │ │ │ │ -0003a240: 2020 2030 2020 2020 3020 2020 2d61 3320 0 0 -a3 │ │ │ │ -0003a250: 3020 2020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a220: 2020 2020 207c 0a7c 2020 2020 2020 7b36 |.| {6 │ │ │ │ +0003a230: 7d20 7c20 3020 2020 3020 2020 2030 2020 } | 0 0 0 │ │ │ │ +0003a240: 202d 6133 2030 2020 2020 207c 2020 2020 -a3 0 | │ │ │ │ +0003a250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a280: 7c0a 7c20 2020 2020 207b 367d 207c 2030 |.| {6} | 0 │ │ │ │ -0003a290: 2020 2030 2020 2020 3020 2020 3020 2020 0 0 0 │ │ │ │ -0003a2a0: 2d61 3320 2020 7c20 2020 2020 2020 2020 -a3 | │ │ │ │ +0003a270: 2020 2020 207c 0a7c 2020 2020 2020 7b36 |.| {6 │ │ │ │ +0003a280: 7d20 7c20 3020 2020 3020 2020 2030 2020 } | 0 0 0 │ │ │ │ +0003a290: 2030 2020 202d 6133 2020 207c 2020 2020 0 -a3 | │ │ │ │ +0003a2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a2d0: 7c0a 7c20 2020 2020 207b 377d 207c 202d |.| {7} | - │ │ │ │ -0003a2e0: 6220 2061 2020 2020 3020 2020 3020 2020 b a 0 0 │ │ │ │ -0003a2f0: 3020 2020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a2c0: 2020 2020 207c 0a7c 2020 2020 2020 7b37 |.| {7 │ │ │ │ +0003a2d0: 7d20 7c20 2d62 2020 6120 2020 2030 2020 } | -b a 0 │ │ │ │ +0003a2e0: 2030 2020 2030 2020 2020 207c 2020 2020 0 0 | │ │ │ │ +0003a2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a320: 7c0a 7c20 2020 2020 207b 377d 207c 2063 |.| {7} | c │ │ │ │ -0003a330: 2020 2030 2020 2020 2d61 2020 2d62 3220 0 -a -b2 │ │ │ │ -0003a340: 3020 2020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a310: 2020 2020 207c 0a7c 2020 2020 2020 7b37 |.| {7 │ │ │ │ +0003a320: 7d20 7c20 6320 2020 3020 2020 202d 6120 } | c 0 -a │ │ │ │ +0003a330: 202d 6232 2030 2020 2020 207c 2020 2020 -b2 0 | │ │ │ │ +0003a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a370: 7c0a 7c20 2020 2020 207b 377d 207c 2030 |.| {7} | 0 │ │ │ │ -0003a380: 2020 202d 6320 2020 6220 2020 3020 2020 -c b 0 │ │ │ │ -0003a390: 2d61 3220 2020 7c20 2020 2020 2020 2020 -a2 | │ │ │ │ +0003a360: 2020 2020 207c 0a7c 2020 2020 2020 7b37 |.| {7 │ │ │ │ +0003a370: 7d20 7c20 3020 2020 2d63 2020 2062 2020 } | 0 -c b │ │ │ │ +0003a380: 2030 2020 202d 6132 2020 207c 2020 2020 0 -a2 | │ │ │ │ +0003a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a3c0: 7c0a 7c20 2020 2020 207b 357d 207c 2030 |.| {5} | 0 │ │ │ │ -0003a3d0: 2020 202d 6233 2020 3020 2020 3020 2020 -b3 0 0 │ │ │ │ -0003a3e0: 3020 2020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a3b0: 2020 2020 207c 0a7c 2020 2020 2020 7b35 |.| {5 │ │ │ │ +0003a3c0: 7d20 7c20 3020 2020 2d62 3320 2030 2020 } | 0 -b3 0 │ │ │ │ +0003a3d0: 2030 2020 2030 2020 2020 207c 2020 2020 0 0 | │ │ │ │ +0003a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a410: 7c0a 7c20 2020 2020 207b 357d 207c 2030 |.| {5} | 0 │ │ │ │ -0003a420: 2020 202d 6232 6320 3020 2020 3020 2020 -b2c 0 0 │ │ │ │ -0003a430: 2d61 3262 3220 7c20 2020 2020 2020 2020 -a2b2 | │ │ │ │ +0003a400: 2020 2020 207c 0a7c 2020 2020 2020 7b35 |.| {5 │ │ │ │ +0003a410: 7d20 7c20 3020 2020 2d62 3263 2030 2020 } | 0 -b2c 0 │ │ │ │ +0003a420: 2030 2020 202d 6132 6232 207c 2020 2020 0 -a2b2 | │ │ │ │ +0003a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a460: 7c0a 7c20 2020 2020 207b 357d 207c 2030 |.| {5} | 0 │ │ │ │ -0003a470: 2020 2061 6232 2020 3020 2020 3020 2020 ab2 0 0 │ │ │ │ -0003a480: 3020 2020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a450: 2020 2020 207c 0a7c 2020 2020 2020 7b35 |.| {5 │ │ │ │ +0003a460: 7d20 7c20 3020 2020 6162 3220 2030 2020 } | 0 ab2 0 │ │ │ │ +0003a470: 2030 2020 2030 2020 2020 207c 2020 2020 0 0 | │ │ │ │ +0003a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a4b0: 7c0a 7c20 2020 2020 207b 367d 207c 2030 |.| {6} | 0 │ │ │ │ -0003a4c0: 2020 2030 2020 2020 3020 2020 3020 2020 0 0 0 │ │ │ │ -0003a4d0: 6233 2020 2020 7c20 2020 2020 2020 2020 b3 | │ │ │ │ +0003a4a0: 2020 2020 207c 0a7c 2020 2020 2020 7b36 |.| {6 │ │ │ │ +0003a4b0: 7d20 7c20 3020 2020 3020 2020 2030 2020 } | 0 0 0 │ │ │ │ +0003a4c0: 2030 2020 2062 3320 2020 207c 2020 2020 0 b3 | │ │ │ │ +0003a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a500: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003a4f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003a500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a550: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003a560: 2031 3220 2020 2020 2035 2020 2020 2020 12 5 │ │ │ │ +0003a540: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003a550: 2020 2020 2020 3132 2020 2020 2020 3520 12 5 │ │ │ │ +0003a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a5a0: 7c0a 7c6f 3131 203a 204d 6174 7269 7820 |.|o11 : Matrix │ │ │ │ -0003a5b0: 5320 2020 3c2d 2d20 5320 2020 2020 2020 S <-- S │ │ │ │ +0003a590: 2020 2020 207c 0a7c 6f31 3120 3a20 4d61 |.|o11 : Ma │ │ │ │ +0003a5a0: 7472 6978 2053 2020 203c 2d2d 2053 2020 trix S <-- S │ │ │ │ +0003a5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a5f0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0003a5e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0003a5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a640: 2b0a 7c69 3132 203a 2046 2e64 645f 3220 +.|i12 : F.dd_2 │ │ │ │ +0003a630: 2d2d 2d2d 2d2b 0a7c 6931 3220 3a20 462e -----+.|i12 : F. │ │ │ │ +0003a640: 6464 5f32 2020 2020 2020 2020 2020 2020 dd_2 │ │ │ │ 0003a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a690: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003a680: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a6e0: 7c0a 7c6f 3132 203d 207b 357d 207c 2062 |.|o12 = {5} | b │ │ │ │ -0003a6f0: 3320 2020 3020 2020 3020 2020 3020 2020 3 0 0 0 │ │ │ │ -0003a700: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a6d0: 2020 2020 207c 0a7c 6f31 3220 3d20 7b35 |.|o12 = {5 │ │ │ │ +0003a6e0: 7d20 7c20 6233 2020 2030 2020 2030 2020 } | b3 0 0 │ │ │ │ +0003a6f0: 2030 2020 2020 2030 2020 207c 2020 2020 0 0 | │ │ │ │ +0003a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a730: 7c0a 7c20 2020 2020 207b 357d 207c 202d |.| {5} | - │ │ │ │ -0003a740: 6132 6220 3020 2020 3020 2020 3020 2020 a2b 0 0 0 │ │ │ │ -0003a750: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a720: 2020 2020 207c 0a7c 2020 2020 2020 7b35 |.| {5 │ │ │ │ +0003a730: 7d20 7c20 2d61 3262 2030 2020 2030 2020 } | -a2b 0 0 │ │ │ │ +0003a740: 2030 2020 2020 2030 2020 207c 2020 2020 0 0 | │ │ │ │ +0003a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a780: 7c0a 7c20 2020 2020 207b 357d 207c 202d |.| {5} | - │ │ │ │ -0003a790: 6132 6320 3020 2020 3020 2020 2d61 3262 a2c 0 0 -a2b │ │ │ │ -0003a7a0: 3220 3020 2020 7c20 2020 2020 2020 2020 2 0 | │ │ │ │ +0003a770: 2020 2020 207c 0a7c 2020 2020 2020 7b35 |.| {5 │ │ │ │ +0003a780: 7d20 7c20 2d61 3263 2030 2020 2030 2020 } | -a2c 0 0 │ │ │ │ +0003a790: 202d 6132 6232 2030 2020 207c 2020 2020 -a2b2 0 | │ │ │ │ +0003a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a7d0: 7c0a 7c20 2020 2020 207b 357d 207c 2030 |.| {5} | 0 │ │ │ │ -0003a7e0: 2020 2020 2d62 3320 3020 2020 3020 2020 -b3 0 0 │ │ │ │ -0003a7f0: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a7c0: 2020 2020 207c 0a7c 2020 2020 2020 7b35 |.| {5 │ │ │ │ +0003a7d0: 7d20 7c20 3020 2020 202d 6233 2030 2020 } | 0 -b3 0 │ │ │ │ +0003a7e0: 2030 2020 2020 2030 2020 207c 2020 2020 0 0 | │ │ │ │ +0003a7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a820: 7c0a 7c20 2020 2020 207b 357d 207c 2030 |.| {5} | 0 │ │ │ │ -0003a830: 2020 2020 3020 2020 2d62 3320 3020 2020 0 -b3 0 │ │ │ │ -0003a840: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a810: 2020 2020 207c 0a7c 2020 2020 2020 7b35 |.| {5 │ │ │ │ +0003a820: 7d20 7c20 3020 2020 2030 2020 202d 6233 } | 0 0 -b3 │ │ │ │ +0003a830: 2030 2020 2020 2030 2020 207c 2020 2020 0 0 | │ │ │ │ +0003a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a870: 7c0a 7c20 2020 2020 207b 357d 207c 202d |.| {5} | - │ │ │ │ -0003a880: 6133 2020 3020 2020 3020 2020 3020 2020 a3 0 0 0 │ │ │ │ -0003a890: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a860: 2020 2020 207c 0a7c 2020 2020 2020 7b35 |.| {5 │ │ │ │ +0003a870: 7d20 7c20 2d61 3320 2030 2020 2030 2020 } | -a3 0 0 │ │ │ │ +0003a880: 2030 2020 2020 2030 2020 207c 2020 2020 0 0 | │ │ │ │ +0003a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a8c0: 7c0a 7c20 2020 2020 207b 367d 207c 2030 |.| {6} | 0 │ │ │ │ -0003a8d0: 2020 2020 3020 2020 3020 2020 2d62 3320 0 0 -b3 │ │ │ │ -0003a8e0: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a8b0: 2020 2020 207c 0a7c 2020 2020 2020 7b36 |.| {6 │ │ │ │ +0003a8c0: 7d20 7c20 3020 2020 2030 2020 2030 2020 } | 0 0 0 │ │ │ │ +0003a8d0: 202d 6233 2020 2030 2020 207c 2020 2020 -b3 0 | │ │ │ │ +0003a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a910: 7c0a 7c20 2020 2020 207b 367d 207c 2030 |.| {6} | 0 │ │ │ │ -0003a920: 2020 2020 3020 2020 3020 2020 3020 2020 0 0 0 │ │ │ │ -0003a930: 2020 2d62 3320 7c20 2020 2020 2020 2020 -b3 | │ │ │ │ +0003a900: 2020 2020 207c 0a7c 2020 2020 2020 7b36 |.| {6 │ │ │ │ +0003a910: 7d20 7c20 3020 2020 2030 2020 2030 2020 } | 0 0 0 │ │ │ │ +0003a920: 2030 2020 2020 202d 6233 207c 2020 2020 0 -b3 | │ │ │ │ +0003a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a960: 7c0a 7c20 2020 2020 207b 367d 207c 2030 |.| {6} | 0 │ │ │ │ -0003a970: 2020 2020 3020 2020 3020 2020 6133 2020 0 0 a3 │ │ │ │ -0003a980: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a950: 2020 2020 207c 0a7c 2020 2020 2020 7b36 |.| {6 │ │ │ │ +0003a960: 7d20 7c20 3020 2020 2030 2020 2030 2020 } | 0 0 0 │ │ │ │ +0003a970: 2061 3320 2020 2030 2020 207c 2020 2020 a3 0 | │ │ │ │ +0003a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a9b0: 7c0a 7c20 2020 2020 207b 377d 207c 202d |.| {7} | - │ │ │ │ -0003a9c0: 6220 2020 6120 2020 3020 2020 3020 2020 b a 0 0 │ │ │ │ -0003a9d0: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a9a0: 2020 2020 207c 0a7c 2020 2020 2020 7b37 |.| {7 │ │ │ │ +0003a9b0: 7d20 7c20 2d62 2020 2061 2020 2030 2020 } | -b a 0 │ │ │ │ +0003a9c0: 2030 2020 2020 2030 2020 207c 2020 2020 0 0 | │ │ │ │ +0003a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aa00: 7c0a 7c20 2020 2020 207b 377d 207c 2063 |.| {7} | c │ │ │ │ -0003aa10: 2020 2020 3020 2020 6120 2020 6232 2020 0 a b2 │ │ │ │ -0003aa20: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0003a9f0: 2020 2020 207c 0a7c 2020 2020 2020 7b37 |.| {7 │ │ │ │ +0003aa00: 7d20 7c20 6320 2020 2030 2020 2061 2020 } | c 0 a │ │ │ │ +0003aa10: 2062 3220 2020 2030 2020 207c 2020 2020 b2 0 | │ │ │ │ +0003aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aa50: 7c0a 7c20 2020 2020 207b 377d 207c 2030 |.| {7} | 0 │ │ │ │ -0003aa60: 2020 2020 2d63 2020 2d62 2020 3020 2020 -c -b 0 │ │ │ │ -0003aa70: 2020 6132 2020 7c20 2020 2020 2020 2020 a2 | │ │ │ │ +0003aa40: 2020 2020 207c 0a7c 2020 2020 2020 7b37 |.| {7 │ │ │ │ +0003aa50: 7d20 7c20 3020 2020 202d 6320 202d 6220 } | 0 -c -b │ │ │ │ +0003aa60: 2030 2020 2020 2061 3220 207c 2020 2020 0 a2 | │ │ │ │ +0003aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aaa0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003aa90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003aaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aaf0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ab00: 2031 3220 2020 2020 2035 2020 2020 2020 12 5 │ │ │ │ +0003aae0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003aaf0: 2020 2020 2020 3132 2020 2020 2020 3520 12 5 │ │ │ │ +0003ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ab40: 7c0a 7c6f 3132 203a 204d 6174 7269 7820 |.|o12 : Matrix │ │ │ │ -0003ab50: 5320 2020 3c2d 2d20 5320 2020 2020 2020 S <-- S │ │ │ │ +0003ab30: 2020 2020 207c 0a7c 6f31 3220 3a20 4d61 |.|o12 : Ma │ │ │ │ +0003ab40: 7472 6978 2053 2020 203c 2d2d 2053 2020 trix S <-- S │ │ │ │ +0003ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ab70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ab80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ab90: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0003ab80: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0003ab90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003aba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003abb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003abc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003abd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003abe0: 2b0a 0a49 6620 7468 6520 636f 6d70 6c65 +..If the comple │ │ │ │ -0003abf0: 7869 7479 206f 6620 4d20 6973 206e 6f74 xity of M is not │ │ │ │ -0003ac00: 206d 6178 696d 616c 2c20 7468 656e 2074 maximal, then t │ │ │ │ -0003ac10: 6865 2066 696e 6974 6520 7265 736f 6c75 he finite resolu │ │ │ │ -0003ac20: 7469 6f6e 2074 616b 6573 2070 6c61 6365 tion takes place │ │ │ │ -0003ac30: 0a6f 7665 7220 616e 2069 6e74 6572 6d65 .over an interme │ │ │ │ -0003ac40: 6469 6174 6520 636f 6d70 6c65 7465 2069 diate complete i │ │ │ │ -0003ac50: 6e74 6572 7365 6374 696f 6e3a 0a0a 2b2d ntersection:..+- │ │ │ │ +0003abd0: 2d2d 2d2d 2d2b 0a0a 4966 2074 6865 2063 -----+..If the c │ │ │ │ +0003abe0: 6f6d 706c 6578 6974 7920 6f66 204d 2069 omplexity of M i │ │ │ │ +0003abf0: 7320 6e6f 7420 6d61 7869 6d61 6c2c 2074 s not maximal, t │ │ │ │ +0003ac00: 6865 6e20 7468 6520 6669 6e69 7465 2072 hen the finite r │ │ │ │ +0003ac10: 6573 6f6c 7574 696f 6e20 7461 6b65 7320 esolution takes │ │ │ │ +0003ac20: 706c 6163 650a 6f76 6572 2061 6e20 696e place.over an in │ │ │ │ +0003ac30: 7465 726d 6564 6961 7465 2063 6f6d 706c termediate compl │ │ │ │ +0003ac40: 6574 6520 696e 7465 7273 6563 7469 6f6e ete intersection │ │ │ │ +0003ac50: 3a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d :..+------------ │ │ │ │ 0003ac60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ac70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ac80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ac90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003aca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003acb0: 3133 203a 2053 203d 205a 5a2f 3130 315b 13 : S = ZZ/101[ │ │ │ │ -0003acc0: 612c 622c 632c 645d 2020 2020 2020 2020 a,b,c,d] │ │ │ │ +0003aca0: 2d2b 0a7c 6931 3320 3a20 5320 3d20 5a5a -+.|i13 : S = ZZ │ │ │ │ +0003acb0: 2f31 3031 5b61 2c62 2c63 2c64 5d20 2020 /101[a,b,c,d] │ │ │ │ +0003acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003acd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003acf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003acf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ad00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ad10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ad20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ad40: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003ad50: 3133 203d 2053 2020 2020 2020 2020 2020 13 = S │ │ │ │ +0003ad40: 207c 0a7c 6f31 3320 3d20 5320 2020 2020 |.|o13 = S │ │ │ │ +0003ad50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ad60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ad70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ad80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ad90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003ad90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ade0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003adf0: 3133 203a 2050 6f6c 796e 6f6d 6961 6c52 13 : PolynomialR │ │ │ │ -0003ae00: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +0003ade0: 207c 0a7c 6f31 3320 3a20 506f 6c79 6e6f |.|o13 : Polyno │ │ │ │ +0003adf0: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ +0003ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ae30: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003ae30: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003ae40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ae50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ae60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ae70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ae80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003ae90: 3134 203a 2066 6631 203d 206d 6174 7269 14 : ff1 = matri │ │ │ │ -0003aea0: 7822 6133 2c62 332c 6333 2c64 3322 2020 x"a3,b3,c3,d3" │ │ │ │ +0003ae80: 2d2b 0a7c 6931 3420 3a20 6666 3120 3d20 -+.|i14 : ff1 = │ │ │ │ +0003ae90: 6d61 7472 6978 2261 332c 6233 2c63 332c matrix"a3,b3,c3, │ │ │ │ +0003aea0: 6433 2220 2020 2020 2020 2020 2020 2020 d3" │ │ │ │ 0003aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aed0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003aed0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003af20: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003af30: 3134 203d 207c 2061 3320 6233 2063 3320 14 = | a3 b3 c3 │ │ │ │ -0003af40: 6433 207c 2020 2020 2020 2020 2020 2020 d3 | │ │ │ │ +0003af20: 207c 0a7c 6f31 3420 3d20 7c20 6133 2062 |.|o14 = | a3 b │ │ │ │ +0003af30: 3320 6333 2064 3320 7c20 2020 2020 2020 3 c3 d3 | │ │ │ │ +0003af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003af70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003af70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003afc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003afd0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ -0003afe0: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ +0003afc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003afd0: 2020 3120 2020 2020 2034 2020 2020 2020 1 4 │ │ │ │ +0003afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b010: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003b020: 3134 203a 204d 6174 7269 7820 5320 203c 14 : Matrix S < │ │ │ │ -0003b030: 2d2d 2053 2020 2020 2020 2020 2020 2020 -- S │ │ │ │ +0003b010: 207c 0a7c 6f31 3420 3a20 4d61 7472 6978 |.|o14 : Matrix │ │ │ │ +0003b020: 2053 2020 3c2d 2d20 5320 2020 2020 2020 S <-- S │ │ │ │ +0003b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b060: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003b060: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003b070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003b0c0: 3135 203a 2066 6620 3d66 6631 2a72 616e 15 : ff =ff1*ran │ │ │ │ -0003b0d0: 646f 6d28 736f 7572 6365 2066 6631 2c20 dom(source ff1, │ │ │ │ -0003b0e0: 736f 7572 6365 2066 6631 2920 2020 2020 source ff1) │ │ │ │ +0003b0b0: 2d2b 0a7c 6931 3520 3a20 6666 203d 6666 -+.|i15 : ff =ff │ │ │ │ +0003b0c0: 312a 7261 6e64 6f6d 2873 6f75 7263 6520 1*random(source │ │ │ │ +0003b0d0: 6666 312c 2073 6f75 7263 6520 6666 3129 ff1, source ff1) │ │ │ │ +0003b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b100: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b100: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b150: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003b160: 3135 203d 207c 2032 3461 332d 3336 6233 15 = | 24a3-36b3 │ │ │ │ -0003b170: 2d33 3063 332d 3239 6433 2031 3961 332b -30c3-29d3 19a3+ │ │ │ │ -0003b180: 3139 6233 2d31 3063 332d 3239 6433 202d 19b3-10c3-29d3 - │ │ │ │ -0003b190: 3861 332d 3232 6233 2d32 3963 332d 3234 8a3-22b3-29c3-24 │ │ │ │ -0003b1a0: 6433 2020 2020 2020 2020 2020 7c0a 7c20 d3 |.| │ │ │ │ -0003b1b0: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ +0003b150: 207c 0a7c 6f31 3520 3d20 7c20 3234 6133 |.|o15 = | 24a3 │ │ │ │ +0003b160: 2d33 3662 332d 3330 6333 2d32 3964 3320 -36b3-30c3-29d3 │ │ │ │ +0003b170: 3139 6133 2b31 3962 332d 3130 6333 2d32 19a3+19b3-10c3-2 │ │ │ │ +0003b180: 3964 3320 2d38 6133 2d32 3262 332d 3239 9d3 -8a3-22b3-29 │ │ │ │ +0003b190: 6333 2d32 3464 3320 2020 2020 2020 2020 c3-24d3 │ │ │ │ +0003b1a0: 207c 0a7c 2020 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +0003b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0003b200: 2020 2020 202d 3338 6133 2d31 3662 332b -38a3-16b3+ │ │ │ │ -0003b210: 3339 6333 2b32 3164 3320 7c20 2020 2020 39c3+21d3 | │ │ │ │ +0003b1f0: 2d7c 0a7c 2020 2020 2020 2d33 3861 332d -|.| -38a3- │ │ │ │ +0003b200: 3136 6233 2b33 3963 332b 3231 6433 207c 16b3+39c3+21d3 | │ │ │ │ +0003b210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b240: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b240: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b290: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003b2a0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ -0003b2b0: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ +0003b290: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b2a0: 2020 3120 2020 2020 2034 2020 2020 2020 1 4 │ │ │ │ +0003b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b2e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003b2f0: 3135 203a 204d 6174 7269 7820 5320 203c 15 : Matrix S < │ │ │ │ -0003b300: 2d2d 2053 2020 2020 2020 2020 2020 2020 -- S │ │ │ │ +0003b2e0: 207c 0a7c 6f31 3520 3a20 4d61 7472 6978 |.|o15 : Matrix │ │ │ │ +0003b2f0: 2053 2020 3c2d 2d20 5320 2020 2020 2020 S <-- S │ │ │ │ +0003b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b330: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003b330: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003b340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003b390: 3136 203a 2052 203d 2053 2f69 6465 616c 16 : R = S/ideal │ │ │ │ -0003b3a0: 2066 6620 2020 2020 2020 2020 2020 2020 ff │ │ │ │ +0003b380: 2d2b 0a7c 6931 3620 3a20 5220 3d20 532f -+.|i16 : R = S/ │ │ │ │ +0003b390: 6964 6561 6c20 6666 2020 2020 2020 2020 ideal ff │ │ │ │ +0003b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b3d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b3d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b420: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003b430: 3136 203d 2052 2020 2020 2020 2020 2020 16 = R │ │ │ │ +0003b420: 207c 0a7c 6f31 3620 3d20 5220 2020 2020 |.|o16 = R │ │ │ │ +0003b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b470: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b470: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b4c0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003b4d0: 3136 203a 2051 756f 7469 656e 7452 696e 16 : QuotientRin │ │ │ │ -0003b4e0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +0003b4c0: 207c 0a7c 6f31 3620 3a20 5175 6f74 6965 |.|o16 : Quotie │ │ │ │ +0003b4d0: 6e74 5269 6e67 2020 2020 2020 2020 2020 ntRing │ │ │ │ +0003b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b510: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003b510: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003b520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003b570: 3137 203a 204d 203d 2068 6967 6853 797a 17 : M = highSyz │ │ │ │ -0003b580: 7967 7920 2852 5e31 2f69 6465 616c 2261 ygy (R^1/ideal"a │ │ │ │ -0003b590: 3262 3222 2920 2020 2020 2020 2020 2020 2b2") │ │ │ │ +0003b560: 2d2b 0a7c 6931 3720 3a20 4d20 3d20 6869 -+.|i17 : M = hi │ │ │ │ +0003b570: 6768 5379 7a79 6779 2028 525e 312f 6964 ghSyzygy (R^1/id │ │ │ │ +0003b580: 6561 6c22 6132 6232 2229 2020 2020 2020 eal"a2b2") │ │ │ │ +0003b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b5b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b5b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b600: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003b610: 3137 203d 2063 6f6b 6572 6e65 6c20 7b36 17 = cokernel {6 │ │ │ │ -0003b620: 7d20 7c20 6232 2030 202d 6132 2030 207c } | b2 0 -a2 0 | │ │ │ │ +0003b600: 207c 0a7c 6f31 3720 3d20 636f 6b65 726e |.|o17 = cokern │ │ │ │ +0003b610: 656c 207b 367d 207c 2062 3220 3020 2d61 el {6} | b2 0 -a │ │ │ │ +0003b620: 3220 3020 7c20 2020 2020 2020 2020 2020 2 0 | │ │ │ │ 0003b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b650: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003b660: 2020 2020 2020 2020 2020 2020 2020 7b37 {7 │ │ │ │ -0003b670: 7d20 7c20 6120 2062 2030 2020 2030 207c } | a b 0 0 | │ │ │ │ +0003b650: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b660: 2020 207b 377d 207c 2061 2020 6220 3020 {7} | a b 0 │ │ │ │ +0003b670: 2020 3020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ 0003b680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b6a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003b6b0: 2020 2020 2020 2020 2020 2020 2020 7b37 {7 │ │ │ │ -0003b6c0: 7d20 7c20 3020 2030 2062 2020 2061 207c } | 0 0 b a | │ │ │ │ +0003b6a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b6b0: 2020 207b 377d 207c 2030 2020 3020 6220 {7} | 0 0 b │ │ │ │ +0003b6c0: 2020 6120 7c20 2020 2020 2020 2020 2020 a | │ │ │ │ 0003b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b6f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b6f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b740: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b740: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b760: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ +0003b760: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0003b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b790: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003b7a0: 3137 203a 2052 2d6d 6f64 756c 652c 2071 17 : R-module, q │ │ │ │ -0003b7b0: 756f 7469 656e 7420 6f66 2052 2020 2020 uotient of R │ │ │ │ +0003b790: 207c 0a7c 6f31 3720 3a20 522d 6d6f 6475 |.|o17 : R-modu │ │ │ │ +0003b7a0: 6c65 2c20 7175 6f74 6965 6e74 206f 6620 le, quotient of │ │ │ │ +0003b7b0: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 0003b7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b7e0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003b7e0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003b7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003b840: 3138 203a 2063 6f6d 706c 6578 6974 7920 18 : complexity │ │ │ │ -0003b850: 4d20 2020 2020 2020 2020 2020 2020 2020 M │ │ │ │ +0003b830: 2d2b 0a7c 6931 3820 3a20 636f 6d70 6c65 -+.|i18 : comple │ │ │ │ +0003b840: 7869 7479 204d 2020 2020 2020 2020 2020 xity M │ │ │ │ +0003b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b880: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b880: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b8d0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003b8e0: 3138 203d 2032 2020 2020 2020 2020 2020 18 = 2 │ │ │ │ +0003b8d0: 207c 0a7c 6f31 3820 3d20 3220 2020 2020 |.|o18 = 2 │ │ │ │ +0003b8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b920: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003b920: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003b930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003b980: 3139 203a 206d 6620 3d20 6d61 7472 6978 19 : mf = matrix │ │ │ │ -0003b990: 4661 6374 6f72 697a 6174 696f 6e20 2866 Factorization (f │ │ │ │ -0003b9a0: 662c 204d 2920 2020 2020 2020 2020 2020 f, M) │ │ │ │ +0003b970: 2d2b 0a7c 6931 3920 3a20 6d66 203d 206d -+.|i19 : mf = m │ │ │ │ +0003b980: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ +0003b990: 6f6e 2028 6666 2c20 4d29 2020 2020 2020 on (ff, M) │ │ │ │ +0003b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b9c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b9c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ba10: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003ba20: 3139 203d 207b 7b37 7d20 7c20 2d61 202d 19 = {{7} | -a - │ │ │ │ -0003ba30: 3336 6220 3020 6120 7c2c 207b 387d 207c 36b 0 a |, {8} | │ │ │ │ -0003ba40: 2033 3561 3220 2034 3862 2020 3020 2020 35a2 48b 0 │ │ │ │ -0003ba50: 2020 2d33 3362 2030 2020 2020 207c 2c20 -33b 0 |, │ │ │ │ -0003ba60: 7b36 7d20 7c20 3020 2020 3336 7c0a 7c20 {6} | 0 36|.| │ │ │ │ -0003ba70: 2020 2020 2020 7b36 7d20 7c20 6232 2061 {6} | b2 a │ │ │ │ -0003ba80: 3220 2020 3020 3020 7c20 207b 387d 207c 2 0 0 | {8} | │ │ │ │ -0003ba90: 202d 3335 6232 202d 3335 6120 3020 2020 -35b2 -35a 0 │ │ │ │ -0003baa0: 2020 3020 2020 2030 2020 2020 207c 2020 0 0 | │ │ │ │ -0003bab0: 7b37 7d20 7c20 2d33 3620 3020 7c0a 7c20 {7} | -36 0 |.| │ │ │ │ -0003bac0: 2020 2020 2020 7b37 7d20 7c20 3020 2030 {7} | 0 0 │ │ │ │ -0003bad0: 2020 2020 6220 6120 7c20 207b 387d 207c b a | {8} | │ │ │ │ -0003bae0: 2030 2020 2020 2030 2020 2020 3333 6232 0 0 33b2 │ │ │ │ -0003baf0: 2020 3333 6120 202d 3333 6232 207c 2020 33a -33b2 | │ │ │ │ -0003bb00: 7b37 7d20 7c20 3120 2020 3020 7c0a 7c20 {7} | 1 0 |.| │ │ │ │ +0003ba10: 207c 0a7c 6f31 3920 3d20 7b7b 377d 207c |.|o19 = {{7} | │ │ │ │ +0003ba20: 202d 6120 2d33 3662 2030 2061 207c 2c20 -a -36b 0 a |, │ │ │ │ +0003ba30: 7b38 7d20 7c20 3335 6132 2020 3438 6220 {8} | 35a2 48b │ │ │ │ +0003ba40: 2030 2020 2020 202d 3333 6220 3020 2020 0 -33b 0 │ │ │ │ +0003ba50: 2020 7c2c 207b 367d 207c 2030 2020 2033 |, {6} | 0 3 │ │ │ │ +0003ba60: 367c 0a7c 2020 2020 2020 207b 367d 207c 6|.| {6} | │ │ │ │ +0003ba70: 2062 3220 6132 2020 2030 2030 207c 2020 b2 a2 0 0 | │ │ │ │ +0003ba80: 7b38 7d20 7c20 2d33 3562 3220 2d33 3561 {8} | -35b2 -35a │ │ │ │ +0003ba90: 2030 2020 2020 2030 2020 2020 3020 2020 0 0 0 │ │ │ │ +0003baa0: 2020 7c20 207b 377d 207c 202d 3336 2030 | {7} | -36 0 │ │ │ │ +0003bab0: 207c 0a7c 2020 2020 2020 207b 377d 207c |.| {7} | │ │ │ │ +0003bac0: 2030 2020 3020 2020 2062 2061 207c 2020 0 0 b a | │ │ │ │ +0003bad0: 7b38 7d20 7c20 3020 2020 2020 3020 2020 {8} | 0 0 │ │ │ │ +0003bae0: 2033 3362 3220 2033 3361 2020 2d33 3362 33b2 33a -33b │ │ │ │ +0003baf0: 3220 7c20 207b 377d 207c 2031 2020 2030 2 | {7} | 1 0 │ │ │ │ +0003bb00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bb20: 2020 2020 2020 2020 2020 207b 387d 207c {8} | │ │ │ │ -0003bb30: 2030 2020 2020 2030 2020 2020 2d34 3361 0 0 -43a │ │ │ │ -0003bb40: 3220 2d33 3362 2030 2020 2020 207c 2020 2 -33b 0 | │ │ │ │ -0003bb50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003bb60: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ +0003bb20: 7b38 7d20 7c20 3020 2020 2020 3020 2020 {8} | 0 0 │ │ │ │ +0003bb30: 202d 3433 6132 202d 3333 6220 3020 2020 -43a2 -33b 0 │ │ │ │ +0003bb40: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003bb50: 207c 0a7c 2020 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +0003bb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003bba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0003bbb0: 2020 2020 2030 2020 7c7d 2020 2020 2020 0 |} │ │ │ │ +0003bba0: 2d7c 0a7c 2020 2020 2020 3020 207c 7d20 -|.| 0 |} │ │ │ │ +0003bbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bbf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003bc00: 2020 2020 2033 3620 7c20 2020 2020 2020 36 | │ │ │ │ +0003bbf0: 207c 0a7c 2020 2020 2020 3336 207c 2020 |.| 36 | │ │ │ │ +0003bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bc40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003bc50: 2020 2020 2030 2020 7c20 2020 2020 2020 0 | │ │ │ │ +0003bc40: 207c 0a7c 2020 2020 2020 3020 207c 2020 |.| 0 | │ │ │ │ +0003bc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bc90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003bc90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003bca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bce0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003bcf0: 3139 203a 204c 6973 7420 2020 2020 2020 19 : List │ │ │ │ +0003bce0: 207c 0a7c 6f31 3920 3a20 4c69 7374 2020 |.|o19 : List │ │ │ │ +0003bcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bd30: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003bd30: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003bd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bd70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003bd80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003bd90: 3230 203a 2063 6f6d 706c 6578 6974 7920 20 : complexity │ │ │ │ -0003bda0: 6d66 2020 2020 2020 2020 2020 2020 2020 mf │ │ │ │ +0003bd80: 2d2b 0a7c 6932 3020 3a20 636f 6d70 6c65 -+.|i20 : comple │ │ │ │ +0003bd90: 7869 7479 206d 6620 2020 2020 2020 2020 xity mf │ │ │ │ +0003bda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bdd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003bdd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003bde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003be00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003be10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003be20: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003be30: 3230 203d 2032 2020 2020 2020 2020 2020 20 = 2 │ │ │ │ +0003be20: 207c 0a7c 6f32 3020 3d20 3220 2020 2020 |.|o20 = 2 │ │ │ │ +0003be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003be70: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003be70: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003be80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003be90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003beb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003bec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003bed0: 3231 203a 2042 5261 6e6b 7320 6d66 2020 21 : BRanks mf │ │ │ │ +0003bec0: 2d2b 0a7c 6932 3120 3a20 4252 616e 6b73 -+.|i21 : BRanks │ │ │ │ +0003bed0: 206d 6620 2020 2020 2020 2020 2020 2020 mf │ │ │ │ 0003bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bf10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003bf10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bf60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003bf70: 3231 203d 207b 7b32 2c20 327d 2c20 7b31 21 = {{2, 2}, {1 │ │ │ │ -0003bf80: 2c20 327d 7d20 2020 2020 2020 2020 2020 , 2}} │ │ │ │ +0003bf60: 207c 0a7c 6f32 3120 3d20 7b7b 322c 2032 |.|o21 = {{2, 2 │ │ │ │ +0003bf70: 7d2c 207b 312c 2032 7d7d 2020 2020 2020 }, {1, 2}} │ │ │ │ +0003bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bfb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003bfb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003bfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c000: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003c010: 3231 203a 204c 6973 7420 2020 2020 2020 21 : List │ │ │ │ +0003c000: 207c 0a7c 6f32 3120 3a20 4c69 7374 2020 |.|o21 : List │ │ │ │ +0003c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c050: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003c050: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003c060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003c0b0: 3232 203a 2047 203d 206d 616b 6546 696e 22 : G = makeFin │ │ │ │ -0003c0c0: 6974 6552 6573 6f6c 7574 696f 6e28 6666 iteResolution(ff │ │ │ │ -0003c0d0: 2c6d 6629 3b20 2020 2020 2020 2020 2020 ,mf); │ │ │ │ +0003c0a0: 2d2b 0a7c 6932 3220 3a20 4720 3d20 6d61 -+.|i22 : G = ma │ │ │ │ +0003c0b0: 6b65 4669 6e69 7465 5265 736f 6c75 7469 keFiniteResoluti │ │ │ │ +0003c0c0: 6f6e 2866 662c 6d66 293b 2020 2020 2020 on(ff,mf); │ │ │ │ +0003c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c0f0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003c0f0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003c100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003c150: 3233 203a 2063 6f64 696d 2072 696e 6720 23 : codim ring │ │ │ │ -0003c160: 4720 2020 2020 2020 2020 2020 2020 2020 G │ │ │ │ +0003c140: 2d2b 0a7c 6932 3320 3a20 636f 6469 6d20 -+.|i23 : codim │ │ │ │ +0003c150: 7269 6e67 2047 2020 2020 2020 2020 2020 ring G │ │ │ │ +0003c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c190: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003c190: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003c1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c1e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003c1f0: 3233 203d 2032 2020 2020 2020 2020 2020 23 = 2 │ │ │ │ +0003c1e0: 207c 0a7c 6f32 3320 3d20 3220 2020 2020 |.|o23 = 2 │ │ │ │ +0003c1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c230: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003c230: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003c240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003c290: 3234 203a 2052 3120 3d20 7269 6e67 2047 24 : R1 = ring G │ │ │ │ +0003c280: 2d2b 0a7c 6932 3420 3a20 5231 203d 2072 -+.|i24 : R1 = r │ │ │ │ +0003c290: 696e 6720 4720 2020 2020 2020 2020 2020 ing G │ │ │ │ 0003c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c2d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003c2d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c320: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003c330: 3234 203d 2052 3120 2020 2020 2020 2020 24 = R1 │ │ │ │ +0003c320: 207c 0a7c 6f32 3420 3d20 5231 2020 2020 |.|o24 = R1 │ │ │ │ +0003c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c370: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003c370: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c3c0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003c3d0: 3234 203a 2051 756f 7469 656e 7452 696e 24 : QuotientRin │ │ │ │ -0003c3e0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +0003c3c0: 207c 0a7c 6f32 3420 3a20 5175 6f74 6965 |.|o24 : Quotie │ │ │ │ +0003c3d0: 6e74 5269 6e67 2020 2020 2020 2020 2020 ntRing │ │ │ │ +0003c3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c410: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003c410: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003c420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003c470: 3235 203a 2046 203d 2066 7265 6552 6573 25 : F = freeRes │ │ │ │ -0003c480: 6f6c 7574 696f 6e28 7072 756e 6520 7075 olution(prune pu │ │ │ │ -0003c490: 7368 466f 7277 6172 6428 6d61 7028 522c shForward(map(R, │ │ │ │ -0003c4a0: 5231 292c 4d29 2c20 4c65 6e67 7468 4c69 R1),M), LengthLi │ │ │ │ -0003c4b0: 6d69 7420 3d3e 2034 2920 2020 7c0a 7c20 mit => 4) |.| │ │ │ │ +0003c460: 2d2b 0a7c 6932 3520 3a20 4620 3d20 6672 -+.|i25 : F = fr │ │ │ │ +0003c470: 6565 5265 736f 6c75 7469 6f6e 2870 7275 eeResolution(pru │ │ │ │ +0003c480: 6e65 2070 7573 6846 6f72 7761 7264 286d ne pushForward(m │ │ │ │ +0003c490: 6170 2852 2c52 3129 2c4d 292c 204c 656e ap(R,R1),M), Len │ │ │ │ +0003c4a0: 6774 684c 696d 6974 203d 3e20 3429 2020 gthLimit => 4) │ │ │ │ +0003c4b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c500: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003c510: 2020 2020 2020 2033 2020 2020 2020 2035 3 5 │ │ │ │ -0003c520: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0003c500: 207c 0a7c 2020 2020 2020 2020 3320 2020 |.| 3 │ │ │ │ +0003c510: 2020 2020 3520 2020 2020 2020 3220 2020 5 2 │ │ │ │ +0003c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c550: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003c560: 3235 203d 2052 3120 203c 2d2d 2052 3120 25 = R1 <-- R1 │ │ │ │ -0003c570: 203c 2d2d 2052 3120 2020 2020 2020 2020 <-- R1 │ │ │ │ +0003c550: 207c 0a7c 6f32 3520 3d20 5231 2020 3c2d |.|o25 = R1 <- │ │ │ │ +0003c560: 2d20 5231 2020 3c2d 2d20 5231 2020 2020 - R1 <-- R1 │ │ │ │ +0003c570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c5a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003c5a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003c5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c5f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003c600: 2020 2020 2030 2020 2020 2020 2031 2020 0 1 │ │ │ │ -0003c610: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0003c5f0: 207c 0a7c 2020 2020 2020 3020 2020 2020 |.| 0 │ │ │ │ +0003c600: 2020 3120 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ +0003c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c640: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003c640: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c690: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003c6a0: 3235 203a 2043 6f6d 706c 6578 2020 2020 25 : Complex │ │ │ │ +0003c690: 207c 0a7c 6f32 3520 3a20 436f 6d70 6c65 |.|o25 : Comple │ │ │ │ +0003c6a0: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ 0003c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c6e0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003c6e0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003c6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003c740: 3236 203a 2062 6574 7469 2046 2020 2020 26 : betti F │ │ │ │ +0003c730: 2d2b 0a7c 6932 3620 3a20 6265 7474 6920 -+.|i26 : betti │ │ │ │ +0003c740: 4620 2020 2020 2020 2020 2020 2020 2020 F │ │ │ │ 0003c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c780: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003c780: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c7d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003c7e0: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ -0003c7f0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003c7d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003c7e0: 2030 2031 2032 2020 2020 2020 2020 2020 0 1 2 │ │ │ │ +0003c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c820: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003c830: 3236 203d 2074 6f74 616c 3a20 3320 3520 26 = total: 3 5 │ │ │ │ -0003c840: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003c820: 207c 0a7c 6f32 3620 3d20 746f 7461 6c3a |.|o26 = total: │ │ │ │ +0003c830: 2033 2035 2032 2020 2020 2020 2020 2020 3 5 2 │ │ │ │ +0003c840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c870: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003c880: 2020 2020 2020 2020 2036 3a20 3120 2e20 6: 1 . │ │ │ │ -0003c890: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0003c870: 207c 0a7c 2020 2020 2020 2020 2020 363a |.| 6: │ │ │ │ +0003c880: 2031 202e 202e 2020 2020 2020 2020 2020 1 . . │ │ │ │ +0003c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c8c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003c8d0: 2020 2020 2020 2020 2037 3a20 3220 3420 7: 2 4 │ │ │ │ -0003c8e0: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0003c8c0: 207c 0a7c 2020 2020 2020 2020 2020 373a |.| 7: │ │ │ │ +0003c8d0: 2032 2034 202e 2020 2020 2020 2020 2020 2 4 . │ │ │ │ +0003c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c910: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003c920: 2020 2020 2020 2020 2038 3a20 2e20 2e20 8: . . │ │ │ │ -0003c930: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0003c910: 207c 0a7c 2020 2020 2020 2020 2020 383a |.| 8: │ │ │ │ +0003c920: 202e 202e 202e 2020 2020 2020 2020 2020 . . . │ │ │ │ +0003c930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c960: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003c970: 2020 2020 2020 2020 2039 3a20 2e20 3120 9: . 1 │ │ │ │ -0003c980: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003c960: 207c 0a7c 2020 2020 2020 2020 2020 393a |.| 9: │ │ │ │ +0003c970: 202e 2031 2032 2020 2020 2020 2020 2020 . 1 2 │ │ │ │ +0003c980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c9b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003c9b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ca00: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003ca10: 3236 203a 2042 6574 7469 5461 6c6c 7920 26 : BettiTally │ │ │ │ +0003ca00: 207c 0a7c 6f32 3620 3a20 4265 7474 6954 |.|o26 : BettiT │ │ │ │ +0003ca10: 616c 6c79 2020 2020 2020 2020 2020 2020 ally │ │ │ │ 0003ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ca50: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003ca50: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003ca60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ca70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ca80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ca90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003caa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003cab0: 3237 203a 2062 6574 7469 2047 2020 2020 27 : betti G │ │ │ │ +0003caa0: 2d2b 0a7c 6932 3720 3a20 6265 7474 6920 -+.|i27 : betti │ │ │ │ +0003cab0: 4720 2020 2020 2020 2020 2020 2020 2020 G │ │ │ │ 0003cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003caf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003caf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003cb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cb40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003cb50: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ -0003cb60: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003cb40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003cb50: 2030 2031 2032 2020 2020 2020 2020 2020 0 1 2 │ │ │ │ +0003cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cb90: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003cba0: 3237 203d 2074 6f74 616c 3a20 3320 3520 27 = total: 3 5 │ │ │ │ -0003cbb0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003cb90: 207c 0a7c 6f32 3720 3d20 746f 7461 6c3a |.|o27 = total: │ │ │ │ +0003cba0: 2033 2035 2032 2020 2020 2020 2020 2020 3 5 2 │ │ │ │ +0003cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cbe0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003cbf0: 2020 2020 2020 2020 2036 3a20 3120 2e20 6: 1 . │ │ │ │ -0003cc00: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0003cbe0: 207c 0a7c 2020 2020 2020 2020 2020 363a |.| 6: │ │ │ │ +0003cbf0: 2031 202e 202e 2020 2020 2020 2020 2020 1 . . │ │ │ │ +0003cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cc30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003cc40: 2020 2020 2020 2020 2037 3a20 3220 3420 7: 2 4 │ │ │ │ -0003cc50: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0003cc30: 207c 0a7c 2020 2020 2020 2020 2020 373a |.| 7: │ │ │ │ +0003cc40: 2032 2034 202e 2020 2020 2020 2020 2020 2 4 . │ │ │ │ +0003cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cc80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003cc90: 2020 2020 2020 2020 2038 3a20 2e20 2e20 8: . . │ │ │ │ -0003cca0: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0003cc80: 207c 0a7c 2020 2020 2020 2020 2020 383a |.| 8: │ │ │ │ +0003cc90: 202e 202e 202e 2020 2020 2020 2020 2020 . . . │ │ │ │ +0003cca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ccd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003cce0: 2020 2020 2020 2020 2039 3a20 2e20 3120 9: . 1 │ │ │ │ -0003ccf0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003ccd0: 207c 0a7c 2020 2020 2020 2020 2020 393a |.| 9: │ │ │ │ +0003cce0: 202e 2031 2032 2020 2020 2020 2020 2020 . 1 2 │ │ │ │ +0003ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cd20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003cd20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cd70: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003cd80: 3237 203a 2042 6574 7469 5461 6c6c 7920 27 : BettiTally │ │ │ │ +0003cd70: 207c 0a7c 6f32 3720 3a20 4265 7474 6954 |.|o27 : BettiT │ │ │ │ +0003cd80: 616c 6c79 2020 2020 2020 2020 2020 2020 ally │ │ │ │ 0003cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cdc0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003cdc0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003cdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ce00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ce10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ -0003ce20: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -0003ce30: 0a0a 2020 2a20 2a6e 6f74 6520 6d61 7472 .. * *note matr │ │ │ │ -0003ce40: 6978 4661 6374 6f72 697a 6174 696f 6e3a ixFactorization: │ │ │ │ -0003ce50: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ -0003ce60: 7469 6f6e 2c20 2d2d 204d 6170 7320 696e tion, -- Maps in │ │ │ │ -0003ce70: 2061 2068 6967 6865 720a 2020 2020 636f a higher. co │ │ │ │ -0003ce80: 6469 6d65 6e73 696f 6e20 6d61 7472 6978 dimension matrix │ │ │ │ -0003ce90: 2066 6163 746f 7269 7a61 7469 6f6e 0a20 factorization. │ │ │ │ -0003cea0: 202a 202a 6e6f 7465 2062 4d61 7073 3a20 * *note bMaps: │ │ │ │ -0003ceb0: 624d 6170 732c 202d 2d20 6c69 7374 2074 bMaps, -- list t │ │ │ │ -0003cec0: 6865 206d 6170 7320 2064 5f70 3a42 5f31 he maps d_p:B_1 │ │ │ │ -0003ced0: 2870 292d 2d3e 425f 3028 7029 2069 6e20 (p)-->B_0(p) in │ │ │ │ -0003cee0: 610a 2020 2020 6d61 7472 6978 4661 6374 a. matrixFact │ │ │ │ -0003cef0: 6f72 697a 6174 696f 6e0a 2020 2a20 2a6e orization. * *n │ │ │ │ -0003cf00: 6f74 6520 7073 694d 6170 733a 2070 7369 ote psiMaps: psi │ │ │ │ -0003cf10: 4d61 7073 2c20 2d2d 206c 6973 7420 7468 Maps, -- list th │ │ │ │ -0003cf20: 6520 6d61 7073 2020 7073 6928 7029 3a20 e maps psi(p): │ │ │ │ -0003cf30: 425f 3128 7029 202d 2d3e 2041 5f30 2870 B_1(p) --> A_0(p │ │ │ │ -0003cf40: 2d31 2920 696e 2061 0a20 2020 206d 6174 -1) in a. mat │ │ │ │ -0003cf50: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -0003cf60: 0a20 202a 202a 6e6f 7465 2068 4d61 7073 . * *note hMaps │ │ │ │ -0003cf70: 3a20 684d 6170 732c 202d 2d20 6c69 7374 : hMaps, -- list │ │ │ │ -0003cf80: 2074 6865 206d 6170 7320 2068 2870 293a the maps h(p): │ │ │ │ -0003cf90: 2041 5f30 2870 292d 2d3e 2041 5f31 2870 A_0(p)--> A_1(p │ │ │ │ -0003cfa0: 2920 696e 2061 0a20 2020 206d 6174 7269 ) in a. matri │ │ │ │ -0003cfb0: 7846 6163 746f 7269 7a61 7469 6f6e 0a20 xFactorization. │ │ │ │ -0003cfc0: 202a 202a 6e6f 7465 2063 6f6d 706c 6578 * *note complex │ │ │ │ -0003cfd0: 6974 793a 2063 6f6d 706c 6578 6974 792c ity: complexity, │ │ │ │ -0003cfe0: 202d 2d20 636f 6d70 6c65 7869 7479 206f -- complexity o │ │ │ │ -0003cff0: 6620 6120 6d6f 6475 6c65 206f 7665 7220 f a module over │ │ │ │ -0003d000: 6120 636f 6d70 6c65 7465 0a20 2020 2069 a complete. i │ │ │ │ -0003d010: 6e74 6572 7365 6374 696f 6e0a 0a57 6179 ntersection..Way │ │ │ │ -0003d020: 7320 746f 2075 7365 206d 616b 6546 696e s to use makeFin │ │ │ │ -0003d030: 6974 6552 6573 6f6c 7574 696f 6e3a 0a3d iteResolution:.= │ │ │ │ +0003ce10: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ +0003ce20: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +0003ce30: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ +0003ce40: 7469 6f6e 3a20 6d61 7472 6978 4661 6374 tion: matrixFact │ │ │ │ +0003ce50: 6f72 697a 6174 696f 6e2c 202d 2d20 4d61 orization, -- Ma │ │ │ │ +0003ce60: 7073 2069 6e20 6120 6869 6768 6572 0a20 ps in a higher. │ │ │ │ +0003ce70: 2020 2063 6f64 696d 656e 7369 6f6e 206d codimension m │ │ │ │ +0003ce80: 6174 7269 7820 6661 6374 6f72 697a 6174 atrix factorizat │ │ │ │ +0003ce90: 696f 6e0a 2020 2a20 2a6e 6f74 6520 624d ion. * *note bM │ │ │ │ +0003cea0: 6170 733a 2062 4d61 7073 2c20 2d2d 206c aps: bMaps, -- l │ │ │ │ +0003ceb0: 6973 7420 7468 6520 6d61 7073 2020 645f ist the maps d_ │ │ │ │ +0003cec0: 703a 425f 3128 7029 2d2d 3e42 5f30 2870 p:B_1(p)-->B_0(p │ │ │ │ +0003ced0: 2920 696e 2061 0a20 2020 206d 6174 7269 ) in a. matri │ │ │ │ +0003cee0: 7846 6163 746f 7269 7a61 7469 6f6e 0a20 xFactorization. │ │ │ │ +0003cef0: 202a 202a 6e6f 7465 2070 7369 4d61 7073 * *note psiMaps │ │ │ │ +0003cf00: 3a20 7073 694d 6170 732c 202d 2d20 6c69 : psiMaps, -- li │ │ │ │ +0003cf10: 7374 2074 6865 206d 6170 7320 2070 7369 st the maps psi │ │ │ │ +0003cf20: 2870 293a 2042 5f31 2870 2920 2d2d 3e20 (p): B_1(p) --> │ │ │ │ +0003cf30: 415f 3028 702d 3129 2069 6e20 610a 2020 A_0(p-1) in a. │ │ │ │ +0003cf40: 2020 6d61 7472 6978 4661 6374 6f72 697a matrixFactoriz │ │ │ │ +0003cf50: 6174 696f 6e0a 2020 2a20 2a6e 6f74 6520 ation. * *note │ │ │ │ +0003cf60: 684d 6170 733a 2068 4d61 7073 2c20 2d2d hMaps: hMaps, -- │ │ │ │ +0003cf70: 206c 6973 7420 7468 6520 6d61 7073 2020 list the maps │ │ │ │ +0003cf80: 6828 7029 3a20 415f 3028 7029 2d2d 3e20 h(p): A_0(p)--> │ │ │ │ +0003cf90: 415f 3128 7029 2069 6e20 610a 2020 2020 A_1(p) in a. │ │ │ │ +0003cfa0: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ +0003cfb0: 696f 6e0a 2020 2a20 2a6e 6f74 6520 636f ion. * *note co │ │ │ │ +0003cfc0: 6d70 6c65 7869 7479 3a20 636f 6d70 6c65 mplexity: comple │ │ │ │ +0003cfd0: 7869 7479 2c20 2d2d 2063 6f6d 706c 6578 xity, -- complex │ │ │ │ +0003cfe0: 6974 7920 6f66 2061 206d 6f64 756c 6520 ity of a module │ │ │ │ +0003cff0: 6f76 6572 2061 2063 6f6d 706c 6574 650a over a complete. │ │ │ │ +0003d000: 2020 2020 696e 7465 7273 6563 7469 6f6e intersection │ │ │ │ +0003d010: 0a0a 5761 7973 2074 6f20 7573 6520 6d61 ..Ways to use ma │ │ │ │ +0003d020: 6b65 4669 6e69 7465 5265 736f 6c75 7469 keFiniteResoluti │ │ │ │ +0003d030: 6f6e 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d on:.============ │ │ │ │ 0003d040: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0003d050: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0003d060: 0a0a 2020 2a20 226d 616b 6546 696e 6974 .. * "makeFinit │ │ │ │ -0003d070: 6552 6573 6f6c 7574 696f 6e28 4d61 7472 eResolution(Matr │ │ │ │ -0003d080: 6978 2c4c 6973 7429 220a 0a46 6f72 2074 ix,List)"..For t │ │ │ │ -0003d090: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -0003d0a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0003d0b0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -0003d0c0: 7465 206d 616b 6546 696e 6974 6552 6573 te makeFiniteRes │ │ │ │ -0003d0d0: 6f6c 7574 696f 6e3a 206d 616b 6546 696e olution: makeFin │ │ │ │ -0003d0e0: 6974 6552 6573 6f6c 7574 696f 6e2c 2069 iteResolution, i │ │ │ │ -0003d0f0: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ -0003d100: 0a66 756e 6374 696f 6e3a 2028 4d61 6361 .function: (Maca │ │ │ │ -0003d110: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -0003d120: 756e 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d unction,...----- │ │ │ │ +0003d050: 3d3d 3d3d 3d0a 0a20 202a 2022 6d61 6b65 =====.. * "make │ │ │ │ +0003d060: 4669 6e69 7465 5265 736f 6c75 7469 6f6e FiniteResolution │ │ │ │ +0003d070: 284d 6174 7269 782c 4c69 7374 2922 0a0a (Matrix,List)".. │ │ │ │ +0003d080: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +0003d090: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +0003d0a0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +0003d0b0: 7420 2a6e 6f74 6520 6d61 6b65 4669 6e69 t *note makeFini │ │ │ │ +0003d0c0: 7465 5265 736f 6c75 7469 6f6e 3a20 6d61 teResolution: ma │ │ │ │ +0003d0d0: 6b65 4669 6e69 7465 5265 736f 6c75 7469 keFiniteResoluti │ │ │ │ +0003d0e0: 6f6e 2c20 6973 2061 202a 6e6f 7465 206d on, is a *note m │ │ │ │ +0003d0f0: 6574 686f 640a 6675 6e63 7469 6f6e 3a20 ethod.function: │ │ │ │ +0003d100: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ +0003d110: 7468 6f64 4675 6e63 7469 6f6e 2c2e 0a0a thodFunction,... │ │ │ │ +0003d120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d170: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -0003d180: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -0003d190: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -0003d1a0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -0003d1b0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -0003d1c0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -0003d1d0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -0003d1e0: 732f 0a43 6f6d 706c 6574 6549 6e74 6572 s/.CompleteInter │ │ │ │ -0003d1f0: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -0003d200: 6e73 2e6d 323a 3238 3939 3a30 2e0a 1f0a ns.m2:2899:0.... │ │ │ │ -0003d210: 4669 6c65 3a20 436f 6d70 6c65 7465 496e File: CompleteIn │ │ │ │ -0003d220: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ -0003d230: 7469 6f6e 732e 696e 666f 2c20 4e6f 6465 tions.info, Node │ │ │ │ -0003d240: 3a20 6d61 6b65 4669 6e69 7465 5265 736f : makeFiniteReso │ │ │ │ -0003d250: 6c75 7469 6f6e 436f 6469 6d32 2c20 4e65 lutionCodim2, Ne │ │ │ │ -0003d260: 7874 3a20 6d61 6b65 486f 6d6f 746f 7069 xt: makeHomotopi │ │ │ │ -0003d270: 6573 2c20 5072 6576 3a20 6d61 6b65 4669 es, Prev: makeFi │ │ │ │ -0003d280: 6e69 7465 5265 736f 6c75 7469 6f6e 2c20 niteResolution, │ │ │ │ -0003d290: 5570 3a20 546f 700a 0a6d 616b 6546 696e Up: Top..makeFin │ │ │ │ -0003d2a0: 6974 6552 6573 6f6c 7574 696f 6e43 6f64 iteResolutionCod │ │ │ │ -0003d2b0: 696d 3220 2d2d 204d 6170 7320 6173 736f im2 -- Maps asso │ │ │ │ -0003d2c0: 6369 6174 6564 2074 6f20 7468 6520 6669 ciated to the fi │ │ │ │ -0003d2d0: 6e69 7465 2072 6573 6f6c 7574 696f 6e20 nite resolution │ │ │ │ -0003d2e0: 6f66 2061 2068 6967 6820 7379 7a79 6779 of a high syzygy │ │ │ │ -0003d2f0: 206d 6f64 756c 6520 696e 2063 6f64 696d module in codim │ │ │ │ -0003d300: 2032 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2.************* │ │ │ │ +0003d160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +0003d170: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +0003d180: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +0003d190: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +0003d1a0: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +0003d1b0: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +0003d1c0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +0003d1d0: 636b 6167 6573 2f0a 436f 6d70 6c65 7465 ckages/.Complete │ │ │ │ +0003d1e0: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +0003d1f0: 6c75 7469 6f6e 732e 6d32 3a32 3839 393a lutions.m2:2899: │ │ │ │ +0003d200: 302e 0a1f 0a46 696c 653a 2043 6f6d 706c 0....File: Compl │ │ │ │ +0003d210: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ +0003d220: 6573 6f6c 7574 696f 6e73 2e69 6e66 6f2c esolutions.info, │ │ │ │ +0003d230: 204e 6f64 653a 206d 616b 6546 696e 6974 Node: makeFinit │ │ │ │ +0003d240: 6552 6573 6f6c 7574 696f 6e43 6f64 696d eResolutionCodim │ │ │ │ +0003d250: 322c 204e 6578 743a 206d 616b 6548 6f6d 2, Next: makeHom │ │ │ │ +0003d260: 6f74 6f70 6965 732c 2050 7265 763a 206d otopies, Prev: m │ │ │ │ +0003d270: 616b 6546 696e 6974 6552 6573 6f6c 7574 akeFiniteResolut │ │ │ │ +0003d280: 696f 6e2c 2055 703a 2054 6f70 0a0a 6d61 ion, Up: Top..ma │ │ │ │ +0003d290: 6b65 4669 6e69 7465 5265 736f 6c75 7469 keFiniteResoluti │ │ │ │ +0003d2a0: 6f6e 436f 6469 6d32 202d 2d20 4d61 7073 onCodim2 -- Maps │ │ │ │ +0003d2b0: 2061 7373 6f63 6961 7465 6420 746f 2074 associated to t │ │ │ │ +0003d2c0: 6865 2066 696e 6974 6520 7265 736f 6c75 he finite resolu │ │ │ │ +0003d2d0: 7469 6f6e 206f 6620 6120 6869 6768 2073 tion of a high s │ │ │ │ +0003d2e0: 797a 7967 7920 6d6f 6475 6c65 2069 6e20 yzygy module in │ │ │ │ +0003d2f0: 636f 6469 6d20 320a 2a2a 2a2a 2a2a 2a2a codim 2.******** │ │ │ │ +0003d300: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0003d310: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0003d320: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0003d330: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0003d340: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0003d350: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003d360: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ -0003d370: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -0003d380: 2020 6d61 7073 203d 206d 616b 6546 696e maps = makeFin │ │ │ │ -0003d390: 6974 6552 6573 6f6c 7574 696f 6e43 6f64 iteResolutionCod │ │ │ │ -0003d3a0: 696d 3228 6666 2c6d 6629 0a20 202a 2049 im2(ff,mf). * I │ │ │ │ -0003d3b0: 6e70 7574 733a 0a20 2020 2020 202a 206d nputs:. * m │ │ │ │ -0003d3c0: 662c 2061 202a 6e6f 7465 206c 6973 743a f, a *note list: │ │ │ │ -0003d3d0: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ -0003d3e0: 6973 742c 2c20 6d61 7472 6978 2066 6163 ist,, matrix fac │ │ │ │ -0003d3f0: 746f 7269 7a61 7469 6f6e 0a20 2020 2020 torization. │ │ │ │ -0003d400: 202a 2066 662c 2061 202a 6e6f 7465 206d * ff, a *note m │ │ │ │ -0003d410: 6174 7269 783a 2028 4d61 6361 756c 6179 atrix: (Macaulay │ │ │ │ -0003d420: 3244 6f63 294d 6174 7269 782c 2c20 7265 2Doc)Matrix,, re │ │ │ │ -0003d430: 6775 6c61 7220 7365 7175 656e 6365 0a20 gular sequence. │ │ │ │ -0003d440: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ -0003d450: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ -0003d460: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ -0003d470: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ -0003d480: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ -0003d490: 2020 2020 202a 2043 6865 636b 203d 3e20 * Check => │ │ │ │ -0003d4a0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -0003d4b0: 7565 2066 616c 7365 0a20 202a 204f 7574 ue false. * Out │ │ │ │ -0003d4c0: 7075 7473 3a0a 2020 2020 2020 2a20 6d61 puts:. * ma │ │ │ │ -0003d4d0: 7073 2c20 6120 2a6e 6f74 6520 6861 7368 ps, a *note hash │ │ │ │ -0003d4e0: 2074 6162 6c65 3a20 284d 6163 6175 6c61 table: (Macaula │ │ │ │ -0003d4f0: 7932 446f 6329 4861 7368 5461 626c 652c y2Doc)HashTable, │ │ │ │ -0003d500: 2c20 6d61 6e79 206d 6170 730a 0a44 6573 , many maps..Des │ │ │ │ -0003d510: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0003d520: 3d3d 3d3d 0a0a 4769 7665 6e20 6120 636f ====..Given a co │ │ │ │ -0003d530: 6469 6d20 3220 6d61 7472 6978 2066 6163 dim 2 matrix fac │ │ │ │ -0003d540: 746f 7269 7a61 7469 6f6e 2c20 6d61 6b65 torization, make │ │ │ │ -0003d550: 7320 616c 6c20 7468 6520 636f 6d70 6f6e s all the compon │ │ │ │ -0003d560: 656e 7473 206f 6620 7468 650a 6469 6666 ents of the.diff │ │ │ │ -0003d570: 6572 656e 7469 616c 2061 6e64 206f 6620 erential and of │ │ │ │ -0003d580: 7468 6520 686f 6d6f 746f 7069 6573 2074 the homotopies t │ │ │ │ -0003d590: 6861 7420 6172 6520 7265 6c65 7661 6e74 hat are relevant │ │ │ │ -0003d5a0: 2074 6f20 7468 6520 6669 6e69 7465 2072 to the finite r │ │ │ │ -0003d5b0: 6573 6f6c 7574 696f 6e2c 0a61 7320 696e esolution,.as in │ │ │ │ -0003d5c0: 2034 2e32 2e33 206f 6620 4569 7365 6e62 4.2.3 of Eisenb │ │ │ │ -0003d5d0: 7564 2d50 6565 7661 2022 4d69 6e69 6d61 ud-Peeva "Minima │ │ │ │ -0003d5e0: 6c20 4672 6565 2052 6573 6f6c 7574 696f l Free Resolutio │ │ │ │ -0003d5f0: 6e73 2061 6e64 2048 6967 6865 7220 4d61 ns and Higher Ma │ │ │ │ -0003d600: 7472 6978 0a46 6163 746f 7269 7a61 7469 trix.Factorizati │ │ │ │ -0003d610: 6f6e 7322 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ons"..+--------- │ │ │ │ +0003d360: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ +0003d370: 2020 2020 2020 206d 6170 7320 3d20 6d61 maps = ma │ │ │ │ +0003d380: 6b65 4669 6e69 7465 5265 736f 6c75 7469 keFiniteResoluti │ │ │ │ +0003d390: 6f6e 436f 6469 6d32 2866 662c 6d66 290a onCodim2(ff,mf). │ │ │ │ +0003d3a0: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +0003d3b0: 2020 2a20 6d66 2c20 6120 2a6e 6f74 6520 * mf, a *note │ │ │ │ +0003d3c0: 6c69 7374 3a20 284d 6163 6175 6c61 7932 list: (Macaulay2 │ │ │ │ +0003d3d0: 446f 6329 4c69 7374 2c2c 206d 6174 7269 Doc)List,, matri │ │ │ │ +0003d3e0: 7820 6661 6374 6f72 697a 6174 696f 6e0a x factorization. │ │ │ │ +0003d3f0: 2020 2020 2020 2a20 6666 2c20 6120 2a6e * ff, a *n │ │ │ │ +0003d400: 6f74 6520 6d61 7472 6978 3a20 284d 6163 ote matrix: (Mac │ │ │ │ +0003d410: 6175 6c61 7932 446f 6329 4d61 7472 6978 aulay2Doc)Matrix │ │ │ │ +0003d420: 2c2c 2072 6567 756c 6172 2073 6571 7565 ,, regular seque │ │ │ │ +0003d430: 6e63 650a 2020 2a20 2a6e 6f74 6520 4f70 nce. * *note Op │ │ │ │ +0003d440: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ +0003d450: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ +0003d460: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ +0003d470: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ +0003d480: 732c 3a0a 2020 2020 2020 2a20 4368 6563 s,:. * Chec │ │ │ │ +0003d490: 6b20 3d3e 202e 2e2e 2c20 6465 6661 756c k => ..., defaul │ │ │ │ +0003d4a0: 7420 7661 6c75 6520 6661 6c73 650a 2020 t value false. │ │ │ │ +0003d4b0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +0003d4c0: 202a 206d 6170 732c 2061 202a 6e6f 7465 * maps, a *note │ │ │ │ +0003d4d0: 2068 6173 6820 7461 626c 653a 2028 4d61 hash table: (Ma │ │ │ │ +0003d4e0: 6361 756c 6179 3244 6f63 2948 6173 6854 caulay2Doc)HashT │ │ │ │ +0003d4f0: 6162 6c65 2c2c 206d 616e 7920 6d61 7073 able,, many maps │ │ │ │ +0003d500: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +0003d510: 3d3d 3d3d 3d3d 3d3d 3d0a 0a47 6976 656e =========..Given │ │ │ │ +0003d520: 2061 2063 6f64 696d 2032 206d 6174 7269 a codim 2 matri │ │ │ │ +0003d530: 7820 6661 6374 6f72 697a 6174 696f 6e2c x factorization, │ │ │ │ +0003d540: 206d 616b 6573 2061 6c6c 2074 6865 2063 makes all the c │ │ │ │ +0003d550: 6f6d 706f 6e65 6e74 7320 6f66 2074 6865 omponents of the │ │ │ │ +0003d560: 0a64 6966 6665 7265 6e74 6961 6c20 616e .differential an │ │ │ │ +0003d570: 6420 6f66 2074 6865 2068 6f6d 6f74 6f70 d of the homotop │ │ │ │ +0003d580: 6965 7320 7468 6174 2061 7265 2072 656c ies that are rel │ │ │ │ +0003d590: 6576 616e 7420 746f 2074 6865 2066 696e evant to the fin │ │ │ │ +0003d5a0: 6974 6520 7265 736f 6c75 7469 6f6e 2c0a ite resolution,. │ │ │ │ +0003d5b0: 6173 2069 6e20 342e 322e 3320 6f66 2045 as in 4.2.3 of E │ │ │ │ +0003d5c0: 6973 656e 6275 642d 5065 6576 6120 224d isenbud-Peeva "M │ │ │ │ +0003d5d0: 696e 696d 616c 2046 7265 6520 5265 736f inimal Free Reso │ │ │ │ +0003d5e0: 6c75 7469 6f6e 7320 616e 6420 4869 6768 lutions and High │ │ │ │ +0003d5f0: 6572 204d 6174 7269 780a 4661 6374 6f72 er Matrix.Factor │ │ │ │ +0003d600: 697a 6174 696f 6e73 220a 0a2b 2d2d 2d2d izations"..+---- │ │ │ │ +0003d610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d650: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 206b -------+.|i1 : k │ │ │ │ -0003d660: 6b3d 5a5a 2f31 3031 2020 2020 2020 2020 k=ZZ/101 │ │ │ │ +0003d640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0003d650: 3120 3a20 6b6b 3d5a 5a2f 3130 3120 2020 1 : kk=ZZ/101 │ │ │ │ +0003d660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d690: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003d680: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003d690: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0003d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d6d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0003d6e0: 6f31 203d 206b 6b20 2020 2020 2020 2020 o1 = kk │ │ │ │ +0003d6d0: 2020 7c0a 7c6f 3120 3d20 6b6b 2020 2020 |.|o1 = kk │ │ │ │ +0003d6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d720: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003d710: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003d720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d760: 2020 207c 0a7c 6f31 203a 2051 756f 7469 |.|o1 : Quoti │ │ │ │ -0003d770: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +0003d750: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +0003d760: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +0003d770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d7a0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0003d790: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0003d7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d7e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -0003d7f0: 2053 203d 206b 6b5b 612c 625d 2020 2020 S = kk[a,b] │ │ │ │ +0003d7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0003d7e0: 7c69 3220 3a20 5320 3d20 6b6b 5b61 2c62 |i2 : S = kk[a,b │ │ │ │ +0003d7f0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 0003d800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d820: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003d820: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d860: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003d870: 0a7c 6f32 203d 2053 2020 2020 2020 2020 .|o2 = S │ │ │ │ +0003d860: 2020 2020 7c0a 7c6f 3220 3d20 5320 2020 |.|o2 = S │ │ │ │ +0003d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d8b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003d8a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003d8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d8f0: 2020 2020 207c 0a7c 6f32 203a 2050 6f6c |.|o2 : Pol │ │ │ │ -0003d900: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ +0003d8e0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +0003d8f0: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ +0003d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d930: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0003d920: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0003d930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -0003d980: 203a 2066 6620 3d20 6d61 7472 6978 2261 : ff = matrix"a │ │ │ │ -0003d990: 342c 6234 2220 2020 2020 2020 2020 2020 4,b4" │ │ │ │ +0003d970: 2b0a 7c69 3320 3a20 6666 203d 206d 6174 +.|i3 : ff = mat │ │ │ │ +0003d980: 7269 7822 6134 2c62 3422 2020 2020 2020 rix"a4,b4" │ │ │ │ +0003d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d9b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003d9c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003d9b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003d9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003da00: 207c 0a7c 6f33 203d 207c 2061 3420 6234 |.|o3 = | a4 b4 │ │ │ │ -0003da10: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003d9f0: 2020 2020 2020 7c0a 7c6f 3320 3d20 7c20 |.|o3 = | │ │ │ │ +0003da00: 6134 2062 3420 7c20 2020 2020 2020 2020 a4 b4 | │ │ │ │ +0003da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003da20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003da30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003da40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0003da30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003da40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003da50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003da60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003da80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0003da90: 2020 2020 2020 2031 2020 2020 2020 3220 1 2 │ │ │ │ +0003da70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003da80: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +0003da90: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003daa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dac0: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -0003dad0: 3a20 4d61 7472 6978 2053 2020 3c2d 2d20 : Matrix S <-- │ │ │ │ -0003dae0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +0003dab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003dac0: 0a7c 6f33 203a 204d 6174 7269 7820 5320 .|o3 : Matrix S │ │ │ │ +0003dad0: 203c 2d2d 2053 2020 2020 2020 2020 2020 <-- S │ │ │ │ +0003dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003daf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003db00: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0003db00: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0003db10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003db20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003db30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003db40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003db50: 2b0a 7c69 3420 3a20 5220 3d20 532f 6964 +.|i4 : R = S/id │ │ │ │ -0003db60: 6561 6c20 6666 2020 2020 2020 2020 2020 eal ff │ │ │ │ +0003db40: 2d2d 2d2d 2d2b 0a7c 6934 203a 2052 203d -----+.|i4 : R = │ │ │ │ +0003db50: 2053 2f69 6465 616c 2066 6620 2020 2020 S/ideal ff │ │ │ │ +0003db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003db70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003db90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003db80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003db90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dbd0: 2020 2020 2020 7c0a 7c6f 3420 3d20 5220 |.|o4 = R │ │ │ │ +0003dbc0: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +0003dbd0: 203d 2052 2020 2020 2020 2020 2020 2020 = R │ │ │ │ 0003dbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dc10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003dc00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003dc10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0003dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dc50: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003dc60: 3420 3a20 5175 6f74 6965 6e74 5269 6e67 4 : QuotientRing │ │ │ │ +0003dc50: 207c 0a7c 6f34 203a 2051 756f 7469 656e |.|o4 : Quotien │ │ │ │ +0003dc60: 7452 696e 6720 2020 2020 2020 2020 2020 tRing │ │ │ │ 0003dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dc90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003dca0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0003dc90: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0003dca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003dcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003dcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003dcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003dce0: 2d2d 2b0a 7c69 3520 3a20 4e20 3d20 525e --+.|i5 : N = R^ │ │ │ │ -0003dcf0: 312f 6964 6561 6c22 6132 2c20 6162 2c20 1/ideal"a2, ab, │ │ │ │ -0003dd00: 6233 2220 2020 2020 2020 2020 2020 2020 b3" │ │ │ │ -0003dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dd20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003dcd0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 204e -------+.|i5 : N │ │ │ │ +0003dce0: 203d 2052 5e31 2f69 6465 616c 2261 322c = R^1/ideal"a2, │ │ │ │ +0003dcf0: 2061 622c 2062 3322 2020 2020 2020 2020 ab, b3" │ │ │ │ +0003dd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003dd10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dd60: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ -0003dd70: 636f 6b65 726e 656c 207c 2061 3220 6162 cokernel | a2 ab │ │ │ │ -0003dd80: 2062 3320 7c20 2020 2020 2020 2020 2020 b3 | │ │ │ │ +0003dd50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003dd60: 6f35 203d 2063 6f6b 6572 6e65 6c20 7c20 o5 = cokernel | │ │ │ │ +0003dd70: 6132 2061 6220 6233 207c 2020 2020 2020 a2 ab b3 | │ │ │ │ +0003dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dda0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003dda0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ddc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dde0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003ddf0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003de00: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +0003dde0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003de00: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0003de10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003de30: 207c 0a7c 6f35 203a 2052 2d6d 6f64 756c |.|o5 : R-modul │ │ │ │ -0003de40: 652c 2071 756f 7469 656e 7420 6f66 2052 e, quotient of R │ │ │ │ +0003de20: 2020 2020 2020 7c0a 7c6f 3520 3a20 522d |.|o5 : R- │ │ │ │ +0003de30: 6d6f 6475 6c65 2c20 7175 6f74 6965 6e74 module, quotient │ │ │ │ +0003de40: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ 0003de50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003de60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003de70: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0003de60: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0003de70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003de80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003de90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003dea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003deb0: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 204e -------+.|i6 : N │ │ │ │ -0003dec0: 203d 2063 6f6b 6572 2076 6172 7320 5220 = coker vars R │ │ │ │ +0003dea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0003deb0: 3620 3a20 4e20 3d20 636f 6b65 7220 7661 6 : N = coker va │ │ │ │ +0003dec0: 7273 2052 2020 2020 2020 2020 2020 2020 rs R │ │ │ │ 0003ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003def0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003dee0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003def0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0003df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003df30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0003df40: 6f36 203d 2063 6f6b 6572 6e65 6c20 7c20 o6 = cokernel | │ │ │ │ -0003df50: 6120 6220 7c20 2020 2020 2020 2020 2020 a b | │ │ │ │ +0003df30: 2020 7c0a 7c6f 3620 3d20 636f 6b65 726e |.|o6 = cokern │ │ │ │ +0003df40: 656c 207c 2061 2062 207c 2020 2020 2020 el | a b | │ │ │ │ +0003df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003df80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003df70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003df80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dfc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dfe0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0003dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e000: 2020 2020 2020 7c0a 7c6f 3620 3a20 522d |.|o6 : R- │ │ │ │ -0003e010: 6d6f 6475 6c65 2c20 7175 6f74 6965 6e74 module, quotient │ │ │ │ -0003e020: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ -0003e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e040: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0003dfb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003dfd0: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ +0003dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003dff0: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ +0003e000: 203a 2052 2d6d 6f64 756c 652c 2071 756f : R-module, quo │ │ │ │ +0003e010: 7469 656e 7420 6f66 2052 2020 2020 2020 tient of R │ │ │ │ +0003e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e030: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003e040: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0003e050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003e090: 3720 3a20 4d20 3d20 6869 6768 5379 7a79 7 : M = highSyzy │ │ │ │ -0003e0a0: 6779 204e 2020 2020 2020 2020 2020 2020 gy N │ │ │ │ +0003e080: 2d2b 0a7c 6937 203a 204d 203d 2068 6967 -+.|i7 : M = hig │ │ │ │ +0003e090: 6853 797a 7967 7920 4e20 2020 2020 2020 hSyzygy N │ │ │ │ +0003e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e0c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003e0d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0003e0c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0003e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e110: 2020 7c0a 7c6f 3720 3d20 636f 6b65 726e |.|o7 = cokern │ │ │ │ -0003e120: 656c 207b 327d 207c 2030 202d 6233 2061 el {2} | 0 -b3 a │ │ │ │ -0003e130: 3320 3020 7c20 2020 2020 2020 2020 2020 3 0 | │ │ │ │ -0003e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e150: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0003e160: 2020 2020 2020 7b34 7d20 7c20 6220 6120 {4} | b a │ │ │ │ -0003e170: 2020 3020 2030 207c 2020 2020 2020 2020 0 0 | │ │ │ │ -0003e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e190: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0003e1a0: 2020 2020 2020 2020 207b 347d 207c 2030 {4} | 0 │ │ │ │ -0003e1b0: 2030 2020 2062 2020 6120 7c20 2020 2020 0 b a | │ │ │ │ +0003e100: 2020 2020 2020 207c 0a7c 6f37 203d 2063 |.|o7 = c │ │ │ │ +0003e110: 6f6b 6572 6e65 6c20 7b32 7d20 7c20 3020 okernel {2} | 0 │ │ │ │ +0003e120: 2d62 3320 6133 2030 207c 2020 2020 2020 -b3 a3 0 | │ │ │ │ +0003e130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e140: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e150: 2020 2020 2020 2020 2020 207b 347d 207c {4} | │ │ │ │ +0003e160: 2062 2061 2020 2030 2020 3020 7c20 2020 b a 0 0 | │ │ │ │ +0003e170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e180: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003e190: 2020 2020 2020 2020 2020 2020 2020 7b34 {4 │ │ │ │ +0003e1a0: 7d20 7c20 3020 3020 2020 6220 2061 207c } | 0 0 b a | │ │ │ │ +0003e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e1d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003e1d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e210: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003e220: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003e230: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +0003e210: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e230: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0003e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e260: 207c 0a7c 6f37 203a 2052 2d6d 6f64 756c |.|o7 : R-modul │ │ │ │ -0003e270: 652c 2071 756f 7469 656e 7420 6f66 2052 e, quotient of R │ │ │ │ +0003e250: 2020 2020 2020 7c0a 7c6f 3720 3a20 522d |.|o7 : R- │ │ │ │ +0003e260: 6d6f 6475 6c65 2c20 7175 6f74 6965 6e74 module, quotient │ │ │ │ +0003e270: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ 0003e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e2a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0003e290: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0003e2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e2e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 204d -------+.|i8 : M │ │ │ │ -0003e2f0: 5320 3d20 7075 7368 466f 7277 6172 6428 S = pushForward( │ │ │ │ -0003e300: 6d61 7028 522c 5329 2c4d 2920 2020 2020 map(R,S),M) │ │ │ │ -0003e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e320: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0003e2e0: 3820 3a20 4d53 203d 2070 7573 6846 6f72 8 : MS = pushFor │ │ │ │ +0003e2f0: 7761 7264 286d 6170 2852 2c53 292c 4d29 ward(map(R,S),M) │ │ │ │ +0003e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e310: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003e320: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0003e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0003e370: 6f38 203d 2063 6f6b 6572 6e65 6c20 7b32 o8 = cokernel {2 │ │ │ │ -0003e380: 7d20 7c20 3020 6233 2061 3320 3020 3020 } | 0 b3 a3 0 0 │ │ │ │ -0003e390: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e3b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003e3c0: 207b 347d 207c 2062 202d 6120 3020 2030 {4} | b -a 0 0 │ │ │ │ -0003e3d0: 2030 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ -0003e3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e3f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003e400: 2020 2020 7b34 7d20 7c20 3020 3020 2062 {4} | 0 0 b │ │ │ │ -0003e410: 2020 6120 6234 207c 2020 2020 2020 2020 a b4 | │ │ │ │ -0003e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e430: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0003e360: 2020 7c0a 7c6f 3820 3d20 636f 6b65 726e |.|o8 = cokern │ │ │ │ +0003e370: 656c 207b 327d 207c 2030 2062 3320 6133 el {2} | 0 b3 a3 │ │ │ │ +0003e380: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +0003e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e3a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003e3b0: 2020 2020 2020 7b34 7d20 7c20 6220 2d61 {4} | b -a │ │ │ │ +0003e3c0: 2030 2020 3020 3020 207c 2020 2020 2020 0 0 0 | │ │ │ │ +0003e3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e3e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003e3f0: 2020 2020 2020 2020 207b 347d 207c 2030 {4} | 0 │ │ │ │ +0003e400: 2030 2020 6220 2061 2062 3420 7c20 2020 0 b a b4 | │ │ │ │ +0003e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e470: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e490: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ +0003e460: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003e470: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003e480: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +0003e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e4b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003e4c0: 3820 3a20 532d 6d6f 6475 6c65 2c20 7175 8 : S-module, qu │ │ │ │ -0003e4d0: 6f74 6965 6e74 206f 6620 5320 2020 2020 otient of S │ │ │ │ +0003e4b0: 207c 0a7c 6f38 203a 2053 2d6d 6f64 756c |.|o8 : S-modul │ │ │ │ +0003e4c0: 652c 2071 756f 7469 656e 7420 6f66 2053 e, quotient of S │ │ │ │ +0003e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e4f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003e500: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0003e4f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0003e500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e540: 2d2d 2b0a 7c69 3920 3a20 6d66 203d 206d --+.|i9 : mf = m │ │ │ │ -0003e550: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ -0003e560: 6f6e 2866 662c 204d 2920 2020 2020 2020 on(ff, M) │ │ │ │ -0003e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e580: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003e530: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 206d -------+.|i9 : m │ │ │ │ +0003e540: 6620 3d20 6d61 7472 6978 4661 6374 6f72 f = matrixFactor │ │ │ │ +0003e550: 697a 6174 696f 6e28 6666 2c20 4d29 2020 ization(ff, M) │ │ │ │ +0003e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e570: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e5c0: 2020 2020 2020 2020 7c0a 7c6f 3920 3d20 |.|o9 = │ │ │ │ -0003e5d0: 7b7b 347d 207c 2061 202d 6220 3020 3020 {{4} | a -b 0 0 │ │ │ │ -0003e5e0: 207c 2c20 7b35 7d20 7c20 6133 2062 2030 |, {5} | a3 b 0 │ │ │ │ -0003e5f0: 2020 2030 2020 3020 207c 2c20 7b32 7d20 0 0 |, {2} │ │ │ │ -0003e600: 7c20 3020 2d31 2030 207c 7d7c 0a7c 2020 | 0 -1 0 |}|.| │ │ │ │ -0003e610: 2020 2020 7b32 7d20 7c20 3020 6133 2030 {2} | 0 a3 0 │ │ │ │ -0003e620: 2062 3320 7c20 207b 357d 207c 2030 2020 b3 | {5} | 0 │ │ │ │ -0003e630: 6120 2d62 3320 3020 2030 2020 7c20 207b a -b3 0 0 | { │ │ │ │ -0003e640: 347d 207c 2030 2030 2020 3120 7c20 7c0a 4} | 0 0 1 | |. │ │ │ │ -0003e650: 7c20 2020 2020 207b 347d 207c 2030 2030 | {4} | 0 0 │ │ │ │ -0003e660: 2020 6220 6120 207c 2020 7b35 7d20 7c20 b a | {5} | │ │ │ │ -0003e670: 3020 2030 2030 2020 202d 6120 6233 207c 0 0 0 -a b3 | │ │ │ │ -0003e680: 2020 7b34 7d20 7c20 3120 3020 2030 207c {4} | 1 0 0 | │ │ │ │ -0003e690: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003e6a0: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ -0003e6b0: 207c 2030 2020 3020 6133 2020 6220 2030 | 0 0 a3 b 0 │ │ │ │ -0003e6c0: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003e6d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0003e5b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003e5c0: 6f39 203d 207b 7b34 7d20 7c20 6120 2d62 o9 = {{4} | a -b │ │ │ │ +0003e5d0: 2030 2030 2020 7c2c 207b 357d 207c 2061 0 0 |, {5} | a │ │ │ │ +0003e5e0: 3320 6220 3020 2020 3020 2030 2020 7c2c 3 b 0 0 0 |, │ │ │ │ +0003e5f0: 207b 327d 207c 2030 202d 3120 3020 7c7d {2} | 0 -1 0 |} │ │ │ │ +0003e600: 7c0a 7c20 2020 2020 207b 327d 207c 2030 |.| {2} | 0 │ │ │ │ +0003e610: 2061 3320 3020 6233 207c 2020 7b35 7d20 a3 0 b3 | {5} │ │ │ │ +0003e620: 7c20 3020 2061 202d 6233 2030 2020 3020 | 0 a -b3 0 0 │ │ │ │ +0003e630: 207c 2020 7b34 7d20 7c20 3020 3020 2031 | {4} | 0 0 1 │ │ │ │ +0003e640: 207c 207c 0a7c 2020 2020 2020 7b34 7d20 | |.| {4} │ │ │ │ +0003e650: 7c20 3020 3020 2062 2061 2020 7c20 207b | 0 0 b a | { │ │ │ │ +0003e660: 357d 207c 2030 2020 3020 3020 2020 2d61 5} | 0 0 0 -a │ │ │ │ +0003e670: 2062 3320 7c20 207b 347d 207c 2031 2030 b3 | {4} | 1 0 │ │ │ │ +0003e680: 2020 3020 7c20 7c0a 7c20 2020 2020 2020 0 | |.| │ │ │ │ +0003e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e6a0: 2020 7b35 7d20 7c20 3020 2030 2061 3320 {5} | 0 0 a3 │ │ │ │ +0003e6b0: 2062 2020 3020 207c 2020 2020 2020 2020 b 0 | │ │ │ │ +0003e6c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003e6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e710: 2020 2020 2020 207c 0a7c 6f39 203a 204c |.|o9 : L │ │ │ │ -0003e720: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +0003e700: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0003e710: 3920 3a20 4c69 7374 2020 2020 2020 2020 9 : List │ │ │ │ +0003e720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e750: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0003e740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003e750: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0003e760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0003e7a0: 6931 3020 3a20 4720 3d20 6d61 6b65 4669 i10 : G = makeFi │ │ │ │ -0003e7b0: 6e69 7465 5265 736f 6c75 7469 6f6e 436f niteResolutionCo │ │ │ │ -0003e7c0: 6469 6d32 2866 662c 6d66 2920 2020 2020 dim2(ff,mf) │ │ │ │ -0003e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e7e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003e790: 2d2d 2b0a 7c69 3130 203a 2047 203d 206d --+.|i10 : G = m │ │ │ │ +0003e7a0: 616b 6546 696e 6974 6552 6573 6f6c 7574 akeFiniteResolut │ │ │ │ +0003e7b0: 696f 6e43 6f64 696d 3228 6666 2c6d 6629 ionCodim2(ff,mf) │ │ │ │ +0003e7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e7d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e820: 2020 207c 0a7c 6f31 3020 3d20 4861 7368 |.|o10 = Hash │ │ │ │ -0003e830: 5461 626c 657b 2261 6c70 6861 2220 3d3e Table{"alpha" => │ │ │ │ -0003e840: 207b 357d 207c 2030 2020 2030 207c 2020 {5} | 0 0 | │ │ │ │ -0003e850: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ -0003e860: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0003e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e880: 2020 2020 7b35 7d20 7c20 2d62 3320 3020 {5} | -b3 0 │ │ │ │ -0003e890: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003e8a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003e8b0: 2020 2020 2020 2020 2020 2020 2262 2220 "b" │ │ │ │ -0003e8c0: 3d3e 207b 347d 207c 2062 2061 207c 2020 => {4} | b a | │ │ │ │ +0003e810: 2020 2020 2020 2020 7c0a 7c6f 3130 203d |.|o10 = │ │ │ │ +0003e820: 2048 6173 6854 6162 6c65 7b22 616c 7068 HashTable{"alph │ │ │ │ +0003e830: 6122 203d 3e20 7b35 7d20 7c20 3020 2020 a" => {5} | 0 │ │ │ │ +0003e840: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +0003e850: 207d 2020 2020 2020 2020 207c 0a7c 2020 } |.| │ │ │ │ +0003e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e870: 2020 2020 2020 2020 207b 357d 207c 202d {5} | - │ │ │ │ +0003e880: 6233 2030 207c 2020 2020 2020 2020 2020 b3 0 | │ │ │ │ +0003e890: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003e8a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003e8b0: 2022 6222 203d 3e20 7b34 7d20 7c20 6220 "b" => {4} | b │ │ │ │ +0003e8c0: 6120 7c20 2020 2020 2020 2020 2020 2020 a | │ │ │ │ 0003e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e8e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003e8f0: 2020 2020 2020 2020 2020 2020 2020 2022 " │ │ │ │ -0003e900: 6831 2722 203d 3e20 7b35 7d20 7c20 3020 h1'" => {5} | 0 │ │ │ │ -0003e910: 2020 3020 2030 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ -0003e920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003e930: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0003e940: 2020 2020 2020 2020 2020 207b 357d 207c {5} | │ │ │ │ -0003e950: 202d 6233 2030 2020 3020 207c 2020 2020 -b3 0 0 | │ │ │ │ -0003e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e970: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003e980: 2020 2020 2020 2020 2020 2020 2020 7b35 {5 │ │ │ │ -0003e990: 7d20 7c20 3020 2020 2d61 2062 3320 7c20 } | 0 -a b3 | │ │ │ │ -0003e9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e9b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0003e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e9d0: 207b 357d 207c 2061 3320 2062 2020 3020 {5} | a3 b 0 │ │ │ │ -0003e9e0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003e9f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0003ea00: 2020 2020 2020 2020 2020 2022 6831 2220 "h1" │ │ │ │ -0003ea10: 3d3e 207b 357d 207c 2030 2020 2030 2020 => {5} | 0 0 │ │ │ │ -0003ea20: 3020 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -0003ea30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0003ea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ea50: 2020 2020 2020 7b35 7d20 7c20 2d62 3320 {5} | -b3 │ │ │ │ -0003ea60: 3020 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -0003ea70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003ea80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003ea90: 2020 2020 2020 2020 207b 357d 207c 2030 {5} | 0 │ │ │ │ -0003eaa0: 2020 202d 6120 6233 207c 2020 2020 2020 -a b3 | │ │ │ │ -0003eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eac0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ead0: 2020 2020 2020 2020 2020 2020 7b35 7d20 {5} │ │ │ │ -0003eae0: 7c20 6133 2020 6220 2030 2020 7c20 2020 | a3 b 0 | │ │ │ │ -0003eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eb00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0003eb10: 2020 2020 2020 2022 6d75 2220 3d3e 207b "mu" => { │ │ │ │ -0003eb20: 357d 207c 2061 3320 6220 7c20 2020 2020 5} | a3 b | │ │ │ │ -0003eb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eb40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0003eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eb60: 2020 7b35 7d20 7c20 3020 2061 207c 2020 {5} | 0 a | │ │ │ │ -0003eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eb80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0003eb90: 2020 2020 2020 2020 2020 2020 2022 7061 "pa │ │ │ │ -0003eba0: 7274 6961 6c22 203d 3e20 7b34 7d20 7c20 rtial" => {4} | │ │ │ │ -0003ebb0: 6120 2d62 207c 2020 2020 2020 2020 2020 a -b | │ │ │ │ -0003ebc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003e8e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003e8f0: 2020 2020 2268 3127 2220 3d3e 207b 357d "h1'" => {5} │ │ │ │ +0003e900: 207c 2030 2020 2030 2020 3020 207c 2020 | 0 0 0 | │ │ │ │ +0003e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e920: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0003e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e940: 7b35 7d20 7c20 2d62 3320 3020 2030 2020 {5} | -b3 0 0 │ │ │ │ +0003e950: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003e960: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e980: 2020 207b 357d 207c 2030 2020 202d 6120 {5} | 0 -a │ │ │ │ +0003e990: 6233 207c 2020 2020 2020 2020 2020 2020 b3 | │ │ │ │ +0003e9a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e9c0: 2020 2020 2020 7b35 7d20 7c20 6133 2020 {5} | a3 │ │ │ │ +0003e9d0: 6220 2030 2020 7c20 2020 2020 2020 2020 b 0 | │ │ │ │ +0003e9e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ea00: 2268 3122 203d 3e20 7b35 7d20 7c20 3020 "h1" => {5} | 0 │ │ │ │ +0003ea10: 2020 3020 2030 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ +0003ea20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ea30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003ea40: 2020 2020 2020 2020 2020 207b 357d 207c {5} | │ │ │ │ +0003ea50: 202d 6233 2030 2020 3020 207c 2020 2020 -b3 0 0 | │ │ │ │ +0003ea60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ea70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003ea80: 2020 2020 2020 2020 2020 2020 2020 7b35 {5 │ │ │ │ +0003ea90: 7d20 7c20 3020 2020 2d61 2062 3320 7c20 } | 0 -a b3 | │ │ │ │ +0003eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003eab0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0003eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ead0: 207b 357d 207c 2061 3320 2062 2020 3020 {5} | a3 b 0 │ │ │ │ +0003eae0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003eaf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003eb00: 2020 2020 2020 2020 2020 2020 226d 7522 "mu" │ │ │ │ +0003eb10: 203d 3e20 7b35 7d20 7c20 6133 2062 207c => {5} | a3 b | │ │ │ │ +0003eb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003eb30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003eb50: 2020 2020 2020 207b 357d 207c 2030 2020 {5} | 0 │ │ │ │ +0003eb60: 6120 7c20 2020 2020 2020 2020 2020 2020 a | │ │ │ │ +0003eb70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003eb80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0003eb90: 2020 2270 6172 7469 616c 2220 3d3e 207b "partial" => { │ │ │ │ +0003eba0: 347d 207c 2061 202d 6220 7c20 2020 2020 4} | a -b | │ │ │ │ +0003ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ebc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ebd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ebe0: 2020 2020 2020 2020 2020 2020 207b 327d {2} │ │ │ │ -0003ebf0: 207c 2030 2061 3320 7c20 2020 2020 2020 | 0 a3 | │ │ │ │ -0003ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ec10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ec20: 2020 2022 7073 6922 203d 3e20 7b34 7d20 "psi" => {4} │ │ │ │ -0003ec30: 7c20 3020 3020 207c 2020 2020 2020 2020 | 0 0 | │ │ │ │ -0003ec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ec50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ec60: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -0003ec70: 327d 207c 2030 2062 3320 7c20 2020 2020 2} | 0 b3 | │ │ │ │ -0003ec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ec90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0003eca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ecb0: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ -0003ecc0: 2035 2020 2020 2020 3220 2020 2020 2020 5 2 │ │ │ │ -0003ecd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003ece0: 2020 2020 2020 2020 2020 2020 2272 6573 "res │ │ │ │ -0003ecf0: 6f6c 7574 696f 6e22 203d 3e20 5320 203c olution" => S < │ │ │ │ -0003ed00: 2d2d 2053 2020 3c2d 2d20 5320 203c 2d2d -- S <-- S <-- │ │ │ │ -0003ed10: 2030 2020 2020 2020 2020 2020 7c0a 7c20 0 |.| │ │ │ │ +0003ebe0: 2020 7b32 7d20 7c20 3020 6133 207c 2020 {2} | 0 a3 | │ │ │ │ +0003ebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ec00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003ec10: 2020 2020 2020 2020 2270 7369 2220 3d3e "psi" => │ │ │ │ +0003ec20: 207b 347d 207c 2030 2030 2020 7c20 2020 {4} | 0 0 | │ │ │ │ +0003ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ec40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ec60: 2020 2020 7b32 7d20 7c20 3020 6233 207c {2} | 0 b3 | │ │ │ │ +0003ec70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ec80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003ec90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003eca0: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +0003ecb0: 2020 2020 2020 3520 2020 2020 2032 2020 5 2 │ │ │ │ +0003ecc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003ecd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003ece0: 2022 7265 736f 6c75 7469 6f6e 2220 3d3e "resolution" => │ │ │ │ +0003ecf0: 2053 2020 3c2d 2d20 5320 203c 2d2d 2053 S <-- S <-- S │ │ │ │ +0003ed00: 2020 3c2d 2d20 3020 2020 2020 2020 2020 <-- 0 │ │ │ │ +0003ed10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ed50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003ed60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0003ed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ed80: 2020 3020 2020 2020 2031 2020 2020 2020 0 1 │ │ │ │ -0003ed90: 3220 2020 2020 2033 2020 2020 2020 2020 2 3 │ │ │ │ -0003eda0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003edb0: 2020 2020 2022 7369 676d 6122 203d 3e20 "sigma" => │ │ │ │ -0003edc0: 7b35 7d20 7c20 6233 207c 2020 2020 2020 {5} | b3 | │ │ │ │ -0003edd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ede0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0003edf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ee00: 2020 207b 357d 207c 2030 2020 7c20 2020 {5} | 0 | │ │ │ │ -0003ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ee20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0003ee30: 2020 2020 2020 2020 2020 2022 7461 7522 "tau" │ │ │ │ -0003ee40: 203d 3e20 3020 2020 2020 2020 2020 2020 => 0 │ │ │ │ +0003ed50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0003ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ed70: 2020 2020 2020 2030 2020 2020 2020 3120 0 1 │ │ │ │ +0003ed80: 2020 2020 2032 2020 2020 2020 3320 2020 2 3 │ │ │ │ +0003ed90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003eda0: 2020 2020 2020 2020 2020 2273 6967 6d61 "sigma │ │ │ │ +0003edb0: 2220 3d3e 207b 357d 207c 2062 3320 7c20 " => {5} | b3 | │ │ │ │ +0003edc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003edd0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003ede0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003edf0: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ +0003ee00: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003ee10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ee30: 2274 6175 2220 3d3e 2030 2020 2020 2020 "tau" => 0 │ │ │ │ +0003ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ee50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ee60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0003ee70: 2020 2020 2020 2020 2020 2020 2020 2275 "u │ │ │ │ -0003ee80: 2220 3d3e 207b 387d 207c 2031 2030 207c " => {8} | 1 0 | │ │ │ │ +0003ee60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003ee70: 2020 2022 7522 203d 3e20 7b38 7d20 7c20 "u" => {8} | │ │ │ │ +0003ee80: 3120 3020 7c20 2020 2020 2020 2020 2020 1 0 | │ │ │ │ 0003ee90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eea0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003eeb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003eec0: 2022 7622 203d 3e20 7b39 7d20 7c20 3020 "v" => {9} | 0 │ │ │ │ -0003eed0: 2d31 207c 2020 2020 2020 2020 2020 2020 -1 | │ │ │ │ -0003eee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eef0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ef00: 2020 2020 2020 2020 2020 207b 397d 207c {9} | │ │ │ │ -0003ef10: 2031 2030 2020 7c20 2020 2020 2020 2020 1 0 | │ │ │ │ -0003ef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ef30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0003ef40: 2020 2020 2020 2022 5822 203d 3e20 3020 "X" => 0 │ │ │ │ +0003eea0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003eeb0: 2020 2020 2020 2276 2220 3d3e 207b 397d "v" => {9} │ │ │ │ +0003eec0: 207c 2030 202d 3120 7c20 2020 2020 2020 | 0 -1 | │ │ │ │ +0003eed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003eee0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0003eef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ef00: 7b39 7d20 7c20 3120 3020 207c 2020 2020 {9} | 1 0 | │ │ │ │ +0003ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ef20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003ef30: 2020 2020 2020 2020 2020 2020 2258 2220 "X" │ │ │ │ +0003ef40: 3d3e 2030 2020 2020 2020 2020 2020 2020 => 0 │ │ │ │ 0003ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ef70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0003ef80: 2020 2020 2020 2020 2020 2259 2220 3d3e "Y" => │ │ │ │ -0003ef90: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -0003efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003efb0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003ef60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003ef70: 2020 2020 2020 2020 2020 2020 2020 2022 " │ │ │ │ +0003ef80: 5922 203d 3e20 3020 2020 2020 2020 2020 Y" => 0 │ │ │ │ +0003ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003efa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003efb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0003efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eff0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0003f000: 6f31 3020 3a20 4861 7368 5461 626c 6520 o10 : HashTable │ │ │ │ +0003eff0: 2020 7c0a 7c6f 3130 203a 2048 6173 6854 |.|o10 : HashT │ │ │ │ +0003f000: 6162 6c65 2020 2020 2020 2020 2020 2020 able │ │ │ │ 0003f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f040: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0003f030: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0003f040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f080: 2d2d 2d2b 0a7c 6931 3120 3a20 4620 3d20 ---+.|i11 : F = │ │ │ │ -0003f090: 4723 2272 6573 6f6c 7574 696f 6e22 2020 G#"resolution" │ │ │ │ +0003f070: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a --------+.|i11 : │ │ │ │ +0003f080: 2046 203d 2047 2322 7265 736f 6c75 7469 F = G#"resoluti │ │ │ │ +0003f090: 6f6e 2220 2020 2020 2020 2020 2020 2020 on" │ │ │ │ 0003f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f0c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0003f0b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f100: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003f110: 2020 2033 2020 2020 2020 3520 2020 2020 3 5 │ │ │ │ -0003f120: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003f0f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003f100: 7c20 2020 2020 2020 3320 2020 2020 2035 | 3 5 │ │ │ │ +0003f110: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0003f120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f140: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003f150: 3131 203d 2053 2020 3c2d 2d20 5320 203c 11 = S <-- S < │ │ │ │ -0003f160: 2d2d 2053 2020 3c2d 2d20 3020 2020 2020 -- S <-- 0 │ │ │ │ +0003f140: 207c 0a7c 6f31 3120 3d20 5320 203c 2d2d |.|o11 = S <-- │ │ │ │ +0003f150: 2053 2020 3c2d 2d20 5320 203c 2d2d 2030 S <-- S <-- 0 │ │ │ │ +0003f160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f180: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003f190: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0003f180: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0003f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f1d0: 2020 7c0a 7c20 2020 2020 2030 2020 2020 |.| 0 │ │ │ │ -0003f1e0: 2020 3120 2020 2020 2032 2020 2020 2020 1 2 │ │ │ │ -0003f1f0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0003f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f210: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003f1c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003f1d0: 3020 2020 2020 2031 2020 2020 2020 3220 0 1 2 │ │ │ │ +0003f1e0: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ +0003f1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f200: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f250: 2020 2020 2020 2020 7c0a 7c6f 3131 203a |.|o11 : │ │ │ │ -0003f260: 2043 6f6d 706c 6578 2020 2020 2020 2020 Complex │ │ │ │ +0003f240: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003f250: 6f31 3120 3a20 436f 6d70 6c65 7820 2020 o11 : Complex │ │ │ │ +0003f260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f290: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0003f290: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0003f2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0003f2e0: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -0003f2f0: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6d61 ==.. * *note ma │ │ │ │ -0003f300: 6b65 4669 6e69 7465 5265 736f 6c75 7469 keFiniteResoluti │ │ │ │ -0003f310: 6f6e 3a20 6d61 6b65 4669 6e69 7465 5265 on: makeFiniteRe │ │ │ │ -0003f320: 736f 6c75 7469 6f6e 2c20 2d2d 2066 696e solution, -- fin │ │ │ │ -0003f330: 6974 6520 7265 736f 6c75 7469 6f6e 206f ite resolution o │ │ │ │ -0003f340: 6620 610a 2020 2020 6d61 7472 6978 2066 f a. matrix f │ │ │ │ -0003f350: 6163 746f 7269 7a61 7469 6f6e 206d 6f64 actorization mod │ │ │ │ -0003f360: 756c 6520 4d0a 0a57 6179 7320 746f 2075 ule M..Ways to u │ │ │ │ -0003f370: 7365 206d 616b 6546 696e 6974 6552 6573 se makeFiniteRes │ │ │ │ -0003f380: 6f6c 7574 696f 6e43 6f64 696d 323a 0a3d olutionCodim2:.= │ │ │ │ +0003f2d0: 2d2d 2d2b 0a0a 5365 6520 616c 736f 0a3d ---+..See also.= │ │ │ │ +0003f2e0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ +0003f2f0: 7465 206d 616b 6546 696e 6974 6552 6573 te makeFiniteRes │ │ │ │ +0003f300: 6f6c 7574 696f 6e3a 206d 616b 6546 696e olution: makeFin │ │ │ │ +0003f310: 6974 6552 6573 6f6c 7574 696f 6e2c 202d iteResolution, - │ │ │ │ +0003f320: 2d20 6669 6e69 7465 2072 6573 6f6c 7574 - finite resolut │ │ │ │ +0003f330: 696f 6e20 6f66 2061 0a20 2020 206d 6174 ion of a. mat │ │ │ │ +0003f340: 7269 7820 6661 6374 6f72 697a 6174 696f rix factorizatio │ │ │ │ +0003f350: 6e20 6d6f 6475 6c65 204d 0a0a 5761 7973 n module M..Ways │ │ │ │ +0003f360: 2074 6f20 7573 6520 6d61 6b65 4669 6e69 to use makeFini │ │ │ │ +0003f370: 7465 5265 736f 6c75 7469 6f6e 436f 6469 teResolutionCodi │ │ │ │ +0003f380: 6d32 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d m2:.============ │ │ │ │ 0003f390: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0003f3a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0003f3b0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 226d 616b ======.. * "mak │ │ │ │ -0003f3c0: 6546 696e 6974 6552 6573 6f6c 7574 696f eFiniteResolutio │ │ │ │ -0003f3d0: 6e43 6f64 696d 3228 4d61 7472 6978 2c4c nCodim2(Matrix,L │ │ │ │ -0003f3e0: 6973 7429 220a 0a46 6f72 2074 6865 2070 ist)"..For the p │ │ │ │ -0003f3f0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -0003f400: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -0003f410: 6520 6f62 6a65 6374 202a 6e6f 7465 206d e object *note m │ │ │ │ -0003f420: 616b 6546 696e 6974 6552 6573 6f6c 7574 akeFiniteResolut │ │ │ │ -0003f430: 696f 6e43 6f64 696d 323a 206d 616b 6546 ionCodim2: makeF │ │ │ │ -0003f440: 696e 6974 6552 6573 6f6c 7574 696f 6e43 initeResolutionC │ │ │ │ -0003f450: 6f64 696d 322c 2069 7320 610a 2a6e 6f74 odim2, is a.*not │ │ │ │ -0003f460: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ -0003f470: 6e20 7769 7468 206f 7074 696f 6e73 3a20 n with options: │ │ │ │ -0003f480: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ -0003f490: 7468 6f64 4675 6e63 7469 6f6e 5769 7468 thodFunctionWith │ │ │ │ -0003f4a0: 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d Options,...----- │ │ │ │ +0003f3a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +0003f3b0: 2022 6d61 6b65 4669 6e69 7465 5265 736f "makeFiniteReso │ │ │ │ +0003f3c0: 6c75 7469 6f6e 436f 6469 6d32 284d 6174 lutionCodim2(Mat │ │ │ │ +0003f3d0: 7269 782c 4c69 7374 2922 0a0a 466f 7220 rix,List)"..For │ │ │ │ +0003f3e0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +0003f3f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0003f400: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +0003f410: 6f74 6520 6d61 6b65 4669 6e69 7465 5265 ote makeFiniteRe │ │ │ │ +0003f420: 736f 6c75 7469 6f6e 436f 6469 6d32 3a20 solutionCodim2: │ │ │ │ +0003f430: 6d61 6b65 4669 6e69 7465 5265 736f 6c75 makeFiniteResolu │ │ │ │ +0003f440: 7469 6f6e 436f 6469 6d32 2c20 6973 2061 tionCodim2, is a │ │ │ │ +0003f450: 0a2a 6e6f 7465 206d 6574 686f 6420 6675 .*note method fu │ │ │ │ +0003f460: 6e63 7469 6f6e 2077 6974 6820 6f70 7469 nction with opti │ │ │ │ +0003f470: 6f6e 733a 2028 4d61 6361 756c 6179 3244 ons: (Macaulay2D │ │ │ │ +0003f480: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +0003f490: 6e57 6974 684f 7074 696f 6e73 2c2e 0a0a nWithOptions,... │ │ │ │ +0003f4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -0003f500: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -0003f510: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -0003f520: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -0003f530: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -0003f540: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -0003f550: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -0003f560: 732f 0a43 6f6d 706c 6574 6549 6e74 6572 s/.CompleteInter │ │ │ │ -0003f570: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -0003f580: 6e73 2e6d 323a 3239 3339 3a30 2e0a 1f0a ns.m2:2939:0.... │ │ │ │ -0003f590: 4669 6c65 3a20 436f 6d70 6c65 7465 496e File: CompleteIn │ │ │ │ -0003f5a0: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ -0003f5b0: 7469 6f6e 732e 696e 666f 2c20 4e6f 6465 tions.info, Node │ │ │ │ -0003f5c0: 3a20 6d61 6b65 486f 6d6f 746f 7069 6573 : makeHomotopies │ │ │ │ -0003f5d0: 2c20 4e65 7874 3a20 6d61 6b65 486f 6d6f , Next: makeHomo │ │ │ │ -0003f5e0: 746f 7069 6573 312c 2050 7265 763a 206d topies1, Prev: m │ │ │ │ -0003f5f0: 616b 6546 696e 6974 6552 6573 6f6c 7574 akeFiniteResolut │ │ │ │ -0003f600: 696f 6e43 6f64 696d 322c 2055 703a 2054 ionCodim2, Up: T │ │ │ │ -0003f610: 6f70 0a0a 6d61 6b65 486f 6d6f 746f 7069 op..makeHomotopi │ │ │ │ -0003f620: 6573 202d 2d20 7265 7475 726e 7320 6120 es -- returns a │ │ │ │ -0003f630: 7379 7374 656d 206f 6620 6869 6768 6572 system of higher │ │ │ │ -0003f640: 2068 6f6d 6f74 6f70 6965 730a 2a2a 2a2a homotopies.**** │ │ │ │ +0003f4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +0003f4f0: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +0003f500: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +0003f510: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +0003f520: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +0003f530: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +0003f540: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +0003f550: 636b 6167 6573 2f0a 436f 6d70 6c65 7465 ckages/.Complete │ │ │ │ +0003f560: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +0003f570: 6c75 7469 6f6e 732e 6d32 3a32 3933 393a lutions.m2:2939: │ │ │ │ +0003f580: 302e 0a1f 0a46 696c 653a 2043 6f6d 706c 0....File: Compl │ │ │ │ +0003f590: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ +0003f5a0: 6573 6f6c 7574 696f 6e73 2e69 6e66 6f2c esolutions.info, │ │ │ │ +0003f5b0: 204e 6f64 653a 206d 616b 6548 6f6d 6f74 Node: makeHomot │ │ │ │ +0003f5c0: 6f70 6965 732c 204e 6578 743a 206d 616b opies, Next: mak │ │ │ │ +0003f5d0: 6548 6f6d 6f74 6f70 6965 7331 2c20 5072 eHomotopies1, Pr │ │ │ │ +0003f5e0: 6576 3a20 6d61 6b65 4669 6e69 7465 5265 ev: makeFiniteRe │ │ │ │ +0003f5f0: 736f 6c75 7469 6f6e 436f 6469 6d32 2c20 solutionCodim2, │ │ │ │ +0003f600: 5570 3a20 546f 700a 0a6d 616b 6548 6f6d Up: Top..makeHom │ │ │ │ +0003f610: 6f74 6f70 6965 7320 2d2d 2072 6574 7572 otopies -- retur │ │ │ │ +0003f620: 6e73 2061 2073 7973 7465 6d20 6f66 2068 ns a system of h │ │ │ │ +0003f630: 6967 6865 7220 686f 6d6f 746f 7069 6573 igher homotopies │ │ │ │ +0003f640: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ 0003f650: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0003f660: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003f670: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003f680: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -0003f690: 0a20 2020 2020 2020 2048 203d 206d 616b . H = mak │ │ │ │ -0003f6a0: 6548 6f6d 6f74 6f70 6965 7328 662c 462c eHomotopies(f,F, │ │ │ │ -0003f6b0: 6229 0a20 202a 2049 6e70 7574 733a 0a20 b). * Inputs:. │ │ │ │ -0003f6c0: 2020 2020 202a 2066 2c20 6120 2a6e 6f74 * f, a *not │ │ │ │ -0003f6d0: 6520 6d61 7472 6978 3a20 284d 6163 6175 e matrix: (Macau │ │ │ │ -0003f6e0: 6c61 7932 446f 6329 4d61 7472 6978 2c2c lay2Doc)Matrix,, │ │ │ │ -0003f6f0: 2031 786e 206d 6174 7269 7820 6f66 2065 1xn matrix of e │ │ │ │ -0003f700: 6c65 6d65 6e74 7320 6f66 2053 0a20 2020 lements of S. │ │ │ │ -0003f710: 2020 202a 2046 2c20 6120 2a6e 6f74 6520 * F, a *note │ │ │ │ -0003f720: 636f 6d70 6c65 783a 2028 436f 6d70 6c65 complex: (Comple │ │ │ │ -0003f730: 7865 7329 436f 6d70 6c65 782c 2c20 6164 xes)Complex,, ad │ │ │ │ -0003f740: 6d69 7474 696e 6720 686f 6d6f 746f 7069 mitting homotopi │ │ │ │ -0003f750: 6573 2066 6f72 2074 6865 0a20 2020 2020 es for the. │ │ │ │ -0003f760: 2020 2065 6e74 7269 6573 206f 6620 660a entries of f. │ │ │ │ -0003f770: 2020 2020 2020 2a20 622c 2061 6e20 2a6e * b, an *n │ │ │ │ -0003f780: 6f74 6520 696e 7465 6765 723a 2028 4d61 ote integer: (Ma │ │ │ │ -0003f790: 6361 756c 6179 3244 6f63 295a 5a2c 2c20 caulay2Doc)ZZ,, │ │ │ │ -0003f7a0: 686f 7720 6661 7220 6261 636b 2074 6f20 how far back to │ │ │ │ -0003f7b0: 636f 6d70 7574 6520 7468 650a 2020 2020 compute the. │ │ │ │ -0003f7c0: 2020 2020 686f 6d6f 746f 7069 6573 2028 homotopies ( │ │ │ │ -0003f7d0: 6465 6661 756c 7473 2074 6f20 6c65 6e67 defaults to leng │ │ │ │ -0003f7e0: 7468 206f 6620 4629 0a20 202a 204f 7574 th of F). * Out │ │ │ │ -0003f7f0: 7075 7473 3a0a 2020 2020 2020 2a20 482c puts:. * H, │ │ │ │ -0003f800: 2061 202a 6e6f 7465 2068 6173 6820 7461 a *note hash ta │ │ │ │ -0003f810: 626c 653a 2028 4d61 6361 756c 6179 3244 ble: (Macaulay2D │ │ │ │ -0003f820: 6f63 2948 6173 6854 6162 6c65 2c2c 2067 oc)HashTable,, g │ │ │ │ -0003f830: 6976 6573 2074 6865 2068 6967 6865 720a ives the higher. │ │ │ │ -0003f840: 2020 2020 2020 2020 686f 6d6f 746f 7079 homotopy │ │ │ │ -0003f850: 2066 726f 6d20 465f 6920 636f 7272 6573 from F_i corres │ │ │ │ -0003f860: 706f 6e64 696e 6720 746f 2061 206d 6f6e ponding to a mon │ │ │ │ -0003f870: 6f6d 6961 6c20 7769 7468 2065 7870 6f6e omial with expon │ │ │ │ -0003f880: 656e 7420 7665 6374 6f72 204c 2061 730a ent vector L as. │ │ │ │ -0003f890: 2020 2020 2020 2020 7468 6520 7661 6c75 the valu │ │ │ │ -0003f8a0: 6520 2448 235c 7b4c 2c69 5c7d 240a 0a44 e $H#\{L,i\}$..D │ │ │ │ -0003f8b0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -0003f8c0: 3d3d 3d3d 3d3d 0a0a 4769 7665 6e20 6120 ======..Given a │ │ │ │ -0003f8d0: 2431 5c74 696d 6573 206e 2420 6d61 7472 $1\times n$ matr │ │ │ │ -0003f8e0: 6978 2066 2c20 616e 6420 6120 6368 6169 ix f, and a chai │ │ │ │ -0003f8f0: 6e20 636f 6d70 6c65 7820 462c 2074 6865 n complex F, the │ │ │ │ -0003f900: 2073 6372 6970 7420 6174 7465 6d70 7473 script attempts │ │ │ │ -0003f910: 2074 6f0a 6d61 6b65 2061 2066 616d 696c to.make a famil │ │ │ │ -0003f920: 7920 6f66 2068 6967 6865 7220 686f 6d6f y of higher homo │ │ │ │ -0003f930: 746f 7069 6573 206f 6e20 4620 666f 7220 topies on F for │ │ │ │ -0003f940: 7468 6520 656c 656d 656e 7473 206f 6620 the elements of │ │ │ │ -0003f950: 662c 2069 6e20 7468 6520 7365 6e73 650a f, in the sense. │ │ │ │ -0003f960: 6465 7363 7269 6265 642c 2066 6f72 2065 described, for e │ │ │ │ -0003f970: 7861 6d70 6c65 2c20 696e 2045 6973 656e xample, in Eisen │ │ │ │ -0003f980: 6275 6420 2245 6e72 6963 6865 6420 4672 bud "Enriched Fr │ │ │ │ -0003f990: 6565 2052 6573 6f6c 7574 696f 6e73 2061 ee Resolutions a │ │ │ │ -0003f9a0: 6e64 2043 6861 6e67 6520 6f66 0a52 696e nd Change of.Rin │ │ │ │ -0003f9b0: 6773 222e 0a0a 5468 6520 6f75 7470 7574 gs"...The output │ │ │ │ -0003f9c0: 2069 7320 6120 6861 7368 2074 6162 6c65 is a hash table │ │ │ │ -0003f9d0: 2077 6974 6820 656e 7472 6965 7320 6f66 with entries of │ │ │ │ -0003f9e0: 2074 6865 2066 6f72 6d20 245c 7b4a 2c69 the form $\{J,i │ │ │ │ -0003f9f0: 5c7d 3d3e 7324 2c20 7768 6572 6520 4a20 \}=>s$, where J │ │ │ │ -0003fa00: 6973 2061 0a6c 6973 7420 6f66 206e 6f6e is a.list of non │ │ │ │ -0003fa10: 2d6e 6567 6174 6976 6520 696e 7465 6765 -negative intege │ │ │ │ -0003fa20: 7273 2c20 6f66 206c 656e 6774 6820 6e20 rs, of length n │ │ │ │ -0003fa30: 616e 6420 2448 5c23 5c7b 4a2c 695c 7d3a and $H\#\{J,i\}: │ │ │ │ -0003fa40: 2046 5f69 2d3e 465f 7b69 2b32 7c4a 7c2d F_i->F_{i+2|J|- │ │ │ │ -0003fa50: 317d 240a 6172 6520 6d61 7073 2073 6174 1}$.are maps sat │ │ │ │ -0003fa60: 6973 6679 696e 6720 7468 6520 636f 6e64 isfying the cond │ │ │ │ -0003fa70: 6974 696f 6e73 2024 2420 485c 235c 7b65 itions $$ H\#\{e │ │ │ │ -0003fa80: 302c 695c 7d20 3d20 643b 2024 2420 616e 0,i\} = d; $$ an │ │ │ │ -0003fa90: 6420 2424 0a48 235c 7b65 302c 692b 315c d $$.H#\{e0,i+1\ │ │ │ │ -0003faa0: 7d2a 4823 5c7b 652c 695c 7d2b 4823 5c7b }*H#\{e,i\}+H#\{ │ │ │ │ -0003fab0: 652c 692d 315c 7d48 235c 7b65 302c 695c e,i-1\}H#\{e0,i\ │ │ │ │ -0003fac0: 7d20 3d20 665f 692c 2024 2420 7768 6572 } = f_i, $$ wher │ │ │ │ -0003fad0: 6520 2465 3020 3d0a 5c7b 302c 5c64 6f74 e $e0 =.\{0,\dot │ │ │ │ -0003fae0: 732c 305c 7d24 2061 6e64 2024 6524 2069 s,0\}$ and $e$ i │ │ │ │ -0003faf0: 7320 7468 6520 696e 6465 7820 6f66 2064 s the index of d │ │ │ │ -0003fb00: 6567 7265 6520 3120 7769 7468 2061 2031 egree 1 with a 1 │ │ │ │ -0003fb10: 2069 6e20 7468 6520 2469 242d 7468 2070 in the $i$-th p │ │ │ │ -0003fb20: 6c61 6365 3b0a 616e 642c 2066 6f72 2065 lace;.and, for e │ │ │ │ -0003fb30: 6163 6820 696e 6465 7820 6c69 7374 2049 ach index list I │ │ │ │ -0003fb40: 2077 6974 6820 7c49 7c3c 3d64 2c20 2424 with |I|<=d, $$ │ │ │ │ -0003fb50: 2073 756d 5f7b 4a3c 497d 2048 235c 7b49 sum_{Js$, whe │ │ │ │ +0003f9f0: 7265 204a 2069 7320 610a 6c69 7374 206f re J is a.list o │ │ │ │ +0003fa00: 6620 6e6f 6e2d 6e65 6761 7469 7665 2069 f non-negative i │ │ │ │ +0003fa10: 6e74 6567 6572 732c 206f 6620 6c65 6e67 ntegers, of leng │ │ │ │ +0003fa20: 7468 206e 2061 6e64 2024 485c 235c 7b4a th n and $H\#\{J │ │ │ │ +0003fa30: 2c69 5c7d 3a20 465f 692d 3e46 5f7b 692b ,i\}: F_i->F_{i+ │ │ │ │ +0003fa40: 327c 4a7c 2d31 7d24 0a61 7265 206d 6170 2|J|-1}$.are map │ │ │ │ +0003fa50: 7320 7361 7469 7366 7969 6e67 2074 6865 s satisfying the │ │ │ │ +0003fa60: 2063 6f6e 6469 7469 6f6e 7320 2424 2048 conditions $$ H │ │ │ │ +0003fa70: 5c23 5c7b 6530 2c69 5c7d 203d 2064 3b20 \#\{e0,i\} = d; │ │ │ │ +0003fa80: 2424 2061 6e64 2024 240a 4823 5c7b 6530 $$ and $$.H#\{e0 │ │ │ │ +0003fa90: 2c69 2b31 5c7d 2a48 235c 7b65 2c69 5c7d ,i+1\}*H#\{e,i\} │ │ │ │ +0003faa0: 2b48 235c 7b65 2c69 2d31 5c7d 4823 5c7b +H#\{e,i-1\}H#\{ │ │ │ │ +0003fab0: 6530 2c69 5c7d 203d 2066 5f69 2c20 2424 e0,i\} = f_i, $$ │ │ │ │ +0003fac0: 2077 6865 7265 2024 6530 203d 0a5c 7b30 where $e0 =.\{0 │ │ │ │ +0003fad0: 2c5c 646f 7473 2c30 5c7d 2420 616e 6420 ,\dots,0\}$ and │ │ │ │ +0003fae0: 2465 2420 6973 2074 6865 2069 6e64 6578 $e$ is the index │ │ │ │ +0003faf0: 206f 6620 6465 6772 6565 2031 2077 6974 of degree 1 wit │ │ │ │ +0003fb00: 6820 6120 3120 696e 2074 6865 2024 6924 h a 1 in the $i$ │ │ │ │ +0003fb10: 2d74 6820 706c 6163 653b 0a61 6e64 2c20 -th place;.and, │ │ │ │ +0003fb20: 666f 7220 6561 6368 2069 6e64 6578 206c for each index l │ │ │ │ +0003fb30: 6973 7420 4920 7769 7468 207c 497c 3c3d ist I with |I|<= │ │ │ │ +0003fb40: 642c 2024 2420 7375 6d5f 7b4a 3c49 7d20 d, $$ sum_{J │ │ │ │ -000403a0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -000403b0: 2020 2020 2020 2020 207d 7c0a 7c20 2020 }|.| │ │ │ │ -000403c0: 2020 2020 2020 2020 2020 2020 7b7b 302c {{0, │ │ │ │ -000403d0: 2030 2c20 307d 2c20 317d 203d 3e20 7c20 0, 0}, 1} => | │ │ │ │ -000403e0: 6120 6220 6320 6420 7c20 2020 2020 2020 a b c d | │ │ │ │ -000403f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00040400: 2020 2020 2020 2020 2020 7b7b 302c 2030 {{0, 0 │ │ │ │ -00040410: 2c20 307d 2c20 327d 203d 3e20 7b31 7d20 , 0}, 2} => {1} │ │ │ │ -00040420: 7c20 2d62 202d 6320 3020 202d 6420 3020 | -b -c 0 -d 0 │ │ │ │ -00040430: 2030 2020 7c20 7c0a 7c20 2020 2020 2020 0 | |.| │ │ │ │ -00040440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040450: 2020 2020 2020 2020 2020 7b31 7d20 7c20 {1} | │ │ │ │ -00040460: 6120 2030 2020 2d63 2030 2020 2d64 2030 a 0 -c 0 -d 0 │ │ │ │ -00040470: 2020 7c20 7c0a 7c20 2020 2020 2020 2020 | |.| │ │ │ │ -00040480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040490: 2020 2020 2020 2020 7b31 7d20 7c20 3020 {1} | 0 │ │ │ │ -000404a0: 2061 2020 6220 2030 2020 3020 202d 6420 a b 0 0 -d │ │ │ │ -000404b0: 7c20 7c0a 7c20 2020 2020 2020 2020 2020 | |.| │ │ │ │ -000404c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000404d0: 2020 2020 2020 7b31 7d20 7c20 3020 2030 {1} | 0 0 │ │ │ │ -000404e0: 2020 3020 2061 2020 6220 2063 2020 7c20 0 a b c | │ │ │ │ -000404f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040500: 2020 7b7b 302c 2030 2c20 307d 2c20 337d {{0, 0, 0}, 3} │ │ │ │ -00040510: 203d 3e20 7b32 7d20 7c20 6320 2064 2020 => {2} | c d │ │ │ │ -00040520: 3020 2030 2020 7c20 2020 2020 2020 7c0a 0 0 | |. │ │ │ │ -00040530: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00040540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040550: 2020 7b32 7d20 7c20 2d62 2030 2020 6420 {2} | -b 0 d │ │ │ │ -00040560: 2030 2020 7c20 2020 2020 2020 7c0a 7c20 0 | |.| │ │ │ │ +00040370: 207c 0a7c 6f35 203d 2048 6173 6854 6162 |.|o5 = HashTab │ │ │ │ +00040380: 6c65 7b7b 7b30 2c20 302c 2030 7d2c 2030 le{{{0, 0, 0}, 0 │ │ │ │ +00040390: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +000403a0: 2020 2020 2020 2020 2020 2020 2020 7d7c }| │ │ │ │ +000403b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000403c0: 207b 7b30 2c20 302c 2030 7d2c 2031 7d20 {{0, 0, 0}, 1} │ │ │ │ +000403d0: 3d3e 207c 2061 2062 2063 2064 207c 2020 => | a b c d | │ │ │ │ +000403e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000403f0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +00040400: 7b30 2c20 302c 2030 7d2c 2032 7d20 3d3e {0, 0, 0}, 2} => │ │ │ │ +00040410: 207b 317d 207c 202d 6220 2d63 2030 2020 {1} | -b -c 0 │ │ │ │ +00040420: 2d64 2030 2020 3020 207c 207c 0a7c 2020 -d 0 0 | |.| │ │ │ │ +00040430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040440: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +00040450: 317d 207c 2061 2020 3020 202d 6320 3020 1} | a 0 -c 0 │ │ │ │ +00040460: 202d 6420 3020 207c 207c 0a7c 2020 2020 -d 0 | |.| │ │ │ │ +00040470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040480: 2020 2020 2020 2020 2020 2020 207b 317d {1} │ │ │ │ +00040490: 207c 2030 2020 6120 2062 2020 3020 2030 | 0 a b 0 0 │ │ │ │ +000404a0: 2020 2d64 207c 207c 0a7c 2020 2020 2020 -d | |.| │ │ │ │ +000404b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000404c0: 2020 2020 2020 2020 2020 207b 317d 207c {1} | │ │ │ │ +000404d0: 2030 2020 3020 2030 2020 6120 2062 2020 0 0 0 a b │ │ │ │ +000404e0: 6320 207c 207c 0a7c 2020 2020 2020 2020 c | |.| │ │ │ │ +000404f0: 2020 2020 2020 207b 7b30 2c20 302c 2030 {{0, 0, 0 │ │ │ │ +00040500: 7d2c 2033 7d20 3d3e 207b 327d 207c 2063 }, 3} => {2} | c │ │ │ │ +00040510: 2020 6420 2030 2020 3020 207c 2020 2020 d 0 0 | │ │ │ │ +00040520: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00040530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040540: 2020 2020 2020 207b 327d 207c 202d 6220 {2} | -b │ │ │ │ +00040550: 3020 2064 2020 3020 207c 2020 2020 2020 0 d 0 | │ │ │ │ +00040560: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00040570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040590: 7b32 7d20 7c20 6120 2030 2020 3020 2064 {2} | a 0 0 d │ │ │ │ -000405a0: 2020 7c20 2020 2020 2020 7c0a 7c20 2020 | |.| │ │ │ │ +00040580: 2020 2020 207b 327d 207c 2061 2020 3020 {2} | a 0 │ │ │ │ +00040590: 2030 2020 6420 207c 2020 2020 2020 207c 0 d | | │ │ │ │ +000405a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000405b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000405c0: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -000405d0: 7d20 7c20 3020 202d 6220 2d63 2030 2020 } | 0 -b -c 0 │ │ │ │ -000405e0: 7c20 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +000405c0: 2020 207b 327d 207c 2030 2020 2d62 202d {2} | 0 -b - │ │ │ │ +000405d0: 6320 3020 207c 2020 2020 2020 207c 0a7c c 0 | |.| │ │ │ │ +000405e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000405f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040600: 2020 2020 2020 2020 2020 2020 7b32 7d20 {2} │ │ │ │ -00040610: 7c20 3020 2061 2020 3020 202d 6320 7c20 | 0 a 0 -c | │ │ │ │ -00040620: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00040630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040640: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ -00040650: 3020 2030 2020 6120 2062 2020 7c20 2020 0 0 a b | │ │ │ │ -00040660: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00040670: 2020 2020 2020 7b7b 302c 2030 2c20 317d {{0, 0, 1} │ │ │ │ -00040680: 2c20 2d31 7d20 3d3e 2030 2020 2020 2020 , -1} => 0 │ │ │ │ -00040690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000406a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000406b0: 2020 2020 7b7b 302c 2030 2c20 317d 2c20 {{0, 0, 1}, │ │ │ │ -000406c0: 307d 203d 3e20 7b31 7d20 7c20 3020 7c20 0} => {1} | 0 | │ │ │ │ -000406d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000406e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000406f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040700: 2020 2020 7b31 7d20 7c20 3020 7c20 2020 {1} | 0 | │ │ │ │ -00040710: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00040720: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00040730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040740: 2020 7b31 7d20 7c20 3120 7c20 2020 2020 {1} | 1 | │ │ │ │ -00040750: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00040600: 207b 327d 207c 2030 2020 6120 2030 2020 {2} | 0 a 0 │ │ │ │ +00040610: 2d63 207c 2020 2020 2020 207c 0a7c 2020 -c | |.| │ │ │ │ +00040620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040630: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +00040640: 327d 207c 2030 2020 3020 2061 2020 6220 2} | 0 0 a b │ │ │ │ +00040650: 207c 2020 2020 2020 207c 0a7c 2020 2020 | |.| │ │ │ │ +00040660: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +00040670: 302c 2031 7d2c 202d 317d 203d 3e20 3020 0, 1}, -1} => 0 │ │ │ │ +00040680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040690: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000406a0: 2020 2020 2020 2020 207b 7b30 2c20 302c {{0, 0, │ │ │ │ +000406b0: 2031 7d2c 2030 7d20 3d3e 207b 317d 207c 1}, 0} => {1} | │ │ │ │ +000406c0: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +000406d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000406e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000406f0: 2020 2020 2020 2020 207b 317d 207c 2030 {1} | 0 │ │ │ │ +00040700: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00040710: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00040720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040730: 2020 2020 2020 207b 317d 207c 2031 207c {1} | 1 | │ │ │ │ +00040740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040750: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00040760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040780: 7b31 7d20 7c20 3020 7c20 2020 2020 2020 {1} | 0 | │ │ │ │ -00040790: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000407a0: 2020 2020 2020 2020 2020 2020 7b7b 302c {{0, │ │ │ │ -000407b0: 2030 2c20 317d 2c20 317d 203d 3e20 7b32 0, 1}, 1} => {2 │ │ │ │ -000407c0: 7d20 7c20 3020 2030 2020 3020 3020 7c20 } | 0 0 0 0 | │ │ │ │ -000407d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040770: 2020 2020 207b 317d 207c 2030 207c 2020 {1} | 0 | │ │ │ │ +00040780: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00040790: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000407a0: 207b 7b30 2c20 302c 2031 7d2c 2031 7d20 {{0, 0, 1}, 1} │ │ │ │ +000407b0: 3d3e 207b 327d 207c 2030 2020 3020 2030 => {2} | 0 0 0 │ │ │ │ +000407c0: 2030 207c 2020 2020 2020 2020 207c 0a7c 0 | |.| │ │ │ │ +000407d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000407e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000407f0: 2020 2020 2020 2020 2020 2020 7b32 7d20 {2} │ │ │ │ -00040800: 7c20 2d31 2030 2020 3020 3020 7c20 2020 | -1 0 0 0 | │ │ │ │ -00040810: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00040820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040830: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ -00040840: 3020 202d 3120 3020 3020 7c20 2020 2020 0 -1 0 0 | │ │ │ │ -00040850: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00040860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040870: 2020 2020 2020 2020 7b32 7d20 7c20 3020 {2} | 0 │ │ │ │ -00040880: 2030 2020 3020 3020 7c20 2020 2020 2020 0 0 0 | │ │ │ │ -00040890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000408a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000408b0: 2020 2020 2020 7b32 7d20 7c20 3020 2030 {2} | 0 0 │ │ │ │ -000408c0: 2020 3020 3020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -000408d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000408e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000408f0: 2020 2020 7b32 7d20 7c20 3020 2030 2020 {2} | 0 0 │ │ │ │ -00040900: 3020 3120 7c20 2020 2020 2020 2020 7c0a 0 1 | |. │ │ │ │ -00040910: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00040920: 7b7b 302c 2030 2c20 317d 2c20 327d 203d {{0, 0, 1}, 2} = │ │ │ │ -00040930: 3e20 7b33 7d20 7c20 3120 3020 3020 3020 > {3} | 1 0 0 0 │ │ │ │ -00040940: 2030 2020 3020 7c20 2020 2020 7c0a 7c20 0 0 | |.| │ │ │ │ +000407f0: 207b 327d 207c 202d 3120 3020 2030 2030 {2} | -1 0 0 0 │ │ │ │ +00040800: 207c 2020 2020 2020 2020 207c 0a7c 2020 | |.| │ │ │ │ +00040810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040820: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +00040830: 327d 207c 2030 2020 2d31 2030 2030 207c 2} | 0 -1 0 0 | │ │ │ │ +00040840: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00040850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040860: 2020 2020 2020 2020 2020 2020 207b 327d {2} │ │ │ │ +00040870: 207c 2030 2020 3020 2030 2030 207c 2020 | 0 0 0 0 | │ │ │ │ +00040880: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00040890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000408a0: 2020 2020 2020 2020 2020 207b 327d 207c {2} | │ │ │ │ +000408b0: 2030 2020 3020 2030 2030 207c 2020 2020 0 0 0 0 | │ │ │ │ +000408c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000408d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000408e0: 2020 2020 2020 2020 207b 327d 207c 2030 {2} | 0 │ │ │ │ +000408f0: 2020 3020 2030 2031 207c 2020 2020 2020 0 0 1 | │ │ │ │ +00040900: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00040910: 2020 2020 207b 7b30 2c20 302c 2031 7d2c {{0, 0, 1}, │ │ │ │ +00040920: 2032 7d20 3d3e 207b 337d 207c 2031 2030 2} => {3} | 1 0 │ │ │ │ +00040930: 2030 2030 2020 3020 2030 207c 2020 2020 0 0 0 0 | │ │ │ │ +00040940: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00040950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040970: 7b33 7d20 7c20 3020 3020 3020 3020 2030 {3} | 0 0 0 0 0 │ │ │ │ -00040980: 2020 3020 7c20 2020 2020 7c0a 7c20 2020 0 | |.| │ │ │ │ +00040960: 2020 2020 207b 337d 207c 2030 2030 2030 {3} | 0 0 0 │ │ │ │ +00040970: 2030 2020 3020 2030 207c 2020 2020 207c 0 0 0 | | │ │ │ │ +00040980: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00040990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000409a0: 2020 2020 2020 2020 2020 2020 2020 7b33 {3 │ │ │ │ -000409b0: 7d20 7c20 3020 3020 3020 2d31 2030 2020 } | 0 0 0 -1 0 │ │ │ │ -000409c0: 3020 7c20 2020 2020 7c0a 7c20 2020 2020 0 | |.| │ │ │ │ +000409a0: 2020 207b 337d 207c 2030 2030 2030 202d {3} | 0 0 0 - │ │ │ │ +000409b0: 3120 3020 2030 207c 2020 2020 207c 0a7c 1 0 0 | |.| │ │ │ │ +000409c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000409d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000409e0: 2020 2020 2020 2020 2020 2020 7b33 7d20 {3} │ │ │ │ -000409f0: 7c20 3020 3020 3020 3020 202d 3120 3020 | 0 0 0 0 -1 0 │ │ │ │ -00040a00: 7c20 2020 2020 7c0a 7c20 2020 2020 2020 | |.| │ │ │ │ -00040a10: 2020 2020 2020 2020 7b7b 302c 2030 2c20 {{0, 0, │ │ │ │ -00040a20: 327d 2c20 2d31 7d20 3d3e 2030 2020 2020 2}, -1} => 0 │ │ │ │ -00040a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040a40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00040a50: 2020 2020 2020 7b7b 302c 2031 2c20 307d {{0, 1, 0} │ │ │ │ -00040a60: 2c20 2d31 7d20 3d3e 2030 2020 2020 2020 , -1} => 0 │ │ │ │ -00040a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040a80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040a90: 2020 2020 7b7b 302c 2031 2c20 307d 2c20 {{0, 1, 0}, │ │ │ │ -00040aa0: 307d 203d 3e20 7b31 7d20 7c20 3020 7c20 0} => {1} | 0 | │ │ │ │ -00040ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040ac0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040ae0: 2020 2020 7b31 7d20 7c20 3120 7c20 2020 {1} | 1 | │ │ │ │ -00040af0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00040b00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00040b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040b20: 2020 7b31 7d20 7c20 3020 7c20 2020 2020 {1} | 0 | │ │ │ │ -00040b30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000409e0: 207b 337d 207c 2030 2030 2030 2030 2020 {3} | 0 0 0 0 │ │ │ │ +000409f0: 2d31 2030 207c 2020 2020 207c 0a7c 2020 -1 0 | |.| │ │ │ │ +00040a00: 2020 2020 2020 2020 2020 2020 207b 7b30 {{0 │ │ │ │ +00040a10: 2c20 302c 2032 7d2c 202d 317d 203d 3e20 , 0, 2}, -1} => │ │ │ │ +00040a20: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00040a30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00040a40: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +00040a50: 312c 2030 7d2c 202d 317d 203d 3e20 3020 1, 0}, -1} => 0 │ │ │ │ +00040a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040a70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00040a80: 2020 2020 2020 2020 207b 7b30 2c20 312c {{0, 1, │ │ │ │ +00040a90: 2030 7d2c 2030 7d20 3d3e 207b 317d 207c 0}, 0} => {1} | │ │ │ │ +00040aa0: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00040ab0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00040ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040ad0: 2020 2020 2020 2020 207b 317d 207c 2031 {1} | 1 │ │ │ │ +00040ae0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00040af0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00040b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040b10: 2020 2020 2020 207b 317d 207c 2030 207c {1} | 0 | │ │ │ │ +00040b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040b30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00040b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040b60: 7b31 7d20 7c20 3020 7c20 2020 2020 2020 {1} | 0 | │ │ │ │ -00040b70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00040b80: 2020 2020 2020 2020 2020 2020 7b7b 302c {{0, │ │ │ │ -00040b90: 2031 2c20 307d 2c20 317d 203d 3e20 7b32 1, 0}, 1} => {2 │ │ │ │ -00040ba0: 7d20 7c20 2d31 2030 2030 2030 207c 2020 } | -1 0 0 0 | │ │ │ │ -00040bb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040b50: 2020 2020 207b 317d 207c 2030 207c 2020 {1} | 0 | │ │ │ │ +00040b60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00040b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00040b80: 207b 7b30 2c20 312c 2030 7d2c 2031 7d20 {{0, 1, 0}, 1} │ │ │ │ +00040b90: 3d3e 207b 327d 207c 202d 3120 3020 3020 => {2} | -1 0 0 │ │ │ │ +00040ba0: 3020 7c20 2020 2020 2020 2020 207c 0a7c 0 | |.| │ │ │ │ +00040bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040bd0: 2020 2020 2020 2020 2020 2020 7b32 7d20 {2} │ │ │ │ -00040be0: 7c20 3020 2030 2030 2030 207c 2020 2020 | 0 0 0 0 | │ │ │ │ -00040bf0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00040c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040c10: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ -00040c20: 3020 2030 2031 2030 207c 2020 2020 2020 0 0 1 0 | │ │ │ │ -00040c30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00040c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040c50: 2020 2020 2020 2020 7b32 7d20 7c20 3020 {2} | 0 │ │ │ │ -00040c60: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ -00040c70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040c90: 2020 2020 2020 7b32 7d20 7c20 3020 2030 {2} | 0 0 │ │ │ │ -00040ca0: 2030 2031 207c 2020 2020 2020 2020 2020 0 1 | │ │ │ │ -00040cb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040cd0: 2020 2020 7b32 7d20 7c20 3020 2030 2030 {2} | 0 0 0 │ │ │ │ -00040ce0: 2030 207c 2020 2020 2020 2020 2020 7c0a 0 | |. │ │ │ │ -00040cf0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00040d00: 7b7b 302c 2031 2c20 307d 2c20 327d 203d {{0, 1, 0}, 2} = │ │ │ │ -00040d10: 3e20 7b33 7d20 7c20 3020 2d31 2030 2030 > {3} | 0 -1 0 0 │ │ │ │ -00040d20: 2020 3020 3020 7c20 2020 2020 7c0a 7c20 0 0 | |.| │ │ │ │ +00040bd0: 207b 327d 207c 2030 2020 3020 3020 3020 {2} | 0 0 0 0 │ │ │ │ +00040be0: 7c20 2020 2020 2020 2020 207c 0a7c 2020 | |.| │ │ │ │ +00040bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040c00: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +00040c10: 327d 207c 2030 2020 3020 3120 3020 7c20 2} | 0 0 1 0 | │ │ │ │ +00040c20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00040c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040c40: 2020 2020 2020 2020 2020 2020 207b 327d {2} │ │ │ │ +00040c50: 207c 2030 2020 3020 3020 3020 7c20 2020 | 0 0 0 0 | │ │ │ │ +00040c60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00040c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040c80: 2020 2020 2020 2020 2020 207b 327d 207c {2} | │ │ │ │ +00040c90: 2030 2020 3020 3020 3120 7c20 2020 2020 0 0 0 1 | │ │ │ │ +00040ca0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00040cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040cc0: 2020 2020 2020 2020 207b 327d 207c 2030 {2} | 0 │ │ │ │ +00040cd0: 2020 3020 3020 3020 7c20 2020 2020 2020 0 0 0 | │ │ │ │ +00040ce0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00040cf0: 2020 2020 207b 7b30 2c20 312c 2030 7d2c {{0, 1, 0}, │ │ │ │ +00040d00: 2032 7d20 3d3e 207b 337d 207c 2030 202d 2} => {3} | 0 - │ │ │ │ +00040d10: 3120 3020 3020 2030 2030 207c 2020 2020 1 0 0 0 0 | │ │ │ │ +00040d20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00040d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040d50: 7b33 7d20 7c20 3020 3020 2030 202d 3120 {3} | 0 0 0 -1 │ │ │ │ -00040d60: 3020 3020 7c20 2020 2020 7c0a 7c20 2020 0 0 | |.| │ │ │ │ +00040d40: 2020 2020 207b 337d 207c 2030 2030 2020 {3} | 0 0 │ │ │ │ +00040d50: 3020 2d31 2030 2030 207c 2020 2020 207c 0 -1 0 0 | | │ │ │ │ +00040d60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00040d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040d80: 2020 2020 2020 2020 2020 2020 2020 7b33 {3 │ │ │ │ -00040d90: 7d20 7c20 3020 3020 2030 2030 2020 3020 } | 0 0 0 0 0 │ │ │ │ -00040da0: 3020 7c20 2020 2020 7c0a 7c20 2020 2020 0 | |.| │ │ │ │ +00040d80: 2020 207b 337d 207c 2030 2030 2020 3020 {3} | 0 0 0 │ │ │ │ +00040d90: 3020 2030 2030 207c 2020 2020 207c 0a7c 0 0 0 | |.| │ │ │ │ +00040da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040dc0: 2020 2020 2020 2020 2020 2020 7b33 7d20 {3} │ │ │ │ -00040dd0: 7c20 3020 3020 2030 2030 2020 3020 3120 | 0 0 0 0 0 1 │ │ │ │ -00040de0: 7c20 2020 2020 7c0a 7c20 2020 2020 2020 | |.| │ │ │ │ -00040df0: 2020 2020 2020 2020 7b7b 302c 2031 2c20 {{0, 1, │ │ │ │ -00040e00: 317d 2c20 2d31 7d20 3d3e 2030 2020 2020 1}, -1} => 0 │ │ │ │ -00040e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040e20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00040e30: 2020 2020 2020 7b7b 302c 2032 2c20 307d {{0, 2, 0} │ │ │ │ -00040e40: 2c20 2d31 7d20 3d3e 2030 2020 2020 2020 , -1} => 0 │ │ │ │ -00040e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040e60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040e70: 2020 2020 7b7b 312c 2030 2c20 307d 2c20 {{1, 0, 0}, │ │ │ │ -00040e80: 2d31 7d20 3d3e 2030 2020 2020 2020 2020 -1} => 0 │ │ │ │ -00040e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040ea0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040eb0: 2020 7b7b 312c 2030 2c20 307d 2c20 307d {{1, 0, 0}, 0} │ │ │ │ -00040ec0: 203d 3e20 7b31 7d20 7c20 3120 7c20 2020 => {1} | 1 | │ │ │ │ -00040ed0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00040ee0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00040ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040f00: 2020 7b31 7d20 7c20 3020 7c20 2020 2020 {1} | 0 | │ │ │ │ -00040f10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00040dc0: 207b 337d 207c 2030 2030 2020 3020 3020 {3} | 0 0 0 0 │ │ │ │ +00040dd0: 2030 2031 207c 2020 2020 207c 0a7c 2020 0 1 | |.| │ │ │ │ +00040de0: 2020 2020 2020 2020 2020 2020 207b 7b30 {{0 │ │ │ │ +00040df0: 2c20 312c 2031 7d2c 202d 317d 203d 3e20 , 1, 1}, -1} => │ │ │ │ +00040e00: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00040e10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00040e20: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +00040e30: 322c 2030 7d2c 202d 317d 203d 3e20 3020 2, 0}, -1} => 0 │ │ │ │ +00040e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040e50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00040e60: 2020 2020 2020 2020 207b 7b31 2c20 302c {{1, 0, │ │ │ │ +00040e70: 2030 7d2c 202d 317d 203d 3e20 3020 2020 0}, -1} => 0 │ │ │ │ +00040e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040e90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00040ea0: 2020 2020 2020 207b 7b31 2c20 302c 2030 {{1, 0, 0 │ │ │ │ +00040eb0: 7d2c 2030 7d20 3d3e 207b 317d 207c 2031 }, 0} => {1} | 1 │ │ │ │ +00040ec0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00040ed0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00040ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040ef0: 2020 2020 2020 207b 317d 207c 2030 207c {1} | 0 | │ │ │ │ +00040f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040f10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00040f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040f40: 7b31 7d20 7c20 3020 7c20 2020 2020 2020 {1} | 0 | │ │ │ │ -00040f50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00040f30: 2020 2020 207b 317d 207c 2030 207c 2020 {1} | 0 | │ │ │ │ +00040f40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00040f50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00040f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040f70: 2020 2020 2020 2020 2020 2020 2020 7b31 {1 │ │ │ │ -00040f80: 7d20 7c20 3020 7c20 2020 2020 2020 2020 } | 0 | │ │ │ │ -00040f90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00040fa0: 2020 2020 2020 2020 2020 7b7b 312c 2030 {{1, 0 │ │ │ │ -00040fb0: 2c20 307d 2c20 317d 203d 3e20 7b32 7d20 , 0}, 1} => {2} │ │ │ │ -00040fc0: 7c20 3020 3120 3020 3020 7c20 2020 2020 | 0 1 0 0 | │ │ │ │ -00040fd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00040fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040ff0: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ -00041000: 3020 3020 3120 3020 7c20 2020 2020 2020 0 0 1 0 | │ │ │ │ -00041010: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00041020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041030: 2020 2020 2020 2020 7b32 7d20 7c20 3020 {2} | 0 │ │ │ │ -00041040: 3020 3020 3020 7c20 2020 2020 2020 2020 0 0 0 | │ │ │ │ -00041050: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00041060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041070: 2020 2020 2020 7b32 7d20 7c20 3020 3020 {2} | 0 0 │ │ │ │ -00041080: 3020 3120 7c20 2020 2020 2020 2020 2020 0 1 | │ │ │ │ -00041090: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000410a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000410b0: 2020 2020 7b32 7d20 7c20 3020 3020 3020 {2} | 0 0 0 │ │ │ │ -000410c0: 3020 7c20 2020 2020 2020 2020 2020 7c0a 0 | |. │ │ │ │ -000410d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000410e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000410f0: 2020 7b32 7d20 7c20 3020 3020 3020 3020 {2} | 0 0 0 0 │ │ │ │ -00041100: 7c20 2020 2020 2020 2020 2020 7c0a 7c20 | |.| │ │ │ │ -00041110: 2020 2020 2020 2020 2020 2020 2020 7b7b {{ │ │ │ │ -00041120: 312c 2030 2c20 307d 2c20 327d 203d 3e20 1, 0, 0}, 2} => │ │ │ │ -00041130: 7b33 7d20 7c20 3020 3020 3120 3020 3020 {3} | 0 0 1 0 0 │ │ │ │ -00041140: 3020 7c20 2020 2020 2020 7c0a 7c20 2020 0 | |.| │ │ │ │ +00040f70: 2020 207b 317d 207c 2030 207c 2020 2020 {1} | 0 | │ │ │ │ +00040f80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00040f90: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +00040fa0: 7b31 2c20 302c 2030 7d2c 2031 7d20 3d3e {1, 0, 0}, 1} => │ │ │ │ +00040fb0: 207b 327d 207c 2030 2031 2030 2030 207c {2} | 0 1 0 0 | │ │ │ │ +00040fc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00040fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040fe0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +00040ff0: 327d 207c 2030 2030 2031 2030 207c 2020 2} | 0 0 1 0 | │ │ │ │ +00041000: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00041010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00041020: 2020 2020 2020 2020 2020 2020 207b 327d {2} │ │ │ │ +00041030: 207c 2030 2030 2030 2030 207c 2020 2020 | 0 0 0 0 | │ │ │ │ +00041040: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00041050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00041060: 2020 2020 2020 2020 2020 207b 327d 207c {2} | │ │ │ │ +00041070: 2030 2030 2030 2031 207c 2020 2020 2020 0 0 0 1 | │ │ │ │ +00041080: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00041090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000410a0: 2020 2020 2020 2020 207b 327d 207c 2030 {2} | 0 │ │ │ │ +000410b0: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ +000410c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000410d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000410e0: 2020 2020 2020 207b 327d 207c 2030 2030 {2} | 0 0 │ │ │ │ +000410f0: 2030 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +00041100: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041110: 2020 207b 7b31 2c20 302c 2030 7d2c 2032 {{1, 0, 0}, 2 │ │ │ │ +00041120: 7d20 3d3e 207b 337d 207c 2030 2030 2031 } => {3} | 0 0 1 │ │ │ │ +00041130: 2030 2030 2030 207c 2020 2020 2020 207c 0 0 0 | | │ │ │ │ +00041140: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00041150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041160: 2020 2020 2020 2020 2020 2020 2020 7b33 {3 │ │ │ │ -00041170: 7d20 7c20 3020 3020 3020 3020 3120 3020 } | 0 0 0 0 1 0 │ │ │ │ -00041180: 7c20 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +00041160: 2020 207b 337d 207c 2030 2030 2030 2030 {3} | 0 0 0 0 │ │ │ │ +00041170: 2031 2030 207c 2020 2020 2020 207c 0a7c 1 0 | |.| │ │ │ │ +00041180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000411a0: 2020 2020 2020 2020 2020 2020 7b33 7d20 {3} │ │ │ │ -000411b0: 7c20 3020 3020 3020 3020 3020 3120 7c20 | 0 0 0 0 0 1 | │ │ │ │ -000411c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000411d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000411e0: 2020 2020 2020 2020 2020 7b33 7d20 7c20 {3} | │ │ │ │ -000411f0: 3020 3020 3020 3020 3020 3020 7c20 2020 0 0 0 0 0 0 | │ │ │ │ -00041200: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00041210: 2020 2020 2020 7b7b 312c 2030 2c20 317d {{1, 0, 1} │ │ │ │ -00041220: 2c20 2d31 7d20 3d3e 2030 2020 2020 2020 , -1} => 0 │ │ │ │ -00041230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041240: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00041250: 2020 2020 7b7b 312c 2031 2c20 307d 2c20 {{1, 1, 0}, │ │ │ │ -00041260: 2d31 7d20 3d3e 2030 2020 2020 2020 2020 -1} => 0 │ │ │ │ -00041270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041280: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00041290: 2020 7b7b 322c 2030 2c20 307d 2c20 2d31 {{2, 0, 0}, -1 │ │ │ │ -000412a0: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ -000412b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000412c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000411a0: 207b 337d 207c 2030 2030 2030 2030 2030 {3} | 0 0 0 0 0 │ │ │ │ +000411b0: 2031 207c 2020 2020 2020 207c 0a7c 2020 1 | |.| │ │ │ │ +000411c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000411d0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +000411e0: 337d 207c 2030 2030 2030 2030 2030 2030 3} | 0 0 0 0 0 0 │ │ │ │ +000411f0: 207c 2020 2020 2020 207c 0a7c 2020 2020 | |.| │ │ │ │ +00041200: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +00041210: 302c 2031 7d2c 202d 317d 203d 3e20 3020 0, 1}, -1} => 0 │ │ │ │ +00041220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00041230: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00041240: 2020 2020 2020 2020 207b 7b31 2c20 312c {{1, 1, │ │ │ │ +00041250: 2030 7d2c 202d 317d 203d 3e20 3020 2020 0}, -1} => 0 │ │ │ │ +00041260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00041270: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00041280: 2020 2020 2020 207b 7b32 2c20 302c 2030 {{2, 0, 0 │ │ │ │ +00041290: 7d2c 202d 317d 203d 3e20 3020 2020 2020 }, -1} => 0 │ │ │ │ +000412a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000412b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000412c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000412d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000412e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000412f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00041300: 3520 3a20 4861 7368 5461 626c 6520 2020 5 : HashTable │ │ │ │ +000412f0: 207c 0a7c 6f35 203a 2048 6173 6854 6162 |.|o5 : HashTab │ │ │ │ +00041300: 6c65 2020 2020 2020 2020 2020 2020 2020 le │ │ │ │ 00041310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041330: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00041320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00041330: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00041340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041370: 2d2d 2d2d 2d2d 2d2d 2b0a 0a49 6e20 7468 --------+..In th │ │ │ │ -00041380: 6973 2063 6173 6520 7468 6520 6869 6768 is case the high │ │ │ │ -00041390: 6572 2068 6f6d 6f74 6f70 6965 7320 6172 er homotopies ar │ │ │ │ -000413a0: 6520 303a 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d e 0:..+--------- │ │ │ │ +00041360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00041370: 496e 2074 6869 7320 6361 7365 2074 6865 In this case the │ │ │ │ +00041380: 2068 6967 6865 7220 686f 6d6f 746f 7069 higher homotopi │ │ │ │ +00041390: 6573 2061 7265 2030 3a0a 0a2b 2d2d 2d2d es are 0:..+---- │ │ │ │ +000413a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000413b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000413c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000413d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000413e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 204c -------+.|i6 : L │ │ │ │ -000413f0: 203d 2073 6f72 7420 7365 6c65 6374 286b = sort select(k │ │ │ │ -00041400: 6579 7320 686f 6d6f 742c 206b 2d3e 2868 eys homot, k->(h │ │ │ │ -00041410: 6f6d 6f74 236b 213d 3020 616e 6420 7375 omot#k!=0 and su │ │ │ │ -00041420: 6d28 6b5f 3029 3e31 2929 7c0a 7c20 2020 m(k_0)>1))|.| │ │ │ │ +000413d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000413e0: 3620 3a20 4c20 3d20 736f 7274 2073 656c 6 : L = sort sel │ │ │ │ +000413f0: 6563 7428 6b65 7973 2068 6f6d 6f74 2c20 ect(keys homot, │ │ │ │ +00041400: 6b2d 3e28 686f 6d6f 7423 6b21 3d30 2061 k->(homot#k!=0 a │ │ │ │ +00041410: 6e64 2073 756d 286b 5f30 293e 3129 297c nd sum(k_0)>1))| │ │ │ │ +00041420: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00041430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041460: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00041470: 6f36 203d 207b 7d20 2020 2020 2020 2020 o6 = {} │ │ │ │ +00041460: 2020 7c0a 7c6f 3620 3d20 7b7d 2020 2020 |.|o6 = {} │ │ │ │ +00041470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000414a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000414b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000414a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000414b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000414c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000414d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000414e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000414f0: 2020 207c 0a7c 6f36 203a 204c 6973 7420 |.|o6 : List │ │ │ │ +000414e0: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ +000414f0: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ 00041500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041530: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00041520: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00041530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041570: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4f6e 2074 ---------+..On t │ │ │ │ -00041580: 6865 206f 7468 6572 2068 616e 642c 2069 he other hand, i │ │ │ │ -00041590: 6620 7765 2074 616b 6520 6120 636f 6d70 f we take a comp │ │ │ │ -000415a0: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ -000415b0: 6e20 616e 6420 736f 6d65 7468 696e 6720 n and something │ │ │ │ -000415c0: 636f 6e74 6169 6e65 640a 696e 2069 7420 contained.in it │ │ │ │ -000415d0: 696e 2061 206d 6f72 6520 636f 6d70 6c69 in a more compli │ │ │ │ -000415e0: 6361 7465 6420 7369 7475 6174 696f 6e2c cated situation, │ │ │ │ -000415f0: 2074 6865 2070 726f 6772 616d 2067 6976 the program giv │ │ │ │ -00041600: 6573 206e 6f6e 7a65 726f 2068 6967 6865 es nonzero highe │ │ │ │ -00041610: 720a 686f 6d6f 746f 7069 6573 3a0a 0a2b r.homotopies:..+ │ │ │ │ +00041560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00041570: 0a4f 6e20 7468 6520 6f74 6865 7220 6861 .On the other ha │ │ │ │ +00041580: 6e64 2c20 6966 2077 6520 7461 6b65 2061 nd, if we take a │ │ │ │ +00041590: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ +000415a0: 6563 7469 6f6e 2061 6e64 2073 6f6d 6574 ection and somet │ │ │ │ +000415b0: 6869 6e67 2063 6f6e 7461 696e 6564 0a69 hing contained.i │ │ │ │ +000415c0: 6e20 6974 2069 6e20 6120 6d6f 7265 2063 n it in a more c │ │ │ │ +000415d0: 6f6d 706c 6963 6174 6564 2073 6974 7561 omplicated situa │ │ │ │ +000415e0: 7469 6f6e 2c20 7468 6520 7072 6f67 7261 tion, the progra │ │ │ │ +000415f0: 6d20 6769 7665 7320 6e6f 6e7a 6572 6f20 m gives nonzero │ │ │ │ +00041600: 6869 6768 6572 0a68 6f6d 6f74 6f70 6965 higher.homotopie │ │ │ │ +00041610: 733a 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d s:..+----------- │ │ │ │ 00041620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00041670: 6937 203a 206b 6b3d 205a 5a2f 3332 3030 i7 : kk= ZZ/3200 │ │ │ │ -00041680: 333b 2020 2020 2020 2020 2020 2020 2020 3; │ │ │ │ +00041660: 2d2d 2b0a 7c69 3720 3a20 6b6b 3d20 5a5a --+.|i7 : kk= ZZ │ │ │ │ +00041670: 2f33 3230 3033 3b20 2020 2020 2020 2020 /32003; │ │ │ │ +00041680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000416a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000416b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000416b0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 000416c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000416d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000416e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000416f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00041710: 6938 203a 2053 203d 206b 6b5b 612c 622c i8 : S = kk[a,b, │ │ │ │ -00041720: 632c 645d 3b20 2020 2020 2020 2020 2020 c,d]; │ │ │ │ +00041700: 2d2d 2b0a 7c69 3820 3a20 5320 3d20 6b6b --+.|i8 : S = kk │ │ │ │ +00041710: 5b61 2c62 2c63 2c64 5d3b 2020 2020 2020 [a,b,c,d]; │ │ │ │ +00041720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041750: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00041750: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00041760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000417a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000417b0: 6939 203a 204d 203d 2053 5e31 2f28 6964 i9 : M = S^1/(id │ │ │ │ -000417c0: 6561 6c22 6132 2c62 322c 6332 2c64 3222 eal"a2,b2,c2,d2" │ │ │ │ -000417d0: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ +000417a0: 2d2d 2b0a 7c69 3920 3a20 4d20 3d20 535e --+.|i9 : M = S^ │ │ │ │ +000417b0: 312f 2869 6465 616c 2261 322c 6232 2c63 1/(ideal"a2,b2,c │ │ │ │ +000417c0: 322c 6432 2229 3b20 2020 2020 2020 2020 2,d2"); │ │ │ │ +000417d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000417e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000417f0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000417f0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00041800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00041850: 6931 3020 3a20 4620 3d20 6672 6565 5265 i10 : F = freeRe │ │ │ │ -00041860: 736f 6c75 7469 6f6e 204d 2020 2020 2020 solution M │ │ │ │ +00041840: 2d2d 2b0a 7c69 3130 203a 2046 203d 2066 --+.|i10 : F = f │ │ │ │ +00041850: 7265 6552 6573 6f6c 7574 696f 6e20 4d20 reeResolution M │ │ │ │ +00041860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041890: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00041890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000418a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000418b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000418c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000418d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000418e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000418f0: 2020 2020 2020 2031 2020 2020 2020 3420 1 4 │ │ │ │ -00041900: 2020 2020 2036 2020 2020 2020 3420 2020 6 4 │ │ │ │ -00041910: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000418e0: 2020 7c0a 7c20 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ +000418f0: 2020 2034 2020 2020 2020 3620 2020 2020 4 6 │ │ │ │ +00041900: 2034 2020 2020 2020 3120 2020 2020 2020 4 1 │ │ │ │ +00041910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041930: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00041940: 6f31 3020 3d20 5320 203c 2d2d 2053 2020 o10 = S <-- S │ │ │ │ -00041950: 3c2d 2d20 5320 203c 2d2d 2053 2020 3c2d <-- S <-- S <- │ │ │ │ -00041960: 2d20 5320 2020 2020 2020 2020 2020 2020 - S │ │ │ │ +00041930: 2020 7c0a 7c6f 3130 203d 2053 2020 3c2d |.|o10 = S <- │ │ │ │ +00041940: 2d20 5320 203c 2d2d 2053 2020 3c2d 2d20 - S <-- S <-- │ │ │ │ +00041950: 5320 203c 2d2d 2053 2020 2020 2020 2020 S <-- S │ │ │ │ +00041960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041980: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00041980: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00041990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000419a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000419b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000419c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000419d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000419e0: 2020 2020 2020 3020 2020 2020 2031 2020 0 1 │ │ │ │ -000419f0: 2020 2020 3220 2020 2020 2033 2020 2020 2 3 │ │ │ │ -00041a00: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +000419d0: 2020 7c0a 7c20 2020 2020 2030 2020 2020 |.| 0 │ │ │ │ +000419e0: 2020 3120 2020 2020 2032 2020 2020 2020 1 2 │ │ │ │ +000419f0: 3320 2020 2020 2034 2020 2020 2020 2020 3 4 │ │ │ │ +00041a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041a20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00041a20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00041a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041a70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00041a80: 6f31 3020 3a20 436f 6d70 6c65 7820 2020 o10 : Complex │ │ │ │ +00041a70: 2020 7c0a 7c6f 3130 203a 2043 6f6d 706c |.|o10 : Compl │ │ │ │ +00041a80: 6578 2020 2020 2020 2020 2020 2020 2020 ex │ │ │ │ 00041a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041ac0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00041ac0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00041ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00041b20: 6931 3120 3a20 7365 7452 616e 646f 6d53 i11 : setRandomS │ │ │ │ -00041b30: 6565 6420 3020 2020 2020 2020 2020 2020 eed 0 │ │ │ │ +00041b10: 2d2d 2b0a 7c69 3131 203a 2073 6574 5261 --+.|i11 : setRa │ │ │ │ +00041b20: 6e64 6f6d 5365 6564 2030 2020 2020 2020 ndomSeed 0 │ │ │ │ +00041b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041b60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00041b70: 202d 2d20 7365 7474 696e 6720 7261 6e64 -- setting rand │ │ │ │ -00041b80: 6f6d 2073 6565 6420 746f 2030 2020 2020 om seed to 0 │ │ │ │ +00041b60: 2020 7c0a 7c20 2d2d 2073 6574 7469 6e67 |.| -- setting │ │ │ │ +00041b70: 2072 616e 646f 6d20 7365 6564 2074 6f20 random seed to │ │ │ │ +00041b80: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 00041b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041bb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00041bb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00041bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041c00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00041c10: 6f31 3120 3d20 3020 2020 2020 2020 2020 o11 = 0 │ │ │ │ +00041c00: 2020 7c0a 7c6f 3131 203d 2030 2020 2020 |.|o11 = 0 │ │ │ │ +00041c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041c50: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00041c50: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00041c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00041cb0: 6931 3220 3a20 6620 3d20 7261 6e64 6f6d i12 : f = random │ │ │ │ -00041cc0: 2853 5e31 2c53 5e7b 323a 2d35 7d29 3b20 (S^1,S^{2:-5}); │ │ │ │ +00041ca0: 2d2d 2b0a 7c69 3132 203a 2066 203d 2072 --+.|i12 : f = r │ │ │ │ +00041cb0: 616e 646f 6d28 535e 312c 535e 7b32 3a2d andom(S^1,S^{2:- │ │ │ │ +00041cc0: 357d 293b 2020 2020 2020 2020 2020 2020 5}); │ │ │ │ 00041cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041cf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00041cf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00041d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041d40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00041d50: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00041d60: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00041d40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041d50: 2020 2031 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ +00041d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041d90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00041da0: 6f31 3220 3a20 4d61 7472 6978 2053 2020 o12 : Matrix S │ │ │ │ -00041db0: 3c2d 2d20 5320 2020 2020 2020 2020 2020 <-- S │ │ │ │ +00041d90: 2020 7c0a 7c6f 3132 203a 204d 6174 7269 |.|o12 : Matri │ │ │ │ +00041da0: 7820 5320 203c 2d2d 2053 2020 2020 2020 x S <-- S │ │ │ │ +00041db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041de0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00041de0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00041df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00041e40: 6931 3320 3a20 686f 6d6f 7420 3d20 6d61 i13 : homot = ma │ │ │ │ -00041e50: 6b65 486f 6d6f 746f 7069 6573 2866 2c46 keHomotopies(f,F │ │ │ │ -00041e60: 2c35 2920 2020 2020 2020 2020 2020 2020 ,5) │ │ │ │ +00041e30: 2d2d 2b0a 7c69 3133 203a 2068 6f6d 6f74 --+.|i13 : homot │ │ │ │ +00041e40: 203d 206d 616b 6548 6f6d 6f74 6f70 6965 = makeHomotopie │ │ │ │ +00041e50: 7328 662c 462c 3529 2020 2020 2020 2020 s(f,F,5) │ │ │ │ +00041e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041e80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00041e80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00041e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041ed0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00041ee0: 6f31 3320 3d20 4861 7368 5461 626c 657b o13 = HashTable{ │ │ │ │ -00041ef0: 7b7b 302c 2030 7d2c 2030 7d20 3d3e 2030 {{0, 0}, 0} => 0 │ │ │ │ +00041ed0: 2020 7c0a 7c6f 3133 203d 2048 6173 6854 |.|o13 = HashT │ │ │ │ +00041ee0: 6162 6c65 7b7b 7b30 2c20 307d 2c20 307d able{{{0, 0}, 0} │ │ │ │ +00041ef0: 203d 3e20 3020 2020 2020 2020 2020 2020 => 0 │ │ │ │ 00041f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041f20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00041f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041f40: 7b7b 302c 2030 7d2c 2031 7d20 3d3e 207c {{0, 0}, 1} => | │ │ │ │ -00041f50: 2061 3220 2020 2020 2020 2020 2020 2020 a2 │ │ │ │ +00041f20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041f30: 2020 2020 207b 7b30 2c20 307d 2c20 317d {{0, 0}, 1} │ │ │ │ +00041f40: 203d 3e20 7c20 6132 2020 2020 2020 2020 => | a2 │ │ │ │ +00041f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041f70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00041f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041f90: 7b7b 302c 2030 7d2c 2032 7d20 3d3e 207b {{0, 0}, 2} => { │ │ │ │ -00041fa0: 327d 207c 2020 2020 2020 2020 2020 2020 2} | │ │ │ │ +00041f70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041f80: 2020 2020 207b 7b30 2c20 307d 2c20 327d {{0, 0}, 2} │ │ │ │ +00041f90: 203d 3e20 7b32 7d20 7c20 2020 2020 2020 => {2} | │ │ │ │ +00041fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041fc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00041fc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00041fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041fe0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00041ff0: 327d 207c 2020 2020 2020 2020 2020 2020 2} | │ │ │ │ +00041fe0: 2020 2020 7b32 7d20 7c20 2020 2020 2020 {2} | │ │ │ │ +00041ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042010: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042010: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042030: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042040: 327d 207c 2020 2020 2020 2020 2020 2020 2} | │ │ │ │ +00042030: 2020 2020 7b32 7d20 7c20 2020 2020 2020 {2} | │ │ │ │ +00042040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042060: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042060: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042080: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042090: 327d 207c 2020 2020 2020 2020 2020 2020 2} | │ │ │ │ +00042080: 2020 2020 7b32 7d20 7c20 2020 2020 2020 {2} | │ │ │ │ +00042090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000420a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000420b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000420c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000420d0: 7b7b 302c 2030 7d2c 2033 7d20 3d3e 207b {{0, 0}, 3} => { │ │ │ │ -000420e0: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +000420b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000420c0: 2020 2020 207b 7b30 2c20 307d 2c20 337d {{0, 0}, 3} │ │ │ │ +000420d0: 203d 3e20 7b34 7d20 7c20 2020 2020 2020 => {4} | │ │ │ │ +000420e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000420f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042100: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042100: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042120: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042130: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042120: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +00042130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042150: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042150: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042170: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042180: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042170: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +00042180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000421a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000421a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000421b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000421c0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -000421d0: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +000421c0: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +000421d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000421e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000421f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000421f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042210: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042220: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042210: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +00042220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042240: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042240: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042260: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042270: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042260: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +00042270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042290: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000422a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000422b0: 7b7b 302c 2030 7d2c 2034 7d20 3d3e 207b {{0, 0}, 4} => { │ │ │ │ -000422c0: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00042290: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000422a0: 2020 2020 207b 7b30 2c20 307d 2c20 347d {{0, 0}, 4} │ │ │ │ +000422b0: 203d 3e20 7b36 7d20 7c20 2020 2020 2020 => {6} | │ │ │ │ +000422c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000422d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000422e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000422e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000422f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042300: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042310: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00042300: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00042310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042330: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042330: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042350: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042360: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00042350: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00042360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042380: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042380: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000423a0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -000423b0: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +000423a0: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +000423b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000423c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000423d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000423e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000423f0: 7b7b 302c 2030 7d2c 2035 7d20 3d3e 2030 {{0, 0}, 5} => 0 │ │ │ │ +000423d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000423e0: 2020 2020 207b 7b30 2c20 307d 2c20 357d {{0, 0}, 5} │ │ │ │ +000423f0: 203d 3e20 3020 2020 2020 2020 2020 2020 => 0 │ │ │ │ 00042400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042420: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00042430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042440: 7b7b 302c 2031 7d2c 202d 317d 203d 3e20 {{0, 1}, -1} => │ │ │ │ -00042450: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00042420: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042430: 2020 2020 207b 7b30 2c20 317d 2c20 2d31 {{0, 1}, -1 │ │ │ │ +00042440: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00042450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042470: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00042480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042490: 7b7b 302c 2031 7d2c 2030 7d20 3d3e 207b {{0, 1}, 0} => { │ │ │ │ -000424a0: 327d 207c 2020 2020 2020 2020 2020 2020 2} | │ │ │ │ +00042470: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042480: 2020 2020 207b 7b30 2c20 317d 2c20 307d {{0, 1}, 0} │ │ │ │ +00042490: 203d 3e20 7b32 7d20 7c20 2020 2020 2020 => {2} | │ │ │ │ +000424a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000424b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000424c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000424c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000424d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000424e0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -000424f0: 327d 207c 2020 2020 2020 2020 2020 2020 2} | │ │ │ │ +000424e0: 2020 2020 7b32 7d20 7c20 2020 2020 2020 {2} | │ │ │ │ +000424f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042510: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042510: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042530: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042540: 327d 207c 2020 2020 2020 2020 2020 2020 2} | │ │ │ │ +00042530: 2020 2020 7b32 7d20 7c20 2020 2020 2020 {2} | │ │ │ │ +00042540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042560: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042560: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042580: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042590: 327d 207c 2020 2020 2020 2020 2020 2020 2} | │ │ │ │ +00042580: 2020 2020 7b32 7d20 7c20 2020 2020 2020 {2} | │ │ │ │ +00042590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000425a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000425b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000425c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000425d0: 7b7b 302c 2031 7d2c 2031 7d20 3d3e 207b {{0, 1}, 1} => { │ │ │ │ -000425e0: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +000425b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000425c0: 2020 2020 207b 7b30 2c20 317d 2c20 317d {{0, 1}, 1} │ │ │ │ +000425d0: 203d 3e20 7b34 7d20 7c20 2020 2020 2020 => {4} | │ │ │ │ +000425e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000425f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042600: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042600: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042620: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042630: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042620: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +00042630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042650: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042650: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042670: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042680: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042670: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +00042680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000426a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000426a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000426b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000426c0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -000426d0: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +000426c0: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +000426d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000426e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000426f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000426f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042710: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042720: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042710: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +00042720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042740: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042740: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042760: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042770: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042760: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +00042770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042790: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000427a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000427b0: 7b7b 302c 2031 7d2c 2032 7d20 3d3e 207b {{0, 1}, 2} => { │ │ │ │ -000427c0: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00042790: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000427a0: 2020 2020 207b 7b30 2c20 317d 2c20 327d {{0, 1}, 2} │ │ │ │ +000427b0: 203d 3e20 7b36 7d20 7c20 2020 2020 2020 => {6} | │ │ │ │ +000427c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000427d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000427e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000427e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000427f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042800: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042810: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00042800: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00042810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042830: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042830: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042850: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042860: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00042850: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00042860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042880: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042880: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000428a0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -000428b0: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +000428a0: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +000428b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000428c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000428d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000428e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000428f0: 7b7b 302c 2031 7d2c 2033 7d20 3d3e 207b {{0, 1}, 3} => { │ │ │ │ -00042900: 387d 207c 2020 2020 2020 2020 2020 2020 8} | │ │ │ │ +000428d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000428e0: 2020 2020 207b 7b30 2c20 317d 2c20 337d {{0, 1}, 3} │ │ │ │ +000428f0: 203d 3e20 7b38 7d20 7c20 2020 2020 2020 => {8} | │ │ │ │ +00042900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042920: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00042930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042940: 7b7b 302c 2031 7d2c 2034 7d20 3d3e 2030 {{0, 1}, 4} => 0 │ │ │ │ +00042920: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042930: 2020 2020 207b 7b30 2c20 317d 2c20 347d {{0, 1}, 4} │ │ │ │ +00042940: 203d 3e20 3020 2020 2020 2020 2020 2020 => 0 │ │ │ │ 00042950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042970: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00042980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042990: 7b7b 302c 2032 7d2c 202d 317d 203d 3e20 {{0, 2}, -1} => │ │ │ │ -000429a0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00042970: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042980: 2020 2020 207b 7b30 2c20 327d 2c20 2d31 {{0, 2}, -1 │ │ │ │ +00042990: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +000429a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000429b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000429c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000429d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000429e0: 7b7b 302c 2032 7d2c 2030 7d20 3d3e 207b {{0, 2}, 0} => { │ │ │ │ -000429f0: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +000429c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000429d0: 2020 2020 207b 7b30 2c20 327d 2c20 307d {{0, 2}, 0} │ │ │ │ +000429e0: 203d 3e20 7b36 7d20 7c20 2020 2020 2020 => {6} | │ │ │ │ +000429f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042a10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042a10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042a30: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042a40: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00042a30: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00042a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042a60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042a60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042a80: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042a90: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00042a80: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00042a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042ab0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042ab0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042ad0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042ae0: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00042ad0: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00042ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042b00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00042b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042b20: 7b7b 302c 2032 7d2c 2031 7d20 3d3e 207b {{0, 2}, 1} => { │ │ │ │ -00042b30: 387d 207c 2020 2020 2020 2020 2020 2020 8} | │ │ │ │ +00042b00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042b10: 2020 2020 207b 7b30 2c20 327d 2c20 317d {{0, 2}, 1} │ │ │ │ +00042b20: 203d 3e20 7b38 7d20 7c20 2020 2020 2020 => {8} | │ │ │ │ +00042b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042b50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00042b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042b70: 7b7b 302c 2033 7d2c 202d 317d 203d 3e20 {{0, 3}, -1} => │ │ │ │ -00042b80: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00042b50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042b60: 2020 2020 207b 7b30 2c20 337d 2c20 2d31 {{0, 3}, -1 │ │ │ │ +00042b70: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00042b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042ba0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00042bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042bc0: 7b7b 302c 2034 7d2c 202d 317d 203d 3e20 {{0, 4}, -1} => │ │ │ │ -00042bd0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00042ba0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042bb0: 2020 2020 207b 7b30 2c20 347d 2c20 2d31 {{0, 4}, -1 │ │ │ │ +00042bc0: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00042bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042bf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00042c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042c10: 7b7b 312c 2030 7d2c 202d 317d 203d 3e20 {{1, 0}, -1} => │ │ │ │ -00042c20: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00042bf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042c00: 2020 2020 207b 7b31 2c20 307d 2c20 2d31 {{1, 0}, -1 │ │ │ │ +00042c10: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00042c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042c40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00042c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042c60: 7b7b 312c 2030 7d2c 2030 7d20 3d3e 207b {{1, 0}, 0} => { │ │ │ │ -00042c70: 327d 207c 2020 2020 2020 2020 2020 2020 2} | │ │ │ │ +00042c40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042c50: 2020 2020 207b 7b31 2c20 307d 2c20 307d {{1, 0}, 0} │ │ │ │ +00042c60: 203d 3e20 7b32 7d20 7c20 2020 2020 2020 => {2} | │ │ │ │ +00042c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042c90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042c90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042cb0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042cc0: 327d 207c 2020 2020 2020 2020 2020 2020 2} | │ │ │ │ +00042cb0: 2020 2020 7b32 7d20 7c20 2020 2020 2020 {2} | │ │ │ │ +00042cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042ce0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042ce0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042d00: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042d10: 327d 207c 2020 2020 2020 2020 2020 2020 2} | │ │ │ │ +00042d00: 2020 2020 7b32 7d20 7c20 2020 2020 2020 {2} | │ │ │ │ +00042d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042d30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042d30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042d50: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042d60: 327d 207c 2020 2020 2020 2020 2020 2020 2} | │ │ │ │ +00042d50: 2020 2020 7b32 7d20 7c20 2020 2020 2020 {2} | │ │ │ │ +00042d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042d80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00042d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042da0: 7b7b 312c 2030 7d2c 2031 7d20 3d3e 207b {{1, 0}, 1} => { │ │ │ │ -00042db0: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042d80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042d90: 2020 2020 207b 7b31 2c20 307d 2c20 317d {{1, 0}, 1} │ │ │ │ +00042da0: 203d 3e20 7b34 7d20 7c20 2020 2020 2020 => {4} | │ │ │ │ +00042db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042dd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042dd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042df0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042e00: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042df0: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +00042e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042e20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042e20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042e40: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042e50: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042e40: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +00042e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042e70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042e70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042e90: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042ea0: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042e90: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +00042ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042ec0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042ec0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042ee0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042ef0: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042ee0: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +00042ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042f10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042f10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042f30: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042f40: 347d 207c 2020 2020 2020 2020 2020 2020 4} | │ │ │ │ +00042f30: 2020 2020 7b34 7d20 7c20 2020 2020 2020 {4} | │ │ │ │ +00042f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042f60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00042f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042f80: 7b7b 312c 2030 7d2c 2032 7d20 3d3e 207b {{1, 0}, 2} => { │ │ │ │ -00042f90: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00042f60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042f70: 2020 2020 207b 7b31 2c20 307d 2c20 327d {{1, 0}, 2} │ │ │ │ +00042f80: 203d 3e20 7b36 7d20 7c20 2020 2020 2020 => {6} | │ │ │ │ +00042f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042fb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00042fb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042fd0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00042fe0: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00042fd0: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00042fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043000: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00043000: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00043010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043020: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00043030: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00043020: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00043030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00043050: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00043060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043070: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00043080: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00043070: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00043080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000430a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000430b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000430c0: 7b7b 312c 2030 7d2c 2033 7d20 3d3e 207b {{1, 0}, 3} => { │ │ │ │ -000430d0: 387d 207c 2020 2020 2020 2020 2020 2020 8} | │ │ │ │ +000430a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000430b0: 2020 2020 207b 7b31 2c20 307d 2c20 337d {{1, 0}, 3} │ │ │ │ +000430c0: 203d 3e20 7b38 7d20 7c20 2020 2020 2020 => {8} | │ │ │ │ +000430d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000430e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000430f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043110: 7b7b 312c 2030 7d2c 2034 7d20 3d3e 2030 {{1, 0}, 4} => 0 │ │ │ │ +000430f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043100: 2020 2020 207b 7b31 2c20 307d 2c20 347d {{1, 0}, 4} │ │ │ │ +00043110: 203d 3e20 3020 2020 2020 2020 2020 2020 => 0 │ │ │ │ 00043120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043140: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043160: 7b7b 312c 2031 7d2c 202d 317d 203d 3e20 {{1, 1}, -1} => │ │ │ │ -00043170: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00043140: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043150: 2020 2020 207b 7b31 2c20 317d 2c20 2d31 {{1, 1}, -1 │ │ │ │ +00043160: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00043170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043190: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000431a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000431b0: 7b7b 312c 2031 7d2c 2030 7d20 3d3e 207b {{1, 1}, 0} => { │ │ │ │ -000431c0: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00043190: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000431a0: 2020 2020 207b 7b31 2c20 317d 2c20 307d {{1, 1}, 0} │ │ │ │ +000431b0: 203d 3e20 7b36 7d20 7c20 2020 2020 2020 => {6} | │ │ │ │ +000431c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000431d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000431e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000431e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000431f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043200: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00043210: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00043200: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00043210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043230: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00043230: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00043240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043250: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00043260: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00043250: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00043260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043280: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00043280: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00043290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000432a0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -000432b0: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +000432a0: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +000432b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000432c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000432d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000432e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000432f0: 7b7b 312c 2031 7d2c 2031 7d20 3d3e 207b {{1, 1}, 1} => { │ │ │ │ -00043300: 387d 207c 2020 2020 2020 2020 2020 2020 8} | │ │ │ │ +000432d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000432e0: 2020 2020 207b 7b31 2c20 317d 2c20 317d {{1, 1}, 1} │ │ │ │ +000432f0: 203d 3e20 7b38 7d20 7c20 2020 2020 2020 => {8} | │ │ │ │ +00043300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043320: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043340: 7b7b 312c 2032 7d2c 202d 317d 203d 3e20 {{1, 2}, -1} => │ │ │ │ -00043350: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00043320: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043330: 2020 2020 207b 7b31 2c20 327d 2c20 2d31 {{1, 2}, -1 │ │ │ │ +00043340: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00043350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043370: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043390: 7b7b 312c 2033 7d2c 202d 317d 203d 3e20 {{1, 3}, -1} => │ │ │ │ -000433a0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00043370: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043380: 2020 2020 207b 7b31 2c20 337d 2c20 2d31 {{1, 3}, -1 │ │ │ │ +00043390: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +000433a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000433b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000433c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000433d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000433e0: 7b7b 322c 2030 7d2c 202d 317d 203d 3e20 {{2, 0}, -1} => │ │ │ │ -000433f0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000433c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000433d0: 2020 2020 207b 7b32 2c20 307d 2c20 2d31 {{2, 0}, -1 │ │ │ │ +000433e0: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +000433f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043410: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043430: 7b7b 322c 2030 7d2c 2030 7d20 3d3e 207b {{2, 0}, 0} => { │ │ │ │ -00043440: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00043410: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043420: 2020 2020 207b 7b32 2c20 307d 2c20 307d {{2, 0}, 0} │ │ │ │ +00043430: 203d 3e20 7b36 7d20 7c20 2020 2020 2020 => {6} | │ │ │ │ +00043440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043460: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00043460: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00043470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043480: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00043490: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00043480: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00043490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000434a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000434b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000434b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000434c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000434d0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -000434e0: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +000434d0: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +000434e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000434f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043500: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00043500: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00043510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043520: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00043530: 367d 207c 2020 2020 2020 2020 2020 2020 6} | │ │ │ │ +00043520: 2020 2020 7b36 7d20 7c20 2020 2020 2020 {6} | │ │ │ │ +00043530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043550: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043570: 7b7b 322c 2030 7d2c 2031 7d20 3d3e 207b {{2, 0}, 1} => { │ │ │ │ -00043580: 387d 207c 2020 2020 2020 2020 2020 2020 8} | │ │ │ │ +00043550: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043560: 2020 2020 207b 7b32 2c20 307d 2c20 317d {{2, 0}, 1} │ │ │ │ +00043570: 203d 3e20 7b38 7d20 7c20 2020 2020 2020 => {8} | │ │ │ │ +00043580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000435a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000435b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000435c0: 7b7b 322c 2031 7d2c 202d 317d 203d 3e20 {{2, 1}, -1} => │ │ │ │ -000435d0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000435a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000435b0: 2020 2020 207b 7b32 2c20 317d 2c20 2d31 {{2, 1}, -1 │ │ │ │ +000435c0: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +000435d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000435e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000435f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043610: 7b7b 322c 2032 7d2c 202d 317d 203d 3e20 {{2, 2}, -1} => │ │ │ │ -00043620: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000435f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043600: 2020 2020 207b 7b32 2c20 327d 2c20 2d31 {{2, 2}, -1 │ │ │ │ +00043610: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00043620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043640: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043660: 7b7b 332c 2030 7d2c 202d 317d 203d 3e20 {{3, 0}, -1} => │ │ │ │ -00043670: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00043640: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043650: 2020 2020 207b 7b33 2c20 307d 2c20 2d31 {{3, 0}, -1 │ │ │ │ +00043660: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00043670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043690: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000436a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000436b0: 7b7b 332c 2031 7d2c 202d 317d 203d 3e20 {{3, 1}, -1} => │ │ │ │ -000436c0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00043690: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000436a0: 2020 2020 207b 7b33 2c20 317d 2c20 2d31 {{3, 1}, -1 │ │ │ │ +000436b0: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +000436c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000436d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000436e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000436f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043700: 7b7b 342c 2030 7d2c 202d 317d 203d 3e20 {{4, 0}, -1} => │ │ │ │ -00043710: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000436e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000436f0: 2020 2020 207b 7b34 2c20 307d 2c20 2d31 {{4, 0}, -1 │ │ │ │ +00043700: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00043710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043730: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00043730: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00043740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043780: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043790: 6f31 3320 3a20 4861 7368 5461 626c 6520 o13 : HashTable │ │ │ │ +00043780: 2020 7c0a 7c6f 3133 203a 2048 6173 6854 |.|o13 : HashT │ │ │ │ +00043790: 6162 6c65 2020 2020 2020 2020 2020 2020 able │ │ │ │ 000437a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000437b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000437c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000437d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000437d0: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ 000437e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000437f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00043820: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 00043830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043870: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043880: 6232 2063 3220 6432 207c 2020 2020 2020 b2 c2 d2 | │ │ │ │ +00043870: 2020 7c0a 7c62 3220 6332 2064 3220 7c20 |.|b2 c2 d2 | │ │ │ │ +00043880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000438a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000438b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000438c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000438d0: 202d 6232 202d 6332 2030 2020 202d 6432 -b2 -c2 0 -d2 │ │ │ │ -000438e0: 2030 2020 2030 2020 207c 2020 2020 2020 0 0 | │ │ │ │ +000438c0: 2020 7c0a 7c20 2d62 3220 2d63 3220 3020 |.| -b2 -c2 0 │ │ │ │ +000438d0: 2020 2d64 3220 3020 2020 3020 2020 7c20 -d2 0 0 | │ │ │ │ +000438e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000438f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043910: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043920: 2061 3220 2030 2020 202d 6332 2030 2020 a2 0 -c2 0 │ │ │ │ -00043930: 202d 6432 2030 2020 207c 2020 2020 2020 -d2 0 | │ │ │ │ +00043910: 2020 7c0a 7c20 6132 2020 3020 2020 2d63 |.| a2 0 -c │ │ │ │ +00043920: 3220 3020 2020 2d64 3220 3020 2020 7c20 2 0 -d2 0 | │ │ │ │ +00043930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043960: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043970: 2030 2020 2061 3220 2062 3220 2030 2020 0 a2 b2 0 │ │ │ │ -00043980: 2030 2020 202d 6432 207c 2020 2020 2020 0 -d2 | │ │ │ │ +00043960: 2020 7c0a 7c20 3020 2020 6132 2020 6232 |.| 0 a2 b2 │ │ │ │ +00043970: 2020 3020 2020 3020 2020 2d64 3220 7c20 0 0 -d2 | │ │ │ │ +00043980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000439a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000439b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000439c0: 2030 2020 2030 2020 2030 2020 2061 3220 0 0 0 a2 │ │ │ │ -000439d0: 2062 3220 2063 3220 207c 2020 2020 2020 b2 c2 | │ │ │ │ +000439b0: 2020 7c0a 7c20 3020 2020 3020 2020 3020 |.| 0 0 0 │ │ │ │ +000439c0: 2020 6132 2020 6232 2020 6332 2020 7c20 a2 b2 c2 | │ │ │ │ +000439d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000439e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000439f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043a00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043a10: 2063 3220 2064 3220 2030 2020 2030 2020 c2 d2 0 0 │ │ │ │ -00043a20: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00043a00: 2020 7c0a 7c20 6332 2020 6432 2020 3020 |.| c2 d2 0 │ │ │ │ +00043a10: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +00043a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043a50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043a60: 202d 6232 2030 2020 2064 3220 2030 2020 -b2 0 d2 0 │ │ │ │ -00043a70: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00043a50: 2020 7c0a 7c20 2d62 3220 3020 2020 6432 |.| -b2 0 d2 │ │ │ │ +00043a60: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +00043a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043aa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043ab0: 2061 3220 2030 2020 2030 2020 2064 3220 a2 0 0 d2 │ │ │ │ -00043ac0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00043aa0: 2020 7c0a 7c20 6132 2020 3020 2020 3020 |.| a2 0 0 │ │ │ │ +00043ab0: 2020 6432 2020 7c20 2020 2020 2020 2020 d2 | │ │ │ │ +00043ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043af0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043b00: 2030 2020 202d 6232 202d 6332 2030 2020 0 -b2 -c2 0 │ │ │ │ -00043b10: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00043af0: 2020 7c0a 7c20 3020 2020 2d62 3220 2d63 |.| 0 -b2 -c │ │ │ │ +00043b00: 3220 3020 2020 7c20 2020 2020 2020 2020 2 0 | │ │ │ │ +00043b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043b40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043b50: 2030 2020 2061 3220 2030 2020 202d 6332 0 a2 0 -c2 │ │ │ │ -00043b60: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00043b40: 2020 7c0a 7c20 3020 2020 6132 2020 3020 |.| 0 a2 0 │ │ │ │ +00043b50: 2020 2d63 3220 7c20 2020 2020 2020 2020 -c2 | │ │ │ │ +00043b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043b90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043ba0: 2030 2020 2030 2020 2061 3220 2062 3220 0 0 a2 b2 │ │ │ │ -00043bb0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00043b90: 2020 7c0a 7c20 3020 2020 3020 2020 6132 |.| 0 0 a2 │ │ │ │ +00043ba0: 2020 6232 2020 7c20 2020 2020 2020 2020 b2 | │ │ │ │ +00043bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043be0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043bf0: 202d 6432 207c 2020 2020 2020 2020 2020 -d2 | │ │ │ │ +00043be0: 2020 7c0a 7c20 2d64 3220 7c20 2020 2020 |.| -d2 | │ │ │ │ +00043bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043c30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043c40: 2063 3220 207c 2020 2020 2020 2020 2020 c2 | │ │ │ │ +00043c30: 2020 7c0a 7c20 6332 2020 7c20 2020 2020 |.| c2 | │ │ │ │ +00043c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043c80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043c90: 202d 6232 207c 2020 2020 2020 2020 2020 -b2 | │ │ │ │ +00043c80: 2020 7c0a 7c20 2d62 3220 7c20 2020 2020 |.| -b2 | │ │ │ │ +00043c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043cd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043ce0: 2061 3220 207c 2020 2020 2020 2020 2020 a2 | │ │ │ │ +00043cd0: 2020 7c0a 7c20 6132 2020 7c20 2020 2020 |.| a2 | │ │ │ │ +00043ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043d20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00043d20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00043d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043d70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00043d70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00043d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043dc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043dd0: 2031 3233 3661 332b 3839 3232 6132 622d 1236a3+8922a2b- │ │ │ │ -00043de0: 3335 3839 6162 322b 3839 3731 6233 2d35 3589ab2+8971b3-5 │ │ │ │ -00043df0: 3030 3661 3263 2d35 3539 3961 6263 2d31 006a2c-5599abc-1 │ │ │ │ -00043e00: 3431 3635 6232 632b 3838 3830 6132 642b 4165b2c+8880a2d+ │ │ │ │ -00043e10: 3432 3539 6162 642d 3330 3032 627c 0a7c 4259abd-3002b|.| │ │ │ │ -00043e20: 2031 3033 3730 6162 322d 3730 3932 6233 10370ab2-7092b3 │ │ │ │ -00043e30: 2d39 3730 3261 6263 2d36 3632 3762 3263 -9702abc-6627b2c │ │ │ │ -00043e40: 2b38 3838 3661 6264 2b34 3730 3062 3264 +8886abd+4700b2d │ │ │ │ -00043e50: 2d31 3561 6364 2b35 3936 3962 6364 2020 -15acd+5969bcd │ │ │ │ -00043e60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00043e70: 2031 3337 3037 6133 2b32 3137 3761 3262 13707a3+2177a2b │ │ │ │ -00043e80: 2d37 3032 3861 6232 2b39 3739 3762 332d -7028ab2+9797b3- │ │ │ │ -00043e90: 3730 3231 6132 632b 3633 3737 6162 632b 7021a2c+6377abc+ │ │ │ │ -00043ea0: 3538 3734 6232 632d 3736 3030 6163 322d 5874b2c-7600ac2- │ │ │ │ -00043eb0: 3131 3732 3662 6332 2b31 3134 307c 0a7c 11726bc2+1140|.| │ │ │ │ -00043ec0: 202d 3939 3461 332d 3139 3436 6132 622d -994a3-1946a2b- │ │ │ │ -00043ed0: 3637 3233 6162 322d 3534 3833 6233 2d36 6723ab2-5483b3-6 │ │ │ │ -00043ee0: 3435 3361 3263 2d31 3139 3261 6263 2d31 453a2c-1192abc-1 │ │ │ │ -00043ef0: 3532 3530 6232 632d 3331 3634 6163 322b 5250b2c-3164ac2+ │ │ │ │ -00043f00: 3239 3562 6332 2d37 3635 3063 337c 0a7c 295bc2-7650c3|.| │ │ │ │ -00043f10: 202d 3130 3337 3061 6232 2b37 3039 3262 -10370ab2+7092b │ │ │ │ -00043f20: 332b 3937 3032 6162 632b 3636 3237 6232 3+9702abc+6627b2 │ │ │ │ -00043f30: 632b 3730 3238 6163 322d 3937 3937 6263 c+7028ac2-9797bc │ │ │ │ -00043f40: 322d 3538 3734 6333 2d38 3838 3661 6264 2-5874c3-8886abd │ │ │ │ -00043f50: 2d34 3730 3062 3264 2b31 3561 637c 0a7c -4700b2d+15ac|.| │ │ │ │ -00043f60: 202d 3133 3730 3761 332d 3231 3737 6132 -13707a3-2177a2 │ │ │ │ -00043f70: 622b 3730 3231 6132 632d 3633 3737 6162 b+7021a2c-6377ab │ │ │ │ -00043f80: 632b 3736 3030 6163 322b 3131 3732 3662 c+7600ac2+11726b │ │ │ │ -00043f90: 6332 2d31 3134 3063 332d 3132 3036 6132 c2-1140c3-1206a2 │ │ │ │ -00043fa0: 642b 3131 3433 3561 6264 2b36 307c 0a7c d+11435abd+60|.| │ │ │ │ -00043fb0: 2037 3032 3861 332d 3937 3937 6132 622d 7028a3-9797a2b- │ │ │ │ -00043fc0: 3538 3734 6132 632d 3930 3734 6132 6420 5874a2c-9074a2d │ │ │ │ +00043dc0: 2020 7c0a 7c20 3132 3336 6133 2b38 3932 |.| 1236a3+892 │ │ │ │ +00043dd0: 3261 3262 2d33 3538 3961 6232 2b38 3937 2a2b-3589ab2+897 │ │ │ │ +00043de0: 3162 332d 3530 3036 6132 632d 3535 3939 1b3-5006a2c-5599 │ │ │ │ +00043df0: 6162 632d 3134 3136 3562 3263 2b38 3838 abc-14165b2c+888 │ │ │ │ +00043e00: 3061 3264 2b34 3235 3961 6264 2d33 3030 0a2d+4259abd-300 │ │ │ │ +00043e10: 3262 7c0a 7c20 3130 3337 3061 6232 2d37 2b|.| 10370ab2-7 │ │ │ │ +00043e20: 3039 3262 332d 3937 3032 6162 632d 3636 092b3-9702abc-66 │ │ │ │ +00043e30: 3237 6232 632b 3838 3836 6162 642b 3437 27b2c+8886abd+47 │ │ │ │ +00043e40: 3030 6232 642d 3135 6163 642b 3539 3639 00b2d-15acd+5969 │ │ │ │ +00043e50: 6263 6420 2020 2020 2020 2020 2020 2020 bcd │ │ │ │ +00043e60: 2020 7c0a 7c20 3133 3730 3761 332b 3231 |.| 13707a3+21 │ │ │ │ +00043e70: 3737 6132 622d 3730 3238 6162 322b 3937 77a2b-7028ab2+97 │ │ │ │ +00043e80: 3937 6233 2d37 3032 3161 3263 2b36 3337 97b3-7021a2c+637 │ │ │ │ +00043e90: 3761 6263 2b35 3837 3462 3263 2d37 3630 7abc+5874b2c-760 │ │ │ │ +00043ea0: 3061 6332 2d31 3137 3236 6263 322b 3131 0ac2-11726bc2+11 │ │ │ │ +00043eb0: 3430 7c0a 7c20 2d39 3934 6133 2d31 3934 40|.| -994a3-194 │ │ │ │ +00043ec0: 3661 3262 2d36 3732 3361 6232 2d35 3438 6a2b-6723ab2-548 │ │ │ │ +00043ed0: 3362 332d 3634 3533 6132 632d 3131 3932 3b3-6453a2c-1192 │ │ │ │ +00043ee0: 6162 632d 3135 3235 3062 3263 2d33 3136 abc-15250b2c-316 │ │ │ │ +00043ef0: 3461 6332 2b32 3935 6263 322d 3736 3530 4ac2+295bc2-7650 │ │ │ │ +00043f00: 6333 7c0a 7c20 2d31 3033 3730 6162 322b c3|.| -10370ab2+ │ │ │ │ +00043f10: 3730 3932 6233 2b39 3730 3261 6263 2b36 7092b3+9702abc+6 │ │ │ │ +00043f20: 3632 3762 3263 2b37 3032 3861 6332 2d39 627b2c+7028ac2-9 │ │ │ │ +00043f30: 3739 3762 6332 2d35 3837 3463 332d 3838 797bc2-5874c3-88 │ │ │ │ +00043f40: 3836 6162 642d 3437 3030 6232 642b 3135 86abd-4700b2d+15 │ │ │ │ +00043f50: 6163 7c0a 7c20 2d31 3337 3037 6133 2d32 ac|.| -13707a3-2 │ │ │ │ +00043f60: 3137 3761 3262 2b37 3032 3161 3263 2d36 177a2b+7021a2c-6 │ │ │ │ +00043f70: 3337 3761 6263 2b37 3630 3061 6332 2b31 377abc+7600ac2+1 │ │ │ │ +00043f80: 3137 3236 6263 322d 3131 3430 6333 2d31 1726bc2-1140c3-1 │ │ │ │ +00043f90: 3230 3661 3264 2b31 3134 3335 6162 642b 206a2d+11435abd+ │ │ │ │ +00043fa0: 3630 7c0a 7c20 3730 3238 6133 2d39 3739 60|.| 7028a3-979 │ │ │ │ +00043fb0: 3761 3262 2d35 3837 3461 3263 2d39 3037 7a2b-5874a2c-907 │ │ │ │ +00043fc0: 3461 3264 2020 2020 2020 2020 2020 2020 4a2d │ │ │ │ 00043fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043ff0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00044000: 2039 3934 6133 2b31 3934 3661 3262 2b36 994a3+1946a2b+6 │ │ │ │ -00044010: 3435 3361 3263 2b31 3139 3261 6263 2b31 453a2c+1192abc+1 │ │ │ │ -00044020: 3130 3435 6132 642b 3135 3333 3361 6264 1045a2d+15333abd │ │ │ │ -00044030: 2b33 3536 3061 6364 2d32 3239 3262 6364 +3560acd-2292bcd │ │ │ │ -00044040: 2b37 3139 3461 6432 2d36 3234 357c 0a7c +7194ad2-6245|.| │ │ │ │ -00044050: 2036 3732 3361 332b 3534 3833 6132 622b 6723a3+5483a2b+ │ │ │ │ -00044060: 3135 3235 3061 3263 2d31 3035 3637 6132 15250a2c-10567a2 │ │ │ │ -00044070: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ +00043ff0: 2020 7c0a 7c20 3939 3461 332b 3139 3436 |.| 994a3+1946 │ │ │ │ +00044000: 6132 622b 3634 3533 6132 632b 3131 3932 a2b+6453a2c+1192 │ │ │ │ +00044010: 6162 632b 3131 3034 3561 3264 2b31 3533 abc+11045a2d+153 │ │ │ │ +00044020: 3333 6162 642b 3335 3630 6163 642d 3232 33abd+3560acd-22 │ │ │ │ +00044030: 3932 6263 642b 3731 3934 6164 322d 3632 92bcd+7194ad2-62 │ │ │ │ +00044040: 3435 7c0a 7c20 3637 3233 6133 2b35 3438 45|.| 6723a3+548 │ │ │ │ +00044050: 3361 3262 2b31 3532 3530 6132 632d 3130 3a2b+15250a2c-10 │ │ │ │ +00044060: 3536 3761 3264 2020 2020 2020 2020 2020 567a2d │ │ │ │ +00044070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044090: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000440a0: 2033 3136 3461 332d 3239 3561 3262 2b37 3164a3-295a2b+7 │ │ │ │ -000440b0: 3635 3061 3263 2d31 3433 3838 6132 6420 650a2c-14388a2d │ │ │ │ +00044090: 2020 7c0a 7c20 3331 3634 6133 2d32 3935 |.| 3164a3-295 │ │ │ │ +000440a0: 6132 622b 3736 3530 6132 632d 3134 3338 a2b+7650a2c-1438 │ │ │ │ +000440b0: 3861 3264 2020 2020 2020 2020 2020 2020 8a2d │ │ │ │ 000440c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000440d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000440e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000440f0: 2031 3337 3037 6133 2b32 3137 3761 3262 13707a3+2177a2b │ │ │ │ -00044100: 2d37 3032 3161 3263 2b36 3337 3761 6263 -7021a2c+6377abc │ │ │ │ -00044110: 2d37 3630 3061 6332 2d31 3137 3236 6263 -7600ac2-11726bc │ │ │ │ -00044120: 322b 3131 3430 6333 2b31 3230 3661 3264 2+1140c3+1206a2d │ │ │ │ -00044130: 2d31 3134 3335 6162 642d 3630 347c 0a7c -11435abd-604|.| │ │ │ │ -00044140: 202d 3939 3461 332d 3139 3436 6132 622d -994a3-1946a2b- │ │ │ │ -00044150: 3634 3533 6132 632d 3131 3932 6162 632d 6453a2c-1192abc- │ │ │ │ -00044160: 3131 3034 3561 3264 2d31 3533 3333 6162 11045a2d-15333ab │ │ │ │ -00044170: 642d 3335 3630 6163 642b 3232 3932 6263 d-3560acd+2292bc │ │ │ │ -00044180: 642d 3731 3934 6164 322b 3632 347c 0a7c d-7194ad2+624|.| │ │ │ │ -00044190: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000440e0: 2020 7c0a 7c20 3133 3730 3761 332b 3231 |.| 13707a3+21 │ │ │ │ +000440f0: 3737 6132 622d 3730 3231 6132 632b 3633 77a2b-7021a2c+63 │ │ │ │ +00044100: 3737 6162 632d 3736 3030 6163 322d 3131 77abc-7600ac2-11 │ │ │ │ +00044110: 3732 3662 6332 2b31 3134 3063 332b 3132 726bc2+1140c3+12 │ │ │ │ +00044120: 3036 6132 642d 3131 3433 3561 6264 2d36 06a2d-11435abd-6 │ │ │ │ +00044130: 3034 7c0a 7c20 2d39 3934 6133 2d31 3934 04|.| -994a3-194 │ │ │ │ +00044140: 3661 3262 2d36 3435 3361 3263 2d31 3139 6a2b-6453a2c-119 │ │ │ │ +00044150: 3261 6263 2d31 3130 3435 6132 642d 3135 2abc-11045a2d-15 │ │ │ │ +00044160: 3333 3361 6264 2d33 3536 3061 6364 2b32 333abd-3560acd+2 │ │ │ │ +00044170: 3239 3262 6364 2d37 3139 3461 6432 2b36 292bcd-7194ad2+6 │ │ │ │ +00044180: 3234 7c0a 7c20 3020 2020 2020 2020 2020 24|.| 0 │ │ │ │ +00044190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000441a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000441b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000441c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000441d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000441e0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000441d0: 2020 7c0a 7c20 3020 2020 2020 2020 2020 |.| 0 │ │ │ │ +000441e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000441f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044220: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00044230: 2039 3934 6133 2b31 3934 3661 3262 2b36 994a3+1946a2b+6 │ │ │ │ -00044240: 3732 3361 6232 2b36 3435 3361 3263 2b31 723ab2+6453a2c+1 │ │ │ │ -00044250: 3139 3261 6263 2b31 3130 3435 6132 642b 192abc+11045a2d+ │ │ │ │ -00044260: 3135 3333 3361 6264 2b33 3536 3061 6364 15333abd+3560acd │ │ │ │ -00044270: 2d32 3239 3262 6364 2b37 3139 347c 0a7c -2292bcd+7194|.| │ │ │ │ +00044220: 2020 7c0a 7c20 3939 3461 332b 3139 3436 |.| 994a3+1946 │ │ │ │ +00044230: 6132 622b 3637 3233 6162 322b 3634 3533 a2b+6723ab2+6453 │ │ │ │ +00044240: 6132 632b 3131 3932 6162 632b 3131 3034 a2c+1192abc+1104 │ │ │ │ +00044250: 3561 3264 2b31 3533 3333 6162 642b 3335 5a2d+15333abd+35 │ │ │ │ +00044260: 3630 6163 642d 3232 3932 6263 642b 3731 60acd-2292bcd+71 │ │ │ │ +00044270: 3934 7c0a 7c20 2020 2020 2020 2020 2020 94|.| │ │ │ │ 00044280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000442a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000442b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000442c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000442c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000442d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000442e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000442f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044310: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00044320: 202d 3133 3739 3561 342b 3230 3139 6133 -13795a4+2019a3 │ │ │ │ -00044330: 622b 3133 3736 3961 3262 322b 3735 3836 b+13769a2b2+7586 │ │ │ │ -00044340: 6162 332b 3836 3439 6234 2b36 3435 3461 ab3+8649b4+6454a │ │ │ │ -00044350: 3363 2d31 3031 3837 6132 6263 2d31 3738 3c-10187a2bc-178 │ │ │ │ -00044360: 3361 6232 632b 3932 3139 6233 637c 0a7c 3ab2c+9219b3c|.| │ │ │ │ -00044370: 2031 3131 3532 6134 2d31 3333 3661 3362 11152a4-1336a3b │ │ │ │ -00044380: 2b31 3138 3436 6132 6232 2b31 3032 3634 +11846a2b2+10264 │ │ │ │ -00044390: 6162 332b 3631 3862 342d 3131 3035 3161 ab3+618b4-11051a │ │ │ │ -000443a0: 3363 2b31 3231 3239 6132 6263 2b35 3932 3c+12129a2bc+592 │ │ │ │ -000443b0: 3761 6232 632b 3438 3962 3363 2d7c 0a7c 7ab2c+489b3c-|.| │ │ │ │ -000443c0: 202d 3633 3338 6134 2b31 3030 3235 6133 -6338a4+10025a3 │ │ │ │ -000443d0: 622b 3134 3938 3761 3363 2d39 3935 3961 b+14987a3c-9959a │ │ │ │ -000443e0: 3262 632d 3131 3639 3161 3263 322b 3132 2bc-11691a2c2+12 │ │ │ │ -000443f0: 3333 3661 6263 322d 3737 3836 6133 642d 336abc2-7786a3d- │ │ │ │ -00044400: 3131 3536 6132 6264 2b34 3936 307c 0a7c 1156a2bd+4960|.| │ │ │ │ -00044410: 2032 3237 3561 342d 3233 3961 3362 2b31 2275a4-239a3b+1 │ │ │ │ -00044420: 3435 3934 6132 6232 2d38 3135 3361 6233 4594a2b2-8153ab3 │ │ │ │ -00044430: 2d31 3139 3435 6234 2d38 3431 3661 3363 -11945b4-8416a3c │ │ │ │ -00044440: 2b36 3235 3161 3262 632d 3330 3233 6162 +6251a2bc-3023ab │ │ │ │ -00044450: 3263 2b35 3933 3362 3363 2b39 327c 0a7c 2c+5933b3c+92|.| │ │ │ │ -00044460: 202d 3935 3736 6134 2d39 3935 3761 3362 -9576a4-9957a3b │ │ │ │ -00044470: 2b39 3830 3461 3262 322b 3134 3039 3161 +9804a2b2+14091a │ │ │ │ -00044480: 3363 2b31 3331 3434 6132 6263 2b31 3338 3c+13144a2bc+138 │ │ │ │ -00044490: 3939 6132 6332 2d31 3035 3039 6162 6332 99a2c2-10509abc2 │ │ │ │ -000444a0: 2b31 3535 3033 6163 332b 3132 317c 0a7c +15503ac3+121|.| │ │ │ │ +00044310: 2020 7c0a 7c20 2d31 3337 3935 6134 2b32 |.| -13795a4+2 │ │ │ │ +00044320: 3031 3961 3362 2b31 3337 3639 6132 6232 019a3b+13769a2b2 │ │ │ │ +00044330: 2b37 3538 3661 6233 2b38 3634 3962 342b +7586ab3+8649b4+ │ │ │ │ +00044340: 3634 3534 6133 632d 3130 3138 3761 3262 6454a3c-10187a2b │ │ │ │ +00044350: 632d 3137 3833 6162 3263 2b39 3231 3962 c-1783ab2c+9219b │ │ │ │ +00044360: 3363 7c0a 7c20 3131 3135 3261 342d 3133 3c|.| 11152a4-13 │ │ │ │ +00044370: 3336 6133 622b 3131 3834 3661 3262 322b 36a3b+11846a2b2+ │ │ │ │ +00044380: 3130 3236 3461 6233 2b36 3138 6234 2d31 10264ab3+618b4-1 │ │ │ │ +00044390: 3130 3531 6133 632b 3132 3132 3961 3262 1051a3c+12129a2b │ │ │ │ +000443a0: 632b 3539 3237 6162 3263 2b34 3839 6233 c+5927ab2c+489b3 │ │ │ │ +000443b0: 632d 7c0a 7c20 2d36 3333 3861 342b 3130 c-|.| -6338a4+10 │ │ │ │ +000443c0: 3032 3561 3362 2b31 3439 3837 6133 632d 025a3b+14987a3c- │ │ │ │ +000443d0: 3939 3539 6132 6263 2d31 3136 3931 6132 9959a2bc-11691a2 │ │ │ │ +000443e0: 6332 2b31 3233 3336 6162 6332 2d37 3738 c2+12336abc2-778 │ │ │ │ +000443f0: 3661 3364 2d31 3135 3661 3262 642b 3439 6a3d-1156a2bd+49 │ │ │ │ +00044400: 3630 7c0a 7c20 3232 3735 6134 2d32 3339 60|.| 2275a4-239 │ │ │ │ +00044410: 6133 622b 3134 3539 3461 3262 322d 3831 a3b+14594a2b2-81 │ │ │ │ +00044420: 3533 6162 332d 3131 3934 3562 342d 3834 53ab3-11945b4-84 │ │ │ │ +00044430: 3136 6133 632b 3632 3531 6132 6263 2d33 16a3c+6251a2bc-3 │ │ │ │ +00044440: 3032 3361 6232 632b 3539 3333 6233 632b 023ab2c+5933b3c+ │ │ │ │ +00044450: 3932 7c0a 7c20 2d39 3537 3661 342d 3939 92|.| -9576a4-99 │ │ │ │ +00044460: 3537 6133 622b 3938 3034 6132 6232 2b31 57a3b+9804a2b2+1 │ │ │ │ +00044470: 3430 3931 6133 632b 3133 3134 3461 3262 4091a3c+13144a2b │ │ │ │ +00044480: 632b 3133 3839 3961 3263 322d 3130 3530 c+13899a2c2-1050 │ │ │ │ +00044490: 3961 6263 322b 3135 3530 3361 6333 2b31 9abc2+15503ac3+1 │ │ │ │ +000444a0: 3231 7c0a 7c20 2020 2020 2020 2020 2020 21|.| │ │ │ │ 000444b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000444c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000444d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000444e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000444f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000444f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00044500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044540: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00044540: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00044550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044590: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000445a0: 2031 3037 6133 2b34 3337 3661 3262 2b33 107a3+4376a2b+3 │ │ │ │ -000445b0: 3738 3361 6232 2b31 3033 3539 6233 2d35 783ab2+10359b3-5 │ │ │ │ -000445c0: 3537 3061 3263 2d35 3330 3761 6263 2d37 570a2c-5307abc-7 │ │ │ │ -000445d0: 3436 3462 3263 2b33 3138 3761 3264 2b38 464b2c+3187a2d+8 │ │ │ │ -000445e0: 3537 3061 6264 2d38 3235 3162 327c 0a7c 570abd-8251b2|.| │ │ │ │ -000445f0: 2038 3233 3161 6232 2b31 3331 3737 6233 8231ab2+13177b3 │ │ │ │ -00044600: 2b35 3836 3461 6263 2b31 3339 3930 6232 +5864abc+13990b2 │ │ │ │ -00044610: 632b 3530 3236 6162 642d 3131 3532 3162 c+5026abd-11521b │ │ │ │ -00044620: 3264 2d37 3530 3161 6364 2d31 3737 3962 2d-7501acd-1779b │ │ │ │ -00044630: 6364 2020 2020 2020 2020 2020 207c 0a7c cd |.| │ │ │ │ -00044640: 202d 3135 3334 3461 332b 3236 3533 6132 -15344a3+2653a2 │ │ │ │ -00044650: 622b 3130 3235 3961 6232 2d31 3330 3962 b+10259ab2-1309b │ │ │ │ -00044660: 332b 3132 3336 3561 3263 2d37 3231 3661 3+12365a2c-7216a │ │ │ │ -00044670: 6263 2b35 3339 3862 3263 2b36 3233 3061 bc+5398b2c+6230a │ │ │ │ -00044680: 6332 2d35 3332 3662 6332 2b31 307c 0a7c c2-5326bc2+10|.| │ │ │ │ -00044690: 202d 3130 3438 3061 332d 3632 3033 6132 -10480a3-6203a2 │ │ │ │ -000446a0: 622b 3935 3334 6162 322b 3130 3836 3662 b+9534ab2+10866b │ │ │ │ -000446b0: 332d 3934 3830 6132 632b 3732 3536 6162 3-9480a2c+7256ab │ │ │ │ -000446c0: 632d 3730 3631 6232 632b 3531 3037 6163 c-7061b2c+5107ac │ │ │ │ -000446d0: 322b 3536 3739 6263 322d 3633 327c 0a7c 2+5679bc2-632|.| │ │ │ │ -000446e0: 202d 3832 3331 6162 322d 3133 3137 3762 -8231ab2-13177b │ │ │ │ -000446f0: 332d 3538 3634 6162 632d 3133 3939 3062 3-5864abc-13990b │ │ │ │ -00044700: 3263 2d31 3032 3539 6163 322b 3133 3039 2c-10259ac2+1309 │ │ │ │ -00044710: 6263 322d 3533 3938 6333 2d35 3032 3661 bc2-5398c3-5026a │ │ │ │ -00044720: 6264 2b31 3135 3231 6232 642b 377c 0a7c bd+11521b2d+7|.| │ │ │ │ -00044730: 2031 3533 3434 6133 2d32 3635 3361 3262 15344a3-2653a2b │ │ │ │ -00044740: 2d31 3233 3635 6132 632b 3732 3136 6162 -12365a2c+7216ab │ │ │ │ -00044750: 632d 3632 3330 6163 322b 3533 3236 6263 c-6230ac2+5326bc │ │ │ │ -00044760: 322d 3130 3331 6333 2b31 3335 3038 6132 2-1031c3+13508a2 │ │ │ │ -00044770: 642b 3130 3132 3561 6264 2d39 307c 0a7c d+10125abd-90|.| │ │ │ │ -00044780: 202d 3130 3235 3961 332b 3133 3039 6132 -10259a3+1309a2 │ │ │ │ -00044790: 622d 3533 3938 6132 632d 3535 3439 6132 b-5398a2c-5549a2 │ │ │ │ -000447a0: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ +00044590: 2020 7c0a 7c20 3130 3761 332b 3433 3736 |.| 107a3+4376 │ │ │ │ +000445a0: 6132 622b 3337 3833 6162 322b 3130 3335 a2b+3783ab2+1035 │ │ │ │ +000445b0: 3962 332d 3535 3730 6132 632d 3533 3037 9b3-5570a2c-5307 │ │ │ │ +000445c0: 6162 632d 3734 3634 6232 632b 3331 3837 abc-7464b2c+3187 │ │ │ │ +000445d0: 6132 642b 3835 3730 6162 642d 3832 3531 a2d+8570abd-8251 │ │ │ │ +000445e0: 6232 7c0a 7c20 3832 3331 6162 322b 3133 b2|.| 8231ab2+13 │ │ │ │ +000445f0: 3137 3762 332b 3538 3634 6162 632b 3133 177b3+5864abc+13 │ │ │ │ +00044600: 3939 3062 3263 2b35 3032 3661 6264 2d31 990b2c+5026abd-1 │ │ │ │ +00044610: 3135 3231 6232 642d 3735 3031 6163 642d 1521b2d-7501acd- │ │ │ │ +00044620: 3137 3739 6263 6420 2020 2020 2020 2020 1779bcd │ │ │ │ +00044630: 2020 7c0a 7c20 2d31 3533 3434 6133 2b32 |.| -15344a3+2 │ │ │ │ +00044640: 3635 3361 3262 2b31 3032 3539 6162 322d 653a2b+10259ab2- │ │ │ │ +00044650: 3133 3039 6233 2b31 3233 3635 6132 632d 1309b3+12365a2c- │ │ │ │ +00044660: 3732 3136 6162 632b 3533 3938 6232 632b 7216abc+5398b2c+ │ │ │ │ +00044670: 3632 3330 6163 322d 3533 3236 6263 322b 6230ac2-5326bc2+ │ │ │ │ +00044680: 3130 7c0a 7c20 2d31 3034 3830 6133 2d36 10|.| -10480a3-6 │ │ │ │ +00044690: 3230 3361 3262 2b39 3533 3461 6232 2b31 203a2b+9534ab2+1 │ │ │ │ +000446a0: 3038 3636 6233 2d39 3438 3061 3263 2b37 0866b3-9480a2c+7 │ │ │ │ +000446b0: 3235 3661 6263 2d37 3036 3162 3263 2b35 256abc-7061b2c+5 │ │ │ │ +000446c0: 3130 3761 6332 2b35 3637 3962 6332 2d36 107ac2+5679bc2-6 │ │ │ │ +000446d0: 3332 7c0a 7c20 2d38 3233 3161 6232 2d31 32|.| -8231ab2-1 │ │ │ │ +000446e0: 3331 3737 6233 2d35 3836 3461 6263 2d31 3177b3-5864abc-1 │ │ │ │ +000446f0: 3339 3930 6232 632d 3130 3235 3961 6332 3990b2c-10259ac2 │ │ │ │ +00044700: 2b31 3330 3962 6332 2d35 3339 3863 332d +1309bc2-5398c3- │ │ │ │ +00044710: 3530 3236 6162 642b 3131 3532 3162 3264 5026abd+11521b2d │ │ │ │ +00044720: 2b37 7c0a 7c20 3135 3334 3461 332d 3236 +7|.| 15344a3-26 │ │ │ │ +00044730: 3533 6132 622d 3132 3336 3561 3263 2b37 53a2b-12365a2c+7 │ │ │ │ +00044740: 3231 3661 6263 2d36 3233 3061 6332 2b35 216abc-6230ac2+5 │ │ │ │ +00044750: 3332 3662 6332 2d31 3033 3163 332b 3133 326bc2-1031c3+13 │ │ │ │ +00044760: 3530 3861 3264 2b31 3031 3235 6162 642d 508a2d+10125abd- │ │ │ │ +00044770: 3930 7c0a 7c20 2d31 3032 3539 6133 2b31 90|.| -10259a3+1 │ │ │ │ +00044780: 3330 3961 3262 2d35 3339 3861 3263 2d35 309a2b-5398a2c-5 │ │ │ │ +00044790: 3534 3961 3264 2020 2020 2020 2020 2020 549a2d │ │ │ │ +000447a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000447b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000447c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000447d0: 2031 3034 3830 6133 2b36 3230 3361 3262 10480a3+6203a2b │ │ │ │ -000447e0: 2b39 3438 3061 3263 2d37 3235 3661 6263 +9480a2c-7256abc │ │ │ │ -000447f0: 2b31 3139 3530 6132 642b 3533 3231 6162 +11950a2d+5321ab │ │ │ │ -00044800: 642b 3339 3936 6163 642b 3731 3532 6263 d+3996acd+7152bc │ │ │ │ -00044810: 642d 3933 3938 6164 322d 3135 337c 0a7c d-9398ad2-153|.| │ │ │ │ -00044820: 202d 3935 3334 6133 2d31 3038 3636 6132 -9534a3-10866a2 │ │ │ │ -00044830: 622b 3730 3631 6132 632d 3236 3237 6132 b+7061a2c-2627a2 │ │ │ │ -00044840: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ +000447c0: 2020 7c0a 7c20 3130 3438 3061 332b 3632 |.| 10480a3+62 │ │ │ │ +000447d0: 3033 6132 622b 3934 3830 6132 632d 3732 03a2b+9480a2c-72 │ │ │ │ +000447e0: 3536 6162 632b 3131 3935 3061 3264 2b35 56abc+11950a2d+5 │ │ │ │ +000447f0: 3332 3161 6264 2b33 3939 3661 6364 2b37 321abd+3996acd+7 │ │ │ │ +00044800: 3135 3262 6364 2d39 3339 3861 6432 2d31 152bcd-9398ad2-1 │ │ │ │ +00044810: 3533 7c0a 7c20 2d39 3533 3461 332d 3130 53|.| -9534a3-10 │ │ │ │ +00044820: 3836 3661 3262 2b37 3036 3161 3263 2d32 866a2b+7061a2c-2 │ │ │ │ +00044830: 3632 3761 3264 2020 2020 2020 2020 2020 627a2d │ │ │ │ +00044840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044860: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00044870: 202d 3531 3037 6133 2d35 3637 3961 3262 -5107a3-5679a2b │ │ │ │ -00044880: 2b36 3332 3561 3263 2b31 3137 3430 6132 +6325a2c+11740a2 │ │ │ │ -00044890: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ +00044860: 2020 7c0a 7c20 2d35 3130 3761 332d 3536 |.| -5107a3-56 │ │ │ │ +00044870: 3739 6132 622b 3633 3235 6132 632b 3131 79a2b+6325a2c+11 │ │ │ │ +00044880: 3734 3061 3264 2020 2020 2020 2020 2020 740a2d │ │ │ │ +00044890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000448a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000448b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000448c0: 202d 3135 3334 3461 332b 3236 3533 6132 -15344a3+2653a2 │ │ │ │ -000448d0: 622b 3132 3336 3561 3263 2d37 3231 3661 b+12365a2c-7216a │ │ │ │ -000448e0: 6263 2b36 3233 3061 6332 2d35 3332 3662 bc+6230ac2-5326b │ │ │ │ -000448f0: 6332 2b31 3033 3163 332d 3133 3530 3861 c2+1031c3-13508a │ │ │ │ -00044900: 3264 2d31 3031 3235 6162 642b 397c 0a7c 2d-10125abd+9|.| │ │ │ │ -00044910: 202d 3130 3438 3061 332d 3632 3033 6132 -10480a3-6203a2 │ │ │ │ -00044920: 622d 3934 3830 6132 632b 3732 3536 6162 b-9480a2c+7256ab │ │ │ │ -00044930: 632d 3131 3935 3061 3264 2d35 3332 3161 c-11950a2d-5321a │ │ │ │ -00044940: 6264 2d33 3939 3661 6364 2d37 3135 3262 bd-3996acd-7152b │ │ │ │ -00044950: 6364 2b39 3339 3861 6432 2b31 357c 0a7c cd+9398ad2+15|.| │ │ │ │ -00044960: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000448b0: 2020 7c0a 7c20 2d31 3533 3434 6133 2b32 |.| -15344a3+2 │ │ │ │ +000448c0: 3635 3361 3262 2b31 3233 3635 6132 632d 653a2b+12365a2c- │ │ │ │ +000448d0: 3732 3136 6162 632b 3632 3330 6163 322d 7216abc+6230ac2- │ │ │ │ +000448e0: 3533 3236 6263 322b 3130 3331 6333 2d31 5326bc2+1031c3-1 │ │ │ │ +000448f0: 3335 3038 6132 642d 3130 3132 3561 6264 3508a2d-10125abd │ │ │ │ +00044900: 2b39 7c0a 7c20 2d31 3034 3830 6133 2d36 +9|.| -10480a3-6 │ │ │ │ +00044910: 3230 3361 3262 2d39 3438 3061 3263 2b37 203a2b-9480a2c+7 │ │ │ │ +00044920: 3235 3661 6263 2d31 3139 3530 6132 642d 256abc-11950a2d- │ │ │ │ +00044930: 3533 3231 6162 642d 3339 3936 6163 642d 5321abd-3996acd- │ │ │ │ +00044940: 3731 3532 6263 642b 3933 3938 6164 322b 7152bcd+9398ad2+ │ │ │ │ +00044950: 3135 7c0a 7c20 3020 2020 2020 2020 2020 15|.| 0 │ │ │ │ +00044960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000449a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000449b0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000449a0: 2020 7c0a 7c20 3020 2020 2020 2020 2020 |.| 0 │ │ │ │ +000449b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000449c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000449d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000449e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000449f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00044a00: 2031 3034 3830 6133 2b36 3230 3361 3262 10480a3+6203a2b │ │ │ │ -00044a10: 2d39 3533 3461 6232 2b39 3438 3061 3263 -9534ab2+9480a2c │ │ │ │ -00044a20: 2d37 3235 3661 6263 2b31 3139 3530 6132 -7256abc+11950a2 │ │ │ │ -00044a30: 642b 3533 3231 6162 642b 3339 3936 6163 d+5321abd+3996ac │ │ │ │ -00044a40: 642b 3731 3532 6263 642d 3933 397c 0a7c d+7152bcd-939|.| │ │ │ │ +000449f0: 2020 7c0a 7c20 3130 3438 3061 332b 3632 |.| 10480a3+62 │ │ │ │ +00044a00: 3033 6132 622d 3935 3334 6162 322b 3934 03a2b-9534ab2+94 │ │ │ │ +00044a10: 3830 6132 632d 3732 3536 6162 632b 3131 80a2c-7256abc+11 │ │ │ │ +00044a20: 3935 3061 3264 2b35 3332 3161 6264 2b33 950a2d+5321abd+3 │ │ │ │ +00044a30: 3939 3661 6364 2b37 3135 3262 6364 2d39 996acd+7152bcd-9 │ │ │ │ +00044a40: 3339 7c0a 7c20 2020 2020 2020 2020 2020 39|.| │ │ │ │ 00044a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044a90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00044a90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00044aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044ae0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00044af0: 202d 3839 3931 6134 2b38 3938 3261 3362 -8991a4+8982a3b │ │ │ │ -00044b00: 2b31 3333 3230 6132 6232 2d37 3232 3961 +13320a2b2-7229a │ │ │ │ -00044b10: 6233 2b37 3637 3262 342d 3133 3638 3961 b3+7672b4-13689a │ │ │ │ -00044b20: 3363 2b31 3030 3635 6132 6263 2d38 3738 3c+10065a2bc-878 │ │ │ │ -00044b30: 3761 6232 632d 3137 3236 6233 637c 0a7c 7ab2c-1726b3c|.| │ │ │ │ -00044b40: 202d 3833 3735 6134 2d32 3235 6133 622d -8375a4-225a3b- │ │ │ │ -00044b50: 3131 3033 3961 3262 322d 3130 3139 3661 11039a2b2-10196a │ │ │ │ -00044b60: 6233 2b34 3637 3662 342b 3236 3935 6133 b3+4676b4+2695a3 │ │ │ │ -00044b70: 632d 3839 3737 6132 6263 2d31 3539 3530 c-8977a2bc-15950 │ │ │ │ -00044b80: 6162 3263 2d37 3432 3162 3363 2d7c 0a7c ab2c-7421b3c-|.| │ │ │ │ -00044b90: 202d 3130 3835 3761 342b 3134 3136 3661 -10857a4+14166a │ │ │ │ -00044ba0: 3362 2d38 3538 6133 632b 3533 3335 6132 3b-858a3c+5335a2 │ │ │ │ -00044bb0: 6263 2d35 3531 3361 3263 322b 3531 3030 bc-5513a2c2+5100 │ │ │ │ -00044bc0: 6162 6332 2d31 3037 3233 6133 642d 3138 abc2-10723a3d-18 │ │ │ │ -00044bd0: 3730 6132 6264 2d39 3832 3261 327c 0a7c 70a2bd-9822a2|.| │ │ │ │ -00044be0: 202d 3535 3038 6134 2b31 3336 3630 6133 -5508a4+13660a3 │ │ │ │ -00044bf0: 622b 3135 3333 3661 3262 322d 3133 3934 b+15336a2b2-1394 │ │ │ │ -00044c00: 3361 6233 2d38 3432 6234 2b31 3931 3061 3ab3-842b4+1910a │ │ │ │ -00044c10: 3363 2b31 3232 3330 6132 6263 2d39 3235 3c+12230a2bc-925 │ │ │ │ -00044c20: 3261 6232 632d 3634 3438 6233 637c 0a7c 2ab2c-6448b3c|.| │ │ │ │ -00044c30: 2035 3232 3461 342d 3833 3330 6133 622d 5224a4-8330a3b- │ │ │ │ -00044c40: 3133 3135 3361 3262 322b 3132 3230 3661 13153a2b2+12206a │ │ │ │ -00044c50: 3363 2b31 3331 3338 6132 6263 2b34 3439 3c+13138a2bc+449 │ │ │ │ -00044c60: 3861 3263 322b 3133 3836 3461 6263 322d 8a2c2+13864abc2- │ │ │ │ -00044c70: 3937 3861 6333 2d34 3036 3261 337c 0a7c 978ac3-4062a3|.| │ │ │ │ +00044ae0: 2020 7c0a 7c20 2d38 3939 3161 342b 3839 |.| -8991a4+89 │ │ │ │ +00044af0: 3832 6133 622b 3133 3332 3061 3262 322d 82a3b+13320a2b2- │ │ │ │ +00044b00: 3732 3239 6162 332b 3736 3732 6234 2d31 7229ab3+7672b4-1 │ │ │ │ +00044b10: 3336 3839 6133 632b 3130 3036 3561 3262 3689a3c+10065a2b │ │ │ │ +00044b20: 632d 3837 3837 6162 3263 2d31 3732 3662 c-8787ab2c-1726b │ │ │ │ +00044b30: 3363 7c0a 7c20 2d38 3337 3561 342d 3232 3c|.| -8375a4-22 │ │ │ │ +00044b40: 3561 3362 2d31 3130 3339 6132 6232 2d31 5a3b-11039a2b2-1 │ │ │ │ +00044b50: 3031 3936 6162 332b 3436 3736 6234 2b32 0196ab3+4676b4+2 │ │ │ │ +00044b60: 3639 3561 3363 2d38 3937 3761 3262 632d 695a3c-8977a2bc- │ │ │ │ +00044b70: 3135 3935 3061 6232 632d 3734 3231 6233 15950ab2c-7421b3 │ │ │ │ +00044b80: 632d 7c0a 7c20 2d31 3038 3537 6134 2b31 c-|.| -10857a4+1 │ │ │ │ +00044b90: 3431 3636 6133 622d 3835 3861 3363 2b35 4166a3b-858a3c+5 │ │ │ │ +00044ba0: 3333 3561 3262 632d 3535 3133 6132 6332 335a2bc-5513a2c2 │ │ │ │ +00044bb0: 2b35 3130 3061 6263 322d 3130 3732 3361 +5100abc2-10723a │ │ │ │ +00044bc0: 3364 2d31 3837 3061 3262 642d 3938 3232 3d-1870a2bd-9822 │ │ │ │ +00044bd0: 6132 7c0a 7c20 2d35 3530 3861 342b 3133 a2|.| -5508a4+13 │ │ │ │ +00044be0: 3636 3061 3362 2b31 3533 3336 6132 6232 660a3b+15336a2b2 │ │ │ │ +00044bf0: 2d31 3339 3433 6162 332d 3834 3262 342b -13943ab3-842b4+ │ │ │ │ +00044c00: 3139 3130 6133 632b 3132 3233 3061 3262 1910a3c+12230a2b │ │ │ │ +00044c10: 632d 3932 3532 6162 3263 2d36 3434 3862 c-9252ab2c-6448b │ │ │ │ +00044c20: 3363 7c0a 7c20 3532 3234 6134 2d38 3333 3c|.| 5224a4-833 │ │ │ │ +00044c30: 3061 3362 2d31 3331 3533 6132 6232 2b31 0a3b-13153a2b2+1 │ │ │ │ +00044c40: 3232 3036 6133 632b 3133 3133 3861 3262 2206a3c+13138a2b │ │ │ │ +00044c50: 632b 3434 3938 6132 6332 2b31 3338 3634 c+4498a2c2+13864 │ │ │ │ +00044c60: 6162 6332 2d39 3738 6163 332d 3430 3632 abc2-978ac3-4062 │ │ │ │ +00044c70: 6133 7c0a 7c20 2020 2020 2020 2020 2020 a3|.| │ │ │ │ 00044c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044cc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00044cc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00044cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044d10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00044d10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00044d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044d60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00044d70: 2039 3631 3161 342b 3133 3132 3761 3362 9611a4+13127a3b │ │ │ │ -00044d80: 2d39 3438 3961 3262 322d 3436 3461 6233 -9489a2b2-464ab3 │ │ │ │ -00044d90: 2b39 3334 3162 342d 3135 3734 3361 3363 +9341b4-15743a3c │ │ │ │ -00044da0: 2d39 3533 3061 3262 632b 3134 3933 3561 -9530a2bc+14935a │ │ │ │ -00044db0: 6232 632d 3133 3930 3162 3363 2b7c 0a7c b2c-13901b3c+|.| │ │ │ │ -00044dc0: 202d 3339 3538 6134 2d35 3734 6133 622d -3958a4-574a3b- │ │ │ │ -00044dd0: 3731 3031 6132 6232 2b31 3536 3734 6162 7101a2b2+15674ab │ │ │ │ -00044de0: 332b 3633 3433 6234 2b31 3134 3261 3363 3+6343b4+1142a3c │ │ │ │ -00044df0: 2b39 3832 3061 3262 632d 3438 3231 6162 +9820a2bc-4821ab │ │ │ │ -00044e00: 3263 2b35 3733 3762 3363 2b35 307c 0a7c 2c+5737b3c+50|.| │ │ │ │ -00044e10: 2032 3339 3861 342b 3937 3334 6133 622d 2398a4+9734a3b- │ │ │ │ -00044e20: 3335 6133 632d 3439 3739 6132 6263 2d35 35a3c-4979a2bc-5 │ │ │ │ -00044e30: 3035 3361 3263 322d 3433 3732 6162 6332 053a2c2-4372abc2 │ │ │ │ -00044e40: 2b31 3034 3232 6133 642d 3532 3631 6132 +10422a3d-5261a2 │ │ │ │ -00044e50: 6264 2d32 3735 3061 3263 642d 397c 0a7c bd-2750a2cd-9|.| │ │ │ │ -00044e60: 2036 3934 3561 342b 3132 3039 3861 3362 6945a4+12098a3b │ │ │ │ -00044e70: 2d38 3937 3861 3262 322b 3132 3039 3961 -8978a2b2+12099a │ │ │ │ -00044e80: 6233 2b39 3136 3962 342d 3135 3933 3661 b3+9169b4-15936a │ │ │ │ -00044e90: 3363 2d31 3937 3561 3262 632b 3130 3537 3c-1975a2bc+1057 │ │ │ │ -00044ea0: 3361 6232 632b 3930 3531 6233 637c 0a7c 3ab2c+9051b3c|.| │ │ │ │ -00044eb0: 2031 3237 3938 6134 2d36 3034 3061 3362 12798a4-6040a3b │ │ │ │ -00044ec0: 2d37 3234 3761 3262 322d 3331 3238 6133 -7247a2b2-3128a3 │ │ │ │ -00044ed0: 632d 3134 3136 3561 3262 632d 3436 3237 c-14165a2bc-4627 │ │ │ │ -00044ee0: 6132 6332 2d31 3036 3737 6162 6332 2d34 a2c2-10677abc2-4 │ │ │ │ -00044ef0: 3633 3361 6333 2b33 3333 3861 337c 0a7c 633ac3+3338a3|.| │ │ │ │ +00044d60: 2020 7c0a 7c20 3936 3131 6134 2b31 3331 |.| 9611a4+131 │ │ │ │ +00044d70: 3237 6133 622d 3934 3839 6132 6232 2d34 27a3b-9489a2b2-4 │ │ │ │ +00044d80: 3634 6162 332b 3933 3431 6234 2d31 3537 64ab3+9341b4-157 │ │ │ │ +00044d90: 3433 6133 632d 3935 3330 6132 6263 2b31 43a3c-9530a2bc+1 │ │ │ │ +00044da0: 3439 3335 6162 3263 2d31 3339 3031 6233 4935ab2c-13901b3 │ │ │ │ +00044db0: 632b 7c0a 7c20 2d33 3935 3861 342d 3537 c+|.| -3958a4-57 │ │ │ │ +00044dc0: 3461 3362 2d37 3130 3161 3262 322b 3135 4a3b-7101a2b2+15 │ │ │ │ +00044dd0: 3637 3461 6233 2b36 3334 3362 342b 3131 674ab3+6343b4+11 │ │ │ │ +00044de0: 3432 6133 632b 3938 3230 6132 6263 2d34 42a3c+9820a2bc-4 │ │ │ │ +00044df0: 3832 3161 6232 632b 3537 3337 6233 632b 821ab2c+5737b3c+ │ │ │ │ +00044e00: 3530 7c0a 7c20 3233 3938 6134 2b39 3733 50|.| 2398a4+973 │ │ │ │ +00044e10: 3461 3362 2d33 3561 3363 2d34 3937 3961 4a3b-35a3c-4979a │ │ │ │ +00044e20: 3262 632d 3530 3533 6132 6332 2d34 3337 2bc-5053a2c2-437 │ │ │ │ +00044e30: 3261 6263 322b 3130 3432 3261 3364 2d35 2abc2+10422a3d-5 │ │ │ │ +00044e40: 3236 3161 3262 642d 3237 3530 6132 6364 261a2bd-2750a2cd │ │ │ │ +00044e50: 2d39 7c0a 7c20 3639 3435 6134 2b31 3230 -9|.| 6945a4+120 │ │ │ │ +00044e60: 3938 6133 622d 3839 3738 6132 6232 2b31 98a3b-8978a2b2+1 │ │ │ │ +00044e70: 3230 3939 6162 332b 3931 3639 6234 2d31 2099ab3+9169b4-1 │ │ │ │ +00044e80: 3539 3336 6133 632d 3139 3735 6132 6263 5936a3c-1975a2bc │ │ │ │ +00044e90: 2b31 3035 3733 6162 3263 2b39 3035 3162 +10573ab2c+9051b │ │ │ │ +00044ea0: 3363 7c0a 7c20 3132 3739 3861 342d 3630 3c|.| 12798a4-60 │ │ │ │ +00044eb0: 3430 6133 622d 3732 3437 6132 6232 2d33 40a3b-7247a2b2-3 │ │ │ │ +00044ec0: 3132 3861 3363 2d31 3431 3635 6132 6263 128a3c-14165a2bc │ │ │ │ +00044ed0: 2d34 3632 3761 3263 322d 3130 3637 3761 -4627a2c2-10677a │ │ │ │ +00044ee0: 6263 322d 3436 3333 6163 332b 3333 3338 bc2-4633ac3+3338 │ │ │ │ +00044ef0: 6133 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d a3|.|----------- │ │ │ │ 00044f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00044f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00044f40: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 00044f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044f90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00044f90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00044fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044fe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00044fe0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00044ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045030: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045030: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045080: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045080: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000450a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000450b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000450c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000450d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000450d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000450e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000450f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045120: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045120: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045170: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045170: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000451a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000451b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000451c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000451c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000451d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000451e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000451f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045210: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045210: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045260: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045260: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000452a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000452b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000452b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000452c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000452d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000452e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000452f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045300: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045300: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045350: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045350: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000453a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000453a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000453b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000453c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000453d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000453e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000453f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000453f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045440: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045440: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045490: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045490: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000454a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000454b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000454c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000454d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000454e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000454f0: 3264 2d31 3338 3932 6163 642d 3130 3532 2d-13892acd-1052 │ │ │ │ -00045500: 3162 6364 2020 2020 2020 2020 2020 2020 1bcd │ │ │ │ +000454e0: 2020 7c0a 7c32 642d 3133 3839 3261 6364 |.|2d-13892acd │ │ │ │ +000454f0: 2d31 3035 3231 6263 6420 2020 2020 2020 -10521bcd │ │ │ │ +00045500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045530: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045530: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045580: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00045590: 6333 2b31 3230 3661 3264 2d31 3134 3335 c3+1206a2d-11435 │ │ │ │ -000455a0: 6162 642b 3930 3734 6232 642d 3630 3430 abd+9074b2d-6040 │ │ │ │ -000455b0: 6163 642b 3830 3232 6263 642b 3339 3638 acd+8022bcd+3968 │ │ │ │ -000455c0: 6332 6420 2020 2020 2020 2020 2020 2020 c2d │ │ │ │ -000455d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000455e0: 2d31 3130 3435 6132 642d 3135 3333 3361 -11045a2d-15333a │ │ │ │ -000455f0: 6264 2b31 3035 3637 6232 642d 3335 3630 bd+10567b2d-3560 │ │ │ │ -00045600: 6163 642b 3232 3932 6263 642b 3134 3338 acd+2292bcd+1438 │ │ │ │ -00045610: 3863 3264 2d37 3139 3461 6432 2b36 3234 8c2d-7194ad2+624 │ │ │ │ -00045620: 3562 6432 2d38 3633 3963 6432 2b7c 0a7c 5bd2-8639cd2+|.| │ │ │ │ -00045630: 642d 3539 3639 6263 642d 3930 3734 6332 d-5969bcd-9074c2 │ │ │ │ -00045640: 642b 3637 3233 6164 322b 3534 3833 6264 d+6723ad2+5483bd │ │ │ │ -00045650: 322b 3135 3235 3063 6432 2d31 3035 3637 2+15250cd2-10567 │ │ │ │ -00045660: 6433 2020 2031 3233 3661 332b 3839 3232 d3 1236a3+8922 │ │ │ │ -00045670: 6132 622d 3335 3839 6162 322b 387c 0a7c a2b-3589ab2+8|.| │ │ │ │ -00045680: 3430 6163 642d 3830 3232 6263 642d 3339 40acd-8022bcd-39 │ │ │ │ -00045690: 3638 6332 642b 3331 3634 6164 322d 3239 68c2d+3164ad2-29 │ │ │ │ -000456a0: 3562 6432 2b37 3635 3063 6432 2d31 3433 5bd2+7650cd2-143 │ │ │ │ -000456b0: 3838 6433 2030 2020 2020 2020 2020 2020 88d3 0 │ │ │ │ -000456c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045580: 2020 7c0a 7c63 332b 3132 3036 6132 642d |.|c3+1206a2d- │ │ │ │ +00045590: 3131 3433 3561 6264 2b39 3037 3462 3264 11435abd+9074b2d │ │ │ │ +000455a0: 2d36 3034 3061 6364 2b38 3032 3262 6364 -6040acd+8022bcd │ │ │ │ +000455b0: 2b33 3936 3863 3264 2020 2020 2020 2020 +3968c2d │ │ │ │ +000455c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000455d0: 2020 7c0a 7c2d 3131 3034 3561 3264 2d31 |.|-11045a2d-1 │ │ │ │ +000455e0: 3533 3333 6162 642b 3130 3536 3762 3264 5333abd+10567b2d │ │ │ │ +000455f0: 2d33 3536 3061 6364 2b32 3239 3262 6364 -3560acd+2292bcd │ │ │ │ +00045600: 2b31 3433 3838 6332 642d 3731 3934 6164 +14388c2d-7194ad │ │ │ │ +00045610: 322b 3632 3435 6264 322d 3836 3339 6364 2+6245bd2-8639cd │ │ │ │ +00045620: 322b 7c0a 7c64 2d35 3936 3962 6364 2d39 2+|.|d-5969bcd-9 │ │ │ │ +00045630: 3037 3463 3264 2b36 3732 3361 6432 2b35 074c2d+6723ad2+5 │ │ │ │ +00045640: 3438 3362 6432 2b31 3532 3530 6364 322d 483bd2+15250cd2- │ │ │ │ +00045650: 3130 3536 3764 3320 2020 3132 3336 6133 10567d3 1236a3 │ │ │ │ +00045660: 2b38 3932 3261 3262 2d33 3538 3961 6232 +8922a2b-3589ab2 │ │ │ │ +00045670: 2b38 7c0a 7c34 3061 6364 2d38 3032 3262 +8|.|40acd-8022b │ │ │ │ +00045680: 6364 2d33 3936 3863 3264 2b33 3136 3461 cd-3968c2d+3164a │ │ │ │ +00045690: 6432 2d32 3935 6264 322b 3736 3530 6364 d2-295bd2+7650cd │ │ │ │ +000456a0: 322d 3134 3338 3864 3320 3020 2020 2020 2-14388d3 0 │ │ │ │ +000456b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000456c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000456d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000456e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000456f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045700: 2020 2020 202d 3133 3730 3761 332d 3231 -13707a3-21 │ │ │ │ -00045710: 3737 6132 622b 3730 3238 6162 327c 0a7c 77a2b+7028ab2|.| │ │ │ │ -00045720: 6264 322b 3836 3339 6364 322d 3934 3236 bd2+8639cd2-9426 │ │ │ │ -00045730: 6433 2020 2020 2020 2020 2020 2020 2020 d3 │ │ │ │ -00045740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045750: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ -00045760: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000456f0: 2020 2020 2020 2020 2020 2d31 3337 3037 -13707 │ │ │ │ +00045700: 6133 2d32 3137 3761 3262 2b37 3032 3861 a3-2177a2b+7028a │ │ │ │ +00045710: 6232 7c0a 7c62 6432 2b38 3633 3963 6432 b2|.|bd2+8639cd2 │ │ │ │ +00045720: 2d39 3432 3664 3320 2020 2020 2020 2020 -9426d3 │ │ │ │ +00045730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00045740: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +00045750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00045760: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000457a0: 2020 2020 2039 3934 6133 2b31 3934 3661 994a3+1946a │ │ │ │ -000457b0: 3262 2b36 3732 3361 6232 2b35 347c 0a7c 2b+6723ab2+54|.| │ │ │ │ +00045790: 2020 2020 2020 2020 2020 3939 3461 332b 994a3+ │ │ │ │ +000457a0: 3139 3436 6132 622b 3637 3233 6162 322b 1946a2b+6723ab2+ │ │ │ │ +000457b0: 3534 7c0a 7c20 2020 2020 2020 2020 2020 54|.| │ │ │ │ 000457c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000457d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000457e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000457f0: 2020 2020 2033 3136 3461 6232 2d32 3935 3164ab2-295 │ │ │ │ -00045800: 6233 2b37 3635 3062 3263 2d31 347c 0a7c b3+7650b2c-14|.| │ │ │ │ -00045810: 3061 6364 2b38 3032 3262 6364 2b33 3936 0acd+8022bcd+396 │ │ │ │ -00045820: 3863 3264 2d33 3136 3461 6432 2b32 3935 8c2d-3164ad2+295 │ │ │ │ -00045830: 6264 322d 3736 3530 6364 322b 3134 3338 bd2-7650cd2+1438 │ │ │ │ -00045840: 3864 3320 2d31 3033 3730 6162 322b 3730 8d3 -10370ab2+70 │ │ │ │ -00045850: 3932 6233 2b39 3730 3261 6263 2b7c 0a7c 92b3+9702abc+|.| │ │ │ │ -00045860: 3562 6432 2d38 3633 3963 6432 2b39 3432 5bd2-8639cd2+942 │ │ │ │ -00045870: 3664 3320 2020 2020 2020 2020 2020 2020 6d3 │ │ │ │ -00045880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045890: 2020 2020 3637 3233 6163 3220 2020 2020 6723ac2 │ │ │ │ -000458a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000457e0: 2020 2020 2020 2020 2020 3331 3634 6162 3164ab │ │ │ │ +000457f0: 322d 3239 3562 332b 3736 3530 6232 632d 2-295b3+7650b2c- │ │ │ │ +00045800: 3134 7c0a 7c30 6163 642b 3830 3232 6263 14|.|0acd+8022bc │ │ │ │ +00045810: 642b 3339 3638 6332 642d 3331 3634 6164 d+3968c2d-3164ad │ │ │ │ +00045820: 322b 3239 3562 6432 2d37 3635 3063 6432 2+295bd2-7650cd2 │ │ │ │ +00045830: 2b31 3433 3838 6433 202d 3130 3337 3061 +14388d3 -10370a │ │ │ │ +00045840: 6232 2b37 3039 3262 332b 3937 3032 6162 b2+7092b3+9702ab │ │ │ │ +00045850: 632b 7c0a 7c35 6264 322d 3836 3339 6364 c+|.|5bd2-8639cd │ │ │ │ +00045860: 322b 3934 3236 6433 2020 2020 2020 2020 2+9426d3 │ │ │ │ +00045870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00045880: 2020 2020 2020 2020 2036 3732 3361 6332 6723ac2 │ │ │ │ +00045890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000458a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000458b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000458c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000458d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000458e0: 2020 2020 2d39 3934 6133 2d31 3934 3661 -994a3-1946a │ │ │ │ -000458f0: 3262 2d36 3732 3361 6232 2d36 347c 0a7c 2b-6723ab2-64|.| │ │ │ │ +000458d0: 2020 2020 2020 2020 202d 3939 3461 332d -994a3- │ │ │ │ +000458e0: 3139 3436 6132 622d 3637 3233 6162 322d 1946a2b-6723ab2- │ │ │ │ +000458f0: 3634 7c0a 7c20 2020 2020 2020 2020 2020 64|.| │ │ │ │ 00045900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045930: 2020 2020 2d35 3438 3361 3262 2d31 3532 -5483a2b-152 │ │ │ │ -00045940: 3530 6132 632b 3130 3536 3761 327c 0a7c 50a2c+10567a2|.| │ │ │ │ -00045950: 6164 322d 3632 3435 6264 322b 3836 3339 ad2-6245bd2+8639 │ │ │ │ -00045960: 6364 322d 3934 3236 6433 2031 3337 3037 cd2-9426d3 13707 │ │ │ │ -00045970: 6133 2b32 3137 3761 3262 2d37 3032 3861 a3+2177a2b-7028a │ │ │ │ -00045980: 6232 2d37 3032 3161 3263 2b36 3337 3761 b2-7021a2c+6377a │ │ │ │ -00045990: 6263 2d37 3630 3061 6332 2d31 317c 0a7c bc-7600ac2-11|.| │ │ │ │ +00045920: 2020 2020 2020 2020 202d 3534 3833 6132 -5483a2 │ │ │ │ +00045930: 622d 3135 3235 3061 3263 2b31 3035 3637 b-15250a2c+10567 │ │ │ │ +00045940: 6132 7c0a 7c61 6432 2d36 3234 3562 6432 a2|.|ad2-6245bd2 │ │ │ │ +00045950: 2b38 3633 3963 6432 2d39 3432 3664 3320 +8639cd2-9426d3 │ │ │ │ +00045960: 3133 3730 3761 332b 3231 3737 6132 622d 13707a3+2177a2b- │ │ │ │ +00045970: 3730 3238 6162 322d 3730 3231 6132 632b 7028ab2-7021a2c+ │ │ │ │ +00045980: 3633 3737 6162 632d 3736 3030 6163 322d 6377abc-7600ac2- │ │ │ │ +00045990: 3131 7c0a 7c20 2020 2020 2020 2020 2020 11|.| │ │ │ │ 000459a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000459b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000459c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000459d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000459e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000459e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000459f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045a30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00045a40: 2b35 3531 3361 3263 322b 3130 3535 3861 +5513a2c2+10558a │ │ │ │ -00045a50: 6263 322b 3235 3930 6232 6332 2b31 3136 bc2+2590b2c2+116 │ │ │ │ -00045a60: 3234 6133 642d 3536 3033 6132 6264 2b31 24a3d-5603a2bd+1 │ │ │ │ -00045a70: 3430 3538 6162 3264 2d31 3236 3135 6233 4058ab2d-12615b3 │ │ │ │ -00045a80: 642b 3738 3639 6132 6364 2d32 307c 0a7c d+7869a2cd-20|.| │ │ │ │ -00045a90: 3135 3338 3361 3263 322b 3530 3761 6263 15383a2c2+507abc │ │ │ │ -00045aa0: 322d 3133 3830 3462 3263 322d 3834 3136 2-13804b2c2-8416 │ │ │ │ -00045ab0: 6163 332b 3932 6334 2d31 3130 3537 6133 ac3+92c4-11057a3 │ │ │ │ -00045ac0: 642d 3531 3133 6132 6264 2d32 3736 3261 d-5113a2bd-2762a │ │ │ │ -00045ad0: 6232 642b 3134 3039 3562 3364 2d7c 0a7c b2d+14095b3d-|.| │ │ │ │ -00045ae0: 6132 6364 2d35 3538 3961 6263 642d 3831 a2cd-5589abcd-81 │ │ │ │ -00045af0: 3633 6163 3264 2d31 3839 3562 6332 642b 63ac2d-1895bc2d+ │ │ │ │ -00045b00: 3934 3634 6132 6432 2d37 3235 3361 6264 9464a2d2-7253abd │ │ │ │ -00045b10: 322b 3132 3634 3261 6364 322d 3139 3538 2+12642acd2-1958 │ │ │ │ -00045b20: 6263 6432 2020 2020 2020 2020 207c 0a7c bcd2 |.| │ │ │ │ -00045b30: 6132 6332 2b35 3334 3361 6263 322b 3337 a2c2+5343abc2+37 │ │ │ │ -00045b40: 3938 6232 6332 2d31 3539 3638 6133 642b 98b2c2-15968a3d+ │ │ │ │ -00045b50: 3437 3361 3262 642b 3133 3239 3361 6232 473a2bd+13293ab2 │ │ │ │ -00045b60: 642d 3337 3631 6233 642d 3737 3137 6132 d-3761b3d-7717a2 │ │ │ │ -00045b70: 6364 2d37 3338 3961 6263 642b 347c 0a7c cd-7389abcd+4|.| │ │ │ │ -00045b80: 3239 6133 642b 3134 3738 3461 3262 642d 29a3d+14784a2bd- │ │ │ │ -00045b90: 3130 3630 3861 3263 642d 3338 3136 6162 10608a2cd-3816ab │ │ │ │ -00045ba0: 6364 2d31 3336 3338 6163 3264 2d36 3135 cd-13638ac2d-615 │ │ │ │ -00045bb0: 3961 3264 322d 3134 3634 3861 6264 322b 9a2d2-14648abd2+ │ │ │ │ -00045bc0: 3330 3732 6163 6432 2d31 3432 367c 0a7c 3072acd2-1426|.| │ │ │ │ +00045a30: 2020 7c0a 7c2b 3535 3133 6132 6332 2b31 |.|+5513a2c2+1 │ │ │ │ +00045a40: 3035 3538 6162 6332 2b32 3539 3062 3263 0558abc2+2590b2c │ │ │ │ +00045a50: 322b 3131 3632 3461 3364 2d35 3630 3361 2+11624a3d-5603a │ │ │ │ +00045a60: 3262 642b 3134 3035 3861 6232 642d 3132 2bd+14058ab2d-12 │ │ │ │ +00045a70: 3631 3562 3364 2b37 3836 3961 3263 642d 615b3d+7869a2cd- │ │ │ │ +00045a80: 3230 7c0a 7c31 3533 3833 6132 6332 2b35 20|.|15383a2c2+5 │ │ │ │ +00045a90: 3037 6162 6332 2d31 3338 3034 6232 6332 07abc2-13804b2c2 │ │ │ │ +00045aa0: 2d38 3431 3661 6333 2b39 3263 342d 3131 -8416ac3+92c4-11 │ │ │ │ +00045ab0: 3035 3761 3364 2d35 3131 3361 3262 642d 057a3d-5113a2bd- │ │ │ │ +00045ac0: 3237 3632 6162 3264 2b31 3430 3935 6233 2762ab2d+14095b3 │ │ │ │ +00045ad0: 642d 7c0a 7c61 3263 642d 3535 3839 6162 d-|.|a2cd-5589ab │ │ │ │ +00045ae0: 6364 2d38 3136 3361 6332 642d 3138 3935 cd-8163ac2d-1895 │ │ │ │ +00045af0: 6263 3264 2b39 3436 3461 3264 322d 3732 bc2d+9464a2d2-72 │ │ │ │ +00045b00: 3533 6162 6432 2b31 3236 3432 6163 6432 53abd2+12642acd2 │ │ │ │ +00045b10: 2d31 3935 3862 6364 3220 2020 2020 2020 -1958bcd2 │ │ │ │ +00045b20: 2020 7c0a 7c61 3263 322b 3533 3433 6162 |.|a2c2+5343ab │ │ │ │ +00045b30: 6332 2b33 3739 3862 3263 322d 3135 3936 c2+3798b2c2-1596 │ │ │ │ +00045b40: 3861 3364 2b34 3733 6132 6264 2b31 3332 8a3d+473a2bd+132 │ │ │ │ +00045b50: 3933 6162 3264 2d33 3736 3162 3364 2d37 93ab2d-3761b3d-7 │ │ │ │ +00045b60: 3731 3761 3263 642d 3733 3839 6162 6364 717a2cd-7389abcd │ │ │ │ +00045b70: 2b34 7c0a 7c32 3961 3364 2b31 3437 3834 +4|.|29a3d+14784 │ │ │ │ +00045b80: 6132 6264 2d31 3036 3038 6132 6364 2d33 a2bd-10608a2cd-3 │ │ │ │ +00045b90: 3831 3661 6263 642d 3133 3633 3861 6332 816abcd-13638ac2 │ │ │ │ +00045ba0: 642d 3631 3539 6132 6432 2d31 3436 3438 d-6159a2d2-14648 │ │ │ │ +00045bb0: 6162 6432 2b33 3037 3261 6364 322d 3134 abd2+3072acd2-14 │ │ │ │ +00045bc0: 3236 7c0a 7c20 2020 2020 2020 2020 2020 26|.| │ │ │ │ 00045bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045c10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045c10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045c60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045c60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045cb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00045cc0: 642b 3834 3434 6163 642b 3530 3731 6263 d+8444acd+5071bc │ │ │ │ -00045cd0: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ +00045cb0: 2020 7c0a 7c64 2b38 3434 3461 6364 2b35 |.|d+8444acd+5 │ │ │ │ +00045cc0: 3037 3162 6364 2020 2020 2020 2020 2020 071bcd │ │ │ │ +00045cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045d00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045d00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045d50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00045d60: 3331 6333 2d31 3335 3038 6132 642d 3130 31c3-13508a2d-10 │ │ │ │ -00045d70: 3132 3561 6264 2b35 3534 3962 3264 2b39 125abd+5549b2d+9 │ │ │ │ -00045d80: 3033 3361 6364 2b32 3939 3862 6364 2d32 033acd+2998bcd-2 │ │ │ │ -00045d90: 3033 3663 3264 2020 2020 2020 2020 2020 036c2d │ │ │ │ -00045da0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00045db0: 3563 332d 3131 3935 3061 3264 2d35 3332 5c3-11950a2d-532 │ │ │ │ -00045dc0: 3161 6264 2b32 3632 3762 3264 2d33 3939 1abd+2627b2d-399 │ │ │ │ -00045dd0: 3661 6364 2d37 3135 3262 6364 2d31 3137 6acd-7152bcd-117 │ │ │ │ -00045de0: 3430 6332 642b 3933 3938 6164 322b 3135 40c2d+9398ad2+15 │ │ │ │ -00045df0: 3331 3762 6432 2d36 3932 3263 647c 0a7c 317bd2-6922cd|.| │ │ │ │ -00045e00: 3530 3161 6364 2b31 3737 3962 6364 2d35 501acd+1779bcd-5 │ │ │ │ -00045e10: 3534 3963 3264 2d39 3533 3461 6432 2d31 549c2d-9534ad2-1 │ │ │ │ -00045e20: 3038 3636 6264 322b 3730 3631 6364 322d 0866bd2+7061cd2- │ │ │ │ -00045e30: 3236 3237 6433 2031 3037 6133 2b34 3337 2627d3 107a3+437 │ │ │ │ -00045e40: 3661 3262 2b33 3738 3361 6232 2b7c 0a7c 6a2b+3783ab2+|.| │ │ │ │ -00045e50: 3333 6163 642d 3239 3938 6263 642b 3230 33acd-2998bcd+20 │ │ │ │ -00045e60: 3336 6332 642d 3531 3037 6164 322d 3536 36c2d-5107ad2-56 │ │ │ │ -00045e70: 3739 6264 322b 3633 3235 6364 322b 3131 79bd2+6325cd2+11 │ │ │ │ -00045e80: 3734 3064 3320 2030 2020 2020 2020 2020 740d3 0 │ │ │ │ -00045e90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045d50: 2020 7c0a 7c33 3163 332d 3133 3530 3861 |.|31c3-13508a │ │ │ │ +00045d60: 3264 2d31 3031 3235 6162 642b 3535 3439 2d-10125abd+5549 │ │ │ │ +00045d70: 6232 642b 3930 3333 6163 642b 3239 3938 b2d+9033acd+2998 │ │ │ │ +00045d80: 6263 642d 3230 3336 6332 6420 2020 2020 bcd-2036c2d │ │ │ │ +00045d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00045da0: 2020 7c0a 7c35 6333 2d31 3139 3530 6132 |.|5c3-11950a2 │ │ │ │ +00045db0: 642d 3533 3231 6162 642b 3236 3237 6232 d-5321abd+2627b2 │ │ │ │ +00045dc0: 642d 3339 3936 6163 642d 3731 3532 6263 d-3996acd-7152bc │ │ │ │ +00045dd0: 642d 3131 3734 3063 3264 2b39 3339 3861 d-11740c2d+9398a │ │ │ │ +00045de0: 6432 2b31 3533 3137 6264 322d 3639 3232 d2+15317bd2-6922 │ │ │ │ +00045df0: 6364 7c0a 7c35 3031 6163 642b 3137 3739 cd|.|501acd+1779 │ │ │ │ +00045e00: 6263 642d 3535 3439 6332 642d 3935 3334 bcd-5549c2d-9534 │ │ │ │ +00045e10: 6164 322d 3130 3836 3662 6432 2b37 3036 ad2-10866bd2+706 │ │ │ │ +00045e20: 3163 6432 2d32 3632 3764 3320 3130 3761 1cd2-2627d3 107a │ │ │ │ +00045e30: 332b 3433 3736 6132 622b 3337 3833 6162 3+4376a2b+3783ab │ │ │ │ +00045e40: 322b 7c0a 7c33 3361 6364 2d32 3939 3862 2+|.|33acd-2998b │ │ │ │ +00045e50: 6364 2b32 3033 3663 3264 2d35 3130 3761 cd+2036c2d-5107a │ │ │ │ +00045e60: 6432 2d35 3637 3962 6432 2b36 3332 3563 d2-5679bd2+6325c │ │ │ │ +00045e70: 6432 2b31 3137 3430 6433 2020 3020 2020 d2+11740d3 0 │ │ │ │ +00045e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00045e90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045ed0: 2020 2020 2020 2031 3533 3434 6133 2d32 15344a3-2 │ │ │ │ -00045ee0: 3635 3361 3262 2d31 3032 3539 617c 0a7c 653a2b-10259a|.| │ │ │ │ -00045ef0: 3137 6264 322b 3639 3232 6364 322b 3530 17bd2+6922cd2+50 │ │ │ │ -00045f00: 3830 6433 2020 2020 2020 2020 2020 2020 80d3 │ │ │ │ -00045f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045f20: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ -00045f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045ec0: 2020 2020 2020 2020 2020 2020 3135 3334 1534 │ │ │ │ +00045ed0: 3461 332d 3236 3533 6132 622d 3130 3235 4a3-2653a2b-1025 │ │ │ │ +00045ee0: 3961 7c0a 7c31 3762 6432 2b36 3932 3263 9a|.|17bd2+6922c │ │ │ │ +00045ef0: 6432 2b35 3038 3064 3320 2020 2020 2020 d2+5080d3 │ │ │ │ +00045f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00045f10: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00045f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00045f30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045f70: 2020 2020 2020 2031 3034 3830 6133 2b36 10480a3+6 │ │ │ │ -00045f80: 3230 3361 3262 2d39 3533 3461 627c 0a7c 203a2b-9534ab|.| │ │ │ │ +00045f60: 2020 2020 2020 2020 2020 2020 3130 3438 1048 │ │ │ │ +00045f70: 3061 332b 3632 3033 6132 622d 3935 3334 0a3+6203a2b-9534 │ │ │ │ +00045f80: 6162 7c0a 7c20 2020 2020 2020 2020 2020 ab|.| │ │ │ │ 00045f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045fc0: 2020 2020 2020 202d 3531 3037 6162 322d -5107ab2- │ │ │ │ -00045fd0: 3536 3739 6233 2b36 3332 3562 327c 0a7c 5679b3+6325b2|.| │ │ │ │ -00045fe0: 3033 3361 6364 2b32 3939 3862 6364 2d32 033acd+2998bcd-2 │ │ │ │ -00045ff0: 3033 3663 3264 2b35 3130 3761 6432 2b35 036c2d+5107ad2+5 │ │ │ │ -00046000: 3637 3962 6432 2d36 3332 3563 6432 2d31 679bd2-6325cd2-1 │ │ │ │ -00046010: 3137 3430 6433 202d 3832 3331 6162 322d 1740d3 -8231ab2- │ │ │ │ -00046020: 3133 3137 3762 332d 3538 3634 617c 0a7c 13177b3-5864a|.| │ │ │ │ -00046030: 3331 3762 6432 2d36 3932 3263 6432 2d35 317bd2-6922cd2-5 │ │ │ │ -00046040: 3038 3064 3320 2020 2020 2020 2020 2020 080d3 │ │ │ │ -00046050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046060: 2020 2020 2020 202d 3935 3334 6163 3220 -9534ac2 │ │ │ │ -00046070: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00045fb0: 2020 2020 2020 2020 2020 2020 2d35 3130 -510 │ │ │ │ +00045fc0: 3761 6232 2d35 3637 3962 332b 3633 3235 7ab2-5679b3+6325 │ │ │ │ +00045fd0: 6232 7c0a 7c30 3333 6163 642b 3239 3938 b2|.|033acd+2998 │ │ │ │ +00045fe0: 6263 642d 3230 3336 6332 642b 3531 3037 bcd-2036c2d+5107 │ │ │ │ +00045ff0: 6164 322b 3536 3739 6264 322d 3633 3235 ad2+5679bd2-6325 │ │ │ │ +00046000: 6364 322d 3131 3734 3064 3320 2d38 3233 cd2-11740d3 -823 │ │ │ │ +00046010: 3161 6232 2d31 3331 3737 6233 2d35 3836 1ab2-13177b3-586 │ │ │ │ +00046020: 3461 7c0a 7c33 3137 6264 322d 3639 3232 4a|.|317bd2-6922 │ │ │ │ +00046030: 6364 322d 3530 3830 6433 2020 2020 2020 cd2-5080d3 │ │ │ │ +00046040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00046050: 2020 2020 2020 2020 2020 2020 2d39 3533 -953 │ │ │ │ +00046060: 3461 6332 2020 2020 2020 2020 2020 2020 4ac2 │ │ │ │ +00046070: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000460a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000460b0: 2020 2020 2020 202d 3130 3438 3061 332d -10480a3- │ │ │ │ -000460c0: 3632 3033 6132 622b 3935 3334 617c 0a7c 6203a2b+9534a|.| │ │ │ │ +000460a0: 2020 2020 2020 2020 2020 2020 2d31 3034 -104 │ │ │ │ +000460b0: 3830 6133 2d36 3230 3361 3262 2b39 3533 80a3-6203a2b+953 │ │ │ │ +000460c0: 3461 7c0a 7c20 2020 2020 2020 2020 2020 4a|.| │ │ │ │ 000460d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000460e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000460f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046100: 2020 2020 2020 2031 3038 3636 6132 622d 10866a2b- │ │ │ │ -00046110: 3730 3631 6132 632b 3236 3237 617c 0a7c 7061a2c+2627a|.| │ │ │ │ -00046120: 3861 6432 2d31 3533 3137 6264 322b 3639 8ad2-15317bd2+69 │ │ │ │ -00046130: 3232 6364 322b 3530 3830 6433 202d 3135 22cd2+5080d3 -15 │ │ │ │ -00046140: 3334 3461 332b 3236 3533 6132 622b 3130 344a3+2653a2b+10 │ │ │ │ -00046150: 3235 3961 6232 2b31 3233 3635 6132 632d 259ab2+12365a2c- │ │ │ │ -00046160: 3732 3136 6162 632b 3632 3330 617c 0a7c 7216abc+6230a|.| │ │ │ │ +000460f0: 2020 2020 2020 2020 2020 2020 3130 3836 1086 │ │ │ │ +00046100: 3661 3262 2d37 3036 3161 3263 2b32 3632 6a2b-7061a2c+262 │ │ │ │ +00046110: 3761 7c0a 7c38 6164 322d 3135 3331 3762 7a|.|8ad2-15317b │ │ │ │ +00046120: 6432 2b36 3932 3263 6432 2b35 3038 3064 d2+6922cd2+5080d │ │ │ │ +00046130: 3320 2d31 3533 3434 6133 2b32 3635 3361 3 -15344a3+2653a │ │ │ │ +00046140: 3262 2b31 3032 3539 6162 322b 3132 3336 2b+10259ab2+1236 │ │ │ │ +00046150: 3561 3263 2d37 3231 3661 6263 2b36 3233 5a2c-7216abc+623 │ │ │ │ +00046160: 3061 7c0a 7c20 2020 2020 2020 2020 2020 0a|.| │ │ │ │ 00046170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000461a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000461b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000461b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000461c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000461d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000461e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000461f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046200: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00046210: 2b39 3033 3361 3263 322d 3134 3936 3661 +9033a2c2-14966a │ │ │ │ -00046220: 6263 322d 3639 3239 6232 6332 2b31 3139 bc2-6929b2c2+119 │ │ │ │ -00046230: 3933 6133 642b 3133 3539 3361 3262 642b 93a3d+13593a2bd+ │ │ │ │ -00046240: 3831 3033 6162 3264 2d31 3430 3534 6233 8103ab2d-14054b3 │ │ │ │ -00046250: 642d 3432 3430 6132 6364 2d39 317c 0a7c d-4240a2cd-91|.| │ │ │ │ -00046260: 3134 3931 3961 3263 322d 3131 3334 3661 14919a2c2-11346a │ │ │ │ -00046270: 6263 322b 3134 3137 3262 3263 322b 3139 bc2+14172b2c2+19 │ │ │ │ -00046280: 3130 6163 332b 3131 3635 3662 6333 2d38 10ac3+11656bc3-8 │ │ │ │ -00046290: 3532 3763 342d 3839 3739 6133 642d 3831 527c4-8979a3d-81 │ │ │ │ -000462a0: 3034 6132 6264 2b38 3733 3461 627c 0a7c 04a2bd+8734ab|.| │ │ │ │ -000462b0: 6364 2b32 3736 3061 6263 642b 3431 3139 cd+2760abcd+4119 │ │ │ │ -000462c0: 6163 3264 2b35 3537 3462 6332 642b 3838 ac2d+5574bc2d+88 │ │ │ │ -000462d0: 3331 6132 6432 2d31 3433 3733 6162 6432 31a2d2-14373abd2 │ │ │ │ -000462e0: 2b31 3336 3736 6163 6432 2b31 3136 3731 +13676acd2+11671 │ │ │ │ -000462f0: 6263 6432 2020 2020 2020 2020 207c 0a7c bcd2 |.| │ │ │ │ -00046300: 2d38 3532 3761 3263 322d 3739 3938 6162 -8527a2c2-7998ab │ │ │ │ -00046310: 6332 2d31 3336 3233 6232 6332 2d35 3934 c2-13623b2c2-594 │ │ │ │ -00046320: 3261 3364 2d31 3131 3530 6132 6264 2d31 2a3d-11150a2bd-1 │ │ │ │ -00046330: 3237 3931 6162 3264 2d31 3234 3031 6233 2791ab2d-12401b3 │ │ │ │ -00046340: 642b 3636 3338 6132 6364 2b31 337c 0a7c d+6638a2cd+13|.| │ │ │ │ -00046350: 642b 3131 3938 3261 3262 642b 3934 3732 d+11982a2bd+9472 │ │ │ │ -00046360: 6132 6364 2b31 3030 3535 6162 6364 2b35 a2cd+10055abcd+5 │ │ │ │ -00046370: 3839 3061 6332 642d 3933 3037 6132 6432 890ac2d-9307a2d2 │ │ │ │ -00046380: 2b31 3137 3337 6162 6432 2b31 3333 3761 +11737abd2+1337a │ │ │ │ -00046390: 6364 322d 3131 3739 3361 6433 207c 0a7c cd2-11793ad3 |.| │ │ │ │ +00046200: 2020 7c0a 7c2b 3930 3333 6132 6332 2d31 |.|+9033a2c2-1 │ │ │ │ +00046210: 3439 3636 6162 6332 2d36 3932 3962 3263 4966abc2-6929b2c │ │ │ │ +00046220: 322b 3131 3939 3361 3364 2b31 3335 3933 2+11993a3d+13593 │ │ │ │ +00046230: 6132 6264 2b38 3130 3361 6232 642d 3134 a2bd+8103ab2d-14 │ │ │ │ +00046240: 3035 3462 3364 2d34 3234 3061 3263 642d 054b3d-4240a2cd- │ │ │ │ +00046250: 3931 7c0a 7c31 3439 3139 6132 6332 2d31 91|.|14919a2c2-1 │ │ │ │ +00046260: 3133 3436 6162 6332 2b31 3431 3732 6232 1346abc2+14172b2 │ │ │ │ +00046270: 6332 2b31 3931 3061 6333 2b31 3136 3536 c2+1910ac3+11656 │ │ │ │ +00046280: 6263 332d 3835 3237 6334 2d38 3937 3961 bc3-8527c4-8979a │ │ │ │ +00046290: 3364 2d38 3130 3461 3262 642b 3837 3334 3d-8104a2bd+8734 │ │ │ │ +000462a0: 6162 7c0a 7c63 642b 3237 3630 6162 6364 ab|.|cd+2760abcd │ │ │ │ +000462b0: 2b34 3131 3961 6332 642b 3535 3734 6263 +4119ac2d+5574bc │ │ │ │ +000462c0: 3264 2b38 3833 3161 3264 322d 3134 3337 2d+8831a2d2-1437 │ │ │ │ +000462d0: 3361 6264 322b 3133 3637 3661 6364 322b 3abd2+13676acd2+ │ │ │ │ +000462e0: 3131 3637 3162 6364 3220 2020 2020 2020 11671bcd2 │ │ │ │ +000462f0: 2020 7c0a 7c2d 3835 3237 6132 6332 2d37 |.|-8527a2c2-7 │ │ │ │ +00046300: 3939 3861 6263 322d 3133 3632 3362 3263 998abc2-13623b2c │ │ │ │ +00046310: 322d 3539 3432 6133 642d 3131 3135 3061 2-5942a3d-11150a │ │ │ │ +00046320: 3262 642d 3132 3739 3161 6232 642d 3132 2bd-12791ab2d-12 │ │ │ │ +00046330: 3430 3162 3364 2b36 3633 3861 3263 642b 401b3d+6638a2cd+ │ │ │ │ +00046340: 3133 7c0a 7c64 2b31 3139 3832 6132 6264 13|.|d+11982a2bd │ │ │ │ +00046350: 2b39 3437 3261 3263 642b 3130 3035 3561 +9472a2cd+10055a │ │ │ │ +00046360: 6263 642b 3538 3930 6163 3264 2d39 3330 bcd+5890ac2d-930 │ │ │ │ +00046370: 3761 3264 322b 3131 3733 3761 6264 322b 7a2d2+11737abd2+ │ │ │ │ +00046380: 3133 3337 6163 6432 2d31 3137 3933 6164 1337acd2-11793ad │ │ │ │ +00046390: 3320 7c0a 7c20 2020 2020 2020 2020 2020 3 |.| │ │ │ │ 000463a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000463b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000463c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000463d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000463e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000463e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000463f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046430: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00046430: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046480: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00046490: 3135 3936 3061 3263 322d 3435 3031 6162 15960a2c2-4501ab │ │ │ │ -000464a0: 6332 2b31 3130 3562 3263 322b 3630 3536 c2+1105b2c2+6056 │ │ │ │ -000464b0: 6133 642d 3131 3835 3761 3262 642b 3133 a3d-11857a2bd+13 │ │ │ │ -000464c0: 3734 3861 6232 642d 3131 3735 3262 3364 748ab2d-11752b3d │ │ │ │ -000464d0: 2d31 3233 3435 6132 6364 2d31 347c 0a7c -12345a2cd-14|.| │ │ │ │ -000464e0: 3238 6132 6332 2b39 3331 3261 6263 322b 28a2c2+9312abc2+ │ │ │ │ -000464f0: 3136 3130 6232 6332 2d31 3539 3336 6163 1610b2c2-15936ac │ │ │ │ -00046500: 332b 3533 3835 6263 332b 3533 3735 6334 3+5385bc3+5375c4 │ │ │ │ -00046510: 2b37 3037 3361 3364 2b31 3230 3932 6132 +7073a3d+12092a2 │ │ │ │ -00046520: 6264 2b38 3234 3161 6232 642d 347c 0a7c bd+8241ab2d-4|.| │ │ │ │ -00046530: 3638 3061 6263 642b 3437 3037 6163 3264 680abcd+4707ac2d │ │ │ │ -00046540: 2d37 3036 3962 6332 642d 3338 3733 6132 -7069bc2d-3873a2 │ │ │ │ -00046550: 6432 2b35 3633 3261 6264 322b 3132 3733 d2+5632abd2+1273 │ │ │ │ -00046560: 3461 6364 322d 3739 3630 6263 6432 2020 4acd2-7960bcd2 │ │ │ │ -00046570: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00046580: 2b35 3337 3561 3263 322b 3136 3737 6162 +5375a2c2+1677ab │ │ │ │ -00046590: 6332 2b31 3534 3562 3263 322b 3130 3330 c2+1545b2c2+1030 │ │ │ │ -000465a0: 3561 3364 2d36 3932 3161 3262 642d 3331 5a3d-6921a2bd-31 │ │ │ │ -000465b0: 3335 6162 3264 2d39 3130 3562 3364 2d31 35ab2d-9105b3d-1 │ │ │ │ -000465c0: 3036 3739 6132 6364 2d31 3430 367c 0a7c 0679a2cd-1406|.| │ │ │ │ -000465d0: 642d 3430 3235 6132 6264 2b31 3039 3933 d-4025a2bd+10993 │ │ │ │ -000465e0: 6132 6364 2b36 3235 3861 6263 642d 3134 a2cd+6258abcd-14 │ │ │ │ -000465f0: 3539 3761 6332 642b 3133 3831 3261 3264 597ac2d+13812a2d │ │ │ │ -00046600: 322b 3738 3633 6162 6432 2b31 3037 3537 2+7863abd2+10757 │ │ │ │ -00046610: 6163 6432 2d31 3637 6164 3320 2d7c 0a7c acd2-167ad3 -|.| │ │ │ │ +00046480: 2020 7c0a 7c31 3539 3630 6132 6332 2d34 |.|15960a2c2-4 │ │ │ │ +00046490: 3530 3161 6263 322b 3131 3035 6232 6332 501abc2+1105b2c2 │ │ │ │ +000464a0: 2b36 3035 3661 3364 2d31 3138 3537 6132 +6056a3d-11857a2 │ │ │ │ +000464b0: 6264 2b31 3337 3438 6162 3264 2d31 3137 bd+13748ab2d-117 │ │ │ │ +000464c0: 3532 6233 642d 3132 3334 3561 3263 642d 52b3d-12345a2cd- │ │ │ │ +000464d0: 3134 7c0a 7c32 3861 3263 322b 3933 3132 14|.|28a2c2+9312 │ │ │ │ +000464e0: 6162 6332 2b31 3631 3062 3263 322d 3135 abc2+1610b2c2-15 │ │ │ │ +000464f0: 3933 3661 6333 2b35 3338 3562 6333 2b35 936ac3+5385bc3+5 │ │ │ │ +00046500: 3337 3563 342b 3730 3733 6133 642b 3132 375c4+7073a3d+12 │ │ │ │ +00046510: 3039 3261 3262 642b 3832 3431 6162 3264 092a2bd+8241ab2d │ │ │ │ +00046520: 2d34 7c0a 7c36 3830 6162 6364 2b34 3730 -4|.|680abcd+470 │ │ │ │ +00046530: 3761 6332 642d 3730 3639 6263 3264 2d33 7ac2d-7069bc2d-3 │ │ │ │ +00046540: 3837 3361 3264 322b 3536 3332 6162 6432 873a2d2+5632abd2 │ │ │ │ +00046550: 2b31 3237 3334 6163 6432 2d37 3936 3062 +12734acd2-7960b │ │ │ │ +00046560: 6364 3220 2020 2020 2020 2020 2020 2020 cd2 │ │ │ │ +00046570: 2020 7c0a 7c2b 3533 3735 6132 6332 2b31 |.|+5375a2c2+1 │ │ │ │ +00046580: 3637 3761 6263 322b 3135 3435 6232 6332 677abc2+1545b2c2 │ │ │ │ +00046590: 2b31 3033 3035 6133 642d 3639 3231 6132 +10305a3d-6921a2 │ │ │ │ +000465a0: 6264 2d33 3133 3561 6232 642d 3931 3035 bd-3135ab2d-9105 │ │ │ │ +000465b0: 6233 642d 3130 3637 3961 3263 642d 3134 b3d-10679a2cd-14 │ │ │ │ +000465c0: 3036 7c0a 7c64 2d34 3032 3561 3262 642b 06|.|d-4025a2bd+ │ │ │ │ +000465d0: 3130 3939 3361 3263 642b 3632 3538 6162 10993a2cd+6258ab │ │ │ │ +000465e0: 6364 2d31 3435 3937 6163 3264 2b31 3338 cd-14597ac2d+138 │ │ │ │ +000465f0: 3132 6132 6432 2b37 3836 3361 6264 322b 12a2d2+7863abd2+ │ │ │ │ +00046600: 3130 3735 3761 6364 322d 3136 3761 6433 10757acd2-167ad3 │ │ │ │ +00046610: 202d 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d -|.|----------- │ │ │ │ 00046620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00046630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00046640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00046650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00046660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00046660: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 00046670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000466a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000466b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000466b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000466c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000466d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000466e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000466f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046700: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00046700: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046750: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00046750: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000467a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000467a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000467b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000467c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000467d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000467e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000467f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000467f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046840: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00046840: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046890: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00046890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000468a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000468b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000468c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000468d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000468e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000468e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000468f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046930: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00046930: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046980: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00046980: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000469a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000469b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000469c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000469d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000469d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000469e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000469f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046a20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00046a20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046a70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00046a70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046ac0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00046ac0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046b10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00046b10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046b60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00046b60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046bb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00046bb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046c00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00046c10: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ +00046c00: 2020 7c0a 7c20 2020 2020 2020 7c20 2020 |.| | │ │ │ │ +00046c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046c50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00046c60: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ +00046c50: 2020 7c0a 7c20 2020 2020 2020 7c20 2020 |.| | │ │ │ │ +00046c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046ca0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00046cb0: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ +00046ca0: 2020 7c0a 7c20 2020 2020 2020 7c20 2020 |.| | │ │ │ │ +00046cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046cf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00046d00: 3934 3236 6433 207c 2020 2020 2020 2020 9426d3 | │ │ │ │ +00046cf0: 2020 7c0a 7c39 3432 3664 3320 7c20 2020 |.|9426d3 | │ │ │ │ +00046d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046d40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00046d50: 3937 3162 332d 3530 3036 6132 632d 3535 971b3-5006a2c-55 │ │ │ │ -00046d60: 3939 6162 632d 3134 3136 3562 3263 2b38 99abc-14165b2c+8 │ │ │ │ -00046d70: 3838 3061 3264 2b34 3235 3961 6264 2d33 880a2d+4259abd-3 │ │ │ │ -00046d80: 3030 3262 3264 2d31 3338 3932 6163 642d 002b2d-13892acd- │ │ │ │ -00046d90: 3130 3532 3162 6364 2020 2020 207c 0a7c 10521bcd |.| │ │ │ │ +00046d40: 2020 7c0a 7c39 3731 6233 2d35 3030 3661 |.|971b3-5006a │ │ │ │ +00046d50: 3263 2d35 3539 3961 6263 2d31 3431 3635 2c-5599abc-14165 │ │ │ │ +00046d60: 6232 632b 3838 3830 6132 642b 3432 3539 b2c+8880a2d+4259 │ │ │ │ +00046d70: 6162 642d 3330 3032 6232 642d 3133 3839 abd-3002b2d-1389 │ │ │ │ +00046d80: 3261 6364 2d31 3035 3231 6263 6420 2020 2acd-10521bcd │ │ │ │ +00046d90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046de0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00046df0: 2d39 3739 3762 332b 3730 3231 6132 632d -9797b3+7021a2c- │ │ │ │ -00046e00: 3633 3737 6162 632d 3538 3734 6232 632b 6377abc-5874b2c+ │ │ │ │ -00046e10: 3736 3030 6163 322b 3131 3732 3662 6332 7600ac2+11726bc2 │ │ │ │ -00046e20: 2d31 3134 3063 332d 3132 3036 6132 642b -1140c3-1206a2d+ │ │ │ │ -00046e30: 3131 3433 3561 6264 2d39 3037 347c 0a7c 11435abd-9074|.| │ │ │ │ +00046de0: 2020 7c0a 7c2d 3937 3937 6233 2b37 3032 |.|-9797b3+702 │ │ │ │ +00046df0: 3161 3263 2d36 3337 3761 6263 2d35 3837 1a2c-6377abc-587 │ │ │ │ +00046e00: 3462 3263 2b37 3630 3061 6332 2b31 3137 4b2c+7600ac2+117 │ │ │ │ +00046e10: 3236 6263 322d 3131 3430 6333 2d31 3230 26bc2-1140c3-120 │ │ │ │ +00046e20: 3661 3264 2b31 3134 3335 6162 642d 3930 6a2d+11435abd-90 │ │ │ │ +00046e30: 3734 7c0a 7c20 2020 2020 2020 2020 2020 74|.| │ │ │ │ 00046e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046e80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00046e90: 3833 6233 2b36 3435 3361 3263 2b31 3139 83b3+6453a2c+119 │ │ │ │ -00046ea0: 3261 6263 2b31 3532 3530 6232 632b 3131 2abc+15250b2c+11 │ │ │ │ -00046eb0: 3034 3561 3264 2b31 3533 3333 6162 642d 045a2d+15333abd- │ │ │ │ -00046ec0: 3130 3536 3762 3264 2b33 3536 3061 6364 10567b2d+3560acd │ │ │ │ -00046ed0: 2d32 3239 3262 6364 2b37 3139 347c 0a7c -2292bcd+7194|.| │ │ │ │ -00046ee0: 3338 3862 3264 2020 2020 2020 2020 2020 388b2d │ │ │ │ +00046e80: 2020 7c0a 7c38 3362 332b 3634 3533 6132 |.|83b3+6453a2 │ │ │ │ +00046e90: 632b 3131 3932 6162 632b 3135 3235 3062 c+1192abc+15250b │ │ │ │ +00046ea0: 3263 2b31 3130 3435 6132 642b 3135 3333 2c+11045a2d+1533 │ │ │ │ +00046eb0: 3361 6264 2d31 3035 3637 6232 642b 3335 3abd-10567b2d+35 │ │ │ │ +00046ec0: 3630 6163 642d 3232 3932 6263 642b 3731 60acd-2292bcd+71 │ │ │ │ +00046ed0: 3934 7c0a 7c33 3838 6232 6420 2020 2020 94|.|388b2d │ │ │ │ +00046ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046f20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00046f30: 3636 3237 6232 632b 3730 3238 6163 322d 6627b2c+7028ac2- │ │ │ │ -00046f40: 3937 3937 6263 322d 3538 3734 6333 2d38 9797bc2-5874c3-8 │ │ │ │ -00046f50: 3838 3661 6264 2d34 3730 3062 3264 2b31 886abd-4700b2d+1 │ │ │ │ -00046f60: 3561 6364 2d35 3936 3962 6364 2d39 3037 5acd-5969bcd-907 │ │ │ │ -00046f70: 3463 3264 2b35 3438 3362 6432 2b7c 0a7c 4c2d+5483bd2+|.| │ │ │ │ +00046f20: 2020 7c0a 7c36 3632 3762 3263 2b37 3032 |.|6627b2c+702 │ │ │ │ +00046f30: 3861 6332 2d39 3739 3762 6332 2d35 3837 8ac2-9797bc2-587 │ │ │ │ +00046f40: 3463 332d 3838 3836 6162 642d 3437 3030 4c3-8886abd-4700 │ │ │ │ +00046f50: 6232 642b 3135 6163 642d 3539 3639 6263 b2d+15acd-5969bc │ │ │ │ +00046f60: 642d 3930 3734 6332 642b 3534 3833 6264 d-9074c2d+5483bd │ │ │ │ +00046f70: 322b 7c0a 7c20 2020 2020 2020 2020 2020 2+|.| │ │ │ │ 00046f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046fc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00046fd0: 3533 6132 632d 3131 3932 6162 632d 3131 53a2c-1192abc-11 │ │ │ │ -00046fe0: 3034 3561 3264 2d31 3533 3333 6162 642d 045a2d-15333abd- │ │ │ │ -00046ff0: 3335 3630 6163 642b 3232 3932 6263 642d 3560acd+2292bcd- │ │ │ │ -00047000: 3731 3934 6164 322b 3632 3435 6264 322d 7194ad2+6245bd2- │ │ │ │ -00047010: 3836 3339 6364 322b 3934 3236 647c 0a7c 8639cd2+9426d|.| │ │ │ │ -00047020: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ +00046fc0: 2020 7c0a 7c35 3361 3263 2d31 3139 3261 |.|53a2c-1192a │ │ │ │ +00046fd0: 6263 2d31 3130 3435 6132 642d 3135 3333 bc-11045a2d-1533 │ │ │ │ +00046fe0: 3361 6264 2d33 3536 3061 6364 2b32 3239 3abd-3560acd+229 │ │ │ │ +00046ff0: 3262 6364 2d37 3139 3461 6432 2b36 3234 2bcd-7194ad2+624 │ │ │ │ +00047000: 3562 6432 2d38 3633 3963 6432 2b39 3432 5bd2-8639cd2+942 │ │ │ │ +00047010: 3664 7c0a 7c64 2020 2020 2020 2020 2020 6d|.|d │ │ │ │ +00047020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047060: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00047070: 3732 3662 6332 2b31 3134 3063 332b 3132 726bc2+1140c3+12 │ │ │ │ -00047080: 3036 6132 642d 3131 3433 3561 6264 2d36 06a2d-11435abd-6 │ │ │ │ -00047090: 3034 3061 6364 2b38 3032 3262 6364 2b33 040acd+8022bcd+3 │ │ │ │ -000470a0: 3936 3863 3264 2d33 3136 3461 6432 2b32 968c2d-3164ad2+2 │ │ │ │ -000470b0: 3935 6264 322d 3736 3530 6364 327c 0a7c 95bd2-7650cd2|.| │ │ │ │ +00047060: 2020 7c0a 7c37 3236 6263 322b 3131 3430 |.|726bc2+1140 │ │ │ │ +00047070: 6333 2b31 3230 3661 3264 2d31 3134 3335 c3+1206a2d-11435 │ │ │ │ +00047080: 6162 642d 3630 3430 6163 642b 3830 3232 abd-6040acd+8022 │ │ │ │ +00047090: 6263 642b 3339 3638 6332 642d 3331 3634 bcd+3968c2d-3164 │ │ │ │ +000470a0: 6164 322b 3239 3562 6432 2d37 3635 3063 ad2+295bd2-7650c │ │ │ │ +000470b0: 6432 7c0a 7c20 2020 2020 2020 2020 2020 d2|.| │ │ │ │ 000470c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000470d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000470e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000470f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047100: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00047100: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047150: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00047160: 3532 6162 6364 2d31 3833 3162 3263 642b 52abcd-1831b2cd+ │ │ │ │ -00047170: 3630 3432 6163 3264 2d32 3536 3162 6332 6042ac2d-2561bc2 │ │ │ │ -00047180: 642d 3837 3039 6132 6432 2d31 3332 3139 d-8709a2d2-13219 │ │ │ │ -00047190: 6162 6432 2b34 3230 3962 3264 322b 3132 abd2+4209b2d2+12 │ │ │ │ -000471a0: 3232 3561 6364 322d 3236 3035 627c 0a7c 225acd2-2605b|.| │ │ │ │ -000471b0: 3135 3838 6132 6364 2b32 3030 3061 6263 1588a2cd+2000abc │ │ │ │ -000471c0: 642d 3230 3830 6232 6364 2b39 3137 3561 d-2080b2cd+9175a │ │ │ │ -000471d0: 6332 642d 3634 3962 6332 642b 3838 3239 c2d-649bc2d+8829 │ │ │ │ -000471e0: 6333 642b 3231 3634 6132 6432 2b38 3633 c3d+2164a2d2+863 │ │ │ │ -000471f0: 3561 6264 322d 3731 3631 6232 647c 0a7c 5abd2-7161b2d|.| │ │ │ │ +00047150: 2020 7c0a 7c35 3261 6263 642d 3138 3331 |.|52abcd-1831 │ │ │ │ +00047160: 6232 6364 2b36 3034 3261 6332 642d 3235 b2cd+6042ac2d-25 │ │ │ │ +00047170: 3631 6263 3264 2d38 3730 3961 3264 322d 61bc2d-8709a2d2- │ │ │ │ +00047180: 3133 3231 3961 6264 322b 3432 3039 6232 13219abd2+4209b2 │ │ │ │ +00047190: 6432 2b31 3232 3235 6163 6432 2d32 3630 d2+12225acd2-260 │ │ │ │ +000471a0: 3562 7c0a 7c31 3538 3861 3263 642b 3230 5b|.|1588a2cd+20 │ │ │ │ +000471b0: 3030 6162 6364 2d32 3038 3062 3263 642b 00abcd-2080b2cd+ │ │ │ │ +000471c0: 3931 3735 6163 3264 2d36 3439 6263 3264 9175ac2d-649bc2d │ │ │ │ +000471d0: 2b38 3832 3963 3364 2b32 3136 3461 3264 +8829c3d+2164a2d │ │ │ │ +000471e0: 322b 3836 3335 6162 6432 2d37 3136 3162 2+8635abd2-7161b │ │ │ │ +000471f0: 3264 7c0a 7c20 2020 2020 2020 2020 2020 2d|.| │ │ │ │ 00047200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047240: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00047250: 3732 3362 3263 642d 3133 3236 3261 6332 723b2cd-13262ac2 │ │ │ │ -00047260: 642b 3534 3331 6263 3264 2b31 3132 3734 d+5431bc2d+11274 │ │ │ │ -00047270: 6132 6432 2d32 3137 6162 6432 2b31 3236 a2d2-217abd2+126 │ │ │ │ -00047280: 3162 3264 322b 3832 3031 6163 6432 2d31 1b2d2+8201acd2-1 │ │ │ │ -00047290: 3430 3830 6263 6432 2020 2020 207c 0a7c 4080bcd2 |.| │ │ │ │ -000472a0: 3361 6433 202d 3232 3735 6132 6232 2b32 3ad3 -2275a2b2+2 │ │ │ │ -000472b0: 3339 6162 332b 3938 3034 6234 2b38 3431 39ab3+9804b4+841 │ │ │ │ -000472c0: 3661 6232 632d 3932 6232 6332 2b31 3539 6ab2c-92b2c2+159 │ │ │ │ -000472d0: 3638 6162 3264 2b31 3438 3630 6233 642d 68ab2d+14860b3d- │ │ │ │ -000472e0: 3838 3239 6232 6364 2d31 3132 377c 0a7c 8829b2cd-1127|.| │ │ │ │ +00047240: 2020 7c0a 7c37 3233 6232 6364 2d31 3332 |.|723b2cd-132 │ │ │ │ +00047250: 3632 6163 3264 2b35 3433 3162 6332 642b 62ac2d+5431bc2d+ │ │ │ │ +00047260: 3131 3237 3461 3264 322d 3231 3761 6264 11274a2d2-217abd │ │ │ │ +00047270: 322b 3132 3631 6232 6432 2b38 3230 3161 2+1261b2d2+8201a │ │ │ │ +00047280: 6364 322d 3134 3038 3062 6364 3220 2020 cd2-14080bcd2 │ │ │ │ +00047290: 2020 7c0a 7c33 6164 3320 2d32 3237 3561 |.|3ad3 -2275a │ │ │ │ +000472a0: 3262 322b 3233 3961 6233 2b39 3830 3462 2b2+239ab3+9804b │ │ │ │ +000472b0: 342b 3834 3136 6162 3263 2d39 3262 3263 4+8416ab2c-92b2c │ │ │ │ +000472c0: 322b 3135 3936 3861 6232 642b 3134 3836 2+15968ab2d+1486 │ │ │ │ +000472d0: 3062 3364 2d38 3832 3962 3263 642d 3131 0b3d-8829b2cd-11 │ │ │ │ +000472e0: 3237 7c0a 7c20 2020 2020 2020 2020 2020 27|.| │ │ │ │ 000472f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047330: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00047330: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047380: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00047380: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000473a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000473b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000473c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000473d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000473e0: 2020 2020 2020 2020 207c 2020 2020 2020 | │ │ │ │ +000473d0: 2020 7c0a 7c20 2020 2020 2020 2020 7c20 |.| | │ │ │ │ +000473e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000473f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047420: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00047430: 2020 2020 2020 2020 207c 2020 2020 2020 | │ │ │ │ +00047420: 2020 7c0a 7c20 2020 2020 2020 2020 7c20 |.| | │ │ │ │ +00047430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047470: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00047480: 2020 2020 2020 2020 207c 2020 2020 2020 | │ │ │ │ +00047470: 2020 7c0a 7c20 2020 2020 2020 2020 7c20 |.| | │ │ │ │ +00047480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000474a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000474b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000474c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000474d0: 322d 3530 3830 6433 207c 2020 2020 2020 2-5080d3 | │ │ │ │ +000474c0: 2020 7c0a 7c32 2d35 3038 3064 3320 7c20 |.|2-5080d3 | │ │ │ │ +000474d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000474e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000474f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047510: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00047520: 3130 3335 3962 332d 3535 3730 6132 632d 10359b3-5570a2c- │ │ │ │ -00047530: 3533 3037 6162 632d 3734 3634 6232 632b 5307abc-7464b2c+ │ │ │ │ -00047540: 3331 3837 6132 642b 3835 3730 6162 642d 3187a2d+8570abd- │ │ │ │ -00047550: 3832 3531 6232 642b 3834 3434 6163 642b 8251b2d+8444acd+ │ │ │ │ -00047560: 3530 3731 6263 6420 2020 2020 207c 0a7c 5071bcd |.| │ │ │ │ +00047510: 2020 7c0a 7c31 3033 3539 6233 2d35 3537 |.|10359b3-557 │ │ │ │ +00047520: 3061 3263 2d35 3330 3761 6263 2d37 3436 0a2c-5307abc-746 │ │ │ │ +00047530: 3462 3263 2b33 3138 3761 3264 2b38 3537 4b2c+3187a2d+857 │ │ │ │ +00047540: 3061 6264 2d38 3235 3162 3264 2b38 3434 0abd-8251b2d+844 │ │ │ │ +00047550: 3461 6364 2b35 3037 3162 6364 2020 2020 4acd+5071bcd │ │ │ │ +00047560: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000475a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000475b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000475c0: 6232 2b31 3330 3962 332d 3132 3336 3561 b2+1309b3-12365a │ │ │ │ -000475d0: 3263 2b37 3231 3661 6263 2d35 3339 3862 2c+7216abc-5398b │ │ │ │ -000475e0: 3263 2d36 3233 3061 6332 2b35 3332 3662 2c-6230ac2+5326b │ │ │ │ -000475f0: 6332 2d31 3033 3163 332b 3133 3530 3861 c2-1031c3+13508a │ │ │ │ -00047600: 3264 2b31 3031 3235 6162 642d 357c 0a7c 2d+10125abd-5|.| │ │ │ │ +000475b0: 2020 7c0a 7c62 322b 3133 3039 6233 2d31 |.|b2+1309b3-1 │ │ │ │ +000475c0: 3233 3635 6132 632b 3732 3136 6162 632d 2365a2c+7216abc- │ │ │ │ +000475d0: 3533 3938 6232 632d 3632 3330 6163 322b 5398b2c-6230ac2+ │ │ │ │ +000475e0: 3533 3236 6263 322d 3130 3331 6333 2b31 5326bc2-1031c3+1 │ │ │ │ +000475f0: 3335 3038 6132 642b 3130 3132 3561 6264 3508a2d+10125abd │ │ │ │ +00047600: 2d35 7c0a 7c20 2020 2020 2020 2020 2020 -5|.| │ │ │ │ 00047610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047650: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00047660: 322d 3130 3836 3662 332b 3934 3830 6132 2-10866b3+9480a2 │ │ │ │ -00047670: 632d 3732 3536 6162 632b 3730 3631 6232 c-7256abc+7061b2 │ │ │ │ -00047680: 632b 3131 3935 3061 3264 2b35 3332 3161 c+11950a2d+5321a │ │ │ │ -00047690: 6264 2d32 3632 3762 3264 2b33 3939 3661 bd-2627b2d+3996a │ │ │ │ -000476a0: 6364 2b37 3135 3262 6364 2d39 337c 0a7c cd+7152bcd-93|.| │ │ │ │ -000476b0: 632b 3131 3734 3062 3264 2020 2020 2020 c+11740b2d │ │ │ │ +00047650: 2020 7c0a 7c32 2d31 3038 3636 6233 2b39 |.|2-10866b3+9 │ │ │ │ +00047660: 3438 3061 3263 2d37 3235 3661 6263 2b37 480a2c-7256abc+7 │ │ │ │ +00047670: 3036 3162 3263 2b31 3139 3530 6132 642b 061b2c+11950a2d+ │ │ │ │ +00047680: 3533 3231 6162 642d 3236 3237 6232 642b 5321abd-2627b2d+ │ │ │ │ +00047690: 3339 3936 6163 642b 3731 3532 6263 642d 3996acd+7152bcd- │ │ │ │ +000476a0: 3933 7c0a 7c63 2b31 3137 3430 6232 6420 93|.|c+11740b2d │ │ │ │ +000476b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000476c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000476d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000476e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000476f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00047700: 6263 2d31 3339 3930 6232 632d 3130 3235 bc-13990b2c-1025 │ │ │ │ -00047710: 3961 6332 2b31 3330 3962 6332 2d35 3339 9ac2+1309bc2-539 │ │ │ │ -00047720: 3863 332d 3530 3236 6162 642b 3131 3532 8c3-5026abd+1152 │ │ │ │ -00047730: 3162 3264 2b37 3530 3161 6364 2b31 3737 1b2d+7501acd+177 │ │ │ │ -00047740: 3962 6364 2d35 3534 3963 3264 2d7c 0a7c 9bcd-5549c2d-|.| │ │ │ │ +000476f0: 2020 7c0a 7c62 632d 3133 3939 3062 3263 |.|bc-13990b2c │ │ │ │ +00047700: 2d31 3032 3539 6163 322b 3133 3039 6263 -10259ac2+1309bc │ │ │ │ +00047710: 322d 3533 3938 6333 2d35 3032 3661 6264 2-5398c3-5026abd │ │ │ │ +00047720: 2b31 3135 3231 6232 642b 3735 3031 6163 +11521b2d+7501ac │ │ │ │ +00047730: 642b 3137 3739 6263 642d 3535 3439 6332 d+1779bcd-5549c2 │ │ │ │ +00047740: 642d 7c0a 7c20 2020 2020 2020 2020 2020 d-|.| │ │ │ │ 00047750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047790: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000477a0: 6232 2d39 3438 3061 3263 2b37 3235 3661 b2-9480a2c+7256a │ │ │ │ -000477b0: 6263 2d31 3139 3530 6132 642d 3533 3231 bc-11950a2d-5321 │ │ │ │ -000477c0: 6162 642d 3339 3936 6163 642d 3731 3532 abd-3996acd-7152 │ │ │ │ -000477d0: 6263 642b 3933 3938 6164 322b 3135 3331 bcd+9398ad2+1531 │ │ │ │ -000477e0: 3762 6432 2d36 3932 3263 6432 2d7c 0a7c 7bd2-6922cd2-|.| │ │ │ │ -000477f0: 3264 2020 2020 2020 2020 2020 2020 2020 2d │ │ │ │ +00047790: 2020 7c0a 7c62 322d 3934 3830 6132 632b |.|b2-9480a2c+ │ │ │ │ +000477a0: 3732 3536 6162 632d 3131 3935 3061 3264 7256abc-11950a2d │ │ │ │ +000477b0: 2d35 3332 3161 6264 2d33 3939 3661 6364 -5321abd-3996acd │ │ │ │ +000477c0: 2d37 3135 3262 6364 2b39 3339 3861 6432 -7152bcd+9398ad2 │ │ │ │ +000477d0: 2b31 3533 3137 6264 322d 3639 3232 6364 +15317bd2-6922cd │ │ │ │ +000477e0: 322d 7c0a 7c32 6420 2020 2020 2020 2020 2-|.|2d │ │ │ │ +000477f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047830: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00047840: 6332 2d35 3332 3662 6332 2b31 3033 3163 c2-5326bc2+1031c │ │ │ │ -00047850: 332d 3133 3530 3861 3264 2d31 3031 3235 3-13508a2d-10125 │ │ │ │ -00047860: 6162 642b 3930 3333 6163 642b 3239 3938 abd+9033acd+2998 │ │ │ │ -00047870: 6263 642d 3230 3336 6332 642b 3531 3037 bcd-2036c2d+5107 │ │ │ │ -00047880: 6164 322b 3536 3739 6264 322d 367c 0a7c ad2+5679bd2-6|.| │ │ │ │ +00047830: 2020 7c0a 7c63 322d 3533 3236 6263 322b |.|c2-5326bc2+ │ │ │ │ +00047840: 3130 3331 6333 2d31 3335 3038 6132 642d 1031c3-13508a2d- │ │ │ │ +00047850: 3130 3132 3561 6264 2b39 3033 3361 6364 10125abd+9033acd │ │ │ │ +00047860: 2b32 3939 3862 6364 2d32 3033 3663 3264 +2998bcd-2036c2d │ │ │ │ +00047870: 2b35 3130 3761 6432 2b35 3637 3962 6432 +5107ad2+5679bd2 │ │ │ │ +00047880: 2d36 7c0a 7c20 2020 2020 2020 2020 2020 -6|.| │ │ │ │ 00047890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000478a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000478b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000478c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000478d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000478d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000478e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000478f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047920: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00047930: 3837 6162 6364 2d31 3436 3835 6232 6364 87abcd-14685b2cd │ │ │ │ -00047940: 2d31 3035 3831 6163 3264 2b35 3232 3862 -10581ac2d+5228b │ │ │ │ -00047950: 6332 642d 3135 3836 3661 3264 322d 3137 c2d-15866a2d2-17 │ │ │ │ -00047960: 3933 6162 6432 2d31 3232 3435 6232 6432 93abd2-12245b2d2 │ │ │ │ -00047970: 2b31 3232 3833 6163 6432 2b36 377c 0a7c +12283acd2+67|.| │ │ │ │ -00047980: 3264 2b35 3231 3862 3364 2d31 3238 3032 2d+5218b3d-12802 │ │ │ │ -00047990: 6132 6364 2d31 3236 3138 6162 6364 2d35 a2cd-12618abcd-5 │ │ │ │ -000479a0: 3732 3862 3263 642b 3533 3437 6163 3264 728b2cd+5347ac2d │ │ │ │ -000479b0: 2b31 3333 3934 6263 3264 2b32 3936 6333 +13394bc2d+296c3 │ │ │ │ -000479c0: 642b 3734 3436 6132 6432 2b31 307c 0a7c d+7446a2d2+10|.| │ │ │ │ +00047920: 2020 7c0a 7c38 3761 6263 642d 3134 3638 |.|87abcd-1468 │ │ │ │ +00047930: 3562 3263 642d 3130 3538 3161 6332 642b 5b2cd-10581ac2d+ │ │ │ │ +00047940: 3532 3238 6263 3264 2d31 3538 3636 6132 5228bc2d-15866a2 │ │ │ │ +00047950: 6432 2d31 3739 3361 6264 322d 3132 3234 d2-1793abd2-1224 │ │ │ │ +00047960: 3562 3264 322b 3132 3238 3361 6364 322b 5b2d2+12283acd2+ │ │ │ │ +00047970: 3637 7c0a 7c32 642b 3532 3138 6233 642d 67|.|2d+5218b3d- │ │ │ │ +00047980: 3132 3830 3261 3263 642d 3132 3631 3861 12802a2cd-12618a │ │ │ │ +00047990: 6263 642d 3537 3238 6232 6364 2b35 3334 bcd-5728b2cd+534 │ │ │ │ +000479a0: 3761 6332 642b 3133 3339 3462 6332 642b 7ac2d+13394bc2d+ │ │ │ │ +000479b0: 3239 3663 3364 2b37 3434 3661 3264 322b 296c3d+7446a2d2+ │ │ │ │ +000479c0: 3130 7c0a 7c20 2020 2020 2020 2020 2020 10|.| │ │ │ │ 000479d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000479e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000479f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047a10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00047a20: 3433 3961 6263 642d 3132 3337 3162 3263 439abcd-12371b2c │ │ │ │ -00047a30: 642b 3133 3761 6332 642d 3134 3331 3362 d+137ac2d-14313b │ │ │ │ -00047a40: 6332 642d 3830 3834 6132 6432 2d34 3535 c2d-8084a2d2-455 │ │ │ │ -00047a50: 3261 6264 322b 3635 3634 6232 6432 2b35 2abd2+6564b2d2+5 │ │ │ │ -00047a60: 3831 3361 6364 322d 3135 3334 357c 0a7c 813acd2-15345|.| │ │ │ │ -00047a70: 3535 3038 6132 6232 2d31 3336 3630 6162 5508a2b2-13660ab │ │ │ │ -00047a80: 332d 3133 3135 3362 342d 3139 3130 6162 3-13153b4-1910ab │ │ │ │ -00047a90: 3263 2d31 3136 3536 6233 632b 3835 3237 2c-11656b3c+8527 │ │ │ │ -00047aa0: 6232 6332 2b35 3934 3261 6232 642b 3134 b2c2+5942ab2d+14 │ │ │ │ -00047ab0: 3932 3562 3364 2d32 3936 6232 637c 0a7c 925b3d-296b2c|.| │ │ │ │ +00047a10: 2020 7c0a 7c34 3339 6162 6364 2d31 3233 |.|439abcd-123 │ │ │ │ +00047a20: 3731 6232 6364 2b31 3337 6163 3264 2d31 71b2cd+137ac2d-1 │ │ │ │ +00047a30: 3433 3133 6263 3264 2d38 3038 3461 3264 4313bc2d-8084a2d │ │ │ │ +00047a40: 322d 3435 3532 6162 6432 2b36 3536 3462 2-4552abd2+6564b │ │ │ │ +00047a50: 3264 322b 3538 3133 6163 6432 2d31 3533 2d2+5813acd2-153 │ │ │ │ +00047a60: 3435 7c0a 7c35 3530 3861 3262 322d 3133 45|.|5508a2b2-13 │ │ │ │ +00047a70: 3636 3061 6233 2d31 3331 3533 6234 2d31 660ab3-13153b4-1 │ │ │ │ +00047a80: 3931 3061 6232 632d 3131 3635 3662 3363 910ab2c-11656b3c │ │ │ │ +00047a90: 2b38 3532 3762 3263 322b 3539 3432 6162 +8527b2c2+5942ab │ │ │ │ +00047aa0: 3264 2b31 3439 3235 6233 642d 3239 3662 2d+14925b3d-296b │ │ │ │ +00047ab0: 3263 7c0a 7c20 2020 2020 2020 2020 2020 2c|.| │ │ │ │ 00047ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047b00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00047b00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047b50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00047b50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047ba0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00047bb0: 3930 3861 6263 642d 3938 3934 6232 6364 908abcd-9894b2cd │ │ │ │ -00047bc0: 2b38 3434 3061 6332 642b 3130 3639 3362 +8440ac2d+10693b │ │ │ │ -00047bd0: 6332 642b 3132 3036 3261 3264 322d 3133 c2d+12062a2d2-13 │ │ │ │ -00047be0: 3632 3661 6264 322b 3432 3437 6232 6432 626abd2+4247b2d2 │ │ │ │ -00047bf0: 2d31 3237 3033 6163 6432 2b32 397c 0a7c -12703acd2+29|.| │ │ │ │ -00047c00: 3432 3062 3364 2b35 3233 3461 3263 642b 420b3d+5234a2cd+ │ │ │ │ -00047c10: 3730 3036 6162 6364 2d31 3439 3231 6232 7006abcd-14921b2 │ │ │ │ -00047c20: 6364 2b38 3831 3061 6332 642d 3332 3731 cd+8810ac2d-3271 │ │ │ │ -00047c30: 6263 3264 2d31 3036 3633 6333 642d 3132 bc2d-10663c3d-12 │ │ │ │ -00047c40: 3533 3761 3264 322b 3135 3238 317c 0a7c 537a2d2+15281|.| │ │ │ │ +00047ba0: 2020 7c0a 7c39 3038 6162 6364 2d39 3839 |.|908abcd-989 │ │ │ │ +00047bb0: 3462 3263 642b 3834 3430 6163 3264 2b31 4b2cd+8440ac2d+1 │ │ │ │ +00047bc0: 3036 3933 6263 3264 2b31 3230 3632 6132 0693bc2d+12062a2 │ │ │ │ +00047bd0: 6432 2d31 3336 3236 6162 6432 2b34 3234 d2-13626abd2+424 │ │ │ │ +00047be0: 3762 3264 322d 3132 3730 3361 6364 322b 7b2d2-12703acd2+ │ │ │ │ +00047bf0: 3239 7c0a 7c34 3230 6233 642b 3532 3334 29|.|420b3d+5234 │ │ │ │ +00047c00: 6132 6364 2b37 3030 3661 6263 642d 3134 a2cd+7006abcd-14 │ │ │ │ +00047c10: 3932 3162 3263 642b 3838 3130 6163 3264 921b2cd+8810ac2d │ │ │ │ +00047c20: 2d33 3237 3162 6332 642d 3130 3636 3363 -3271bc2d-10663c │ │ │ │ +00047c30: 3364 2d31 3235 3337 6132 6432 2b31 3532 3d-12537a2d2+152 │ │ │ │ +00047c40: 3831 7c0a 7c20 2020 2020 2020 2020 2020 81|.| │ │ │ │ 00047c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047c90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00047ca0: 3561 6263 642b 3632 3937 6232 6364 2b31 5abcd+6297b2cd+1 │ │ │ │ -00047cb0: 3533 3739 6163 3264 2d31 3238 3831 6263 5379ac2d-12881bc │ │ │ │ -00047cc0: 3264 2d36 3334 3161 3264 322b 3832 3932 2d-6341a2d2+8292 │ │ │ │ -00047cd0: 6162 6432 2b31 3138 3632 6232 6432 2d31 abd2+11862b2d2-1 │ │ │ │ -00047ce0: 3035 3136 6163 6432 2d31 3234 397c 0a7c 0516acd2-1249|.| │ │ │ │ -00047cf0: 3639 3435 6132 6232 2d31 3230 3938 6162 6945a2b2-12098ab │ │ │ │ -00047d00: 332d 3732 3437 6234 2b31 3539 3336 6162 3-7247b4+15936ab │ │ │ │ -00047d10: 3263 2d35 3338 3562 3363 2d35 3337 3562 2c-5385b3c-5375b │ │ │ │ -00047d20: 3263 322d 3130 3330 3561 6232 642b 3832 2c2-10305ab2d+82 │ │ │ │ -00047d30: 3937 6233 642b 3130 3636 3362 327c 0a7c 97b3d+10663b2|.| │ │ │ │ +00047c90: 2020 7c0a 7c35 6162 6364 2b36 3239 3762 |.|5abcd+6297b │ │ │ │ +00047ca0: 3263 642b 3135 3337 3961 6332 642d 3132 2cd+15379ac2d-12 │ │ │ │ +00047cb0: 3838 3162 6332 642d 3633 3431 6132 6432 881bc2d-6341a2d2 │ │ │ │ +00047cc0: 2b38 3239 3261 6264 322b 3131 3836 3262 +8292abd2+11862b │ │ │ │ +00047cd0: 3264 322d 3130 3531 3661 6364 322d 3132 2d2-10516acd2-12 │ │ │ │ +00047ce0: 3439 7c0a 7c36 3934 3561 3262 322d 3132 49|.|6945a2b2-12 │ │ │ │ +00047cf0: 3039 3861 6233 2d37 3234 3762 342b 3135 098ab3-7247b4+15 │ │ │ │ +00047d00: 3933 3661 6232 632d 3533 3835 6233 632d 936ab2c-5385b3c- │ │ │ │ +00047d10: 3533 3735 6232 6332 2d31 3033 3035 6162 5375b2c2-10305ab │ │ │ │ +00047d20: 3264 2b38 3239 3762 3364 2b31 3036 3633 2d+8297b3d+10663 │ │ │ │ +00047d30: 6232 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d b2|.|----------- │ │ │ │ 00047d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00047d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00047d80: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 00047d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047dd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00047dd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047e20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00047e20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047e70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00047e70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047ec0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00047ec0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047f10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00047f10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047f60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00047f60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047fb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00047fb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048000: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048000: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048050: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000480a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000480a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000480b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000480c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000480d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000480e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000480f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000480f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048140: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048140: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048190: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048190: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000481a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000481b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000481c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000481d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000481e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000481e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000481f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048230: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048230: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048280: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048280: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000482a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000482b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000482c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000482d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000482d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000482e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000482f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048320: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048320: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048370: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048370: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000483a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000483b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000483c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000483c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000483d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000483e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000483f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048410: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048410: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048460: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048460: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000484a0: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ -000484b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000484a0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000484b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000484c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000484d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000484e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000484f0: 2020 2020 2020 2020 2020 2031 3233 3661 1236a │ │ │ │ -00048500: 332b 3839 3232 6132 622d 3335 387c 0a7c 3+8922a2b-358|.| │ │ │ │ -00048510: 6232 642b 3630 3430 6163 642d 3830 3232 b2d+6040acd-8022 │ │ │ │ -00048520: 6263 642d 3339 3638 6332 642b 3331 3634 bcd-3968c2d+3164 │ │ │ │ -00048530: 6164 322d 3239 3562 6432 2b37 3635 3063 ad2-295bd2+7650c │ │ │ │ -00048540: 6432 2d31 3433 3838 6433 2031 3033 3730 d2-14388d3 10370 │ │ │ │ -00048550: 6162 322d 3730 3932 6233 2d39 377c 0a7c ab2-7092b3-97|.| │ │ │ │ +000484f0: 3132 3336 6133 2b38 3932 3261 3262 2d33 1236a3+8922a2b-3 │ │ │ │ +00048500: 3538 7c0a 7c62 3264 2b36 3034 3061 6364 58|.|b2d+6040acd │ │ │ │ +00048510: 2d38 3032 3262 6364 2d33 3936 3863 3264 -8022bcd-3968c2d │ │ │ │ +00048520: 2b33 3136 3461 6432 2d32 3935 6264 322b +3164ad2-295bd2+ │ │ │ │ +00048530: 3736 3530 6364 322d 3134 3338 3864 3320 7650cd2-14388d3 │ │ │ │ +00048540: 3130 3337 3061 6232 2d37 3039 3262 332d 10370ab2-7092b3- │ │ │ │ +00048550: 3937 7c0a 7c20 2020 2020 2020 2020 2020 97|.| │ │ │ │ 00048560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048590: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ -000485a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000485b0: 6164 322d 3632 3435 6264 322b 3836 3339 ad2-6245bd2+8639 │ │ │ │ -000485c0: 6364 322d 3934 3236 6433 2020 2020 2020 cd2-9426d3 │ │ │ │ +00048590: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000485a0: 2020 7c0a 7c61 6432 2d36 3234 3562 6432 |.|ad2-6245bd2 │ │ │ │ +000485b0: 2b38 3633 3963 6432 2d39 3432 3664 3320 +8639cd2-9426d3 │ │ │ │ +000485c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000485d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000485e0: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ -000485f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000485e0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000485f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048630: 2020 2020 2020 2020 2020 2039 3934 6133 994a3 │ │ │ │ -00048640: 2b31 3934 3661 3262 2b36 3732 337c 0a7c +1946a2b+6723|.| │ │ │ │ -00048650: 3135 3235 3063 6432 2d31 3035 3637 6433 15250cd2-10567d3 │ │ │ │ -00048660: 2031 3233 3661 332b 3839 3232 6132 622d 1236a3+8922a2b- │ │ │ │ -00048670: 3335 3839 6162 322b 3839 3731 6233 2d35 3589ab2+8971b3-5 │ │ │ │ -00048680: 3030 3661 3263 2d35 3539 3961 6263 2d31 006a2c-5599abc-1 │ │ │ │ -00048690: 3431 3635 6232 632b 3838 3830 617c 0a7c 4165b2c+8880a|.| │ │ │ │ -000486a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000486b0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00048630: 3939 3461 332b 3139 3436 6132 622b 3637 994a3+1946a2b+67 │ │ │ │ +00048640: 3233 7c0a 7c31 3532 3530 6364 322d 3130 23|.|15250cd2-10 │ │ │ │ +00048650: 3536 3764 3320 3132 3336 6133 2b38 3932 567d3 1236a3+892 │ │ │ │ +00048660: 3261 3262 2d33 3538 3961 6232 2b38 3937 2a2b-3589ab2+897 │ │ │ │ +00048670: 3162 332d 3530 3036 6132 632d 3535 3939 1b3-5006a2c-5599 │ │ │ │ +00048680: 6162 632d 3134 3136 3562 3263 2b38 3838 abc-14165b2c+888 │ │ │ │ +00048690: 3061 7c0a 7c20 2020 2020 2020 2020 2020 0a|.| │ │ │ │ +000486a0: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +000486b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000486c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000486d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000486e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000486f0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00048700: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000486e0: 2020 7c0a 7c33 2020 2020 2020 2020 2020 |.|3 │ │ │ │ +000486f0: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00048700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048730: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00048740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048750: 202d 3939 3461 332d 3139 3436 6132 622d -994a3-1946a2b- │ │ │ │ -00048760: 3637 3233 6162 322d 3534 3833 6233 2d36 6723ab2-5483b3-6 │ │ │ │ -00048770: 3435 3361 3263 2d31 3139 3261 6263 2d31 453a2c-1192abc-1 │ │ │ │ -00048780: 3532 3530 6232 632d 3131 3034 357c 0a7c 5250b2c-11045|.| │ │ │ │ -00048790: 2b31 3433 3838 6433 202d 3130 3337 3061 +14388d3 -10370a │ │ │ │ -000487a0: 6232 2b37 3039 3262 332b 3937 3032 6162 b2+7092b3+9702ab │ │ │ │ -000487b0: 632b 3636 3237 6232 632d 3937 3937 6263 c+6627b2c-9797bc │ │ │ │ -000487c0: 322d 3538 3734 6333 2d38 3838 3661 6264 2-5874c3-8886abd │ │ │ │ -000487d0: 2d34 3730 3062 3264 2b31 3561 637c 0a7c -4700b2d+15ac|.| │ │ │ │ +00048730: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048740: 2020 2020 2020 2d39 3934 6133 2d31 3934 -994a3-194 │ │ │ │ +00048750: 3661 3262 2d36 3732 3361 6232 2d35 3438 6a2b-6723ab2-548 │ │ │ │ +00048760: 3362 332d 3634 3533 6132 632d 3131 3932 3b3-6453a2c-1192 │ │ │ │ +00048770: 6162 632d 3135 3235 3062 3263 2d31 3130 abc-15250b2c-110 │ │ │ │ +00048780: 3435 7c0a 7c2b 3134 3338 3864 3320 2d31 45|.|+14388d3 -1 │ │ │ │ +00048790: 3033 3730 6162 322b 3730 3932 6233 2b39 0370ab2+7092b3+9 │ │ │ │ +000487a0: 3730 3261 6263 2b36 3632 3762 3263 2d39 702abc+6627b2c-9 │ │ │ │ +000487b0: 3739 3762 6332 2d35 3837 3463 332d 3838 797bc2-5874c3-88 │ │ │ │ +000487c0: 3836 6162 642d 3437 3030 6232 642b 3135 86abd-4700b2d+15 │ │ │ │ +000487d0: 6163 7c0a 7c20 2020 2020 2020 2020 2020 ac|.| │ │ │ │ 000487e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000487f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048820: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048820: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048870: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00048880: 6364 322d 3932 6332 6432 2b31 3539 3638 cd2-92c2d2+15968 │ │ │ │ -00048890: 6164 332b 3134 3836 3062 6433 2d38 3832 ad3+14860bd3-882 │ │ │ │ -000488a0: 3963 6433 2d31 3132 3734 6434 207c 2020 9cd3-11274d4 | │ │ │ │ +00048870: 2020 7c0a 7c63 6432 2d39 3263 3264 322b |.|cd2-92c2d2+ │ │ │ │ +00048880: 3135 3936 3861 6433 2b31 3438 3630 6264 15968ad3+14860bd │ │ │ │ +00048890: 332d 3838 3239 6364 332d 3131 3237 3464 3-8829cd3-11274d │ │ │ │ +000488a0: 3420 7c20 2020 2020 2020 2020 2020 2020 4 | │ │ │ │ 000488b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000488c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000488d0: 322b 3939 3761 6364 322b 3330 3135 6263 2+997acd2+3015bc │ │ │ │ -000488e0: 6432 2b31 3132 3734 6332 6432 2020 2020 d2+11274c2d2 │ │ │ │ -000488f0: 2020 2020 2020 2020 2020 2020 207c 2020 | │ │ │ │ +000488c0: 2020 7c0a 7c32 2b39 3937 6163 6432 2b33 |.|2+997acd2+3 │ │ │ │ +000488d0: 3031 3562 6364 322b 3131 3237 3463 3264 015bcd2+11274c2d │ │ │ │ +000488e0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000488f0: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00048900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048910: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048910: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048940: 2020 2020 2020 2020 2020 2020 207c 2020 | │ │ │ │ +00048940: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00048950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048960: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048960: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048990: 2020 2020 2020 2020 2020 2020 207c 2020 | │ │ │ │ +00048990: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000489a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000489b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000489c0: 3462 3264 3220 2d37 3634 3861 3362 2d31 4b2d2 -7648a3b-1 │ │ │ │ -000489d0: 3332 3631 6132 6232 2b33 3335 3861 6233 3261a2b2+3358ab3 │ │ │ │ -000489e0: 2d36 3138 6234 2d37 3637 6133 632d 3535 -618b4-767a3c-55 │ │ │ │ -000489f0: 3830 6132 6263 2d31 3535 3630 6162 3263 80a2bc-15560ab2c │ │ │ │ -00048a00: 2d34 3839 6233 632b 3135 3338 337c 0a7c -489b3c+15383|.| │ │ │ │ +000489b0: 2020 7c0a 7c34 6232 6432 202d 3736 3438 |.|4b2d2 -7648 │ │ │ │ +000489c0: 6133 622d 3133 3236 3161 3262 322b 3333 a3b-13261a2b2+33 │ │ │ │ +000489d0: 3538 6162 332d 3631 3862 342d 3736 3761 58ab3-618b4-767a │ │ │ │ +000489e0: 3363 2d35 3538 3061 3262 632d 3135 3536 3c-5580a2bc-1556 │ │ │ │ +000489f0: 3061 6232 632d 3438 3962 3363 2b31 3533 0ab2c-489b3c+153 │ │ │ │ +00048a00: 3833 7c0a 7c20 2020 2020 2020 2020 2020 83|.| │ │ │ │ 00048a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048a50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048a50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048aa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048aa0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048af0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048af0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048b40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048b40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048b90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048b90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048be0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048be0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048c30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048c30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048c70: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00048c80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048c70: 2020 2020 3020 2020 2020 2020 2020 2020 0 │ │ │ │ +00048c80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048cc0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00048cd0: 3037 6133 2b34 3337 3661 3262 2b7c 0a7c 07a3+4376a2b+|.| │ │ │ │ -00048ce0: 3534 3962 3264 2d39 3033 3361 6364 2d32 549b2d-9033acd-2 │ │ │ │ -00048cf0: 3939 3862 6364 2b32 3033 3663 3264 2d35 998bcd+2036c2d-5 │ │ │ │ -00048d00: 3130 3761 6432 2d35 3637 3962 6432 2b36 107ad2-5679bd2+6 │ │ │ │ -00048d10: 3332 3563 6432 2b31 3137 3430 6433 2038 325cd2+11740d3 8 │ │ │ │ -00048d20: 3233 3161 6232 2b31 3331 3737 627c 0a7c 231ab2+13177b|.| │ │ │ │ +00048cc0: 2020 2020 3130 3761 332b 3433 3736 6132 107a3+4376a2 │ │ │ │ +00048cd0: 622b 7c0a 7c35 3439 6232 642d 3930 3333 b+|.|549b2d-9033 │ │ │ │ +00048ce0: 6163 642d 3239 3938 6263 642b 3230 3336 acd-2998bcd+2036 │ │ │ │ +00048cf0: 6332 642d 3531 3037 6164 322d 3536 3739 c2d-5107ad2-5679 │ │ │ │ +00048d00: 6264 322b 3633 3235 6364 322b 3131 3734 bd2+6325cd2+1174 │ │ │ │ +00048d10: 3064 3320 3832 3331 6162 322b 3133 3137 0d3 8231ab2+1317 │ │ │ │ +00048d20: 3762 7c0a 7c20 2020 2020 2020 2020 2020 7b|.| │ │ │ │ 00048d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048d60: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00048d70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00048d80: 3938 6164 322d 3135 3331 3762 6432 2b36 98ad2-15317bd2+6 │ │ │ │ -00048d90: 3932 3263 6432 2b35 3038 3064 3320 2020 922cd2+5080d3 │ │ │ │ +00048d60: 2020 2020 3020 2020 2020 2020 2020 2020 0 │ │ │ │ +00048d70: 2020 7c0a 7c39 3861 6432 2d31 3533 3137 |.|98ad2-15317 │ │ │ │ +00048d80: 6264 322b 3639 3232 6364 322b 3530 3830 bd2+6922cd2+5080 │ │ │ │ +00048d90: 6433 2020 2020 2020 2020 2020 2020 2020 d3 │ │ │ │ 00048da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048db0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00048dc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048db0: 2020 2020 3020 2020 2020 2020 2020 2020 0 │ │ │ │ +00048dc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00048dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048e00: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00048e10: 3034 3830 6133 2b36 3230 3361 327c 0a7c 0480a3+6203a2|.| │ │ │ │ -00048e20: 3130 3836 3662 6432 2b37 3036 3163 6432 10866bd2+7061cd2 │ │ │ │ -00048e30: 2d32 3632 3764 3320 3130 3761 332b 3433 -2627d3 107a3+43 │ │ │ │ -00048e40: 3736 6132 622b 3337 3833 6162 322b 3130 76a2b+3783ab2+10 │ │ │ │ -00048e50: 3335 3962 332d 3535 3730 6132 632d 3533 359b3-5570a2c-53 │ │ │ │ -00048e60: 3037 6162 632d 3734 3634 6232 637c 0a7c 07abc-7464b2c|.| │ │ │ │ -00048e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048e80: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ +00048e00: 2020 2020 3130 3438 3061 332b 3632 3033 10480a3+6203 │ │ │ │ +00048e10: 6132 7c0a 7c31 3038 3636 6264 322b 3730 a2|.|10866bd2+70 │ │ │ │ +00048e20: 3631 6364 322d 3236 3237 6433 2031 3037 61cd2-2627d3 107 │ │ │ │ +00048e30: 6133 2b34 3337 3661 3262 2b33 3738 3361 a3+4376a2b+3783a │ │ │ │ +00048e40: 6232 2b31 3033 3539 6233 2d35 3537 3061 b2+10359b3-5570a │ │ │ │ +00048e50: 3263 2d35 3330 3761 6263 2d37 3436 3462 2c-5307abc-7464b │ │ │ │ +00048e60: 3263 7c0a 7c20 2020 2020 2020 2020 2020 2c|.| │ │ │ │ +00048e70: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +00048e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048eb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00048ec0: 3530 3830 6433 2020 2020 2020 2020 2020 5080d3 │ │ │ │ -00048ed0: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ +00048eb0: 2020 7c0a 7c35 3038 3064 3320 2020 2020 |.|5080d3 │ │ │ │ +00048ec0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +00048ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048f00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00048f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048f20: 2020 2020 2020 2020 2d31 3034 3830 6133 -10480a3 │ │ │ │ -00048f30: 2d36 3230 3361 3262 2b39 3533 3461 6232 -6203a2b+9534ab2 │ │ │ │ -00048f40: 2b31 3038 3636 6233 2d39 3438 3061 3263 +10866b3-9480a2c │ │ │ │ -00048f50: 2b37 3235 3661 6263 2d37 3036 317c 0a7c +7256abc-7061|.| │ │ │ │ -00048f60: 3332 3563 6432 2d31 3137 3430 6433 202d 325cd2-11740d3 - │ │ │ │ -00048f70: 3832 3331 6162 322d 3133 3137 3762 332d 8231ab2-13177b3- │ │ │ │ -00048f80: 3538 3634 6162 632d 3133 3939 3062 3263 5864abc-13990b2c │ │ │ │ -00048f90: 2b31 3330 3962 6332 2d35 3339 3863 332d +1309bc2-5398c3- │ │ │ │ -00048fa0: 3530 3236 6162 642b 3131 3532 317c 0a7c 5026abd+11521|.| │ │ │ │ +00048f00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048f10: 2020 2020 2020 2020 2020 2020 202d 3130 -10 │ │ │ │ +00048f20: 3438 3061 332d 3632 3033 6132 622b 3935 480a3-6203a2b+95 │ │ │ │ +00048f30: 3334 6162 322b 3130 3836 3662 332d 3934 34ab2+10866b3-94 │ │ │ │ +00048f40: 3830 6132 632b 3732 3536 6162 632d 3730 80a2c+7256abc-70 │ │ │ │ +00048f50: 3631 7c0a 7c33 3235 6364 322d 3131 3734 61|.|325cd2-1174 │ │ │ │ +00048f60: 3064 3320 2d38 3233 3161 6232 2d31 3331 0d3 -8231ab2-131 │ │ │ │ +00048f70: 3737 6233 2d35 3836 3461 6263 2d31 3339 77b3-5864abc-139 │ │ │ │ +00048f80: 3930 6232 632b 3133 3039 6263 322d 3533 90b2c+1309bc2-53 │ │ │ │ +00048f90: 3938 6333 2d35 3032 3661 6264 2b31 3135 98c3-5026abd+115 │ │ │ │ +00048fa0: 3231 7c0a 7c20 2020 2020 2020 2020 2020 21|.| │ │ │ │ 00048fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048ff0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00048ff0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049040: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00049050: 3330 6263 6432 2b38 3532 3763 3264 322b 30bcd2+8527c2d2+ │ │ │ │ -00049060: 3539 3432 6164 332b 3134 3932 3562 6433 5942ad3+14925bd3 │ │ │ │ -00049070: 2d32 3936 6364 332b 3830 3834 6434 207c -296cd3+8084d4 | │ │ │ │ +00049040: 2020 7c0a 7c33 3062 6364 322b 3835 3237 |.|30bcd2+8527 │ │ │ │ +00049050: 6332 6432 2b35 3934 3261 6433 2b31 3439 c2d2+5942ad3+149 │ │ │ │ +00049060: 3235 6264 332d 3239 3663 6433 2b38 3038 25bd3-296cd3+808 │ │ │ │ +00049070: 3464 3420 7c20 2020 2020 2020 2020 2020 4d4 | │ │ │ │ 00049080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049090: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000490a0: 3034 3661 6264 322b 3633 3432 6232 6432 046abd2+6342b2d2 │ │ │ │ -000490b0: 2d37 3438 3061 6364 322d 3738 3433 6263 -7480acd2-7843bc │ │ │ │ -000490c0: 6432 2d38 3038 3463 3264 3220 2020 207c d2-8084c2d2 | │ │ │ │ +00049090: 2020 7c0a 7c30 3436 6162 6432 2b36 3334 |.|046abd2+634 │ │ │ │ +000490a0: 3262 3264 322d 3734 3830 6163 6432 2d37 2b2d2-7480acd2-7 │ │ │ │ +000490b0: 3834 3362 6364 322d 3830 3834 6332 6432 843bcd2-8084c2d2 │ │ │ │ +000490c0: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 000490d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000490e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000490e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000490f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00049110: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 00049120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049130: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00049140: 6263 6432 2020 2020 2020 2020 2020 2020 bcd2 │ │ │ │ +00049130: 2020 7c0a 7c62 6364 3220 2020 2020 2020 |.|bcd2 │ │ │ │ +00049140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049160: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00049160: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 00049170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049180: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00049190: 642b 3830 3834 6232 6432 202d 3130 3439 d+8084b2d2 -1049 │ │ │ │ -000491a0: 3261 3362 2b31 3339 3936 6132 6232 2d39 2a3b+13996a2b2-9 │ │ │ │ -000491b0: 3333 3861 6233 2d34 3637 3662 342d 3938 338ab3-4676b4-98 │ │ │ │ -000491c0: 3236 6133 632b 3437 3331 6132 6263 2d31 26a3c+4731a2bc-1 │ │ │ │ -000491d0: 3237 3335 6162 3263 2b37 3432 317c 0a7c 2735ab2c+7421|.| │ │ │ │ +00049180: 2020 7c0a 7c64 2b38 3038 3462 3264 3220 |.|d+8084b2d2 │ │ │ │ +00049190: 2d31 3034 3932 6133 622b 3133 3939 3661 -10492a3b+13996a │ │ │ │ +000491a0: 3262 322d 3933 3338 6162 332d 3436 3736 2b2-9338ab3-4676 │ │ │ │ +000491b0: 6234 2d39 3832 3661 3363 2b34 3733 3161 b4-9826a3c+4731a │ │ │ │ +000491c0: 3262 632d 3132 3733 3561 6232 632b 3734 2bc-12735ab2c+74 │ │ │ │ +000491d0: 3231 7c0a 7c20 2020 2020 2020 2020 2020 21|.| │ │ │ │ 000491e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000491f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049220: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049220: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049270: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049270: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000492a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000492b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000492c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000492d0: 3537 6263 6432 2d35 3337 3563 3264 322d 57bcd2-5375c2d2- │ │ │ │ -000492e0: 3130 3330 3561 6433 2b38 3239 3762 6433 10305ad3+8297bd3 │ │ │ │ -000492f0: 2b31 3036 3633 6364 332b 3633 3431 6434 +10663cd3+6341d4 │ │ │ │ -00049300: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00049310: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00049320: 6162 6432 2d39 3334 3662 3264 322b 3433 abd2-9346b2d2+43 │ │ │ │ -00049330: 3039 6163 6432 2b38 3236 3962 6364 322d 09acd2+8269bcd2- │ │ │ │ -00049340: 3633 3431 6332 6432 2020 2020 2020 2020 6341c2d2 │ │ │ │ -00049350: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00049360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000492c0: 2020 7c0a 7c35 3762 6364 322d 3533 3735 |.|57bcd2-5375 │ │ │ │ +000492d0: 6332 6432 2d31 3033 3035 6164 332b 3832 c2d2-10305ad3+82 │ │ │ │ +000492e0: 3937 6264 332b 3130 3636 3363 6433 2b36 97bd3+10663cd3+6 │ │ │ │ +000492f0: 3334 3164 3420 7c20 2020 2020 2020 2020 341d4 | │ │ │ │ +00049300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00049310: 2020 7c0a 7c61 6264 322d 3933 3436 6232 |.|abd2-9346b2 │ │ │ │ +00049320: 6432 2b34 3330 3961 6364 322b 3832 3639 d2+4309acd2+8269 │ │ │ │ +00049330: 6263 6432 2d36 3334 3163 3264 3220 2020 bcd2-6341c2d2 │ │ │ │ +00049340: 2020 2020 2020 7c20 2020 2020 2020 2020 | │ │ │ │ +00049350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00049360: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000493a0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000493b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000493c0: 3962 6364 3220 2020 2020 2020 2020 2020 9bcd2 │ │ │ │ +00049390: 2020 2020 2020 7c20 2020 2020 2020 2020 | │ │ │ │ +000493a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000493b0: 2020 7c0a 7c39 6263 6432 2020 2020 2020 |.|9bcd2 │ │ │ │ +000493c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000493d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000493e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000493f0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00049400: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00049410: 6364 2b36 3334 3162 3264 3220 2d31 3035 cd+6341b2d2 -105 │ │ │ │ -00049420: 3534 6133 622b 3638 3432 6132 6232 2d31 54a3b+6842a2b2-1 │ │ │ │ -00049430: 3432 3236 6162 332d 3633 3433 6234 2d31 4226ab3-6343b4-1 │ │ │ │ -00049440: 3235 3435 6133 632d 3130 3031 3561 3262 2545a3c-10015a2b │ │ │ │ -00049450: 632d 3134 3238 3661 6232 632d 357c 0a7c c-14286ab2c-5|.| │ │ │ │ +000493e0: 2020 2020 2020 7c20 2020 2020 2020 2020 | │ │ │ │ +000493f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00049400: 2020 7c0a 7c63 642b 3633 3431 6232 6432 |.|cd+6341b2d2 │ │ │ │ +00049410: 202d 3130 3535 3461 3362 2b36 3834 3261 -10554a3b+6842a │ │ │ │ +00049420: 3262 322d 3134 3232 3661 6233 2d36 3334 2b2-14226ab3-634 │ │ │ │ +00049430: 3362 342d 3132 3534 3561 3363 2d31 3030 3b4-12545a3c-100 │ │ │ │ +00049440: 3135 6132 6263 2d31 3432 3836 6162 3263 15a2bc-14286ab2c │ │ │ │ +00049450: 2d35 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d -5|.|----------- │ │ │ │ 00049460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000494a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +000494a0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 000494b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000494c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000494d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000494e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000494f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000494f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049540: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049540: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049590: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049590: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000495a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000495b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000495c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000495d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000495e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000495e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000495f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049630: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049630: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049680: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049680: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000496a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000496b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000496c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000496d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000496d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000496e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000496f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049720: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049720: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049770: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049770: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000497a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000497b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000497c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000497c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000497d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000497e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000497f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049810: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049810: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049860: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049860: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000498a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000498b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000498b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000498c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000498d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000498e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000498f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049900: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049900: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049950: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049950: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000499a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000499a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000499b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000499c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000499d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000499e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000499f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000499f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049a40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049a40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049a90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049a90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049ae0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049ae0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049b30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049b30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049b80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049b80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049bd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00049be0: 3961 6232 2b38 3937 3162 332d 3530 3036 9ab2+8971b3-5006 │ │ │ │ -00049bf0: 6132 632d 3535 3939 6162 632d 3134 3136 a2c-5599abc-1416 │ │ │ │ -00049c00: 3562 3263 2b38 3838 3061 3264 2b34 3235 5b2c+8880a2d+425 │ │ │ │ -00049c10: 3961 6264 2d33 3030 3262 3264 2d31 3338 9abd-3002b2d-138 │ │ │ │ -00049c20: 3932 6163 642d 3130 3532 3162 637c 0a7c 92acd-10521bc|.| │ │ │ │ -00049c30: 3032 6162 632d 3636 3237 6232 632b 3838 02abc-6627b2c+88 │ │ │ │ -00049c40: 3836 6162 642b 3437 3030 6232 642d 3135 86abd+4700b2d-15 │ │ │ │ -00049c50: 6163 642b 3539 3639 6263 6420 2020 2020 acd+5969bcd │ │ │ │ +00049bd0: 2020 7c0a 7c39 6162 322b 3839 3731 6233 |.|9ab2+8971b3 │ │ │ │ +00049be0: 2d35 3030 3661 3263 2d35 3539 3961 6263 -5006a2c-5599abc │ │ │ │ +00049bf0: 2d31 3431 3635 6232 632b 3838 3830 6132 -14165b2c+8880a2 │ │ │ │ +00049c00: 642b 3432 3539 6162 642d 3330 3032 6232 d+4259abd-3002b2 │ │ │ │ +00049c10: 642d 3133 3839 3261 6364 2d31 3035 3231 d-13892acd-10521 │ │ │ │ +00049c20: 6263 7c0a 7c30 3261 6263 2d36 3632 3762 bc|.|02abc-6627b │ │ │ │ +00049c30: 3263 2b38 3838 3661 6264 2b34 3730 3062 2c+8886abd+4700b │ │ │ │ +00049c40: 3264 2d31 3561 6364 2b35 3936 3962 6364 2d-15acd+5969bcd │ │ │ │ +00049c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049c70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049cc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049cc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049d10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00049d20: 6162 322b 3534 3833 6233 2b36 3435 3361 ab2+5483b3+6453a │ │ │ │ -00049d30: 3263 2b31 3139 3261 6263 2b31 3532 3530 2c+1192abc+15250 │ │ │ │ -00049d40: 6232 632b 3331 3634 6163 322d 3239 3562 b2c+3164ac2-295b │ │ │ │ -00049d50: 6332 2b37 3635 3063 332b 3131 3034 3561 c2+7650c3+11045a │ │ │ │ -00049d60: 3264 2b31 3533 3333 6162 642d 317c 0a7c 2d+15333abd-1|.| │ │ │ │ -00049d70: 3264 2b34 3235 3961 6264 2d33 3030 3262 2d+4259abd-3002b │ │ │ │ -00049d80: 3264 2d31 3338 3932 6163 642d 3130 3532 2d-13892acd-1052 │ │ │ │ -00049d90: 3162 6364 2020 2020 2020 2020 2020 2020 1bcd │ │ │ │ -00049da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049db0: 2020 2020 2037 3032 3861 6432 207c 0a7c 7028ad2 |.| │ │ │ │ +00049d10: 2020 7c0a 7c61 6232 2b35 3438 3362 332b |.|ab2+5483b3+ │ │ │ │ +00049d20: 3634 3533 6132 632b 3131 3932 6162 632b 6453a2c+1192abc+ │ │ │ │ +00049d30: 3135 3235 3062 3263 2b33 3136 3461 6332 15250b2c+3164ac2 │ │ │ │ +00049d40: 2d32 3935 6263 322b 3736 3530 6333 2b31 -295bc2+7650c3+1 │ │ │ │ +00049d50: 3130 3435 6132 642b 3135 3333 3361 6264 1045a2d+15333abd │ │ │ │ +00049d60: 2d31 7c0a 7c32 642b 3432 3539 6162 642d -1|.|2d+4259abd- │ │ │ │ +00049d70: 3330 3032 6232 642d 3133 3839 3261 6364 3002b2d-13892acd │ │ │ │ +00049d80: 2d31 3035 3231 6263 6420 2020 2020 2020 -10521bcd │ │ │ │ +00049d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00049da0: 2020 2020 2020 2020 2020 3730 3238 6164 7028ad │ │ │ │ +00049db0: 3220 7c0a 7c20 2020 2020 2020 2020 2020 2 |.| │ │ │ │ 00049dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049e00: 2020 2020 202d 3130 3337 3061 627c 0a7c -10370ab|.| │ │ │ │ +00049df0: 2020 2020 2020 2020 2020 2d31 3033 3730 -10370 │ │ │ │ +00049e00: 6162 7c0a 7c20 2020 2020 2020 2020 2020 ab|.| │ │ │ │ 00049e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049e50: 2020 2020 202d 3133 3730 3761 337c 0a7c -13707a3|.| │ │ │ │ -00049e60: 6132 642d 3135 3333 3361 6264 2b31 3035 a2d-15333abd+105 │ │ │ │ -00049e70: 3637 6232 642d 3335 3630 6163 642b 3232 67b2d-3560acd+22 │ │ │ │ -00049e80: 3932 6263 642d 3731 3934 6164 322b 3632 92bcd-7194ad2+62 │ │ │ │ -00049e90: 3435 6264 322d 3836 3339 6364 322b 3934 45bd2-8639cd2+94 │ │ │ │ -00049ea0: 3236 6433 202d 3937 3937 6132 627c 0a7c 26d3 -9797a2b|.| │ │ │ │ -00049eb0: 642d 3539 3639 6263 642d 3930 3734 6332 d-5969bcd-9074c2 │ │ │ │ -00049ec0: 642b 3534 3833 6264 322b 3135 3235 3063 d+5483bd2+15250c │ │ │ │ -00049ed0: 6432 2d31 3035 3637 6433 2031 3233 3661 d2-10567d3 1236a │ │ │ │ -00049ee0: 332b 3839 3232 6132 622d 3335 3839 6162 3+8922a2b-3589ab │ │ │ │ -00049ef0: 322b 3839 3731 6233 2d35 3030 367c 0a7c 2+8971b3-5006|.| │ │ │ │ +00049e40: 2020 2020 2020 2020 2020 2d31 3337 3037 -13707 │ │ │ │ +00049e50: 6133 7c0a 7c61 3264 2d31 3533 3333 6162 a3|.|a2d-15333ab │ │ │ │ +00049e60: 642b 3130 3536 3762 3264 2d33 3536 3061 d+10567b2d-3560a │ │ │ │ +00049e70: 6364 2b32 3239 3262 6364 2d37 3139 3461 cd+2292bcd-7194a │ │ │ │ +00049e80: 6432 2b36 3234 3562 6432 2d38 3633 3963 d2+6245bd2-8639c │ │ │ │ +00049e90: 6432 2b39 3432 3664 3320 2d39 3739 3761 d2+9426d3 -9797a │ │ │ │ +00049ea0: 3262 7c0a 7c64 2d35 3936 3962 6364 2d39 2b|.|d-5969bcd-9 │ │ │ │ +00049eb0: 3037 3463 3264 2b35 3438 3362 6432 2b31 074c2d+5483bd2+1 │ │ │ │ +00049ec0: 3532 3530 6364 322d 3130 3536 3764 3320 5250cd2-10567d3 │ │ │ │ +00049ed0: 3132 3336 6133 2b38 3932 3261 3262 2d33 1236a3+8922a2b-3 │ │ │ │ +00049ee0: 3538 3961 6232 2b38 3937 3162 332d 3530 589ab2+8971b3-50 │ │ │ │ +00049ef0: 3036 7c0a 7c20 2020 2020 2020 2020 2020 06|.| │ │ │ │ 00049f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049f40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049f40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049f90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049f90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049fe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00049fe0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00049ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a030: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a030: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a080: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a080: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a0d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004a0e0: 6132 6332 2d35 3037 6162 6332 2b31 3338 a2c2-507abc2+138 │ │ │ │ -0004a0f0: 3034 6232 6332 2b38 3431 3661 6333 2d39 04b2c2+8416ac3-9 │ │ │ │ -0004a100: 3263 342d 3335 3838 6133 642b 3134 3534 2c4-3588a3d+1454 │ │ │ │ -0004a110: 3161 3262 642d 3836 3835 6162 3264 2d31 1a2bd-8685ab2d-1 │ │ │ │ -0004a120: 3430 3935 6233 642b 3132 3735 307c 0a7c 4095b3d+12750|.| │ │ │ │ +0004a0d0: 2020 7c0a 7c61 3263 322d 3530 3761 6263 |.|a2c2-507abc │ │ │ │ +0004a0e0: 322b 3133 3830 3462 3263 322b 3834 3136 2+13804b2c2+8416 │ │ │ │ +0004a0f0: 6163 332d 3932 6334 2d33 3538 3861 3364 ac3-92c4-3588a3d │ │ │ │ +0004a100: 2b31 3435 3431 6132 6264 2d38 3638 3561 +14541a2bd-8685a │ │ │ │ +0004a110: 6232 642d 3134 3039 3562 3364 2b31 3237 b2d-14095b3d+127 │ │ │ │ +0004a120: 3530 7c0a 7c20 2020 2020 2020 2020 2020 50|.| │ │ │ │ 0004a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a170: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a170: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a1c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a1c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a210: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a210: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a260: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a260: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a2b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a2b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a300: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a300: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a350: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a350: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a3a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004a3b0: 3337 3833 6162 322b 3130 3335 3962 332d 3783ab2+10359b3- │ │ │ │ -0004a3c0: 3535 3730 6132 632d 3533 3037 6162 632d 5570a2c-5307abc- │ │ │ │ -0004a3d0: 3734 3634 6232 632b 3331 3837 6132 642b 7464b2c+3187a2d+ │ │ │ │ -0004a3e0: 3835 3730 6162 642d 3832 3531 6232 642b 8570abd-8251b2d+ │ │ │ │ -0004a3f0: 3834 3434 6163 642b 3530 3731 627c 0a7c 8444acd+5071b|.| │ │ │ │ -0004a400: 332b 3538 3634 6162 632b 3133 3939 3062 3+5864abc+13990b │ │ │ │ -0004a410: 3263 2b35 3032 3661 6264 2d31 3135 3231 2c+5026abd-11521 │ │ │ │ -0004a420: 6232 642d 3735 3031 6163 642d 3137 3739 b2d-7501acd-1779 │ │ │ │ -0004a430: 6263 6420 2020 2020 2020 2020 2020 2020 bcd │ │ │ │ -0004a440: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a3a0: 2020 7c0a 7c33 3738 3361 6232 2b31 3033 |.|3783ab2+103 │ │ │ │ +0004a3b0: 3539 6233 2d35 3537 3061 3263 2d35 3330 59b3-5570a2c-530 │ │ │ │ +0004a3c0: 3761 6263 2d37 3436 3462 3263 2b33 3138 7abc-7464b2c+318 │ │ │ │ +0004a3d0: 3761 3264 2b38 3537 3061 6264 2d38 3235 7a2d+8570abd-825 │ │ │ │ +0004a3e0: 3162 3264 2b38 3434 3461 6364 2b35 3037 1b2d+8444acd+507 │ │ │ │ +0004a3f0: 3162 7c0a 7c33 2b35 3836 3461 6263 2b31 1b|.|3+5864abc+1 │ │ │ │ +0004a400: 3339 3930 6232 632b 3530 3236 6162 642d 3990b2c+5026abd- │ │ │ │ +0004a410: 3131 3532 3162 3264 2d37 3530 3161 6364 11521b2d-7501acd │ │ │ │ +0004a420: 2d31 3737 3962 6364 2020 2020 2020 2020 -1779bcd │ │ │ │ +0004a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004a440: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a490: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a490: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a4e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004a4f0: 622d 3935 3334 6162 322d 3130 3836 3662 b-9534ab2-10866b │ │ │ │ -0004a500: 332b 3934 3830 6132 632d 3732 3536 6162 3+9480a2c-7256ab │ │ │ │ -0004a510: 632b 3730 3631 6232 632d 3531 3037 6163 c+7061b2c-5107ac │ │ │ │ -0004a520: 322d 3536 3739 6263 322b 3633 3235 6333 2-5679bc2+6325c3 │ │ │ │ -0004a530: 2b31 3139 3530 6132 642b 3533 327c 0a7c +11950a2d+532|.| │ │ │ │ -0004a540: 2b33 3138 3761 3264 2b38 3537 3061 6264 +3187a2d+8570abd │ │ │ │ -0004a550: 2d38 3235 3162 3264 2b38 3434 3461 6364 -8251b2d+8444acd │ │ │ │ -0004a560: 2b35 3037 3162 6364 2020 2020 2020 2020 +5071bcd │ │ │ │ +0004a4e0: 2020 7c0a 7c62 2d39 3533 3461 6232 2d31 |.|b-9534ab2-1 │ │ │ │ +0004a4f0: 3038 3636 6233 2b39 3438 3061 3263 2d37 0866b3+9480a2c-7 │ │ │ │ +0004a500: 3235 3661 6263 2b37 3036 3162 3263 2d35 256abc+7061b2c-5 │ │ │ │ +0004a510: 3130 3761 6332 2d35 3637 3962 6332 2b36 107ac2-5679bc2+6 │ │ │ │ +0004a520: 3332 3563 332b 3131 3935 3061 3264 2b35 325c3+11950a2d+5 │ │ │ │ +0004a530: 3332 7c0a 7c2b 3331 3837 6132 642b 3835 32|.|+3187a2d+85 │ │ │ │ +0004a540: 3730 6162 642d 3832 3531 6232 642b 3834 70abd-8251b2d+84 │ │ │ │ +0004a550: 3434 6163 642b 3530 3731 6263 6420 2020 44acd+5071bcd │ │ │ │ +0004a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a580: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a580: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a5d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a5d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a620: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004a630: 6232 632d 3131 3935 3061 3264 2d35 3332 b2c-11950a2d-532 │ │ │ │ -0004a640: 3161 6264 2b32 3632 3762 3264 2d33 3939 1abd+2627b2d-399 │ │ │ │ -0004a650: 3661 6364 2d37 3135 3262 6364 2b39 3339 6acd-7152bcd+939 │ │ │ │ -0004a660: 3861 6432 2b31 3533 3137 6264 322d 3639 8ad2+15317bd2-69 │ │ │ │ -0004a670: 3232 6364 322d 3530 3830 6433 207c 0a7c 22cd2-5080d3 |.| │ │ │ │ -0004a680: 6232 642b 3735 3031 6163 642b 3137 3739 b2d+7501acd+1779 │ │ │ │ -0004a690: 6263 642d 3535 3439 6332 642d 3130 3836 bcd-5549c2d-1086 │ │ │ │ -0004a6a0: 3662 6432 2b37 3036 3163 6432 2d32 3632 6bd2+7061cd2-262 │ │ │ │ -0004a6b0: 3764 3320 3130 3761 332b 3433 3736 6132 7d3 107a3+4376a2 │ │ │ │ -0004a6c0: 622b 3337 3833 6162 322b 3130 337c 0a7c b+3783ab2+103|.| │ │ │ │ +0004a620: 2020 7c0a 7c62 3263 2d31 3139 3530 6132 |.|b2c-11950a2 │ │ │ │ +0004a630: 642d 3533 3231 6162 642b 3236 3237 6232 d-5321abd+2627b2 │ │ │ │ +0004a640: 642d 3339 3936 6163 642d 3731 3532 6263 d-3996acd-7152bc │ │ │ │ +0004a650: 642b 3933 3938 6164 322b 3135 3331 3762 d+9398ad2+15317b │ │ │ │ +0004a660: 6432 2d36 3932 3263 6432 2d35 3038 3064 d2-6922cd2-5080d │ │ │ │ +0004a670: 3320 7c0a 7c62 3264 2b37 3530 3161 6364 3 |.|b2d+7501acd │ │ │ │ +0004a680: 2b31 3737 3962 6364 2d35 3534 3963 3264 +1779bcd-5549c2d │ │ │ │ +0004a690: 2d31 3038 3636 6264 322b 3730 3631 6364 -10866bd2+7061cd │ │ │ │ +0004a6a0: 322d 3236 3237 6433 2031 3037 6133 2b34 2-2627d3 107a3+4 │ │ │ │ +0004a6b0: 3337 3661 3262 2b33 3738 3361 6232 2b31 376a2b+3783ab2+1 │ │ │ │ +0004a6c0: 3033 7c0a 7c20 2020 2020 2020 2020 2020 03|.| │ │ │ │ 0004a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a710: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a710: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a760: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a760: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a7b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a7b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a800: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a800: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a850: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a850: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a8a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004a8b0: 6233 632b 3134 3931 3961 3263 322b 3131 b3c+14919a2c2+11 │ │ │ │ -0004a8c0: 3334 3661 6263 322d 3134 3137 3262 3263 346abc2-14172b2c │ │ │ │ -0004a8d0: 322d 3139 3130 6163 332d 3131 3635 3662 2-1910ac3-11656b │ │ │ │ -0004a8e0: 6333 2b38 3532 3763 342b 3637 3730 6133 c3+8527c4+6770a3 │ │ │ │ -0004a8f0: 642d 3931 3037 6132 6264 2d38 387c 0a7c d-9107a2bd-88|.| │ │ │ │ +0004a8a0: 2020 7c0a 7c62 3363 2b31 3439 3139 6132 |.|b3c+14919a2 │ │ │ │ +0004a8b0: 6332 2b31 3133 3436 6162 6332 2d31 3431 c2+11346abc2-141 │ │ │ │ +0004a8c0: 3732 6232 6332 2d31 3931 3061 6333 2d31 72b2c2-1910ac3-1 │ │ │ │ +0004a8d0: 3136 3536 6263 332b 3835 3237 6334 2b36 1656bc3+8527c4+6 │ │ │ │ +0004a8e0: 3737 3061 3364 2d39 3130 3761 3262 642d 770a3d-9107a2bd- │ │ │ │ +0004a8f0: 3838 7c0a 7c20 2020 2020 2020 2020 2020 88|.| │ │ │ │ 0004a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a940: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a940: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a990: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a990: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a9e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004a9e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aa30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004aa30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aa80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004aa80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aad0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004aad0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ab20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004ab30: 3733 3762 3363 2d35 3032 3861 3263 322d 737b3c-5028a2c2- │ │ │ │ -0004ab40: 3933 3132 6162 6332 2d31 3631 3062 3263 9312abc2-1610b2c │ │ │ │ -0004ab50: 322b 3135 3933 3661 6333 2d35 3338 3562 2+15936ac3-5385b │ │ │ │ -0004ab60: 6333 2d35 3337 3563 342b 3639 3338 6133 c3-5375c4+6938a3 │ │ │ │ -0004ab70: 642d 3933 3731 6132 6264 2d39 397c 0a7c d-9371a2bd-99|.| │ │ │ │ +0004ab20: 2020 7c0a 7c37 3337 6233 632d 3530 3238 |.|737b3c-5028 │ │ │ │ +0004ab30: 6132 6332 2d39 3331 3261 6263 322d 3136 a2c2-9312abc2-16 │ │ │ │ +0004ab40: 3130 6232 6332 2b31 3539 3336 6163 332d 10b2c2+15936ac3- │ │ │ │ +0004ab50: 3533 3835 6263 332d 3533 3735 6334 2b36 5385bc3-5375c4+6 │ │ │ │ +0004ab60: 3933 3861 3364 2d39 3337 3161 3262 642d 938a3d-9371a2bd- │ │ │ │ +0004ab70: 3939 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 99|.|----------- │ │ │ │ 0004ab80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004ab90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004aba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004abb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004abc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +0004abc0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 0004abd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004abe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ac10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ac10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ac20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ac60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ac60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ac70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ac80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ac90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004acb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004acb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004acd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004acf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ad00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ad00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ad10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ad20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ad40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ad50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ad50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ad60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ad70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ad80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ad90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ada0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ada0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004adf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004adf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ae40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ae40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ae90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ae90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aee0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004aee0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004af30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004af30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004af70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004af80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004af80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004afd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004afd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b020: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b020: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b070: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b070: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b0c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b0c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b110: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b110: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b160: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b160: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b1b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b1b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b200: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b200: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b250: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b250: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b2a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b2a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b2f0: 3020 2020 2020 2020 2020 2020 207c 0a7c 0 |.| │ │ │ │ -0004b300: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ +0004b2e0: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +0004b2f0: 2020 7c0a 7c64 2020 2020 2020 2020 2020 |.|d │ │ │ │ +0004b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b340: 3020 2020 2020 2020 2020 2020 207c 0a7c 0 |.| │ │ │ │ +0004b330: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +0004b340: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b390: 3020 2020 2020 2020 2020 2020 207c 0a7c 0 |.| │ │ │ │ +0004b380: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +0004b390: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b3e0: 3132 3336 6133 2b38 3932 3261 327c 0a7c 1236a3+8922a2|.| │ │ │ │ +0004b3d0: 2020 2020 2031 3233 3661 332b 3839 3232 1236a3+8922 │ │ │ │ +0004b3e0: 6132 7c0a 7c20 2020 2020 2020 2020 2020 a2|.| │ │ │ │ 0004b3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b430: 3130 3337 3061 6232 2d37 3039 327c 0a7c 10370ab2-7092|.| │ │ │ │ -0004b440: 3035 3637 6232 642b 3335 3630 6163 642d 0567b2d+3560acd- │ │ │ │ -0004b450: 3232 3932 6263 642d 3134 3338 3863 3264 2292bcd-14388c2d │ │ │ │ -0004b460: 2b37 3139 3461 6432 2d36 3234 3562 6432 +7194ad2-6245bd2 │ │ │ │ -0004b470: 2b38 3633 3963 6432 2d39 3432 3664 3320 +8639cd2-9426d3 │ │ │ │ -0004b480: 3133 3730 3761 332b 3231 3737 617c 0a7c 13707a3+2177a|.| │ │ │ │ +0004b420: 2020 2020 2031 3033 3730 6162 322d 3730 10370ab2-70 │ │ │ │ +0004b430: 3932 7c0a 7c30 3536 3762 3264 2b33 3536 92|.|0567b2d+356 │ │ │ │ +0004b440: 3061 6364 2d32 3239 3262 6364 2d31 3433 0acd-2292bcd-143 │ │ │ │ +0004b450: 3838 6332 642b 3731 3934 6164 322d 3632 88c2d+7194ad2-62 │ │ │ │ +0004b460: 3435 6264 322b 3836 3339 6364 322d 3934 45bd2+8639cd2-94 │ │ │ │ +0004b470: 3236 6433 2031 3337 3037 6133 2b32 3137 26d3 13707a3+217 │ │ │ │ +0004b480: 3761 7c0a 7c20 2020 2020 2020 2020 2020 7a|.| │ │ │ │ 0004b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b4d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004b4e0: 322b 3730 3932 6233 2b39 3730 3261 6263 2+7092b3+9702abc │ │ │ │ -0004b4f0: 2b36 3632 3762 3263 2d39 3739 3762 6332 +6627b2c-9797bc2 │ │ │ │ -0004b500: 2d35 3837 3463 332d 3838 3836 6162 642d -5874c3-8886abd- │ │ │ │ -0004b510: 3437 3030 6232 642b 3135 6163 642d 3539 4700b2d+15acd-59 │ │ │ │ -0004b520: 3639 6263 642d 3930 3734 6332 647c 0a7c 69bcd-9074c2d|.| │ │ │ │ -0004b530: 2d32 3137 3761 3262 2b37 3032 3861 6232 -2177a2b+7028ab2 │ │ │ │ -0004b540: 2b37 3032 3161 3263 2d36 3337 3761 6263 +7021a2c-6377abc │ │ │ │ -0004b550: 2b37 3630 3061 6332 2b31 3137 3236 6263 +7600ac2+11726bc │ │ │ │ -0004b560: 322d 3131 3430 6333 2d31 3230 3661 3264 2-1140c3-1206a2d │ │ │ │ -0004b570: 2b31 3134 3335 6162 642b 3630 347c 0a7c +11435abd+604|.| │ │ │ │ -0004b580: 2d35 3837 3461 3263 2d39 3037 3461 3264 -5874a2c-9074a2d │ │ │ │ +0004b4d0: 2020 7c0a 7c32 2b37 3039 3262 332b 3937 |.|2+7092b3+97 │ │ │ │ +0004b4e0: 3032 6162 632b 3636 3237 6232 632d 3937 02abc+6627b2c-97 │ │ │ │ +0004b4f0: 3937 6263 322d 3538 3734 6333 2d38 3838 97bc2-5874c3-888 │ │ │ │ +0004b500: 3661 6264 2d34 3730 3062 3264 2b31 3561 6abd-4700b2d+15a │ │ │ │ +0004b510: 6364 2d35 3936 3962 6364 2d39 3037 3463 cd-5969bcd-9074c │ │ │ │ +0004b520: 3264 7c0a 7c2d 3231 3737 6132 622b 3730 2d|.|-2177a2b+70 │ │ │ │ +0004b530: 3238 6162 322b 3730 3231 6132 632d 3633 28ab2+7021a2c-63 │ │ │ │ +0004b540: 3737 6162 632b 3736 3030 6163 322b 3131 77abc+7600ac2+11 │ │ │ │ +0004b550: 3732 3662 6332 2d31 3134 3063 332d 3132 726bc2-1140c3-12 │ │ │ │ +0004b560: 3036 6132 642b 3131 3433 3561 6264 2b36 06a2d+11435abd+6 │ │ │ │ +0004b570: 3034 7c0a 7c2d 3538 3734 6132 632d 3930 04|.|-5874a2c-90 │ │ │ │ +0004b580: 3734 6132 6420 2020 2020 2020 2020 2020 74a2d │ │ │ │ 0004b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b5c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004b5d0: 6132 632d 3535 3939 6162 632d 3134 3136 a2c-5599abc-1416 │ │ │ │ -0004b5e0: 3562 3263 2b38 3838 3061 3264 2b34 3235 5b2c+8880a2d+425 │ │ │ │ -0004b5f0: 3961 6264 2d33 3030 3262 3264 2d31 3338 9abd-3002b2d-138 │ │ │ │ -0004b600: 3932 6163 642d 3130 3532 3162 6364 207c 92acd-10521bcd | │ │ │ │ -0004b610: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b5c0: 2020 7c0a 7c61 3263 2d35 3539 3961 6263 |.|a2c-5599abc │ │ │ │ +0004b5d0: 2d31 3431 3635 6232 632b 3838 3830 6132 -14165b2c+8880a2 │ │ │ │ +0004b5e0: 642b 3432 3539 6162 642d 3330 3032 6232 d+4259abd-3002b2 │ │ │ │ +0004b5f0: 642d 3133 3839 3261 6364 2d31 3035 3231 d-13892acd-10521 │ │ │ │ +0004b600: 6263 6420 7c20 2020 2020 2020 2020 2020 bcd | │ │ │ │ +0004b610: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b660: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b660: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b6b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b6b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b700: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b700: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b750: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b750: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b7a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b7a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b7f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004b800: 6132 6364 2b34 3035 3361 6263 642b 3230 a2cd+4053abcd+20 │ │ │ │ -0004b810: 3830 6232 6364 2d39 3137 3561 6332 642b 80b2cd-9175ac2d+ │ │ │ │ -0004b820: 3634 3962 6332 642d 3838 3239 6333 642d 649bc2d-8829c3d- │ │ │ │ -0004b830: 3231 3634 6132 6432 2d38 3633 3561 6264 2164a2d2-8635abd │ │ │ │ -0004b840: 322b 3731 3631 6232 6432 2d39 397c 0a7c 2+7161b2d2-99|.| │ │ │ │ +0004b7f0: 2020 7c0a 7c61 3263 642b 3430 3533 6162 |.|a2cd+4053ab │ │ │ │ +0004b800: 6364 2b32 3038 3062 3263 642d 3931 3735 cd+2080b2cd-9175 │ │ │ │ +0004b810: 6163 3264 2b36 3439 6263 3264 2d38 3832 ac2d+649bc2d-882 │ │ │ │ +0004b820: 3963 3364 2d32 3136 3461 3264 322d 3836 9c3d-2164a2d2-86 │ │ │ │ +0004b830: 3335 6162 6432 2b37 3136 3162 3264 322d 35abd2+7161b2d2- │ │ │ │ +0004b840: 3939 7c0a 7c20 2020 2020 2020 2020 2020 99|.| │ │ │ │ 0004b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b890: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b8e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b8e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b930: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b930: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b980: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b980: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b9d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004b9d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ba20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ba20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ba70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ba70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004baa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bac0: 2020 2020 2020 3020 2020 2020 207c 0a7c 0 |.| │ │ │ │ -0004bad0: 6364 2020 2020 2020 2020 2020 2020 2020 cd │ │ │ │ +0004bab0: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +0004bac0: 2020 7c0a 7c63 6420 2020 2020 2020 2020 |.|cd │ │ │ │ +0004bad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004baf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bb10: 2020 2020 2020 3020 2020 2020 207c 0a7c 0 |.| │ │ │ │ +0004bb00: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +0004bb10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bb60: 2020 2020 2020 3020 2020 2020 207c 0a7c 0 |.| │ │ │ │ +0004bb50: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +0004bb60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004bb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bbb0: 2020 2020 2020 3130 3761 332b 347c 0a7c 107a3+4|.| │ │ │ │ +0004bba0: 2020 2020 2020 2020 2020 2031 3037 6133 107a3 │ │ │ │ +0004bbb0: 2b34 7c0a 7c20 2020 2020 2020 2020 2020 +4|.| │ │ │ │ 0004bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bc00: 2020 2020 2020 3832 3331 6162 327c 0a7c 8231ab2|.| │ │ │ │ -0004bc10: 3161 6264 2d32 3632 3762 3264 2b33 3939 1abd-2627b2d+399 │ │ │ │ -0004bc20: 3661 6364 2b37 3135 3262 6364 2b31 3137 6acd+7152bcd+117 │ │ │ │ -0004bc30: 3430 6332 642d 3933 3938 6164 322d 3135 40c2d-9398ad2-15 │ │ │ │ -0004bc40: 3331 3762 6432 2b36 3932 3263 6432 2b35 317bd2+6922cd2+5 │ │ │ │ -0004bc50: 3038 3064 3320 2d31 3533 3434 617c 0a7c 080d3 -15344a|.| │ │ │ │ -0004bc60: 2d31 3032 3539 6164 3220 2020 2020 2020 -10259ad2 │ │ │ │ +0004bbf0: 2020 2020 2020 2020 2020 2038 3233 3161 8231a │ │ │ │ +0004bc00: 6232 7c0a 7c31 6162 642d 3236 3237 6232 b2|.|1abd-2627b2 │ │ │ │ +0004bc10: 642b 3339 3936 6163 642b 3731 3532 6263 d+3996acd+7152bc │ │ │ │ +0004bc20: 642b 3131 3734 3063 3264 2d39 3339 3861 d+11740c2d-9398a │ │ │ │ +0004bc30: 6432 2d31 3533 3137 6264 322b 3639 3232 d2-15317bd2+6922 │ │ │ │ +0004bc40: 6364 322b 3530 3830 6433 202d 3135 3334 cd2+5080d3 -1534 │ │ │ │ +0004bc50: 3461 7c0a 7c2d 3130 3235 3961 6432 2020 4a|.|-10259ad2 │ │ │ │ +0004bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bca0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004bcb0: 2d38 3233 3161 6232 2d31 3331 3737 6233 -8231ab2-13177b3 │ │ │ │ -0004bcc0: 2d35 3836 3461 6263 2d31 3339 3930 6232 -5864abc-13990b2 │ │ │ │ -0004bcd0: 632b 3133 3039 6263 322d 3533 3938 6333 c+1309bc2-5398c3 │ │ │ │ -0004bce0: 2d35 3032 3661 6264 2b31 3135 3231 6232 -5026abd+11521b2 │ │ │ │ -0004bcf0: 642b 3735 3031 6163 642b 3137 377c 0a7c d+7501acd+177|.| │ │ │ │ -0004bd00: 3135 3334 3461 332d 3236 3533 6132 622d 15344a3-2653a2b- │ │ │ │ -0004bd10: 3130 3235 3961 6232 2d31 3233 3635 6132 10259ab2-12365a2 │ │ │ │ -0004bd20: 632b 3732 3136 6162 632d 3632 3330 6163 c+7216abc-6230ac │ │ │ │ -0004bd30: 322b 3533 3236 6263 322d 3130 3331 6333 2+5326bc2-1031c3 │ │ │ │ -0004bd40: 2b31 3335 3038 6132 642b 3130 317c 0a7c +13508a2d+101|.| │ │ │ │ -0004bd50: 3133 3039 6132 622d 3533 3938 6132 632d 1309a2b-5398a2c- │ │ │ │ -0004bd60: 3535 3439 6132 6420 2020 2020 2020 2020 5549a2d │ │ │ │ +0004bca0: 2020 7c0a 7c2d 3832 3331 6162 322d 3133 |.|-8231ab2-13 │ │ │ │ +0004bcb0: 3137 3762 332d 3538 3634 6162 632d 3133 177b3-5864abc-13 │ │ │ │ +0004bcc0: 3939 3062 3263 2b31 3330 3962 6332 2d35 990b2c+1309bc2-5 │ │ │ │ +0004bcd0: 3339 3863 332d 3530 3236 6162 642b 3131 398c3-5026abd+11 │ │ │ │ +0004bce0: 3532 3162 3264 2b37 3530 3161 6364 2b31 521b2d+7501acd+1 │ │ │ │ +0004bcf0: 3737 7c0a 7c31 3533 3434 6133 2d32 3635 77|.|15344a3-265 │ │ │ │ +0004bd00: 3361 3262 2d31 3032 3539 6162 322d 3132 3a2b-10259ab2-12 │ │ │ │ +0004bd10: 3336 3561 3263 2b37 3231 3661 6263 2d36 365a2c+7216abc-6 │ │ │ │ +0004bd20: 3233 3061 6332 2b35 3332 3662 6332 2d31 230ac2+5326bc2-1 │ │ │ │ +0004bd30: 3033 3163 332b 3133 3530 3861 3264 2b31 031c3+13508a2d+1 │ │ │ │ +0004bd40: 3031 7c0a 7c31 3330 3961 3262 2d35 3339 01|.|1309a2b-539 │ │ │ │ +0004bd50: 3861 3263 2d35 3534 3961 3264 2020 2020 8a2c-5549a2d │ │ │ │ +0004bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bd90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004bda0: 3539 6233 2d35 3537 3061 3263 2d35 3330 59b3-5570a2c-530 │ │ │ │ -0004bdb0: 3761 6263 2d37 3436 3462 3263 2b33 3138 7abc-7464b2c+318 │ │ │ │ -0004bdc0: 3761 3264 2b38 3537 3061 6264 2d38 3235 7a2d+8570abd-825 │ │ │ │ -0004bdd0: 3162 3264 2b38 3434 3461 6364 2b35 3037 1b2d+8444acd+507 │ │ │ │ -0004bde0: 3162 6364 207c 2020 2020 2020 207c 0a7c 1bcd | |.| │ │ │ │ +0004bd90: 2020 7c0a 7c35 3962 332d 3535 3730 6132 |.|59b3-5570a2 │ │ │ │ +0004bda0: 632d 3533 3037 6162 632d 3734 3634 6232 c-5307abc-7464b2 │ │ │ │ +0004bdb0: 632b 3331 3837 6132 642b 3835 3730 6162 c+3187a2d+8570ab │ │ │ │ +0004bdc0: 642d 3832 3531 6232 642b 3834 3434 6163 d-8251b2d+8444ac │ │ │ │ +0004bdd0: 642b 3530 3731 6263 6420 7c20 2020 2020 d+5071bcd | │ │ │ │ +0004bde0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004bdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004be30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004be30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004be80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004be80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bed0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004bed0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bf20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004bf20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bf70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004bf70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bfc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004bfd0: 3436 6162 3264 2d35 3231 3862 3364 2d38 46ab2d-5218b3d-8 │ │ │ │ -0004bfe0: 3032 6132 6364 2d36 3333 3261 6263 642b 02a2cd-6332abcd+ │ │ │ │ -0004bff0: 3537 3238 6232 6364 2d35 3334 3761 6332 5728b2cd-5347ac2 │ │ │ │ -0004c000: 642d 3133 3339 3462 6332 642d 3239 3663 d-13394bc2d-296c │ │ │ │ -0004c010: 3364 2d37 3434 3661 3264 322d 317c 0a7c 3d-7446a2d2-1|.| │ │ │ │ +0004bfc0: 2020 7c0a 7c34 3661 6232 642d 3532 3138 |.|46ab2d-5218 │ │ │ │ +0004bfd0: 6233 642d 3830 3261 3263 642d 3633 3332 b3d-802a2cd-6332 │ │ │ │ +0004bfe0: 6162 6364 2b35 3732 3862 3263 642d 3533 abcd+5728b2cd-53 │ │ │ │ +0004bff0: 3437 6163 3264 2d31 3333 3934 6263 3264 47ac2d-13394bc2d │ │ │ │ +0004c000: 2d32 3936 6333 642d 3734 3436 6132 6432 -296c3d-7446a2d2 │ │ │ │ +0004c010: 2d31 7c0a 7c20 2020 2020 2020 2020 2020 -1|.| │ │ │ │ 0004c020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c060: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c060: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c0b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c0b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c100: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c100: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c150: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c150: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c1a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c1a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c1f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c1f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c240: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004c250: 3031 6162 3264 2b34 3432 3062 3364 2b31 01ab2d+4420b3d+1 │ │ │ │ -0004c260: 3233 3137 6132 6364 2b31 3533 3738 6162 2317a2cd+15378ab │ │ │ │ -0004c270: 6364 2b31 3439 3231 6232 6364 2d38 3831 cd+14921b2cd-881 │ │ │ │ -0004c280: 3061 6332 642b 3332 3731 6263 3264 2b31 0ac2d+3271bc2d+1 │ │ │ │ -0004c290: 3036 3633 6333 642b 3132 3533 377c 0a7c 0663c3d+12537|.| │ │ │ │ +0004c240: 2020 7c0a 7c30 3161 6232 642b 3434 3230 |.|01ab2d+4420 │ │ │ │ +0004c250: 6233 642b 3132 3331 3761 3263 642b 3135 b3d+12317a2cd+15 │ │ │ │ +0004c260: 3337 3861 6263 642b 3134 3932 3162 3263 378abcd+14921b2c │ │ │ │ +0004c270: 642d 3838 3130 6163 3264 2b33 3237 3162 d-8810ac2d+3271b │ │ │ │ +0004c280: 6332 642b 3130 3636 3363 3364 2b31 3235 c2d+10663c3d+125 │ │ │ │ +0004c290: 3337 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 37|.|----------- │ │ │ │ 0004c2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004c2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004c2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004c2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004c2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +0004c2e0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 0004c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c330: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c330: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c380: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c380: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c3d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c3d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c420: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c420: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c470: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c470: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c4c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c4c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c510: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c510: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c560: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c560: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c5b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c5b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c600: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c600: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c650: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c650: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c6a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c6a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c6f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c6f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c740: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c740: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c790: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c790: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c7e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c7e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c830: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c830: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c880: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c880: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c8d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c8d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c920: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c920: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c970: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c970: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c9c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004c9c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ca10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ca10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ca60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ca60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cab0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004cac0: 622d 3335 3839 6162 322b 3839 3731 6233 b-3589ab2+8971b3 │ │ │ │ -0004cad0: 2d35 3030 3661 3263 2d35 3539 3961 6263 -5006a2c-5599abc │ │ │ │ -0004cae0: 2d31 3431 3635 6232 632b 3838 3830 6132 -14165b2c+8880a2 │ │ │ │ -0004caf0: 642b 3432 3539 6162 642d 3330 3032 6232 d+4259abd-3002b2 │ │ │ │ -0004cb00: 642d 3133 3839 3261 6364 2d31 307c 0a7c d-13892acd-10|.| │ │ │ │ -0004cb10: 6233 2d39 3730 3261 6263 2d36 3632 3762 b3-9702abc-6627b │ │ │ │ -0004cb20: 3263 2b38 3838 3661 6264 2b34 3730 3062 2c+8886abd+4700b │ │ │ │ -0004cb30: 3264 2d31 3561 6364 2b35 3936 3962 6364 2d-15acd+5969bcd │ │ │ │ +0004cab0: 2020 7c0a 7c62 2d33 3538 3961 6232 2b38 |.|b-3589ab2+8 │ │ │ │ +0004cac0: 3937 3162 332d 3530 3036 6132 632d 3535 971b3-5006a2c-55 │ │ │ │ +0004cad0: 3939 6162 632d 3134 3136 3562 3263 2b38 99abc-14165b2c+8 │ │ │ │ +0004cae0: 3838 3061 3264 2b34 3235 3961 6264 2d33 880a2d+4259abd-3 │ │ │ │ +0004caf0: 3030 3262 3264 2d31 3338 3932 6163 642d 002b2d-13892acd- │ │ │ │ +0004cb00: 3130 7c0a 7c62 332d 3937 3032 6162 632d 10|.|b3-9702abc- │ │ │ │ +0004cb10: 3636 3237 6232 632b 3838 3836 6162 642b 6627b2c+8886abd+ │ │ │ │ +0004cb20: 3437 3030 6232 642d 3135 6163 642b 3539 4700b2d-15acd+59 │ │ │ │ +0004cb30: 3639 6263 6420 2020 2020 2020 2020 2020 69bcd │ │ │ │ 0004cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cb50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004cb60: 3262 2d37 3032 3861 6232 2b39 3739 3762 2b-7028ab2+9797b │ │ │ │ -0004cb70: 332d 3730 3231 6132 632b 3633 3737 6162 3-7021a2c+6377ab │ │ │ │ -0004cb80: 632b 3538 3734 6232 632d 3736 3030 6163 c+5874b2c-7600ac │ │ │ │ -0004cb90: 322d 3131 3732 3662 6332 2b31 3134 3063 2-11726bc2+1140c │ │ │ │ -0004cba0: 332b 3132 3036 6132 642d 3131 347c 0a7c 3+1206a2d-114|.| │ │ │ │ +0004cb50: 2020 7c0a 7c32 622d 3730 3238 6162 322b |.|2b-7028ab2+ │ │ │ │ +0004cb60: 3937 3937 6233 2d37 3032 3161 3263 2b36 9797b3-7021a2c+6 │ │ │ │ +0004cb70: 3337 3761 6263 2b35 3837 3462 3263 2d37 377abc+5874b2c-7 │ │ │ │ +0004cb80: 3630 3061 6332 2d31 3137 3236 6263 322b 600ac2-11726bc2+ │ │ │ │ +0004cb90: 3131 3430 6333 2b31 3230 3661 3264 2d31 1140c3+1206a2d-1 │ │ │ │ +0004cba0: 3134 7c0a 7c20 2020 2020 2020 2020 2020 14|.| │ │ │ │ 0004cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cbe0: 2020 2020 3020 2020 2020 2020 2020 2020 0 │ │ │ │ -0004cbf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004cc00: 2b36 3732 3361 6432 2b35 3438 3362 6432 +6723ad2+5483bd2 │ │ │ │ -0004cc10: 2b31 3532 3530 6364 322d 3130 3536 3764 +15250cd2-10567d │ │ │ │ -0004cc20: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0004cc30: 2020 2020 3132 3336 6133 2b38 3932 3261 1236a3+8922a │ │ │ │ -0004cc40: 3262 2d33 3538 3961 6232 2b38 397c 0a7c 2b-3589ab2+89|.| │ │ │ │ -0004cc50: 3061 6364 2d38 3032 3262 6364 2d33 3936 0acd-8022bcd-396 │ │ │ │ -0004cc60: 3863 3264 2b33 3136 3461 6432 2d32 3935 8c2d+3164ad2-295 │ │ │ │ -0004cc70: 6264 322b 3736 3530 6364 322d 3134 3338 bd2+7650cd2-1438 │ │ │ │ -0004cc80: 3864 3320 3020 2020 2020 2020 2020 2020 8d3 0 │ │ │ │ -0004cc90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004cbd0: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +0004cbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004cbf0: 2020 7c0a 7c2b 3637 3233 6164 322b 3534 |.|+6723ad2+54 │ │ │ │ +0004cc00: 3833 6264 322b 3135 3235 3063 6432 2d31 83bd2+15250cd2-1 │ │ │ │ +0004cc10: 3035 3637 6433 2020 2020 2020 2020 2020 0567d3 │ │ │ │ +0004cc20: 2020 2020 2020 2020 2031 3233 3661 332b 1236a3+ │ │ │ │ +0004cc30: 3839 3232 6132 622d 3335 3839 6162 322b 8922a2b-3589ab2+ │ │ │ │ +0004cc40: 3839 7c0a 7c30 6163 642d 3830 3232 6263 89|.|0acd-8022bc │ │ │ │ +0004cc50: 642d 3339 3638 6332 642b 3331 3634 6164 d-3968c2d+3164ad │ │ │ │ +0004cc60: 322d 3239 3562 6432 2b37 3635 3063 6432 2-295bd2+7650cd2 │ │ │ │ +0004cc70: 2d31 3433 3838 6433 2030 2020 2020 2020 -14388d3 0 │ │ │ │ +0004cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004cc90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004cca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ccd0: 2020 2020 2d31 3337 3037 6133 2d32 3137 -13707a3-217 │ │ │ │ -0004cce0: 3761 3262 2b37 3032 3861 6232 2d7c 0a7c 7a2b+7028ab2-|.| │ │ │ │ +0004ccc0: 2020 2020 2020 2020 202d 3133 3730 3761 -13707a │ │ │ │ +0004ccd0: 332d 3231 3737 6132 622b 3730 3238 6162 3-2177a2b+7028ab │ │ │ │ +0004cce0: 322d 7c0a 7c20 2020 2020 2020 2020 2020 2-|.| │ │ │ │ 0004ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cd30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004cd30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cd80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004cd80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cdd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004cdd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ce10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ce20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ce20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ce30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ce50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ce70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ce70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ce80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ceb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cec0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004cec0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cf10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004cf20: 3761 6364 322d 3330 3135 6263 6432 2d31 7acd2-3015bcd2-1 │ │ │ │ -0004cf30: 3132 3734 6332 6432 2031 3139 3538 6133 1274c2d2 11958a3 │ │ │ │ -0004cf40: 622b 3836 3431 6132 6232 2b39 3836 3461 b+8641a2b2+9864a │ │ │ │ -0004cf50: 6233 2b38 3634 3962 342d 3434 3137 6133 b3+8649b4-4417a3 │ │ │ │ -0004cf60: 632b 3337 3331 6132 6263 2b37 397c 0a7c c+3731a2bc+79|.| │ │ │ │ +0004cf10: 2020 7c0a 7c37 6163 6432 2d33 3031 3562 |.|7acd2-3015b │ │ │ │ +0004cf20: 6364 322d 3131 3237 3463 3264 3220 3131 cd2-11274c2d2 11 │ │ │ │ +0004cf30: 3935 3861 3362 2b38 3634 3161 3262 322b 958a3b+8641a2b2+ │ │ │ │ +0004cf40: 3938 3634 6162 332b 3836 3439 6234 2d34 9864ab3+8649b4-4 │ │ │ │ +0004cf50: 3431 3761 3363 2b33 3733 3161 3262 632b 417a3c+3731a2bc+ │ │ │ │ +0004cf60: 3739 7c0a 7c20 2020 2020 2020 2020 2020 79|.| │ │ │ │ 0004cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cfb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004cfb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d000: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d000: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d050: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d0a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d0a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d0f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d0f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d140: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d140: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d190: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d190: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d1e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d1e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d230: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d230: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d280: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004d290: 3337 3661 3262 2b33 3738 3361 6232 2b31 376a2b+3783ab2+1 │ │ │ │ -0004d2a0: 3033 3539 6233 2d35 3537 3061 3263 2d35 0359b3-5570a2c-5 │ │ │ │ -0004d2b0: 3330 3761 6263 2d37 3436 3462 3263 2b33 307abc-7464b2c+3 │ │ │ │ -0004d2c0: 3138 3761 3264 2b38 3537 3061 6264 2d38 187a2d+8570abd-8 │ │ │ │ -0004d2d0: 3235 3162 3264 2b38 3434 3461 637c 0a7c 251b2d+8444ac|.| │ │ │ │ -0004d2e0: 2b31 3331 3737 6233 2b35 3836 3461 6263 +13177b3+5864abc │ │ │ │ -0004d2f0: 2b31 3339 3930 6232 632b 3530 3236 6162 +13990b2c+5026ab │ │ │ │ -0004d300: 642d 3131 3532 3162 3264 2d37 3530 3161 d-11521b2d-7501a │ │ │ │ -0004d310: 6364 2d31 3737 3962 6364 2020 2020 2020 cd-1779bcd │ │ │ │ -0004d320: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004d330: 332b 3236 3533 6132 622b 3130 3235 3961 3+2653a2b+10259a │ │ │ │ -0004d340: 6232 2d31 3330 3962 332b 3132 3336 3561 b2-1309b3+12365a │ │ │ │ -0004d350: 3263 2d37 3231 3661 6263 2b35 3339 3862 2c-7216abc+5398b │ │ │ │ -0004d360: 3263 2b36 3233 3061 6332 2d35 3332 3662 2c+6230ac2-5326b │ │ │ │ -0004d370: 6332 2b31 3033 3163 332d 3133 357c 0a7c c2+1031c3-135|.| │ │ │ │ +0004d280: 2020 7c0a 7c33 3736 6132 622b 3337 3833 |.|376a2b+3783 │ │ │ │ +0004d290: 6162 322b 3130 3335 3962 332d 3535 3730 ab2+10359b3-5570 │ │ │ │ +0004d2a0: 6132 632d 3533 3037 6162 632d 3734 3634 a2c-5307abc-7464 │ │ │ │ +0004d2b0: 6232 632b 3331 3837 6132 642b 3835 3730 b2c+3187a2d+8570 │ │ │ │ +0004d2c0: 6162 642d 3832 3531 6232 642b 3834 3434 abd-8251b2d+8444 │ │ │ │ +0004d2d0: 6163 7c0a 7c2b 3133 3137 3762 332b 3538 ac|.|+13177b3+58 │ │ │ │ +0004d2e0: 3634 6162 632b 3133 3939 3062 3263 2b35 64abc+13990b2c+5 │ │ │ │ +0004d2f0: 3032 3661 6264 2d31 3135 3231 6232 642d 026abd-11521b2d- │ │ │ │ +0004d300: 3735 3031 6163 642d 3137 3739 6263 6420 7501acd-1779bcd │ │ │ │ +0004d310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004d320: 2020 7c0a 7c33 2b32 3635 3361 3262 2b31 |.|3+2653a2b+1 │ │ │ │ +0004d330: 3032 3539 6162 322d 3133 3039 6233 2b31 0259ab2-1309b3+1 │ │ │ │ +0004d340: 3233 3635 6132 632d 3732 3136 6162 632b 2365a2c-7216abc+ │ │ │ │ +0004d350: 3533 3938 6232 632b 3632 3330 6163 322d 5398b2c+6230ac2- │ │ │ │ +0004d360: 3533 3236 6263 322b 3130 3331 6333 2d31 5326bc2+1031c3-1 │ │ │ │ +0004d370: 3335 7c0a 7c20 2020 2020 2020 2020 2020 35|.| │ │ │ │ 0004d380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d3b0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -0004d3c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004d3d0: 3962 6364 2d35 3534 3963 3264 2d39 3533 9bcd-5549c2d-953 │ │ │ │ -0004d3e0: 3461 6432 2d31 3038 3636 6264 322b 3730 4ad2-10866bd2+70 │ │ │ │ -0004d3f0: 3631 6364 322d 3236 3237 6433 2020 2020 61cd2-2627d3 │ │ │ │ -0004d400: 2020 2020 2020 2020 2020 2020 2020 3130 10 │ │ │ │ -0004d410: 3761 332b 3433 3736 6132 622b 337c 0a7c 7a3+4376a2b+3|.| │ │ │ │ -0004d420: 3235 6162 642d 3930 3333 6163 642d 3239 25abd-9033acd-29 │ │ │ │ -0004d430: 3938 6263 642b 3230 3336 6332 642d 3531 98bcd+2036c2d-51 │ │ │ │ -0004d440: 3037 6164 322d 3536 3739 6264 322b 3633 07ad2-5679bd2+63 │ │ │ │ -0004d450: 3235 6364 322b 3131 3734 3064 3320 3020 25cd2+11740d3 0 │ │ │ │ -0004d460: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d3b0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +0004d3c0: 2020 7c0a 7c39 6263 642d 3535 3439 6332 |.|9bcd-5549c2 │ │ │ │ +0004d3d0: 642d 3935 3334 6164 322d 3130 3836 3662 d-9534ad2-10866b │ │ │ │ +0004d3e0: 6432 2b37 3036 3163 6432 2d32 3632 3764 d2+7061cd2-2627d │ │ │ │ +0004d3f0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0004d400: 2020 2031 3037 6133 2b34 3337 3661 3262 107a3+4376a2b │ │ │ │ +0004d410: 2b33 7c0a 7c32 3561 6264 2d39 3033 3361 +3|.|25abd-9033a │ │ │ │ +0004d420: 6364 2d32 3939 3862 6364 2b32 3033 3663 cd-2998bcd+2036c │ │ │ │ +0004d430: 3264 2d35 3130 3761 6432 2d35 3637 3962 2d-5107ad2-5679b │ │ │ │ +0004d440: 6432 2b36 3332 3563 6432 2b31 3137 3430 d2+6325cd2+11740 │ │ │ │ +0004d450: 6433 2030 2020 2020 2020 2020 2020 2020 d3 0 │ │ │ │ +0004d460: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d4a0: 2020 2020 2020 2020 2020 2020 2020 3135 15 │ │ │ │ -0004d4b0: 3334 3461 332d 3236 3533 6132 627c 0a7c 344a3-2653a2b|.| │ │ │ │ +0004d4a0: 2020 2031 3533 3434 6133 2d32 3635 3361 15344a3-2653a │ │ │ │ +0004d4b0: 3262 7c0a 7c20 2020 2020 2020 2020 2020 2b|.| │ │ │ │ 0004d4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d500: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d500: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d550: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d550: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d5a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d5a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d5f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d5f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d640: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d640: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d690: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d690: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d6e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004d6f0: 3030 3436 6162 6432 2d36 3334 3262 3264 0046abd2-6342b2d │ │ │ │ -0004d700: 322b 3734 3830 6163 6432 2b37 3834 3362 2+7480acd2+7843b │ │ │ │ -0004d710: 6364 322b 3830 3834 6332 6432 2036 3430 cd2+8084c2d2 640 │ │ │ │ -0004d720: 3961 3362 2d31 3031 3531 6132 6232 2d33 9a3b-10151a2b2-3 │ │ │ │ -0004d730: 3836 3361 6233 2b37 3637 3262 347c 0a7c 863ab3+7672b4|.| │ │ │ │ +0004d6e0: 2020 7c0a 7c30 3034 3661 6264 322d 3633 |.|0046abd2-63 │ │ │ │ +0004d6f0: 3432 6232 6432 2b37 3438 3061 6364 322b 42b2d2+7480acd2+ │ │ │ │ +0004d700: 3738 3433 6263 6432 2b38 3038 3463 3264 7843bcd2+8084c2d │ │ │ │ +0004d710: 3220 3634 3039 6133 622d 3130 3135 3161 2 6409a3b-10151a │ │ │ │ +0004d720: 3262 322d 3338 3633 6162 332b 3736 3732 2b2-3863ab3+7672 │ │ │ │ +0004d730: 6234 7c0a 7c20 2020 2020 2020 2020 2020 b4|.| │ │ │ │ 0004d740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d780: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d780: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d7d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d7d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d820: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d820: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d870: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d870: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d8c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d8c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d910: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004d910: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d960: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004d970: 6132 6432 2d31 3532 3831 6162 6432 2b39 a2d2-15281abd2+9 │ │ │ │ -0004d980: 3334 3662 3264 322d 3433 3039 6163 6432 346b2d2-4309acd2 │ │ │ │ -0004d990: 2d38 3236 3962 6364 322b 3633 3431 6332 -8269bcd2+6341c2 │ │ │ │ -0004d9a0: 6432 202d 3132 3035 3161 3362 2b33 3533 d2 -12051a3b+353 │ │ │ │ -0004d9b0: 6132 6232 2b38 3531 3861 6233 2b7c 0a7c a2b2+8518ab3+|.| │ │ │ │ +0004d960: 2020 7c0a 7c61 3264 322d 3135 3238 3161 |.|a2d2-15281a │ │ │ │ +0004d970: 6264 322b 3933 3436 6232 6432 2d34 3330 bd2+9346b2d2-430 │ │ │ │ +0004d980: 3961 6364 322d 3832 3639 6263 6432 2b36 9acd2-8269bcd2+6 │ │ │ │ +0004d990: 3334 3163 3264 3220 2d31 3230 3531 6133 341c2d2 -12051a3 │ │ │ │ +0004d9a0: 622b 3335 3361 3262 322b 3835 3138 6162 b+353a2b2+8518ab │ │ │ │ +0004d9b0: 332b 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 3+|.|----------- │ │ │ │ 0004d9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004d9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004d9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004d9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004da00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +0004da00: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 0004da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004da20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004da30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004da40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004da50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004da50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004da60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004da80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004da90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004daa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004daa0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004dab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004daf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004daf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004db00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004db40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004db40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004db90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004db90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dbe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004dbe0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dc30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004dc30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dc80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004dc80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dcd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004dcd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dd20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004dd20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dd70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004dd70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ddc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ddc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004de10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004de10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004de60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004de60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004deb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004deb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004dec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004df00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004df00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004df50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004df50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dfa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004dfa0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004dfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dff0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004dff0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e040: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e040: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e090: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e090: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e0e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e0e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e110: 2020 2020 2020 7c20 2020 2020 2020 2020 | │ │ │ │ +0004e100: 2020 2020 2020 2020 2020 207c 2020 2020 | │ │ │ │ +0004e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e130: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e130: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e160: 2020 2020 2020 7c20 2020 2020 2020 2020 | │ │ │ │ +0004e150: 2020 2020 2020 2020 2020 207c 2020 2020 | │ │ │ │ +0004e160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e180: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e180: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e1b0: 2020 2020 2020 7c20 2020 2020 2020 2020 | │ │ │ │ +0004e1a0: 2020 2020 2020 2020 2020 207c 2020 2020 | │ │ │ │ +0004e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e1d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004e1e0: 3532 3162 6364 2020 2020 2020 2020 2020 521bcd │ │ │ │ -0004e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e200: 2020 2020 2020 7c20 2020 2020 2020 2020 | │ │ │ │ +0004e1d0: 2020 7c0a 7c35 3231 6263 6420 2020 2020 |.|521bcd │ │ │ │ +0004e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004e1f0: 2020 2020 2020 2020 2020 207c 2020 2020 | │ │ │ │ +0004e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e220: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e220: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e250: 2020 2020 2020 7c20 2020 2020 2020 2020 | │ │ │ │ +0004e240: 2020 2020 2020 2020 2020 207c 2020 2020 | │ │ │ │ +0004e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e270: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004e280: 3335 6162 642b 3930 3734 6232 642d 3630 35abd+9074b2d-60 │ │ │ │ -0004e290: 3430 6163 642b 3830 3232 6263 642b 3339 40acd+8022bcd+39 │ │ │ │ -0004e2a0: 3638 6332 6420 7c20 2020 2020 2020 2020 68c2d | │ │ │ │ +0004e270: 2020 7c0a 7c33 3561 6264 2b39 3037 3462 |.|35abd+9074b │ │ │ │ +0004e280: 3264 2d36 3034 3061 6364 2b38 3032 3262 2d-6040acd+8022b │ │ │ │ +0004e290: 6364 2b33 3936 3863 3264 207c 2020 2020 cd+3968c2d | │ │ │ │ +0004e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e2c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e2c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e310: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004e320: 3731 6233 2d35 3030 3661 3263 2d35 3539 71b3-5006a2c-559 │ │ │ │ -0004e330: 3961 6263 2d31 3431 3635 6232 632b 3838 9abc-14165b2c+88 │ │ │ │ -0004e340: 3830 6132 642b 3432 3539 6162 642d 3330 80a2d+4259abd-30 │ │ │ │ -0004e350: 3032 6232 642d 3133 3839 3261 6364 2d31 02b2d-13892acd-1 │ │ │ │ -0004e360: 3035 3231 6263 6420 2020 2020 207c 0a7c 0521bcd |.| │ │ │ │ +0004e310: 2020 7c0a 7c37 3162 332d 3530 3036 6132 |.|71b3-5006a2 │ │ │ │ +0004e320: 632d 3535 3939 6162 632d 3134 3136 3562 c-5599abc-14165b │ │ │ │ +0004e330: 3263 2b38 3838 3061 3264 2b34 3235 3961 2c+8880a2d+4259a │ │ │ │ +0004e340: 6264 2d33 3030 3262 3264 2d31 3338 3932 bd-3002b2d-13892 │ │ │ │ +0004e350: 6163 642d 3130 3532 3162 6364 2020 2020 acd-10521bcd │ │ │ │ +0004e360: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e3b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004e3c0: 3937 3937 6233 2b37 3032 3161 3263 2d36 9797b3+7021a2c-6 │ │ │ │ -0004e3d0: 3337 3761 6263 2d35 3837 3462 3263 2b37 377abc-5874b2c+7 │ │ │ │ -0004e3e0: 3630 3061 6332 2b31 3137 3236 6263 322d 600ac2+11726bc2- │ │ │ │ -0004e3f0: 3131 3430 6333 2d31 3230 3661 3264 2b31 1140c3-1206a2d+1 │ │ │ │ -0004e400: 3134 3335 6162 642d 3930 3734 627c 0a7c 1435abd-9074b|.| │ │ │ │ +0004e3b0: 2020 7c0a 7c39 3739 3762 332b 3730 3231 |.|9797b3+7021 │ │ │ │ +0004e3c0: 6132 632d 3633 3737 6162 632d 3538 3734 a2c-6377abc-5874 │ │ │ │ +0004e3d0: 6232 632b 3736 3030 6163 322b 3131 3732 b2c+7600ac2+1172 │ │ │ │ +0004e3e0: 3662 6332 2d31 3134 3063 332d 3132 3036 6bc2-1140c3-1206 │ │ │ │ +0004e3f0: 6132 642b 3131 3433 3561 6264 2d39 3037 a2d+11435abd-907 │ │ │ │ +0004e400: 3462 7c0a 7c20 2020 2020 2020 2020 2020 4b|.| │ │ │ │ 0004e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e450: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e450: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e4a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e4a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e4f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e4f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e540: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e540: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e590: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e590: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e5e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e5e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e630: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004e640: 3330 6162 3263 2b39 3231 3962 3363 2b35 30ab2c+9219b3c+5 │ │ │ │ -0004e650: 3531 3361 3263 322b 3130 3535 3861 6263 513a2c2+10558abc │ │ │ │ -0004e660: 322b 3235 3930 6232 6332 2b31 3434 3134 2+2590b2c2+14414 │ │ │ │ -0004e670: 6133 642b 3338 3434 6132 6264 2b35 3937 a3d+3844a2bd+597 │ │ │ │ -0004e680: 3961 6232 642d 3132 3631 3562 337c 0a7c 9ab2d-12615b3|.| │ │ │ │ +0004e630: 2020 7c0a 7c33 3061 6232 632b 3932 3139 |.|30ab2c+9219 │ │ │ │ +0004e640: 6233 632b 3535 3133 6132 6332 2b31 3035 b3c+5513a2c2+105 │ │ │ │ +0004e650: 3538 6162 6332 2b32 3539 3062 3263 322b 58abc2+2590b2c2+ │ │ │ │ +0004e660: 3134 3431 3461 3364 2b33 3834 3461 3262 14414a3d+3844a2b │ │ │ │ +0004e670: 642b 3539 3739 6162 3264 2d31 3236 3135 d+5979ab2d-12615 │ │ │ │ +0004e680: 6233 7c0a 7c20 2020 2020 2020 2020 2020 b3|.| │ │ │ │ 0004e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e6d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e6d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e720: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e720: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e770: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e770: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e7c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e7c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e810: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e810: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e860: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e860: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e8b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e8b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e8e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0004e8e0: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 0004e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e900: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e900: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0004e930: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 0004e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e950: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e950: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0004e980: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 0004e990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e9a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004e9b0: 642b 3530 3731 6263 6420 2020 2020 2020 d+5071bcd │ │ │ │ +0004e9a0: 2020 7c0a 7c64 2b35 3037 3162 6364 2020 |.|d+5071bcd │ │ │ │ +0004e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e9d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0004e9d0: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 0004e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e9f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004e9f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ea10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ea20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0004ea20: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 0004ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ea40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004ea50: 3038 6132 642d 3130 3132 3561 6264 2b35 08a2d-10125abd+5 │ │ │ │ -0004ea60: 3534 3962 3264 2b39 3033 3361 6364 2b32 549b2d+9033acd+2 │ │ │ │ -0004ea70: 3939 3862 6364 2d32 3033 3663 3264 207c 998bcd-2036c2d | │ │ │ │ +0004ea40: 2020 7c0a 7c30 3861 3264 2d31 3031 3235 |.|08a2d-10125 │ │ │ │ +0004ea50: 6162 642b 3535 3439 6232 642b 3930 3333 abd+5549b2d+9033 │ │ │ │ +0004ea60: 6163 642b 3239 3938 6263 642d 3230 3336 acd+2998bcd-2036 │ │ │ │ +0004ea70: 6332 6420 7c20 2020 2020 2020 2020 2020 c2d | │ │ │ │ 0004ea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ea90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ea90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eae0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004eaf0: 3738 3361 6232 2b31 3033 3539 6233 2d35 783ab2+10359b3-5 │ │ │ │ -0004eb00: 3537 3061 3263 2d35 3330 3761 6263 2d37 570a2c-5307abc-7 │ │ │ │ -0004eb10: 3436 3462 3263 2b33 3138 3761 3264 2b38 464b2c+3187a2d+8 │ │ │ │ -0004eb20: 3537 3061 6264 2d38 3235 3162 3264 2b38 570abd-8251b2d+8 │ │ │ │ -0004eb30: 3434 3461 6364 2b35 3037 3162 637c 0a7c 444acd+5071bc|.| │ │ │ │ +0004eae0: 2020 7c0a 7c37 3833 6162 322b 3130 3335 |.|783ab2+1035 │ │ │ │ +0004eaf0: 3962 332d 3535 3730 6132 632d 3533 3037 9b3-5570a2c-5307 │ │ │ │ +0004eb00: 6162 632d 3734 3634 6232 632b 3331 3837 abc-7464b2c+3187 │ │ │ │ +0004eb10: 6132 642b 3835 3730 6162 642d 3832 3531 a2d+8570abd-8251 │ │ │ │ +0004eb20: 6232 642b 3834 3434 6163 642b 3530 3731 b2d+8444acd+5071 │ │ │ │ +0004eb30: 6263 7c0a 7c20 2020 2020 2020 2020 2020 bc|.| │ │ │ │ 0004eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eb80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004eb90: 2d31 3032 3539 6162 322b 3133 3039 6233 -10259ab2+1309b3 │ │ │ │ -0004eba0: 2d31 3233 3635 6132 632b 3732 3136 6162 -12365a2c+7216ab │ │ │ │ -0004ebb0: 632d 3533 3938 6232 632d 3632 3330 6163 c-5398b2c-6230ac │ │ │ │ -0004ebc0: 322b 3533 3236 6263 322d 3130 3331 6333 2+5326bc2-1031c3 │ │ │ │ -0004ebd0: 2b31 3335 3038 6132 642b 3130 317c 0a7c +13508a2d+101|.| │ │ │ │ +0004eb80: 2020 7c0a 7c2d 3130 3235 3961 6232 2b31 |.|-10259ab2+1 │ │ │ │ +0004eb90: 3330 3962 332d 3132 3336 3561 3263 2b37 309b3-12365a2c+7 │ │ │ │ +0004eba0: 3231 3661 6263 2d35 3339 3862 3263 2d36 216abc-5398b2c-6 │ │ │ │ +0004ebb0: 3233 3061 6332 2b35 3332 3662 6332 2d31 230ac2+5326bc2-1 │ │ │ │ +0004ebc0: 3033 3163 332b 3133 3530 3861 3264 2b31 031c3+13508a2d+1 │ │ │ │ +0004ebd0: 3031 7c0a 7c20 2020 2020 2020 2020 2020 01|.| │ │ │ │ 0004ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ec20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ec20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ec70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ec70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ecb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ecc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ecc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ed10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ed10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ed60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ed60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004edb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004edb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004edc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004edd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ede0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004edf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ee00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004ee10: 2b33 3736 3261 3363 2d39 3238 3061 3262 +3762a3c-9280a2b │ │ │ │ -0004ee20: 632b 3132 3235 3361 6232 632d 3137 3236 c+12253ab2c-1726 │ │ │ │ -0004ee30: 6233 632b 3930 3333 6132 6332 2d31 3439 b3c+9033a2c2-149 │ │ │ │ -0004ee40: 3636 6162 6332 2d36 3932 3962 3263 322d 66abc2-6929b2c2- │ │ │ │ -0004ee50: 3131 3235 3361 3364 2b34 3932 317c 0a7c 11253a3d+4921|.| │ │ │ │ +0004ee00: 2020 7c0a 7c2b 3337 3632 6133 632d 3932 |.|+3762a3c-92 │ │ │ │ +0004ee10: 3830 6132 6263 2b31 3232 3533 6162 3263 80a2bc+12253ab2c │ │ │ │ +0004ee20: 2d31 3732 3662 3363 2b39 3033 3361 3263 -1726b3c+9033a2c │ │ │ │ +0004ee30: 322d 3134 3936 3661 6263 322d 3639 3239 2-14966abc2-6929 │ │ │ │ +0004ee40: 6232 6332 2d31 3132 3533 6133 642b 3439 b2c2-11253a3d+49 │ │ │ │ +0004ee50: 3231 7c0a 7c20 2020 2020 2020 2020 2020 21|.| │ │ │ │ 0004ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ee90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eea0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004eea0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eef0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004eef0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ef40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ef40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ef90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ef90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004efe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004efe0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f030: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f030: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f080: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004f090: 3933 3431 6234 2b31 3533 3261 3363 2d32 9341b4+1532a3c-2 │ │ │ │ -0004f0a0: 3132 3061 3262 632b 3439 3332 6162 3263 120a2bc+4932ab2c │ │ │ │ -0004f0b0: 2d31 3339 3031 6233 632b 3135 3936 3061 -13901b3c+15960a │ │ │ │ -0004f0c0: 3263 322d 3435 3031 6162 6332 2b31 3130 2c2-4501abc2+110 │ │ │ │ -0004f0d0: 3562 3263 322d 3134 3331 3461 337c 0a7c 5b2c2-14314a3|.| │ │ │ │ +0004f080: 2020 7c0a 7c39 3334 3162 342b 3135 3332 |.|9341b4+1532 │ │ │ │ +0004f090: 6133 632d 3231 3230 6132 6263 2b34 3933 a3c-2120a2bc+493 │ │ │ │ +0004f0a0: 3261 6232 632d 3133 3930 3162 3363 2b31 2ab2c-13901b3c+1 │ │ │ │ +0004f0b0: 3539 3630 6132 6332 2d34 3530 3161 6263 5960a2c2-4501abc │ │ │ │ +0004f0c0: 322b 3131 3035 6232 6332 2d31 3433 3134 2+1105b2c2-14314 │ │ │ │ +0004f0d0: 6133 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d a3|.|----------- │ │ │ │ 0004f0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004f0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004f100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004f110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004f120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +0004f120: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 0004f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f170: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f170: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f1c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f1c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f210: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f210: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f260: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f260: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f2b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f2b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f300: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f300: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f350: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f350: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f3a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f3a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f3f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f3f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f440: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f440: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f490: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f490: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f4e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f4e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f530: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f530: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f580: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f580: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f5d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f5d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f620: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f620: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f670: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f670: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f6c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f6c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f710: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f710: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f760: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f760: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f7b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f7b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f800: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f800: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f850: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f850: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f8a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f8a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f8f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f8f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f940: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f940: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f990: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f990: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f9e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004f9e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fa20: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ -0004fa30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004fa10: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +0004fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004fa30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fa70: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ -0004fa80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004fa60: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +0004fa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004fa80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004faa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fac0: 2020 2020 2020 2020 2020 3132 3336 6133 1236a3 │ │ │ │ -0004fad0: 2b38 3932 3261 3262 2d33 3538 397c 0a7c +8922a2b-3589|.| │ │ │ │ -0004fae0: 3264 2b36 3034 3061 6364 2d38 3032 3262 2d+6040acd-8022b │ │ │ │ -0004faf0: 6364 2d33 3936 3863 3264 2b33 3136 3461 cd-3968c2d+3164a │ │ │ │ -0004fb00: 6432 2d32 3935 6264 322b 3736 3530 6364 d2-295bd2+7650cd │ │ │ │ -0004fb10: 322d 3134 3338 3864 3320 3130 3337 3061 2-14388d3 10370a │ │ │ │ -0004fb20: 6232 2d37 3039 3262 332d 3937 307c 0a7c b2-7092b3-970|.| │ │ │ │ +0004fab0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0004fac0: 3233 3661 332b 3839 3232 6132 622d 3335 236a3+8922a2b-35 │ │ │ │ +0004fad0: 3839 7c0a 7c32 642b 3630 3430 6163 642d 89|.|2d+6040acd- │ │ │ │ +0004fae0: 3830 3232 6263 642d 3339 3638 6332 642b 8022bcd-3968c2d+ │ │ │ │ +0004faf0: 3331 3634 6164 322d 3239 3562 6432 2b37 3164ad2-295bd2+7 │ │ │ │ +0004fb00: 3635 3063 6432 2d31 3433 3838 6433 2031 650cd2-14388d3 1 │ │ │ │ +0004fb10: 3033 3730 6162 322d 3730 3932 6233 2d39 0370ab2-7092b3-9 │ │ │ │ +0004fb20: 3730 7c0a 7c20 2020 2020 2020 2020 2020 70|.| │ │ │ │ 0004fb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fb70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004fb70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fbc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004fbc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fc10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004fc10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fc60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004fc60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fcb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004fcb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fd00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004fd00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fd50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0004fd60: 642d 3135 3935 3761 3263 642b 3135 3239 d-15957a2cd+1529 │ │ │ │ -0004fd70: 3361 6263 642d 3138 3331 6232 6364 2b36 3abcd-1831b2cd+6 │ │ │ │ -0004fd80: 3034 3261 6332 642d 3235 3631 6263 3264 042ac2d-2561bc2d │ │ │ │ -0004fd90: 2d38 3730 3961 3264 322d 3133 3231 3961 -8709a2d2-13219a │ │ │ │ -0004fda0: 6264 322b 3432 3039 6232 6432 2b7c 0a7c bd2+4209b2d2+|.| │ │ │ │ +0004fd50: 2020 7c0a 7c64 2d31 3539 3537 6132 6364 |.|d-15957a2cd │ │ │ │ +0004fd60: 2b31 3532 3933 6162 6364 2d31 3833 3162 +15293abcd-1831b │ │ │ │ +0004fd70: 3263 642b 3630 3432 6163 3264 2d32 3536 2cd+6042ac2d-256 │ │ │ │ +0004fd80: 3162 6332 642d 3837 3039 6132 6432 2d31 1bc2d-8709a2d2-1 │ │ │ │ +0004fd90: 3332 3139 6162 6432 2b34 3230 3962 3264 3219abd2+4209b2d │ │ │ │ +0004fda0: 322b 7c0a 7c20 2020 2020 2020 2020 2020 2+|.| │ │ │ │ 0004fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fdf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004fdf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fe00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fe20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fe30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fe40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004fe40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fe50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fe60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fe70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fe80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fe90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004fe90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004feb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fee0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004fee0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ff30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ff30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ff40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ff80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ff80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ff90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ffa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ffb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ffd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0004ffd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ffe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050020: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050020: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050070: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050070: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000500a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000500b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000500c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000500c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000500d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000500e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000500f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050110: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050110: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050160: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050160: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000501a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000501b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000501b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000501c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000501d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000501e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000501f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050200: 2020 2020 2020 3020 2020 2020 207c 0a7c 0 |.| │ │ │ │ -00050210: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ +000501f0: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +00050200: 2020 7c0a 7c64 2020 2020 2020 2020 2020 |.|d │ │ │ │ +00050210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050250: 2020 2020 2020 3020 2020 2020 207c 0a7c 0 |.| │ │ │ │ +00050240: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +00050250: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000502a0: 2020 2020 2020 3130 3761 332b 347c 0a7c 107a3+4|.| │ │ │ │ -000502b0: 3235 6162 642d 3535 3439 6232 642d 3930 25abd-5549b2d-90 │ │ │ │ -000502c0: 3333 6163 642d 3239 3938 6263 642b 3230 33acd-2998bcd+20 │ │ │ │ -000502d0: 3336 6332 642d 3531 3037 6164 322d 3536 36c2d-5107ad2-56 │ │ │ │ -000502e0: 3739 6264 322b 3633 3235 6364 322b 3131 79bd2+6325cd2+11 │ │ │ │ -000502f0: 3734 3064 3320 3832 3331 6162 327c 0a7c 740d3 8231ab2|.| │ │ │ │ +00050290: 2020 2020 2020 2020 2020 2031 3037 6133 107a3 │ │ │ │ +000502a0: 2b34 7c0a 7c32 3561 6264 2d35 3534 3962 +4|.|25abd-5549b │ │ │ │ +000502b0: 3264 2d39 3033 3361 6364 2d32 3939 3862 2d-9033acd-2998b │ │ │ │ +000502c0: 6364 2b32 3033 3663 3264 2d35 3130 3761 cd+2036c2d-5107a │ │ │ │ +000502d0: 6432 2d35 3637 3962 6432 2b36 3332 3563 d2-5679bd2+6325c │ │ │ │ +000502e0: 6432 2b31 3137 3430 6433 2038 3233 3161 d2+11740d3 8231a │ │ │ │ +000502f0: 6232 7c0a 7c20 2020 2020 2020 2020 2020 b2|.| │ │ │ │ 00050300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050340: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050340: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050390: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050390: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000503a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000503b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000503c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000503d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000503e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000503e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000503f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050430: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050430: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050480: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050480: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000504a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000504b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000504c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000504d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000504d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000504e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000504f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050520: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00050530: 6132 6264 2d31 3138 3630 6162 3264 2d31 a2bd-11860ab2d-1 │ │ │ │ -00050540: 3430 3534 6233 642b 3135 3239 3961 3263 4054b3d+15299a2c │ │ │ │ -00050550: 642d 3731 3861 6263 642d 3134 3638 3562 d-718abcd-14685b │ │ │ │ -00050560: 3263 642d 3130 3538 3161 6332 642b 3532 2cd-10581ac2d+52 │ │ │ │ -00050570: 3238 6263 3264 2d31 3538 3636 617c 0a7c 28bc2d-15866a|.| │ │ │ │ +00050520: 2020 7c0a 7c61 3262 642d 3131 3836 3061 |.|a2bd-11860a │ │ │ │ +00050530: 6232 642d 3134 3035 3462 3364 2b31 3532 b2d-14054b3d+152 │ │ │ │ +00050540: 3939 6132 6364 2d37 3138 6162 6364 2d31 99a2cd-718abcd-1 │ │ │ │ +00050550: 3436 3835 6232 6364 2d31 3035 3831 6163 4685b2cd-10581ac │ │ │ │ +00050560: 3264 2b35 3232 3862 6332 642d 3135 3836 2d+5228bc2d-1586 │ │ │ │ +00050570: 3661 7c0a 7c20 2020 2020 2020 2020 2020 6a|.| │ │ │ │ 00050580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000505a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000505b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000505c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000505c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000505d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000505e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000505f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050610: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050610: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050660: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050660: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000506a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000506b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000506b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000506c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000506d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000506e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000506f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050700: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050700: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050750: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050750: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000507a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000507b0: 642b 3132 3735 3761 3262 642b 3132 3832 d+12757a2bd+1282 │ │ │ │ -000507c0: 3261 6232 642d 3131 3735 3262 3364 2d37 2ab2d-11752b3d-7 │ │ │ │ -000507d0: 3232 3061 3263 642d 3134 3139 6162 6364 220a2cd-1419abcd │ │ │ │ -000507e0: 2d39 3839 3462 3263 642b 3834 3430 6163 -9894b2cd+8440ac │ │ │ │ -000507f0: 3264 2b31 3036 3933 6263 3264 2b7c 0a7c 2d+10693bc2d+|.| │ │ │ │ +000507a0: 2020 7c0a 7c64 2b31 3237 3537 6132 6264 |.|d+12757a2bd │ │ │ │ +000507b0: 2b31 3238 3232 6162 3264 2d31 3137 3532 +12822ab2d-11752 │ │ │ │ +000507c0: 6233 642d 3732 3230 6132 6364 2d31 3431 b3d-7220a2cd-141 │ │ │ │ +000507d0: 3961 6263 642d 3938 3934 6232 6364 2b38 9abcd-9894b2cd+8 │ │ │ │ +000507e0: 3434 3061 6332 642b 3130 3639 3362 6332 440ac2d+10693bc2 │ │ │ │ +000507f0: 642b 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d d+|.|----------- │ │ │ │ 00050800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00050810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00050820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00050830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00050840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00050840: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 00050850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050890: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000508a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000508b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000508c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000508d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000508e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000508e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000508f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050930: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050930: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050980: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050980: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000509a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000509b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000509c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000509d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000509d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000509e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000509f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050a20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050a20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050a70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050a70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050ac0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050ac0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050b10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050b10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050b60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050b60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050bb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050bb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050c00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050c00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050c50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050c50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050ca0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050ca0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050cf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050cf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050d40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050d40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050d90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050d90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050de0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050de0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050e30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050e30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050e80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050e80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050ed0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050ed0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050f20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050f20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050f70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050f70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050fc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00050fc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051010: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051010: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051060: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051060: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000510a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000510b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000510b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000510c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000510d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000510e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000510f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051100: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051100: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051150: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051150: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000511a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000511b0: 6162 322b 3839 3731 6233 2d35 3030 3661 ab2+8971b3-5006a │ │ │ │ -000511c0: 3263 2d35 3539 3961 6263 2d31 3431 3635 2c-5599abc-14165 │ │ │ │ -000511d0: 6232 632b 3838 3830 6132 642b 3432 3539 b2c+8880a2d+4259 │ │ │ │ -000511e0: 6162 642d 3330 3032 6232 642d 3133 3839 abd-3002b2d-1389 │ │ │ │ -000511f0: 3261 6364 2d31 3035 3231 6263 647c 0a7c 2acd-10521bcd|.| │ │ │ │ -00051200: 3261 6263 2d36 3632 3762 3263 2b38 3838 2abc-6627b2c+888 │ │ │ │ -00051210: 3661 6264 2b34 3730 3062 3264 2d31 3561 6abd+4700b2d-15a │ │ │ │ -00051220: 6364 2b35 3936 3962 6364 2020 2020 2020 cd+5969bcd │ │ │ │ +000511a0: 2020 7c0a 7c61 6232 2b38 3937 3162 332d |.|ab2+8971b3- │ │ │ │ +000511b0: 3530 3036 6132 632d 3535 3939 6162 632d 5006a2c-5599abc- │ │ │ │ +000511c0: 3134 3136 3562 3263 2b38 3838 3061 3264 14165b2c+8880a2d │ │ │ │ +000511d0: 2b34 3235 3961 6264 2d33 3030 3262 3264 +4259abd-3002b2d │ │ │ │ +000511e0: 2d31 3338 3932 6163 642d 3130 3532 3162 -13892acd-10521b │ │ │ │ +000511f0: 6364 7c0a 7c32 6162 632d 3636 3237 6232 cd|.|2abc-6627b2 │ │ │ │ +00051200: 632b 3838 3836 6162 642b 3437 3030 6232 c+8886abd+4700b2 │ │ │ │ +00051210: 642d 3135 6163 642b 3539 3639 6263 6420 d-15acd+5969bcd │ │ │ │ +00051220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051240: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051240: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051290: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051290: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000512a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000512b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000512c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000512d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000512e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000512e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000512f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051330: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051330: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051380: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051380: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000513a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000513b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000513c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000513d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000513d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000513e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000513f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051420: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051420: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051470: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00051480: 3132 3232 3561 6364 322d 3236 3035 6263 12225acd2-2605bc │ │ │ │ -00051490: 6432 2d39 3263 3264 322b 3135 3936 3861 d2-92c2d2+15968a │ │ │ │ -000514a0: 6433 2b31 3438 3630 6264 332d 3838 3239 d3+14860bd3-8829 │ │ │ │ -000514b0: 6364 332d 3131 3237 3464 3420 7c20 2020 cd3-11274d4 | │ │ │ │ -000514c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051470: 2020 7c0a 7c31 3232 3235 6163 6432 2d32 |.|12225acd2-2 │ │ │ │ +00051480: 3630 3562 6364 322d 3932 6332 6432 2b31 605bcd2-92c2d2+1 │ │ │ │ +00051490: 3539 3638 6164 332b 3134 3836 3062 6433 5968ad3+14860bd3 │ │ │ │ +000514a0: 2d38 3832 3963 6433 2d31 3132 3734 6434 -8829cd3-11274d4 │ │ │ │ +000514b0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000514c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000514d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000514e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000514f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051510: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051510: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051560: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051560: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000515a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000515b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000515b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000515c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000515d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000515e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000515f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051600: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051600: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051650: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051650: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000516a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000516a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000516b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000516c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000516d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000516e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000516f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000516f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051740: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051740: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051790: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051790: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000517a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000517b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000517c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000517d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000517e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000517e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000517f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051830: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051830: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051880: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051880: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000518a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000518b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000518c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000518d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000518d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000518e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000518f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051920: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051920: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051970: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00051980: 3337 3661 3262 2b33 3738 3361 6232 2b31 376a2b+3783ab2+1 │ │ │ │ -00051990: 3033 3539 6233 2d35 3537 3061 3263 2d35 0359b3-5570a2c-5 │ │ │ │ -000519a0: 3330 3761 6263 2d37 3436 3462 3263 2b33 307abc-7464b2c+3 │ │ │ │ -000519b0: 3138 3761 3264 2b38 3537 3061 6264 2d38 187a2d+8570abd-8 │ │ │ │ -000519c0: 3235 3162 3264 2b38 3434 3461 637c 0a7c 251b2d+8444ac|.| │ │ │ │ -000519d0: 2b31 3331 3737 6233 2b35 3836 3461 6263 +13177b3+5864abc │ │ │ │ -000519e0: 2b31 3339 3930 6232 632b 3530 3236 6162 +13990b2c+5026ab │ │ │ │ -000519f0: 642d 3131 3532 3162 3264 2d37 3530 3161 d-11521b2d-7501a │ │ │ │ -00051a00: 6364 2d31 3737 3962 6364 2020 2020 2020 cd-1779bcd │ │ │ │ -00051a10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051970: 2020 7c0a 7c33 3736 6132 622b 3337 3833 |.|376a2b+3783 │ │ │ │ +00051980: 6162 322b 3130 3335 3962 332d 3535 3730 ab2+10359b3-5570 │ │ │ │ +00051990: 6132 632d 3533 3037 6162 632d 3734 3634 a2c-5307abc-7464 │ │ │ │ +000519a0: 6232 632b 3331 3837 6132 642b 3835 3730 b2c+3187a2d+8570 │ │ │ │ +000519b0: 6162 642d 3832 3531 6232 642b 3834 3434 abd-8251b2d+8444 │ │ │ │ +000519c0: 6163 7c0a 7c2b 3133 3137 3762 332b 3538 ac|.|+13177b3+58 │ │ │ │ +000519d0: 3634 6162 632b 3133 3939 3062 3263 2b35 64abc+13990b2c+5 │ │ │ │ +000519e0: 3032 3661 6264 2d31 3135 3231 6232 642d 026abd-11521b2d- │ │ │ │ +000519f0: 3735 3031 6163 642d 3137 3739 6263 6420 7501acd-1779bcd │ │ │ │ +00051a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00051a10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051a60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051a60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051ab0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051ab0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051b00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051b00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051b50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051b50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051ba0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051ba0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051bf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051bf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051c40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00051c50: 3264 322d 3137 3933 6162 6432 2d31 3232 2d2-1793abd2-122 │ │ │ │ -00051c60: 3435 6232 6432 2b31 3232 3833 6163 6432 45b2d2+12283acd2 │ │ │ │ -00051c70: 2b36 3733 3062 6364 322b 3835 3237 6332 +6730bcd2+8527c2 │ │ │ │ -00051c80: 6432 2b35 3934 3261 6433 2b31 3439 3235 d2+5942ad3+14925 │ │ │ │ -00051c90: 6264 332d 3239 3663 6433 2b38 307c 0a7c bd3-296cd3+80|.| │ │ │ │ +00051c40: 2020 7c0a 7c32 6432 2d31 3739 3361 6264 |.|2d2-1793abd │ │ │ │ +00051c50: 322d 3132 3234 3562 3264 322b 3132 3238 2-12245b2d2+1228 │ │ │ │ +00051c60: 3361 6364 322b 3637 3330 6263 6432 2b38 3acd2+6730bcd2+8 │ │ │ │ +00051c70: 3532 3763 3264 322b 3539 3432 6164 332b 527c2d2+5942ad3+ │ │ │ │ +00051c80: 3134 3932 3562 6433 2d32 3936 6364 332b 14925bd3-296cd3+ │ │ │ │ +00051c90: 3830 7c0a 7c20 2020 2020 2020 2020 2020 80|.| │ │ │ │ 00051ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051ce0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051ce0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051d30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051d30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051d80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051d80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051dd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051dd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051e20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051e20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051e70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051e70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051ec0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00051ed0: 3132 3036 3261 3264 322d 3133 3632 3661 12062a2d2-13626a │ │ │ │ -00051ee0: 6264 322b 3432 3437 6232 6432 2d31 3237 bd2+4247b2d2-127 │ │ │ │ -00051ef0: 3033 6163 6432 2b32 3935 3762 6364 322d 03acd2+2957bcd2- │ │ │ │ -00051f00: 3533 3735 6332 6432 2d31 3033 3035 6164 5375c2d2-10305ad │ │ │ │ -00051f10: 332b 3832 3937 6264 332b 3130 367c 0a7c 3+8297bd3+106|.| │ │ │ │ +00051ec0: 2020 7c0a 7c31 3230 3632 6132 6432 2d31 |.|12062a2d2-1 │ │ │ │ +00051ed0: 3336 3236 6162 6432 2b34 3234 3762 3264 3626abd2+4247b2d │ │ │ │ +00051ee0: 322d 3132 3730 3361 6364 322b 3239 3537 2-12703acd2+2957 │ │ │ │ +00051ef0: 6263 6432 2d35 3337 3563 3264 322d 3130 bcd2-5375c2d2-10 │ │ │ │ +00051f00: 3330 3561 6433 2b38 3239 3762 6433 2b31 305ad3+8297bd3+1 │ │ │ │ +00051f10: 3036 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 06|.|----------- │ │ │ │ 00051f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -00051f70: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +00051f60: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00051f70: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ 00051f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051fb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00051fb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052000: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052000: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052050: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000520a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000520a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000520b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000520c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000520d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000520e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000520f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000520f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052140: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052140: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052190: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052190: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000521a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000521b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000521c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000521d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000521e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000521e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000521f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052230: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052230: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052280: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052280: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000522a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000522b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000522c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000522d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000522d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000522e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000522f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052320: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052320: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052370: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052370: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000523a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000523b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000523c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000523c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000523d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000523e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000523f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052410: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052410: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052460: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052460: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000524a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000524b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000524b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000524c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000524d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000524e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000524f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052500: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052500: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052550: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052550: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000525a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000525a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000525b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000525c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000525d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000525e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000525f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000525f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052640: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052640: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052690: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052690: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000526a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000526b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000526c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000526d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000526e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000526e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000526f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052730: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052730: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052780: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052780: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000527a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000527b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000527c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000527d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000527d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000527e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000527f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052820: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00052830: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00052820: 2020 7c0a 7c20 7c20 2020 2020 2020 2020 |.| | │ │ │ │ +00052830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052870: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00052880: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00052870: 2020 7c0a 7c20 7c20 2020 2020 2020 2020 |.| | │ │ │ │ +00052880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000528a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000528b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000528c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000528d0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000528c0: 2020 7c0a 7c20 7c20 2020 2020 2020 2020 |.| | │ │ │ │ +000528d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000528e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000528f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052910: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00052920: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00052910: 2020 7c0a 7c20 7c20 2020 2020 2020 2020 |.| | │ │ │ │ +00052920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052960: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052960: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000529a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000529b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000529b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000529c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000529d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000529e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000529f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052a00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052a00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052a50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052a50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052aa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052aa0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052af0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052af0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052b40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052b40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052b90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052b90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052be0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052be0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052c30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052c30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052c80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052c80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052cd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052cd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052d20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052d20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052d70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052d70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052dc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052dc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052e10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052e10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052e60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052e60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052eb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052eb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052f00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052f00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052f50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052f50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052fa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00052fa0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052ff0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00053000: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +00052ff0: 2020 7c0a 7c20 2020 2020 2020 2020 207c |.| | │ │ │ │ +00053000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053040: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00053050: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +00053040: 2020 7c0a 7c20 2020 2020 2020 2020 207c |.| | │ │ │ │ +00053050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053090: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000530a0: 642b 3530 3731 6263 6420 7c20 2020 2020 d+5071bcd | │ │ │ │ +00053090: 2020 7c0a 7c64 2b35 3037 3162 6364 207c |.|d+5071bcd | │ │ │ │ +000530a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000530b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000530c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000530d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000530e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000530f0: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +000530e0: 2020 7c0a 7c20 2020 2020 2020 2020 207c |.| | │ │ │ │ +000530f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053130: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00053130: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053180: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00053180: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000531a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000531b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000531c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000531d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000531d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000531e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000531f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053220: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00053220: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053270: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00053270: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000532a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000532b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000532c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000532c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000532d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000532e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000532f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053310: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00053310: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00053370: 3834 6434 207c 2020 2020 2020 2020 2020 84d4 | │ │ │ │ +00053360: 2020 7c0a 7c38 3464 3420 7c20 2020 2020 |.|84d4 | │ │ │ │ +00053370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000533a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000533b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000533b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000533c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000533d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000533e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000533f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053400: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00053400: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053450: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00053450: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000534a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000534a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000534b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000534c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000534d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000534e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000534f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000534f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053540: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00053540: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053590: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00053590: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000535a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000535b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000535c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000535d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000535e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000535f0: 3633 6364 332b 3633 3431 6434 207c 2020 63cd3+6341d4 | │ │ │ │ +000535e0: 2020 7c0a 7c36 3363 6433 2b36 3334 3164 |.|63cd3+6341d │ │ │ │ +000535f0: 3420 7c20 2020 2020 2020 2020 2020 2020 4 | │ │ │ │ 00053600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053630: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00053630: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00053640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00053690: 5765 2063 616e 2073 6565 2074 6861 7420 We can see that │ │ │ │ -000536a0: 616c 6c20 3620 706f 7465 6e74 6961 6c20 all 6 potential │ │ │ │ -000536b0: 6869 6768 6572 2068 6f6d 6f74 6f70 6965 higher homotopie │ │ │ │ -000536c0: 7320 6172 6520 6e6f 6e74 7269 7669 616c s are nontrivial │ │ │ │ -000536d0: 3a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d :..+------------ │ │ │ │ +00053680: 2d2d 2b0a 0a57 6520 6361 6e20 7365 6520 --+..We can see │ │ │ │ +00053690: 7468 6174 2061 6c6c 2036 2070 6f74 656e that all 6 poten │ │ │ │ +000536a0: 7469 616c 2068 6967 6865 7220 686f 6d6f tial higher homo │ │ │ │ +000536b0: 746f 7069 6573 2061 7265 206e 6f6e 7472 topies are nontr │ │ │ │ +000536c0: 6976 6961 6c3a 0a0a 2b2d 2d2d 2d2d 2d2d ivial:..+------- │ │ │ │ +000536d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000536e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000536f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053720: 2d2b 0a7c 6931 3420 3a20 4c20 3d20 736f -+.|i14 : L = so │ │ │ │ -00053730: 7274 2073 656c 6563 7428 6b65 7973 2068 rt select(keys h │ │ │ │ -00053740: 6f6d 6f74 2c20 6b2d 3e28 686f 6d6f 7423 omot, k->(homot# │ │ │ │ -00053750: 6b21 3d30 2061 6e64 2073 756d 286b 5f30 k!=0 and sum(k_0 │ │ │ │ -00053760: 293e 3129 2920 2020 2020 2020 2020 2020 )>1)) │ │ │ │ -00053770: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00053710: 2d2d 2d2d 2d2d 2b0a 7c69 3134 203a 204c ------+.|i14 : L │ │ │ │ +00053720: 203d 2073 6f72 7420 7365 6c65 6374 286b = sort select(k │ │ │ │ +00053730: 6579 7320 686f 6d6f 742c 206b 2d3e 2868 eys homot, k->(h │ │ │ │ +00053740: 6f6d 6f74 236b 213d 3020 616e 6420 7375 omot#k!=0 and su │ │ │ │ +00053750: 6d28 6b5f 3029 3e31 2929 2020 2020 2020 m(k_0)>1)) │ │ │ │ +00053760: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00053770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000537a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000537b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000537c0: 207c 0a7c 6f31 3420 3d20 7b7b 7b30 2c20 |.|o14 = {{{0, │ │ │ │ -000537d0: 327d 2c20 307d 2c20 7b7b 302c 2032 7d2c 2}, 0}, {{0, 2}, │ │ │ │ -000537e0: 2031 7d2c 207b 7b31 2c20 317d 2c20 307d 1}, {{1, 1}, 0} │ │ │ │ -000537f0: 2c20 7b7b 312c 2031 7d2c 2031 7d2c 207b , {{1, 1}, 1}, { │ │ │ │ -00053800: 7b32 2c20 307d 2c20 307d 2c20 7b7b 322c {2, 0}, 0}, {{2, │ │ │ │ -00053810: 207c 0a7c 2020 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +000537b0: 2020 2020 2020 7c0a 7c6f 3134 203d 207b |.|o14 = { │ │ │ │ +000537c0: 7b7b 302c 2032 7d2c 2030 7d2c 207b 7b30 {{0, 2}, 0}, {{0 │ │ │ │ +000537d0: 2c20 327d 2c20 317d 2c20 7b7b 312c 2031 , 2}, 1}, {{1, 1 │ │ │ │ +000537e0: 7d2c 2030 7d2c 207b 7b31 2c20 317d 2c20 }, 0}, {{1, 1}, │ │ │ │ +000537f0: 317d 2c20 7b7b 322c 2030 7d2c 2030 7d2c 1}, {{2, 0}, 0}, │ │ │ │ +00053800: 207b 7b32 2c20 7c0a 7c20 2020 2020 202d {{2, |.| - │ │ │ │ +00053810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053860: 2d7c 0a7c 2020 2020 2020 307d 2c20 317d -|.| 0}, 1} │ │ │ │ -00053870: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00053850: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2030 ------|.| 0 │ │ │ │ +00053860: 7d2c 2031 7d7d 2020 2020 2020 2020 2020 }, 1}} │ │ │ │ +00053870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000538a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000538b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000538a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000538b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000538c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000538d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000538e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000538f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053900: 207c 0a7c 6f31 3420 3a20 4c69 7374 2020 |.|o14 : List │ │ │ │ +000538f0: 2020 2020 2020 7c0a 7c6f 3134 203a 204c |.|o14 : L │ │ │ │ +00053900: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ 00053910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053950: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00053940: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00053950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000539a0: 2d2b 0a7c 6931 3520 3a20 234c 2020 2020 -+.|i15 : #L │ │ │ │ +00053990: 2d2d 2d2d 2d2d 2b0a 7c69 3135 203a 2023 ------+.|i15 : # │ │ │ │ +000539a0: 4c20 2020 2020 2020 2020 2020 2020 2020 L │ │ │ │ 000539b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000539c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000539d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000539e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000539f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000539e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000539f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053a40: 207c 0a7c 6f31 3520 3d20 3620 2020 2020 |.|o15 = 6 │ │ │ │ +00053a30: 2020 2020 2020 7c0a 7c6f 3135 203d 2036 |.|o15 = 6 │ │ │ │ +00053a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053a90: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00053a80: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00053a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053ae0: 2d2b 0a7c 6931 3620 3a20 6e65 744c 6973 -+.|i16 : netLis │ │ │ │ -00053af0: 7420 4c20 2020 2020 2020 2020 2020 2020 t L │ │ │ │ +00053ad0: 2d2d 2d2d 2d2d 2b0a 7c69 3136 203a 206e ------+.|i16 : n │ │ │ │ +00053ae0: 6574 4c69 7374 204c 2020 2020 2020 2020 etList L │ │ │ │ +00053af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053b30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00053b20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00053b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053b80: 207c 0a7c 2020 2020 2020 2b2d 2d2d 2d2d |.| +----- │ │ │ │ -00053b90: 2d2b 2d2b 2020 2020 2020 2020 2020 2020 -+-+ │ │ │ │ +00053b70: 2020 2020 2020 7c0a 7c20 2020 2020 202b |.| + │ │ │ │ +00053b80: 2d2d 2d2d 2d2d 2b2d 2b20 2020 2020 2020 ------+-+ │ │ │ │ +00053b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053bd0: 207c 0a7c 6f31 3620 3d20 7c7b 302c 2032 |.|o16 = |{0, 2 │ │ │ │ -00053be0: 7d7c 307c 2020 2020 2020 2020 2020 2020 }|0| │ │ │ │ +00053bc0: 2020 2020 2020 7c0a 7c6f 3136 203d 207c |.|o16 = | │ │ │ │ +00053bd0: 7b30 2c20 327d 7c30 7c20 2020 2020 2020 {0, 2}|0| │ │ │ │ +00053be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053c20: 207c 0a7c 2020 2020 2020 2b2d 2d2d 2d2d |.| +----- │ │ │ │ -00053c30: 2d2b 2d2b 2020 2020 2020 2020 2020 2020 -+-+ │ │ │ │ +00053c10: 2020 2020 2020 7c0a 7c20 2020 2020 202b |.| + │ │ │ │ +00053c20: 2d2d 2d2d 2d2d 2b2d 2b20 2020 2020 2020 ------+-+ │ │ │ │ +00053c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053c70: 207c 0a7c 2020 2020 2020 7c7b 302c 2032 |.| |{0, 2 │ │ │ │ -00053c80: 7d7c 317c 2020 2020 2020 2020 2020 2020 }|1| │ │ │ │ +00053c60: 2020 2020 2020 7c0a 7c20 2020 2020 207c |.| | │ │ │ │ +00053c70: 7b30 2c20 327d 7c31 7c20 2020 2020 2020 {0, 2}|1| │ │ │ │ +00053c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053cc0: 207c 0a7c 2020 2020 2020 2b2d 2d2d 2d2d |.| +----- │ │ │ │ -00053cd0: 2d2b 2d2b 2020 2020 2020 2020 2020 2020 -+-+ │ │ │ │ +00053cb0: 2020 2020 2020 7c0a 7c20 2020 2020 202b |.| + │ │ │ │ +00053cc0: 2d2d 2d2d 2d2d 2b2d 2b20 2020 2020 2020 ------+-+ │ │ │ │ +00053cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053d10: 207c 0a7c 2020 2020 2020 7c7b 312c 2031 |.| |{1, 1 │ │ │ │ -00053d20: 7d7c 307c 2020 2020 2020 2020 2020 2020 }|0| │ │ │ │ +00053d00: 2020 2020 2020 7c0a 7c20 2020 2020 207c |.| | │ │ │ │ +00053d10: 7b31 2c20 317d 7c30 7c20 2020 2020 2020 {1, 1}|0| │ │ │ │ +00053d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053d60: 207c 0a7c 2020 2020 2020 2b2d 2d2d 2d2d |.| +----- │ │ │ │ -00053d70: 2d2b 2d2b 2020 2020 2020 2020 2020 2020 -+-+ │ │ │ │ +00053d50: 2020 2020 2020 7c0a 7c20 2020 2020 202b |.| + │ │ │ │ +00053d60: 2d2d 2d2d 2d2d 2b2d 2b20 2020 2020 2020 ------+-+ │ │ │ │ +00053d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053db0: 207c 0a7c 2020 2020 2020 7c7b 312c 2031 |.| |{1, 1 │ │ │ │ -00053dc0: 7d7c 317c 2020 2020 2020 2020 2020 2020 }|1| │ │ │ │ +00053da0: 2020 2020 2020 7c0a 7c20 2020 2020 207c |.| | │ │ │ │ +00053db0: 7b31 2c20 317d 7c31 7c20 2020 2020 2020 {1, 1}|1| │ │ │ │ +00053dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053e00: 207c 0a7c 2020 2020 2020 2b2d 2d2d 2d2d |.| +----- │ │ │ │ -00053e10: 2d2b 2d2b 2020 2020 2020 2020 2020 2020 -+-+ │ │ │ │ +00053df0: 2020 2020 2020 7c0a 7c20 2020 2020 202b |.| + │ │ │ │ +00053e00: 2d2d 2d2d 2d2d 2b2d 2b20 2020 2020 2020 ------+-+ │ │ │ │ +00053e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053e50: 207c 0a7c 2020 2020 2020 7c7b 322c 2030 |.| |{2, 0 │ │ │ │ -00053e60: 7d7c 307c 2020 2020 2020 2020 2020 2020 }|0| │ │ │ │ +00053e40: 2020 2020 2020 7c0a 7c20 2020 2020 207c |.| | │ │ │ │ +00053e50: 7b32 2c20 307d 7c30 7c20 2020 2020 2020 {2, 0}|0| │ │ │ │ +00053e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053ea0: 207c 0a7c 2020 2020 2020 2b2d 2d2d 2d2d |.| +----- │ │ │ │ -00053eb0: 2d2b 2d2b 2020 2020 2020 2020 2020 2020 -+-+ │ │ │ │ +00053e90: 2020 2020 2020 7c0a 7c20 2020 2020 202b |.| + │ │ │ │ +00053ea0: 2d2d 2d2d 2d2d 2b2d 2b20 2020 2020 2020 ------+-+ │ │ │ │ +00053eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053ef0: 207c 0a7c 2020 2020 2020 7c7b 322c 2030 |.| |{2, 0 │ │ │ │ -00053f00: 7d7c 317c 2020 2020 2020 2020 2020 2020 }|1| │ │ │ │ +00053ee0: 2020 2020 2020 7c0a 7c20 2020 2020 207c |.| | │ │ │ │ +00053ef0: 7b32 2c20 307d 7c31 7c20 2020 2020 2020 {2, 0}|1| │ │ │ │ +00053f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053f40: 207c 0a7c 2020 2020 2020 2b2d 2d2d 2d2d |.| +----- │ │ │ │ -00053f50: 2d2b 2d2b 2020 2020 2020 2020 2020 2020 -+-+ │ │ │ │ +00053f30: 2020 2020 2020 7c0a 7c20 2020 2020 202b |.| + │ │ │ │ +00053f40: 2d2d 2d2d 2d2d 2b2d 2b20 2020 2020 2020 ------+-+ │ │ │ │ +00053f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053f90: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00053f80: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00053f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053fe0: 2d2b 0a0a 466f 7220 6578 616d 706c 6520 -+..For example │ │ │ │ -00053ff0: 7765 2068 6176 653a 0a0a 2b2d 2d2d 2d2d we have:..+----- │ │ │ │ +00053fd0: 2d2d 2d2d 2d2d 2b0a 0a46 6f72 2065 7861 ------+..For exa │ │ │ │ +00053fe0: 6d70 6c65 2077 6520 6861 7665 3a0a 0a2b mple we have:..+ │ │ │ │ +00053ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054040: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3137 203a --------+.|i17 : │ │ │ │ -00054050: 2068 6f6d 6f74 2328 4c5f 3029 2020 2020 homot#(L_0) │ │ │ │ +00054030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00054040: 6931 3720 3a20 686f 6d6f 7423 284c 5f30 i17 : homot#(L_0 │ │ │ │ +00054050: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00054060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054090: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00054080: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00054090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000540a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000540b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000540c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000540d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000540e0: 2020 2020 2020 2020 7c0a 7c6f 3137 203d |.|o17 = │ │ │ │ -000540f0: 207b 367d 207c 202d 3133 3739 3561 342b {6} | -13795a4+ │ │ │ │ -00054100: 3230 3139 6133 622b 3133 3736 3961 3262 2019a3b+13769a2b │ │ │ │ -00054110: 322b 3735 3836 6162 332b 3836 3439 6234 2+7586ab3+8649b4 │ │ │ │ -00054120: 2b36 3435 3461 3363 2d31 3031 3837 6132 +6454a3c-10187a2 │ │ │ │ -00054130: 6263 2d31 3738 3361 7c0a 7c20 2020 2020 bc-1783a|.| │ │ │ │ -00054140: 207b 367d 207c 2031 3131 3532 6134 2d31 {6} | 11152a4-1 │ │ │ │ -00054150: 3333 3661 3362 2b31 3138 3436 6132 6232 336a3b+11846a2b2 │ │ │ │ -00054160: 2b31 3032 3634 6162 332b 3631 3862 342d +10264ab3+618b4- │ │ │ │ -00054170: 3131 3035 3161 3363 2b31 3231 3239 6132 11051a3c+12129a2 │ │ │ │ -00054180: 6263 2b35 3932 3761 7c0a 7c20 2020 2020 bc+5927a|.| │ │ │ │ -00054190: 207b 367d 207c 202d 3633 3338 6134 2b31 {6} | -6338a4+1 │ │ │ │ -000541a0: 3030 3235 6133 622b 3134 3938 3761 3363 0025a3b+14987a3c │ │ │ │ -000541b0: 2d39 3935 3961 3262 632d 3131 3639 3161 -9959a2bc-11691a │ │ │ │ -000541c0: 3263 322b 3132 3333 3661 6263 322d 3737 2c2+12336abc2-77 │ │ │ │ -000541d0: 3836 6133 642d 3131 7c0a 7c20 2020 2020 86a3d-11|.| │ │ │ │ -000541e0: 207b 367d 207c 2032 3237 3561 342d 3233 {6} | 2275a4-23 │ │ │ │ -000541f0: 3961 3362 2b31 3435 3934 6132 6232 2d38 9a3b+14594a2b2-8 │ │ │ │ -00054200: 3135 3361 6233 2d31 3139 3435 6234 2d38 153ab3-11945b4-8 │ │ │ │ -00054210: 3431 3661 3363 2b36 3235 3161 3262 632d 416a3c+6251a2bc- │ │ │ │ -00054220: 3330 3233 6162 3263 7c0a 7c20 2020 2020 3023ab2c|.| │ │ │ │ -00054230: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d --------------- │ │ │ │ +000540d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000540e0: 6f31 3720 3d20 7b36 7d20 7c20 2d31 3337 o17 = {6} | -137 │ │ │ │ +000540f0: 3935 6134 2b32 3031 3961 3362 2b31 3337 95a4+2019a3b+137 │ │ │ │ +00054100: 3639 6132 6232 2b37 3538 3661 6233 2b38 69a2b2+7586ab3+8 │ │ │ │ +00054110: 3634 3962 342b 3634 3534 6133 632d 3130 649b4+6454a3c-10 │ │ │ │ +00054120: 3138 3761 3262 632d 3137 3833 617c 0a7c 187a2bc-1783a|.| │ │ │ │ +00054130: 2020 2020 2020 7b36 7d20 7c20 3131 3135 {6} | 1115 │ │ │ │ +00054140: 3261 342d 3133 3336 6133 622b 3131 3834 2a4-1336a3b+1184 │ │ │ │ +00054150: 3661 3262 322b 3130 3236 3461 6233 2b36 6a2b2+10264ab3+6 │ │ │ │ +00054160: 3138 6234 2d31 3130 3531 6133 632b 3132 18b4-11051a3c+12 │ │ │ │ +00054170: 3132 3961 3262 632b 3539 3237 617c 0a7c 129a2bc+5927a|.| │ │ │ │ +00054180: 2020 2020 2020 7b36 7d20 7c20 2d36 3333 {6} | -633 │ │ │ │ +00054190: 3861 342b 3130 3032 3561 3362 2b31 3439 8a4+10025a3b+149 │ │ │ │ +000541a0: 3837 6133 632d 3939 3539 6132 6263 2d31 87a3c-9959a2bc-1 │ │ │ │ +000541b0: 3136 3931 6132 6332 2b31 3233 3336 6162 1691a2c2+12336ab │ │ │ │ +000541c0: 6332 2d37 3738 3661 3364 2d31 317c 0a7c c2-7786a3d-11|.| │ │ │ │ +000541d0: 2020 2020 2020 7b36 7d20 7c20 3232 3735 {6} | 2275 │ │ │ │ +000541e0: 6134 2d32 3339 6133 622b 3134 3539 3461 a4-239a3b+14594a │ │ │ │ +000541f0: 3262 322d 3831 3533 6162 332d 3131 3934 2b2-8153ab3-1194 │ │ │ │ +00054200: 3562 342d 3834 3136 6133 632b 3632 3531 5b4-8416a3c+6251 │ │ │ │ +00054210: 6132 6263 2d33 3032 3361 6232 637c 0a7c a2bc-3023ab2c|.| │ │ │ │ +00054220: 2020 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d ---------- │ │ │ │ +00054230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054270: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ -00054280: 2062 3263 2b39 3231 3962 3363 2b35 3531 b2c+9219b3c+551 │ │ │ │ -00054290: 3361 3263 322b 3130 3535 3861 6263 322b 3a2c2+10558abc2+ │ │ │ │ -000542a0: 3235 3930 6232 6332 2b31 3136 3234 6133 2590b2c2+11624a3 │ │ │ │ -000542b0: 642d 3536 3033 6132 6264 2b31 3430 3538 d-5603a2bd+14058 │ │ │ │ -000542c0: 6162 3264 2d31 3236 7c0a 7c20 2020 2020 ab2d-126|.| │ │ │ │ -000542d0: 2062 3263 2b34 3839 6233 632d 3135 3338 b2c+489b3c-1538 │ │ │ │ -000542e0: 3361 3263 322b 3530 3761 6263 322d 3133 3a2c2+507abc2-13 │ │ │ │ -000542f0: 3830 3462 3263 322d 3834 3136 6163 332b 804b2c2-8416ac3+ │ │ │ │ -00054300: 3932 6334 2d31 3130 3537 6133 642d 3531 92c4-11057a3d-51 │ │ │ │ -00054310: 3133 6132 6264 2d32 7c0a 7c20 2020 2020 13a2bd-2|.| │ │ │ │ -00054320: 2035 3661 3262 642b 3439 3630 6132 6364 56a2bd+4960a2cd │ │ │ │ -00054330: 2d35 3538 3961 6263 642d 3831 3633 6163 -5589abcd-8163ac │ │ │ │ -00054340: 3264 2d31 3839 3562 6332 642b 3934 3634 2d-1895bc2d+9464 │ │ │ │ -00054350: 6132 6432 2d37 3235 3361 6264 322b 3132 a2d2-7253abd2+12 │ │ │ │ -00054360: 3634 3261 6364 322d 7c0a 7c20 2020 2020 642acd2-|.| │ │ │ │ -00054370: 202b 3539 3333 6233 632b 3932 6132 6332 +5933b3c+92a2c2 │ │ │ │ -00054380: 2b35 3334 3361 6263 322b 3337 3938 6232 +5343abc2+3798b2 │ │ │ │ -00054390: 6332 2d31 3539 3638 6133 642b 3437 3361 c2-15968a3d+473a │ │ │ │ -000543a0: 3262 642b 3133 3239 3361 6232 642d 3337 2bd+13293ab2d-37 │ │ │ │ -000543b0: 3631 6233 642d 3737 7c0a 7c20 2020 2020 61b3d-77|.| │ │ │ │ -000543c0: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d --------------- │ │ │ │ +00054260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00054270: 2020 2020 2020 6232 632b 3932 3139 6233 b2c+9219b3 │ │ │ │ +00054280: 632b 3535 3133 6132 6332 2b31 3035 3538 c+5513a2c2+10558 │ │ │ │ +00054290: 6162 6332 2b32 3539 3062 3263 322b 3131 abc2+2590b2c2+11 │ │ │ │ +000542a0: 3632 3461 3364 2d35 3630 3361 3262 642b 624a3d-5603a2bd+ │ │ │ │ +000542b0: 3134 3035 3861 6232 642d 3132 367c 0a7c 14058ab2d-126|.| │ │ │ │ +000542c0: 2020 2020 2020 6232 632b 3438 3962 3363 b2c+489b3c │ │ │ │ +000542d0: 2d31 3533 3833 6132 6332 2b35 3037 6162 -15383a2c2+507ab │ │ │ │ +000542e0: 6332 2d31 3338 3034 6232 6332 2d38 3431 c2-13804b2c2-841 │ │ │ │ +000542f0: 3661 6333 2b39 3263 342d 3131 3035 3761 6ac3+92c4-11057a │ │ │ │ +00054300: 3364 2d35 3131 3361 3262 642d 327c 0a7c 3d-5113a2bd-2|.| │ │ │ │ +00054310: 2020 2020 2020 3536 6132 6264 2b34 3936 56a2bd+496 │ │ │ │ +00054320: 3061 3263 642d 3535 3839 6162 6364 2d38 0a2cd-5589abcd-8 │ │ │ │ +00054330: 3136 3361 6332 642d 3138 3935 6263 3264 163ac2d-1895bc2d │ │ │ │ +00054340: 2b39 3436 3461 3264 322d 3732 3533 6162 +9464a2d2-7253ab │ │ │ │ +00054350: 6432 2b31 3236 3432 6163 6432 2d7c 0a7c d2+12642acd2-|.| │ │ │ │ +00054360: 2020 2020 2020 2b35 3933 3362 3363 2b39 +5933b3c+9 │ │ │ │ +00054370: 3261 3263 322b 3533 3433 6162 6332 2b33 2a2c2+5343abc2+3 │ │ │ │ +00054380: 3739 3862 3263 322d 3135 3936 3861 3364 798b2c2-15968a3d │ │ │ │ +00054390: 2b34 3733 6132 6264 2b31 3332 3933 6162 +473a2bd+13293ab │ │ │ │ +000543a0: 3264 2d33 3736 3162 3364 2d37 377c 0a7c 2d-3761b3d-77|.| │ │ │ │ +000543b0: 2020 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d ---------- │ │ │ │ +000543c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000543d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000543e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000543f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054400: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ -00054410: 2031 3562 3364 2b37 3836 3961 3263 642d 15b3d+7869a2cd- │ │ │ │ -00054420: 3230 3532 6162 6364 2d31 3833 3162 3263 2052abcd-1831b2c │ │ │ │ -00054430: 642b 3630 3432 6163 3264 2d32 3536 3162 d+6042ac2d-2561b │ │ │ │ -00054440: 6332 642d 3837 3039 6132 6432 2d31 3332 c2d-8709a2d2-132 │ │ │ │ -00054450: 3139 6162 6432 2b34 7c0a 7c20 2020 2020 19abd2+4|.| │ │ │ │ -00054460: 2037 3632 6162 3264 2b31 3430 3935 6233 762ab2d+14095b3 │ │ │ │ -00054470: 642d 3135 3838 6132 6364 2b32 3030 3061 d-1588a2cd+2000a │ │ │ │ -00054480: 6263 642d 3230 3830 6232 6364 2b39 3137 bcd-2080b2cd+917 │ │ │ │ -00054490: 3561 6332 642d 3634 3962 6332 642b 3838 5ac2d-649bc2d+88 │ │ │ │ -000544a0: 3239 6333 642b 3231 7c0a 7c20 2020 2020 29c3d+21|.| │ │ │ │ -000544b0: 2031 3935 3862 6364 3220 2020 2020 2020 1958bcd2 │ │ │ │ +000543f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00054400: 2020 2020 2020 3135 6233 642b 3738 3639 15b3d+7869 │ │ │ │ +00054410: 6132 6364 2d32 3035 3261 6263 642d 3138 a2cd-2052abcd-18 │ │ │ │ +00054420: 3331 6232 6364 2b36 3034 3261 6332 642d 31b2cd+6042ac2d- │ │ │ │ +00054430: 3235 3631 6263 3264 2d38 3730 3961 3264 2561bc2d-8709a2d │ │ │ │ +00054440: 322d 3133 3231 3961 6264 322b 347c 0a7c 2-13219abd2+4|.| │ │ │ │ +00054450: 2020 2020 2020 3736 3261 6232 642b 3134 762ab2d+14 │ │ │ │ +00054460: 3039 3562 3364 2d31 3538 3861 3263 642b 095b3d-1588a2cd+ │ │ │ │ +00054470: 3230 3030 6162 6364 2d32 3038 3062 3263 2000abcd-2080b2c │ │ │ │ +00054480: 642b 3931 3735 6163 3264 2d36 3439 6263 d+9175ac2d-649bc │ │ │ │ +00054490: 3264 2b38 3832 3963 3364 2b32 317c 0a7c 2d+8829c3d+21|.| │ │ │ │ +000544a0: 2020 2020 2020 3139 3538 6263 6432 2020 1958bcd2 │ │ │ │ +000544b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000544c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000544d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000544e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000544f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054500: 2031 3761 3263 642d 3733 3839 6162 6364 17a2cd-7389abcd │ │ │ │ -00054510: 2b34 3732 3362 3263 642d 3133 3236 3261 +4723b2cd-13262a │ │ │ │ -00054520: 6332 642b 3534 3331 6263 3264 2b31 3132 c2d+5431bc2d+112 │ │ │ │ -00054530: 3734 6132 6432 2d32 3137 6162 6432 2b31 74a2d2-217abd2+1 │ │ │ │ -00054540: 3236 3162 3264 322b 7c0a 7c20 2020 2020 261b2d2+|.| │ │ │ │ -00054550: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d --------------- │ │ │ │ +000544e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000544f0: 2020 2020 2020 3137 6132 6364 2d37 3338 17a2cd-738 │ │ │ │ +00054500: 3961 6263 642b 3437 3233 6232 6364 2d31 9abcd+4723b2cd-1 │ │ │ │ +00054510: 3332 3632 6163 3264 2b35 3433 3162 6332 3262ac2d+5431bc2 │ │ │ │ +00054520: 642b 3131 3237 3461 3264 322d 3231 3761 d+11274a2d2-217a │ │ │ │ +00054530: 6264 322b 3132 3631 6232 6432 2b7c 0a7c bd2+1261b2d2+|.| │ │ │ │ +00054540: 2020 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d ---------- │ │ │ │ +00054550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054590: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ -000545a0: 2032 3039 6232 6432 2b31 3232 3235 6163 209b2d2+12225ac │ │ │ │ -000545b0: 6432 2d32 3630 3562 6364 322d 3932 6332 d2-2605bcd2-92c2 │ │ │ │ -000545c0: 6432 2b31 3539 3638 6164 332b 3134 3836 d2+15968ad3+1486 │ │ │ │ -000545d0: 3062 6433 2d38 3832 3963 6433 2d31 3132 0bd3-8829cd3-112 │ │ │ │ -000545e0: 3734 6434 207c 2020 7c0a 7c20 2020 2020 74d4 | |.| │ │ │ │ -000545f0: 2036 3461 3264 322b 3836 3335 6162 6432 64a2d2+8635abd2 │ │ │ │ -00054600: 2d37 3136 3162 3264 322b 3939 3761 6364 -7161b2d2+997acd │ │ │ │ -00054610: 322b 3330 3135 6263 6432 2b31 3132 3734 2+3015bcd2+11274 │ │ │ │ -00054620: 6332 6432 2020 2020 2020 2020 2020 2020 c2d2 │ │ │ │ -00054630: 2020 2020 207c 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +00054580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00054590: 2020 2020 2020 3230 3962 3264 322b 3132 209b2d2+12 │ │ │ │ +000545a0: 3232 3561 6364 322d 3236 3035 6263 6432 225acd2-2605bcd2 │ │ │ │ +000545b0: 2d39 3263 3264 322b 3135 3936 3861 6433 -92c2d2+15968ad3 │ │ │ │ +000545c0: 2b31 3438 3630 6264 332d 3838 3239 6364 +14860bd3-8829cd │ │ │ │ +000545d0: 332d 3131 3237 3464 3420 7c20 207c 0a7c 3-11274d4 | |.| │ │ │ │ +000545e0: 2020 2020 2020 3634 6132 6432 2b38 3633 64a2d2+863 │ │ │ │ +000545f0: 3561 6264 322d 3731 3631 6232 6432 2b39 5abd2-7161b2d2+9 │ │ │ │ +00054600: 3937 6163 6432 2b33 3031 3562 6364 322b 97acd2+3015bcd2+ │ │ │ │ +00054610: 3131 3237 3463 3264 3220 2020 2020 2020 11274c2d2 │ │ │ │ +00054620: 2020 2020 2020 2020 2020 7c20 207c 0a7c | |.| │ │ │ │ +00054630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054680: 2020 2020 207c 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ -00054690: 2038 3230 3161 6364 322d 3134 3038 3062 8201acd2-14080b │ │ │ │ -000546a0: 6364 3220 2020 2020 2020 2020 2020 2020 cd2 │ │ │ │ +00054670: 2020 2020 2020 2020 2020 7c20 207c 0a7c | |.| │ │ │ │ +00054680: 2020 2020 2020 3832 3031 6163 6432 2d31 8201acd2-1 │ │ │ │ +00054690: 3430 3830 6263 6432 2020 2020 2020 2020 4080bcd2 │ │ │ │ +000546a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000546b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000546c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000546d0: 2020 2020 207c 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +000546c0: 2020 2020 2020 2020 2020 7c20 207c 0a7c | |.| │ │ │ │ +000546d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000546e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000546f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054720: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054730: 2020 2020 2020 2020 2034 2020 2020 2020 4 │ │ │ │ -00054740: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00054710: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00054720: 2020 2020 2020 2020 2020 2020 2020 3420 4 │ │ │ │ +00054730: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +00054740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054770: 2020 2020 2020 2020 7c0a 7c6f 3137 203a |.|o17 : │ │ │ │ -00054780: 204d 6174 7269 7820 5320 203c 2d2d 2053 Matrix S <-- S │ │ │ │ +00054760: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00054770: 6f31 3720 3a20 4d61 7472 6978 2053 2020 o17 : Matrix S │ │ │ │ +00054780: 3c2d 2d20 5320 2020 2020 2020 2020 2020 <-- S │ │ │ │ 00054790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000547a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000547b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000547c0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000547b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000547c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000547d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000547e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000547f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054810: 2d2d 2d2d 2d2d 2d2d 2b0a 0a42 7574 2061 --------+..But a │ │ │ │ -00054820: 6c6c 2074 6865 2068 6f6d 6f74 6f70 6965 ll the homotopie │ │ │ │ -00054830: 7320 6172 6520 6d69 6e69 6d61 6c20 696e s are minimal in │ │ │ │ -00054840: 2074 6869 7320 6361 7365 3a0a 0a2b 2d2d this case:..+-- │ │ │ │ +00054800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00054810: 4275 7420 616c 6c20 7468 6520 686f 6d6f But all the homo │ │ │ │ +00054820: 746f 7069 6573 2061 7265 206d 696e 696d topies are minim │ │ │ │ +00054830: 616c 2069 6e20 7468 6973 2063 6173 653a al in this case: │ │ │ │ +00054840: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ 00054850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054870: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3138 ----------+.|i18 │ │ │ │ -00054880: 203a 206b 3120 3d20 535e 312f 2869 6465 : k1 = S^1/(ide │ │ │ │ -00054890: 616c 2076 6172 7320 5329 3b20 2020 2020 al vars S); │ │ │ │ -000548a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00054860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00054870: 0a7c 6931 3820 3a20 6b31 203d 2053 5e31 .|i18 : k1 = S^1 │ │ │ │ +00054880: 2f28 6964 6561 6c20 7661 7273 2053 293b /(ideal vars S); │ │ │ │ +00054890: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000548a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000548b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000548c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000548d0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3139 203a --------+.|i19 : │ │ │ │ -000548e0: 2073 656c 6563 7428 6b65 7973 2068 6f6d select(keys hom │ │ │ │ -000548f0: 6f74 2c6b 2d3e 286b 312a 2a68 6f6d 6f74 ot,k->(k1**homot │ │ │ │ -00054900: 236b 2921 3d30 297c 0a7c 2020 2020 2020 #k)!=0)|.| │ │ │ │ +000548c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000548d0: 6931 3920 3a20 7365 6c65 6374 286b 6579 i19 : select(key │ │ │ │ +000548e0: 7320 686f 6d6f 742c 6b2d 3e28 6b31 2a2a s homot,k->(k1** │ │ │ │ +000548f0: 686f 6d6f 7423 6b29 213d 3029 7c0a 7c20 homot#k)!=0)|.| │ │ │ │ +00054900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054930: 2020 2020 2020 7c0a 7c6f 3139 203d 207b |.|o19 = { │ │ │ │ -00054940: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ -00054950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054960: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00054920: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00054930: 3920 3d20 7b7d 2020 2020 2020 2020 2020 9 = {} │ │ │ │ +00054940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00054950: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00054960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054990: 2020 2020 7c0a 7c6f 3139 203a 204c 6973 |.|o19 : Lis │ │ │ │ -000549a0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -000549b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000549c0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00054980: 2020 2020 2020 2020 207c 0a7c 6f31 3920 |.|o19 │ │ │ │ +00054990: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +000549a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000549b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000549c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000549d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000549e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000549f0: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ -00054a00: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -00054a10: 6520 6d61 6b65 486f 6d6f 746f 7069 6573 e makeHomotopies │ │ │ │ -00054a20: 313a 206d 616b 6548 6f6d 6f74 6f70 6965 1: makeHomotopie │ │ │ │ -00054a30: 7331 2c20 2d2d 2072 6574 7572 6e73 2061 s1, -- returns a │ │ │ │ -00054a40: 2073 7973 7465 6d20 6f66 2066 6972 7374 system of first │ │ │ │ -00054a50: 0a20 2020 2068 6f6d 6f74 6f70 6965 730a . homotopies. │ │ │ │ -00054a60: 0a57 6179 7320 746f 2075 7365 206d 616b .Ways to use mak │ │ │ │ -00054a70: 6548 6f6d 6f74 6f70 6965 733a 0a3d 3d3d eHomotopies:.=== │ │ │ │ -00054a80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00054a90: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 226d ========.. * "m │ │ │ │ -00054aa0: 616b 6548 6f6d 6f74 6f70 6965 7328 4d61 akeHomotopies(Ma │ │ │ │ -00054ab0: 7472 6978 2c43 6f6d 706c 6578 2922 0a20 trix,Complex)". │ │ │ │ -00054ac0: 202a 2022 6d61 6b65 486f 6d6f 746f 7069 * "makeHomotopi │ │ │ │ -00054ad0: 6573 284d 6174 7269 782c 436f 6d70 6c65 es(Matrix,Comple │ │ │ │ -00054ae0: 782c 5a5a 2922 0a0a 466f 7220 7468 6520 x,ZZ)"..For the │ │ │ │ -00054af0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -00054b00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -00054b10: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -00054b20: 6d61 6b65 486f 6d6f 746f 7069 6573 3a20 makeHomotopies: │ │ │ │ -00054b30: 6d61 6b65 486f 6d6f 746f 7069 6573 2c20 makeHomotopies, │ │ │ │ -00054b40: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -00054b50: 6420 6675 6e63 7469 6f6e 3a0a 284d 6163 d function:.(Mac │ │ │ │ -00054b60: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -00054b70: 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d Function,...---- │ │ │ │ +000549e0: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ +000549f0: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ +00054a00: 202a 6e6f 7465 206d 616b 6548 6f6d 6f74 *note makeHomot │ │ │ │ +00054a10: 6f70 6965 7331 3a20 6d61 6b65 486f 6d6f opies1: makeHomo │ │ │ │ +00054a20: 746f 7069 6573 312c 202d 2d20 7265 7475 topies1, -- retu │ │ │ │ +00054a30: 726e 7320 6120 7379 7374 656d 206f 6620 rns a system of │ │ │ │ +00054a40: 6669 7273 740a 2020 2020 686f 6d6f 746f first. homoto │ │ │ │ +00054a50: 7069 6573 0a0a 5761 7973 2074 6f20 7573 pies..Ways to us │ │ │ │ +00054a60: 6520 6d61 6b65 486f 6d6f 746f 7069 6573 e makeHomotopies │ │ │ │ +00054a70: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +00054a80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +00054a90: 202a 2022 6d61 6b65 486f 6d6f 746f 7069 * "makeHomotopi │ │ │ │ +00054aa0: 6573 284d 6174 7269 782c 436f 6d70 6c65 es(Matrix,Comple │ │ │ │ +00054ab0: 7829 220a 2020 2a20 226d 616b 6548 6f6d x)". * "makeHom │ │ │ │ +00054ac0: 6f74 6f70 6965 7328 4d61 7472 6978 2c43 otopies(Matrix,C │ │ │ │ +00054ad0: 6f6d 706c 6578 2c5a 5a29 220a 0a46 6f72 omplex,ZZ)"..For │ │ │ │ +00054ae0: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +00054af0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00054b00: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +00054b10: 6e6f 7465 206d 616b 6548 6f6d 6f74 6f70 note makeHomotop │ │ │ │ +00054b20: 6965 733a 206d 616b 6548 6f6d 6f74 6f70 ies: makeHomotop │ │ │ │ +00054b30: 6965 732c 2069 7320 6120 2a6e 6f74 6520 ies, is a *note │ │ │ │ +00054b40: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ +00054b50: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +00054b60: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +00054b70: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 00054b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -00054bd0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -00054be0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -00054bf0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -00054c00: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -00054c10: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -00054c20: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -00054c30: 6573 2f0a 436f 6d70 6c65 7465 496e 7465 es/.CompleteInte │ │ │ │ -00054c40: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ -00054c50: 6f6e 732e 6d32 3a33 3737 313a 302e 0a1f ons.m2:3771:0... │ │ │ │ -00054c60: 0a46 696c 653a 2043 6f6d 706c 6574 6549 .File: CompleteI │ │ │ │ -00054c70: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ -00054c80: 7574 696f 6e73 2e69 6e66 6f2c 204e 6f64 utions.info, Nod │ │ │ │ -00054c90: 653a 206d 616b 6548 6f6d 6f74 6f70 6965 e: makeHomotopie │ │ │ │ -00054ca0: 7331 2c20 4e65 7874 3a20 6d61 6b65 486f s1, Next: makeHo │ │ │ │ -00054cb0: 6d6f 746f 7069 6573 4f6e 486f 6d6f 6c6f motopiesOnHomolo │ │ │ │ -00054cc0: 6779 2c20 5072 6576 3a20 6d61 6b65 486f gy, Prev: makeHo │ │ │ │ -00054cd0: 6d6f 746f 7069 6573 2c20 5570 3a20 546f motopies, Up: To │ │ │ │ -00054ce0: 700a 0a6d 616b 6548 6f6d 6f74 6f70 6965 p..makeHomotopie │ │ │ │ -00054cf0: 7331 202d 2d20 7265 7475 726e 7320 6120 s1 -- returns a │ │ │ │ -00054d00: 7379 7374 656d 206f 6620 6669 7273 7420 system of first │ │ │ │ -00054d10: 686f 6d6f 746f 7069 6573 0a2a 2a2a 2a2a homotopies.***** │ │ │ │ +00054bc0: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +00054bd0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +00054be0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +00054bf0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +00054c00: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +00054c10: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +00054c20: 6163 6b61 6765 732f 0a43 6f6d 706c 6574 ackages/.Complet │ │ │ │ +00054c30: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ +00054c40: 6f6c 7574 696f 6e73 2e6d 323a 3337 3731 olutions.m2:3771 │ │ │ │ +00054c50: 3a30 2e0a 1f0a 4669 6c65 3a20 436f 6d70 :0....File: Comp │ │ │ │ +00054c60: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ +00054c70: 5265 736f 6c75 7469 6f6e 732e 696e 666f Resolutions.info │ │ │ │ +00054c80: 2c20 4e6f 6465 3a20 6d61 6b65 486f 6d6f , Node: makeHomo │ │ │ │ +00054c90: 746f 7069 6573 312c 204e 6578 743a 206d topies1, Next: m │ │ │ │ +00054ca0: 616b 6548 6f6d 6f74 6f70 6965 734f 6e48 akeHomotopiesOnH │ │ │ │ +00054cb0: 6f6d 6f6c 6f67 792c 2050 7265 763a 206d omology, Prev: m │ │ │ │ +00054cc0: 616b 6548 6f6d 6f74 6f70 6965 732c 2055 akeHomotopies, U │ │ │ │ +00054cd0: 703a 2054 6f70 0a0a 6d61 6b65 486f 6d6f p: Top..makeHomo │ │ │ │ +00054ce0: 746f 7069 6573 3120 2d2d 2072 6574 7572 topies1 -- retur │ │ │ │ +00054cf0: 6e73 2061 2073 7973 7465 6d20 6f66 2066 ns a system of f │ │ │ │ +00054d00: 6972 7374 2068 6f6d 6f74 6f70 6965 730a irst homotopies. │ │ │ │ +00054d10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00054d20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00054d30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00054d40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00054d50: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ -00054d60: 2020 2020 2020 2020 4820 3d20 6d61 6b65 H = make │ │ │ │ -00054d70: 486f 6d6f 746f 7069 6573 3128 662c 462c Homotopies1(f,F, │ │ │ │ -00054d80: 6429 0a20 202a 2049 6e70 7574 733a 0a20 d). * Inputs:. │ │ │ │ -00054d90: 2020 2020 202a 2066 2c20 6120 2a6e 6f74 * f, a *not │ │ │ │ -00054da0: 6520 6d61 7472 6978 3a20 284d 6163 6175 e matrix: (Macau │ │ │ │ -00054db0: 6c61 7932 446f 6329 4d61 7472 6978 2c2c lay2Doc)Matrix,, │ │ │ │ -00054dc0: 2031 786e 206d 6174 7269 7820 6f66 2065 1xn matrix of e │ │ │ │ -00054dd0: 6c65 6d65 6e74 7320 6f66 2053 0a20 2020 lements of S. │ │ │ │ -00054de0: 2020 202a 2046 2c20 6120 2a6e 6f74 6520 * F, a *note │ │ │ │ -00054df0: 636f 6d70 6c65 783a 2028 436f 6d70 6c65 complex: (Comple │ │ │ │ -00054e00: 7865 7329 436f 6d70 6c65 782c 2c20 6164 xes)Complex,, ad │ │ │ │ -00054e10: 6d69 7474 696e 6720 686f 6d6f 746f 7069 mitting homotopi │ │ │ │ -00054e20: 6573 2066 6f72 2074 6865 0a20 2020 2020 es for the. │ │ │ │ -00054e30: 2020 2065 6e74 7269 6573 206f 6620 660a entries of f. │ │ │ │ -00054e40: 2020 2020 2020 2a20 642c 2061 6e20 2a6e * d, an *n │ │ │ │ -00054e50: 6f74 6520 696e 7465 6765 723a 2028 4d61 ote integer: (Ma │ │ │ │ -00054e60: 6361 756c 6179 3244 6f63 295a 5a2c 2c20 caulay2Doc)ZZ,, │ │ │ │ -00054e70: 686f 7720 6661 7220 6261 636b 2074 6f20 how far back to │ │ │ │ -00054e80: 636f 6d70 7574 6520 7468 650a 2020 2020 compute the. │ │ │ │ -00054e90: 2020 2020 686f 6d6f 746f 7069 6573 2028 homotopies ( │ │ │ │ -00054ea0: 6465 6661 756c 7473 2074 6f20 6c65 6e67 defaults to leng │ │ │ │ -00054eb0: 7468 206f 6620 4629 0a20 202a 204f 7574 th of F). * Out │ │ │ │ -00054ec0: 7075 7473 3a0a 2020 2020 2020 2a20 482c puts:. * H, │ │ │ │ -00054ed0: 2061 202a 6e6f 7465 2068 6173 6820 7461 a *note hash ta │ │ │ │ -00054ee0: 626c 653a 2028 4d61 6361 756c 6179 3244 ble: (Macaulay2D │ │ │ │ -00054ef0: 6f63 2948 6173 6854 6162 6c65 2c2c 2067 oc)HashTable,, g │ │ │ │ -00054f00: 6976 6573 2074 6865 2068 6f6d 6f74 6f70 ives the homotop │ │ │ │ -00054f10: 790a 2020 2020 2020 2020 6672 6f6d 2046 y. from F │ │ │ │ -00054f20: 5f69 2063 6f72 7265 7370 6f6e 6469 6e67 _i corresponding │ │ │ │ -00054f30: 2074 6f20 665f 6a20 6173 2074 6865 2076 to f_j as the v │ │ │ │ -00054f40: 616c 7565 2024 4823 5c7b 6a2c 695c 7d24 alue $H#\{j,i\}$ │ │ │ │ -00054f50: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -00054f60: 3d3d 3d3d 3d3d 3d3d 3d0a 0a53 616d 6520 =========..Same │ │ │ │ -00054f70: 6173 206d 616b 6548 6f6d 6f74 6f70 6965 as makeHomotopie │ │ │ │ -00054f80: 732c 2062 7574 206f 6e6c 7920 636f 6d70 s, but only comp │ │ │ │ -00054f90: 7574 6573 2074 6865 206f 7264 696e 6172 utes the ordinar │ │ │ │ -00054fa0: 7920 686f 6d6f 746f 7069 6573 2c20 6e6f y homotopies, no │ │ │ │ -00054fb0: 7420 7468 650a 6869 6768 6572 206f 6e65 t the.higher one │ │ │ │ -00054fc0: 732e 2055 7365 6420 696e 2065 7874 6572 s. Used in exter │ │ │ │ -00054fd0: 696f 7254 6f72 4d6f 6475 6c65 0a0a 5365 iorTorModule..Se │ │ │ │ -00054fe0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -00054ff0: 0a20 202a 202a 6e6f 7465 206d 616b 6548 . * *note makeH │ │ │ │ -00055000: 6f6d 6f74 6f70 6965 733a 206d 616b 6548 omotopies: makeH │ │ │ │ -00055010: 6f6d 6f74 6f70 6965 732c 202d 2d20 7265 omotopies, -- re │ │ │ │ -00055020: 7475 726e 7320 6120 7379 7374 656d 206f turns a system o │ │ │ │ -00055030: 6620 6869 6768 6572 0a20 2020 2068 6f6d f higher. hom │ │ │ │ -00055040: 6f74 6f70 6965 730a 2020 2a20 2a6e 6f74 otopies. * *not │ │ │ │ -00055050: 6520 6578 7465 7269 6f72 546f 724d 6f64 e exteriorTorMod │ │ │ │ -00055060: 756c 653a 2065 7874 6572 696f 7254 6f72 ule: exteriorTor │ │ │ │ -00055070: 4d6f 6475 6c65 2c20 2d2d 2054 6f72 2061 Module, -- Tor a │ │ │ │ -00055080: 7320 6120 6d6f 6475 6c65 206f 7665 7220 s a module over │ │ │ │ -00055090: 616e 0a20 2020 2065 7874 6572 696f 7220 an. exterior │ │ │ │ -000550a0: 616c 6765 6272 6120 6f72 2062 6967 7261 algebra or bigra │ │ │ │ -000550b0: 6465 6420 616c 6765 6272 610a 0a57 6179 ded algebra..Way │ │ │ │ -000550c0: 7320 746f 2075 7365 206d 616b 6548 6f6d s to use makeHom │ │ │ │ -000550d0: 6f74 6f70 6965 7331 3a0a 3d3d 3d3d 3d3d otopies1:.====== │ │ │ │ -000550e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000550f0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 226d 616b ======.. * "mak │ │ │ │ -00055100: 6548 6f6d 6f74 6f70 6965 7331 284d 6174 eHomotopies1(Mat │ │ │ │ -00055110: 7269 782c 436f 6d70 6c65 7829 220a 2020 rix,Complex)". │ │ │ │ -00055120: 2a20 226d 616b 6548 6f6d 6f74 6f70 6965 * "makeHomotopie │ │ │ │ -00055130: 7331 284d 6174 7269 782c 436f 6d70 6c65 s1(Matrix,Comple │ │ │ │ -00055140: 782c 5a5a 2922 0a0a 466f 7220 7468 6520 x,ZZ)"..For the │ │ │ │ -00055150: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -00055160: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -00055170: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -00055180: 6d61 6b65 486f 6d6f 746f 7069 6573 313a makeHomotopies1: │ │ │ │ -00055190: 206d 616b 6548 6f6d 6f74 6f70 6965 7331 makeHomotopies1 │ │ │ │ -000551a0: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ -000551b0: 686f 6420 6675 6e63 7469 6f6e 3a0a 284d hod function:.(M │ │ │ │ -000551c0: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -000551d0: 6f64 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d odFunction,...-- │ │ │ │ +00054d40: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ +00054d50: 6765 3a20 0a20 2020 2020 2020 2048 203d ge: . H = │ │ │ │ +00054d60: 206d 616b 6548 6f6d 6f74 6f70 6965 7331 makeHomotopies1 │ │ │ │ +00054d70: 2866 2c46 2c64 290a 2020 2a20 496e 7075 (f,F,d). * Inpu │ │ │ │ +00054d80: 7473 3a0a 2020 2020 2020 2a20 662c 2061 ts:. * f, a │ │ │ │ +00054d90: 202a 6e6f 7465 206d 6174 7269 783a 2028 *note matrix: ( │ │ │ │ +00054da0: 4d61 6361 756c 6179 3244 6f63 294d 6174 Macaulay2Doc)Mat │ │ │ │ +00054db0: 7269 782c 2c20 3178 6e20 6d61 7472 6978 rix,, 1xn matrix │ │ │ │ +00054dc0: 206f 6620 656c 656d 656e 7473 206f 6620 of elements of │ │ │ │ +00054dd0: 530a 2020 2020 2020 2a20 462c 2061 202a S. * F, a * │ │ │ │ +00054de0: 6e6f 7465 2063 6f6d 706c 6578 3a20 2843 note complex: (C │ │ │ │ +00054df0: 6f6d 706c 6578 6573 2943 6f6d 706c 6578 omplexes)Complex │ │ │ │ +00054e00: 2c2c 2061 646d 6974 7469 6e67 2068 6f6d ,, admitting hom │ │ │ │ +00054e10: 6f74 6f70 6965 7320 666f 7220 7468 650a otopies for the. │ │ │ │ +00054e20: 2020 2020 2020 2020 656e 7472 6965 7320 entries │ │ │ │ +00054e30: 6f66 2066 0a20 2020 2020 202a 2064 2c20 of f. * d, │ │ │ │ +00054e40: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ +00054e50: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00054e60: 5a5a 2c2c 2068 6f77 2066 6172 2062 6163 ZZ,, how far bac │ │ │ │ +00054e70: 6b20 746f 2063 6f6d 7075 7465 2074 6865 k to compute the │ │ │ │ +00054e80: 0a20 2020 2020 2020 2068 6f6d 6f74 6f70 . homotop │ │ │ │ +00054e90: 6965 7320 2864 6566 6175 6c74 7320 746f ies (defaults to │ │ │ │ +00054ea0: 206c 656e 6774 6820 6f66 2046 290a 2020 length of F). │ │ │ │ +00054eb0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +00054ec0: 202a 2048 2c20 6120 2a6e 6f74 6520 6861 * H, a *note ha │ │ │ │ +00054ed0: 7368 2074 6162 6c65 3a20 284d 6163 6175 sh table: (Macau │ │ │ │ +00054ee0: 6c61 7932 446f 6329 4861 7368 5461 626c lay2Doc)HashTabl │ │ │ │ +00054ef0: 652c 2c20 6769 7665 7320 7468 6520 686f e,, gives the ho │ │ │ │ +00054f00: 6d6f 746f 7079 0a20 2020 2020 2020 2066 motopy. f │ │ │ │ +00054f10: 726f 6d20 465f 6920 636f 7272 6573 706f rom F_i correspo │ │ │ │ +00054f20: 6e64 696e 6720 746f 2066 5f6a 2061 7320 nding to f_j as │ │ │ │ +00054f30: 7468 6520 7661 6c75 6520 2448 235c 7b6a the value $H#\{j │ │ │ │ +00054f40: 2c69 5c7d 240a 0a44 6573 6372 6970 7469 ,i\}$..Descripti │ │ │ │ +00054f50: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +00054f60: 5361 6d65 2061 7320 6d61 6b65 486f 6d6f Same as makeHomo │ │ │ │ +00054f70: 746f 7069 6573 2c20 6275 7420 6f6e 6c79 topies, but only │ │ │ │ +00054f80: 2063 6f6d 7075 7465 7320 7468 6520 6f72 computes the or │ │ │ │ +00054f90: 6469 6e61 7279 2068 6f6d 6f74 6f70 6965 dinary homotopie │ │ │ │ +00054fa0: 732c 206e 6f74 2074 6865 0a68 6967 6865 s, not the.highe │ │ │ │ +00054fb0: 7220 6f6e 6573 2e20 5573 6564 2069 6e20 r ones. Used in │ │ │ │ +00054fc0: 6578 7465 7269 6f72 546f 724d 6f64 756c exteriorTorModul │ │ │ │ +00054fd0: 650a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d e..See also.==== │ │ │ │ +00054fe0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +00054ff0: 6d61 6b65 486f 6d6f 746f 7069 6573 3a20 makeHomotopies: │ │ │ │ +00055000: 6d61 6b65 486f 6d6f 746f 7069 6573 2c20 makeHomotopies, │ │ │ │ +00055010: 2d2d 2072 6574 7572 6e73 2061 2073 7973 -- returns a sys │ │ │ │ +00055020: 7465 6d20 6f66 2068 6967 6865 720a 2020 tem of higher. │ │ │ │ +00055030: 2020 686f 6d6f 746f 7069 6573 0a20 202a homotopies. * │ │ │ │ +00055040: 202a 6e6f 7465 2065 7874 6572 696f 7254 *note exteriorT │ │ │ │ +00055050: 6f72 4d6f 6475 6c65 3a20 6578 7465 7269 orModule: exteri │ │ │ │ +00055060: 6f72 546f 724d 6f64 756c 652c 202d 2d20 orTorModule, -- │ │ │ │ +00055070: 546f 7220 6173 2061 206d 6f64 756c 6520 Tor as a module │ │ │ │ +00055080: 6f76 6572 2061 6e0a 2020 2020 6578 7465 over an. exte │ │ │ │ +00055090: 7269 6f72 2061 6c67 6562 7261 206f 7220 rior algebra or │ │ │ │ +000550a0: 6269 6772 6164 6564 2061 6c67 6562 7261 bigraded algebra │ │ │ │ +000550b0: 0a0a 5761 7973 2074 6f20 7573 6520 6d61 ..Ways to use ma │ │ │ │ +000550c0: 6b65 486f 6d6f 746f 7069 6573 313a 0a3d keHomotopies1:.= │ │ │ │ +000550d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000550e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +000550f0: 2022 6d61 6b65 486f 6d6f 746f 7069 6573 "makeHomotopies │ │ │ │ +00055100: 3128 4d61 7472 6978 2c43 6f6d 706c 6578 1(Matrix,Complex │ │ │ │ +00055110: 2922 0a20 202a 2022 6d61 6b65 486f 6d6f )". * "makeHomo │ │ │ │ +00055120: 746f 7069 6573 3128 4d61 7472 6978 2c43 topies1(Matrix,C │ │ │ │ +00055130: 6f6d 706c 6578 2c5a 5a29 220a 0a46 6f72 omplex,ZZ)"..For │ │ │ │ +00055140: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +00055150: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00055160: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +00055170: 6e6f 7465 206d 616b 6548 6f6d 6f74 6f70 note makeHomotop │ │ │ │ +00055180: 6965 7331 3a20 6d61 6b65 486f 6d6f 746f ies1: makeHomoto │ │ │ │ +00055190: 7069 6573 312c 2069 7320 6120 2a6e 6f74 pies1, is a *not │ │ │ │ +000551a0: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ +000551b0: 6e3a 0a28 4d61 6361 756c 6179 3244 6f63 n:.(Macaulay2Doc │ │ │ │ +000551c0: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ +000551d0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 000551e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000551f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00055220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -00055230: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -00055240: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -00055250: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -00055260: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -00055270: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -00055280: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -00055290: 6167 6573 2f0a 436f 6d70 6c65 7465 496e ages/.CompleteIn │ │ │ │ -000552a0: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ -000552b0: 7469 6f6e 732e 6d32 3a33 3830 313a 302e tions.m2:3801:0. │ │ │ │ -000552c0: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ -000552d0: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ -000552e0: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ -000552f0: 6f64 653a 206d 616b 6548 6f6d 6f74 6f70 ode: makeHomotop │ │ │ │ -00055300: 6965 734f 6e48 6f6d 6f6c 6f67 792c 204e iesOnHomology, N │ │ │ │ -00055310: 6578 743a 206d 616b 654d 6f64 756c 652c ext: makeModule, │ │ │ │ -00055320: 2050 7265 763a 206d 616b 6548 6f6d 6f74 Prev: makeHomot │ │ │ │ -00055330: 6f70 6965 7331 2c20 5570 3a20 546f 700a opies1, Up: Top. │ │ │ │ -00055340: 0a6d 616b 6548 6f6d 6f74 6f70 6965 734f .makeHomotopiesO │ │ │ │ -00055350: 6e48 6f6d 6f6c 6f67 7920 2d2d 2048 6f6d nHomology -- Hom │ │ │ │ -00055360: 6f6c 6f67 7920 6f66 2061 2063 6f6d 706c ology of a compl │ │ │ │ -00055370: 6578 2061 7320 6578 7465 7269 6f72 206d ex as exterior m │ │ │ │ -00055380: 6f64 756c 650a 2a2a 2a2a 2a2a 2a2a 2a2a odule.********** │ │ │ │ +00055220: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00055230: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00055240: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +00055250: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +00055260: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +00055270: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +00055280: 2f70 6163 6b61 6765 732f 0a43 6f6d 706c /packages/.Compl │ │ │ │ +00055290: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ +000552a0: 6573 6f6c 7574 696f 6e73 2e6d 323a 3338 esolutions.m2:38 │ │ │ │ +000552b0: 3031 3a30 2e0a 1f0a 4669 6c65 3a20 436f 01:0....File: Co │ │ │ │ +000552c0: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ +000552d0: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ +000552e0: 666f 2c20 4e6f 6465 3a20 6d61 6b65 486f fo, Node: makeHo │ │ │ │ +000552f0: 6d6f 746f 7069 6573 4f6e 486f 6d6f 6c6f motopiesOnHomolo │ │ │ │ +00055300: 6779 2c20 4e65 7874 3a20 6d61 6b65 4d6f gy, Next: makeMo │ │ │ │ +00055310: 6475 6c65 2c20 5072 6576 3a20 6d61 6b65 dule, Prev: make │ │ │ │ +00055320: 486f 6d6f 746f 7069 6573 312c 2055 703a Homotopies1, Up: │ │ │ │ +00055330: 2054 6f70 0a0a 6d61 6b65 486f 6d6f 746f Top..makeHomoto │ │ │ │ +00055340: 7069 6573 4f6e 486f 6d6f 6c6f 6779 202d piesOnHomology - │ │ │ │ +00055350: 2d20 486f 6d6f 6c6f 6779 206f 6620 6120 - Homology of a │ │ │ │ +00055360: 636f 6d70 6c65 7820 6173 2065 7874 6572 complex as exter │ │ │ │ +00055370: 696f 7220 6d6f 6475 6c65 0a2a 2a2a 2a2a ior module.***** │ │ │ │ +00055380: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00055390: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000553a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000553b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000553c0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -000553d0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -000553e0: 2848 2c68 2920 3d20 6d61 6b65 486f 6d6f (H,h) = makeHomo │ │ │ │ -000553f0: 746f 7069 6573 4f6e 486f 6d6f 6c6f 6779 topiesOnHomology │ │ │ │ -00055400: 2866 662c 2043 290a 2020 2a20 496e 7075 (ff, C). * Inpu │ │ │ │ -00055410: 7473 3a0a 2020 2020 2020 2a20 6666 2c20 ts:. * ff, │ │ │ │ -00055420: 6120 2a6e 6f74 6520 6d61 7472 6978 3a20 a *note matrix: │ │ │ │ -00055430: 284d 6163 6175 6c61 7932 446f 6329 4d61 (Macaulay2Doc)Ma │ │ │ │ -00055440: 7472 6978 2c2c 206d 6174 7269 7820 6f66 trix,, matrix of │ │ │ │ -00055450: 2065 6c65 6d65 6e74 7320 686f 6d6f 746f elements homoto │ │ │ │ -00055460: 7069 630a 2020 2020 2020 2020 746f 2030 pic. to 0 │ │ │ │ -00055470: 206f 6e20 430a 2020 2020 2020 2a20 432c on C. * C, │ │ │ │ -00055480: 2061 202a 6e6f 7465 2063 6f6d 706c 6578 a *note complex │ │ │ │ -00055490: 3a20 2843 6f6d 706c 6578 6573 2943 6f6d : (Complexes)Com │ │ │ │ -000554a0: 706c 6578 2c2c 200a 2020 2a20 4f75 7470 plex,, . * Outp │ │ │ │ -000554b0: 7574 733a 0a20 2020 2020 202a 2048 2c20 uts:. * H, │ │ │ │ -000554c0: 6120 2a6e 6f74 6520 6861 7368 2074 6162 a *note hash tab │ │ │ │ -000554d0: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ -000554e0: 6329 4861 7368 5461 626c 652c 2c20 486f c)HashTable,, Ho │ │ │ │ -000554f0: 6d6f 6c6f 6779 206f 6620 432c 2069 6e64 mology of C, ind │ │ │ │ -00055500: 6578 6564 0a20 2020 2020 2020 2062 7920 exed. by │ │ │ │ -00055510: 706c 6163 6573 2069 6e20 7468 6520 430a places in the C. │ │ │ │ -00055520: 2020 2020 2020 2a20 682c 2061 202a 6e6f * h, a *no │ │ │ │ -00055530: 7465 2068 6173 6820 7461 626c 653a 2028 te hash table: ( │ │ │ │ -00055540: 4d61 6361 756c 6179 3244 6f63 2948 6173 Macaulay2Doc)Has │ │ │ │ -00055550: 6854 6162 6c65 2c2c 2068 6f6d 6f74 6f70 hTable,, homotop │ │ │ │ -00055560: 6965 7320 666f 720a 2020 2020 2020 2020 ies for. │ │ │ │ -00055570: 656c 656d 656e 7473 206f 6620 6620 6f6e elements of f on │ │ │ │ -00055580: 2074 6865 2068 6f6d 6f6c 6f67 7920 6f66 the homology of │ │ │ │ -00055590: 2043 0a0a 4465 7363 7269 7074 696f 6e0a C..Description. │ │ │ │ -000555a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -000555b0: 2073 6372 6970 7420 6361 6c6c 7320 6d61 script calls ma │ │ │ │ -000555c0: 6b65 486f 6d6f 746f 7069 6573 3120 746f keHomotopies1 to │ │ │ │ -000555d0: 2070 726f 6475 6365 2068 6f6d 6f74 6f70 produce homotop │ │ │ │ -000555e0: 6965 7320 666f 7220 7468 6520 6666 5f69 ies for the ff_i │ │ │ │ -000555f0: 206f 6e20 432c 2061 6e64 0a74 6865 6e20 on C, and.then │ │ │ │ -00055600: 636f 6d70 7574 6573 2074 6865 6972 2061 computes their a │ │ │ │ -00055610: 6374 696f 6e20 6f6e 2074 6865 2048 6f6d ction on the Hom │ │ │ │ -00055620: 6f6c 6f67 7920 6f66 2043 2e0a 0a53 6565 ology of C...See │ │ │ │ -00055630: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ -00055640: 2020 2a20 2a6e 6f74 6520 6578 7465 7269 * *note exteri │ │ │ │ -00055650: 6f72 546f 724d 6f64 756c 653a 2065 7874 orTorModule: ext │ │ │ │ -00055660: 6572 696f 7254 6f72 4d6f 6475 6c65 2c20 eriorTorModule, │ │ │ │ -00055670: 2d2d 2054 6f72 2061 7320 6120 6d6f 6475 -- Tor as a modu │ │ │ │ -00055680: 6c65 206f 7665 7220 616e 0a20 2020 2065 le over an. e │ │ │ │ -00055690: 7874 6572 696f 7220 616c 6765 6272 6120 xterior algebra │ │ │ │ -000556a0: 6f72 2062 6967 7261 6465 6420 616c 6765 or bigraded alge │ │ │ │ -000556b0: 6272 610a 2020 2a20 2a6e 6f74 6520 6578 bra. * *note ex │ │ │ │ -000556c0: 7465 7269 6f72 4578 744d 6f64 756c 653a teriorExtModule: │ │ │ │ -000556d0: 2065 7874 6572 696f 7245 7874 4d6f 6475 exteriorExtModu │ │ │ │ -000556e0: 6c65 2c20 2d2d 2045 7874 284d 2c6b 2920 le, -- Ext(M,k) │ │ │ │ -000556f0: 6f72 2045 7874 284d 2c4e 2920 6173 2061 or Ext(M,N) as a │ │ │ │ -00055700: 0a20 2020 206d 6f64 756c 6520 6f76 6572 . module over │ │ │ │ -00055710: 2061 6e20 6578 7465 7269 6f72 2061 6c67 an exterior alg │ │ │ │ -00055720: 6562 7261 0a0a 5761 7973 2074 6f20 7573 ebra..Ways to us │ │ │ │ -00055730: 6520 6d61 6b65 486f 6d6f 746f 7069 6573 e makeHomotopies │ │ │ │ -00055740: 4f6e 486f 6d6f 6c6f 6779 3a0a 3d3d 3d3d OnHomology:.==== │ │ │ │ +000553b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +000553c0: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +000553d0: 2020 2020 2028 482c 6829 203d 206d 616b (H,h) = mak │ │ │ │ +000553e0: 6548 6f6d 6f74 6f70 6965 734f 6e48 6f6d eHomotopiesOnHom │ │ │ │ +000553f0: 6f6c 6f67 7928 6666 2c20 4329 0a20 202a ology(ff, C). * │ │ │ │ +00055400: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +00055410: 2066 662c 2061 202a 6e6f 7465 206d 6174 ff, a *note mat │ │ │ │ +00055420: 7269 783a 2028 4d61 6361 756c 6179 3244 rix: (Macaulay2D │ │ │ │ +00055430: 6f63 294d 6174 7269 782c 2c20 6d61 7472 oc)Matrix,, matr │ │ │ │ +00055440: 6978 206f 6620 656c 656d 656e 7473 2068 ix of elements h │ │ │ │ +00055450: 6f6d 6f74 6f70 6963 0a20 2020 2020 2020 omotopic. │ │ │ │ +00055460: 2074 6f20 3020 6f6e 2043 0a20 2020 2020 to 0 on C. │ │ │ │ +00055470: 202a 2043 2c20 6120 2a6e 6f74 6520 636f * C, a *note co │ │ │ │ +00055480: 6d70 6c65 783a 2028 436f 6d70 6c65 7865 mplex: (Complexe │ │ │ │ +00055490: 7329 436f 6d70 6c65 782c 2c20 0a20 202a s)Complex,, . * │ │ │ │ +000554a0: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +000554b0: 2a20 482c 2061 202a 6e6f 7465 2068 6173 * H, a *note has │ │ │ │ +000554c0: 6820 7461 626c 653a 2028 4d61 6361 756c h table: (Macaul │ │ │ │ +000554d0: 6179 3244 6f63 2948 6173 6854 6162 6c65 ay2Doc)HashTable │ │ │ │ +000554e0: 2c2c 2048 6f6d 6f6c 6f67 7920 6f66 2043 ,, Homology of C │ │ │ │ +000554f0: 2c20 696e 6465 7865 640a 2020 2020 2020 , indexed. │ │ │ │ +00055500: 2020 6279 2070 6c61 6365 7320 696e 2074 by places in t │ │ │ │ +00055510: 6865 2043 0a20 2020 2020 202a 2068 2c20 he C. * h, │ │ │ │ +00055520: 6120 2a6e 6f74 6520 6861 7368 2074 6162 a *note hash tab │ │ │ │ +00055530: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ +00055540: 6329 4861 7368 5461 626c 652c 2c20 686f c)HashTable,, ho │ │ │ │ +00055550: 6d6f 746f 7069 6573 2066 6f72 0a20 2020 motopies for. │ │ │ │ +00055560: 2020 2020 2065 6c65 6d65 6e74 7320 6f66 elements of │ │ │ │ +00055570: 2066 206f 6e20 7468 6520 686f 6d6f 6c6f f on the homolo │ │ │ │ +00055580: 6779 206f 6620 430a 0a44 6573 6372 6970 gy of C..Descrip │ │ │ │ +00055590: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +000555a0: 0a0a 5468 6520 7363 7269 7074 2063 616c ..The script cal │ │ │ │ +000555b0: 6c73 206d 616b 6548 6f6d 6f74 6f70 6965 ls makeHomotopie │ │ │ │ +000555c0: 7331 2074 6f20 7072 6f64 7563 6520 686f s1 to produce ho │ │ │ │ +000555d0: 6d6f 746f 7069 6573 2066 6f72 2074 6865 motopies for the │ │ │ │ +000555e0: 2066 665f 6920 6f6e 2043 2c20 616e 640a ff_i on C, and. │ │ │ │ +000555f0: 7468 656e 2063 6f6d 7075 7465 7320 7468 then computes th │ │ │ │ +00055600: 6569 7220 6163 7469 6f6e 206f 6e20 7468 eir action on th │ │ │ │ +00055610: 6520 486f 6d6f 6c6f 6779 206f 6620 432e e Homology of C. │ │ │ │ +00055620: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +00055630: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2065 ===.. * *note e │ │ │ │ +00055640: 7874 6572 696f 7254 6f72 4d6f 6475 6c65 xteriorTorModule │ │ │ │ +00055650: 3a20 6578 7465 7269 6f72 546f 724d 6f64 : exteriorTorMod │ │ │ │ +00055660: 756c 652c 202d 2d20 546f 7220 6173 2061 ule, -- Tor as a │ │ │ │ +00055670: 206d 6f64 756c 6520 6f76 6572 2061 6e0a module over an. │ │ │ │ +00055680: 2020 2020 6578 7465 7269 6f72 2061 6c67 exterior alg │ │ │ │ +00055690: 6562 7261 206f 7220 6269 6772 6164 6564 ebra or bigraded │ │ │ │ +000556a0: 2061 6c67 6562 7261 0a20 202a 202a 6e6f algebra. * *no │ │ │ │ +000556b0: 7465 2065 7874 6572 696f 7245 7874 4d6f te exteriorExtMo │ │ │ │ +000556c0: 6475 6c65 3a20 6578 7465 7269 6f72 4578 dule: exteriorEx │ │ │ │ +000556d0: 744d 6f64 756c 652c 202d 2d20 4578 7428 tModule, -- Ext( │ │ │ │ +000556e0: 4d2c 6b29 206f 7220 4578 7428 4d2c 4e29 M,k) or Ext(M,N) │ │ │ │ +000556f0: 2061 7320 610a 2020 2020 6d6f 6475 6c65 as a. module │ │ │ │ +00055700: 206f 7665 7220 616e 2065 7874 6572 696f over an exterio │ │ │ │ +00055710: 7220 616c 6765 6272 610a 0a57 6179 7320 r algebra..Ways │ │ │ │ +00055720: 746f 2075 7365 206d 616b 6548 6f6d 6f74 to use makeHomot │ │ │ │ +00055730: 6f70 6965 734f 6e48 6f6d 6f6c 6f67 793a opiesOnHomology: │ │ │ │ +00055740: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ 00055750: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00055760: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00055770: 3d0a 0a20 202a 2022 6d61 6b65 486f 6d6f =.. * "makeHomo │ │ │ │ -00055780: 746f 7069 6573 4f6e 486f 6d6f 6c6f 6779 topiesOnHomology │ │ │ │ -00055790: 284d 6174 7269 782c 436f 6d70 6c65 7829 (Matrix,Complex) │ │ │ │ -000557a0: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ -000557b0: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -000557c0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -000557d0: 6a65 6374 202a 6e6f 7465 206d 616b 6548 ject *note makeH │ │ │ │ -000557e0: 6f6d 6f74 6f70 6965 734f 6e48 6f6d 6f6c omotopiesOnHomol │ │ │ │ -000557f0: 6f67 793a 206d 616b 6548 6f6d 6f74 6f70 ogy: makeHomotop │ │ │ │ -00055800: 6965 734f 6e48 6f6d 6f6c 6f67 792c 2069 iesOnHomology, i │ │ │ │ -00055810: 7320 6120 2a6e 6f74 650a 6d65 7468 6f64 s a *note.method │ │ │ │ -00055820: 2066 756e 6374 696f 6e3a 2028 4d61 6361 function: (Maca │ │ │ │ -00055830: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -00055840: 756e 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d unction,...----- │ │ │ │ +00055760: 3d3d 3d3d 3d3d 0a0a 2020 2a20 226d 616b ======.. * "mak │ │ │ │ +00055770: 6548 6f6d 6f74 6f70 6965 734f 6e48 6f6d eHomotopiesOnHom │ │ │ │ +00055780: 6f6c 6f67 7928 4d61 7472 6978 2c43 6f6d ology(Matrix,Com │ │ │ │ +00055790: 706c 6578 2922 0a0a 466f 7220 7468 6520 plex)"..For the │ │ │ │ +000557a0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +000557b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +000557c0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +000557d0: 6d61 6b65 486f 6d6f 746f 7069 6573 4f6e makeHomotopiesOn │ │ │ │ +000557e0: 486f 6d6f 6c6f 6779 3a20 6d61 6b65 486f Homology: makeHo │ │ │ │ +000557f0: 6d6f 746f 7069 6573 4f6e 486f 6d6f 6c6f motopiesOnHomolo │ │ │ │ +00055800: 6779 2c20 6973 2061 202a 6e6f 7465 0a6d gy, is a *note.m │ │ │ │ +00055810: 6574 686f 6420 6675 6e63 7469 6f6e 3a20 ethod function: │ │ │ │ +00055820: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ +00055830: 7468 6f64 4675 6e63 7469 6f6e 2c2e 0a0a thodFunction,... │ │ │ │ +00055840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00055880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00055890: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -000558a0: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -000558b0: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -000558c0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -000558d0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -000558e0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -000558f0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -00055900: 732f 0a43 6f6d 706c 6574 6549 6e74 6572 s/.CompleteInter │ │ │ │ -00055910: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -00055920: 6e73 2e6d 323a 3236 3934 3a30 2e0a 1f0a ns.m2:2694:0.... │ │ │ │ -00055930: 4669 6c65 3a20 436f 6d70 6c65 7465 496e File: CompleteIn │ │ │ │ -00055940: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ -00055950: 7469 6f6e 732e 696e 666f 2c20 4e6f 6465 tions.info, Node │ │ │ │ -00055960: 3a20 6d61 6b65 4d6f 6475 6c65 2c20 4e65 : makeModule, Ne │ │ │ │ -00055970: 7874 3a20 6d61 6b65 542c 2050 7265 763a xt: makeT, Prev: │ │ │ │ -00055980: 206d 616b 6548 6f6d 6f74 6f70 6965 734f makeHomotopiesO │ │ │ │ -00055990: 6e48 6f6d 6f6c 6f67 792c 2055 703a 2054 nHomology, Up: T │ │ │ │ -000559a0: 6f70 0a0a 6d61 6b65 4d6f 6475 6c65 202d op..makeModule - │ │ │ │ -000559b0: 2d20 6d61 6b65 7320 6120 4d6f 6475 6c65 - makes a Module │ │ │ │ -000559c0: 206f 7574 206f 6620 6120 636f 6c6c 6563 out of a collec │ │ │ │ -000559d0: 7469 6f6e 206f 6620 6d6f 6475 6c65 7320 tion of modules │ │ │ │ -000559e0: 616e 6420 6d61 7073 0a2a 2a2a 2a2a 2a2a and maps.******* │ │ │ │ +00055880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +00055890: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +000558a0: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +000558b0: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +000558c0: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +000558d0: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +000558e0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +000558f0: 636b 6167 6573 2f0a 436f 6d70 6c65 7465 ckages/.Complete │ │ │ │ +00055900: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +00055910: 6c75 7469 6f6e 732e 6d32 3a32 3639 343a lutions.m2:2694: │ │ │ │ +00055920: 302e 0a1f 0a46 696c 653a 2043 6f6d 706c 0....File: Compl │ │ │ │ +00055930: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ +00055940: 6573 6f6c 7574 696f 6e73 2e69 6e66 6f2c esolutions.info, │ │ │ │ +00055950: 204e 6f64 653a 206d 616b 654d 6f64 756c Node: makeModul │ │ │ │ +00055960: 652c 204e 6578 743a 206d 616b 6554 2c20 e, Next: makeT, │ │ │ │ +00055970: 5072 6576 3a20 6d61 6b65 486f 6d6f 746f Prev: makeHomoto │ │ │ │ +00055980: 7069 6573 4f6e 486f 6d6f 6c6f 6779 2c20 piesOnHomology, │ │ │ │ +00055990: 5570 3a20 546f 700a 0a6d 616b 654d 6f64 Up: Top..makeMod │ │ │ │ +000559a0: 756c 6520 2d2d 206d 616b 6573 2061 204d ule -- makes a M │ │ │ │ +000559b0: 6f64 756c 6520 6f75 7420 6f66 2061 2063 odule out of a c │ │ │ │ +000559c0: 6f6c 6c65 6374 696f 6e20 6f66 206d 6f64 ollection of mod │ │ │ │ +000559d0: 756c 6573 2061 6e64 206d 6170 730a 2a2a ules and maps.** │ │ │ │ +000559e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000559f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00055a00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00055a10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00055a20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ -00055a30: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -00055a40: 2020 204d 203d 206d 616b 654d 6f64 756c M = makeModul │ │ │ │ -00055a50: 6528 482c 452c 7068 6929 0a20 202a 2049 e(H,E,phi). * I │ │ │ │ -00055a60: 6e70 7574 733a 0a20 2020 2020 202a 2048 nputs:. * H │ │ │ │ -00055a70: 2c20 6120 2a6e 6f74 6520 6861 7368 2074 , a *note hash t │ │ │ │ -00055a80: 6162 6c65 3a20 284d 6163 6175 6c61 7932 able: (Macaulay2 │ │ │ │ -00055a90: 446f 6329 4861 7368 5461 626c 652c 2c20 Doc)HashTable,, │ │ │ │ -00055aa0: 6772 6164 6564 2063 6f6d 706f 6e65 6e74 graded component │ │ │ │ -00055ab0: 7320 7468 6174 0a20 2020 2020 2020 2061 s that. a │ │ │ │ -00055ac0: 7265 206d 6f64 756c 6573 2c20 746f 206d re modules, to m │ │ │ │ -00055ad0: 616b 6520 696e 746f 2061 7320 7369 6e67 ake into as sing │ │ │ │ -00055ae0: 6c65 206d 6f64 756c 650a 2020 2020 2020 le module. │ │ │ │ -00055af0: 2a20 452c 2061 202a 6e6f 7465 206d 6174 * E, a *note mat │ │ │ │ -00055b00: 7269 783a 2028 4d61 6361 756c 6179 3244 rix: (Macaulay2D │ │ │ │ -00055b10: 6f63 294d 6174 7269 782c 2c20 4d61 7472 oc)Matrix,, Matr │ │ │ │ -00055b20: 6978 206f 6620 7661 7269 6162 6c65 7320 ix of variables │ │ │ │ -00055b30: 7768 6f73 650a 2020 2020 2020 2020 6163 whose. ac │ │ │ │ -00055b40: 7469 6f6e 2077 696c 6c20 6465 6669 6e65 tion will define │ │ │ │ -00055b50: 640a 2020 2020 2020 2a20 7068 692c 2061 d. * phi, a │ │ │ │ -00055b60: 202a 6e6f 7465 2068 6173 6820 7461 626c *note hash tabl │ │ │ │ -00055b70: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ -00055b80: 2948 6173 6854 6162 6c65 2c2c 206d 6170 )HashTable,, map │ │ │ │ -00055b90: 7320 6265 7477 6565 6e20 7468 650a 2020 s between the. │ │ │ │ -00055ba0: 2020 2020 2020 6772 6164 6564 2063 6f6d graded com │ │ │ │ -00055bb0: 706f 6e65 6e74 7320 7468 6174 2077 696c ponents that wil │ │ │ │ -00055bc0: 6c20 6265 2074 6865 2061 6374 696f 6e20 l be the action │ │ │ │ -00055bd0: 6f66 2074 6865 2076 6172 6961 626c 6573 of the variables │ │ │ │ -00055be0: 2069 6e20 450a 2020 2a20 4f75 7470 7574 in E. * Output │ │ │ │ -00055bf0: 733a 0a20 2020 2020 202a 204d 2c20 6120 s:. * M, a │ │ │ │ -00055c00: 2a6e 6f74 6520 6d6f 6475 6c65 3a20 284d *note module: (M │ │ │ │ -00055c10: 6163 6175 6c61 7932 446f 6329 4d6f 6475 acaulay2Doc)Modu │ │ │ │ -00055c20: 6c65 2c2c 2067 7261 6465 6420 6d6f 6475 le,, graded modu │ │ │ │ -00055c30: 6c65 7320 7768 6f73 650a 2020 2020 2020 les whose. │ │ │ │ -00055c40: 2020 636f 6d70 6f6e 656e 7473 2061 7265 components are │ │ │ │ -00055c50: 2067 6976 656e 2062 7920 480a 0a44 6573 given by H..Des │ │ │ │ -00055c60: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00055c70: 3d3d 3d3d 0a0a 5468 6520 4861 7368 7461 ====..The Hashta │ │ │ │ -00055c80: 626c 6520 4820 7368 6f75 6c64 2068 6176 ble H should hav │ │ │ │ -00055c90: 6520 636f 6e73 6563 7574 6976 6520 696e e consecutive in │ │ │ │ -00055ca0: 7465 6765 7220 6b65 7973 2069 5f30 2e2e teger keys i_0.. │ │ │ │ -00055cb0: 695f 302c 2073 6179 2c20 7769 7468 2076 i_0, say, with v │ │ │ │ -00055cc0: 616c 7565 730a 4823 6920 7468 6174 2061 alues.H#i that a │ │ │ │ -00055cd0: 7265 206d 6f64 756c 6573 206f 7665 7220 re modules over │ │ │ │ -00055ce0: 6120 7269 6e67 2053 4520 7768 6f73 6520 a ring SE whose │ │ │ │ -00055cf0: 7661 7269 6162 6c65 7320 696e 636c 7564 variables includ │ │ │ │ -00055d00: 6520 7468 6520 656c 656d 656e 7473 206f e the elements o │ │ │ │ -00055d10: 6620 452e 0a45 3a20 5c6f 706c 7573 2053 f E..E: \oplus S │ │ │ │ -00055d20: 455e 7b64 5f69 7d20 5c74 6f20 5345 5e31 E^{d_i} \to SE^1 │ │ │ │ -00055d30: 2069 7320 6120 6d61 7472 6978 206f 6620 is a matrix of │ │ │ │ -00055d40: 6320 7661 7269 6162 6c65 7320 6672 6f6d c variables from │ │ │ │ -00055d50: 2053 4520 4820 6973 2061 2068 6173 6854 SE H is a hashT │ │ │ │ -00055d60: 6162 6c65 0a6f 6620 6d20 7061 6972 7320 able.of m pairs │ │ │ │ -00055d70: 7b69 2c20 745f 697d 2c20 7768 6572 6520 {i, t_i}, where │ │ │ │ -00055d80: 7468 6520 745f 6920 6172 6520 5245 2d6d the t_i are RE-m │ │ │ │ -00055d90: 6f64 756c 6573 2c20 616e 6420 7468 6520 odules, and the │ │ │ │ -00055da0: 6920 6172 6520 636f 6e73 6563 7574 6976 i are consecutiv │ │ │ │ -00055db0: 650a 696e 7465 6765 722e 2070 6869 2069 e.integer. phi i │ │ │ │ -00055dc0: 7320 6120 6861 7368 2d74 6162 6c65 206f s a hash-table o │ │ │ │ -00055dd0: 6620 686f 6d6f 6765 6e65 6f75 7320 6d61 f homogeneous ma │ │ │ │ -00055de0: 7073 2070 6869 237b 6a2c 697d 3a20 4823 ps phi#{j,i}: H# │ │ │ │ -00055df0: 692a 2a46 5f6a 5c74 6f20 4823 2869 2b31 i**F_j\to H#(i+1 │ │ │ │ -00055e00: 290a 7768 6572 6520 465f 6a20 3d20 736f ).where F_j = so │ │ │ │ -00055e10: 7572 6365 2028 455f 7b6a 7d20 3d20 6d61 urce (E_{j} = ma │ │ │ │ -00055e20: 7472 6978 207b 7b65 5f6a 7d7d 292e 2054 trix {{e_j}}). T │ │ │ │ -00055e30: 6875 7320 7468 6520 6d61 7073 2070 237b hus the maps p#{ │ │ │ │ -00055e40: 6a2c 697d 203d 2028 455f 6a20 7c7c 0a2d j,i} = (E_j ||.- │ │ │ │ -00055e50: 7068 6923 7b6a 2c69 7d29 3a20 745f 692a phi#{j,i}): t_i* │ │ │ │ -00055e60: 2a46 5f6a 205c 746f 2074 5f69 2b2b 745f *F_j \to t_i++t_ │ │ │ │ -00055e70: 7b28 692b 3129 7d2c 2061 7265 2068 6f6d {(i+1)}, are hom │ │ │ │ -00055e80: 6f67 656e 656f 7573 2e20 5468 6520 7363 ogeneous. The sc │ │ │ │ -00055e90: 7269 7074 2072 6574 7572 6e73 204d 0a3d ript returns M.= │ │ │ │ -00055ea0: 205c 6f70 6c75 735f 6920 545f 2061 7320 \oplus_i T_ as │ │ │ │ -00055eb0: 616e 2053 452d 6d6f 6475 6c65 2c20 636f an SE-module, co │ │ │ │ -00055ec0: 6d70 7574 6564 2061 7320 7468 6520 7175 mputed as the qu │ │ │ │ -00055ed0: 6f74 6965 6e74 206f 6620 5020 3a3d 205c otient of P := \ │ │ │ │ -00055ee0: 6f70 6c75 7320 545f 690a 6f62 7461 696e oplus T_i.obtain │ │ │ │ -00055ef0: 6564 2062 7920 6661 6374 6f72 696e 6720 ed by factoring │ │ │ │ -00055f00: 6f75 7420 7468 6520 7375 6d20 6f66 2074 out the sum of t │ │ │ │ -00055f10: 6865 2069 6d61 6765 7320 6f66 2074 6865 he images of the │ │ │ │ -00055f20: 206d 6170 7320 7023 7b6a 2c69 7d0a 0a54 maps p#{j,i}..T │ │ │ │ -00055f30: 6865 2048 6173 6874 6162 6c65 2070 6869 he Hashtable phi │ │ │ │ -00055f40: 2068 6173 206b 6579 7320 6f66 2074 6865 has keys of the │ │ │ │ -00055f50: 2066 6f72 6d20 7b6a 2c69 7d20 7768 6572 form {j,i} wher │ │ │ │ -00055f60: 6520 6a20 7275 6e73 2066 726f 6d20 3020 e j runs from 0 │ │ │ │ -00055f70: 746f 2063 2d31 2c20 6920 616e 640a 692b to c-1, i and.i+ │ │ │ │ -00055f80: 3120 6172 6520 6b65 7973 206f 6620 482c 1 are keys of H, │ │ │ │ -00055f90: 2061 6e64 2070 6869 237b 6a2c 697d 2069 and phi#{j,i} i │ │ │ │ -00055fa0: 7320 7468 6520 6d61 7020 6672 6f6d 2028 s the map from ( │ │ │ │ -00055fb0: 736f 7572 6365 2045 5f7b 697d 292a 2a48 source E_{i})**H │ │ │ │ -00055fc0: 2369 2074 6f20 4823 2869 2b31 290a 7468 #i to H#(i+1).th │ │ │ │ -00055fd0: 6174 2077 696c 6c20 6265 2069 6465 6e74 at will be ident │ │ │ │ -00055fe0: 6966 6965 6420 7769 7468 2074 6865 2061 ified with the a │ │ │ │ -00055ff0: 6374 696f 6e20 6f66 2045 5f7b 6a7d 2e0a ction of E_{j}.. │ │ │ │ -00056000: 0a54 6865 2073 6372 6970 7420 6973 2075 .The script is u │ │ │ │ -00056010: 7365 6420 696e 2062 6f74 6820 7468 6520 sed in both the │ │ │ │ -00056020: 7369 6e67 6c79 2067 7261 6465 6420 6361 singly graded ca │ │ │ │ -00056030: 7365 2c20 666f 7220 6578 616d 706c 6520 se, for example │ │ │ │ -00056040: 696e 0a65 7874 6572 696f 7254 6f72 4d6f in.exteriorTorMo │ │ │ │ -00056050: 6475 6c65 2866 662c 4d29 2061 6e64 2069 dule(ff,M) and i │ │ │ │ -00056060: 6e20 7468 6520 6269 6772 6164 6564 2063 n the bigraded c │ │ │ │ -00056070: 6173 652c 2066 6f72 2065 7861 6d70 6c65 ase, for example │ │ │ │ -00056080: 2069 6e0a 6578 7465 7269 6f72 546f 724d in.exteriorTorM │ │ │ │ -00056090: 6f64 756c 6528 6666 2c4d 2c4e 292e 0a0a odule(ff,M,N)... │ │ │ │ -000560a0: 496e 2074 6865 2066 6f6c 6c6f 7769 6e67 In the following │ │ │ │ -000560b0: 2077 6520 7573 6520 6d61 6b65 4d6f 6475 we use makeModu │ │ │ │ -000560c0: 6c65 2074 6f20 636f 6e73 7472 7563 7420 le to construct │ │ │ │ -000560d0: 6279 2068 616e 6420 6120 6672 6565 206d by hand a free m │ │ │ │ -000560e0: 6f64 756c 6520 6f66 2072 616e 6b20 310a odule of rank 1. │ │ │ │ -000560f0: 6f76 6572 2074 6865 2065 7874 6572 696f over the exterio │ │ │ │ -00056100: 7220 616c 6765 6272 6120 6f6e 2078 2c79 r algebra on x,y │ │ │ │ -00056110: 2c20 7374 6172 7469 6e67 2077 6974 6820 , starting with │ │ │ │ -00056120: 7468 6520 636f 6e73 7472 7563 7469 6f6e the construction │ │ │ │ -00056130: 206f 6620 6120 6d6f 6475 6c65 0a6f 7665 of a module.ove │ │ │ │ -00056140: 7220 6120 6269 686f 6d6f 6765 6e65 6f75 r a bihomogeneou │ │ │ │ -00056150: 7320 7269 6e67 2e0a 0a2b 2d2d 2d2d 2d2d s ring...+------ │ │ │ │ +00055a20: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ +00055a30: 2020 2020 2020 2020 4d20 3d20 6d61 6b65 M = make │ │ │ │ +00055a40: 4d6f 6475 6c65 2848 2c45 2c70 6869 290a Module(H,E,phi). │ │ │ │ +00055a50: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +00055a60: 2020 2a20 482c 2061 202a 6e6f 7465 2068 * H, a *note h │ │ │ │ +00055a70: 6173 6820 7461 626c 653a 2028 4d61 6361 ash table: (Maca │ │ │ │ +00055a80: 756c 6179 3244 6f63 2948 6173 6854 6162 ulay2Doc)HashTab │ │ │ │ +00055a90: 6c65 2c2c 2067 7261 6465 6420 636f 6d70 le,, graded comp │ │ │ │ +00055aa0: 6f6e 656e 7473 2074 6861 740a 2020 2020 onents that. │ │ │ │ +00055ab0: 2020 2020 6172 6520 6d6f 6475 6c65 732c are modules, │ │ │ │ +00055ac0: 2074 6f20 6d61 6b65 2069 6e74 6f20 6173 to make into as │ │ │ │ +00055ad0: 2073 696e 676c 6520 6d6f 6475 6c65 0a20 single module. │ │ │ │ +00055ae0: 2020 2020 202a 2045 2c20 6120 2a6e 6f74 * E, a *not │ │ │ │ +00055af0: 6520 6d61 7472 6978 3a20 284d 6163 6175 e matrix: (Macau │ │ │ │ +00055b00: 6c61 7932 446f 6329 4d61 7472 6978 2c2c lay2Doc)Matrix,, │ │ │ │ +00055b10: 204d 6174 7269 7820 6f66 2076 6172 6961 Matrix of varia │ │ │ │ +00055b20: 626c 6573 2077 686f 7365 0a20 2020 2020 bles whose. │ │ │ │ +00055b30: 2020 2061 6374 696f 6e20 7769 6c6c 2064 action will d │ │ │ │ +00055b40: 6566 696e 6564 0a20 2020 2020 202a 2070 efined. * p │ │ │ │ +00055b50: 6869 2c20 6120 2a6e 6f74 6520 6861 7368 hi, a *note hash │ │ │ │ +00055b60: 2074 6162 6c65 3a20 284d 6163 6175 6c61 table: (Macaula │ │ │ │ +00055b70: 7932 446f 6329 4861 7368 5461 626c 652c y2Doc)HashTable, │ │ │ │ +00055b80: 2c20 6d61 7073 2062 6574 7765 656e 2074 , maps between t │ │ │ │ +00055b90: 6865 0a20 2020 2020 2020 2067 7261 6465 he. grade │ │ │ │ +00055ba0: 6420 636f 6d70 6f6e 656e 7473 2074 6861 d components tha │ │ │ │ +00055bb0: 7420 7769 6c6c 2062 6520 7468 6520 6163 t will be the ac │ │ │ │ +00055bc0: 7469 6f6e 206f 6620 7468 6520 7661 7269 tion of the vari │ │ │ │ +00055bd0: 6162 6c65 7320 696e 2045 0a20 202a 204f ables in E. * O │ │ │ │ +00055be0: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ +00055bf0: 4d2c 2061 202a 6e6f 7465 206d 6f64 756c M, a *note modul │ │ │ │ +00055c00: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ +00055c10: 294d 6f64 756c 652c 2c20 6772 6164 6564 )Module,, graded │ │ │ │ +00055c20: 206d 6f64 756c 6573 2077 686f 7365 0a20 modules whose. │ │ │ │ +00055c30: 2020 2020 2020 2063 6f6d 706f 6e65 6e74 component │ │ │ │ +00055c40: 7320 6172 6520 6769 7665 6e20 6279 2048 s are given by H │ │ │ │ +00055c50: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +00055c60: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 2048 =========..The H │ │ │ │ +00055c70: 6173 6874 6162 6c65 2048 2073 686f 756c ashtable H shoul │ │ │ │ +00055c80: 6420 6861 7665 2063 6f6e 7365 6375 7469 d have consecuti │ │ │ │ +00055c90: 7665 2069 6e74 6567 6572 206b 6579 7320 ve integer keys │ │ │ │ +00055ca0: 695f 302e 2e69 5f30 2c20 7361 792c 2077 i_0..i_0, say, w │ │ │ │ +00055cb0: 6974 6820 7661 6c75 6573 0a48 2369 2074 ith values.H#i t │ │ │ │ +00055cc0: 6861 7420 6172 6520 6d6f 6475 6c65 7320 hat are modules │ │ │ │ +00055cd0: 6f76 6572 2061 2072 696e 6720 5345 2077 over a ring SE w │ │ │ │ +00055ce0: 686f 7365 2076 6172 6961 626c 6573 2069 hose variables i │ │ │ │ +00055cf0: 6e63 6c75 6465 2074 6865 2065 6c65 6d65 nclude the eleme │ │ │ │ +00055d00: 6e74 7320 6f66 2045 2e0a 453a 205c 6f70 nts of E..E: \op │ │ │ │ +00055d10: 6c75 7320 5345 5e7b 645f 697d 205c 746f lus SE^{d_i} \to │ │ │ │ +00055d20: 2053 455e 3120 6973 2061 206d 6174 7269 SE^1 is a matri │ │ │ │ +00055d30: 7820 6f66 2063 2076 6172 6961 626c 6573 x of c variables │ │ │ │ +00055d40: 2066 726f 6d20 5345 2048 2069 7320 6120 from SE H is a │ │ │ │ +00055d50: 6861 7368 5461 626c 650a 6f66 206d 2070 hashTable.of m p │ │ │ │ +00055d60: 6169 7273 207b 692c 2074 5f69 7d2c 2077 airs {i, t_i}, w │ │ │ │ +00055d70: 6865 7265 2074 6865 2074 5f69 2061 7265 here the t_i are │ │ │ │ +00055d80: 2052 452d 6d6f 6475 6c65 732c 2061 6e64 RE-modules, and │ │ │ │ +00055d90: 2074 6865 2069 2061 7265 2063 6f6e 7365 the i are conse │ │ │ │ +00055da0: 6375 7469 7665 0a69 6e74 6567 6572 2e20 cutive.integer. │ │ │ │ +00055db0: 7068 6920 6973 2061 2068 6173 682d 7461 phi is a hash-ta │ │ │ │ +00055dc0: 626c 6520 6f66 2068 6f6d 6f67 656e 656f ble of homogeneo │ │ │ │ +00055dd0: 7573 206d 6170 7320 7068 6923 7b6a 2c69 us maps phi#{j,i │ │ │ │ +00055de0: 7d3a 2048 2369 2a2a 465f 6a5c 746f 2048 }: H#i**F_j\to H │ │ │ │ +00055df0: 2328 692b 3129 0a77 6865 7265 2046 5f6a #(i+1).where F_j │ │ │ │ +00055e00: 203d 2073 6f75 7263 6520 2845 5f7b 6a7d = source (E_{j} │ │ │ │ +00055e10: 203d 206d 6174 7269 7820 7b7b 655f 6a7d = matrix {{e_j} │ │ │ │ +00055e20: 7d29 2e20 5468 7573 2074 6865 206d 6170 }). Thus the map │ │ │ │ +00055e30: 7320 7023 7b6a 2c69 7d20 3d20 2845 5f6a s p#{j,i} = (E_j │ │ │ │ +00055e40: 207c 7c0a 2d70 6869 237b 6a2c 697d 293a ||.-phi#{j,i}): │ │ │ │ +00055e50: 2074 5f69 2a2a 465f 6a20 5c74 6f20 745f t_i**F_j \to t_ │ │ │ │ +00055e60: 692b 2b74 5f7b 2869 2b31 297d 2c20 6172 i++t_{(i+1)}, ar │ │ │ │ +00055e70: 6520 686f 6d6f 6765 6e65 6f75 732e 2054 e homogeneous. T │ │ │ │ +00055e80: 6865 2073 6372 6970 7420 7265 7475 726e he script return │ │ │ │ +00055e90: 7320 4d0a 3d20 5c6f 706c 7573 5f69 2054 s M.= \oplus_i T │ │ │ │ +00055ea0: 5f20 6173 2061 6e20 5345 2d6d 6f64 756c _ as an SE-modul │ │ │ │ +00055eb0: 652c 2063 6f6d 7075 7465 6420 6173 2074 e, computed as t │ │ │ │ +00055ec0: 6865 2071 756f 7469 656e 7420 6f66 2050 he quotient of P │ │ │ │ +00055ed0: 203a 3d20 5c6f 706c 7573 2054 5f69 0a6f := \oplus T_i.o │ │ │ │ +00055ee0: 6274 6169 6e65 6420 6279 2066 6163 746f btained by facto │ │ │ │ +00055ef0: 7269 6e67 206f 7574 2074 6865 2073 756d ring out the sum │ │ │ │ +00055f00: 206f 6620 7468 6520 696d 6167 6573 206f of the images o │ │ │ │ +00055f10: 6620 7468 6520 6d61 7073 2070 237b 6a2c f the maps p#{j, │ │ │ │ +00055f20: 697d 0a0a 5468 6520 4861 7368 7461 626c i}..The Hashtabl │ │ │ │ +00055f30: 6520 7068 6920 6861 7320 6b65 7973 206f e phi has keys o │ │ │ │ +00055f40: 6620 7468 6520 666f 726d 207b 6a2c 697d f the form {j,i} │ │ │ │ +00055f50: 2077 6865 7265 206a 2072 756e 7320 6672 where j runs fr │ │ │ │ +00055f60: 6f6d 2030 2074 6f20 632d 312c 2069 2061 om 0 to c-1, i a │ │ │ │ +00055f70: 6e64 0a69 2b31 2061 7265 206b 6579 7320 nd.i+1 are keys │ │ │ │ +00055f80: 6f66 2048 2c20 616e 6420 7068 6923 7b6a of H, and phi#{j │ │ │ │ +00055f90: 2c69 7d20 6973 2074 6865 206d 6170 2066 ,i} is the map f │ │ │ │ +00055fa0: 726f 6d20 2873 6f75 7263 6520 455f 7b69 rom (source E_{i │ │ │ │ +00055fb0: 7d29 2a2a 4823 6920 746f 2048 2328 692b })**H#i to H#(i+ │ │ │ │ +00055fc0: 3129 0a74 6861 7420 7769 6c6c 2062 6520 1).that will be │ │ │ │ +00055fd0: 6964 656e 7469 6669 6564 2077 6974 6820 identified with │ │ │ │ +00055fe0: 7468 6520 6163 7469 6f6e 206f 6620 455f the action of E_ │ │ │ │ +00055ff0: 7b6a 7d2e 0a0a 5468 6520 7363 7269 7074 {j}...The script │ │ │ │ +00056000: 2069 7320 7573 6564 2069 6e20 626f 7468 is used in both │ │ │ │ +00056010: 2074 6865 2073 696e 676c 7920 6772 6164 the singly grad │ │ │ │ +00056020: 6564 2063 6173 652c 2066 6f72 2065 7861 ed case, for exa │ │ │ │ +00056030: 6d70 6c65 2069 6e0a 6578 7465 7269 6f72 mple in.exterior │ │ │ │ +00056040: 546f 724d 6f64 756c 6528 6666 2c4d 2920 TorModule(ff,M) │ │ │ │ +00056050: 616e 6420 696e 2074 6865 2062 6967 7261 and in the bigra │ │ │ │ +00056060: 6465 6420 6361 7365 2c20 666f 7220 6578 ded case, for ex │ │ │ │ +00056070: 616d 706c 6520 696e 0a65 7874 6572 696f ample in.exterio │ │ │ │ +00056080: 7254 6f72 4d6f 6475 6c65 2866 662c 4d2c rTorModule(ff,M, │ │ │ │ +00056090: 4e29 2e0a 0a49 6e20 7468 6520 666f 6c6c N)...In the foll │ │ │ │ +000560a0: 6f77 696e 6720 7765 2075 7365 206d 616b owing we use mak │ │ │ │ +000560b0: 654d 6f64 756c 6520 746f 2063 6f6e 7374 eModule to const │ │ │ │ +000560c0: 7275 6374 2062 7920 6861 6e64 2061 2066 ruct by hand a f │ │ │ │ +000560d0: 7265 6520 6d6f 6475 6c65 206f 6620 7261 ree module of ra │ │ │ │ +000560e0: 6e6b 2031 0a6f 7665 7220 7468 6520 6578 nk 1.over the ex │ │ │ │ +000560f0: 7465 7269 6f72 2061 6c67 6562 7261 206f terior algebra o │ │ │ │ +00056100: 6e20 782c 792c 2073 7461 7274 696e 6720 n x,y, starting │ │ │ │ +00056110: 7769 7468 2074 6865 2063 6f6e 7374 7275 with the constru │ │ │ │ +00056120: 6374 696f 6e20 6f66 2061 206d 6f64 756c ction of a modul │ │ │ │ +00056130: 650a 6f76 6572 2061 2062 6968 6f6d 6f67 e.over a bihomog │ │ │ │ +00056140: 656e 656f 7573 2072 696e 672e 0a0a 2b2d eneous ring...+- │ │ │ │ +00056150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000561a0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2053 -------+.|i1 : S │ │ │ │ -000561b0: 4520 3d20 5a5a 2f31 3031 5b61 2c62 2c63 E = ZZ/101[a,b,c │ │ │ │ -000561c0: 2c78 2c79 2c44 6567 7265 6573 3d3e 746f ,x,y,Degrees=>to │ │ │ │ -000561d0: 4c69 7374 2833 3a7b 312c 307d 297c 746f List(3:{1,0})|to │ │ │ │ -000561e0: 4c69 7374 2832 3a7b 312c 317d 292c 2020 List(2:{1,1}), │ │ │ │ -000561f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00056190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000561a0: 3120 3a20 5345 203d 205a 5a2f 3130 315b 1 : SE = ZZ/101[ │ │ │ │ +000561b0: 612c 622c 632c 782c 792c 4465 6772 6565 a,b,c,x,y,Degree │ │ │ │ +000561c0: 733d 3e74 6f4c 6973 7428 333a 7b31 2c30 s=>toList(3:{1,0 │ │ │ │ +000561d0: 7d29 7c74 6f4c 6973 7428 323a 7b31 2c31 })|toList(2:{1,1 │ │ │ │ +000561e0: 7d29 2c20 2020 2020 2020 2020 7c0a 7c20 }), |.| │ │ │ │ +000561f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056240: 2020 2020 2020 207c 0a7c 6f31 203d 2053 |.|o1 = S │ │ │ │ -00056250: 4520 2020 2020 2020 2020 2020 2020 2020 E │ │ │ │ +00056230: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00056240: 3120 3d20 5345 2020 2020 2020 2020 2020 1 = SE │ │ │ │ +00056250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056290: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00056280: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000562a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000562b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000562c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000562d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000562e0: 2020 2020 2020 207c 0a7c 6f31 203a 2050 |.|o1 : P │ │ │ │ -000562f0: 6f6c 796e 6f6d 6961 6c52 696e 672c 2032 olynomialRing, 2 │ │ │ │ -00056300: 2073 6b65 7720 636f 6d6d 7574 6174 6976 skew commutativ │ │ │ │ -00056310: 6520 7661 7269 6162 6c65 2873 2920 2020 e variable(s) │ │ │ │ -00056320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056330: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +000562d0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000562e0: 3120 3a20 506f 6c79 6e6f 6d69 616c 5269 1 : PolynomialRi │ │ │ │ +000562f0: 6e67 2c20 3220 736b 6577 2063 6f6d 6d75 ng, 2 skew commu │ │ │ │ +00056300: 7461 7469 7665 2076 6172 6961 626c 6528 tative variable( │ │ │ │ +00056310: 7329 2020 2020 2020 2020 2020 2020 2020 s) │ │ │ │ +00056320: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +00056330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056380: 2d2d 2d2d 2d2d 2d7c 0a7c 536b 6577 436f -------|.|SkewCo │ │ │ │ -00056390: 6d6d 7574 6174 6976 653d 3e7b 782c 797d mmutative=>{x,y} │ │ │ │ -000563a0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +00056370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c53 ------------|.|S │ │ │ │ +00056380: 6b65 7743 6f6d 6d75 7461 7469 7665 3d3e kewCommutative=> │ │ │ │ +00056390: 7b78 2c79 7d5d 2020 2020 2020 2020 2020 {x,y}] │ │ │ │ +000563a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000563b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000563c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000563d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000563c0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000563d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000563e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000563f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056420: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2052 -------+.|i2 : R │ │ │ │ -00056430: 4520 3d20 5345 2f69 6465 616c 2261 322c E = SE/ideal"a2, │ │ │ │ -00056440: 6232 2c63 3222 2020 2020 2020 2020 2020 b2,c2" │ │ │ │ +00056410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00056420: 3220 3a20 5245 203d 2053 452f 6964 6561 2 : RE = SE/idea │ │ │ │ +00056430: 6c22 6132 2c62 322c 6332 2220 2020 2020 l"a2,b2,c2" │ │ │ │ +00056440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056470: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00056460: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000564a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000564b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000564c0: 2020 2020 2020 207c 0a7c 6f32 203d 2052 |.|o2 = R │ │ │ │ -000564d0: 4520 2020 2020 2020 2020 2020 2020 2020 E │ │ │ │ +000564b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000564c0: 3220 3d20 5245 2020 2020 2020 2020 2020 2 = RE │ │ │ │ +000564d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000564e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000564f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056510: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00056500: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056560: 2020 2020 2020 207c 0a7c 6f32 203a 2051 |.|o2 : Q │ │ │ │ -00056570: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +00056550: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00056560: 3220 3a20 5175 6f74 6965 6e74 5269 6e67 2 : QuotientRing │ │ │ │ +00056570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000565a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000565b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000565a0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000565b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000565c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000565d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000565e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000565f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056600: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2054 -------+.|i3 : T │ │ │ │ -00056610: 203d 2068 6173 6854 6162 6c65 207b 7b30 = hashTable {{0 │ │ │ │ -00056620: 2c52 455e 317d 2c7b 312c 5245 5e7b 323a ,RE^1},{1,RE^{2: │ │ │ │ -00056630: 7b20 2d31 2c2d 317d 7d7d 2c20 7b32 2c52 { -1,-1}}}, {2,R │ │ │ │ -00056640: 455e 7b7b 202d 322c 2d32 7d7d 7d7d 2020 E^{{ -2,-2}}}} │ │ │ │ -00056650: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000565f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00056600: 3320 3a20 5420 3d20 6861 7368 5461 626c 3 : T = hashTabl │ │ │ │ +00056610: 6520 7b7b 302c 5245 5e31 7d2c 7b31 2c52 e {{0,RE^1},{1,R │ │ │ │ +00056620: 455e 7b32 3a7b 202d 312c 2d31 7d7d 7d2c E^{2:{ -1,-1}}}, │ │ │ │ +00056630: 207b 322c 5245 5e7b 7b20 2d32 2c2d 327d {2,RE^{{ -2,-2} │ │ │ │ +00056640: 7d7d 7d20 2020 2020 2020 2020 7c0a 7c20 }}} |.| │ │ │ │ +00056650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000566a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000566b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000566c0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00056690: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000566a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000566b0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +000566c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000566d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000566e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000566f0: 2020 2020 2020 207c 0a7c 6f33 203d 2048 |.|o3 = H │ │ │ │ -00056700: 6173 6854 6162 6c65 7b30 203d 3e20 5245 ashTable{0 => RE │ │ │ │ -00056710: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000566e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000566f0: 3320 3d20 4861 7368 5461 626c 657b 3020 3 = HashTable{0 │ │ │ │ +00056700: 3d3e 2052 4520 7d20 2020 2020 2020 2020 => RE } │ │ │ │ +00056710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056740: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00056750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056760: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00056730: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00056750: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00056760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056790: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000567a0: 2020 2020 2020 2020 2031 203d 3e20 5245 1 => RE │ │ │ │ +00056780: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056790: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +000567a0: 3d3e 2052 4520 2020 2020 2020 2020 2020 => RE │ │ │ │ 000567b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000567c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000567d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000567e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000567f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056800: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000567d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000567e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000567f0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +00056800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056830: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00056840: 2020 2020 2020 2020 2032 203d 3e20 5245 2 => RE │ │ │ │ +00056820: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056830: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00056840: 3d3e 2052 4520 2020 2020 2020 2020 2020 => RE │ │ │ │ 00056850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056880: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00056870: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000568a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000568b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000568c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000568d0: 2020 2020 2020 207c 0a7c 6f33 203a 2048 |.|o3 : H │ │ │ │ -000568e0: 6173 6854 6162 6c65 2020 2020 2020 2020 ashTable │ │ │ │ +000568c0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000568d0: 3320 3a20 4861 7368 5461 626c 6520 2020 3 : HashTable │ │ │ │ +000568e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000568f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056920: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00056910: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00056920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056970: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2045 -------+.|i4 : E │ │ │ │ -00056980: 203d 206d 6174 7269 787b 7b78 2c79 7d7d = matrix{{x,y}} │ │ │ │ +00056960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00056970: 3420 3a20 4520 3d20 6d61 7472 6978 7b7b 4 : E = matrix{{ │ │ │ │ +00056980: 782c 797d 7d20 2020 2020 2020 2020 2020 x,y}} │ │ │ │ 00056990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000569a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000569b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000569c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000569b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000569c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000569d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000569e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000569f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056a10: 2020 2020 2020 207c 0a7c 6f34 203d 207c |.|o4 = | │ │ │ │ -00056a20: 2078 2079 207c 2020 2020 2020 2020 2020 x y | │ │ │ │ +00056a00: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00056a10: 3420 3d20 7c20 7820 7920 7c20 2020 2020 4 = | x y | │ │ │ │ +00056a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056a60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00056a50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056ab0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00056ac0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -00056ad0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00056aa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056ab0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +00056ac0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00056ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056b00: 2020 2020 2020 207c 0a7c 6f34 203a 204d |.|o4 : M │ │ │ │ -00056b10: 6174 7269 7820 5245 2020 3c2d 2d20 5245 atrix RE <-- RE │ │ │ │ +00056af0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00056b00: 3420 3a20 4d61 7472 6978 2052 4520 203c 4 : Matrix RE < │ │ │ │ +00056b10: 2d2d 2052 4520 2020 2020 2020 2020 2020 -- RE │ │ │ │ 00056b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056b50: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00056b40: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00056b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056ba0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2046 -------+.|i5 : F │ │ │ │ -00056bb0: 3d61 7070 6c79 2832 2c20 6a2d 3e20 736f =apply(2, j-> so │ │ │ │ -00056bc0: 7572 6365 2045 5f7b 6a7d 2920 2020 2020 urce E_{j}) │ │ │ │ +00056b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00056ba0: 3520 3a20 463d 6170 706c 7928 322c 206a 5 : F=apply(2, j │ │ │ │ +00056bb0: 2d3e 2073 6f75 7263 6520 455f 7b6a 7d29 -> source E_{j}) │ │ │ │ +00056bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056bf0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00056be0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056c40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00056c50: 2020 3120 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ +00056c30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056c40: 2020 2020 2020 2031 2020 2020 3120 2020 1 1 │ │ │ │ +00056c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056c90: 2020 2020 2020 207c 0a7c 6f35 203d 207b |.|o5 = { │ │ │ │ -00056ca0: 5245 202c 2052 4520 7d20 2020 2020 2020 RE , RE } │ │ │ │ +00056c80: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00056c90: 3520 3d20 7b52 4520 2c20 5245 207d 2020 5 = {RE , RE } │ │ │ │ +00056ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056ce0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00056cd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056d30: 2020 2020 2020 207c 0a7c 6f35 203a 204c |.|o5 : L │ │ │ │ -00056d40: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +00056d20: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00056d30: 3520 3a20 4c69 7374 2020 2020 2020 2020 5 : List │ │ │ │ +00056d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056d80: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00056d70: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00056d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056dd0: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2070 -------+.|i6 : p │ │ │ │ -00056de0: 6869 203d 2068 6173 6854 6162 6c65 7b20 hi = hashTable{ │ │ │ │ -00056df0: 7b7b 302c 307d 2c20 6d61 7028 5423 312c {{0,0}, map(T#1, │ │ │ │ -00056e00: 2046 5f30 2a2a 5423 302c 2054 2331 5f7b F_0**T#0, T#1_{ │ │ │ │ -00056e10: 307d 297d 2c7b 7b31 2c30 7d2c 206d 6170 0})},{{1,0}, map │ │ │ │ -00056e20: 2854 2331 2c20 207c 0a7c 2020 2020 2020 (T#1, |.| │ │ │ │ +00056dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00056dd0: 3620 3a20 7068 6920 3d20 6861 7368 5461 6 : phi = hashTa │ │ │ │ +00056de0: 626c 657b 207b 7b30 2c30 7d2c 206d 6170 ble{ {{0,0}, map │ │ │ │ +00056df0: 2854 2331 2c20 465f 302a 2a54 2330 2c20 (T#1, F_0**T#0, │ │ │ │ +00056e00: 5423 315f 7b30 7d29 7d2c 7b7b 312c 307d T#1_{0})},{{1,0} │ │ │ │ +00056e10: 2c20 6d61 7028 5423 312c 2020 7c0a 7c20 , map(T#1, |.| │ │ │ │ +00056e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056e70: 2020 2020 2020 207c 0a7c 6f36 203d 2048 |.|o6 = H │ │ │ │ -00056e80: 6173 6854 6162 6c65 7b7b 302c 2030 7d20 ashTable{{0, 0} │ │ │ │ -00056e90: 3d3e 207b 312c 2031 7d20 7c20 3120 7c20 => {1, 1} | 1 | │ │ │ │ -00056ea0: 2020 7d20 2020 2020 2020 2020 2020 2020 } │ │ │ │ -00056eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056ec0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00056ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056ee0: 2020 207b 312c 2031 7d20 7c20 3020 7c20 {1, 1} | 0 | │ │ │ │ +00056e60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00056e70: 3620 3d20 4861 7368 5461 626c 657b 7b30 6 = HashTable{{0 │ │ │ │ +00056e80: 2c20 307d 203d 3e20 7b31 2c20 317d 207c , 0} => {1, 1} | │ │ │ │ +00056e90: 2031 207c 2020 207d 2020 2020 2020 2020 1 | } │ │ │ │ +00056ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00056eb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00056ed0: 2020 2020 2020 2020 7b31 2c20 317d 207c {1, 1} | │ │ │ │ +00056ee0: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 00056ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056f10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00056f20: 2020 2020 2020 2020 207b 302c 2031 7d20 {0, 1} │ │ │ │ -00056f30: 3d3e 207b 322c 2032 7d20 7c20 3020 3120 => {2, 2} | 0 1 │ │ │ │ -00056f40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00056f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056f60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00056f70: 2020 2020 2020 2020 207b 312c 2030 7d20 {1, 0} │ │ │ │ -00056f80: 3d3e 207b 312c 2031 7d20 7c20 3020 7c20 => {1, 1} | 0 | │ │ │ │ +00056f00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056f10: 2020 2020 2020 2020 2020 2020 2020 7b30 {0 │ │ │ │ +00056f20: 2c20 317d 203d 3e20 7b32 2c20 327d 207c , 1} => {2, 2} | │ │ │ │ +00056f30: 2030 2031 207c 2020 2020 2020 2020 2020 0 1 | │ │ │ │ +00056f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00056f50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056f60: 2020 2020 2020 2020 2020 2020 2020 7b31 {1 │ │ │ │ +00056f70: 2c20 307d 203d 3e20 7b31 2c20 317d 207c , 0} => {1, 1} | │ │ │ │ +00056f80: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 00056f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056fb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00056fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056fd0: 2020 207b 312c 2031 7d20 7c20 3120 7c20 {1, 1} | 1 | │ │ │ │ +00056fa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00056fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00056fc0: 2020 2020 2020 2020 7b31 2c20 317d 207c {1, 1} | │ │ │ │ +00056fd0: 2031 207c 2020 2020 2020 2020 2020 2020 1 | │ │ │ │ 00056fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057000: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00057010: 2020 2020 2020 2020 207b 312c 2031 7d20 {1, 1} │ │ │ │ -00057020: 3d3e 207b 322c 2032 7d20 7c20 2d31 2030 => {2, 2} | -1 0 │ │ │ │ -00057030: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00057040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057050: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00056ff0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057000: 2020 2020 2020 2020 2020 2020 2020 7b31 {1 │ │ │ │ +00057010: 2c20 317d 203d 3e20 7b32 2c20 327d 207c , 1} => {2, 2} | │ │ │ │ +00057020: 202d 3120 3020 7c20 2020 2020 2020 2020 -1 0 | │ │ │ │ +00057030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00057040: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000570a0: 2020 2020 2020 207c 0a7c 6f36 203a 2048 |.|o6 : H │ │ │ │ -000570b0: 6173 6854 6162 6c65 2020 2020 2020 2020 ashTable │ │ │ │ +00057090: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000570a0: 3620 3a20 4861 7368 5461 626c 6520 2020 6 : HashTable │ │ │ │ +000570b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000570c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000570d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000570e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000570f0: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +000570e0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +000570f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057140: 2d2d 2d2d 2d2d 2d7c 0a7c 465f 312a 2a54 -------|.|F_1**T │ │ │ │ -00057150: 2330 2c20 5423 315f 7b31 7d29 7d2c 7b7b #0, T#1_{1})},{{ │ │ │ │ -00057160: 302c 317d 2c20 6d61 7028 5423 322c 2046 0,1}, map(T#2, F │ │ │ │ -00057170: 5f30 2a2a 5423 312c 2054 2331 5e7b 317d _0**T#1, T#1^{1} │ │ │ │ -00057180: 297d 2c20 7b7b 312c 317d 2c20 2d6d 6170 )}, {{1,1}, -map │ │ │ │ -00057190: 2854 2332 2c20 207c 0a7c 2d2d 2d2d 2d2d (T#2, |.|------ │ │ │ │ +00057130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c46 ------------|.|F │ │ │ │ +00057140: 5f31 2a2a 5423 302c 2054 2331 5f7b 317d _1**T#0, T#1_{1} │ │ │ │ +00057150: 297d 2c7b 7b30 2c31 7d2c 206d 6170 2854 )},{{0,1}, map(T │ │ │ │ +00057160: 2332 2c20 465f 302a 2a54 2331 2c20 5423 #2, F_0**T#1, T# │ │ │ │ +00057170: 315e 7b31 7d29 7d2c 207b 7b31 2c31 7d2c 1^{1})}, {{1,1}, │ │ │ │ +00057180: 202d 6d61 7028 5423 322c 2020 7c0a 7c2d -map(T#2, |.|- │ │ │ │ +00057190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000571a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000571b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000571c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000571d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000571e0: 2d2d 2d2d 2d2d 2d7c 0a7c 465f 312a 2a54 -------|.|F_1**T │ │ │ │ -000571f0: 2331 2c20 5423 315e 7b30 7d29 7d7d 2020 #1, T#1^{0})}} │ │ │ │ +000571d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c46 ------------|.|F │ │ │ │ +000571e0: 5f31 2a2a 5423 312c 2054 2331 5e7b 307d _1**T#1, T#1^{0} │ │ │ │ +000571f0: 297d 7d20 2020 2020 2020 2020 2020 2020 )}} │ │ │ │ 00057200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057230: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00057220: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00057230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057280: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2061 -------+.|i7 : a │ │ │ │ -00057290: 7070 6c79 286b 6579 7320 7068 692c 206b pply(keys phi, k │ │ │ │ -000572a0: 2d3e 6973 486f 6d6f 6765 6e65 6f75 7320 ->isHomogeneous │ │ │ │ -000572b0: 7068 6923 6b29 2020 2020 2020 2020 2020 phi#k) │ │ │ │ -000572c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000572d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00057270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00057280: 3720 3a20 6170 706c 7928 6b65 7973 2070 7 : apply(keys p │ │ │ │ +00057290: 6869 2c20 6b2d 3e69 7348 6f6d 6f67 656e hi, k->isHomogen │ │ │ │ +000572a0: 656f 7573 2070 6869 236b 2920 2020 2020 eous phi#k) │ │ │ │ +000572b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000572c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000572d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000572e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000572f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057320: 2020 2020 2020 207c 0a7c 6f37 203d 207b |.|o7 = { │ │ │ │ -00057330: 7472 7565 2c20 7472 7565 2c20 7472 7565 true, true, true │ │ │ │ -00057340: 2c20 7472 7565 7d20 2020 2020 2020 2020 , true} │ │ │ │ +00057310: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00057320: 3720 3d20 7b74 7275 652c 2074 7275 652c 7 = {true, true, │ │ │ │ +00057330: 2074 7275 652c 2074 7275 657d 2020 2020 true, true} │ │ │ │ +00057340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057370: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00057360: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000573a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000573b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000573c0: 2020 2020 2020 207c 0a7c 6f37 203a 204c |.|o7 : L │ │ │ │ -000573d0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +000573b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000573c0: 3720 3a20 4c69 7374 2020 2020 2020 2020 7 : List │ │ │ │ +000573d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000573e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000573f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057410: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00057400: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00057410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057460: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2058 -------+.|i8 : X │ │ │ │ -00057470: 203d 206d 616b 654d 6f64 756c 6528 542c = makeModule(T, │ │ │ │ -00057480: 452c 7068 6929 2020 2020 2020 2020 2020 E,phi) │ │ │ │ +00057450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00057460: 3820 3a20 5820 3d20 6d61 6b65 4d6f 6475 8 : X = makeModu │ │ │ │ +00057470: 6c65 2854 2c45 2c70 6869 2920 2020 2020 le(T,E,phi) │ │ │ │ +00057480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000574a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000574b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000574a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000574b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000574c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000574d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000574e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000574f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057500: 2020 2020 2020 207c 0a7c 6f38 203d 2063 |.|o8 = c │ │ │ │ -00057510: 6f6b 6572 6e65 6c20 7b30 2c20 307d 207c okernel {0, 0} | │ │ │ │ -00057520: 202d 7820 3020 2030 2020 2d79 2030 2020 -x 0 0 -y 0 │ │ │ │ -00057530: 3020 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00057540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057550: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00057560: 2020 2020 2020 2020 7b31 2c20 317d 207c {1, 1} | │ │ │ │ -00057570: 2031 2020 2d78 2030 2020 3020 202d 7920 1 -x 0 0 -y │ │ │ │ -00057580: 3020 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00057590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000575a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000575b0: 2020 2020 2020 2020 7b31 2c20 317d 207c {1, 1} | │ │ │ │ -000575c0: 2030 2020 3020 202d 7820 3120 2030 2020 0 0 -x 1 0 │ │ │ │ -000575d0: 2d79 207c 2020 2020 2020 2020 2020 2020 -y | │ │ │ │ -000575e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000575f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00057600: 2020 2020 2020 2020 7b32 2c20 327d 207c {2, 2} | │ │ │ │ -00057610: 2030 2020 3020 2031 2020 3020 202d 3120 0 0 1 0 -1 │ │ │ │ -00057620: 3020 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00057630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057640: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000574f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00057500: 3820 3d20 636f 6b65 726e 656c 207b 302c 8 = cokernel {0, │ │ │ │ +00057510: 2030 7d20 7c20 2d78 2030 2020 3020 202d 0} | -x 0 0 - │ │ │ │ +00057520: 7920 3020 2030 2020 7c20 2020 2020 2020 y 0 0 | │ │ │ │ +00057530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00057540: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057550: 2020 2020 2020 2020 2020 2020 207b 312c {1, │ │ │ │ +00057560: 2031 7d20 7c20 3120 202d 7820 3020 2030 1} | 1 -x 0 0 │ │ │ │ +00057570: 2020 2d79 2030 2020 7c20 2020 2020 2020 -y 0 | │ │ │ │ +00057580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00057590: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000575a0: 2020 2020 2020 2020 2020 2020 207b 312c {1, │ │ │ │ +000575b0: 2031 7d20 7c20 3020 2030 2020 2d78 2031 1} | 0 0 -x 1 │ │ │ │ +000575c0: 2020 3020 202d 7920 7c20 2020 2020 2020 0 -y | │ │ │ │ +000575d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000575e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000575f0: 2020 2020 2020 2020 2020 2020 207b 322c {2, │ │ │ │ +00057600: 2032 7d20 7c20 3020 2030 2020 3120 2030 2} | 0 0 1 0 │ │ │ │ +00057610: 2020 2d31 2030 2020 7c20 2020 2020 2020 -1 0 | │ │ │ │ +00057620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00057630: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057690: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000576a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000576b0: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ +00057680: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000576a0: 2020 2020 2020 2020 2020 2020 2034 2020 4 │ │ │ │ +000576b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000576c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000576d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000576e0: 2020 2020 2020 207c 0a7c 6f38 203a 2052 |.|o8 : R │ │ │ │ -000576f0: 452d 6d6f 6475 6c65 2c20 7175 6f74 6965 E-module, quotie │ │ │ │ -00057700: 6e74 206f 6620 5245 2020 2020 2020 2020 nt of RE │ │ │ │ +000576d0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000576e0: 3820 3a20 5245 2d6d 6f64 756c 652c 2071 8 : RE-module, q │ │ │ │ +000576f0: 756f 7469 656e 7420 6f66 2052 4520 2020 uotient of RE │ │ │ │ +00057700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057730: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00057720: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00057730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057780: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2069 -------+.|i9 : i │ │ │ │ -00057790: 7348 6f6d 6f67 656e 656f 7573 2058 2020 sHomogeneous X │ │ │ │ +00057770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00057780: 3920 3a20 6973 486f 6d6f 6765 6e65 6f75 9 : isHomogeneou │ │ │ │ +00057790: 7320 5820 2020 2020 2020 2020 2020 2020 s X │ │ │ │ 000577a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000577b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000577c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000577d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000577c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000577d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000577e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000577f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057820: 2020 2020 2020 207c 0a7c 6f39 203d 2074 |.|o9 = t │ │ │ │ -00057830: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +00057810: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00057820: 3920 3d20 7472 7565 2020 2020 2020 2020 9 = true │ │ │ │ +00057830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057870: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00057860: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00057870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000578a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000578b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000578c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ -000578d0: 7120 3d20 6d61 7028 5a5a 2f31 3031 5b78 q = map(ZZ/101[x │ │ │ │ -000578e0: 2c79 2c20 536b 6577 436f 6d6d 7574 6174 ,y, SkewCommutat │ │ │ │ -000578f0: 6976 6520 3d3e 2074 7275 652c 2044 6567 ive => true, Deg │ │ │ │ -00057900: 7265 654d 6170 203d 3e20 642d 3e7b 645f reeMap => d->{d_ │ │ │ │ -00057910: 317d 5d2c 2020 207c 0a7c 2020 2020 2020 1}], |.| │ │ │ │ +000578b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000578c0: 3130 203a 2071 203d 206d 6170 285a 5a2f 10 : q = map(ZZ/ │ │ │ │ +000578d0: 3130 315b 782c 792c 2053 6b65 7743 6f6d 101[x,y, SkewCom │ │ │ │ +000578e0: 6d75 7461 7469 7665 203d 3e20 7472 7565 mutative => true │ │ │ │ +000578f0: 2c20 4465 6772 6565 4d61 7020 3d3e 2064 , DegreeMap => d │ │ │ │ +00057900: 2d3e 7b64 5f31 7d5d 2c20 2020 7c0a 7c20 ->{d_1}], |.| │ │ │ │ +00057910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057960: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00057970: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ +00057950: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057960: 2020 2020 2020 2020 2020 205a 5a20 2020 ZZ │ │ │ │ +00057970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000579a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000579b0: 2020 2020 2020 207c 0a7c 6f31 3020 3d20 |.|o10 = │ │ │ │ -000579c0: 6d61 7020 282d 2d2d 5b78 2e2e 795d 2c20 map (---[x..y], │ │ │ │ -000579d0: 5245 2c20 7b30 2c20 302c 2030 2c20 782c RE, {0, 0, 0, x, │ │ │ │ -000579e0: 2079 7d29 2020 2020 2020 2020 2020 2020 y}) │ │ │ │ -000579f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057a00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00057a10: 2020 2020 2031 3031 2020 2020 2020 2020 101 │ │ │ │ +000579a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000579b0: 3130 203d 206d 6170 2028 2d2d 2d5b 782e 10 = map (---[x. │ │ │ │ +000579c0: 2e79 5d2c 2052 452c 207b 302c 2030 2c20 .y], RE, {0, 0, │ │ │ │ +000579d0: 302c 2078 2c20 797d 2920 2020 2020 2020 0, x, y}) │ │ │ │ +000579e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000579f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057a00: 2020 2020 2020 2020 2020 3130 3120 2020 101 │ │ │ │ +00057a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057a50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00057a40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057aa0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00057ab0: 2020 2020 2020 2020 205a 5a20 2020 2020 ZZ │ │ │ │ +00057a90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057aa0: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ +00057ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057af0: 2020 2020 2020 207c 0a7c 6f31 3020 3a20 |.|o10 : │ │ │ │ -00057b00: 5269 6e67 4d61 7020 2d2d 2d5b 782e 2e79 RingMap ---[x..y │ │ │ │ -00057b10: 5d20 3c2d 2d20 5245 2020 2020 2020 2020 ] <-- RE │ │ │ │ +00057ae0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00057af0: 3130 203a 2052 696e 674d 6170 202d 2d2d 10 : RingMap --- │ │ │ │ +00057b00: 5b78 2e2e 795d 203c 2d2d 2052 4520 2020 [x..y] <-- RE │ │ │ │ +00057b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057b40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00057b50: 2020 2020 2020 2020 3130 3120 2020 2020 101 │ │ │ │ +00057b30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057b40: 2020 2020 2020 2020 2020 2020 2031 3031 101 │ │ │ │ +00057b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057b90: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +00057b80: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +00057b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057be0: 2d2d 2d2d 2d2d 2d7c 0a7c 7269 6e67 2058 -------|.|ring X │ │ │ │ -00057bf0: 2c20 7b33 3a30 2c78 2c79 7d29 2020 2020 , {3:0,x,y}) │ │ │ │ +00057bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c72 ------------|.|r │ │ │ │ +00057be0: 696e 6720 582c 207b 333a 302c 782c 797d ing X, {3:0,x,y} │ │ │ │ +00057bf0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00057c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057c30: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00057c20: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00057c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057c80: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 -------+.|i11 : │ │ │ │ -00057c90: 7072 756e 6520 636f 6b65 7220 7120 7072 prune coker q pr │ │ │ │ -00057ca0: 6573 656e 7461 7469 6f6e 2058 2020 2020 esentation X │ │ │ │ +00057c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00057c80: 3131 203a 2070 7275 6e65 2063 6f6b 6572 11 : prune coker │ │ │ │ +00057c90: 2071 2070 7265 7365 6e74 6174 696f 6e20 q presentation │ │ │ │ +00057ca0: 5820 2020 2020 2020 2020 2020 2020 2020 X │ │ │ │ 00057cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057cd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00057cc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057d20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00057d30: 2020 5a5a 2020 2020 2020 2031 2020 2020 ZZ 1 │ │ │ │ +00057d10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057d20: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ +00057d30: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00057d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057d70: 2020 2020 2020 207c 0a7c 6f31 3120 3d20 |.|o11 = │ │ │ │ -00057d80: 282d 2d2d 5b78 2e2e 795d 2920 2020 2020 (---[x..y]) │ │ │ │ +00057d60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00057d70: 3131 203d 2028 2d2d 2d5b 782e 2e79 5d29 11 = (---[x..y]) │ │ │ │ +00057d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057dc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00057dd0: 2031 3031 2020 2020 2020 2020 2020 2020 101 │ │ │ │ +00057db0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057dc0: 2020 2020 2020 3130 3120 2020 2020 2020 101 │ │ │ │ +00057dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057e10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00057e00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057e60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00057e70: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00057e50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057e60: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ +00057e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057eb0: 2020 2020 2020 207c 0a7c 6f31 3120 3a20 |.|o11 : │ │ │ │ -00057ec0: 2d2d 2d5b 782e 2e79 5d2d 6d6f 6475 6c65 ---[x..y]-module │ │ │ │ -00057ed0: 2c20 6672 6565 2020 2020 2020 2020 2020 , free │ │ │ │ +00057ea0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00057eb0: 3131 203a 202d 2d2d 5b78 2e2e 795d 2d6d 11 : ---[x..y]-m │ │ │ │ +00057ec0: 6f64 756c 652c 2066 7265 6520 2020 2020 odule, free │ │ │ │ +00057ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057f00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00057f10: 3130 3120 2020 2020 2020 2020 2020 2020 101 │ │ │ │ +00057ef0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057f00: 2020 2020 2031 3031 2020 2020 2020 2020 101 │ │ │ │ +00057f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057f50: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00057f40: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00057f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057fa0: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ -00057fb0: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -00057fc0: 202a 6e6f 7465 2065 7874 6572 696f 7248 *note exteriorH │ │ │ │ -00057fd0: 6f6d 6f6c 6f67 794d 6f64 756c 653a 2065 omologyModule: e │ │ │ │ -00057fe0: 7874 6572 696f 7248 6f6d 6f6c 6f67 794d xteriorHomologyM │ │ │ │ -00057ff0: 6f64 756c 652c 202d 2d20 4d61 6b65 2074 odule, -- Make t │ │ │ │ -00058000: 6865 2068 6f6d 6f6c 6f67 790a 2020 2020 he homology. │ │ │ │ -00058010: 6f66 2061 2063 6f6d 706c 6578 2069 6e74 of a complex int │ │ │ │ -00058020: 6f20 6120 6d6f 6475 6c65 206f 7665 7220 o a module over │ │ │ │ -00058030: 616e 2065 7874 6572 696f 7220 616c 6765 an exterior alge │ │ │ │ -00058040: 6272 610a 2020 2a20 2a6e 6f74 6520 6578 bra. * *note ex │ │ │ │ -00058050: 7465 7269 6f72 546f 724d 6f64 756c 653a teriorTorModule: │ │ │ │ -00058060: 2065 7874 6572 696f 7254 6f72 4d6f 6475 exteriorTorModu │ │ │ │ -00058070: 6c65 2c20 2d2d 2054 6f72 2061 7320 6120 le, -- Tor as a │ │ │ │ -00058080: 6d6f 6475 6c65 206f 7665 7220 616e 0a20 module over an. │ │ │ │ -00058090: 2020 2065 7874 6572 696f 7220 616c 6765 exterior alge │ │ │ │ -000580a0: 6272 6120 6f72 2062 6967 7261 6465 6420 bra or bigraded │ │ │ │ -000580b0: 616c 6765 6272 610a 2020 2a20 2a6e 6f74 algebra. * *not │ │ │ │ -000580c0: 6520 6578 7465 7269 6f72 4578 744d 6f64 e exteriorExtMod │ │ │ │ -000580d0: 756c 653a 2065 7874 6572 696f 7245 7874 ule: exteriorExt │ │ │ │ -000580e0: 4d6f 6475 6c65 2c20 2d2d 2045 7874 284d Module, -- Ext(M │ │ │ │ -000580f0: 2c6b 2920 6f72 2045 7874 284d 2c4e 2920 ,k) or Ext(M,N) │ │ │ │ -00058100: 6173 2061 0a20 2020 206d 6f64 756c 6520 as a. module │ │ │ │ -00058110: 6f76 6572 2061 6e20 6578 7465 7269 6f72 over an exterior │ │ │ │ -00058120: 2061 6c67 6562 7261 0a0a 5761 7973 2074 algebra..Ways t │ │ │ │ -00058130: 6f20 7573 6520 6d61 6b65 4d6f 6475 6c65 o use makeModule │ │ │ │ -00058140: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -00058150: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -00058160: 6d61 6b65 4d6f 6475 6c65 2848 6173 6854 makeModule(HashT │ │ │ │ -00058170: 6162 6c65 2c4d 6174 7269 782c 4861 7368 able,Matrix,Hash │ │ │ │ -00058180: 5461 626c 6529 220a 0a46 6f72 2074 6865 Table)"..For the │ │ │ │ -00058190: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -000581a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -000581b0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -000581c0: 206d 616b 654d 6f64 756c 653a 206d 616b makeModule: mak │ │ │ │ -000581d0: 654d 6f64 756c 652c 2069 7320 6120 2a6e eModule, is a *n │ │ │ │ -000581e0: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -000581f0: 696f 6e3a 0a28 4d61 6361 756c 6179 3244 ion:.(Macaulay2D │ │ │ │ -00058200: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -00058210: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ +00057f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ +00057fa0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +00057fb0: 0a0a 2020 2a20 2a6e 6f74 6520 6578 7465 .. * *note exte │ │ │ │ +00057fc0: 7269 6f72 486f 6d6f 6c6f 6779 4d6f 6475 riorHomologyModu │ │ │ │ +00057fd0: 6c65 3a20 6578 7465 7269 6f72 486f 6d6f le: exteriorHomo │ │ │ │ +00057fe0: 6c6f 6779 4d6f 6475 6c65 2c20 2d2d 204d logyModule, -- M │ │ │ │ +00057ff0: 616b 6520 7468 6520 686f 6d6f 6c6f 6779 ake the homology │ │ │ │ +00058000: 0a20 2020 206f 6620 6120 636f 6d70 6c65 . of a comple │ │ │ │ +00058010: 7820 696e 746f 2061 206d 6f64 756c 6520 x into a module │ │ │ │ +00058020: 6f76 6572 2061 6e20 6578 7465 7269 6f72 over an exterior │ │ │ │ +00058030: 2061 6c67 6562 7261 0a20 202a 202a 6e6f algebra. * *no │ │ │ │ +00058040: 7465 2065 7874 6572 696f 7254 6f72 4d6f te exteriorTorMo │ │ │ │ +00058050: 6475 6c65 3a20 6578 7465 7269 6f72 546f dule: exteriorTo │ │ │ │ +00058060: 724d 6f64 756c 652c 202d 2d20 546f 7220 rModule, -- Tor │ │ │ │ +00058070: 6173 2061 206d 6f64 756c 6520 6f76 6572 as a module over │ │ │ │ +00058080: 2061 6e0a 2020 2020 6578 7465 7269 6f72 an. exterior │ │ │ │ +00058090: 2061 6c67 6562 7261 206f 7220 6269 6772 algebra or bigr │ │ │ │ +000580a0: 6164 6564 2061 6c67 6562 7261 0a20 202a aded algebra. * │ │ │ │ +000580b0: 202a 6e6f 7465 2065 7874 6572 696f 7245 *note exteriorE │ │ │ │ +000580c0: 7874 4d6f 6475 6c65 3a20 6578 7465 7269 xtModule: exteri │ │ │ │ +000580d0: 6f72 4578 744d 6f64 756c 652c 202d 2d20 orExtModule, -- │ │ │ │ +000580e0: 4578 7428 4d2c 6b29 206f 7220 4578 7428 Ext(M,k) or Ext( │ │ │ │ +000580f0: 4d2c 4e29 2061 7320 610a 2020 2020 6d6f M,N) as a. mo │ │ │ │ +00058100: 6475 6c65 206f 7665 7220 616e 2065 7874 dule over an ext │ │ │ │ +00058110: 6572 696f 7220 616c 6765 6272 610a 0a57 erior algebra..W │ │ │ │ +00058120: 6179 7320 746f 2075 7365 206d 616b 654d ays to use makeM │ │ │ │ +00058130: 6f64 756c 653a 0a3d 3d3d 3d3d 3d3d 3d3d odule:.========= │ │ │ │ +00058140: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00058150: 2020 2a20 226d 616b 654d 6f64 756c 6528 * "makeModule( │ │ │ │ +00058160: 4861 7368 5461 626c 652c 4d61 7472 6978 HashTable,Matrix │ │ │ │ +00058170: 2c48 6173 6854 6162 6c65 2922 0a0a 466f ,HashTable)"..Fo │ │ │ │ +00058180: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00058190: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +000581a0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +000581b0: 2a6e 6f74 6520 6d61 6b65 4d6f 6475 6c65 *note makeModule │ │ │ │ +000581c0: 3a20 6d61 6b65 4d6f 6475 6c65 2c20 6973 : makeModule, is │ │ │ │ +000581d0: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ +000581e0: 6675 6e63 7469 6f6e 3a0a 284d 6163 6175 function:.(Macau │ │ │ │ +000581f0: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ +00058200: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ +00058210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058260: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -00058270: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -00058280: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -00058290: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -000582a0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -000582b0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -000582c0: 7932 2f70 6163 6b61 6765 732f 0a43 6f6d y2/packages/.Com │ │ │ │ -000582d0: 706c 6574 6549 6e74 6572 7365 6374 696f pleteIntersectio │ │ │ │ -000582e0: 6e52 6573 6f6c 7574 696f 6e73 2e6d 323a nResolutions.m2: │ │ │ │ -000582f0: 3237 3539 3a30 2e0a 1f0a 4669 6c65 3a20 2759:0....File: │ │ │ │ -00058300: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ -00058310: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ -00058320: 696e 666f 2c20 4e6f 6465 3a20 6d61 6b65 info, Node: make │ │ │ │ -00058330: 542c 204e 6578 743a 206d 6174 7269 7846 T, Next: matrixF │ │ │ │ -00058340: 6163 746f 7269 7a61 7469 6f6e 2c20 5072 actorization, Pr │ │ │ │ -00058350: 6576 3a20 6d61 6b65 4d6f 6475 6c65 2c20 ev: makeModule, │ │ │ │ -00058360: 5570 3a20 546f 700a 0a6d 616b 6554 202d Up: Top..makeT - │ │ │ │ -00058370: 2d20 6d61 6b65 2074 6865 2043 4920 6f70 - make the CI op │ │ │ │ -00058380: 6572 6174 6f72 7320 6f6e 2061 2063 6f6d erators on a com │ │ │ │ -00058390: 706c 6578 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a plex.*********** │ │ │ │ +00058250: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00058260: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00058270: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00058280: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00058290: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +000582a0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +000582b0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +000582c0: 2f0a 436f 6d70 6c65 7465 496e 7465 7273 /.CompleteInters │ │ │ │ +000582d0: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ +000582e0: 732e 6d32 3a32 3735 393a 302e 0a1f 0a46 s.m2:2759:0....F │ │ │ │ +000582f0: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ +00058300: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ +00058310: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ +00058320: 206d 616b 6554 2c20 4e65 7874 3a20 6d61 makeT, Next: ma │ │ │ │ +00058330: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ +00058340: 6e2c 2050 7265 763a 206d 616b 654d 6f64 n, Prev: makeMod │ │ │ │ +00058350: 756c 652c 2055 703a 2054 6f70 0a0a 6d61 ule, Up: Top..ma │ │ │ │ +00058360: 6b65 5420 2d2d 206d 616b 6520 7468 6520 keT -- make the │ │ │ │ +00058370: 4349 206f 7065 7261 746f 7273 206f 6e20 CI operators on │ │ │ │ +00058380: 6120 636f 6d70 6c65 780a 2a2a 2a2a 2a2a a complex.****** │ │ │ │ +00058390: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000583a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000583b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000583c0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -000583d0: 2020 2020 2020 5420 3d20 6d61 6b65 5428 T = makeT( │ │ │ │ -000583e0: 6666 2c46 2c69 290a 2020 2020 2020 2020 ff,F,i). │ │ │ │ -000583f0: 5420 3d20 6d61 6b65 5428 6666 2c46 2c74 T = makeT(ff,F,t │ │ │ │ -00058400: 302c 6929 0a20 202a 2049 6e70 7574 733a 0,i). * Inputs: │ │ │ │ -00058410: 0a20 2020 2020 202a 2066 662c 2061 202a . * ff, a * │ │ │ │ -00058420: 6e6f 7465 206d 6174 7269 783a 2028 4d61 note matrix: (Ma │ │ │ │ -00058430: 6361 756c 6179 3244 6f63 294d 6174 7269 caulay2Doc)Matri │ │ │ │ -00058440: 782c 2c20 3178 6320 6d61 7472 6978 2077 x,, 1xc matrix w │ │ │ │ -00058450: 686f 7365 2065 6e74 7269 6573 2061 7265 hose entries are │ │ │ │ -00058460: 0a20 2020 2020 2020 2061 2063 6f6d 706c . a compl │ │ │ │ -00058470: 6574 6520 696e 7465 7273 6563 7469 6f6e ete intersection │ │ │ │ -00058480: 2069 6e20 530a 2020 2020 2020 2a20 462c in S. * F, │ │ │ │ -00058490: 2061 202a 6e6f 7465 2063 6f6d 706c 6578 a *note complex │ │ │ │ -000584a0: 3a20 2843 6f6d 706c 6578 6573 2943 6f6d : (Complexes)Com │ │ │ │ -000584b0: 706c 6578 2c2c 206f 7665 7220 532f 6964 plex,, over S/id │ │ │ │ -000584c0: 6561 6c20 6666 0a20 2020 2020 202a 2074 eal ff. * t │ │ │ │ -000584d0: 302c 2061 202a 6e6f 7465 206d 6174 7269 0, a *note matri │ │ │ │ -000584e0: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ -000584f0: 294d 6174 7269 782c 2c20 4349 2d6f 7065 )Matrix,, CI-ope │ │ │ │ -00058500: 7261 746f 7220 6f6e 2046 2066 6f72 2066 rator on F for f │ │ │ │ -00058510: 665f 3020 746f 0a20 2020 2020 2020 2062 f_0 to. b │ │ │ │ -00058520: 6520 7072 6573 6572 7665 640a 2020 2020 e preserved. │ │ │ │ -00058530: 2020 2a20 692c 2061 6e20 2a6e 6f74 6520 * i, an *note │ │ │ │ -00058540: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ -00058550: 6179 3244 6f63 295a 5a2c 2c20 6465 6669 ay2Doc)ZZ,, defi │ │ │ │ -00058560: 6e65 2043 4920 6f70 6572 6174 6f72 7320 ne CI operators │ │ │ │ -00058570: 6672 6f6d 2046 5f69 0a20 2020 2020 2020 from F_i. │ │ │ │ -00058580: 205c 746f 2046 5f7b 692d 327d 0a20 202a \to F_{i-2}. * │ │ │ │ -00058590: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -000585a0: 2a20 4c2c 2061 202a 6e6f 7465 206c 6973 * L, a *note lis │ │ │ │ -000585b0: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ -000585c0: 294c 6973 742c 2c20 6f66 2043 4920 6f70 )List,, of CI op │ │ │ │ -000585d0: 6572 6174 6f72 7320 465f 6920 5c74 6f20 erators F_i \to │ │ │ │ -000585e0: 465f 7b69 2d32 7d0a 2020 2020 2020 2020 F_{i-2}. │ │ │ │ -000585f0: 636f 7272 6573 706f 6e64 696e 6720 746f corresponding to │ │ │ │ -00058600: 2065 6e74 7269 6573 206f 6620 6666 0a0a entries of ff.. │ │ │ │ -00058610: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -00058620: 3d3d 3d3d 3d3d 3d0a 0a73 7562 7374 6974 =======..substit │ │ │ │ -00058630: 7574 6520 6d61 7472 6963 6573 206f 6620 ute matrices of │ │ │ │ -00058640: 7477 6f20 6469 6666 6572 656e 7469 616c two differential │ │ │ │ -00058650: 7320 6f66 2046 2069 6e74 6f20 5320 3d20 s of F into S = │ │ │ │ -00058660: 7269 6e67 2066 662c 2063 6f6d 706f 7365 ring ff, compose │ │ │ │ -00058670: 2074 6865 6d2c 0a61 6e64 2064 6976 6964 them,.and divid │ │ │ │ -00058680: 6520 6279 2065 6e74 7269 6573 206f 6620 e by entries of │ │ │ │ -00058690: 6666 2c20 696e 206f 7264 6572 2e20 4966 ff, in order. If │ │ │ │ -000586a0: 2074 6865 2073 6563 6f6e 6420 4d61 7472 the second Matr │ │ │ │ -000586b0: 6978 2061 7267 756d 656e 7420 7430 2069 ix argument t0 i │ │ │ │ -000586c0: 730a 7072 6573 656e 742c 2075 7365 2069 s.present, use i │ │ │ │ -000586d0: 7420 6173 2074 6865 2066 6972 7374 2043 t as the first C │ │ │ │ -000586e0: 4920 6f70 6572 6174 6f72 2e0a 0a54 6865 I operator...The │ │ │ │ -000586f0: 2064 6567 7265 6573 206f 6620 7468 6520 degrees of the │ │ │ │ -00058700: 7461 7267 6574 7320 6f66 2074 6865 2054 targets of the T │ │ │ │ -00058710: 5f6a 2061 7265 2063 6861 6e67 6564 2062 _j are changed b │ │ │ │ -00058720: 7920 7468 6520 6465 6772 6565 7320 6f66 y the degrees of │ │ │ │ -00058730: 2074 6865 2066 5f6a 2074 6f0a 6d61 6b65 the f_j to.make │ │ │ │ -00058740: 2074 6865 2054 5f6a 2068 6f6d 6f67 656e the T_j homogen │ │ │ │ -00058750: 656f 7573 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d eous...+-------- │ │ │ │ +000583b0: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ +000583c0: 3a20 0a20 2020 2020 2020 2054 203d 206d : . T = m │ │ │ │ +000583d0: 616b 6554 2866 662c 462c 6929 0a20 2020 akeT(ff,F,i). │ │ │ │ +000583e0: 2020 2020 2054 203d 206d 616b 6554 2866 T = makeT(f │ │ │ │ +000583f0: 662c 462c 7430 2c69 290a 2020 2a20 496e f,F,t0,i). * In │ │ │ │ +00058400: 7075 7473 3a0a 2020 2020 2020 2a20 6666 puts:. * ff │ │ │ │ +00058410: 2c20 6120 2a6e 6f74 6520 6d61 7472 6978 , a *note matrix │ │ │ │ +00058420: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00058430: 4d61 7472 6978 2c2c 2031 7863 206d 6174 Matrix,, 1xc mat │ │ │ │ +00058440: 7269 7820 7768 6f73 6520 656e 7472 6965 rix whose entrie │ │ │ │ +00058450: 7320 6172 650a 2020 2020 2020 2020 6120 s are. a │ │ │ │ +00058460: 636f 6d70 6c65 7465 2069 6e74 6572 7365 complete interse │ │ │ │ +00058470: 6374 696f 6e20 696e 2053 0a20 2020 2020 ction in S. │ │ │ │ +00058480: 202a 2046 2c20 6120 2a6e 6f74 6520 636f * F, a *note co │ │ │ │ +00058490: 6d70 6c65 783a 2028 436f 6d70 6c65 7865 mplex: (Complexe │ │ │ │ +000584a0: 7329 436f 6d70 6c65 782c 2c20 6f76 6572 s)Complex,, over │ │ │ │ +000584b0: 2053 2f69 6465 616c 2066 660a 2020 2020 S/ideal ff. │ │ │ │ +000584c0: 2020 2a20 7430 2c20 6120 2a6e 6f74 6520 * t0, a *note │ │ │ │ +000584d0: 6d61 7472 6978 3a20 284d 6163 6175 6c61 matrix: (Macaula │ │ │ │ +000584e0: 7932 446f 6329 4d61 7472 6978 2c2c 2043 y2Doc)Matrix,, C │ │ │ │ +000584f0: 492d 6f70 6572 6174 6f72 206f 6e20 4620 I-operator on F │ │ │ │ +00058500: 666f 7220 6666 5f30 2074 6f0a 2020 2020 for ff_0 to. │ │ │ │ +00058510: 2020 2020 6265 2070 7265 7365 7276 6564 be preserved │ │ │ │ +00058520: 0a20 2020 2020 202a 2069 2c20 616e 202a . * i, an * │ │ │ │ +00058530: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ +00058540: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ +00058550: 2064 6566 696e 6520 4349 206f 7065 7261 define CI opera │ │ │ │ +00058560: 746f 7273 2066 726f 6d20 465f 690a 2020 tors from F_i. │ │ │ │ +00058570: 2020 2020 2020 5c74 6f20 465f 7b69 2d32 \to F_{i-2 │ │ │ │ +00058580: 7d0a 2020 2a20 4f75 7470 7574 733a 0a20 }. * Outputs:. │ │ │ │ +00058590: 2020 2020 202a 204c 2c20 6120 2a6e 6f74 * L, a *not │ │ │ │ +000585a0: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ +000585b0: 7932 446f 6329 4c69 7374 2c2c 206f 6620 y2Doc)List,, of │ │ │ │ +000585c0: 4349 206f 7065 7261 746f 7273 2046 5f69 CI operators F_i │ │ │ │ +000585d0: 205c 746f 2046 5f7b 692d 327d 0a20 2020 \to F_{i-2}. │ │ │ │ +000585e0: 2020 2020 2063 6f72 7265 7370 6f6e 6469 correspondi │ │ │ │ +000585f0: 6e67 2074 6f20 656e 7472 6965 7320 6f66 ng to entries of │ │ │ │ +00058600: 2066 660a 0a44 6573 6372 6970 7469 6f6e ff..Description │ │ │ │ +00058610: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 7375 .===========..su │ │ │ │ +00058620: 6273 7469 7475 7465 206d 6174 7269 6365 bstitute matrice │ │ │ │ +00058630: 7320 6f66 2074 776f 2064 6966 6665 7265 s of two differe │ │ │ │ +00058640: 6e74 6961 6c73 206f 6620 4620 696e 746f ntials of F into │ │ │ │ +00058650: 2053 203d 2072 696e 6720 6666 2c20 636f S = ring ff, co │ │ │ │ +00058660: 6d70 6f73 6520 7468 656d 2c0a 616e 6420 mpose them,.and │ │ │ │ +00058670: 6469 7669 6465 2062 7920 656e 7472 6965 divide by entrie │ │ │ │ +00058680: 7320 6f66 2066 662c 2069 6e20 6f72 6465 s of ff, in orde │ │ │ │ +00058690: 722e 2049 6620 7468 6520 7365 636f 6e64 r. If the second │ │ │ │ +000586a0: 204d 6174 7269 7820 6172 6775 6d65 6e74 Matrix argument │ │ │ │ +000586b0: 2074 3020 6973 0a70 7265 7365 6e74 2c20 t0 is.present, │ │ │ │ +000586c0: 7573 6520 6974 2061 7320 7468 6520 6669 use it as the fi │ │ │ │ +000586d0: 7273 7420 4349 206f 7065 7261 746f 722e rst CI operator. │ │ │ │ +000586e0: 0a0a 5468 6520 6465 6772 6565 7320 6f66 ..The degrees of │ │ │ │ +000586f0: 2074 6865 2074 6172 6765 7473 206f 6620 the targets of │ │ │ │ +00058700: 7468 6520 545f 6a20 6172 6520 6368 616e the T_j are chan │ │ │ │ +00058710: 6765 6420 6279 2074 6865 2064 6567 7265 ged by the degre │ │ │ │ +00058720: 6573 206f 6620 7468 6520 665f 6a20 746f es of the f_j to │ │ │ │ +00058730: 0a6d 616b 6520 7468 6520 545f 6a20 686f .make the T_j ho │ │ │ │ +00058740: 6d6f 6765 6e65 6f75 732e 0a0a 2b2d 2d2d mogeneous...+--- │ │ │ │ +00058750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00058790: 3120 3a20 5320 3d20 5a5a 2f31 3031 5b78 1 : S = ZZ/101[x │ │ │ │ -000587a0: 2c79 2c7a 5d3b 2020 2020 2020 2020 2020 ,y,z]; │ │ │ │ -000587b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000587c0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00058780: 2d2b 0a7c 6931 203a 2053 203d 205a 5a2f -+.|i1 : S = ZZ/ │ │ │ │ +00058790: 3130 315b 782c 792c 7a5d 3b20 2020 2020 101[x,y,z]; │ │ │ │ +000587a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000587b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000587c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000587d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000587e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000587f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ -00058800: 3a20 6666 203d 206d 6174 7269 7822 7833 : ff = matrix"x3 │ │ │ │ -00058810: 2c79 332c 7a33 223b 2020 2020 2020 2020 ,y3,z3"; │ │ │ │ -00058820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058830: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000587e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000587f0: 0a7c 6932 203a 2066 6620 3d20 6d61 7472 .|i2 : ff = matr │ │ │ │ +00058800: 6978 2278 332c 7933 2c7a 3322 3b20 2020 ix"x3,y3,z3"; │ │ │ │ +00058810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058820: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00058830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00058840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058860: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00058870: 2020 2020 2020 2020 3120 2020 2020 2033 1 3 │ │ │ │ +00058850: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00058860: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +00058870: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ 00058880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058890: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000588a0: 0a7c 6f32 203a 204d 6174 7269 7820 5320 .|o2 : Matrix S │ │ │ │ -000588b0: 203c 2d2d 2053 2020 2020 2020 2020 2020 <-- S │ │ │ │ -000588c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000588d0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00058890: 2020 2020 7c0a 7c6f 3220 3a20 4d61 7472 |.|o2 : Matr │ │ │ │ +000588a0: 6978 2053 2020 3c2d 2d20 5320 2020 2020 ix S <-- S │ │ │ │ +000588b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000588c0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000588d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000588e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000588f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00058910: 6933 203a 2052 203d 2053 2f69 6465 616c i3 : R = S/ideal │ │ │ │ -00058920: 2066 663b 2020 2020 2020 2020 2020 2020 ff; │ │ │ │ -00058930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058940: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00058900: 2d2d 2b0a 7c69 3320 3a20 5220 3d20 532f --+.|i3 : R = S/ │ │ │ │ +00058910: 6964 6561 6c20 6666 3b20 2020 2020 2020 ideal ff; │ │ │ │ +00058920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058930: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00058940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ -00058980: 203a 204d 203d 2063 6f6b 6572 206d 6174 : M = coker mat │ │ │ │ -00058990: 7269 7822 782c 792c 7a3b 792c 7a2c 7822 rix"x,y,z;y,z,x" │ │ │ │ -000589a0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -000589b0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00058970: 2b0a 7c69 3420 3a20 4d20 3d20 636f 6b65 +.|i4 : M = coke │ │ │ │ +00058980: 7220 6d61 7472 6978 2278 2c79 2c7a 3b79 r matrix"x,y,z;y │ │ │ │ +00058990: 2c7a 2c78 223b 2020 2020 2020 2020 2020 ,z,x"; │ │ │ │ +000589a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000589b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000589c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000589d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000589e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ -000589f0: 2062 6574 7469 2028 4620 3d20 6672 6565 betti (F = free │ │ │ │ -00058a00: 5265 736f 6c75 7469 6f6e 284d 2c20 4c65 Resolution(M, Le │ │ │ │ -00058a10: 6e67 7468 4c69 6d69 7420 3d3e 2033 2929 ngthLimit => 3)) │ │ │ │ -00058a20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000589d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000589e0: 7c69 3520 3a20 6265 7474 6920 2846 203d |i5 : betti (F = │ │ │ │ +000589f0: 2066 7265 6552 6573 6f6c 7574 696f 6e28 freeResolution( │ │ │ │ +00058a00: 4d2c 204c 656e 6774 684c 696d 6974 203d M, LengthLimit = │ │ │ │ +00058a10: 3e20 3329 297c 0a7c 2020 2020 2020 2020 > 3))|.| │ │ │ │ +00058a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00058a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058a50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00058a60: 2020 2020 2020 3020 3120 3220 3320 2020 0 1 2 3 │ │ │ │ +00058a40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00058a50: 2020 2020 2020 2020 2020 2030 2031 2032 0 1 2 │ │ │ │ +00058a60: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 00058a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058a80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00058a90: 7c6f 3520 3d20 746f 7461 6c3a 2032 2033 |o5 = total: 2 3 │ │ │ │ -00058aa0: 2035 2036 2020 2020 2020 2020 2020 2020 5 6 │ │ │ │ -00058ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058ac0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00058ad0: 2030 3a20 3220 3320 2e20 2e20 2020 2020 0: 2 3 . . │ │ │ │ +00058a80: 2020 207c 0a7c 6f35 203d 2074 6f74 616c |.|o5 = total │ │ │ │ +00058a90: 3a20 3220 3320 3520 3620 2020 2020 2020 : 2 3 5 6 │ │ │ │ +00058aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058ab0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00058ac0: 2020 2020 2020 303a 2032 2033 202e 202e 0: 2 3 . . │ │ │ │ +00058ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00058ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058af0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00058b00: 2020 2020 2020 2020 313a 202e 202e 2035 1: . . 5 │ │ │ │ -00058b10: 2036 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -00058b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058b30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00058af0: 207c 0a7c 2020 2020 2020 2020 2031 3a20 |.| 1: │ │ │ │ +00058b00: 2e20 2e20 3520 3620 2020 2020 2020 2020 . . 5 6 │ │ │ │ +00058b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058b20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00058b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00058b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058b60: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -00058b70: 3a20 4265 7474 6954 616c 6c79 2020 2020 : BettiTally │ │ │ │ +00058b50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00058b60: 0a7c 6f35 203a 2042 6574 7469 5461 6c6c .|o5 : BettiTall │ │ │ │ +00058b70: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ 00058b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058ba0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00058b90: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00058ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058bd0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ -00058be0: 5420 3d20 6d61 6b65 5428 6666 2c46 2c33 T = makeT(ff,F,3 │ │ │ │ -00058bf0: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ -00058c00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00058c10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00058bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00058bd0: 6936 203a 2054 203d 206d 616b 6554 2866 i6 : T = makeT(f │ │ │ │ +00058be0: 662c 462c 3329 3b20 2020 2020 2020 2020 f,F,3); │ │ │ │ +00058bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058c00: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00058c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058c40: 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 6e65 ------+.|i7 : ne │ │ │ │ -00058c50: 744c 6973 7420 5420 2020 2020 2020 2020 tList T │ │ │ │ +00058c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ +00058c40: 203a 206e 6574 4c69 7374 2054 2020 2020 : netList T │ │ │ │ +00058c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00058c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00058c70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00058c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00058c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058cb0: 2020 2020 7c0a 7c20 2020 2020 2b2d 2d2d |.| +--- │ │ │ │ -00058cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058cd0: 2d2d 2d2d 2d2b 2020 2020 2020 2020 2020 -----+ │ │ │ │ -00058ce0: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ -00058cf0: 203d 207c 7b34 7d20 7c20 3020 3020 3020 = |{4} | 0 0 0 │ │ │ │ -00058d00: 3020 2031 2030 207c 2020 2020 7c20 2020 0 1 0 | | │ │ │ │ -00058d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058d20: 2020 7c0a 7c20 2020 2020 7c7b 347d 207c |.| |{4} | │ │ │ │ -00058d30: 2030 2030 2030 202d 3120 3020 3020 7c20 0 0 0 -1 0 0 | │ │ │ │ -00058d40: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00058d50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00058d60: 207c 7b34 7d20 7c20 3020 3020 3020 3020 |{4} | 0 0 0 0 │ │ │ │ -00058d70: 2030 2031 207c 2020 2020 7c20 2020 2020 0 1 | | │ │ │ │ -00058d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058d90: 7c0a 7c20 2020 2020 2b2d 2d2d 2d2d 2d2d |.| +------- │ │ │ │ -00058da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058db0: 2d2b 2020 2020 2020 2020 2020 2020 2020 -+ │ │ │ │ -00058dc0: 2020 2020 2020 207c 0a7c 2020 2020 207c |.| | │ │ │ │ -00058dd0: 7b34 7d20 7c20 3020 3120 3020 3020 3020 {4} | 0 1 0 0 0 │ │ │ │ -00058de0: 3020 7c20 2020 2020 7c20 2020 2020 2020 0 | | │ │ │ │ -00058df0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00058e00: 7c20 2020 2020 7c7b 347d 207c 2031 2030 | |{4} | 1 0 │ │ │ │ -00058e10: 2030 2030 2030 2030 207c 2020 2020 207c 0 0 0 0 | | │ │ │ │ -00058e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058e30: 2020 2020 207c 0a7c 2020 2020 207c 7b34 |.| |{4 │ │ │ │ -00058e40: 7d20 7c20 3020 3020 3120 3020 3020 3020 } | 0 0 1 0 0 0 │ │ │ │ -00058e50: 7c20 2020 2020 7c20 2020 2020 2020 2020 | | │ │ │ │ -00058e60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00058e70: 2020 2020 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d +----------- │ │ │ │ -00058e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 2020 -------------+ │ │ │ │ -00058e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058ea0: 2020 207c 0a7c 2020 2020 207c 7b34 7d20 |.| |{4} │ │ │ │ -00058eb0: 7c20 3020 202d 3120 3020 2030 202d 3120 | 0 -1 0 0 -1 │ │ │ │ -00058ec0: 3020 207c 7c20 2020 2020 2020 2020 2020 0 || │ │ │ │ -00058ed0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00058ee0: 2020 7c7b 347d 207c 202d 3120 3020 2030 |{4} | -1 0 0 │ │ │ │ -00058ef0: 2020 3120 3020 2030 2020 7c7c 2020 2020 1 0 0 || │ │ │ │ -00058f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058f10: 207c 0a7c 2020 2020 207c 7b34 7d20 7c20 |.| |{4} | │ │ │ │ -00058f20: 3020 2030 2020 2d31 2030 2030 2020 2d31 0 0 -1 0 0 -1 │ │ │ │ -00058f30: 207c 7c20 2020 2020 2020 2020 2020 2020 || │ │ │ │ -00058f40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00058f50: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00058f60: 2d2d 2d2d 2d2d 2d2d 2d2b 2020 2020 2020 ---------+ │ │ │ │ -00058f70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00058f80: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00058ca0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00058cb0: 202b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +-------------- │ │ │ │ +00058cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 2020 2020 ----------+ │ │ │ │ +00058cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058ce0: 7c0a 7c6f 3720 3d20 7c7b 347d 207c 2030 |.|o7 = |{4} | 0 │ │ │ │ +00058cf0: 2030 2030 2030 2020 3120 3020 7c20 2020 0 0 0 1 0 | │ │ │ │ +00058d00: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00058d10: 2020 2020 2020 207c 0a7c 2020 2020 207c |.| | │ │ │ │ +00058d20: 7b34 7d20 7c20 3020 3020 3020 2d31 2030 {4} | 0 0 0 -1 0 │ │ │ │ +00058d30: 2030 207c 2020 2020 7c20 2020 2020 2020 0 | | │ │ │ │ +00058d40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00058d50: 7c20 2020 2020 7c7b 347d 207c 2030 2030 | |{4} | 0 0 │ │ │ │ +00058d60: 2030 2030 2020 3020 3120 7c20 2020 207c 0 0 0 1 | | │ │ │ │ +00058d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058d80: 2020 2020 207c 0a7c 2020 2020 202b 2d2d |.| +-- │ │ │ │ +00058d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00058da0: 2d2d 2d2d 2d2d 2b20 2020 2020 2020 2020 ------+ │ │ │ │ +00058db0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00058dc0: 2020 2020 7c7b 347d 207c 2030 2031 2030 |{4} | 0 1 0 │ │ │ │ +00058dd0: 2030 2030 2030 207c 2020 2020 207c 2020 0 0 0 | | │ │ │ │ +00058de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058df0: 2020 207c 0a7c 2020 2020 207c 7b34 7d20 |.| |{4} │ │ │ │ +00058e00: 7c20 3120 3020 3020 3020 3020 3020 7c20 | 1 0 0 0 0 0 | │ │ │ │ +00058e10: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ +00058e20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00058e30: 2020 7c7b 347d 207c 2030 2030 2031 2030 |{4} | 0 0 1 0 │ │ │ │ +00058e40: 2030 2030 207c 2020 2020 207c 2020 2020 0 0 | | │ │ │ │ +00058e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058e60: 207c 0a7c 2020 2020 202b 2d2d 2d2d 2d2d |.| +------ │ │ │ │ +00058e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00058e80: 2d2d 2b20 2020 2020 2020 2020 2020 2020 --+ │ │ │ │ +00058e90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00058ea0: 7c7b 347d 207c 2030 2020 2d31 2030 2020 |{4} | 0 -1 0 │ │ │ │ +00058eb0: 3020 2d31 2030 2020 7c7c 2020 2020 2020 0 -1 0 || │ │ │ │ +00058ec0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00058ed0: 0a7c 2020 2020 207c 7b34 7d20 7c20 2d31 .| |{4} | -1 │ │ │ │ +00058ee0: 2030 2020 3020 2031 2030 2020 3020 207c 0 0 1 0 0 | │ │ │ │ +00058ef0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00058f00: 2020 2020 2020 7c0a 7c20 2020 2020 7c7b |.| |{ │ │ │ │ +00058f10: 347d 207c 2030 2020 3020 202d 3120 3020 4} | 0 0 -1 0 │ │ │ │ +00058f20: 3020 202d 3120 7c7c 2020 2020 2020 2020 0 -1 || │ │ │ │ +00058f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00058f40: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ +00058f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ +00058f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058f70: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00058f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058fb0: 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 6973 ------+.|i8 : is │ │ │ │ -00058fc0: 486f 6d6f 6765 6e65 6f75 7320 545f 3220 Homogeneous T_2 │ │ │ │ +00058fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 -----------+.|i8 │ │ │ │ +00058fb0: 203a 2069 7348 6f6d 6f67 656e 656f 7573 : isHomogeneous │ │ │ │ +00058fc0: 2054 5f32 2020 2020 2020 2020 2020 2020 T_2 │ │ │ │ 00058fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058fe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00058fe0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00058ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059020: 2020 2020 7c0a 7c6f 3820 3d20 7472 7565 |.|o8 = true │ │ │ │ +00059010: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ +00059020: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ 00059030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059050: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00059050: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00059060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00059070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059090: 2d2d 2b0a 0a43 6176 6561 740a 3d3d 3d3d --+..Caveat.==== │ │ │ │ -000590a0: 3d3d 0a0a 5363 7269 7074 2061 7373 756d ==..Script assum │ │ │ │ -000590b0: 6573 2074 6861 7420 7269 6e67 2046 203d es that ring F = │ │ │ │ -000590c0: 3d20 2872 696e 6720 6666 292f 2869 6465 = (ring ff)/(ide │ │ │ │ -000590d0: 616c 2066 6629 2e20 4974 206d 6967 6874 al ff). It might │ │ │ │ -000590e0: 2062 6520 6d6f 7265 2075 7365 6675 6c20 be more useful │ │ │ │ -000590f0: 746f 0a72 6574 7572 6e20 7468 6520 6f70 to.return the op │ │ │ │ -00059100: 6572 6174 6f72 7320 6173 206d 6174 7269 erators as matri │ │ │ │ -00059110: 6365 7320 6f76 6572 2053 2072 6174 6865 ces over S rathe │ │ │ │ -00059120: 7220 7468 616e 206f 7665 7220 522c 2073 r than over R, s │ │ │ │ -00059130: 696e 6365 2074 6869 7320 6973 2077 6861 ince this is wha │ │ │ │ -00059140: 740a 7765 2764 206e 6565 6420 666f 7220 t.we'd need for │ │ │ │ -00059150: 7468 696e 6773 206c 696b 6520 6d61 7472 things like matr │ │ │ │ -00059160: 6978 4661 6374 6f72 697a 6174 696f 6e20 ixFactorization │ │ │ │ -00059170: 2877 6865 7265 2074 6869 7320 7072 6f63 (where this proc │ │ │ │ -00059180: 6573 7320 6375 7272 656e 746c 790a 646f ess currently.do │ │ │ │ -00059190: 6e65 206f 6e20 7468 6520 666c 792c 206e ne on the fly, n │ │ │ │ -000591a0: 6f74 2063 616c 6c69 6e67 206d 616b 6554 ot calling makeT │ │ │ │ -000591b0: 290a 0a57 6179 7320 746f 2075 7365 206d )..Ways to use m │ │ │ │ -000591c0: 616b 6554 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d akeT:.========== │ │ │ │ -000591d0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 226d ========.. * "m │ │ │ │ -000591e0: 616b 6554 284d 6174 7269 782c 436f 6d70 akeT(Matrix,Comp │ │ │ │ -000591f0: 6c65 782c 5a5a 2922 0a0a 466f 7220 7468 lex,ZZ)"..For th │ │ │ │ -00059200: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -00059210: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00059220: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -00059230: 6520 6d61 6b65 543a 206d 616b 6554 2c20 e makeT: makeT, │ │ │ │ -00059240: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -00059250: 6420 6675 6e63 7469 6f6e 3a0a 284d 6163 d function:.(Mac │ │ │ │ -00059260: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -00059270: 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d Function,...---- │ │ │ │ +00059080: 2d2d 2d2d 2d2d 2d2b 0a0a 4361 7665 6174 -------+..Caveat │ │ │ │ +00059090: 0a3d 3d3d 3d3d 3d0a 0a53 6372 6970 7420 .======..Script │ │ │ │ +000590a0: 6173 7375 6d65 7320 7468 6174 2072 696e assumes that rin │ │ │ │ +000590b0: 6720 4620 3d3d 2028 7269 6e67 2066 6629 g F == (ring ff) │ │ │ │ +000590c0: 2f28 6964 6561 6c20 6666 292e 2049 7420 /(ideal ff). It │ │ │ │ +000590d0: 6d69 6768 7420 6265 206d 6f72 6520 7573 might be more us │ │ │ │ +000590e0: 6566 756c 2074 6f0a 7265 7475 726e 2074 eful to.return t │ │ │ │ +000590f0: 6865 206f 7065 7261 746f 7273 2061 7320 he operators as │ │ │ │ +00059100: 6d61 7472 6963 6573 206f 7665 7220 5320 matrices over S │ │ │ │ +00059110: 7261 7468 6572 2074 6861 6e20 6f76 6572 rather than over │ │ │ │ +00059120: 2052 2c20 7369 6e63 6520 7468 6973 2069 R, since this i │ │ │ │ +00059130: 7320 7768 6174 0a77 6527 6420 6e65 6564 s what.we'd need │ │ │ │ +00059140: 2066 6f72 2074 6869 6e67 7320 6c69 6b65 for things like │ │ │ │ +00059150: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ +00059160: 7469 6f6e 2028 7768 6572 6520 7468 6973 tion (where this │ │ │ │ +00059170: 2070 726f 6365 7373 2063 7572 7265 6e74 process current │ │ │ │ +00059180: 6c79 0a64 6f6e 6520 6f6e 2074 6865 2066 ly.done on the f │ │ │ │ +00059190: 6c79 2c20 6e6f 7420 6361 6c6c 696e 6720 ly, not calling │ │ │ │ +000591a0: 6d61 6b65 5429 0a0a 5761 7973 2074 6f20 makeT)..Ways to │ │ │ │ +000591b0: 7573 6520 6d61 6b65 543a 0a3d 3d3d 3d3d use makeT:.===== │ │ │ │ +000591c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +000591d0: 202a 2022 6d61 6b65 5428 4d61 7472 6978 * "makeT(Matrix │ │ │ │ +000591e0: 2c43 6f6d 706c 6578 2c5a 5a29 220a 0a46 ,Complex,ZZ)"..F │ │ │ │ +000591f0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +00059200: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +00059210: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +00059220: 202a 6e6f 7465 206d 616b 6554 3a20 6d61 *note makeT: ma │ │ │ │ +00059230: 6b65 542c 2069 7320 6120 2a6e 6f74 6520 keT, is a *note │ │ │ │ +00059240: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ +00059250: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +00059260: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +00059270: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 00059280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00059290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000592a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000592b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000592c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -000592d0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -000592e0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -000592f0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -00059300: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -00059310: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -00059320: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -00059330: 6573 2f0a 436f 6d70 6c65 7465 496e 7465 es/.CompleteInte │ │ │ │ -00059340: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ -00059350: 6f6e 732e 6d32 3a33 3534 383a 302e 0a1f ons.m2:3548:0... │ │ │ │ -00059360: 0a46 696c 653a 2043 6f6d 706c 6574 6549 .File: CompleteI │ │ │ │ -00059370: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ -00059380: 7574 696f 6e73 2e69 6e66 6f2c 204e 6f64 utions.info, Nod │ │ │ │ -00059390: 653a 206d 6174 7269 7846 6163 746f 7269 e: matrixFactori │ │ │ │ -000593a0: 7a61 7469 6f6e 2c20 4e65 7874 3a20 6d66 zation, Next: mf │ │ │ │ -000593b0: 426f 756e 642c 2050 7265 763a 206d 616b Bound, Prev: mak │ │ │ │ -000593c0: 6554 2c20 5570 3a20 546f 700a 0a6d 6174 eT, Up: Top..mat │ │ │ │ -000593d0: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -000593e0: 202d 2d20 4d61 7073 2069 6e20 6120 6869 -- Maps in a hi │ │ │ │ -000593f0: 6768 6572 2063 6f64 696d 656e 7369 6f6e gher codimension │ │ │ │ -00059400: 206d 6174 7269 7820 6661 6374 6f72 697a matrix factoriz │ │ │ │ -00059410: 6174 696f 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a ation.********** │ │ │ │ +000592c0: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +000592d0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +000592e0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +000592f0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +00059300: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +00059310: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +00059320: 6163 6b61 6765 732f 0a43 6f6d 706c 6574 ackages/.Complet │ │ │ │ +00059330: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ +00059340: 6f6c 7574 696f 6e73 2e6d 323a 3335 3438 olutions.m2:3548 │ │ │ │ +00059350: 3a30 2e0a 1f0a 4669 6c65 3a20 436f 6d70 :0....File: Comp │ │ │ │ +00059360: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ +00059370: 5265 736f 6c75 7469 6f6e 732e 696e 666f Resolutions.info │ │ │ │ +00059380: 2c20 4e6f 6465 3a20 6d61 7472 6978 4661 , Node: matrixFa │ │ │ │ +00059390: 6374 6f72 697a 6174 696f 6e2c 204e 6578 ctorization, Nex │ │ │ │ +000593a0: 743a 206d 6642 6f75 6e64 2c20 5072 6576 t: mfBound, Prev │ │ │ │ +000593b0: 3a20 6d61 6b65 542c 2055 703a 2054 6f70 : makeT, Up: Top │ │ │ │ +000593c0: 0a0a 6d61 7472 6978 4661 6374 6f72 697a ..matrixFactoriz │ │ │ │ +000593d0: 6174 696f 6e20 2d2d 204d 6170 7320 696e ation -- Maps in │ │ │ │ +000593e0: 2061 2068 6967 6865 7220 636f 6469 6d65 a higher codime │ │ │ │ +000593f0: 6e73 696f 6e20 6d61 7472 6978 2066 6163 nsion matrix fac │ │ │ │ +00059400: 746f 7269 7a61 7469 6f6e 0a2a 2a2a 2a2a torization.***** │ │ │ │ +00059410: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00059420: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00059430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00059440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00059450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -00059460: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -00059470: 2020 2020 4d46 203d 206d 6174 7269 7846 MF = matrixF │ │ │ │ -00059480: 6163 746f 7269 7a61 7469 6f6e 2866 662c actorization(ff, │ │ │ │ -00059490: 4d29 0a20 202a 2049 6e70 7574 733a 0a20 M). * Inputs:. │ │ │ │ -000594a0: 2020 2020 202a 2066 662c 2061 202a 6e6f * ff, a *no │ │ │ │ -000594b0: 7465 206d 6174 7269 783a 2028 4d61 6361 te matrix: (Maca │ │ │ │ -000594c0: 756c 6179 3244 6f63 294d 6174 7269 782c ulay2Doc)Matrix, │ │ │ │ -000594d0: 2c20 6120 7375 6666 6963 6965 6e74 6c79 , a sufficiently │ │ │ │ -000594e0: 2067 656e 6572 616c 0a20 2020 2020 2020 general. │ │ │ │ -000594f0: 2072 6567 756c 6172 2073 6571 7565 6e63 regular sequenc │ │ │ │ -00059500: 6520 696e 2061 2072 696e 6720 530a 2020 e in a ring S. │ │ │ │ -00059510: 2020 2020 2a20 4d2c 2061 202a 6e6f 7465 * M, a *note │ │ │ │ -00059520: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ -00059530: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ -00059540: 6120 6d61 7869 6d61 6c20 436f 6865 6e2d a maximal Cohen- │ │ │ │ -00059550: 4d61 6361 756c 6179 0a20 2020 2020 2020 Macaulay. │ │ │ │ -00059560: 206d 6f64 756c 6520 6f76 6572 2053 2f69 module over S/i │ │ │ │ -00059570: 6465 616c 2066 660a 2020 2a20 2a6e 6f74 deal ff. * *not │ │ │ │ -00059580: 6520 4f70 7469 6f6e 616c 2069 6e70 7574 e Optional input │ │ │ │ -00059590: 733a 2028 4d61 6361 756c 6179 3244 6f63 s: (Macaulay2Doc │ │ │ │ -000595a0: 2975 7369 6e67 2066 756e 6374 696f 6e73 )using functions │ │ │ │ -000595b0: 2077 6974 6820 6f70 7469 6f6e 616c 2069 with optional i │ │ │ │ -000595c0: 6e70 7574 732c 3a0a 2020 2020 2020 2a20 nputs,:. * │ │ │ │ -000595d0: 4175 676d 656e 7461 7469 6f6e 203d 3e20 Augmentation => │ │ │ │ -000595e0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -000595f0: 7565 2074 7275 650a 2020 2020 2020 2a20 ue true. * │ │ │ │ -00059600: 4368 6563 6b20 3d3e 202e 2e2e 2c20 6465 Check => ..., de │ │ │ │ -00059610: 6661 756c 7420 7661 6c75 6520 6661 6c73 fault value fals │ │ │ │ -00059620: 650a 2020 2020 2020 2a20 4c61 7965 7265 e. * Layere │ │ │ │ -00059630: 6420 3d3e 202e 2e2e 2c20 6465 6661 756c d => ..., defaul │ │ │ │ -00059640: 7420 7661 6c75 6520 7472 7565 0a20 2020 t value true. │ │ │ │ -00059650: 2020 202a 2056 6572 626f 7365 203d 3e20 * Verbose => │ │ │ │ -00059660: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -00059670: 7565 2066 616c 7365 0a20 202a 204f 7574 ue false. * Out │ │ │ │ -00059680: 7075 7473 3a0a 2020 2020 2020 2a20 4d46 puts:. * MF │ │ │ │ -00059690: 2c20 6120 2a6e 6f74 6520 6c69 7374 3a20 , a *note list: │ │ │ │ -000596a0: 284d 6163 6175 6c61 7932 446f 6329 4c69 (Macaulay2Doc)Li │ │ │ │ -000596b0: 7374 2c2c 205c 7b64 2c68 2c67 616d 6d61 st,, \{d,h,gamma │ │ │ │ -000596c0: 5c7d 2c20 7768 6572 6520 643a 415f 3120 \}, where d:A_1 │ │ │ │ -000596d0: 5c74 6f0a 2020 2020 2020 2020 415f 3020 \to. A_0 │ │ │ │ -000596e0: 616e 6420 683a 205c 6f70 6c75 7320 415f and h: \oplus A_ │ │ │ │ -000596f0: 3028 7029 205c 746f 2041 5f31 2069 7320 0(p) \to A_1 is │ │ │ │ -00059700: 7468 6520 6469 7265 6374 2073 756d 206f the direct sum o │ │ │ │ -00059710: 6620 7061 7274 6961 6c0a 2020 2020 2020 f partial. │ │ │ │ -00059720: 2020 686f 6d6f 746f 7069 6573 2c20 616e homotopies, an │ │ │ │ -00059730: 6420 6761 6d6d 613a 2041 5f30 202d 3e4d d gamma: A_0 ->M │ │ │ │ -00059740: 2069 7320 7468 6520 6175 676d 656e 7461 is the augmenta │ │ │ │ -00059750: 7469 6f6e 2028 7265 7475 726e 6564 206f tion (returned o │ │ │ │ -00059760: 6e6c 7920 6966 0a20 2020 2020 2020 2041 nly if. A │ │ │ │ -00059770: 7567 6d65 6e74 6174 696f 6e20 3d3e 7472 ugmentation =>tr │ │ │ │ -00059780: 7565 290a 0a44 6573 6372 6970 7469 6f6e ue)..Description │ │ │ │ -00059790: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 .===========..Th │ │ │ │ -000597a0: 6520 696e 7075 7420 6d6f 6475 6c65 204d e input module M │ │ │ │ -000597b0: 2073 686f 756c 6420 6265 2061 206d 6178 should be a max │ │ │ │ -000597c0: 696d 616c 2043 6f68 656e 2d4d 6163 6175 imal Cohen-Macau │ │ │ │ -000597d0: 6c61 7920 6d6f 6475 6c65 206f 7665 7220 lay module over │ │ │ │ -000597e0: 5220 3d20 532f 6964 6561 6c0a 6666 2e20 R = S/ideal.ff. │ │ │ │ -000597f0: 2049 6620 4d20 6973 2069 6e20 6661 6374 If M is in fact │ │ │ │ -00059800: 2061 2022 6869 6768 2073 797a 7967 7922 a "high syzygy" │ │ │ │ -00059810: 2c20 7468 656e 2074 6865 2066 756e 6374 , then the funct │ │ │ │ -00059820: 696f 6e0a 6d61 7472 6978 4661 6374 6f72 ion.matrixFactor │ │ │ │ -00059830: 697a 6174 696f 6e28 6666 2c4d 2c4c 6179 ization(ff,M,Lay │ │ │ │ -00059840: 6572 6564 3d3e 6661 6c73 6529 2075 7365 ered=>false) use │ │ │ │ -00059850: 7320 6120 6469 6666 6572 656e 742c 2066 s a different, f │ │ │ │ -00059860: 6173 7465 7220 616c 676f 7269 7468 6d0a aster algorithm. │ │ │ │ -00059870: 7768 6963 6820 6f6e 6c79 2077 6f72 6b73 which only works │ │ │ │ -00059880: 2069 6e20 7468 6520 6869 6768 2073 797a in the high syz │ │ │ │ -00059890: 7967 7920 6361 7365 2e0a 0a49 6e20 616c ygy case...In al │ │ │ │ -000598a0: 6c20 6578 616d 706c 6573 2077 6520 6b6e l examples we kn │ │ │ │ -000598b0: 6f77 2c20 4d20 6361 6e20 6265 2063 6f6e ow, M can be con │ │ │ │ -000598c0: 7369 6465 7265 6420 6120 2268 6967 6820 sidered a "high │ │ │ │ -000598d0: 7379 7a79 6779 2220 6173 206c 6f6e 6720 syzygy" as long │ │ │ │ -000598e0: 6173 0a45 7874 5e7b 6576 656e 7d5f 5228 as.Ext^{even}_R( │ │ │ │ -000598f0: 4d2c 6b29 2061 6e64 2045 7874 5e7b 6f64 M,k) and Ext^{od │ │ │ │ -00059900: 647d 5f52 284d 2c6b 2920 6861 7665 206e d}_R(M,k) have n │ │ │ │ -00059910: 6567 6174 6976 6520 7265 6775 6c61 7269 egative regulari │ │ │ │ -00059920: 7479 206f 7665 7220 7468 6520 7269 6e67 ty over the ring │ │ │ │ -00059930: 0a6f 6620 4349 206f 7065 7261 746f 7273 .of CI operators │ │ │ │ -00059940: 2028 7265 6772 6164 6564 2077 6974 6820 (regraded with │ │ │ │ -00059950: 7661 7269 6162 6c65 7320 6f66 2064 6567 variables of deg │ │ │ │ -00059960: 7265 6520 312e 2048 6f77 6576 6572 2c20 ree 1. However, │ │ │ │ -00059970: 7468 6520 6265 7374 2072 6573 756c 740a the best result. │ │ │ │ -00059980: 7765 2063 616e 2070 726f 7665 2069 7320 we can prove is │ │ │ │ -00059990: 7468 6174 2069 7420 7375 6666 6963 6573 that it suffices │ │ │ │ -000599a0: 2074 6f20 6861 7665 2072 6567 756c 6172 to have regular │ │ │ │ -000599b0: 6974 7920 3c20 2d28 322a 6469 6d20 522b ity < -(2*dim R+ │ │ │ │ -000599c0: 3129 2e0a 0a57 6865 6e20 7468 6520 6f70 1)...When the op │ │ │ │ -000599d0: 7469 6f6e 616c 2069 6e70 7574 2043 6865 tional input Che │ │ │ │ -000599e0: 636b 3d3d 7472 7565 2028 7468 6520 6465 ck==true (the de │ │ │ │ -000599f0: 6661 756c 7420 6973 2043 6865 636b 3d3d fault is Check== │ │ │ │ -00059a00: 6661 6c73 6529 2c20 7468 650a 7072 6f70 false), the.prop │ │ │ │ -00059a10: 6572 7469 6573 2069 6e20 7468 6520 6465 erties in the de │ │ │ │ -00059a20: 6669 6e69 7469 6f6e 206f 6620 4d61 7472 finition of Matr │ │ │ │ -00059a30: 6978 2046 6163 746f 7269 7a61 7469 6f6e ix Factorization │ │ │ │ -00059a40: 2061 7265 2076 6572 6966 6965 640a 0a54 are verified..T │ │ │ │ -00059a50: 6865 206f 7574 7075 7420 6973 2061 206c he output is a l │ │ │ │ -00059a60: 6973 7420 6f66 206d 6170 7320 5c7b 642c ist of maps \{d, │ │ │ │ -00059a70: 685c 7d20 6f72 205c 7b64 2c68 2c67 616d h\} or \{d,h,gam │ │ │ │ -00059a80: 6d61 5c7d 2c20 7768 6572 6520 6761 6d6d ma\}, where gamm │ │ │ │ -00059a90: 6120 6973 2061 6e0a 6175 676d 656e 7461 a is an.augmenta │ │ │ │ -00059aa0: 7469 6f6e 2c20 7468 6174 2069 732c 2061 tion, that is, a │ │ │ │ -00059ab0: 206d 6170 2066 726f 6d20 7461 7267 6574 map from target │ │ │ │ -00059ac0: 2064 2074 6f20 4d2e 0a0a 5468 6520 6d61 d to M...The ma │ │ │ │ -00059ad0: 7020 6420 6973 2061 2073 7065 6369 616c p d is a special │ │ │ │ -00059ae0: 206c 6966 7469 6e67 2074 6f20 5320 6f66 lifting to S of │ │ │ │ -00059af0: 2061 2070 7265 7365 6e74 6174 696f 6e20 a presentation │ │ │ │ -00059b00: 6f66 204d 206f 7665 7220 522e 2054 6f20 of M over R. To │ │ │ │ -00059b10: 6578 706c 6169 6e0a 7468 6520 636f 6e74 explain.the cont │ │ │ │ -00059b20: 656e 7473 2c20 7765 2069 6e74 726f 6475 ents, we introdu │ │ │ │ -00059b30: 6365 2073 6f6d 6520 6e6f 7461 7469 6f6e ce some notation │ │ │ │ -00059b40: 2028 6672 6f6d 2045 6973 656e 6275 6420 (from Eisenbud │ │ │ │ -00059b50: 616e 6420 5065 6576 612c 2022 4d69 6e69 and Peeva, "Mini │ │ │ │ -00059b60: 6d61 6c0a 6672 6565 2072 6573 6f6c 7574 mal.free resolut │ │ │ │ -00059b70: 696f 6e73 206f 7665 7220 636f 6d70 6c65 ions over comple │ │ │ │ -00059b80: 7465 2069 6e74 6572 7365 6374 696f 6e73 te intersections │ │ │ │ -00059b90: 2220 4c65 6374 7572 6520 4e6f 7465 7320 " Lecture Notes │ │ │ │ -00059ba0: 696e 204d 6174 6865 6d61 7469 6373 2c0a in Mathematics,. │ │ │ │ -00059bb0: 3231 3532 2e20 5370 7269 6e67 6572 2c20 2152. Springer, │ │ │ │ -00059bc0: 4368 616d 2c20 3230 3136 2e20 782b 3130 Cham, 2016. x+10 │ │ │ │ -00059bd0: 3720 7070 2e20 4953 424e 3a20 3937 382d 7 pp. ISBN: 978- │ │ │ │ -00059be0: 332d 3331 392d 3236 3433 362d 333b 0a39 3-319-26436-3;.9 │ │ │ │ -00059bf0: 3738 2d33 2d33 3139 2d32 3634 3337 2d30 78-3-319-26437-0 │ │ │ │ -00059c00: 292e 0a0a 5228 6929 203d 2053 2f28 6666 )...R(i) = S/(ff │ │ │ │ -00059c10: 5f30 2c2e 2e2c 6666 5f7b 692d 317d 292e _0,..,ff_{i-1}). │ │ │ │ -00059c20: 2048 6572 6520 303c 3d20 6920 3c3d 2063 Here 0<= i <= c │ │ │ │ -00059c30: 2c20 616e 6420 5220 3d20 5228 6329 2061 , and R = R(c) a │ │ │ │ -00059c40: 6e64 2053 203d 2052 2830 292e 0a0a 4228 nd S = R(0)...B( │ │ │ │ -00059c50: 6929 203d 2074 6865 206d 6174 7269 7820 i) = the matrix │ │ │ │ -00059c60: 286f 7665 7220 5329 2072 6570 7265 7365 (over S) represe │ │ │ │ -00059c70: 6e74 696e 6720 645f 693a 2042 5f31 2869 nting d_i: B_1(i │ │ │ │ -00059c80: 2920 5c74 6f20 425f 3028 6929 0a0a 6428 ) \to B_0(i)..d( │ │ │ │ -00059c90: 6929 3a20 415f 3128 6929 205c 746f 2041 i): A_1(i) \to A │ │ │ │ -00059ca0: 5f30 2869 2920 7468 6520 7265 7374 7269 _0(i) the restri │ │ │ │ -00059cb0: 6374 696f 6e20 6f66 2064 203d 2064 2863 ction of d = d(c │ │ │ │ -00059cc0: 292e 2077 6865 7265 2041 2869 2920 3d0a ). where A(i) =. │ │ │ │ -00059cd0: 5c6f 706c 7573 5f7b 693d 317d 5e70 2042 \oplus_{i=1}^p B │ │ │ │ -00059ce0: 2869 290a 0a0a 0a54 6865 206d 6170 2068 (i)....The map h │ │ │ │ -00059cf0: 2069 7320 6120 6469 7265 6374 2073 756d is a direct sum │ │ │ │ -00059d00: 206f 6620 6d61 7073 2074 6172 6765 7420 of maps target │ │ │ │ -00059d10: 6428 7029 205c 746f 2073 6f75 7263 6520 d(p) \to source │ │ │ │ -00059d20: 6428 7029 2074 6861 7420 6172 650a 686f d(p) that are.ho │ │ │ │ -00059d30: 6d6f 746f 7069 6573 2066 6f72 2066 665f motopies for ff_ │ │ │ │ -00059d40: 7020 6f6e 2074 6865 2072 6573 7472 6963 p on the restric │ │ │ │ -00059d50: 7469 6f6e 2064 2870 293a 206f 7665 7220 tion d(p): over │ │ │ │ -00059d60: 7468 6520 7269 6e67 2052 2328 702d 3129 the ring R#(p-1) │ │ │ │ -00059d70: 203d 0a53 2f28 6666 2331 2e2e 6666 2328 =.S/(ff#1..ff#( │ │ │ │ -00059d80: 702d 3129 2c20 736f 2064 2870 2920 2a20 p-1), so d(p) * │ │ │ │ -00059d90: 6823 7020 3d20 6666 2370 206d 6f64 2028 h#p = ff#p mod ( │ │ │ │ -00059da0: 6666 2331 2e2e 6666 2328 702d 3129 2e0a ff#1..ff#(p-1).. │ │ │ │ -00059db0: 0a49 6e20 6164 6469 7469 6f6e 2c20 6823 .In addition, h# │ │ │ │ -00059dc0: 7020 2a20 6428 7029 2069 6e64 7563 6573 p * d(p) induces │ │ │ │ -00059dd0: 2066 6623 7020 6f6e 2042 3123 7020 6d6f ff#p on B1#p mo │ │ │ │ -00059de0: 6420 2866 6623 312e 2e66 6623 2870 2d31 d (ff#1..ff#(p-1 │ │ │ │ -00059df0: 292e 0a0a 4865 7265 2069 7320 6120 7369 )...Here is a si │ │ │ │ -00059e00: 6d70 6c65 2065 7861 6d70 6c65 3a0a 0a2b mple example:..+ │ │ │ │ +00059450: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ +00059460: 0a20 2020 2020 2020 204d 4620 3d20 6d61 . MF = ma │ │ │ │ +00059470: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ +00059480: 6e28 6666 2c4d 290a 2020 2a20 496e 7075 n(ff,M). * Inpu │ │ │ │ +00059490: 7473 3a0a 2020 2020 2020 2a20 6666 2c20 ts:. * ff, │ │ │ │ +000594a0: 6120 2a6e 6f74 6520 6d61 7472 6978 3a20 a *note matrix: │ │ │ │ +000594b0: 284d 6163 6175 6c61 7932 446f 6329 4d61 (Macaulay2Doc)Ma │ │ │ │ +000594c0: 7472 6978 2c2c 2061 2073 7566 6669 6369 trix,, a suffici │ │ │ │ +000594d0: 656e 746c 7920 6765 6e65 7261 6c0a 2020 ently general. │ │ │ │ +000594e0: 2020 2020 2020 7265 6775 6c61 7220 7365 regular se │ │ │ │ +000594f0: 7175 656e 6365 2069 6e20 6120 7269 6e67 quence in a ring │ │ │ │ +00059500: 2053 0a20 2020 2020 202a 204d 2c20 6120 S. * M, a │ │ │ │ +00059510: 2a6e 6f74 6520 6d6f 6475 6c65 3a20 284d *note module: (M │ │ │ │ +00059520: 6163 6175 6c61 7932 446f 6329 4d6f 6475 acaulay2Doc)Modu │ │ │ │ +00059530: 6c65 2c2c 2061 206d 6178 696d 616c 2043 le,, a maximal C │ │ │ │ +00059540: 6f68 656e 2d4d 6163 6175 6c61 790a 2020 ohen-Macaulay. │ │ │ │ +00059550: 2020 2020 2020 6d6f 6475 6c65 206f 7665 module ove │ │ │ │ +00059560: 7220 532f 6964 6561 6c20 6666 0a20 202a r S/ideal ff. * │ │ │ │ +00059570: 202a 6e6f 7465 204f 7074 696f 6e61 6c20 *note Optional │ │ │ │ +00059580: 696e 7075 7473 3a20 284d 6163 6175 6c61 inputs: (Macaula │ │ │ │ +00059590: 7932 446f 6329 7573 696e 6720 6675 6e63 y2Doc)using func │ │ │ │ +000595a0: 7469 6f6e 7320 7769 7468 206f 7074 696f tions with optio │ │ │ │ +000595b0: 6e61 6c20 696e 7075 7473 2c3a 0a20 2020 nal inputs,:. │ │ │ │ +000595c0: 2020 202a 2041 7567 6d65 6e74 6174 696f * Augmentatio │ │ │ │ +000595d0: 6e20 3d3e 202e 2e2e 2c20 6465 6661 756c n => ..., defaul │ │ │ │ +000595e0: 7420 7661 6c75 6520 7472 7565 0a20 2020 t value true. │ │ │ │ +000595f0: 2020 202a 2043 6865 636b 203d 3e20 2e2e * Check => .. │ │ │ │ +00059600: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ +00059610: 2066 616c 7365 0a20 2020 2020 202a 204c false. * L │ │ │ │ +00059620: 6179 6572 6564 203d 3e20 2e2e 2e2c 2064 ayered => ..., d │ │ │ │ +00059630: 6566 6175 6c74 2076 616c 7565 2074 7275 efault value tru │ │ │ │ +00059640: 650a 2020 2020 2020 2a20 5665 7262 6f73 e. * Verbos │ │ │ │ +00059650: 6520 3d3e 202e 2e2e 2c20 6465 6661 756c e => ..., defaul │ │ │ │ +00059660: 7420 7661 6c75 6520 6661 6c73 650a 2020 t value false. │ │ │ │ +00059670: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +00059680: 202a 204d 462c 2061 202a 6e6f 7465 206c * MF, a *note l │ │ │ │ +00059690: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ +000596a0: 6f63 294c 6973 742c 2c20 5c7b 642c 682c oc)List,, \{d,h, │ │ │ │ +000596b0: 6761 6d6d 615c 7d2c 2077 6865 7265 2064 gamma\}, where d │ │ │ │ +000596c0: 3a41 5f31 205c 746f 0a20 2020 2020 2020 :A_1 \to. │ │ │ │ +000596d0: 2041 5f30 2061 6e64 2068 3a20 5c6f 706c A_0 and h: \opl │ │ │ │ +000596e0: 7573 2041 5f30 2870 2920 5c74 6f20 415f us A_0(p) \to A_ │ │ │ │ +000596f0: 3120 6973 2074 6865 2064 6972 6563 7420 1 is the direct │ │ │ │ +00059700: 7375 6d20 6f66 2070 6172 7469 616c 0a20 sum of partial. │ │ │ │ +00059710: 2020 2020 2020 2068 6f6d 6f74 6f70 6965 homotopie │ │ │ │ +00059720: 732c 2061 6e64 2067 616d 6d61 3a20 415f s, and gamma: A_ │ │ │ │ +00059730: 3020 2d3e 4d20 6973 2074 6865 2061 7567 0 ->M is the aug │ │ │ │ +00059740: 6d65 6e74 6174 696f 6e20 2872 6574 7572 mentation (retur │ │ │ │ +00059750: 6e65 6420 6f6e 6c79 2069 660a 2020 2020 ned only if. │ │ │ │ +00059760: 2020 2020 4175 676d 656e 7461 7469 6f6e Augmentation │ │ │ │ +00059770: 203d 3e74 7275 6529 0a0a 4465 7363 7269 =>true)..Descri │ │ │ │ +00059780: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +00059790: 3d0a 0a54 6865 2069 6e70 7574 206d 6f64 =..The input mod │ │ │ │ +000597a0: 756c 6520 4d20 7368 6f75 6c64 2062 6520 ule M should be │ │ │ │ +000597b0: 6120 6d61 7869 6d61 6c20 436f 6865 6e2d a maximal Cohen- │ │ │ │ +000597c0: 4d61 6361 756c 6179 206d 6f64 756c 6520 Macaulay module │ │ │ │ +000597d0: 6f76 6572 2052 203d 2053 2f69 6465 616c over R = S/ideal │ │ │ │ +000597e0: 0a66 662e 2020 4966 204d 2069 7320 696e .ff. If M is in │ │ │ │ +000597f0: 2066 6163 7420 6120 2268 6967 6820 7379 fact a "high sy │ │ │ │ +00059800: 7a79 6779 222c 2074 6865 6e20 7468 6520 zygy", then the │ │ │ │ +00059810: 6675 6e63 7469 6f6e 0a6d 6174 7269 7846 function.matrixF │ │ │ │ +00059820: 6163 746f 7269 7a61 7469 6f6e 2866 662c actorization(ff, │ │ │ │ +00059830: 4d2c 4c61 7965 7265 643d 3e66 616c 7365 M,Layered=>false │ │ │ │ +00059840: 2920 7573 6573 2061 2064 6966 6665 7265 ) uses a differe │ │ │ │ +00059850: 6e74 2c20 6661 7374 6572 2061 6c67 6f72 nt, faster algor │ │ │ │ +00059860: 6974 686d 0a77 6869 6368 206f 6e6c 7920 ithm.which only │ │ │ │ +00059870: 776f 726b 7320 696e 2074 6865 2068 6967 works in the hig │ │ │ │ +00059880: 6820 7379 7a79 6779 2063 6173 652e 0a0a h syzygy case... │ │ │ │ +00059890: 496e 2061 6c6c 2065 7861 6d70 6c65 7320 In all examples │ │ │ │ +000598a0: 7765 206b 6e6f 772c 204d 2063 616e 2062 we know, M can b │ │ │ │ +000598b0: 6520 636f 6e73 6964 6572 6564 2061 2022 e considered a " │ │ │ │ +000598c0: 6869 6768 2073 797a 7967 7922 2061 7320 high syzygy" as │ │ │ │ +000598d0: 6c6f 6e67 2061 730a 4578 745e 7b65 7665 long as.Ext^{eve │ │ │ │ +000598e0: 6e7d 5f52 284d 2c6b 2920 616e 6420 4578 n}_R(M,k) and Ex │ │ │ │ +000598f0: 745e 7b6f 6464 7d5f 5228 4d2c 6b29 2068 t^{odd}_R(M,k) h │ │ │ │ +00059900: 6176 6520 6e65 6761 7469 7665 2072 6567 ave negative reg │ │ │ │ +00059910: 756c 6172 6974 7920 6f76 6572 2074 6865 ularity over the │ │ │ │ +00059920: 2072 696e 670a 6f66 2043 4920 6f70 6572 ring.of CI oper │ │ │ │ +00059930: 6174 6f72 7320 2872 6567 7261 6465 6420 ators (regraded │ │ │ │ +00059940: 7769 7468 2076 6172 6961 626c 6573 206f with variables o │ │ │ │ +00059950: 6620 6465 6772 6565 2031 2e20 486f 7765 f degree 1. Howe │ │ │ │ +00059960: 7665 722c 2074 6865 2062 6573 7420 7265 ver, the best re │ │ │ │ +00059970: 7375 6c74 0a77 6520 6361 6e20 7072 6f76 sult.we can prov │ │ │ │ +00059980: 6520 6973 2074 6861 7420 6974 2073 7566 e is that it suf │ │ │ │ +00059990: 6669 6365 7320 746f 2068 6176 6520 7265 fices to have re │ │ │ │ +000599a0: 6775 6c61 7269 7479 203c 202d 2832 2a64 gularity < -(2*d │ │ │ │ +000599b0: 696d 2052 2b31 292e 0a0a 5768 656e 2074 im R+1)...When t │ │ │ │ +000599c0: 6865 206f 7074 696f 6e61 6c20 696e 7075 he optional inpu │ │ │ │ +000599d0: 7420 4368 6563 6b3d 3d74 7275 6520 2874 t Check==true (t │ │ │ │ +000599e0: 6865 2064 6566 6175 6c74 2069 7320 4368 he default is Ch │ │ │ │ +000599f0: 6563 6b3d 3d66 616c 7365 292c 2074 6865 eck==false), the │ │ │ │ +00059a00: 0a70 726f 7065 7274 6965 7320 696e 2074 .properties in t │ │ │ │ +00059a10: 6865 2064 6566 696e 6974 696f 6e20 6f66 he definition of │ │ │ │ +00059a20: 204d 6174 7269 7820 4661 6374 6f72 697a Matrix Factoriz │ │ │ │ +00059a30: 6174 696f 6e20 6172 6520 7665 7269 6669 ation are verifi │ │ │ │ +00059a40: 6564 0a0a 5468 6520 6f75 7470 7574 2069 ed..The output i │ │ │ │ +00059a50: 7320 6120 6c69 7374 206f 6620 6d61 7073 s a list of maps │ │ │ │ +00059a60: 205c 7b64 2c68 5c7d 206f 7220 5c7b 642c \{d,h\} or \{d, │ │ │ │ +00059a70: 682c 6761 6d6d 615c 7d2c 2077 6865 7265 h,gamma\}, where │ │ │ │ +00059a80: 2067 616d 6d61 2069 7320 616e 0a61 7567 gamma is an.aug │ │ │ │ +00059a90: 6d65 6e74 6174 696f 6e2c 2074 6861 7420 mentation, that │ │ │ │ +00059aa0: 6973 2c20 6120 6d61 7020 6672 6f6d 2074 is, a map from t │ │ │ │ +00059ab0: 6172 6765 7420 6420 746f 204d 2e0a 0a54 arget d to M...T │ │ │ │ +00059ac0: 6865 206d 6170 2064 2069 7320 6120 7370 he map d is a sp │ │ │ │ +00059ad0: 6563 6961 6c20 6c69 6674 696e 6720 746f ecial lifting to │ │ │ │ +00059ae0: 2053 206f 6620 6120 7072 6573 656e 7461 S of a presenta │ │ │ │ +00059af0: 7469 6f6e 206f 6620 4d20 6f76 6572 2052 tion of M over R │ │ │ │ +00059b00: 2e20 546f 2065 7870 6c61 696e 0a74 6865 . To explain.the │ │ │ │ +00059b10: 2063 6f6e 7465 6e74 732c 2077 6520 696e contents, we in │ │ │ │ +00059b20: 7472 6f64 7563 6520 736f 6d65 206e 6f74 troduce some not │ │ │ │ +00059b30: 6174 696f 6e20 2866 726f 6d20 4569 7365 ation (from Eise │ │ │ │ +00059b40: 6e62 7564 2061 6e64 2050 6565 7661 2c20 nbud and Peeva, │ │ │ │ +00059b50: 224d 696e 696d 616c 0a66 7265 6520 7265 "Minimal.free re │ │ │ │ +00059b60: 736f 6c75 7469 6f6e 7320 6f76 6572 2063 solutions over c │ │ │ │ +00059b70: 6f6d 706c 6574 6520 696e 7465 7273 6563 omplete intersec │ │ │ │ +00059b80: 7469 6f6e 7322 204c 6563 7475 7265 204e tions" Lecture N │ │ │ │ +00059b90: 6f74 6573 2069 6e20 4d61 7468 656d 6174 otes in Mathemat │ │ │ │ +00059ba0: 6963 732c 0a32 3135 322e 2053 7072 696e ics,.2152. Sprin │ │ │ │ +00059bb0: 6765 722c 2043 6861 6d2c 2032 3031 362e ger, Cham, 2016. │ │ │ │ +00059bc0: 2078 2b31 3037 2070 702e 2049 5342 4e3a x+107 pp. ISBN: │ │ │ │ +00059bd0: 2039 3738 2d33 2d33 3139 2d32 3634 3336 978-3-319-26436 │ │ │ │ +00059be0: 2d33 3b0a 3937 382d 332d 3331 392d 3236 -3;.978-3-319-26 │ │ │ │ +00059bf0: 3433 372d 3029 2e0a 0a52 2869 2920 3d20 437-0)...R(i) = │ │ │ │ +00059c00: 532f 2866 665f 302c 2e2e 2c66 665f 7b69 S/(ff_0,..,ff_{i │ │ │ │ +00059c10: 2d31 7d29 2e20 4865 7265 2030 3c3d 2069 -1}). Here 0<= i │ │ │ │ +00059c20: 203c 3d20 632c 2061 6e64 2052 203d 2052 <= c, and R = R │ │ │ │ +00059c30: 2863 2920 616e 6420 5320 3d20 5228 3029 (c) and S = R(0) │ │ │ │ +00059c40: 2e0a 0a42 2869 2920 3d20 7468 6520 6d61 ...B(i) = the ma │ │ │ │ +00059c50: 7472 6978 2028 6f76 6572 2053 2920 7265 trix (over S) re │ │ │ │ +00059c60: 7072 6573 656e 7469 6e67 2064 5f69 3a20 presenting d_i: │ │ │ │ +00059c70: 425f 3128 6929 205c 746f 2042 5f30 2869 B_1(i) \to B_0(i │ │ │ │ +00059c80: 290a 0a64 2869 293a 2041 5f31 2869 2920 )..d(i): A_1(i) │ │ │ │ +00059c90: 5c74 6f20 415f 3028 6929 2074 6865 2072 \to A_0(i) the r │ │ │ │ +00059ca0: 6573 7472 6963 7469 6f6e 206f 6620 6420 estriction of d │ │ │ │ +00059cb0: 3d20 6428 6329 2e20 7768 6572 6520 4128 = d(c). where A( │ │ │ │ +00059cc0: 6929 203d 0a5c 6f70 6c75 735f 7b69 3d31 i) =.\oplus_{i=1 │ │ │ │ +00059cd0: 7d5e 7020 4228 6929 0a0a 0a0a 5468 6520 }^p B(i)....The │ │ │ │ +00059ce0: 6d61 7020 6820 6973 2061 2064 6972 6563 map h is a direc │ │ │ │ +00059cf0: 7420 7375 6d20 6f66 206d 6170 7320 7461 t sum of maps ta │ │ │ │ +00059d00: 7267 6574 2064 2870 2920 5c74 6f20 736f rget d(p) \to so │ │ │ │ +00059d10: 7572 6365 2064 2870 2920 7468 6174 2061 urce d(p) that a │ │ │ │ +00059d20: 7265 0a68 6f6d 6f74 6f70 6965 7320 666f re.homotopies fo │ │ │ │ +00059d30: 7220 6666 5f70 206f 6e20 7468 6520 7265 r ff_p on the re │ │ │ │ +00059d40: 7374 7269 6374 696f 6e20 6428 7029 3a20 striction d(p): │ │ │ │ +00059d50: 6f76 6572 2074 6865 2072 696e 6720 5223 over the ring R# │ │ │ │ +00059d60: 2870 2d31 2920 3d0a 532f 2866 6623 312e (p-1) =.S/(ff#1. │ │ │ │ +00059d70: 2e66 6623 2870 2d31 292c 2073 6f20 6428 .ff#(p-1), so d( │ │ │ │ +00059d80: 7029 202a 2068 2370 203d 2066 6623 7020 p) * h#p = ff#p │ │ │ │ +00059d90: 6d6f 6420 2866 6623 312e 2e66 6623 2870 mod (ff#1..ff#(p │ │ │ │ +00059da0: 2d31 292e 0a0a 496e 2061 6464 6974 696f -1)...In additio │ │ │ │ +00059db0: 6e2c 2068 2370 202a 2064 2870 2920 696e n, h#p * d(p) in │ │ │ │ +00059dc0: 6475 6365 7320 6666 2370 206f 6e20 4231 duces ff#p on B1 │ │ │ │ +00059dd0: 2370 206d 6f64 2028 6666 2331 2e2e 6666 #p mod (ff#1..ff │ │ │ │ +00059de0: 2328 702d 3129 2e0a 0a48 6572 6520 6973 #(p-1)...Here is │ │ │ │ +00059df0: 2061 2073 696d 706c 6520 6578 616d 706c a simple exampl │ │ │ │ +00059e00: 653a 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d e:..+----------- │ │ │ │ 00059e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00059e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059e40: 2d2d 2b0a 7c69 3120 3a20 7365 7452 616e --+.|i1 : setRan │ │ │ │ -00059e50: 646f 6d53 6565 6420 3020 2020 2020 2020 domSeed 0 │ │ │ │ -00059e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059e70: 2020 2020 2020 207c 0a7c 202d 2d20 7365 |.| -- se │ │ │ │ -00059e80: 7474 696e 6720 7261 6e64 6f6d 2073 6565 tting random see │ │ │ │ -00059e90: 6420 746f 2030 2020 2020 2020 2020 2020 d to 0 │ │ │ │ -00059ea0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00059e30: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2073 -------+.|i1 : s │ │ │ │ +00059e40: 6574 5261 6e64 6f6d 5365 6564 2030 2020 etRandomSeed 0 │ │ │ │ +00059e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00059e60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00059e70: 2d2d 2073 6574 7469 6e67 2072 616e 646f -- setting rando │ │ │ │ +00059e80: 6d20 7365 6564 2074 6f20 3020 2020 2020 m seed to 0 │ │ │ │ +00059e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00059ea0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00059eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059ee0: 207c 0a7c 6f31 203d 2030 2020 2020 2020 |.|o1 = 0 │ │ │ │ +00059ed0: 2020 2020 2020 7c0a 7c6f 3120 3d20 3020 |.|o1 = 0 │ │ │ │ +00059ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059f10: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00059f00: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00059f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00059f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00059f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00059f50: 203a 206b 6b20 3d20 5a5a 2f31 3031 2020 : kk = ZZ/101 │ │ │ │ +00059f40: 2b0a 7c69 3220 3a20 6b6b 203d 205a 5a2f +.|i2 : kk = ZZ/ │ │ │ │ +00059f50: 3130 3120 2020 2020 2020 2020 2020 2020 101 │ │ │ │ 00059f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059f80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00059f70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059fb0: 2020 2020 207c 0a7c 6f32 203d 206b 6b20 |.|o2 = kk │ │ │ │ +00059fa0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +00059fb0: 3d20 6b6b 2020 2020 2020 2020 2020 2020 = kk │ │ │ │ 00059fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059fe0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00059fd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059fe0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00059ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a010: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0005a020: 0a7c 6f32 203a 2051 756f 7469 656e 7452 .|o2 : QuotientR │ │ │ │ -0005a030: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ -0005a040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a050: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0005a010: 2020 2020 7c0a 7c6f 3220 3a20 5175 6f74 |.|o2 : Quot │ │ │ │ +0005a020: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ +0005a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005a040: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005a050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005a060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a080: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -0005a090: 2053 203d 206b 6b5b 612c 622c 752c 765d S = kk[a,b,u,v] │ │ │ │ +0005a070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0005a080: 7c69 3320 3a20 5320 3d20 6b6b 5b61 2c62 |i3 : S = kk[a,b │ │ │ │ +0005a090: 2c75 2c76 5d20 2020 2020 2020 2020 2020 ,u,v] │ │ │ │ 0005a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a0b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0005a0c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0005a0b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a0f0: 2020 207c 0a7c 6f33 203d 2053 2020 2020 |.|o3 = S │ │ │ │ +0005a0e0: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ +0005a0f0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 0005a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a120: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0005a110: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0005a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a150: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0005a160: 6f33 203a 2050 6f6c 796e 6f6d 6961 6c52 o3 : PolynomialR │ │ │ │ -0005a170: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ -0005a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a190: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005a150: 2020 7c0a 7c6f 3320 3a20 506f 6c79 6e6f |.|o3 : Polyno │ │ │ │ +0005a160: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ +0005a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005a180: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005a190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005a1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a1c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2066 -------+.|i4 : f │ │ │ │ -0005a1d0: 6620 3d20 6d61 7472 6978 2261 752c 6276 f = matrix"au,bv │ │ │ │ -0005a1e0: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ -0005a1f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0005a1c0: 3420 3a20 6666 203d 206d 6174 7269 7822 4 : ff = matrix" │ │ │ │ +0005a1d0: 6175 2c62 7622 2020 2020 2020 2020 2020 au,bv" │ │ │ │ +0005a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005a1f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0005a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a230: 207c 0a7c 6f34 203d 207c 2061 7520 6276 |.|o4 = | au bv │ │ │ │ -0005a240: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0005a250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a260: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0005a220: 2020 2020 2020 7c0a 7c6f 3420 3d20 7c20 |.|o4 = | │ │ │ │ +0005a230: 6175 2062 7620 7c20 2020 2020 2020 2020 au bv | │ │ │ │ +0005a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005a250: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0005a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a290: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0005a2a0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -0005a2b0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0005a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a2d0: 7c0a 7c6f 3420 3a20 4d61 7472 6978 2053 |.|o4 : Matrix S │ │ │ │ -0005a2e0: 2020 3c2d 2d20 5320 2020 2020 2020 2020 <-- S │ │ │ │ -0005a2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a300: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0005a290: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005a2a0: 3120 2020 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ +0005a2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005a2c0: 2020 2020 207c 0a7c 6f34 203a 204d 6174 |.|o4 : Mat │ │ │ │ +0005a2d0: 7269 7820 5320 203c 2d2d 2053 2020 2020 rix S <-- S │ │ │ │ +0005a2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005a2f0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0005a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a330: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -0005a340: 3a20 5220 3d20 532f 6964 6561 6c20 6666 : R = S/ideal ff │ │ │ │ +0005a320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0005a330: 0a7c 6935 203a 2052 203d 2053 2f69 6465 .|i5 : R = S/ide │ │ │ │ +0005a340: 616c 2066 6620 2020 2020 2020 2020 2020 al ff │ │ │ │ 0005a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a360: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0005a370: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0005a360: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a3a0: 2020 2020 7c0a 7c6f 3520 3d20 5220 2020 |.|o5 = R │ │ │ │ +0005a390: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ +0005a3a0: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 0005a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a3d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005a3c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005a3d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a400: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0005a410: 7c6f 3520 3a20 5175 6f74 6965 6e74 5269 |o5 : QuotientRi │ │ │ │ -0005a420: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ -0005a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a440: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0005a400: 2020 207c 0a7c 6f35 203a 2051 756f 7469 |.|o5 : Quoti │ │ │ │ +0005a410: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +0005a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005a430: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0005a440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005a450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a470: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ -0005a480: 4d30 203d 2052 5e31 2f69 6465 616c 2261 M0 = R^1/ideal"a │ │ │ │ -0005a490: 2c62 2220 2020 2020 2020 2020 2020 2020 ,b" │ │ │ │ -0005a4a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0005a460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0005a470: 6936 203a 204d 3020 3d20 525e 312f 6964 i6 : M0 = R^1/id │ │ │ │ +0005a480: 6561 6c22 612c 6222 2020 2020 2020 2020 eal"a,b" │ │ │ │ +0005a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005a4a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0005a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a4e0: 2020 7c0a 7c6f 3620 3d20 636f 6b65 726e |.|o6 = cokern │ │ │ │ -0005a4f0: 656c 207c 2061 2062 207c 2020 2020 2020 el | a b | │ │ │ │ -0005a500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a510: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005a4d0: 2020 2020 2020 207c 0a7c 6f36 203d 2063 |.|o6 = c │ │ │ │ +0005a4e0: 6f6b 6572 6e65 6c20 7c20 6120 6220 7c20 okernel | a b | │ │ │ │ +0005a4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005a500: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a540: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005a540: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0005a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a560: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -0005a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a580: 207c 0a7c 6f36 203a 2052 2d6d 6f64 756c |.|o6 : R-modul │ │ │ │ -0005a590: 652c 2071 756f 7469 656e 7420 6f66 2052 e, quotient of R │ │ │ │ -0005a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a5b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0005a560: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0005a570: 2020 2020 2020 7c0a 7c6f 3620 3a20 522d |.|o6 : R- │ │ │ │ +0005a580: 6d6f 6475 6c65 2c20 7175 6f74 6965 6e74 module, quotient │ │ │ │ +0005a590: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ +0005a5a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0005a5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005a5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005a5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ -0005a5f0: 203a 204d 203d 2068 6967 6853 797a 7967 : M = highSyzyg │ │ │ │ -0005a600: 7920 4d30 2020 2020 2020 2020 2020 2020 y M0 │ │ │ │ -0005a610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a620: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005a5e0: 2b0a 7c69 3720 3a20 4d20 3d20 6869 6768 +.|i7 : M = high │ │ │ │ +0005a5f0: 5379 7a79 6779 204d 3020 2020 2020 2020 Syzygy M0 │ │ │ │ +0005a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005a610: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a650: 2020 2020 207c 0a7c 6f37 203d 2063 6f6b |.|o7 = cok │ │ │ │ -0005a660: 6572 6e65 6c20 7b32 7d20 7c20 6220 2d61 ernel {2} | b -a │ │ │ │ -0005a670: 2030 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ -0005a680: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0005a690: 2020 2020 2020 2020 2020 207b 327d 207c {2} | │ │ │ │ -0005a6a0: 2030 2030 2020 6120 6220 7c20 2020 2020 0 0 a b | │ │ │ │ -0005a6b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0005a6c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0005a6d0: 7b32 7d20 7c20 3020 7620 2030 2075 207c {2} | 0 v 0 u | │ │ │ │ -0005a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a6f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005a640: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ +0005a650: 3d20 636f 6b65 726e 656c 207b 327d 207c = cokernel {2} | │ │ │ │ +0005a660: 2062 202d 6120 3020 3020 7c20 2020 2020 b -a 0 0 | │ │ │ │ +0005a670: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a680: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0005a690: 7b32 7d20 7c20 3020 3020 2061 2062 207c {2} | 0 0 a b | │ │ │ │ +0005a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005a6b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005a6c0: 2020 2020 207b 327d 207c 2030 2076 2020 {2} | 0 v │ │ │ │ +0005a6d0: 3020 7520 7c20 2020 2020 2020 2020 2020 0 u | │ │ │ │ +0005a6e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a720: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a740: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ -0005a750: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0005a760: 7c6f 3720 3a20 522d 6d6f 6475 6c65 2c20 |o7 : R-module, │ │ │ │ -0005a770: 7175 6f74 6965 6e74 206f 6620 5220 2020 quotient of R │ │ │ │ -0005a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a790: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0005a710: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005a720: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0005a730: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +0005a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005a750: 2020 207c 0a7c 6f37 203a 2052 2d6d 6f64 |.|o7 : R-mod │ │ │ │ +0005a760: 756c 652c 2071 756f 7469 656e 7420 6f66 ule, quotient of │ │ │ │ +0005a770: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0005a780: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0005a790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005a7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a7c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 --------+.|i8 : │ │ │ │ -0005a7d0: 4d46 203d 206d 6174 7269 7846 6163 746f MF = matrixFacto │ │ │ │ -0005a7e0: 7269 7a61 7469 6f6e 2866 662c 4d29 3b20 rization(ff,M); │ │ │ │ -0005a7f0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0005a7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0005a7c0: 6938 203a 204d 4620 3d20 6d61 7472 6978 i8 : MF = matrix │ │ │ │ +0005a7d0: 4661 6374 6f72 697a 6174 696f 6e28 6666 Factorization(ff │ │ │ │ +0005a7e0: 2c4d 293b 2020 2020 2020 2020 2020 2020 ,M); │ │ │ │ +0005a7f0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0005a800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005a810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a830: 2d2d 2b0a 7c69 3920 3a20 6e65 744c 6973 --+.|i9 : netLis │ │ │ │ -0005a840: 7420 4252 616e 6b73 204d 4620 2020 2020 t BRanks MF │ │ │ │ -0005a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a860: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005a820: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 206e -------+.|i9 : n │ │ │ │ +0005a830: 6574 4c69 7374 2042 5261 6e6b 7320 4d46 etList BRanks MF │ │ │ │ +0005a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005a850: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a890: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0005a8a0: 2020 2020 2b2d 2b2d 2b20 2020 2020 2020 +-+-+ │ │ │ │ +0005a890: 207c 0a7c 2020 2020 202b 2d2b 2d2b 2020 |.| +-+-+ │ │ │ │ +0005a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a8d0: 207c 0a7c 6f39 203d 207c 327c 327c 2020 |.|o9 = |2|2| │ │ │ │ +0005a8c0: 2020 2020 2020 7c0a 7c6f 3920 3d20 7c32 |.|o9 = |2 │ │ │ │ +0005a8d0: 7c32 7c20 2020 2020 2020 2020 2020 2020 |2| │ │ │ │ 0005a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a900: 2020 2020 2020 7c0a 7c20 2020 2020 2b2d |.| +- │ │ │ │ -0005a910: 2b2d 2b20 2020 2020 2020 2020 2020 2020 +-+ │ │ │ │ +0005a8f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0005a900: 2020 202b 2d2b 2d2b 2020 2020 2020 2020 +-+-+ │ │ │ │ +0005a910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a930: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0005a940: 2020 207c 317c 327c 2020 2020 2020 2020 |1|2| │ │ │ │ +0005a930: 7c0a 7c20 2020 2020 7c31 7c32 7c20 2020 |.| |1|2| │ │ │ │ +0005a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a970: 7c0a 7c20 2020 2020 2b2d 2b2d 2b20 2020 |.| +-+-+ │ │ │ │ +0005a960: 2020 2020 207c 0a7c 2020 2020 202b 2d2b |.| +-+ │ │ │ │ +0005a970: 2d2b 2020 2020 2020 2020 2020 2020 2020 -+ │ │ │ │ 0005a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a9a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0005a990: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0005a9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005a9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 ----------+.|i10 │ │ │ │ -0005a9e0: 203a 206e 6574 4c69 7374 2062 4d61 7073 : netList bMaps │ │ │ │ -0005a9f0: 204d 4620 2020 2020 2020 2020 2020 2020 MF │ │ │ │ -0005aa00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0005aa10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0005a9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0005a9d0: 0a7c 6931 3020 3a20 6e65 744c 6973 7420 .|i10 : netList │ │ │ │ +0005a9e0: 624d 6170 7320 4d46 2020 2020 2020 2020 bMaps MF │ │ │ │ +0005a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005aa00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005aa40: 2020 2020 7c0a 7c20 2020 2020 202b 2d2d |.| +-- │ │ │ │ -0005aa50: 2d2d 2d2d 2d2d 2d2d 2d2b 2020 2020 2020 ---------+ │ │ │ │ -0005aa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005aa70: 2020 2020 2020 2020 207c 0a7c 6f31 3020 |.|o10 │ │ │ │ -0005aa80: 3d20 7c7b 327d 207c 2061 2062 207c 7c20 = |{2} | a b || │ │ │ │ +0005aa30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005aa40: 2020 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 +-----------+ │ │ │ │ +0005aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005aa60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005aa70: 7c6f 3130 203d 207c 7b32 7d20 7c20 6120 |o10 = |{2} | a │ │ │ │ +0005aa80: 6220 7c7c 2020 2020 2020 2020 2020 2020 b || │ │ │ │ 0005aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005aaa0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0005aab0: 7c20 2020 2020 207c 7b32 7d20 7c20 3020 | |{2} | 0 │ │ │ │ -0005aac0: 7520 7c7c 2020 2020 2020 2020 2020 2020 u || │ │ │ │ -0005aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005aae0: 2020 207c 0a7c 2020 2020 2020 2b2d 2d2d |.| +--- │ │ │ │ -0005aaf0: 2d2d 2d2d 2d2d 2d2d 2b20 2020 2020 2020 --------+ │ │ │ │ -0005ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ab10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0005ab20: 207c 7b32 7d20 7c20 6220 6120 7c7c 2020 |{2} | b a || │ │ │ │ +0005aaa0: 2020 207c 0a7c 2020 2020 2020 7c7b 327d |.| |{2} │ │ │ │ +0005aab0: 207c 2030 2075 207c 7c20 2020 2020 2020 | 0 u || │ │ │ │ +0005aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005aad0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0005aae0: 202b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 2020 +-----------+ │ │ │ │ +0005aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ab00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0005ab10: 2020 2020 2020 7c7b 327d 207c 2062 2061 |{2} | b a │ │ │ │ +0005ab20: 207c 7c20 2020 2020 2020 2020 2020 2020 || │ │ │ │ 0005ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ab40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0005ab50: 2020 2020 2020 2b2d 2d2d 2d2d 2d2d 2d2d +--------- │ │ │ │ -0005ab60: 2d2d 2b20 2020 2020 2020 2020 2020 2020 --+ │ │ │ │ -0005ab70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ab80: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005ab40: 2020 7c0a 7c20 2020 2020 202b 2d2d 2d2d |.| +---- │ │ │ │ +0005ab50: 2d2d 2d2d 2d2d 2d2b 2020 2020 2020 2020 -------+ │ │ │ │ +0005ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ab70: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005ab80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ab90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005aba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005abb0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 -------+.|i11 : │ │ │ │ -0005abc0: 6265 7474 6920 6672 6565 5265 736f 6c75 betti freeResolu │ │ │ │ -0005abd0: 7469 6f6e 284d 2c20 4c65 6e67 7468 4c69 tion(M, LengthLi │ │ │ │ -0005abe0: 6d69 7420 3d3e 2037 2920 2020 7c0a 7c20 mit => 7) |.| │ │ │ │ +0005aba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0005abb0: 3131 203a 2062 6574 7469 2066 7265 6552 11 : betti freeR │ │ │ │ +0005abc0: 6573 6f6c 7574 696f 6e28 4d2c 204c 656e esolution(M, Len │ │ │ │ +0005abd0: 6774 684c 696d 6974 203d 3e20 3729 2020 gthLimit => 7) │ │ │ │ +0005abe0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0005abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ac10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ac20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005ac30: 2030 2031 2032 2033 2034 2035 2036 2020 0 1 2 3 4 5 6 │ │ │ │ -0005ac40: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ -0005ac50: 2020 2020 2020 7c0a 7c6f 3131 203d 2074 |.|o11 = t │ │ │ │ -0005ac60: 6f74 616c 3a20 3320 3420 3520 3620 3720 otal: 3 4 5 6 7 │ │ │ │ -0005ac70: 3820 3920 3130 2020 2020 2020 2020 2020 8 9 10 │ │ │ │ -0005ac80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0005ac90: 2020 2020 2020 2020 323a 2033 2034 2035 2: 3 4 5 │ │ │ │ -0005aca0: 2036 2037 2038 2039 2031 3020 2020 2020 6 7 8 9 10 │ │ │ │ -0005acb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005acc0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005ac10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0005ac20: 2020 2020 2020 3020 3120 3220 3320 3420 0 1 2 3 4 │ │ │ │ +0005ac30: 3520 3620 2037 2020 2020 2020 2020 2020 5 6 7 │ │ │ │ +0005ac40: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0005ac50: 3120 3d20 746f 7461 6c3a 2033 2034 2035 1 = total: 3 4 5 │ │ │ │ +0005ac60: 2036 2037 2038 2039 2031 3020 2020 2020 6 7 8 9 10 │ │ │ │ +0005ac70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ac80: 7c0a 7c20 2020 2020 2020 2020 2032 3a20 |.| 2: │ │ │ │ +0005ac90: 3320 3420 3520 3620 3720 3820 3920 3130 3 4 5 6 7 8 9 10 │ │ │ │ +0005aca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005acb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005acd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005acf0: 2020 2020 207c 0a7c 6f31 3120 3a20 4265 |.|o11 : Be │ │ │ │ -0005ad00: 7474 6954 616c 6c79 2020 2020 2020 2020 ttiTally │ │ │ │ -0005ad10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ad20: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0005ace0: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ +0005acf0: 203a 2042 6574 7469 5461 6c6c 7920 2020 : BettiTally │ │ │ │ +0005ad00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ad10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005ad20: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0005ad30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ad40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ad50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0005ad60: 0a7c 6931 3220 3a20 696e 6669 6e69 7465 .|i12 : infinite │ │ │ │ -0005ad70: 4265 7474 694e 756d 6265 7273 2028 4d46 BettiNumbers (MF │ │ │ │ -0005ad80: 2c37 2920 2020 2020 2020 2020 2020 2020 ,7) │ │ │ │ -0005ad90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005ad50: 2d2d 2d2d 2b0a 7c69 3132 203a 2069 6e66 ----+.|i12 : inf │ │ │ │ +0005ad60: 696e 6974 6542 6574 7469 4e75 6d62 6572 initeBettiNumber │ │ │ │ +0005ad70: 7320 284d 462c 3729 2020 2020 2020 2020 s (MF,7) │ │ │ │ +0005ad80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005ad90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005adc0: 2020 2020 2020 2020 207c 0a7c 6f31 3220 |.|o12 │ │ │ │ -0005add0: 3d20 7b33 2c20 342c 2035 2c20 362c 2037 = {3, 4, 5, 6, 7 │ │ │ │ -0005ade0: 2c20 382c 2039 2c20 3130 7d20 2020 2020 , 8, 9, 10} │ │ │ │ -0005adf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0005ae00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0005adb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005adc0: 7c6f 3132 203d 207b 332c 2034 2c20 352c |o12 = {3, 4, 5, │ │ │ │ +0005add0: 2036 2c20 372c 2038 2c20 392c 2031 307d 6, 7, 8, 9, 10} │ │ │ │ +0005ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005adf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ae30: 2020 207c 0a7c 6f31 3220 3a20 4c69 7374 |.|o12 : List │ │ │ │ +0005ae20: 2020 2020 2020 2020 7c0a 7c6f 3132 203a |.|o12 : │ │ │ │ +0005ae30: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 0005ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ae60: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0005ae50: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0005ae60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ae70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ae80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ae90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0005aea0: 6931 3320 3a20 6265 7474 6920 6672 6565 i13 : betti free │ │ │ │ -0005aeb0: 5265 736f 6c75 7469 6f6e 2070 7573 6846 Resolution pushF │ │ │ │ -0005aec0: 6f72 7761 7264 286d 6170 2852 2c53 292c orward(map(R,S), │ │ │ │ -0005aed0: 4d29 7c0a 7c20 2020 2020 2020 2020 2020 M)|.| │ │ │ │ +0005ae90: 2d2d 2b0a 7c69 3133 203a 2062 6574 7469 --+.|i13 : betti │ │ │ │ +0005aea0: 2066 7265 6552 6573 6f6c 7574 696f 6e20 freeResolution │ │ │ │ +0005aeb0: 7075 7368 466f 7277 6172 6428 6d61 7028 pushForward(map( │ │ │ │ +0005aec0: 522c 5329 2c4d 297c 0a7c 2020 2020 2020 R,S),M)|.| │ │ │ │ +0005aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005af00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005af10: 2020 2020 2020 2030 2031 2032 2020 2020 0 1 2 │ │ │ │ +0005aef0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005af00: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ +0005af10: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0005af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005af30: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0005af40: 3133 203d 2074 6f74 616c 3a20 3320 3520 13 = total: 3 5 │ │ │ │ -0005af50: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0005af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005af70: 207c 0a7c 2020 2020 2020 2020 2020 323a |.| 2: │ │ │ │ -0005af80: 2033 2034 202e 2020 2020 2020 2020 2020 3 4 . │ │ │ │ -0005af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005afa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0005afb0: 2020 2033 3a20 2e20 3120 3220 2020 2020 3: . 1 2 │ │ │ │ +0005af30: 207c 0a7c 6f31 3320 3d20 746f 7461 6c3a |.|o13 = total: │ │ │ │ +0005af40: 2033 2035 2032 2020 2020 2020 2020 2020 3 5 2 │ │ │ │ +0005af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005af60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0005af70: 2020 2032 3a20 3320 3420 2e20 2020 2020 2: 3 4 . │ │ │ │ +0005af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005af90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0005afa0: 2020 2020 2020 2020 333a 202e 2031 2032 3: . 1 2 │ │ │ │ +0005afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005afd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0005afd0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0005afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b010: 7c0a 7c6f 3133 203a 2042 6574 7469 5461 |.|o13 : BettiTa │ │ │ │ -0005b020: 6c6c 7920 2020 2020 2020 2020 2020 2020 lly │ │ │ │ -0005b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b040: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0005b000: 2020 2020 207c 0a7c 6f31 3320 3a20 4265 |.|o13 : Be │ │ │ │ +0005b010: 7474 6954 616c 6c79 2020 2020 2020 2020 ttiTally │ │ │ │ +0005b020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005b030: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0005b040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b070: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3134 ----------+.|i14 │ │ │ │ -0005b080: 203a 2066 696e 6974 6542 6574 7469 4e75 : finiteBettiNu │ │ │ │ -0005b090: 6d62 6572 7320 4d46 2020 2020 2020 2020 mbers MF │ │ │ │ -0005b0a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0005b0b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0005b060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0005b070: 0a7c 6931 3420 3a20 6669 6e69 7465 4265 .|i14 : finiteBe │ │ │ │ +0005b080: 7474 694e 756d 6265 7273 204d 4620 2020 ttiNumbers MF │ │ │ │ +0005b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005b0a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005b0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b0e0: 2020 2020 7c0a 7c6f 3134 203d 207b 332c |.|o14 = {3, │ │ │ │ -0005b0f0: 2035 2c20 327d 2020 2020 2020 2020 2020 5, 2} │ │ │ │ -0005b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b110: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005b0d0: 2020 2020 2020 2020 207c 0a7c 6f31 3420 |.|o14 │ │ │ │ +0005b0e0: 3d20 7b33 2c20 352c 2032 7d20 2020 2020 = {3, 5, 2} │ │ │ │ +0005b0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005b100: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005b110: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b140: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0005b150: 7c6f 3134 203a 204c 6973 7420 2020 2020 |o14 : List │ │ │ │ +0005b140: 2020 207c 0a7c 6f31 3420 3a20 4c69 7374 |.|o14 : List │ │ │ │ +0005b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b180: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0005b170: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0005b180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b1b0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ -0005b1c0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -0005b1d0: 2a20 2a6e 6f74 6520 6669 6e69 7465 4265 * *note finiteBe │ │ │ │ -0005b1e0: 7474 694e 756d 6265 7273 3a20 6669 6e69 ttiNumbers: fini │ │ │ │ -0005b1f0: 7465 4265 7474 694e 756d 6265 7273 2c20 teBettiNumbers, │ │ │ │ -0005b200: 2d2d 2062 6574 7469 206e 756d 6265 7273 -- betti numbers │ │ │ │ -0005b210: 206f 6620 6669 6e69 7465 0a20 2020 2072 of finite. r │ │ │ │ -0005b220: 6573 6f6c 7574 696f 6e20 636f 6d70 7574 esolution comput │ │ │ │ -0005b230: 6564 2066 726f 6d20 6120 6d61 7472 6978 ed from a matrix │ │ │ │ -0005b240: 2066 6163 746f 7269 7a61 7469 6f6e 0a20 factorization. │ │ │ │ -0005b250: 202a 202a 6e6f 7465 2069 6e66 696e 6974 * *note infinit │ │ │ │ -0005b260: 6542 6574 7469 4e75 6d62 6572 733a 2069 eBettiNumbers: i │ │ │ │ -0005b270: 6e66 696e 6974 6542 6574 7469 4e75 6d62 nfiniteBettiNumb │ │ │ │ -0005b280: 6572 732c 202d 2d20 6265 7474 6920 6e75 ers, -- betti nu │ │ │ │ -0005b290: 6d62 6572 7320 6f66 0a20 2020 2066 696e mbers of. fin │ │ │ │ -0005b2a0: 6974 6520 7265 736f 6c75 7469 6f6e 2063 ite resolution c │ │ │ │ -0005b2b0: 6f6d 7075 7465 6420 6672 6f6d 2061 206d omputed from a m │ │ │ │ -0005b2c0: 6174 7269 7820 6661 6374 6f72 697a 6174 atrix factorizat │ │ │ │ -0005b2d0: 696f 6e0a 2020 2a20 2a6e 6f74 6520 6869 ion. * *note hi │ │ │ │ -0005b2e0: 6768 5379 7a79 6779 3a20 6869 6768 5379 ghSyzygy: highSy │ │ │ │ -0005b2f0: 7a79 6779 2c20 2d2d 2052 6574 7572 6e73 zygy, -- Returns │ │ │ │ -0005b300: 2061 2073 797a 7967 7920 6d6f 6475 6c65 a syzygy module │ │ │ │ -0005b310: 206f 6e65 2062 6579 6f6e 6420 7468 650a one beyond the. │ │ │ │ -0005b320: 2020 2020 7265 6775 6c61 7269 7479 206f regularity o │ │ │ │ -0005b330: 6620 4578 7428 4d2c 6b29 0a20 202a 202a f Ext(M,k). * * │ │ │ │ -0005b340: 6e6f 7465 2062 4d61 7073 3a20 624d 6170 note bMaps: bMap │ │ │ │ -0005b350: 732c 202d 2d20 6c69 7374 2074 6865 206d s, -- list the m │ │ │ │ -0005b360: 6170 7320 2064 5f70 3a42 5f31 2870 292d aps d_p:B_1(p)- │ │ │ │ -0005b370: 2d3e 425f 3028 7029 2069 6e20 610a 2020 ->B_0(p) in a. │ │ │ │ -0005b380: 2020 6d61 7472 6978 4661 6374 6f72 697a matrixFactoriz │ │ │ │ -0005b390: 6174 696f 6e0a 2020 2a20 2a6e 6f74 6520 ation. * *note │ │ │ │ -0005b3a0: 4252 616e 6b73 3a20 4252 616e 6b73 2c20 BRanks: BRanks, │ │ │ │ -0005b3b0: 2d2d 2072 616e 6b73 206f 6620 7468 6520 -- ranks of the │ │ │ │ -0005b3c0: 6d6f 6475 6c65 7320 425f 6928 6429 2069 modules B_i(d) i │ │ │ │ -0005b3d0: 6e20 610a 2020 2020 6d61 7472 6978 4661 n a. matrixFa │ │ │ │ -0005b3e0: 6374 6f72 697a 6174 696f 6e0a 0a57 6179 ctorization..Way │ │ │ │ -0005b3f0: 7320 746f 2075 7365 206d 6174 7269 7846 s to use matrixF │ │ │ │ -0005b400: 6163 746f 7269 7a61 7469 6f6e 3a0a 3d3d actorization:.== │ │ │ │ +0005b1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +0005b1b0: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +0005b1c0: 3d0a 0a20 202a 202a 6e6f 7465 2066 696e =.. * *note fin │ │ │ │ +0005b1d0: 6974 6542 6574 7469 4e75 6d62 6572 733a iteBettiNumbers: │ │ │ │ +0005b1e0: 2066 696e 6974 6542 6574 7469 4e75 6d62 finiteBettiNumb │ │ │ │ +0005b1f0: 6572 732c 202d 2d20 6265 7474 6920 6e75 ers, -- betti nu │ │ │ │ +0005b200: 6d62 6572 7320 6f66 2066 696e 6974 650a mbers of finite. │ │ │ │ +0005b210: 2020 2020 7265 736f 6c75 7469 6f6e 2063 resolution c │ │ │ │ +0005b220: 6f6d 7075 7465 6420 6672 6f6d 2061 206d omputed from a m │ │ │ │ +0005b230: 6174 7269 7820 6661 6374 6f72 697a 6174 atrix factorizat │ │ │ │ +0005b240: 696f 6e0a 2020 2a20 2a6e 6f74 6520 696e ion. * *note in │ │ │ │ +0005b250: 6669 6e69 7465 4265 7474 694e 756d 6265 finiteBettiNumbe │ │ │ │ +0005b260: 7273 3a20 696e 6669 6e69 7465 4265 7474 rs: infiniteBett │ │ │ │ +0005b270: 694e 756d 6265 7273 2c20 2d2d 2062 6574 iNumbers, -- bet │ │ │ │ +0005b280: 7469 206e 756d 6265 7273 206f 660a 2020 ti numbers of. │ │ │ │ +0005b290: 2020 6669 6e69 7465 2072 6573 6f6c 7574 finite resolut │ │ │ │ +0005b2a0: 696f 6e20 636f 6d70 7574 6564 2066 726f ion computed fro │ │ │ │ +0005b2b0: 6d20 6120 6d61 7472 6978 2066 6163 746f m a matrix facto │ │ │ │ +0005b2c0: 7269 7a61 7469 6f6e 0a20 202a 202a 6e6f rization. * *no │ │ │ │ +0005b2d0: 7465 2068 6967 6853 797a 7967 793a 2068 te highSyzygy: h │ │ │ │ +0005b2e0: 6967 6853 797a 7967 792c 202d 2d20 5265 ighSyzygy, -- Re │ │ │ │ +0005b2f0: 7475 726e 7320 6120 7379 7a79 6779 206d turns a syzygy m │ │ │ │ +0005b300: 6f64 756c 6520 6f6e 6520 6265 796f 6e64 odule one beyond │ │ │ │ +0005b310: 2074 6865 0a20 2020 2072 6567 756c 6172 the. regular │ │ │ │ +0005b320: 6974 7920 6f66 2045 7874 284d 2c6b 290a ity of Ext(M,k). │ │ │ │ +0005b330: 2020 2a20 2a6e 6f74 6520 624d 6170 733a * *note bMaps: │ │ │ │ +0005b340: 2062 4d61 7073 2c20 2d2d 206c 6973 7420 bMaps, -- list │ │ │ │ +0005b350: 7468 6520 6d61 7073 2020 645f 703a 425f the maps d_p:B_ │ │ │ │ +0005b360: 3128 7029 2d2d 3e42 5f30 2870 2920 696e 1(p)-->B_0(p) in │ │ │ │ +0005b370: 2061 0a20 2020 206d 6174 7269 7846 6163 a. matrixFac │ │ │ │ +0005b380: 746f 7269 7a61 7469 6f6e 0a20 202a 202a torization. * * │ │ │ │ +0005b390: 6e6f 7465 2042 5261 6e6b 733a 2042 5261 note BRanks: BRa │ │ │ │ +0005b3a0: 6e6b 732c 202d 2d20 7261 6e6b 7320 6f66 nks, -- ranks of │ │ │ │ +0005b3b0: 2074 6865 206d 6f64 756c 6573 2042 5f69 the modules B_i │ │ │ │ +0005b3c0: 2864 2920 696e 2061 0a20 2020 206d 6174 (d) in a. mat │ │ │ │ +0005b3d0: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ +0005b3e0: 0a0a 5761 7973 2074 6f20 7573 6520 6d61 ..Ways to use ma │ │ │ │ +0005b3f0: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ +0005b400: 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d n:.============= │ │ │ │ 0005b410: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0005b420: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -0005b430: 2020 2a20 226d 6174 7269 7846 6163 746f * "matrixFacto │ │ │ │ -0005b440: 7269 7a61 7469 6f6e 284d 6174 7269 782c rization(Matrix, │ │ │ │ -0005b450: 4d6f 6475 6c65 2922 0a0a 466f 7220 7468 Module)"..For th │ │ │ │ -0005b460: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0005b470: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0005b480: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0005b490: 6520 6d61 7472 6978 4661 6374 6f72 697a e matrixFactoriz │ │ │ │ -0005b4a0: 6174 696f 6e3a 206d 6174 7269 7846 6163 ation: matrixFac │ │ │ │ -0005b4b0: 746f 7269 7a61 7469 6f6e 2c20 6973 2061 torization, is a │ │ │ │ -0005b4c0: 202a 6e6f 7465 206d 6574 686f 640a 6675 *note method.fu │ │ │ │ -0005b4d0: 6e63 7469 6f6e 2077 6974 6820 6f70 7469 nction with opti │ │ │ │ -0005b4e0: 6f6e 733a 2028 4d61 6361 756c 6179 3244 ons: (Macaulay2D │ │ │ │ -0005b4f0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -0005b500: 6e57 6974 684f 7074 696f 6e73 2c2e 0a0a nWithOptions,... │ │ │ │ +0005b420: 3d3d 3d0a 0a20 202a 2022 6d61 7472 6978 ===.. * "matrix │ │ │ │ +0005b430: 4661 6374 6f72 697a 6174 696f 6e28 4d61 Factorization(Ma │ │ │ │ +0005b440: 7472 6978 2c4d 6f64 756c 6529 220a 0a46 trix,Module)"..F │ │ │ │ +0005b450: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +0005b460: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +0005b470: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +0005b480: 202a 6e6f 7465 206d 6174 7269 7846 6163 *note matrixFac │ │ │ │ +0005b490: 746f 7269 7a61 7469 6f6e 3a20 6d61 7472 torization: matr │ │ │ │ +0005b4a0: 6978 4661 6374 6f72 697a 6174 696f 6e2c ixFactorization, │ │ │ │ +0005b4b0: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ +0005b4c0: 6f64 0a66 756e 6374 696f 6e20 7769 7468 od.function with │ │ │ │ +0005b4d0: 206f 7074 696f 6e73 3a20 284d 6163 6175 options: (Macau │ │ │ │ +0005b4e0: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ +0005b4f0: 6e63 7469 6f6e 5769 7468 4f70 7469 6f6e nctionWithOption │ │ │ │ +0005b500: 732c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d s,...----------- │ │ │ │ 0005b510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -0005b560: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -0005b570: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -0005b580: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -0005b590: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -0005b5a0: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -0005b5b0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -0005b5c0: 636b 6167 6573 2f0a 436f 6d70 6c65 7465 ckages/.Complete │ │ │ │ -0005b5d0: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ -0005b5e0: 6c75 7469 6f6e 732e 6d32 3a34 3033 333a lutions.m2:4033: │ │ │ │ -0005b5f0: 302e 0a1f 0a46 696c 653a 2043 6f6d 706c 0....File: Compl │ │ │ │ -0005b600: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ -0005b610: 6573 6f6c 7574 696f 6e73 2e69 6e66 6f2c esolutions.info, │ │ │ │ -0005b620: 204e 6f64 653a 206d 6642 6f75 6e64 2c20 Node: mfBound, │ │ │ │ -0005b630: 4e65 7874 3a20 6d6f 6475 6c65 4173 4578 Next: moduleAsEx │ │ │ │ -0005b640: 742c 2050 7265 763a 206d 6174 7269 7846 t, Prev: matrixF │ │ │ │ -0005b650: 6163 746f 7269 7a61 7469 6f6e 2c20 5570 actorization, Up │ │ │ │ -0005b660: 3a20 546f 700a 0a6d 6642 6f75 6e64 202d : Top..mfBound - │ │ │ │ -0005b670: 2d20 6465 7465 726d 696e 6573 2068 6f77 - determines how │ │ │ │ -0005b680: 2068 6967 6820 6120 7379 7a79 6779 2074 high a syzygy t │ │ │ │ -0005b690: 6f20 7461 6b65 2066 6f72 2022 6d61 7472 o take for "matr │ │ │ │ -0005b6a0: 6978 4661 6374 6f72 697a 6174 696f 6e22 ixFactorization" │ │ │ │ -0005b6b0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ +0005b550: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +0005b560: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +0005b570: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +0005b580: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +0005b590: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +0005b5a0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +0005b5b0: 7932 2f70 6163 6b61 6765 732f 0a43 6f6d y2/packages/.Com │ │ │ │ +0005b5c0: 706c 6574 6549 6e74 6572 7365 6374 696f pleteIntersectio │ │ │ │ +0005b5d0: 6e52 6573 6f6c 7574 696f 6e73 2e6d 323a nResolutions.m2: │ │ │ │ +0005b5e0: 3430 3333 3a30 2e0a 1f0a 4669 6c65 3a20 4033:0....File: │ │ │ │ +0005b5f0: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ +0005b600: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ +0005b610: 696e 666f 2c20 4e6f 6465 3a20 6d66 426f info, Node: mfBo │ │ │ │ +0005b620: 756e 642c 204e 6578 743a 206d 6f64 756c und, Next: modul │ │ │ │ +0005b630: 6541 7345 7874 2c20 5072 6576 3a20 6d61 eAsExt, Prev: ma │ │ │ │ +0005b640: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ +0005b650: 6e2c 2055 703a 2054 6f70 0a0a 6d66 426f n, Up: Top..mfBo │ │ │ │ +0005b660: 756e 6420 2d2d 2064 6574 6572 6d69 6e65 und -- determine │ │ │ │ +0005b670: 7320 686f 7720 6869 6768 2061 2073 797a s how high a syz │ │ │ │ +0005b680: 7967 7920 746f 2074 616b 6520 666f 7220 ygy to take for │ │ │ │ +0005b690: 226d 6174 7269 7846 6163 746f 7269 7a61 "matrixFactoriza │ │ │ │ +0005b6a0: 7469 6f6e 220a 2a2a 2a2a 2a2a 2a2a 2a2a tion".********** │ │ │ │ +0005b6b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0005b6c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0005b6d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0005b6e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0005b6f0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -0005b700: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -0005b710: 7020 3d20 6d66 426f 756e 6420 4d0a 2020 p = mfBound M. │ │ │ │ -0005b720: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -0005b730: 2a20 4d2c 2061 202a 6e6f 7465 206d 6f64 * M, a *note mod │ │ │ │ -0005b740: 756c 653a 2028 4d61 6361 756c 6179 3244 ule: (Macaulay2D │ │ │ │ -0005b750: 6f63 294d 6f64 756c 652c 2c20 6f76 6572 oc)Module,, over │ │ │ │ -0005b760: 2061 2063 6f6d 706c 6574 6520 696e 7465 a complete inte │ │ │ │ -0005b770: 7273 6563 7469 6f6e 0a20 202a 204f 7574 rsection. * Out │ │ │ │ -0005b780: 7075 7473 3a0a 2020 2020 2020 2a20 702c puts:. * p, │ │ │ │ -0005b790: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ -0005b7a0: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ -0005b7b0: 295a 5a2c 2c20 0a0a 4465 7363 7269 7074 )ZZ,, ..Descript │ │ │ │ -0005b7c0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -0005b7d0: 0a49 6620 7020 3d20 6d66 426f 756e 6420 .If p = mfBound │ │ │ │ -0005b7e0: 4d2c 2074 6865 6e20 7468 6520 702d 7468 M, then the p-th │ │ │ │ -0005b7f0: 2073 797a 7967 7920 6f66 204d 2c20 7768 syzygy of M, wh │ │ │ │ -0005b800: 6963 6820 6973 2063 6f6d 7075 7465 6420 ich is computed │ │ │ │ -0005b810: 6279 0a68 6967 6853 797a 7967 7928 4d29 by.highSyzygy(M) │ │ │ │ -0005b820: 2c20 7368 6f75 6c64 2028 7468 6973 2069 , should (this i │ │ │ │ -0005b830: 7320 6120 636f 6e6a 6563 7475 7265 2920 s a conjecture) │ │ │ │ -0005b840: 6265 2061 2022 6869 6768 2053 797a 7967 be a "high Syzyg │ │ │ │ -0005b850: 7922 2069 6e20 7468 6520 7365 6e73 650a y" in the sense. │ │ │ │ -0005b860: 7265 7175 6972 6564 2066 6f72 206d 6174 required for mat │ │ │ │ -0005b870: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -0005b880: 2e20 496e 2065 7861 6d70 6c65 732c 2074 . In examples, t │ │ │ │ -0005b890: 6865 2065 7374 696d 6174 6520 7365 656d he estimate seem │ │ │ │ -0005b8a0: 7320 7368 6172 7020 2865 7863 6570 740a s sharp (except. │ │ │ │ -0005b8b0: 7768 656e 204d 2069 7320 616c 7265 6164 when M is alread │ │ │ │ -0005b8c0: 7920 6120 6869 6768 2073 797a 7967 7929 y a high syzygy) │ │ │ │ -0005b8d0: 2e0a 0a54 6865 2061 6374 7561 6c20 666f ...The actual fo │ │ │ │ -0005b8e0: 726d 756c 6120 7573 6564 2069 733a 0a0a rmula used is:.. │ │ │ │ -0005b8f0: 6d66 426f 756e 6420 4d20 3d20 6d61 7828 mfBound M = max( │ │ │ │ -0005b900: 322a 725f 7b65 7665 6e7d 2c20 312b 322a 2*r_{even}, 1+2* │ │ │ │ -0005b910: 725f 7b6f 6464 7d29 0a0a 7768 6572 6520 r_{odd})..where │ │ │ │ -0005b920: 725f 7b65 7665 6e7d 203d 2072 6567 756c r_{even} = regul │ │ │ │ -0005b930: 6172 6974 7920 6576 656e 4578 744d 6f64 arity evenExtMod │ │ │ │ -0005b940: 756c 6520 4d20 616e 6420 725f 7b6f 6464 ule M and r_{odd │ │ │ │ -0005b950: 7d20 3d20 7265 6775 6c61 7269 7479 0a6f } = regularity.o │ │ │ │ -0005b960: 6464 4578 744d 6f64 756c 6520 4d2e 2048 ddExtModule M. H │ │ │ │ -0005b970: 6572 6520 6576 656e 4578 744d 6f64 756c ere evenExtModul │ │ │ │ -0005b980: 6520 4d20 6973 2074 6865 2065 7665 6e20 e M is the even │ │ │ │ -0005b990: 6465 6772 6565 2070 6172 7420 6f66 2045 degree part of E │ │ │ │ -0005b9a0: 7874 284d 2c20 2872 6573 6964 7565 0a63 xt(M, (residue.c │ │ │ │ -0005b9b0: 6c61 7373 2066 6965 6c64 2929 2e0a 0a53 lass field))...S │ │ │ │ -0005b9c0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -0005b9d0: 0a0a 2020 2a20 2a6e 6f74 6520 6869 6768 .. * *note high │ │ │ │ -0005b9e0: 5379 7a79 6779 3a20 6869 6768 5379 7a79 Syzygy: highSyzy │ │ │ │ -0005b9f0: 6779 2c20 2d2d 2052 6574 7572 6e73 2061 gy, -- Returns a │ │ │ │ -0005ba00: 2073 797a 7967 7920 6d6f 6475 6c65 206f syzygy module o │ │ │ │ -0005ba10: 6e65 2062 6579 6f6e 6420 7468 650a 2020 ne beyond the. │ │ │ │ -0005ba20: 2020 7265 6775 6c61 7269 7479 206f 6620 regularity of │ │ │ │ -0005ba30: 4578 7428 4d2c 6b29 0a20 202a 202a 6e6f Ext(M,k). * *no │ │ │ │ -0005ba40: 7465 2065 7665 6e45 7874 4d6f 6475 6c65 te evenExtModule │ │ │ │ -0005ba50: 3a20 6576 656e 4578 744d 6f64 756c 652c : evenExtModule, │ │ │ │ -0005ba60: 202d 2d20 6576 656e 2070 6172 7420 6f66 -- even part of │ │ │ │ -0005ba70: 2045 7874 5e2a 284d 2c6b 2920 6f76 6572 Ext^*(M,k) over │ │ │ │ -0005ba80: 2061 0a20 2020 2063 6f6d 706c 6574 6520 a. complete │ │ │ │ -0005ba90: 696e 7465 7273 6563 7469 6f6e 2061 7320 intersection as │ │ │ │ -0005baa0: 6d6f 6475 6c65 206f 7665 7220 4349 206f module over CI o │ │ │ │ -0005bab0: 7065 7261 746f 7220 7269 6e67 0a20 202a perator ring. * │ │ │ │ -0005bac0: 202a 6e6f 7465 206f 6464 4578 744d 6f64 *note oddExtMod │ │ │ │ -0005bad0: 756c 653a 206f 6464 4578 744d 6f64 756c ule: oddExtModul │ │ │ │ -0005bae0: 652c 202d 2d20 6f64 6420 7061 7274 206f e, -- odd part o │ │ │ │ -0005baf0: 6620 4578 745e 2a28 4d2c 6b29 206f 7665 f Ext^*(M,k) ove │ │ │ │ -0005bb00: 7220 6120 636f 6d70 6c65 7465 0a20 2020 r a complete. │ │ │ │ -0005bb10: 2069 6e74 6572 7365 6374 696f 6e20 6173 intersection as │ │ │ │ -0005bb20: 206d 6f64 756c 6520 6f76 6572 2043 4920 module over CI │ │ │ │ -0005bb30: 6f70 6572 6174 6f72 2072 696e 670a 2020 operator ring. │ │ │ │ -0005bb40: 2a20 2a6e 6f74 6520 6d61 7472 6978 4661 * *note matrixFa │ │ │ │ -0005bb50: 6374 6f72 697a 6174 696f 6e3a 206d 6174 ctorization: mat │ │ │ │ -0005bb60: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -0005bb70: 2c20 2d2d 204d 6170 7320 696e 2061 2068 , -- Maps in a h │ │ │ │ -0005bb80: 6967 6865 720a 2020 2020 636f 6469 6d65 igher. codime │ │ │ │ -0005bb90: 6e73 696f 6e20 6d61 7472 6978 2066 6163 nsion matrix fac │ │ │ │ -0005bba0: 746f 7269 7a61 7469 6f6e 0a0a 5761 7973 torization..Ways │ │ │ │ -0005bbb0: 2074 6f20 7573 6520 6d66 426f 756e 643a to use mfBound: │ │ │ │ -0005bbc0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0005bbd0: 3d3d 3d3d 3d0a 0a20 202a 2022 6d66 426f =====.. * "mfBo │ │ │ │ -0005bbe0: 756e 6428 4d6f 6475 6c65 2922 0a0a 466f und(Module)"..Fo │ │ │ │ -0005bbf0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -0005bc00: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0005bc10: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -0005bc20: 2a6e 6f74 6520 6d66 426f 756e 643a 206d *note mfBound: m │ │ │ │ -0005bc30: 6642 6f75 6e64 2c20 6973 2061 202a 6e6f fBound, is a *no │ │ │ │ -0005bc40: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ -0005bc50: 6f6e 3a0a 284d 6163 6175 6c61 7932 446f on:.(Macaulay2Do │ │ │ │ -0005bc60: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -0005bc70: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ +0005b6e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +0005b6f0: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +0005b700: 2020 2020 2070 203d 206d 6642 6f75 6e64 p = mfBound │ │ │ │ +0005b710: 204d 0a20 202a 2049 6e70 7574 733a 0a20 M. * Inputs:. │ │ │ │ +0005b720: 2020 2020 202a 204d 2c20 6120 2a6e 6f74 * M, a *not │ │ │ │ +0005b730: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ +0005b740: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ +0005b750: 206f 7665 7220 6120 636f 6d70 6c65 7465 over a complete │ │ │ │ +0005b760: 2069 6e74 6572 7365 6374 696f 6e0a 2020 intersection. │ │ │ │ +0005b770: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +0005b780: 202a 2070 2c20 616e 202a 6e6f 7465 2069 * p, an *note i │ │ │ │ +0005b790: 6e74 6567 6572 3a20 284d 6163 6175 6c61 nteger: (Macaula │ │ │ │ +0005b7a0: 7932 446f 6329 5a5a 2c2c 200a 0a44 6573 y2Doc)ZZ,, ..Des │ │ │ │ +0005b7b0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +0005b7c0: 3d3d 3d3d 0a0a 4966 2070 203d 206d 6642 ====..If p = mfB │ │ │ │ +0005b7d0: 6f75 6e64 204d 2c20 7468 656e 2074 6865 ound M, then the │ │ │ │ +0005b7e0: 2070 2d74 6820 7379 7a79 6779 206f 6620 p-th syzygy of │ │ │ │ +0005b7f0: 4d2c 2077 6869 6368 2069 7320 636f 6d70 M, which is comp │ │ │ │ +0005b800: 7574 6564 2062 790a 6869 6768 5379 7a79 uted by.highSyzy │ │ │ │ +0005b810: 6779 284d 292c 2073 686f 756c 6420 2874 gy(M), should (t │ │ │ │ +0005b820: 6869 7320 6973 2061 2063 6f6e 6a65 6374 his is a conject │ │ │ │ +0005b830: 7572 6529 2062 6520 6120 2268 6967 6820 ure) be a "high │ │ │ │ +0005b840: 5379 7a79 6779 2220 696e 2074 6865 2073 Syzygy" in the s │ │ │ │ +0005b850: 656e 7365 0a72 6571 7569 7265 6420 666f ense.required fo │ │ │ │ +0005b860: 7220 6d61 7472 6978 4661 6374 6f72 697a r matrixFactoriz │ │ │ │ +0005b870: 6174 696f 6e2e 2049 6e20 6578 616d 706c ation. In exampl │ │ │ │ +0005b880: 6573 2c20 7468 6520 6573 7469 6d61 7465 es, the estimate │ │ │ │ +0005b890: 2073 6565 6d73 2073 6861 7270 2028 6578 seems sharp (ex │ │ │ │ +0005b8a0: 6365 7074 0a77 6865 6e20 4d20 6973 2061 cept.when M is a │ │ │ │ +0005b8b0: 6c72 6561 6479 2061 2068 6967 6820 7379 lready a high sy │ │ │ │ +0005b8c0: 7a79 6779 292e 0a0a 5468 6520 6163 7475 zygy)...The actu │ │ │ │ +0005b8d0: 616c 2066 6f72 6d75 6c61 2075 7365 6420 al formula used │ │ │ │ +0005b8e0: 6973 3a0a 0a6d 6642 6f75 6e64 204d 203d is:..mfBound M = │ │ │ │ +0005b8f0: 206d 6178 2832 2a72 5f7b 6576 656e 7d2c max(2*r_{even}, │ │ │ │ +0005b900: 2031 2b32 2a72 5f7b 6f64 647d 290a 0a77 1+2*r_{odd})..w │ │ │ │ +0005b910: 6865 7265 2072 5f7b 6576 656e 7d20 3d20 here r_{even} = │ │ │ │ +0005b920: 7265 6775 6c61 7269 7479 2065 7665 6e45 regularity evenE │ │ │ │ +0005b930: 7874 4d6f 6475 6c65 204d 2061 6e64 2072 xtModule M and r │ │ │ │ +0005b940: 5f7b 6f64 647d 203d 2072 6567 756c 6172 _{odd} = regular │ │ │ │ +0005b950: 6974 790a 6f64 6445 7874 4d6f 6475 6c65 ity.oddExtModule │ │ │ │ +0005b960: 204d 2e20 4865 7265 2065 7665 6e45 7874 M. Here evenExt │ │ │ │ +0005b970: 4d6f 6475 6c65 204d 2069 7320 7468 6520 Module M is the │ │ │ │ +0005b980: 6576 656e 2064 6567 7265 6520 7061 7274 even degree part │ │ │ │ +0005b990: 206f 6620 4578 7428 4d2c 2028 7265 7369 of Ext(M, (resi │ │ │ │ +0005b9a0: 6475 650a 636c 6173 7320 6669 656c 6429 due.class field) │ │ │ │ +0005b9b0: 292e 0a0a 5365 6520 616c 736f 0a3d 3d3d )...See also.=== │ │ │ │ +0005b9c0: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +0005b9d0: 2068 6967 6853 797a 7967 793a 2068 6967 highSyzygy: hig │ │ │ │ +0005b9e0: 6853 797a 7967 792c 202d 2d20 5265 7475 hSyzygy, -- Retu │ │ │ │ +0005b9f0: 726e 7320 6120 7379 7a79 6779 206d 6f64 rns a syzygy mod │ │ │ │ +0005ba00: 756c 6520 6f6e 6520 6265 796f 6e64 2074 ule one beyond t │ │ │ │ +0005ba10: 6865 0a20 2020 2072 6567 756c 6172 6974 he. regularit │ │ │ │ +0005ba20: 7920 6f66 2045 7874 284d 2c6b 290a 2020 y of Ext(M,k). │ │ │ │ +0005ba30: 2a20 2a6e 6f74 6520 6576 656e 4578 744d * *note evenExtM │ │ │ │ +0005ba40: 6f64 756c 653a 2065 7665 6e45 7874 4d6f odule: evenExtMo │ │ │ │ +0005ba50: 6475 6c65 2c20 2d2d 2065 7665 6e20 7061 dule, -- even pa │ │ │ │ +0005ba60: 7274 206f 6620 4578 745e 2a28 4d2c 6b29 rt of Ext^*(M,k) │ │ │ │ +0005ba70: 206f 7665 7220 610a 2020 2020 636f 6d70 over a. comp │ │ │ │ +0005ba80: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ +0005ba90: 6e20 6173 206d 6f64 756c 6520 6f76 6572 n as module over │ │ │ │ +0005baa0: 2043 4920 6f70 6572 6174 6f72 2072 696e CI operator rin │ │ │ │ +0005bab0: 670a 2020 2a20 2a6e 6f74 6520 6f64 6445 g. * *note oddE │ │ │ │ +0005bac0: 7874 4d6f 6475 6c65 3a20 6f64 6445 7874 xtModule: oddExt │ │ │ │ +0005bad0: 4d6f 6475 6c65 2c20 2d2d 206f 6464 2070 Module, -- odd p │ │ │ │ +0005bae0: 6172 7420 6f66 2045 7874 5e2a 284d 2c6b art of Ext^*(M,k │ │ │ │ +0005baf0: 2920 6f76 6572 2061 2063 6f6d 706c 6574 ) over a complet │ │ │ │ +0005bb00: 650a 2020 2020 696e 7465 7273 6563 7469 e. intersecti │ │ │ │ +0005bb10: 6f6e 2061 7320 6d6f 6475 6c65 206f 7665 on as module ove │ │ │ │ +0005bb20: 7220 4349 206f 7065 7261 746f 7220 7269 r CI operator ri │ │ │ │ +0005bb30: 6e67 0a20 202a 202a 6e6f 7465 206d 6174 ng. * *note mat │ │ │ │ +0005bb40: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ +0005bb50: 3a20 6d61 7472 6978 4661 6374 6f72 697a : matrixFactoriz │ │ │ │ +0005bb60: 6174 696f 6e2c 202d 2d20 4d61 7073 2069 ation, -- Maps i │ │ │ │ +0005bb70: 6e20 6120 6869 6768 6572 0a20 2020 2063 n a higher. c │ │ │ │ +0005bb80: 6f64 696d 656e 7369 6f6e 206d 6174 7269 odimension matri │ │ │ │ +0005bb90: 7820 6661 6374 6f72 697a 6174 696f 6e0a x factorization. │ │ │ │ +0005bba0: 0a57 6179 7320 746f 2075 7365 206d 6642 .Ways to use mfB │ │ │ │ +0005bbb0: 6f75 6e64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d ound:.========== │ │ │ │ +0005bbc0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +0005bbd0: 226d 6642 6f75 6e64 284d 6f64 756c 6529 "mfBound(Module) │ │ │ │ +0005bbe0: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +0005bbf0: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +0005bc00: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +0005bc10: 6a65 6374 202a 6e6f 7465 206d 6642 6f75 ject *note mfBou │ │ │ │ +0005bc20: 6e64 3a20 6d66 426f 756e 642c 2069 7320 nd: mfBound, is │ │ │ │ +0005bc30: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ +0005bc40: 756e 6374 696f 6e3a 0a28 4d61 6361 756c unction:.(Macaul │ │ │ │ +0005bc50: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ +0005bc60: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ +0005bc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005bc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005bc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005bca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005bcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005bcc0: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -0005bcd0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -0005bce0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -0005bcf0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -0005bd00: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -0005bd10: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -0005bd20: 322f 7061 636b 6167 6573 2f0a 436f 6d70 2/packages/.Comp │ │ │ │ -0005bd30: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ -0005bd40: 5265 736f 6c75 7469 6f6e 732e 6d32 3a33 Resolutions.m2:3 │ │ │ │ -0005bd50: 3334 393a 302e 0a1f 0a46 696c 653a 2043 349:0....File: C │ │ │ │ -0005bd60: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ -0005bd70: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ -0005bd80: 6e66 6f2c 204e 6f64 653a 206d 6f64 756c nfo, Node: modul │ │ │ │ -0005bd90: 6541 7345 7874 2c20 4e65 7874 3a20 6e65 eAsExt, Next: ne │ │ │ │ -0005bda0: 7745 7874 2c20 5072 6576 3a20 6d66 426f wExt, Prev: mfBo │ │ │ │ -0005bdb0: 756e 642c 2055 703a 2054 6f70 0a0a 6d6f und, Up: Top..mo │ │ │ │ -0005bdc0: 6475 6c65 4173 4578 7420 2d2d 2046 696e duleAsExt -- Fin │ │ │ │ -0005bdd0: 6420 6120 6d6f 6475 6c65 2077 6974 6820 d a module with │ │ │ │ -0005bde0: 6769 7665 6e20 6173 796d 7074 6f74 6963 given asymptotic │ │ │ │ -0005bdf0: 2072 6573 6f6c 7574 696f 6e0a 2a2a 2a2a resolution.**** │ │ │ │ +0005bcb0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +0005bcc0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +0005bcd0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +0005bce0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +0005bcf0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +0005bd00: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +0005bd10: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +0005bd20: 0a43 6f6d 706c 6574 6549 6e74 6572 7365 .CompleteInterse │ │ │ │ +0005bd30: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ +0005bd40: 2e6d 323a 3333 3439 3a30 2e0a 1f0a 4669 .m2:3349:0....Fi │ │ │ │ +0005bd50: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ +0005bd60: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ +0005bd70: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ +0005bd80: 6d6f 6475 6c65 4173 4578 742c 204e 6578 moduleAsExt, Nex │ │ │ │ +0005bd90: 743a 206e 6577 4578 742c 2050 7265 763a t: newExt, Prev: │ │ │ │ +0005bda0: 206d 6642 6f75 6e64 2c20 5570 3a20 546f mfBound, Up: To │ │ │ │ +0005bdb0: 700a 0a6d 6f64 756c 6541 7345 7874 202d p..moduleAsExt - │ │ │ │ +0005bdc0: 2d20 4669 6e64 2061 206d 6f64 756c 6520 - Find a module │ │ │ │ +0005bdd0: 7769 7468 2067 6976 656e 2061 7379 6d70 with given asymp │ │ │ │ +0005bde0: 746f 7469 6320 7265 736f 6c75 7469 6f6e totic resolution │ │ │ │ +0005bdf0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ 0005be00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0005be10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0005be20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0005be30: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ -0005be40: 7361 6765 3a20 0a20 2020 2020 2020 204d sage: . M │ │ │ │ -0005be50: 203d 206d 6f64 756c 6541 7345 7874 284d = moduleAsExt(M │ │ │ │ -0005be60: 4d2c 5229 0a20 202a 2049 6e70 7574 733a M,R). * Inputs: │ │ │ │ -0005be70: 0a20 2020 2020 202a 204d 2c20 6120 2a6e . * M, a *n │ │ │ │ -0005be80: 6f74 6520 6d6f 6475 6c65 3a20 284d 6163 ote module: (Mac │ │ │ │ -0005be90: 6175 6c61 7932 446f 6329 4d6f 6475 6c65 aulay2Doc)Module │ │ │ │ -0005bea0: 2c2c 206d 6f64 756c 6520 6f76 6572 2070 ,, module over p │ │ │ │ -0005beb0: 6f6c 796e 6f6d 6961 6c20 7269 6e67 0a20 olynomial ring. │ │ │ │ -0005bec0: 2020 2020 2020 2077 6974 6820 6320 7661 with c va │ │ │ │ -0005bed0: 7269 6162 6c65 730a 2020 2020 2020 2a20 riables. * │ │ │ │ -0005bee0: 522c 2061 202a 6e6f 7465 2072 696e 673a R, a *note ring: │ │ │ │ -0005bef0: 2028 4d61 6361 756c 6179 3244 6f63 2952 (Macaulay2Doc)R │ │ │ │ -0005bf00: 696e 672c 2c20 2867 7261 6465 6429 2063 ing,, (graded) c │ │ │ │ -0005bf10: 6f6d 706c 6574 6520 696e 7465 7273 6563 omplete intersec │ │ │ │ -0005bf20: 7469 6f6e 0a20 2020 2020 2020 2072 696e tion. rin │ │ │ │ -0005bf30: 6720 6f66 2063 6f64 696d 656e 7369 6f6e g of codimension │ │ │ │ -0005bf40: 2063 2c20 656d 6265 6464 696e 6720 6469 c, embedding di │ │ │ │ -0005bf50: 6d65 6e73 696f 6e20 6e0a 2020 2a20 4f75 mension n. * Ou │ │ │ │ -0005bf60: 7470 7574 733a 0a20 2020 2020 202a 204e tputs:. * N │ │ │ │ -0005bf70: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ -0005bf80: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0005bf90: 4d6f 6475 6c65 2c2c 206d 6f64 756c 6520 Module,, module │ │ │ │ -0005bfa0: 6f76 6572 2052 2073 7563 6820 7468 6174 over R such that │ │ │ │ -0005bfb0: 0a20 2020 2020 2020 2045 7874 5f52 284e . Ext_R(N │ │ │ │ -0005bfc0: 2c6b 2920 3d20 4d5c 6f74 696d 6573 205c ,k) = M\otimes \ │ │ │ │ -0005bfd0: 7765 6467 6528 6b5e 6e29 2069 6e20 6c61 wedge(k^n) in la │ │ │ │ -0005bfe0: 7267 6520 686f 6d6f 6c6f 6769 6361 6c20 rge homological │ │ │ │ -0005bff0: 6465 6772 6565 2e0a 0a44 6573 6372 6970 degree...Descrip │ │ │ │ -0005c000: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -0005c010: 0a0a 5468 6520 726f 7574 696e 6520 6060 ..The routine `` │ │ │ │ -0005c020: 6d6f 6475 6c65 4173 4578 7427 2720 6973 moduleAsExt'' is │ │ │ │ -0005c030: 2061 2070 6172 7469 616c 2069 6e76 6572 a partial inver │ │ │ │ -0005c040: 7365 2074 6f20 7468 6520 726f 7574 696e se to the routin │ │ │ │ -0005c050: 6520 4578 744d 6f64 756c 652c 0a63 6f6d e ExtModule,.com │ │ │ │ -0005c060: 7075 7465 6420 666f 6c6c 6f77 696e 6720 puted following │ │ │ │ -0005c070: 6964 6561 7320 6f66 2041 7672 616d 6f76 ideas of Avramov │ │ │ │ -0005c080: 2061 6e64 204a 6f72 6765 6e73 656e 3a20 and Jorgensen: │ │ │ │ -0005c090: 6769 7665 6e20 6120 6d6f 6475 6c65 2045 given a module E │ │ │ │ -0005c0a0: 206f 7665 7220 610a 706f 6c79 6e6f 6d69 over a.polynomi │ │ │ │ -0005c0b0: 616c 2072 696e 6720 6b5b 785f 312e 2e78 al ring k[x_1..x │ │ │ │ -0005c0c0: 5f63 5d2c 2069 7420 7072 6f76 6964 6573 _c], it provides │ │ │ │ -0005c0d0: 2061 206d 6f64 756c 6520 4e20 6f76 6572 a module N over │ │ │ │ -0005c0e0: 2061 2073 7065 6369 6669 6564 2070 6f6c a specified pol │ │ │ │ -0005c0f0: 796e 6f6d 6961 6c0a 7269 6e67 2069 6e20 ynomial.ring in │ │ │ │ -0005c100: 6e20 7661 7269 6162 6c65 7320 7375 6368 n variables such │ │ │ │ -0005c110: 2074 6861 7420 4578 7428 4e2c 6b29 2061 that Ext(N,k) a │ │ │ │ -0005c120: 6772 6565 7320 7769 7468 2024 4527 3d45 grees with $E'=E │ │ │ │ -0005c130: 5c6f 7469 6d65 7320 5c77 6564 6765 286b \otimes \wedge(k │ │ │ │ -0005c140: 5e6e 2924 0a61 6674 6572 2074 7275 6e63 ^n)$.after trunc │ │ │ │ -0005c150: 6174 696f 6e2e 2048 6572 6520 7468 6520 ation. Here the │ │ │ │ -0005c160: 6772 6164 696e 6720 6f6e 2045 2069 7320 grading on E is │ │ │ │ -0005c170: 7461 6b65 6e20 746f 2062 6520 6576 656e taken to be even │ │ │ │ -0005c180: 2c20 7768 696c 650a 245c 7765 6467 6528 , while.$\wedge( │ │ │ │ -0005c190: 6b5e 6e29 2420 6861 7320 6765 6e65 7261 k^n)$ has genera │ │ │ │ -0005c1a0: 746f 7273 2069 6e20 6465 6772 6565 2031 tors in degree 1 │ │ │ │ -0005c1b0: 2e20 5468 6520 726f 7574 696e 6520 6866 . The routine hf │ │ │ │ -0005c1c0: 4d6f 6475 6c65 4173 4578 7420 636f 6d70 ModuleAsExt comp │ │ │ │ -0005c1d0: 7574 6573 0a74 6865 2072 6573 756c 7469 utes.the resulti │ │ │ │ -0005c1e0: 6e67 2068 696c 6265 7274 2066 756e 6374 ng hilbert funct │ │ │ │ -0005c1f0: 696f 6e20 666f 7220 4527 2e20 5468 6973 ion for E'. This │ │ │ │ -0005c200: 2075 7365 7320 6964 6561 7320 6f66 2041 uses ideas of A │ │ │ │ -0005c210: 7672 616d 6f76 2061 6e64 0a4a 6f72 6765 vramov and.Jorge │ │ │ │ -0005c220: 6e73 656e 2e20 4e6f 7465 2074 6861 7420 nsen. Note that │ │ │ │ -0005c230: 7468 6520 6d6f 6475 6c65 2045 7874 284e the module Ext(N │ │ │ │ -0005c240: 2c6b 2920 2874 7275 6e63 6174 6564 2920 ,k) (truncated) │ │ │ │ -0005c250: 7769 6c6c 2061 7574 6f6d 6174 6963 616c will automatical │ │ │ │ -0005c260: 6c79 2062 6520 6672 6565 0a6f 7665 7220 ly be free.over │ │ │ │ -0005c270: 7468 6520 6578 7465 7269 6f72 2061 6c67 the exterior alg │ │ │ │ -0005c280: 6562 7261 2024 5c77 6564 6765 286b 5e6e ebra $\wedge(k^n │ │ │ │ -0005c290: 2924 2067 656e 6572 6174 6564 2062 7920 )$ generated by │ │ │ │ -0005c2a0: 4578 745e 3128 6b2c 6b29 3b20 6e6f 7420 Ext^1(k,k); not │ │ │ │ -0005c2b0: 6120 7479 7069 6361 6c0a 4578 7420 6d6f a typical.Ext mo │ │ │ │ -0005c2c0: 6475 6c65 2e0a 0a4d 6f72 6520 7072 6563 dule...More prec │ │ │ │ -0005c2d0: 6973 656c 793a 0a0a 5375 7070 6f73 6520 isely:..Suppose │ │ │ │ -0005c2e0: 7468 6174 2024 5220 3d20 6b5b 615f 312c that $R = k[a_1, │ │ │ │ -0005c2f0: 5c64 6f74 732c 2061 5f6e 5d2f 2866 5f31 \dots, a_n]/(f_1 │ │ │ │ -0005c300: 2c5c 646f 7473 2c66 5f63 2924 206c 6574 ,\dots,f_c)$ let │ │ │ │ -0005c310: 2024 4b4b 203d 0a6b 5b78 5f31 2c5c 646f $KK =.k[x_1,\do │ │ │ │ -0005c320: 7473 2c78 5f63 5d24 2c20 616e 6420 6c65 ts,x_c]$, and le │ │ │ │ -0005c330: 7420 245c 4c61 6d62 6461 203d 205c 7765 t $\Lambda = \we │ │ │ │ -0005c340: 6467 6520 6b5e 6e24 2e20 2445 203d 204b dge k^n$. $E = K │ │ │ │ -0005c350: 4b5c 6f74 696d 6573 5c4c 616d 6264 6124 K\otimes\Lambda$ │ │ │ │ -0005c360: 2c20 736f 0a74 6861 7420 7468 6520 6d69 , so.that the mi │ │ │ │ -0005c370: 6e69 6d61 6c20 2452 242d 6672 6565 2072 nimal $R$-free r │ │ │ │ -0005c380: 6573 6f6c 7574 696f 6e20 6f66 2024 6b24 esolution of $k$ │ │ │ │ -0005c390: 2068 6173 2075 6e64 6572 6c79 696e 6720 has underlying │ │ │ │ -0005c3a0: 6d6f 6475 6c65 2024 525c 6f74 696d 6573 module $R\otimes │ │ │ │ -0005c3b0: 0a45 5e2a 242c 2077 6865 7265 2024 455e .E^*$, where $E^ │ │ │ │ -0005c3c0: 2a24 2069 7320 7468 6520 6772 6164 6564 *$ is the graded │ │ │ │ -0005c3d0: 2076 6563 746f 7220 7370 6163 6520 6475 vector space du │ │ │ │ -0005c3e0: 616c 206f 6620 2445 242e 0a0a 4c65 7420 al of $E$...Let │ │ │ │ -0005c3f0: 4d4d 2062 6520 7468 6520 7265 7375 6c74 MM be the result │ │ │ │ -0005c400: 206f 6620 7472 756e 6361 7469 6e67 204d of truncating M │ │ │ │ -0005c410: 2061 7420 6974 7320 7265 6775 6c61 7269 at its regulari │ │ │ │ -0005c420: 7479 2061 6e64 2073 6869 6674 696e 6720 ty and shifting │ │ │ │ -0005c430: 6974 2073 6f20 7468 6174 0a69 7420 6973 it so that.it is │ │ │ │ -0005c440: 2067 656e 6572 6174 6564 2069 6e20 6465 generated in de │ │ │ │ -0005c450: 6772 6565 2030 2e20 4c65 7420 2446 2420 gree 0. Let $F$ │ │ │ │ -0005c460: 6265 2061 2024 4b4b 242d 6672 6565 2072 be a $KK$-free r │ │ │ │ -0005c470: 6573 6f6c 7574 696f 6e20 6f66 2024 4d4d esolution of $MM │ │ │ │ -0005c480: 242c 2061 6e64 0a77 7269 7465 2024 465f $, and.write $F_ │ │ │ │ -0005c490: 6920 3d20 4b4b 5c6f 7469 6d65 7320 565f i = KK\otimes V_ │ │ │ │ -0005c4a0: 692e 2420 5369 6e63 6520 6c69 6e65 6172 i.$ Since linear │ │ │ │ -0005c4b0: 2066 6f72 6d73 206f 7665 7220 244b 4b24 forms over $KK$ │ │ │ │ -0005c4c0: 2063 6f72 7265 7370 6f6e 6420 746f 2043 correspond to C │ │ │ │ -0005c4d0: 490a 6f70 6572 6174 6f72 7320 6f66 2064 I.operators of d │ │ │ │ -0005c4e0: 6567 7265 6520 2d32 206f 6e20 7468 6520 egree -2 on the │ │ │ │ -0005c4f0: 7265 736f 6c75 7469 6f6e 2047 206f 6620 resolution G of │ │ │ │ -0005c500: 6b20 6f76 6572 2052 2c20 7765 206d 6179 k over R, we may │ │ │ │ -0005c510: 2066 6f72 6d20 6120 6d61 7020 2424 0a64 form a map $$.d │ │ │ │ -0005c520: 5f31 2b64 5f32 3a20 5c73 756d 5f7b 693d _1+d_2: \sum_{i= │ │ │ │ -0005c530: 307d 5e6d 2047 5f7b 692b 317d 5c6f 7469 0}^m G_{i+1}\oti │ │ │ │ -0005c540: 6d65 7320 565f 7b6d 2d69 7d5e 2a20 5c74 mes V_{m-i}^* \t │ │ │ │ -0005c550: 6f20 5c73 756d 5f7b 693d 307d 5e6d 2047 o \sum_{i=0}^m G │ │ │ │ -0005c560: 5f69 5c6f 7469 6d65 730a 565f 7b6d 2d69 _i\otimes.V_{m-i │ │ │ │ -0005c570: 7d5e 2a20 2424 2077 6865 7265 2024 645f }^* $$ where $d_ │ │ │ │ -0005c580: 3124 2069 7320 7468 6520 6469 7265 6374 1$ is the direct │ │ │ │ -0005c590: 2073 756d 206f 6620 7468 6520 6469 6666 sum of the diff │ │ │ │ -0005c5a0: 6572 656e 7469 616c 7320 2428 475f 7b69 erentials $(G_{i │ │ │ │ -0005c5b0: 2b31 7d5c 746f 0a47 5f69 295c 6f74 696d +1}\to.G_i)\otim │ │ │ │ -0005c5c0: 6573 2056 5f69 5e2a 2420 616e 6420 2464 es V_i^*$ and $d │ │ │ │ -0005c5d0: 5f32 2420 6973 2074 6865 2064 6972 6563 _2$ is the direc │ │ │ │ -0005c5e0: 7420 7375 6d20 6f66 2074 6865 206d 6170 t sum of the map │ │ │ │ -0005c5f0: 7320 245c 7068 695f 6924 2064 6566 696e s $\phi_i$ defin │ │ │ │ -0005c600: 6564 0a66 726f 6d20 7468 6520 6469 6666 ed.from the diff │ │ │ │ -0005c610: 6572 656e 7469 616c 7320 6f66 2024 4624 erentials of $F$ │ │ │ │ -0005c620: 2062 7920 7375 6273 7469 7475 7469 6e67 by substituting │ │ │ │ -0005c630: 2043 4920 6f70 6572 6174 6f72 7320 666f CI operators fo │ │ │ │ -0005c640: 7220 6c69 6e65 6172 2066 6f72 6d73 2c0a r linear forms,. │ │ │ │ -0005c650: 245c 7068 695f 693a 2047 5f7b 692b 317d $\phi_i: G_{i+1} │ │ │ │ -0005c660: 5c6f 7469 6d65 7320 565f 6920 5c74 6f20 \otimes V_i \to │ │ │ │ -0005c670: 475f 7b69 2d31 7d5c 6f74 696d 6573 2056 G_{i-1}\otimes V │ │ │ │ -0005c680: 5f7b 692d 317d 242e 2054 6865 2073 6372 _{i-1}$. The scr │ │ │ │ -0005c690: 6970 7420 7265 7475 726e 7320 7468 650a ipt returns the. │ │ │ │ -0005c6a0: 6d6f 6475 6c65 204e 2074 6861 7420 6973 module N that is │ │ │ │ -0005c6b0: 2074 6865 2063 6f6b 6572 6e65 6c20 6f66 the cokernel of │ │ │ │ -0005c6c0: 2024 645f 312b 645f 3224 2e0a 0a54 6865 $d_1+d_2$...The │ │ │ │ -0005c6d0: 206d 6f64 756c 6520 2445 7874 5f52 284e module $Ext_R(N │ │ │ │ -0005c6e0: 2c6b 2924 2061 6772 6565 732c 2061 6674 ,k)$ agrees, aft │ │ │ │ -0005c6f0: 6572 2061 2066 6577 2073 7465 7073 2c20 er a few steps, │ │ │ │ -0005c700: 7769 7468 2074 6865 206d 6f64 756c 6520 with the module │ │ │ │ -0005c710: 6465 7269 7665 6420 6672 6f6d 0a24 4d4d derived from.$MM │ │ │ │ -0005c720: 2420 6279 2074 656e 736f 7269 6e67 2069 $ by tensoring i │ │ │ │ -0005c730: 7420 7769 7468 2024 5c4c 616d 6264 6124 t with $\Lambda$ │ │ │ │ -0005c740: 2c20 7468 6174 2069 732c 2077 6974 6820 , that is, with │ │ │ │ -0005c750: 7468 6520 6d6f 6475 6c65 c39f 2024 2420 the module.. $$ │ │ │ │ -0005c760: 4d4d 2720 3d20 5c73 756d 5f6a 0a28 4d4d MM' = \sum_j.(MM │ │ │ │ -0005c770: 2728 6a29 5c6f 7469 6d65 7320 5c4c 616d '(j)\otimes \Lam │ │ │ │ -0005c780: 6264 615f 6a29 2024 2420 736f 2074 6861 bda_j) $$ so tha │ │ │ │ -0005c790: 7420 244d 4d27 5f70 203d 2028 4d4d 5f70 t $MM'_p = (MM_p │ │ │ │ -0005c7a0: 5c6f 7469 6d65 7320 4c61 6d62 6461 5f30 \otimes Lambda_0 │ │ │ │ -0005c7b0: 2920 5c6f 706c 7573 0a28 4d4d 5f7b 702d ) \oplus.(MM_{p- │ │ │ │ -0005c7c0: 317d 5c6f 7469 6d65 7320 4c61 6d62 6461 1}\otimes Lambda │ │ │ │ -0005c7d0: 5f31 2920 5c6f 706c 7573 5c63 646f 7473 _1) \oplus\cdots │ │ │ │ -0005c7e0: 242e 0a0a 5468 6520 6675 6e63 7469 6f6e $...The function │ │ │ │ -0005c7f0: 2068 664d 6f64 756c 6541 7345 7874 2063 hfModuleAsExt c │ │ │ │ -0005c800: 6f6d 7075 7465 7320 7468 6520 4869 6c62 omputes the Hilb │ │ │ │ -0005c810: 6572 7420 6675 6e63 7469 6f6e 206f 6620 ert function of │ │ │ │ -0005c820: 4d4d 2720 6e75 6d65 7269 6361 6c6c 790a MM' numerically. │ │ │ │ -0005c830: 6672 6f6d 2074 6861 7420 6f66 204d 4d2e from that of MM. │ │ │ │ -0005c840: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +0005be20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0005be30: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +0005be40: 2020 2020 4d20 3d20 6d6f 6475 6c65 4173 M = moduleAs │ │ │ │ +0005be50: 4578 7428 4d4d 2c52 290a 2020 2a20 496e Ext(MM,R). * In │ │ │ │ +0005be60: 7075 7473 3a0a 2020 2020 2020 2a20 4d2c puts:. * M, │ │ │ │ +0005be70: 2061 202a 6e6f 7465 206d 6f64 756c 653a a *note module: │ │ │ │ +0005be80: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +0005be90: 6f64 756c 652c 2c20 6d6f 6475 6c65 206f odule,, module o │ │ │ │ +0005bea0: 7665 7220 706f 6c79 6e6f 6d69 616c 2072 ver polynomial r │ │ │ │ +0005beb0: 696e 670a 2020 2020 2020 2020 7769 7468 ing. with │ │ │ │ +0005bec0: 2063 2076 6172 6961 626c 6573 0a20 2020 c variables. │ │ │ │ +0005bed0: 2020 202a 2052 2c20 6120 2a6e 6f74 6520 * R, a *note │ │ │ │ +0005bee0: 7269 6e67 3a20 284d 6163 6175 6c61 7932 ring: (Macaulay2 │ │ │ │ +0005bef0: 446f 6329 5269 6e67 2c2c 2028 6772 6164 Doc)Ring,, (grad │ │ │ │ +0005bf00: 6564 2920 636f 6d70 6c65 7465 2069 6e74 ed) complete int │ │ │ │ +0005bf10: 6572 7365 6374 696f 6e0a 2020 2020 2020 ersection. │ │ │ │ +0005bf20: 2020 7269 6e67 206f 6620 636f 6469 6d65 ring of codime │ │ │ │ +0005bf30: 6e73 696f 6e20 632c 2065 6d62 6564 6469 nsion c, embeddi │ │ │ │ +0005bf40: 6e67 2064 696d 656e 7369 6f6e 206e 0a20 ng dimension n. │ │ │ │ +0005bf50: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +0005bf60: 2020 2a20 4e2c 2061 202a 6e6f 7465 206d * N, a *note m │ │ │ │ +0005bf70: 6f64 756c 653a 2028 4d61 6361 756c 6179 odule: (Macaulay │ │ │ │ +0005bf80: 3244 6f63 294d 6f64 756c 652c 2c20 6d6f 2Doc)Module,, mo │ │ │ │ +0005bf90: 6475 6c65 206f 7665 7220 5220 7375 6368 dule over R such │ │ │ │ +0005bfa0: 2074 6861 740a 2020 2020 2020 2020 4578 that. Ex │ │ │ │ +0005bfb0: 745f 5228 4e2c 6b29 203d 204d 5c6f 7469 t_R(N,k) = M\oti │ │ │ │ +0005bfc0: 6d65 7320 5c77 6564 6765 286b 5e6e 2920 mes \wedge(k^n) │ │ │ │ +0005bfd0: 696e 206c 6172 6765 2068 6f6d 6f6c 6f67 in large homolog │ │ │ │ +0005bfe0: 6963 616c 2064 6567 7265 652e 0a0a 4465 ical degree...De │ │ │ │ +0005bff0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +0005c000: 3d3d 3d3d 3d0a 0a54 6865 2072 6f75 7469 =====..The routi │ │ │ │ +0005c010: 6e65 2060 606d 6f64 756c 6541 7345 7874 ne ``moduleAsExt │ │ │ │ +0005c020: 2727 2069 7320 6120 7061 7274 6961 6c20 '' is a partial │ │ │ │ +0005c030: 696e 7665 7273 6520 746f 2074 6865 2072 inverse to the r │ │ │ │ +0005c040: 6f75 7469 6e65 2045 7874 4d6f 6475 6c65 outine ExtModule │ │ │ │ +0005c050: 2c0a 636f 6d70 7574 6564 2066 6f6c 6c6f ,.computed follo │ │ │ │ +0005c060: 7769 6e67 2069 6465 6173 206f 6620 4176 wing ideas of Av │ │ │ │ +0005c070: 7261 6d6f 7620 616e 6420 4a6f 7267 656e ramov and Jorgen │ │ │ │ +0005c080: 7365 6e3a 2067 6976 656e 2061 206d 6f64 sen: given a mod │ │ │ │ +0005c090: 756c 6520 4520 6f76 6572 2061 0a70 6f6c ule E over a.pol │ │ │ │ +0005c0a0: 796e 6f6d 6961 6c20 7269 6e67 206b 5b78 ynomial ring k[x │ │ │ │ +0005c0b0: 5f31 2e2e 785f 635d 2c20 6974 2070 726f _1..x_c], it pro │ │ │ │ +0005c0c0: 7669 6465 7320 6120 6d6f 6475 6c65 204e vides a module N │ │ │ │ +0005c0d0: 206f 7665 7220 6120 7370 6563 6966 6965 over a specifie │ │ │ │ +0005c0e0: 6420 706f 6c79 6e6f 6d69 616c 0a72 696e d polynomial.rin │ │ │ │ +0005c0f0: 6720 696e 206e 2076 6172 6961 626c 6573 g in n variables │ │ │ │ +0005c100: 2073 7563 6820 7468 6174 2045 7874 284e such that Ext(N │ │ │ │ +0005c110: 2c6b 2920 6167 7265 6573 2077 6974 6820 ,k) agrees with │ │ │ │ +0005c120: 2445 273d 455c 6f74 696d 6573 205c 7765 $E'=E\otimes \we │ │ │ │ +0005c130: 6467 6528 6b5e 6e29 240a 6166 7465 7220 dge(k^n)$.after │ │ │ │ +0005c140: 7472 756e 6361 7469 6f6e 2e20 4865 7265 truncation. Here │ │ │ │ +0005c150: 2074 6865 2067 7261 6469 6e67 206f 6e20 the grading on │ │ │ │ +0005c160: 4520 6973 2074 616b 656e 2074 6f20 6265 E is taken to be │ │ │ │ +0005c170: 2065 7665 6e2c 2077 6869 6c65 0a24 5c77 even, while.$\w │ │ │ │ +0005c180: 6564 6765 286b 5e6e 2924 2068 6173 2067 edge(k^n)$ has g │ │ │ │ +0005c190: 656e 6572 6174 6f72 7320 696e 2064 6567 enerators in deg │ │ │ │ +0005c1a0: 7265 6520 312e 2054 6865 2072 6f75 7469 ree 1. The routi │ │ │ │ +0005c1b0: 6e65 2068 664d 6f64 756c 6541 7345 7874 ne hfModuleAsExt │ │ │ │ +0005c1c0: 2063 6f6d 7075 7465 730a 7468 6520 7265 computes.the re │ │ │ │ +0005c1d0: 7375 6c74 696e 6720 6869 6c62 6572 7420 sulting hilbert │ │ │ │ +0005c1e0: 6675 6e63 7469 6f6e 2066 6f72 2045 272e function for E'. │ │ │ │ +0005c1f0: 2054 6869 7320 7573 6573 2069 6465 6173 This uses ideas │ │ │ │ +0005c200: 206f 6620 4176 7261 6d6f 7620 616e 640a of Avramov and. │ │ │ │ +0005c210: 4a6f 7267 656e 7365 6e2e 204e 6f74 6520 Jorgensen. Note │ │ │ │ +0005c220: 7468 6174 2074 6865 206d 6f64 756c 6520 that the module │ │ │ │ +0005c230: 4578 7428 4e2c 6b29 2028 7472 756e 6361 Ext(N,k) (trunca │ │ │ │ +0005c240: 7465 6429 2077 696c 6c20 6175 746f 6d61 ted) will automa │ │ │ │ +0005c250: 7469 6361 6c6c 7920 6265 2066 7265 650a tically be free. │ │ │ │ +0005c260: 6f76 6572 2074 6865 2065 7874 6572 696f over the exterio │ │ │ │ +0005c270: 7220 616c 6765 6272 6120 245c 7765 6467 r algebra $\wedg │ │ │ │ +0005c280: 6528 6b5e 6e29 2420 6765 6e65 7261 7465 e(k^n)$ generate │ │ │ │ +0005c290: 6420 6279 2045 7874 5e31 286b 2c6b 293b d by Ext^1(k,k); │ │ │ │ +0005c2a0: 206e 6f74 2061 2074 7970 6963 616c 0a45 not a typical.E │ │ │ │ +0005c2b0: 7874 206d 6f64 756c 652e 0a0a 4d6f 7265 xt module...More │ │ │ │ +0005c2c0: 2070 7265 6369 7365 6c79 3a0a 0a53 7570 precisely:..Sup │ │ │ │ +0005c2d0: 706f 7365 2074 6861 7420 2452 203d 206b pose that $R = k │ │ │ │ +0005c2e0: 5b61 5f31 2c5c 646f 7473 2c20 615f 6e5d [a_1,\dots, a_n] │ │ │ │ +0005c2f0: 2f28 665f 312c 5c64 6f74 732c 665f 6329 /(f_1,\dots,f_c) │ │ │ │ +0005c300: 2420 6c65 7420 244b 4b20 3d0a 6b5b 785f $ let $KK =.k[x_ │ │ │ │ +0005c310: 312c 5c64 6f74 732c 785f 635d 242c 2061 1,\dots,x_c]$, a │ │ │ │ +0005c320: 6e64 206c 6574 2024 5c4c 616d 6264 6120 nd let $\Lambda │ │ │ │ +0005c330: 3d20 5c77 6564 6765 206b 5e6e 242e 2024 = \wedge k^n$. $ │ │ │ │ +0005c340: 4520 3d20 4b4b 5c6f 7469 6d65 735c 4c61 E = KK\otimes\La │ │ │ │ +0005c350: 6d62 6461 242c 2073 6f0a 7468 6174 2074 mbda$, so.that t │ │ │ │ +0005c360: 6865 206d 696e 696d 616c 2024 5224 2d66 he minimal $R$-f │ │ │ │ +0005c370: 7265 6520 7265 736f 6c75 7469 6f6e 206f ree resolution o │ │ │ │ +0005c380: 6620 246b 2420 6861 7320 756e 6465 726c f $k$ has underl │ │ │ │ +0005c390: 7969 6e67 206d 6f64 756c 6520 2452 5c6f ying module $R\o │ │ │ │ +0005c3a0: 7469 6d65 730a 455e 2a24 2c20 7768 6572 times.E^*$, wher │ │ │ │ +0005c3b0: 6520 2445 5e2a 2420 6973 2074 6865 2067 e $E^*$ is the g │ │ │ │ +0005c3c0: 7261 6465 6420 7665 6374 6f72 2073 7061 raded vector spa │ │ │ │ +0005c3d0: 6365 2064 7561 6c20 6f66 2024 4524 2e0a ce dual of $E$.. │ │ │ │ +0005c3e0: 0a4c 6574 204d 4d20 6265 2074 6865 2072 .Let MM be the r │ │ │ │ +0005c3f0: 6573 756c 7420 6f66 2074 7275 6e63 6174 esult of truncat │ │ │ │ +0005c400: 696e 6720 4d20 6174 2069 7473 2072 6567 ing M at its reg │ │ │ │ +0005c410: 756c 6172 6974 7920 616e 6420 7368 6966 ularity and shif │ │ │ │ +0005c420: 7469 6e67 2069 7420 736f 2074 6861 740a ting it so that. │ │ │ │ +0005c430: 6974 2069 7320 6765 6e65 7261 7465 6420 it is generated │ │ │ │ +0005c440: 696e 2064 6567 7265 6520 302e 204c 6574 in degree 0. Let │ │ │ │ +0005c450: 2024 4624 2062 6520 6120 244b 4b24 2d66 $F$ be a $KK$-f │ │ │ │ +0005c460: 7265 6520 7265 736f 6c75 7469 6f6e 206f ree resolution o │ │ │ │ +0005c470: 6620 244d 4d24 2c20 616e 640a 7772 6974 f $MM$, and.writ │ │ │ │ +0005c480: 6520 2446 5f69 203d 204b 4b5c 6f74 696d e $F_i = KK\otim │ │ │ │ +0005c490: 6573 2056 5f69 2e24 2053 696e 6365 206c es V_i.$ Since l │ │ │ │ +0005c4a0: 696e 6561 7220 666f 726d 7320 6f76 6572 inear forms over │ │ │ │ +0005c4b0: 2024 4b4b 2420 636f 7272 6573 706f 6e64 $KK$ correspond │ │ │ │ +0005c4c0: 2074 6f20 4349 0a6f 7065 7261 746f 7273 to CI.operators │ │ │ │ +0005c4d0: 206f 6620 6465 6772 6565 202d 3220 6f6e of degree -2 on │ │ │ │ +0005c4e0: 2074 6865 2072 6573 6f6c 7574 696f 6e20 the resolution │ │ │ │ +0005c4f0: 4720 6f66 206b 206f 7665 7220 522c 2077 G of k over R, w │ │ │ │ +0005c500: 6520 6d61 7920 666f 726d 2061 206d 6170 e may form a map │ │ │ │ +0005c510: 2024 240a 645f 312b 645f 323a 205c 7375 $$.d_1+d_2: \su │ │ │ │ +0005c520: 6d5f 7b69 3d30 7d5e 6d20 475f 7b69 2b31 m_{i=0}^m G_{i+1 │ │ │ │ +0005c530: 7d5c 6f74 696d 6573 2056 5f7b 6d2d 697d }\otimes V_{m-i} │ │ │ │ +0005c540: 5e2a 205c 746f 205c 7375 6d5f 7b69 3d30 ^* \to \sum_{i=0 │ │ │ │ +0005c550: 7d5e 6d20 475f 695c 6f74 696d 6573 0a56 }^m G_i\otimes.V │ │ │ │ +0005c560: 5f7b 6d2d 697d 5e2a 2024 2420 7768 6572 _{m-i}^* $$ wher │ │ │ │ +0005c570: 6520 2464 5f31 2420 6973 2074 6865 2064 e $d_1$ is the d │ │ │ │ +0005c580: 6972 6563 7420 7375 6d20 6f66 2074 6865 irect sum of the │ │ │ │ +0005c590: 2064 6966 6665 7265 6e74 6961 6c73 2024 differentials $ │ │ │ │ +0005c5a0: 2847 5f7b 692b 317d 5c74 6f0a 475f 6929 (G_{i+1}\to.G_i) │ │ │ │ +0005c5b0: 5c6f 7469 6d65 7320 565f 695e 2a24 2061 \otimes V_i^*$ a │ │ │ │ +0005c5c0: 6e64 2024 645f 3224 2069 7320 7468 6520 nd $d_2$ is the │ │ │ │ +0005c5d0: 6469 7265 6374 2073 756d 206f 6620 7468 direct sum of th │ │ │ │ +0005c5e0: 6520 6d61 7073 2024 5c70 6869 5f69 2420 e maps $\phi_i$ │ │ │ │ +0005c5f0: 6465 6669 6e65 640a 6672 6f6d 2074 6865 defined.from the │ │ │ │ +0005c600: 2064 6966 6665 7265 6e74 6961 6c73 206f differentials o │ │ │ │ +0005c610: 6620 2446 2420 6279 2073 7562 7374 6974 f $F$ by substit │ │ │ │ +0005c620: 7574 696e 6720 4349 206f 7065 7261 746f uting CI operato │ │ │ │ +0005c630: 7273 2066 6f72 206c 696e 6561 7220 666f rs for linear fo │ │ │ │ +0005c640: 726d 732c 0a24 5c70 6869 5f69 3a20 475f rms,.$\phi_i: G_ │ │ │ │ +0005c650: 7b69 2b31 7d5c 6f74 696d 6573 2056 5f69 {i+1}\otimes V_i │ │ │ │ +0005c660: 205c 746f 2047 5f7b 692d 317d 5c6f 7469 \to G_{i-1}\oti │ │ │ │ +0005c670: 6d65 7320 565f 7b69 2d31 7d24 2e20 5468 mes V_{i-1}$. Th │ │ │ │ +0005c680: 6520 7363 7269 7074 2072 6574 7572 6e73 e script returns │ │ │ │ +0005c690: 2074 6865 0a6d 6f64 756c 6520 4e20 7468 the.module N th │ │ │ │ +0005c6a0: 6174 2069 7320 7468 6520 636f 6b65 726e at is the cokern │ │ │ │ +0005c6b0: 656c 206f 6620 2464 5f31 2b64 5f32 242e el of $d_1+d_2$. │ │ │ │ +0005c6c0: 0a0a 5468 6520 6d6f 6475 6c65 2024 4578 ..The module $Ex │ │ │ │ +0005c6d0: 745f 5228 4e2c 6b29 2420 6167 7265 6573 t_R(N,k)$ agrees │ │ │ │ +0005c6e0: 2c20 6166 7465 7220 6120 6665 7720 7374 , after a few st │ │ │ │ +0005c6f0: 6570 732c 2077 6974 6820 7468 6520 6d6f eps, with the mo │ │ │ │ +0005c700: 6475 6c65 2064 6572 6976 6564 2066 726f dule derived fro │ │ │ │ +0005c710: 6d0a 244d 4d24 2062 7920 7465 6e73 6f72 m.$MM$ by tensor │ │ │ │ +0005c720: 696e 6720 6974 2077 6974 6820 245c 4c61 ing it with $\La │ │ │ │ +0005c730: 6d62 6461 242c 2074 6861 7420 6973 2c20 mbda$, that is, │ │ │ │ +0005c740: 7769 7468 2074 6865 206d 6f64 756c 65c3 with the module. │ │ │ │ +0005c750: 9f20 2424 204d 4d27 203d 205c 7375 6d5f . $$ MM' = \sum_ │ │ │ │ +0005c760: 6a0a 284d 4d27 286a 295c 6f74 696d 6573 j.(MM'(j)\otimes │ │ │ │ +0005c770: 205c 4c61 6d62 6461 5f6a 2920 2424 2073 \Lambda_j) $$ s │ │ │ │ +0005c780: 6f20 7468 6174 2024 4d4d 275f 7020 3d20 o that $MM'_p = │ │ │ │ +0005c790: 284d 4d5f 705c 6f74 696d 6573 204c 616d (MM_p\otimes Lam │ │ │ │ +0005c7a0: 6264 615f 3029 205c 6f70 6c75 730a 284d bda_0) \oplus.(M │ │ │ │ +0005c7b0: 4d5f 7b70 2d31 7d5c 6f74 696d 6573 204c M_{p-1}\otimes L │ │ │ │ +0005c7c0: 616d 6264 615f 3129 205c 6f70 6c75 735c ambda_1) \oplus\ │ │ │ │ +0005c7d0: 6364 6f74 7324 2e0a 0a54 6865 2066 756e cdots$...The fun │ │ │ │ +0005c7e0: 6374 696f 6e20 6866 4d6f 6475 6c65 4173 ction hfModuleAs │ │ │ │ +0005c7f0: 4578 7420 636f 6d70 7574 6573 2074 6865 Ext computes the │ │ │ │ +0005c800: 2048 696c 6265 7274 2066 756e 6374 696f Hilbert functio │ │ │ │ +0005c810: 6e20 6f66 204d 4d27 206e 756d 6572 6963 n of MM' numeric │ │ │ │ +0005c820: 616c 6c79 0a66 726f 6d20 7468 6174 206f ally.from that o │ │ │ │ +0005c830: 6620 4d4d 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d f MM...+-------- │ │ │ │ +0005c840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c870: 2d2d 2d2b 0a7c 6931 203a 206b 6b20 3d20 ---+.|i1 : kk = │ │ │ │ -0005c880: 5a5a 2f31 3031 3b20 2020 2020 2020 2020 ZZ/101; │ │ │ │ -0005c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c8a0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0005c860: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +0005c870: 6b6b 203d 205a 5a2f 3130 313b 2020 2020 kk = ZZ/101; │ │ │ │ +0005c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005c890: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0005c8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c8d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -0005c8e0: 2053 203d 206b 6b5b 612c 622c 635d 3b20 S = kk[a,b,c]; │ │ │ │ +0005c8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0005c8d0: 7c69 3220 3a20 5320 3d20 6b6b 5b61 2c62 |i2 : S = kk[a,b │ │ │ │ +0005c8e0: 2c63 5d3b 2020 2020 2020 2020 2020 2020 ,c]; │ │ │ │ 0005c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c900: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0005c900: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0005c910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0005c940: 0a7c 6933 203a 2066 6620 3d20 6d61 7472 .|i3 : ff = matr │ │ │ │ -0005c950: 6978 7b7b 615e 342c 2062 5e34 2c63 5e34 ix{{a^4, b^4,c^4 │ │ │ │ -0005c960: 7d7d 3b20 2020 2020 2020 2020 2020 2020 }}; │ │ │ │ -0005c970: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005c930: 2d2d 2d2d 2b0a 7c69 3320 3a20 6666 203d ----+.|i3 : ff = │ │ │ │ +0005c940: 206d 6174 7269 787b 7b61 5e34 2c20 625e matrix{{a^4, b^ │ │ │ │ +0005c950: 342c 635e 347d 7d3b 2020 2020 2020 2020 4,c^4}}; │ │ │ │ +0005c960: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005c970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c9a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0005c9b0: 2020 2020 2031 2020 2020 2020 3320 2020 1 3 │ │ │ │ -0005c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c9d0: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ -0005c9e0: 4d61 7472 6978 2053 2020 3c2d 2d20 5320 Matrix S <-- S │ │ │ │ +0005c990: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0005c9a0: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ +0005c9b0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0005c9c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0005c9d0: 6f33 203a 204d 6174 7269 7820 5320 203c o3 : Matrix S < │ │ │ │ +0005c9e0: 2d2d 2053 2020 2020 2020 2020 2020 2020 -- S │ │ │ │ 0005c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ca00: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0005ca00: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0005ca10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ca20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ca30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0005ca40: 7c69 3420 3a20 5220 3d20 532f 6964 6561 |i4 : R = S/idea │ │ │ │ -0005ca50: 6c20 6666 3b20 2020 2020 2020 2020 2020 l ff; │ │ │ │ -0005ca60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ca70: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0005ca30: 2d2d 2d2b 0a7c 6934 203a 2052 203d 2053 ---+.|i4 : R = S │ │ │ │ +0005ca40: 2f69 6465 616c 2066 663b 2020 2020 2020 /ideal ff; │ │ │ │ +0005ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ca60: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0005ca70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ca80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ca90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005caa0: 2d2d 2d2d 2b0a 7c69 3520 3a20 4f70 7320 ----+.|i5 : Ops │ │ │ │ -0005cab0: 3d20 6b6b 5b78 5f31 2c78 5f32 2c78 5f33 = kk[x_1,x_2,x_3 │ │ │ │ -0005cac0: 5d3b 2020 2020 2020 2020 2020 2020 2020 ]; │ │ │ │ -0005cad0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005ca90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ +0005caa0: 204f 7073 203d 206b 6b5b 785f 312c 785f Ops = kk[x_1,x_ │ │ │ │ +0005cab0: 322c 785f 335d 3b20 2020 2020 2020 2020 2,x_3]; │ │ │ │ +0005cac0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0005cad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005cae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005caf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005cb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ -0005cb10: 3a20 4d4d 203d 204f 7073 5e31 2f28 785f : MM = Ops^1/(x_ │ │ │ │ -0005cb20: 312a 6964 6561 6c28 785f 325e 322c 785f 1*ideal(x_2^2,x_ │ │ │ │ -0005cb30: 3329 293b 2020 2020 2020 2020 207c 0a2b 3)); |.+ │ │ │ │ +0005caf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0005cb00: 0a7c 6936 203a 204d 4d20 3d20 4f70 735e .|i6 : MM = Ops^ │ │ │ │ +0005cb10: 312f 2878 5f31 2a69 6465 616c 2878 5f32 1/(x_1*ideal(x_2 │ │ │ │ +0005cb20: 5e32 2c78 5f33 2929 3b20 2020 2020 2020 ^2,x_3)); │ │ │ │ +0005cb30: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0005cb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005cb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005cb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005cb70: 2b0a 7c69 3720 3a20 4e20 3d20 6d6f 6475 +.|i7 : N = modu │ │ │ │ -0005cb80: 6c65 4173 4578 7428 4d4d 2c52 293b 2020 leAsExt(MM,R); │ │ │ │ -0005cb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cba0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0005cb60: 2d2d 2d2d 2d2b 0a7c 6937 203a 204e 203d -----+.|i7 : N = │ │ │ │ +0005cb70: 206d 6f64 756c 6541 7345 7874 284d 4d2c moduleAsExt(MM, │ │ │ │ +0005cb80: 5229 3b20 2020 2020 2020 2020 2020 2020 R); │ │ │ │ +0005cb90: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0005cba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005cbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005cbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005cbd0: 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 6265 ------+.|i8 : be │ │ │ │ -0005cbe0: 7474 6920 6672 6565 5265 736f 6c75 7469 tti freeResoluti │ │ │ │ -0005cbf0: 6f6e 2820 4e2c 204c 656e 6774 684c 696d on( N, LengthLim │ │ │ │ -0005cc00: 6974 203d 3e20 3130 297c 0a7c 2020 2020 it => 10)|.| │ │ │ │ +0005cbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 -----------+.|i8 │ │ │ │ +0005cbd0: 203a 2062 6574 7469 2066 7265 6552 6573 : betti freeRes │ │ │ │ +0005cbe0: 6f6c 7574 696f 6e28 204e 2c20 4c65 6e67 olution( N, Leng │ │ │ │ +0005cbf0: 7468 4c69 6d69 7420 3d3e 2031 3029 7c0a thLimit => 10)|. │ │ │ │ +0005cc00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cc30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0005cc40: 2020 2020 2020 2020 2020 2020 3020 2031 0 1 │ │ │ │ -0005cc50: 2020 3220 2033 2020 3420 2035 2020 3620 2 3 4 5 6 │ │ │ │ -0005cc60: 2037 2020 3820 2039 2031 3020 2020 207c 7 8 9 10 | │ │ │ │ -0005cc70: 0a7c 6f38 203d 2074 6f74 616c 3a20 3336 .|o8 = total: 36 │ │ │ │ -0005cc80: 2032 3720 3239 2033 3120 3333 2033 3520 27 29 31 33 35 │ │ │ │ -0005cc90: 3337 2033 3920 3431 2034 3320 3435 2020 37 39 41 43 45 │ │ │ │ -0005cca0: 2020 7c0a 7c20 2020 2020 2020 202d 363a |.| -6: │ │ │ │ -0005ccb0: 2031 3820 2036 2020 2e20 202e 2020 2e20 18 6 . . . │ │ │ │ -0005ccc0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ -0005ccd0: 2e20 2020 207c 0a7c 2020 2020 2020 2020 . |.| │ │ │ │ -0005cce0: 2d35 3a20 202e 2020 2e20 202e 2020 2e20 -5: . . . . │ │ │ │ -0005ccf0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ -0005cd00: 2e20 202e 2020 2020 7c0a 7c20 2020 2020 . . |.| │ │ │ │ -0005cd10: 2020 202d 343a 2031 3820 3231 2032 3120 -4: 18 21 21 │ │ │ │ -0005cd20: 2037 2020 2e20 202e 2020 2e20 202e 2020 7 . . . . │ │ │ │ -0005cd30: 2e20 202e 2020 2e20 2020 207c 0a7c 2020 . . . |.| │ │ │ │ -0005cd40: 2020 2020 2020 2d33 3a20 202e 2020 2e20 -3: . . │ │ │ │ -0005cd50: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ -0005cd60: 2e20 202e 2020 2e20 202e 2020 2020 7c0a . . . . |. │ │ │ │ -0005cd70: 7c20 2020 2020 2020 202d 323a 2020 2e20 | -2: . │ │ │ │ -0005cd80: 202e 2020 3820 3234 2032 3420 2038 2020 . 8 24 24 8 │ │ │ │ -0005cd90: 2e20 202e 2020 2e20 202e 2020 2e20 2020 . . . . . │ │ │ │ -0005cda0: 207c 0a7c 2020 2020 2020 2020 2d31 3a20 |.| -1: │ │ │ │ -0005cdb0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ -0005cdc0: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -0005cdd0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0005cde0: 303a 2020 2e20 202e 2020 2e20 202e 2020 0: . . . . │ │ │ │ -0005cdf0: 3920 3237 2032 3720 2039 2020 2e20 202e 9 27 27 9 . . │ │ │ │ -0005ce00: 2020 2e20 2020 207c 0a7c 2020 2020 2020 . |.| │ │ │ │ -0005ce10: 2020 2031 3a20 202e 2020 2e20 202e 2020 1: . . . │ │ │ │ -0005ce20: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -0005ce30: 2020 2e20 202e 2020 2020 7c0a 7c20 2020 . . |.| │ │ │ │ -0005ce40: 2020 2020 2020 323a 2020 2e20 202e 2020 2: . . │ │ │ │ -0005ce50: 2e20 202e 2020 2e20 202e 2031 3020 3330 . . . . 10 30 │ │ │ │ -0005ce60: 2033 3020 3130 2020 2e20 2020 207c 0a7c 30 10 . |.| │ │ │ │ -0005ce70: 2020 2020 2020 2020 2033 3a20 202e 2020 3: . │ │ │ │ -0005ce80: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -0005ce90: 2020 2e20 202e 2020 2e20 202e 2020 2020 . . . . │ │ │ │ -0005cea0: 7c0a 7c20 2020 2020 2020 2020 343a 2020 |.| 4: │ │ │ │ -0005ceb0: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -0005cec0: 2020 2e20 202e 2031 3120 3333 2033 3320 . . 11 33 33 │ │ │ │ -0005ced0: 2020 207c 0a7c 2020 2020 2020 2020 2035 |.| 5 │ │ │ │ -0005cee0: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ -0005cef0: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0005cf00: 202e 2020 2020 7c0a 7c20 2020 2020 2020 . |.| │ │ │ │ -0005cf10: 2020 363a 2020 2e20 202e 2020 2e20 202e 6: . . . . │ │ │ │ -0005cf20: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0005cf30: 202e 2031 3220 2020 207c 0a7c 2020 2020 . 12 |.| │ │ │ │ +0005cc30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005cc40: 2030 2020 3120 2032 2020 3320 2034 2020 0 1 2 3 4 │ │ │ │ +0005cc50: 3520 2036 2020 3720 2038 2020 3920 3130 5 6 7 8 9 10 │ │ │ │ +0005cc60: 2020 2020 7c0a 7c6f 3820 3d20 746f 7461 |.|o8 = tota │ │ │ │ +0005cc70: 6c3a 2033 3620 3237 2032 3920 3331 2033 l: 36 27 29 31 3 │ │ │ │ +0005cc80: 3320 3335 2033 3720 3339 2034 3120 3433 3 35 37 39 41 43 │ │ │ │ +0005cc90: 2034 3520 2020 207c 0a7c 2020 2020 2020 45 |.| │ │ │ │ +0005cca0: 2020 2d36 3a20 3138 2020 3620 202e 2020 -6: 18 6 . │ │ │ │ +0005ccb0: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ +0005ccc0: 2020 2e20 202e 2020 2020 7c0a 7c20 2020 . . |.| │ │ │ │ +0005ccd0: 2020 2020 202d 353a 2020 2e20 202e 2020 -5: . . │ │ │ │ +0005cce0: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ +0005ccf0: 2020 2e20 202e 2020 2e20 2020 207c 0a7c . . . |.| │ │ │ │ +0005cd00: 2020 2020 2020 2020 2d34 3a20 3138 2032 -4: 18 2 │ │ │ │ +0005cd10: 3120 3231 2020 3720 202e 2020 2e20 202e 1 21 7 . . . │ │ │ │ +0005cd20: 2020 2e20 202e 2020 2e20 202e 2020 2020 . . . . │ │ │ │ +0005cd30: 7c0a 7c20 2020 2020 2020 202d 333a 2020 |.| -3: │ │ │ │ +0005cd40: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ +0005cd50: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +0005cd60: 2020 207c 0a7c 2020 2020 2020 2020 2d32 |.| -2 │ │ │ │ +0005cd70: 3a20 202e 2020 2e20 2038 2032 3420 3234 : . . 8 24 24 │ │ │ │ +0005cd80: 2020 3820 202e 2020 2e20 202e 2020 2e20 8 . . . . │ │ │ │ +0005cd90: 202e 2020 2020 7c0a 7c20 2020 2020 2020 . |.| │ │ │ │ +0005cda0: 202d 313a 2020 2e20 202e 2020 2e20 202e -1: . . . . │ │ │ │ +0005cdb0: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +0005cdc0: 202e 2020 2e20 2020 207c 0a7c 2020 2020 . . |.| │ │ │ │ +0005cdd0: 2020 2020 2030 3a20 202e 2020 2e20 202e 0: . . . │ │ │ │ +0005cde0: 2020 2e20 2039 2032 3720 3237 2020 3920 . 9 27 27 9 │ │ │ │ +0005cdf0: 202e 2020 2e20 202e 2020 2020 7c0a 7c20 . . . |.| │ │ │ │ +0005ce00: 2020 2020 2020 2020 313a 2020 2e20 202e 1: . . │ │ │ │ +0005ce10: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +0005ce20: 202e 2020 2e20 202e 2020 2e20 2020 207c . . . . | │ │ │ │ +0005ce30: 0a7c 2020 2020 2020 2020 2032 3a20 202e .| 2: . │ │ │ │ +0005ce40: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +0005ce50: 3130 2033 3020 3330 2031 3020 202e 2020 10 30 30 10 . │ │ │ │ +0005ce60: 2020 7c0a 7c20 2020 2020 2020 2020 333a |.| 3: │ │ │ │ +0005ce70: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +0005ce80: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0005ce90: 2e20 2020 207c 0a7c 2020 2020 2020 2020 . |.| │ │ │ │ +0005cea0: 2034 3a20 202e 2020 2e20 202e 2020 2e20 4: . . . . │ │ │ │ +0005ceb0: 202e 2020 2e20 202e 2020 2e20 3131 2033 . . . . 11 3 │ │ │ │ +0005cec0: 3320 3333 2020 2020 7c0a 7c20 2020 2020 3 33 |.| │ │ │ │ +0005ced0: 2020 2020 353a 2020 2e20 202e 2020 2e20 5: . . . │ │ │ │ +0005cee0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0005cef0: 2e20 202e 2020 2e20 2020 207c 0a7c 2020 . . . |.| │ │ │ │ +0005cf00: 2020 2020 2020 2036 3a20 202e 2020 2e20 6: . . │ │ │ │ +0005cf10: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0005cf20: 2e20 202e 2020 2e20 3132 2020 2020 7c0a . . . 12 |. │ │ │ │ +0005cf30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005cf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005cf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cf60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0005cf70: 3820 3a20 4265 7474 6954 616c 6c79 2020 8 : BettiTally │ │ │ │ +0005cf60: 207c 0a7c 6f38 203a 2042 6574 7469 5461 |.|o8 : BettiTa │ │ │ │ +0005cf70: 6c6c 7920 2020 2020 2020 2020 2020 2020 lly │ │ │ │ 0005cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cf90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0005cfa0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0005cf90: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0005cfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005cfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005cfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005cfd0: 2d2d 2b0a 7c69 3920 3a20 6866 4d6f 6475 --+.|i9 : hfModu │ │ │ │ -0005cfe0: 6c65 4173 4578 7428 3132 2c4d 4d2c 3329 leAsExt(12,MM,3) │ │ │ │ -0005cff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d000: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005cfc0: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2068 -------+.|i9 : h │ │ │ │ +0005cfd0: 664d 6f64 756c 6541 7345 7874 2831 322c fModuleAsExt(12, │ │ │ │ +0005cfe0: 4d4d 2c33 2920 2020 2020 2020 2020 2020 MM,3) │ │ │ │ +0005cff0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0005d000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d030: 2020 2020 2020 2020 7c0a 7c6f 3920 3d20 |.|o9 = │ │ │ │ -0005d040: 2832 332c 2032 352c 2032 372c 2032 392c (23, 25, 27, 29, │ │ │ │ -0005d050: 2033 312c 2033 332c 2033 352c 2033 372c 31, 33, 35, 37, │ │ │ │ -0005d060: 2033 392c 2034 3129 2020 207c 0a7c 2020 39, 41) |.| │ │ │ │ +0005d020: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0005d030: 6f39 203d 2028 3233 2c20 3235 2c20 3237 o9 = (23, 25, 27 │ │ │ │ +0005d040: 2c20 3239 2c20 3331 2c20 3333 2c20 3335 , 29, 31, 33, 35 │ │ │ │ +0005d050: 2c20 3337 2c20 3339 2c20 3431 2920 2020 , 37, 39, 41) │ │ │ │ +0005d060: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0005d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d090: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0005d0a0: 7c6f 3920 3a20 5365 7175 656e 6365 2020 |o9 : Sequence │ │ │ │ +0005d090: 2020 207c 0a7c 6f39 203a 2053 6571 7565 |.|o9 : Seque │ │ │ │ +0005d0a0: 6e63 6520 2020 2020 2020 2020 2020 2020 nce │ │ │ │ 0005d0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d0d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0005d0c0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0005d0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d100: 2d2d 2d2d 2b0a 0a43 6176 6561 740a 3d3d ----+..Caveat.== │ │ │ │ -0005d110: 3d3d 3d3d 0a0a 5468 6520 656c 656d 656e ====..The elemen │ │ │ │ -0005d120: 7473 2066 5f31 2e2e 665f 6320 6d75 7374 ts f_1..f_c must │ │ │ │ -0005d130: 2062 6520 686f 6d6f 6765 6e65 6f75 7320 be homogeneous │ │ │ │ -0005d140: 6f66 2074 6865 2073 616d 6520 6465 6772 of the same degr │ │ │ │ -0005d150: 6565 2e20 5468 6520 7363 7269 7074 2063 ee. The script c │ │ │ │ -0005d160: 6f75 6c64 0a62 6520 7265 7772 6974 7465 ould.be rewritte │ │ │ │ -0005d170: 6e20 746f 2061 6363 6f6d 6d6f 6461 7465 n to accommodate │ │ │ │ -0005d180: 2064 6966 6665 7265 6e74 2064 6567 7265 different degre │ │ │ │ -0005d190: 6573 2c20 6275 7420 6f6e 6c79 2062 7920 es, but only by │ │ │ │ -0005d1a0: 676f 696e 6720 746f 2074 6865 206c 6f63 going to the loc │ │ │ │ -0005d1b0: 616c 0a63 6174 6567 6f72 790a 0a53 6565 al.category..See │ │ │ │ -0005d1c0: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ -0005d1d0: 2020 2a20 2a6e 6f74 6520 4578 744d 6f64 * *note ExtMod │ │ │ │ -0005d1e0: 756c 653a 2045 7874 4d6f 6475 6c65 2c20 ule: ExtModule, │ │ │ │ -0005d1f0: 2d2d 2045 7874 5e2a 284d 2c6b 2920 6f76 -- Ext^*(M,k) ov │ │ │ │ -0005d200: 6572 2061 2063 6f6d 706c 6574 6520 696e er a complete in │ │ │ │ -0005d210: 7465 7273 6563 7469 6f6e 2061 730a 2020 tersection as. │ │ │ │ -0005d220: 2020 6d6f 6475 6c65 206f 7665 7220 4349 module over CI │ │ │ │ -0005d230: 206f 7065 7261 746f 7220 7269 6e67 0a20 operator ring. │ │ │ │ -0005d240: 202a 202a 6e6f 7465 2065 7665 6e45 7874 * *note evenExt │ │ │ │ -0005d250: 4d6f 6475 6c65 3a20 6576 656e 4578 744d Module: evenExtM │ │ │ │ -0005d260: 6f64 756c 652c 202d 2d20 6576 656e 2070 odule, -- even p │ │ │ │ -0005d270: 6172 7420 6f66 2045 7874 5e2a 284d 2c6b art of Ext^*(M,k │ │ │ │ -0005d280: 2920 6f76 6572 2061 0a20 2020 2063 6f6d ) over a. com │ │ │ │ -0005d290: 706c 6574 6520 696e 7465 7273 6563 7469 plete intersecti │ │ │ │ -0005d2a0: 6f6e 2061 7320 6d6f 6475 6c65 206f 7665 on as module ove │ │ │ │ -0005d2b0: 7220 4349 206f 7065 7261 746f 7220 7269 r CI operator ri │ │ │ │ -0005d2c0: 6e67 0a20 202a 202a 6e6f 7465 206f 6464 ng. * *note odd │ │ │ │ -0005d2d0: 4578 744d 6f64 756c 653a 206f 6464 4578 ExtModule: oddEx │ │ │ │ -0005d2e0: 744d 6f64 756c 652c 202d 2d20 6f64 6420 tModule, -- odd │ │ │ │ -0005d2f0: 7061 7274 206f 6620 4578 745e 2a28 4d2c part of Ext^*(M, │ │ │ │ -0005d300: 6b29 206f 7665 7220 6120 636f 6d70 6c65 k) over a comple │ │ │ │ -0005d310: 7465 0a20 2020 2069 6e74 6572 7365 6374 te. intersect │ │ │ │ -0005d320: 696f 6e20 6173 206d 6f64 756c 6520 6f76 ion as module ov │ │ │ │ -0005d330: 6572 2043 4920 6f70 6572 6174 6f72 2072 er CI operator r │ │ │ │ -0005d340: 696e 670a 2020 2a20 2a6e 6f74 6520 4578 ing. * *note Ex │ │ │ │ -0005d350: 744d 6f64 756c 6544 6174 613a 2045 7874 tModuleData: Ext │ │ │ │ -0005d360: 4d6f 6475 6c65 4461 7461 2c20 2d2d 2045 ModuleData, -- E │ │ │ │ -0005d370: 7665 6e20 616e 6420 6f64 6420 4578 7420 ven and odd Ext │ │ │ │ -0005d380: 6d6f 6475 6c65 7320 616e 6420 7468 6569 modules and thei │ │ │ │ -0005d390: 720a 2020 2020 7265 6775 6c61 7269 7479 r. regularity │ │ │ │ -0005d3a0: 0a20 202a 202a 6e6f 7465 2068 664d 6f64 . * *note hfMod │ │ │ │ -0005d3b0: 756c 6541 7345 7874 3a20 6866 4d6f 6475 uleAsExt: hfModu │ │ │ │ -0005d3c0: 6c65 4173 4578 742c 202d 2d20 7072 6564 leAsExt, -- pred │ │ │ │ -0005d3d0: 6963 7420 6265 7474 6920 6e75 6d62 6572 ict betti number │ │ │ │ -0005d3e0: 7320 6f66 0a20 2020 206d 6f64 756c 6541 s of. moduleA │ │ │ │ -0005d3f0: 7345 7874 284d 2c52 290a 0a57 6179 7320 sExt(M,R)..Ways │ │ │ │ -0005d400: 746f 2075 7365 206d 6f64 756c 6541 7345 to use moduleAsE │ │ │ │ -0005d410: 7874 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d xt:.============ │ │ │ │ -0005d420: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -0005d430: 2a20 226d 6f64 756c 6541 7345 7874 284d * "moduleAsExt(M │ │ │ │ -0005d440: 6f64 756c 652c 5269 6e67 2922 0a0a 466f odule,Ring)"..Fo │ │ │ │ -0005d450: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -0005d460: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0005d470: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -0005d480: 2a6e 6f74 6520 6d6f 6475 6c65 4173 4578 *note moduleAsEx │ │ │ │ -0005d490: 743a 206d 6f64 756c 6541 7345 7874 2c20 t: moduleAsExt, │ │ │ │ -0005d4a0: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -0005d4b0: 6420 6675 6e63 7469 6f6e 3a0a 284d 6163 d function:.(Mac │ │ │ │ -0005d4c0: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -0005d4d0: 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d Function,...---- │ │ │ │ +0005d0f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4361 7665 ---------+..Cave │ │ │ │ +0005d100: 6174 0a3d 3d3d 3d3d 3d0a 0a54 6865 2065 at.======..The e │ │ │ │ +0005d110: 6c65 6d65 6e74 7320 665f 312e 2e66 5f63 lements f_1..f_c │ │ │ │ +0005d120: 206d 7573 7420 6265 2068 6f6d 6f67 656e must be homogen │ │ │ │ +0005d130: 656f 7573 206f 6620 7468 6520 7361 6d65 eous of the same │ │ │ │ +0005d140: 2064 6567 7265 652e 2054 6865 2073 6372 degree. The scr │ │ │ │ +0005d150: 6970 7420 636f 756c 640a 6265 2072 6577 ipt could.be rew │ │ │ │ +0005d160: 7269 7474 656e 2074 6f20 6163 636f 6d6d ritten to accomm │ │ │ │ +0005d170: 6f64 6174 6520 6469 6666 6572 656e 7420 odate different │ │ │ │ +0005d180: 6465 6772 6565 732c 2062 7574 206f 6e6c degrees, but onl │ │ │ │ +0005d190: 7920 6279 2067 6f69 6e67 2074 6f20 7468 y by going to th │ │ │ │ +0005d1a0: 6520 6c6f 6361 6c0a 6361 7465 676f 7279 e local.category │ │ │ │ +0005d1b0: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +0005d1c0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2045 ===.. * *note E │ │ │ │ +0005d1d0: 7874 4d6f 6475 6c65 3a20 4578 744d 6f64 xtModule: ExtMod │ │ │ │ +0005d1e0: 756c 652c 202d 2d20 4578 745e 2a28 4d2c ule, -- Ext^*(M, │ │ │ │ +0005d1f0: 6b29 206f 7665 7220 6120 636f 6d70 6c65 k) over a comple │ │ │ │ +0005d200: 7465 2069 6e74 6572 7365 6374 696f 6e20 te intersection │ │ │ │ +0005d210: 6173 0a20 2020 206d 6f64 756c 6520 6f76 as. module ov │ │ │ │ +0005d220: 6572 2043 4920 6f70 6572 6174 6f72 2072 er CI operator r │ │ │ │ +0005d230: 696e 670a 2020 2a20 2a6e 6f74 6520 6576 ing. * *note ev │ │ │ │ +0005d240: 656e 4578 744d 6f64 756c 653a 2065 7665 enExtModule: eve │ │ │ │ +0005d250: 6e45 7874 4d6f 6475 6c65 2c20 2d2d 2065 nExtModule, -- e │ │ │ │ +0005d260: 7665 6e20 7061 7274 206f 6620 4578 745e ven part of Ext^ │ │ │ │ +0005d270: 2a28 4d2c 6b29 206f 7665 7220 610a 2020 *(M,k) over a. │ │ │ │ +0005d280: 2020 636f 6d70 6c65 7465 2069 6e74 6572 complete inter │ │ │ │ +0005d290: 7365 6374 696f 6e20 6173 206d 6f64 756c section as modul │ │ │ │ +0005d2a0: 6520 6f76 6572 2043 4920 6f70 6572 6174 e over CI operat │ │ │ │ +0005d2b0: 6f72 2072 696e 670a 2020 2a20 2a6e 6f74 or ring. * *not │ │ │ │ +0005d2c0: 6520 6f64 6445 7874 4d6f 6475 6c65 3a20 e oddExtModule: │ │ │ │ +0005d2d0: 6f64 6445 7874 4d6f 6475 6c65 2c20 2d2d oddExtModule, -- │ │ │ │ +0005d2e0: 206f 6464 2070 6172 7420 6f66 2045 7874 odd part of Ext │ │ │ │ +0005d2f0: 5e2a 284d 2c6b 2920 6f76 6572 2061 2063 ^*(M,k) over a c │ │ │ │ +0005d300: 6f6d 706c 6574 650a 2020 2020 696e 7465 omplete. inte │ │ │ │ +0005d310: 7273 6563 7469 6f6e 2061 7320 6d6f 6475 rsection as modu │ │ │ │ +0005d320: 6c65 206f 7665 7220 4349 206f 7065 7261 le over CI opera │ │ │ │ +0005d330: 746f 7220 7269 6e67 0a20 202a 202a 6e6f tor ring. * *no │ │ │ │ +0005d340: 7465 2045 7874 4d6f 6475 6c65 4461 7461 te ExtModuleData │ │ │ │ +0005d350: 3a20 4578 744d 6f64 756c 6544 6174 612c : ExtModuleData, │ │ │ │ +0005d360: 202d 2d20 4576 656e 2061 6e64 206f 6464 -- Even and odd │ │ │ │ +0005d370: 2045 7874 206d 6f64 756c 6573 2061 6e64 Ext modules and │ │ │ │ +0005d380: 2074 6865 6972 0a20 2020 2072 6567 756c their. regul │ │ │ │ +0005d390: 6172 6974 790a 2020 2a20 2a6e 6f74 6520 arity. * *note │ │ │ │ +0005d3a0: 6866 4d6f 6475 6c65 4173 4578 743a 2068 hfModuleAsExt: h │ │ │ │ +0005d3b0: 664d 6f64 756c 6541 7345 7874 2c20 2d2d fModuleAsExt, -- │ │ │ │ +0005d3c0: 2070 7265 6469 6374 2062 6574 7469 206e predict betti n │ │ │ │ +0005d3d0: 756d 6265 7273 206f 660a 2020 2020 6d6f umbers of. mo │ │ │ │ +0005d3e0: 6475 6c65 4173 4578 7428 4d2c 5229 0a0a duleAsExt(M,R).. │ │ │ │ +0005d3f0: 5761 7973 2074 6f20 7573 6520 6d6f 6475 Ways to use modu │ │ │ │ +0005d400: 6c65 4173 4578 743a 0a3d 3d3d 3d3d 3d3d leAsExt:.======= │ │ │ │ +0005d410: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0005d420: 3d0a 0a20 202a 2022 6d6f 6475 6c65 4173 =.. * "moduleAs │ │ │ │ +0005d430: 4578 7428 4d6f 6475 6c65 2c52 696e 6729 Ext(Module,Ring) │ │ │ │ +0005d440: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +0005d450: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +0005d460: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +0005d470: 6a65 6374 202a 6e6f 7465 206d 6f64 756c ject *note modul │ │ │ │ +0005d480: 6541 7345 7874 3a20 6d6f 6475 6c65 4173 eAsExt: moduleAs │ │ │ │ +0005d490: 4578 742c 2069 7320 6120 2a6e 6f74 6520 Ext, is a *note │ │ │ │ +0005d4a0: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ +0005d4b0: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +0005d4c0: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +0005d4d0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 0005d4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -0005d530: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -0005d540: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -0005d550: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -0005d560: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -0005d570: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -0005d580: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -0005d590: 6573 2f0a 436f 6d70 6c65 7465 496e 7465 es/.CompleteInte │ │ │ │ -0005d5a0: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ -0005d5b0: 6f6e 732e 6d32 3a33 3039 363a 302e 0a1f ons.m2:3096:0... │ │ │ │ -0005d5c0: 0a46 696c 653a 2043 6f6d 706c 6574 6549 .File: CompleteI │ │ │ │ -0005d5d0: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ -0005d5e0: 7574 696f 6e73 2e69 6e66 6f2c 204e 6f64 utions.info, Nod │ │ │ │ -0005d5f0: 653a 206e 6577 4578 742c 204e 6578 743a e: newExt, Next: │ │ │ │ -0005d600: 206f 6464 4578 744d 6f64 756c 652c 2050 oddExtModule, P │ │ │ │ -0005d610: 7265 763a 206d 6f64 756c 6541 7345 7874 rev: moduleAsExt │ │ │ │ -0005d620: 2c20 5570 3a20 546f 700a 0a6e 6577 4578 , Up: Top..newEx │ │ │ │ -0005d630: 7420 2d2d 2047 6c6f 6261 6c20 4578 7420 t -- Global Ext │ │ │ │ -0005d640: 666f 7220 6d6f 6475 6c65 7320 6f76 6572 for modules over │ │ │ │ -0005d650: 2061 2063 6f6d 706c 6574 6520 496e 7465 a complete Inte │ │ │ │ -0005d660: 7273 6563 7469 6f6e 0a2a 2a2a 2a2a 2a2a rsection.******* │ │ │ │ +0005d520: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +0005d530: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +0005d540: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +0005d550: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +0005d560: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +0005d570: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +0005d580: 6163 6b61 6765 732f 0a43 6f6d 706c 6574 ackages/.Complet │ │ │ │ +0005d590: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ +0005d5a0: 6f6c 7574 696f 6e73 2e6d 323a 3330 3936 olutions.m2:3096 │ │ │ │ +0005d5b0: 3a30 2e0a 1f0a 4669 6c65 3a20 436f 6d70 :0....File: Comp │ │ │ │ +0005d5c0: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ +0005d5d0: 5265 736f 6c75 7469 6f6e 732e 696e 666f Resolutions.info │ │ │ │ +0005d5e0: 2c20 4e6f 6465 3a20 6e65 7745 7874 2c20 , Node: newExt, │ │ │ │ +0005d5f0: 4e65 7874 3a20 6f64 6445 7874 4d6f 6475 Next: oddExtModu │ │ │ │ +0005d600: 6c65 2c20 5072 6576 3a20 6d6f 6475 6c65 le, Prev: module │ │ │ │ +0005d610: 4173 4578 742c 2055 703a 2054 6f70 0a0a AsExt, Up: Top.. │ │ │ │ +0005d620: 6e65 7745 7874 202d 2d20 476c 6f62 616c newExt -- Global │ │ │ │ +0005d630: 2045 7874 2066 6f72 206d 6f64 756c 6573 Ext for modules │ │ │ │ +0005d640: 206f 7665 7220 6120 636f 6d70 6c65 7465 over a complete │ │ │ │ +0005d650: 2049 6e74 6572 7365 6374 696f 6e0a 2a2a Intersection.** │ │ │ │ +0005d660: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0005d670: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0005d680: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0005d690: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0005d6a0: 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 6167 ******.. * Usag │ │ │ │ -0005d6b0: 653a 200a 2020 2020 2020 2020 4520 3d20 e: . E = │ │ │ │ -0005d6c0: 6e65 7745 7874 284d 2c4e 290a 2020 2a20 newExt(M,N). * │ │ │ │ -0005d6d0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -0005d6e0: 4d2c 2061 202a 6e6f 7465 206d 6f64 756c M, a *note modul │ │ │ │ -0005d6f0: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ -0005d700: 294d 6f64 756c 652c 2c20 6f76 6572 2061 )Module,, over a │ │ │ │ -0005d710: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ -0005d720: 6563 7469 6f6e 0a20 2020 2020 2020 2052 ection. R │ │ │ │ -0005d730: 6261 720a 2020 2020 2020 2a20 4e2c 2061 bar. * N, a │ │ │ │ -0005d740: 202a 6e6f 7465 206d 6f64 756c 653a 2028 *note module: ( │ │ │ │ -0005d750: 4d61 6361 756c 6179 3244 6f63 294d 6f64 Macaulay2Doc)Mod │ │ │ │ -0005d760: 756c 652c 2c20 6f76 6572 2052 6261 720a ule,, over Rbar. │ │ │ │ -0005d770: 2020 2a20 2a6e 6f74 6520 4f70 7469 6f6e * *note Option │ │ │ │ -0005d780: 616c 2069 6e70 7574 733a 2028 4d61 6361 al inputs: (Maca │ │ │ │ -0005d790: 756c 6179 3244 6f63 2975 7369 6e67 2066 ulay2Doc)using f │ │ │ │ -0005d7a0: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ -0005d7b0: 7469 6f6e 616c 2069 6e70 7574 732c 3a0a tional inputs,:. │ │ │ │ -0005d7c0: 2020 2020 2020 2a20 4368 6563 6b20 3d3e * Check => │ │ │ │ -0005d7d0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -0005d7e0: 6c75 6520 6661 6c73 650a 2020 2020 2020 lue false. │ │ │ │ -0005d7f0: 2a20 4772 6164 696e 6720 3d3e 202e 2e2e * Grading => ... │ │ │ │ -0005d800: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -0005d810: 320a 2020 2020 2020 2a20 4c69 6674 203d 2. * Lift = │ │ │ │ -0005d820: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ -0005d830: 616c 7565 2066 616c 7365 0a20 2020 2020 alue false. │ │ │ │ -0005d840: 202a 2056 6172 6961 626c 6573 203d 3e20 * Variables => │ │ │ │ -0005d850: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -0005d860: 7565 2073 0a20 202a 204f 7574 7075 7473 ue s. * Outputs │ │ │ │ -0005d870: 3a0a 2020 2020 2020 2a20 452c 2061 202a :. * E, a * │ │ │ │ -0005d880: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -0005d890: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -0005d8a0: 652c 2c20 6f76 6572 2061 2072 696e 6720 e,, over a ring │ │ │ │ -0005d8b0: 5320 6d61 6465 2066 726f 6d20 7269 6e67 S made from ring │ │ │ │ -0005d8c0: 0a20 2020 2020 2020 2070 7265 7365 6e74 . present │ │ │ │ -0005d8d0: 6174 696f 6e20 5262 6172 2077 6974 6820 ation Rbar with │ │ │ │ -0005d8e0: 636f 6469 6d20 5262 6172 206e 6577 2076 codim Rbar new v │ │ │ │ -0005d8f0: 6172 6961 626c 6573 0a0a 4465 7363 7269 ariables..Descri │ │ │ │ -0005d900: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -0005d910: 3d0a 0a4c 6574 2052 6261 7220 3d20 522f =..Let Rbar = R/ │ │ │ │ -0005d920: 2866 312e 2e66 6329 2c20 6120 636f 6d70 (f1..fc), a comp │ │ │ │ -0005d930: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ -0005d940: 6e20 6f66 2063 6f64 696d 656e 7369 6f6e n of codimension │ │ │ │ -0005d950: 2063 2c20 616e 6420 6c65 7420 4d2c 4e20 c, and let M,N │ │ │ │ -0005d960: 6265 0a52 6261 722d 6d6f 6475 6c65 732e be.Rbar-modules. │ │ │ │ -0005d970: 2057 6520 6173 7375 6d65 2074 6861 7420 We assume that │ │ │ │ -0005d980: 7468 6520 7075 7368 466f 7277 6172 6420 the pushForward │ │ │ │ -0005d990: 6f66 204d 2074 6f20 5220 6861 7320 6669 of M to R has fi │ │ │ │ -0005d9a0: 6e69 7465 2066 7265 650a 7265 736f 6c75 nite free.resolu │ │ │ │ -0005d9b0: 7469 6f6e 2e20 5468 6520 7363 7269 7074 tion. The script │ │ │ │ -0005d9c0: 2074 6865 6e20 636f 6d70 7574 6573 2074 then computes t │ │ │ │ -0005d9d0: 6865 2074 6f74 616c 2045 7874 284d 2c4e he total Ext(M,N │ │ │ │ -0005d9e0: 2920 6173 2061 206d 6f64 756c 6520 6f76 ) as a module ov │ │ │ │ -0005d9f0: 6572 2053 203d 0a6b 6b28 735f 312e 2e73 er S =.kk(s_1..s │ │ │ │ -0005da00: 5f63 2c67 656e 7320 5229 2c20 7573 696e _c,gens R), usin │ │ │ │ -0005da10: 6720 4569 7365 6e62 7564 5368 616d 6173 g EisenbudShamas │ │ │ │ -0005da20: 6854 6f74 616c 2e0a 0a49 6620 4368 6563 hTotal...If Chec │ │ │ │ -0005da30: 6b20 3d3e 2074 7275 652c 2074 6865 6e20 k => true, then │ │ │ │ -0005da40: 7468 6520 7265 7375 6c74 2069 7320 636f the result is co │ │ │ │ -0005da50: 6d70 6172 6564 2077 6974 6820 7468 6520 mpared with the │ │ │ │ -0005da60: 6275 696c 742d 696e 2067 6c6f 6261 6c20 built-in global │ │ │ │ -0005da70: 4578 740a 7772 6974 7465 6e20 6279 2041 Ext.written by A │ │ │ │ -0005da80: 7672 616d 6f76 2061 6e64 2047 7261 7973 vramov and Grays │ │ │ │ -0005da90: 6f6e 2028 6275 7420 6e6f 7465 2074 6865 on (but note the │ │ │ │ -0005daa0: 2064 6966 6665 7265 6e63 652c 2065 7870 difference, exp │ │ │ │ -0005dab0: 6c61 696e 6564 2062 656c 6f77 292e 0a0a lained below)... │ │ │ │ -0005dac0: 4966 204c 6966 7420 3d3e 2066 616c 7365 If Lift => false │ │ │ │ -0005dad0: 2074 6865 2072 6573 756c 7420 6973 2072 the result is r │ │ │ │ -0005dae0: 6574 7572 6e65 6420 6f76 6572 2061 6e64 eturned over and │ │ │ │ -0005daf0: 2065 7874 656e 7369 6f6e 206f 6620 5262 extension of Rb │ │ │ │ -0005db00: 6172 3b20 6966 204c 6966 7420 3d3e 0a74 ar; if Lift =>.t │ │ │ │ -0005db10: 7275 6520 7468 6520 7265 7375 6c74 2069 rue the result i │ │ │ │ -0005db20: 7320 7265 7475 726e 6564 206f 7665 7220 s returned over │ │ │ │ -0005db30: 616e 6420 6578 7465 6e73 696f 6e20 6f66 and extension of │ │ │ │ -0005db40: 2052 2e0a 0a49 6620 4772 6164 696e 6720 R...If Grading │ │ │ │ -0005db50: 3d3e 2032 2c20 7468 6520 6465 6661 756c => 2, the defaul │ │ │ │ -0005db60: 742c 2074 6865 6e20 7468 6520 7265 7375 t, then the resu │ │ │ │ -0005db70: 6c74 2069 7320 6269 6772 6164 6564 2028 lt is bigraded ( │ │ │ │ -0005db80: 7468 6973 2069 7320 6e65 6365 7373 6172 this is necessar │ │ │ │ -0005db90: 790a 7768 656e 2043 6865 636b 3d3e 7472 y.when Check=>tr │ │ │ │ -0005dba0: 7565 0a0a 5468 6520 6465 6661 756c 7420 ue..The default │ │ │ │ -0005dbb0: 5661 7269 6162 6c65 7320 3d3e 2073 796d Variables => sym │ │ │ │ -0005dbc0: 626f 6c20 2273 2220 6769 7665 7320 7468 bol "s" gives th │ │ │ │ -0005dbd0: 6520 6e65 7720 7661 7269 6162 6c65 7320 e new variables │ │ │ │ -0005dbe0: 7468 6520 6e61 6d65 2073 5f69 2c0a 693d the name s_i,.i= │ │ │ │ -0005dbf0: 302e 2e63 2d31 2e20 286e 6f74 6520 7468 0..c-1. (note th │ │ │ │ -0005dc00: 6174 2074 6865 2062 7569 6c74 696e 2045 at the builtin E │ │ │ │ -0005dc10: 7874 2075 7365 7320 585f 312e 2e58 5f63 xt uses X_1..X_c │ │ │ │ -0005dc20: 2e0a 0a4f 6e20 536f 6d65 2065 7861 6d70 ...On Some examp │ │ │ │ -0005dc30: 6c65 7320 6e65 7745 7874 2069 7320 6661 les newExt is fa │ │ │ │ -0005dc40: 7374 6572 2074 6861 6e20 4578 743b 206f ster than Ext; o │ │ │ │ -0005dc50: 6e20 6f74 6865 7273 2069 7427 7320 736c n others it's sl │ │ │ │ -0005dc60: 6f77 6572 2e0a 0a41 2073 696d 706c 6520 ower...A simple │ │ │ │ -0005dc70: 6578 616d 706c 653a 2069 6620 5220 3d20 example: if R = │ │ │ │ -0005dc80: 6b5b 785f 312e 2e78 5f6e 5d20 616e 6420 k[x_1..x_n] and │ │ │ │ -0005dc90: 4920 6973 2063 6f6e 7461 696e 6564 2069 I is contained i │ │ │ │ -0005dca0: 6e20 7468 6520 6375 6265 206f 6620 7468 n the cube of th │ │ │ │ -0005dcb0: 650a 6d61 7869 6d61 6c20 6964 6561 6c2c e.maximal ideal, │ │ │ │ -0005dcc0: 2074 6865 6e20 4578 7428 6b2c 6b29 2069 then Ext(k,k) i │ │ │ │ -0005dcd0: 7320 6120 6672 6565 2053 2f28 785f 312e s a free S/(x_1. │ │ │ │ -0005dce0: 2e78 5f6e 2920 3d20 6b5b 735f 302e 2e73 .x_n) = k[s_0..s │ │ │ │ -0005dcf0: 5f28 632d 3129 5d2d 206d 6f64 756c 650a _(c-1)]- module. │ │ │ │ -0005dd00: 7769 7468 2062 696e 6f6d 6961 6c28 6e2c with binomial(n, │ │ │ │ -0005dd10: 6929 2067 656e 6572 6174 6f72 7320 696e i) generators in │ │ │ │ -0005dd20: 2064 6567 7265 6520 690a 0a2b 2d2d 2d2d degree i..+---- │ │ │ │ +0005d690: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +0005d6a0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +0005d6b0: 2045 203d 206e 6577 4578 7428 4d2c 4e29 E = newExt(M,N) │ │ │ │ +0005d6c0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +0005d6d0: 2020 202a 204d 2c20 6120 2a6e 6f74 6520 * M, a *note │ │ │ │ +0005d6e0: 6d6f 6475 6c65 3a20 284d 6163 6175 6c61 module: (Macaula │ │ │ │ +0005d6f0: 7932 446f 6329 4d6f 6475 6c65 2c2c 206f y2Doc)Module,, o │ │ │ │ +0005d700: 7665 7220 6120 636f 6d70 6c65 7465 2069 ver a complete i │ │ │ │ +0005d710: 6e74 6572 7365 6374 696f 6e0a 2020 2020 ntersection. │ │ │ │ +0005d720: 2020 2020 5262 6172 0a20 2020 2020 202a Rbar. * │ │ │ │ +0005d730: 204e 2c20 6120 2a6e 6f74 6520 6d6f 6475 N, a *note modu │ │ │ │ +0005d740: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ +0005d750: 6329 4d6f 6475 6c65 2c2c 206f 7665 7220 c)Module,, over │ │ │ │ +0005d760: 5262 6172 0a20 202a 202a 6e6f 7465 204f Rbar. * *note O │ │ │ │ +0005d770: 7074 696f 6e61 6c20 696e 7075 7473 3a20 ptional inputs: │ │ │ │ +0005d780: 284d 6163 6175 6c61 7932 446f 6329 7573 (Macaulay2Doc)us │ │ │ │ +0005d790: 696e 6720 6675 6e63 7469 6f6e 7320 7769 ing functions wi │ │ │ │ +0005d7a0: 7468 206f 7074 696f 6e61 6c20 696e 7075 th optional inpu │ │ │ │ +0005d7b0: 7473 2c3a 0a20 2020 2020 202a 2043 6865 ts,:. * Che │ │ │ │ +0005d7c0: 636b 203d 3e20 2e2e 2e2c 2064 6566 6175 ck => ..., defau │ │ │ │ +0005d7d0: 6c74 2076 616c 7565 2066 616c 7365 0a20 lt value false. │ │ │ │ +0005d7e0: 2020 2020 202a 2047 7261 6469 6e67 203d * Grading = │ │ │ │ +0005d7f0: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +0005d800: 616c 7565 2032 0a20 2020 2020 202a 204c alue 2. * L │ │ │ │ +0005d810: 6966 7420 3d3e 202e 2e2e 2c20 6465 6661 ift => ..., defa │ │ │ │ +0005d820: 756c 7420 7661 6c75 6520 6661 6c73 650a ult value false. │ │ │ │ +0005d830: 2020 2020 2020 2a20 5661 7269 6162 6c65 * Variable │ │ │ │ +0005d840: 7320 3d3e 202e 2e2e 2c20 6465 6661 756c s => ..., defaul │ │ │ │ +0005d850: 7420 7661 6c75 6520 730a 2020 2a20 4f75 t value s. * Ou │ │ │ │ +0005d860: 7470 7574 733a 0a20 2020 2020 202a 2045 tputs:. * E │ │ │ │ +0005d870: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +0005d880: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0005d890: 4d6f 6475 6c65 2c2c 206f 7665 7220 6120 Module,, over a │ │ │ │ +0005d8a0: 7269 6e67 2053 206d 6164 6520 6672 6f6d ring S made from │ │ │ │ +0005d8b0: 2072 696e 670a 2020 2020 2020 2020 7072 ring. pr │ │ │ │ +0005d8c0: 6573 656e 7461 7469 6f6e 2052 6261 7220 esentation Rbar │ │ │ │ +0005d8d0: 7769 7468 2063 6f64 696d 2052 6261 7220 with codim Rbar │ │ │ │ +0005d8e0: 6e65 7720 7661 7269 6162 6c65 730a 0a44 new variables..D │ │ │ │ +0005d8f0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +0005d900: 3d3d 3d3d 3d3d 0a0a 4c65 7420 5262 6172 ======..Let Rbar │ │ │ │ +0005d910: 203d 2052 2f28 6631 2e2e 6663 292c 2061 = R/(f1..fc), a │ │ │ │ +0005d920: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ +0005d930: 6563 7469 6f6e 206f 6620 636f 6469 6d65 ection of codime │ │ │ │ +0005d940: 6e73 696f 6e20 632c 2061 6e64 206c 6574 nsion c, and let │ │ │ │ +0005d950: 204d 2c4e 2062 650a 5262 6172 2d6d 6f64 M,N be.Rbar-mod │ │ │ │ +0005d960: 756c 6573 2e20 5765 2061 7373 756d 6520 ules. We assume │ │ │ │ +0005d970: 7468 6174 2074 6865 2070 7573 6846 6f72 that the pushFor │ │ │ │ +0005d980: 7761 7264 206f 6620 4d20 746f 2052 2068 ward of M to R h │ │ │ │ +0005d990: 6173 2066 696e 6974 6520 6672 6565 0a72 as finite free.r │ │ │ │ +0005d9a0: 6573 6f6c 7574 696f 6e2e 2054 6865 2073 esolution. The s │ │ │ │ +0005d9b0: 6372 6970 7420 7468 656e 2063 6f6d 7075 cript then compu │ │ │ │ +0005d9c0: 7465 7320 7468 6520 746f 7461 6c20 4578 tes the total Ex │ │ │ │ +0005d9d0: 7428 4d2c 4e29 2061 7320 6120 6d6f 6475 t(M,N) as a modu │ │ │ │ +0005d9e0: 6c65 206f 7665 7220 5320 3d0a 6b6b 2873 le over S =.kk(s │ │ │ │ +0005d9f0: 5f31 2e2e 735f 632c 6765 6e73 2052 292c _1..s_c,gens R), │ │ │ │ +0005da00: 2075 7369 6e67 2045 6973 656e 6275 6453 using EisenbudS │ │ │ │ +0005da10: 6861 6d61 7368 546f 7461 6c2e 0a0a 4966 hamashTotal...If │ │ │ │ +0005da20: 2043 6865 636b 203d 3e20 7472 7565 2c20 Check => true, │ │ │ │ +0005da30: 7468 656e 2074 6865 2072 6573 756c 7420 then the result │ │ │ │ +0005da40: 6973 2063 6f6d 7061 7265 6420 7769 7468 is compared with │ │ │ │ +0005da50: 2074 6865 2062 7569 6c74 2d69 6e20 676c the built-in gl │ │ │ │ +0005da60: 6f62 616c 2045 7874 0a77 7269 7474 656e obal Ext.written │ │ │ │ +0005da70: 2062 7920 4176 7261 6d6f 7620 616e 6420 by Avramov and │ │ │ │ +0005da80: 4772 6179 736f 6e20 2862 7574 206e 6f74 Grayson (but not │ │ │ │ +0005da90: 6520 7468 6520 6469 6666 6572 656e 6365 e the difference │ │ │ │ +0005daa0: 2c20 6578 706c 6169 6e65 6420 6265 6c6f , explained belo │ │ │ │ +0005dab0: 7729 2e0a 0a49 6620 4c69 6674 203d 3e20 w)...If Lift => │ │ │ │ +0005dac0: 6661 6c73 6520 7468 6520 7265 7375 6c74 false the result │ │ │ │ +0005dad0: 2069 7320 7265 7475 726e 6564 206f 7665 is returned ove │ │ │ │ +0005dae0: 7220 616e 6420 6578 7465 6e73 696f 6e20 r and extension │ │ │ │ +0005daf0: 6f66 2052 6261 723b 2069 6620 4c69 6674 of Rbar; if Lift │ │ │ │ +0005db00: 203d 3e0a 7472 7565 2074 6865 2072 6573 =>.true the res │ │ │ │ +0005db10: 756c 7420 6973 2072 6574 7572 6e65 6420 ult is returned │ │ │ │ +0005db20: 6f76 6572 2061 6e64 2065 7874 656e 7369 over and extensi │ │ │ │ +0005db30: 6f6e 206f 6620 522e 0a0a 4966 2047 7261 on of R...If Gra │ │ │ │ +0005db40: 6469 6e67 203d 3e20 322c 2074 6865 2064 ding => 2, the d │ │ │ │ +0005db50: 6566 6175 6c74 2c20 7468 656e 2074 6865 efault, then the │ │ │ │ +0005db60: 2072 6573 756c 7420 6973 2062 6967 7261 result is bigra │ │ │ │ +0005db70: 6465 6420 2874 6869 7320 6973 206e 6563 ded (this is nec │ │ │ │ +0005db80: 6573 7361 7279 0a77 6865 6e20 4368 6563 essary.when Chec │ │ │ │ +0005db90: 6b3d 3e74 7275 650a 0a54 6865 2064 6566 k=>true..The def │ │ │ │ +0005dba0: 6175 6c74 2056 6172 6961 626c 6573 203d ault Variables = │ │ │ │ +0005dbb0: 3e20 7379 6d62 6f6c 2022 7322 2067 6976 > symbol "s" giv │ │ │ │ +0005dbc0: 6573 2074 6865 206e 6577 2076 6172 6961 es the new varia │ │ │ │ +0005dbd0: 626c 6573 2074 6865 206e 616d 6520 735f bles the name s_ │ │ │ │ +0005dbe0: 692c 0a69 3d30 2e2e 632d 312e 2028 6e6f i,.i=0..c-1. (no │ │ │ │ +0005dbf0: 7465 2074 6861 7420 7468 6520 6275 696c te that the buil │ │ │ │ +0005dc00: 7469 6e20 4578 7420 7573 6573 2058 5f31 tin Ext uses X_1 │ │ │ │ +0005dc10: 2e2e 585f 632e 0a0a 4f6e 2053 6f6d 6520 ..X_c...On Some │ │ │ │ +0005dc20: 6578 616d 706c 6573 206e 6577 4578 7420 examples newExt │ │ │ │ +0005dc30: 6973 2066 6173 7465 7220 7468 616e 2045 is faster than E │ │ │ │ +0005dc40: 7874 3b20 6f6e 206f 7468 6572 7320 6974 xt; on others it │ │ │ │ +0005dc50: 2773 2073 6c6f 7765 722e 0a0a 4120 7369 's slower...A si │ │ │ │ +0005dc60: 6d70 6c65 2065 7861 6d70 6c65 3a20 6966 mple example: if │ │ │ │ +0005dc70: 2052 203d 206b 5b78 5f31 2e2e 785f 6e5d R = k[x_1..x_n] │ │ │ │ +0005dc80: 2061 6e64 2049 2069 7320 636f 6e74 6169 and I is contai │ │ │ │ +0005dc90: 6e65 6420 696e 2074 6865 2063 7562 6520 ned in the cube │ │ │ │ +0005dca0: 6f66 2074 6865 0a6d 6178 696d 616c 2069 of the.maximal i │ │ │ │ +0005dcb0: 6465 616c 2c20 7468 656e 2045 7874 286b deal, then Ext(k │ │ │ │ +0005dcc0: 2c6b 2920 6973 2061 2066 7265 6520 532f ,k) is a free S/ │ │ │ │ +0005dcd0: 2878 5f31 2e2e 785f 6e29 203d 206b 5b73 (x_1..x_n) = k[s │ │ │ │ +0005dce0: 5f30 2e2e 735f 2863 2d31 295d 2d20 6d6f _0..s_(c-1)]- mo │ │ │ │ +0005dcf0: 6475 6c65 0a77 6974 6820 6269 6e6f 6d69 dule.with binomi │ │ │ │ +0005dd00: 616c 286e 2c69 2920 6765 6e65 7261 746f al(n,i) generato │ │ │ │ +0005dd10: 7273 2069 6e20 6465 6772 6565 2069 0a0a rs in degree i.. │ │ │ │ +0005dd20: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0005dd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005dd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005dd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005dd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005dd70: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -0005dd80: 206e 203d 2033 3b63 3d32 3b20 2020 2020 n = 3;c=2; │ │ │ │ +0005dd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0005dd70: 7c69 3120 3a20 6e20 3d20 333b 633d 323b |i1 : n = 3;c=2; │ │ │ │ +0005dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ddc0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005ddb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005ddc0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0005ddd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005dde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ddf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005de00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005de10: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -0005de20: 2052 203d 205a 5a2f 3130 315b 785f 302e R = ZZ/101[x_0. │ │ │ │ -0005de30: 2e78 5f28 6e2d 3129 5d20 2020 2020 2020 .x_(n-1)] │ │ │ │ +0005de00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0005de10: 7c69 3320 3a20 5220 3d20 5a5a 2f31 3031 |i3 : R = ZZ/101 │ │ │ │ +0005de20: 5b78 5f30 2e2e 785f 286e 2d31 295d 2020 [x_0..x_(n-1)] │ │ │ │ +0005de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005de40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005de50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005de60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005de50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005de60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005de90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005deb0: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ -0005dec0: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0005dea0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005deb0: 7c6f 3320 3d20 5220 2020 2020 2020 2020 |o3 = R │ │ │ │ +0005dec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005df00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005def0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005df00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005df30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005df50: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ -0005df60: 2050 6f6c 796e 6f6d 6961 6c52 696e 6720 PolynomialRing │ │ │ │ +0005df40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005df50: 7c6f 3320 3a20 506f 6c79 6e6f 6d69 616c |o3 : Polynomial │ │ │ │ +0005df60: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 0005df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005df80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dfa0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005df90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005dfa0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0005dfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005dfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005dfd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005dfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005dff0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -0005e000: 2052 6261 7220 3d20 522f 2869 6465 616c Rbar = R/(ideal │ │ │ │ -0005e010: 2061 7070 6c79 2863 2c20 692d 3e20 525f apply(c, i-> R_ │ │ │ │ -0005e020: 695e 3329 2920 2020 2020 2020 2020 2020 i^3)) │ │ │ │ -0005e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e040: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005dfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0005dff0: 7c69 3420 3a20 5262 6172 203d 2052 2f28 |i4 : Rbar = R/( │ │ │ │ +0005e000: 6964 6561 6c20 6170 706c 7928 632c 2069 ideal apply(c, i │ │ │ │ +0005e010: 2d3e 2052 5f69 5e33 2929 2020 2020 2020 -> R_i^3)) │ │ │ │ +0005e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005e030: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e040: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e090: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ -0005e0a0: 2052 6261 7220 2020 2020 2020 2020 2020 Rbar │ │ │ │ +0005e080: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e090: 7c6f 3420 3d20 5262 6172 2020 2020 2020 |o4 = Rbar │ │ │ │ +0005e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e0e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005e0d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e0e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e130: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ -0005e140: 2051 756f 7469 656e 7452 696e 6720 2020 QuotientRing │ │ │ │ +0005e120: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e130: 7c6f 3420 3a20 5175 6f74 6965 6e74 5269 |o4 : QuotientRi │ │ │ │ +0005e140: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 0005e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e180: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005e170: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e180: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0005e190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e1d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ -0005e1e0: 204d 6261 7220 3d20 4e62 6172 203d 2063 Mbar = Nbar = c │ │ │ │ -0005e1f0: 6f6b 6572 2076 6172 7320 5262 6172 2020 oker vars Rbar │ │ │ │ +0005e1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0005e1d0: 7c69 3520 3a20 4d62 6172 203d 204e 6261 |i5 : Mbar = Nba │ │ │ │ +0005e1e0: 7220 3d20 636f 6b65 7220 7661 7273 2052 r = coker vars R │ │ │ │ +0005e1f0: 6261 7220 2020 2020 2020 2020 2020 2020 bar │ │ │ │ 0005e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e220: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005e210: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e220: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e270: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ -0005e280: 2063 6f6b 6572 6e65 6c20 7c20 785f 3020 cokernel | x_0 │ │ │ │ -0005e290: 785f 3120 785f 3220 7c20 2020 2020 2020 x_1 x_2 | │ │ │ │ +0005e260: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e270: 7c6f 3520 3d20 636f 6b65 726e 656c 207c |o5 = cokernel | │ │ │ │ +0005e280: 2078 5f30 2078 5f31 2078 5f32 207c 2020 x_0 x_1 x_2 | │ │ │ │ +0005e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e2c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005e2b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e2c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e310: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005e300: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e310: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e330: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +0005e330: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0005e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e360: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ -0005e370: 2052 6261 722d 6d6f 6475 6c65 2c20 7175 Rbar-module, qu │ │ │ │ -0005e380: 6f74 6965 6e74 206f 6620 5262 6172 2020 otient of Rbar │ │ │ │ +0005e350: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e360: 7c6f 3520 3a20 5262 6172 2d6d 6f64 756c |o5 : Rbar-modul │ │ │ │ +0005e370: 652c 2071 756f 7469 656e 7420 6f66 2052 e, quotient of R │ │ │ │ +0005e380: 6261 7220 2020 2020 2020 2020 2020 2020 bar │ │ │ │ 0005e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e3b0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005e3a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e3b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0005e3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e400: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ -0005e410: 2045 203d 206e 6577 4578 7428 4d62 6172 E = newExt(Mbar │ │ │ │ -0005e420: 2c4e 6261 7229 2020 2020 2020 2020 2020 ,Nbar) │ │ │ │ +0005e3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0005e400: 7c69 3620 3a20 4520 3d20 6e65 7745 7874 |i6 : E = newExt │ │ │ │ +0005e410: 284d 6261 722c 4e62 6172 2920 2020 2020 (Mbar,Nbar) │ │ │ │ +0005e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e450: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005e440: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e450: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e4a0: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ -0005e4b0: 2063 6f6b 6572 6e65 6c20 7b30 2c20 307d cokernel {0, 0} │ │ │ │ -0005e4c0: 2020 207c 2078 5f32 2078 5f31 2078 5f30 | x_2 x_1 x_0 │ │ │ │ -0005e4d0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005e4e0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005e4f0: 2030 2020 2030 2020 207c 0a7c 2020 2020 0 0 |.| │ │ │ │ -0005e500: 2020 2020 2020 2020 2020 7b2d 322c 202d {-2, - │ │ │ │ -0005e510: 327d 207c 2030 2020 2030 2020 2030 2020 2} | 0 0 0 │ │ │ │ -0005e520: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005e530: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005e540: 2030 2020 2078 5f32 207c 0a7c 2020 2020 0 x_2 |.| │ │ │ │ -0005e550: 2020 2020 2020 2020 2020 7b2d 322c 202d {-2, - │ │ │ │ -0005e560: 327d 207c 2030 2020 2030 2020 2030 2020 2} | 0 0 0 │ │ │ │ -0005e570: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005e580: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005e590: 2030 2020 2030 2020 207c 0a7c 2020 2020 0 0 |.| │ │ │ │ -0005e5a0: 2020 2020 2020 2020 2020 7b2d 322c 202d {-2, - │ │ │ │ -0005e5b0: 327d 207c 2030 2020 2030 2020 2030 2020 2} | 0 0 0 │ │ │ │ -0005e5c0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005e5d0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005e5e0: 2030 2020 2030 2020 207c 0a7c 2020 2020 0 0 |.| │ │ │ │ -0005e5f0: 2020 2020 2020 2020 2020 7b2d 312c 202d {-1, - │ │ │ │ -0005e600: 317d 207c 2030 2020 2030 2020 2030 2020 1} | 0 0 0 │ │ │ │ -0005e610: 2078 5f32 2078 5f31 2078 5f30 2030 2020 x_2 x_1 x_0 0 │ │ │ │ -0005e620: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005e630: 2030 2020 2030 2020 207c 0a7c 2020 2020 0 0 |.| │ │ │ │ -0005e640: 2020 2020 2020 2020 2020 7b2d 312c 202d {-1, - │ │ │ │ -0005e650: 317d 207c 2030 2020 2030 2020 2030 2020 1} | 0 0 0 │ │ │ │ -0005e660: 2030 2020 2030 2020 2030 2020 2078 5f32 0 0 0 x_2 │ │ │ │ -0005e670: 2078 5f31 2078 5f30 2030 2020 2030 2020 x_1 x_0 0 0 │ │ │ │ -0005e680: 2030 2020 2030 2020 207c 0a7c 2020 2020 0 0 |.| │ │ │ │ -0005e690: 2020 2020 2020 2020 2020 7b2d 312c 202d {-1, - │ │ │ │ -0005e6a0: 317d 207c 2030 2020 2030 2020 2030 2020 1} | 0 0 0 │ │ │ │ -0005e6b0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005e6c0: 2030 2020 2030 2020 2078 5f32 2078 5f31 0 0 x_2 x_1 │ │ │ │ -0005e6d0: 2078 5f30 2030 2020 207c 0a7c 2020 2020 x_0 0 |.| │ │ │ │ -0005e6e0: 2020 2020 2020 2020 2020 7b2d 332c 202d {-3, - │ │ │ │ -0005e6f0: 337d 207c 2030 2020 2030 2020 2030 2020 3} | 0 0 0 │ │ │ │ -0005e700: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005e710: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005e720: 2030 2020 2030 2020 207c 0a7c 2020 2020 0 0 |.| │ │ │ │ +0005e490: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e4a0: 7c6f 3620 3d20 636f 6b65 726e 656c 207b |o6 = cokernel { │ │ │ │ +0005e4b0: 302c 2030 7d20 2020 7c20 785f 3220 785f 0, 0} | x_2 x_ │ │ │ │ +0005e4c0: 3120 785f 3020 3020 2020 3020 2020 3020 1 x_0 0 0 0 │ │ │ │ +0005e4d0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005e4e0: 2020 3020 2020 3020 2020 3020 2020 7c0a 0 0 0 |. │ │ │ │ +0005e4f0: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ +0005e500: 2d32 2c20 2d32 7d20 7c20 3020 2020 3020 -2, -2} | 0 0 │ │ │ │ +0005e510: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005e520: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005e530: 2020 3020 2020 3020 2020 785f 3220 7c0a 0 0 x_2 |. │ │ │ │ +0005e540: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ +0005e550: 2d32 2c20 2d32 7d20 7c20 3020 2020 3020 -2, -2} | 0 0 │ │ │ │ +0005e560: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005e570: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005e580: 2020 3020 2020 3020 2020 3020 2020 7c0a 0 0 0 |. │ │ │ │ +0005e590: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ +0005e5a0: 2d32 2c20 2d32 7d20 7c20 3020 2020 3020 -2, -2} | 0 0 │ │ │ │ +0005e5b0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005e5c0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005e5d0: 2020 3020 2020 3020 2020 3020 2020 7c0a 0 0 0 |. │ │ │ │ +0005e5e0: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ +0005e5f0: 2d31 2c20 2d31 7d20 7c20 3020 2020 3020 -1, -1} | 0 0 │ │ │ │ +0005e600: 2020 3020 2020 785f 3220 785f 3120 785f 0 x_2 x_1 x_ │ │ │ │ +0005e610: 3020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 0 │ │ │ │ +0005e620: 2020 3020 2020 3020 2020 3020 2020 7c0a 0 0 0 |. │ │ │ │ +0005e630: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ +0005e640: 2d31 2c20 2d31 7d20 7c20 3020 2020 3020 -1, -1} | 0 0 │ │ │ │ +0005e650: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005e660: 2020 785f 3220 785f 3120 785f 3020 3020 x_2 x_1 x_0 0 │ │ │ │ +0005e670: 2020 3020 2020 3020 2020 3020 2020 7c0a 0 0 0 |. │ │ │ │ +0005e680: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ +0005e690: 2d31 2c20 2d31 7d20 7c20 3020 2020 3020 -1, -1} | 0 0 │ │ │ │ +0005e6a0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005e6b0: 2020 3020 2020 3020 2020 3020 2020 785f 0 0 0 x_ │ │ │ │ +0005e6c0: 3220 785f 3120 785f 3020 3020 2020 7c0a 2 x_1 x_0 0 |. │ │ │ │ +0005e6d0: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ +0005e6e0: 2d33 2c20 2d33 7d20 7c20 3020 2020 3020 -3, -3} | 0 0 │ │ │ │ +0005e6f0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005e700: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005e710: 2020 3020 2020 3020 2020 3020 2020 7c0a 0 0 0 |. │ │ │ │ +0005e720: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e770: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005e780: 2020 5a5a 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ -0005e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e7a0: 2020 2020 2020 2020 202f 205a 5a20 2020 / ZZ │ │ │ │ -0005e7b0: 2020 2020 2020 2020 2020 2020 205c 2020 \ │ │ │ │ -0005e7c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005e7d0: 202d 2d2d 5b73 202e 2e73 202c 2078 202e ---[s ..s , x . │ │ │ │ -0005e7e0: 2e78 205d 2020 2020 2020 2020 2020 2020 .x ] │ │ │ │ -0005e7f0: 2020 2020 2020 2020 207c 2d2d 2d5b 7320 |---[s │ │ │ │ -0005e800: 2e2e 7320 2c20 7820 2e2e 7820 5d7c 2020 ..s , x ..x ]| │ │ │ │ -0005e810: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005e820: 2031 3031 2020 3020 2020 3120 2020 3020 101 0 1 0 │ │ │ │ -0005e830: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0005e840: 2020 2020 2020 2020 207c 3130 3120 2030 |101 0 │ │ │ │ -0005e850: 2020 2031 2020 2030 2020 2032 207c 3820 1 0 2 |8 │ │ │ │ -0005e860: 2020 2020 2020 2020 207c 0a7c 6f36 203a |.|o6 : │ │ │ │ -0005e870: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d --------------- │ │ │ │ -0005e880: 2d2d 2d2d 2d6d 6f64 756c 652c 2071 756f -----module, quo │ │ │ │ -0005e890: 7469 656e 7420 6f66 207c 2d2d 2d2d 2d2d tient of |------ │ │ │ │ -0005e8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 2020 -------------| │ │ │ │ -0005e8b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005e8c0: 2020 2020 2020 2020 2033 2020 2033 2020 3 3 │ │ │ │ -0005e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e8e0: 2020 2020 2020 2020 207c 2020 2020 2020 | │ │ │ │ -0005e8f0: 2020 3320 2020 3320 2020 2020 207c 2020 3 3 | │ │ │ │ -0005e900: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005e910: 2020 2020 2020 2028 7820 2c20 7820 2920 (x , x ) │ │ │ │ -0005e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e930: 2020 2020 2020 2020 207c 2020 2020 2020 | │ │ │ │ -0005e940: 2878 202c 2078 2029 2020 2020 207c 2020 (x , x ) | │ │ │ │ -0005e950: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005e960: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ -0005e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e980: 2020 2020 2020 2020 205c 2020 2020 2020 \ │ │ │ │ -0005e990: 2020 3020 2020 3120 2020 2020 202f 2020 0 1 / │ │ │ │ -0005e9a0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +0005e760: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005e770: 7c20 2020 2020 205a 5a20 2020 2020 2020 | ZZ │ │ │ │ +0005e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005e790: 2020 2020 2020 2020 2020 2020 2020 2f20 / │ │ │ │ +0005e7a0: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +0005e7b0: 2020 5c20 2020 2020 2020 2020 2020 7c0a \ |. │ │ │ │ +0005e7c0: 7c20 2020 2020 2d2d 2d5b 7320 2e2e 7320 | ---[s ..s │ │ │ │ +0005e7d0: 2c20 7820 2e2e 7820 5d20 2020 2020 2020 , x ..x ] │ │ │ │ +0005e7e0: 2020 2020 2020 2020 2020 2020 2020 7c2d |- │ │ │ │ +0005e7f0: 2d2d 5b73 202e 2e73 202c 2078 202e 2e78 --[s ..s , x ..x │ │ │ │ +0005e800: 205d 7c20 2020 2020 2020 2020 2020 7c0a ]| |. │ │ │ │ +0005e810: 7c20 2020 2020 3130 3120 2030 2020 2031 | 101 0 1 │ │ │ │ +0005e820: 2020 2030 2020 2032 2020 2020 2020 2020 0 2 │ │ │ │ +0005e830: 2020 2020 2020 2020 2020 2020 2020 7c31 |1 │ │ │ │ +0005e840: 3031 2020 3020 2020 3120 2020 3020 2020 01 0 1 0 │ │ │ │ +0005e850: 3220 7c38 2020 2020 2020 2020 2020 7c0a 2 |8 |. │ │ │ │ +0005e860: 7c6f 3620 3a20 2d2d 2d2d 2d2d 2d2d 2d2d |o6 : ---------- │ │ │ │ +0005e870: 2d2d 2d2d 2d2d 2d2d 2d2d 6d6f 6475 6c65 ----------module │ │ │ │ +0005e880: 2c20 7175 6f74 6965 6e74 206f 6620 7c2d , quotient of |- │ │ │ │ +0005e890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0005e8a0: 2d2d 7c20 2020 2020 2020 2020 2020 7c0a --| |. │ │ │ │ +0005e8b0: 7c20 2020 2020 2020 2020 2020 2020 3320 | 3 │ │ │ │ +0005e8c0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0005e8d0: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ +0005e8e0: 2020 2020 2020 2033 2020 2033 2020 2020 3 3 │ │ │ │ +0005e8f0: 2020 7c20 2020 2020 2020 2020 2020 7c0a | |. │ │ │ │ +0005e900: 7c20 2020 2020 2020 2020 2020 2878 202c | (x , │ │ │ │ +0005e910: 2078 2029 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ +0005e920: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ +0005e930: 2020 2020 2028 7820 2c20 7820 2920 2020 (x , x ) │ │ │ │ +0005e940: 2020 7c20 2020 2020 2020 2020 2020 7c0a | |. │ │ │ │ +0005e950: 7c20 2020 2020 2020 2020 2020 2020 3020 | 0 │ │ │ │ +0005e960: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0005e970: 2020 2020 2020 2020 2020 2020 2020 5c20 \ │ │ │ │ +0005e980: 2020 2020 2020 2030 2020 2031 2020 2020 0 1 │ │ │ │ +0005e990: 2020 2f20 2020 2020 2020 2020 2020 7c0a / |. │ │ │ │ +0005e9a0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ 0005e9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e9f0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3020 2020 ---------|.|0 │ │ │ │ -0005ea00: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -0005ea10: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -0005ea20: 3020 2020 3020 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ -0005ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ea40: 2020 2020 2020 2020 207c 0a7c 785f 3120 |.|x_1 │ │ │ │ -0005ea50: 785f 3020 3020 2020 3020 2020 3020 2020 x_0 0 0 0 │ │ │ │ -0005ea60: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -0005ea70: 3020 2020 3020 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ -0005ea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ea90: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ -0005eaa0: 3020 2020 785f 3220 785f 3120 785f 3020 0 x_2 x_1 x_0 │ │ │ │ -0005eab0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -0005eac0: 3020 2020 3020 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ -0005ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eae0: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ -0005eaf0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -0005eb00: 785f 3220 785f 3120 785f 3020 3020 2020 x_2 x_1 x_0 0 │ │ │ │ -0005eb10: 3020 2020 3020 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ -0005eb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eb30: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ -0005eb40: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -0005eb50: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -0005eb60: 3020 2020 3020 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ -0005eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eb80: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ -0005eb90: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -0005eba0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -0005ebb0: 3020 2020 3020 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ -0005ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ebd0: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ -0005ebe0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -0005ebf0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -0005ec00: 3020 2020 3020 2020 7c20 2020 2020 2020 0 0 | │ │ │ │ -0005ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ec20: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ -0005ec30: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -0005ec40: 3020 2020 3020 2020 3020 2020 785f 3220 0 0 0 x_2 │ │ │ │ -0005ec50: 785f 3120 785f 3020 7c20 2020 2020 2020 x_1 x_0 | │ │ │ │ -0005ec60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ec70: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005e9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +0005e9f0: 7c30 2020 2030 2020 2030 2020 2030 2020 |0 0 0 0 │ │ │ │ +0005ea00: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +0005ea10: 2030 2020 2030 2020 2030 2020 207c 2020 0 0 0 | │ │ │ │ +0005ea20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ea30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005ea40: 7c78 5f31 2078 5f30 2030 2020 2030 2020 |x_1 x_0 0 0 │ │ │ │ +0005ea50: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +0005ea60: 2030 2020 2030 2020 2030 2020 207c 2020 0 0 0 | │ │ │ │ +0005ea70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ea80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005ea90: 7c30 2020 2030 2020 2078 5f32 2078 5f31 |0 0 x_2 x_1 │ │ │ │ +0005eaa0: 2078 5f30 2030 2020 2030 2020 2030 2020 x_0 0 0 0 │ │ │ │ +0005eab0: 2030 2020 2030 2020 2030 2020 207c 2020 0 0 0 | │ │ │ │ +0005eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ead0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005eae0: 7c30 2020 2030 2020 2030 2020 2030 2020 |0 0 0 0 │ │ │ │ +0005eaf0: 2030 2020 2078 5f32 2078 5f31 2078 5f30 0 x_2 x_1 x_0 │ │ │ │ +0005eb00: 2030 2020 2030 2020 2030 2020 207c 2020 0 0 0 | │ │ │ │ +0005eb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005eb20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005eb30: 7c30 2020 2030 2020 2030 2020 2030 2020 |0 0 0 0 │ │ │ │ +0005eb40: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +0005eb50: 2030 2020 2030 2020 2030 2020 207c 2020 0 0 0 | │ │ │ │ +0005eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005eb70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005eb80: 7c30 2020 2030 2020 2030 2020 2030 2020 |0 0 0 0 │ │ │ │ +0005eb90: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +0005eba0: 2030 2020 2030 2020 2030 2020 207c 2020 0 0 0 | │ │ │ │ +0005ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ebc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005ebd0: 7c30 2020 2030 2020 2030 2020 2030 2020 |0 0 0 0 │ │ │ │ +0005ebe0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +0005ebf0: 2030 2020 2030 2020 2030 2020 207c 2020 0 0 0 | │ │ │ │ +0005ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ec10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005ec20: 7c30 2020 2030 2020 2030 2020 2030 2020 |0 0 0 0 │ │ │ │ +0005ec30: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +0005ec40: 2078 5f32 2078 5f31 2078 5f30 207c 2020 x_2 x_1 x_0 | │ │ │ │ +0005ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ec60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005ec70: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0005ec80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ec90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005eca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ecb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ecc0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ -0005ecd0: 2074 616c 6c79 2064 6567 7265 6573 2045 tally degrees E │ │ │ │ +0005ecb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0005ecc0: 7c69 3720 3a20 7461 6c6c 7920 6465 6772 |i7 : tally degr │ │ │ │ +0005ecd0: 6565 7320 4520 2020 2020 2020 2020 2020 ees E │ │ │ │ 0005ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ed00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ed10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005ed00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005ed10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ed60: 2020 2020 2020 2020 207c 0a7c 6f37 203d |.|o7 = │ │ │ │ -0005ed70: 2054 616c 6c79 7b7b 2d31 2c20 2d31 7d20 Tally{{-1, -1} │ │ │ │ -0005ed80: 3d3e 2033 7d20 2020 2020 2020 2020 2020 => 3} │ │ │ │ +0005ed50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005ed60: 7c6f 3720 3d20 5461 6c6c 797b 7b2d 312c |o7 = Tally{{-1, │ │ │ │ +0005ed70: 202d 317d 203d 3e20 337d 2020 2020 2020 -1} => 3} │ │ │ │ +0005ed80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ed90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005edb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005edc0: 2020 2020 2020 207b 2d32 2c20 2d32 7d20 {-2, -2} │ │ │ │ -0005edd0: 3d3e 2033 2020 2020 2020 2020 2020 2020 => 3 │ │ │ │ +0005eda0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005edb0: 7c20 2020 2020 2020 2020 2020 7b2d 322c | {-2, │ │ │ │ +0005edc0: 202d 327d 203d 3e20 3320 2020 2020 2020 -2} => 3 │ │ │ │ +0005edd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ede0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005edf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ee00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005ee10: 2020 2020 2020 207b 2d33 2c20 2d33 7d20 {-3, -3} │ │ │ │ -0005ee20: 3d3e 2031 2020 2020 2020 2020 2020 2020 => 1 │ │ │ │ +0005edf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005ee00: 7c20 2020 2020 2020 2020 2020 7b2d 332c | {-3, │ │ │ │ +0005ee10: 202d 337d 203d 3e20 3120 2020 2020 2020 -3} => 1 │ │ │ │ +0005ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ee50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005ee60: 2020 2020 2020 207b 302c 2030 7d20 3d3e {0, 0} => │ │ │ │ -0005ee70: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0005ee40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005ee50: 7c20 2020 2020 2020 2020 2020 7b30 2c20 | {0, │ │ │ │ +0005ee60: 307d 203d 3e20 3120 2020 2020 2020 2020 0} => 1 │ │ │ │ +0005ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ee90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eea0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005ee90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005eea0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005eed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eef0: 2020 2020 2020 2020 207c 0a7c 6f37 203a |.|o7 : │ │ │ │ -0005ef00: 2054 616c 6c79 2020 2020 2020 2020 2020 Tally │ │ │ │ +0005eee0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005eef0: 7c6f 3720 3a20 5461 6c6c 7920 2020 2020 |o7 : Tally │ │ │ │ +0005ef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ef40: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005ef30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005ef40: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0005ef50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ef60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ef70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ef80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ef90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ -0005efa0: 2061 6e6e 6968 696c 6174 6f72 2045 2020 annihilator E │ │ │ │ +0005ef80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0005ef90: 7c69 3820 3a20 616e 6e69 6869 6c61 746f |i8 : annihilato │ │ │ │ +0005efa0: 7220 4520 2020 2020 2020 2020 2020 2020 r E │ │ │ │ 0005efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005efe0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005efd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005efe0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f030: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ -0005f040: 2069 6465 616c 2028 7820 2c20 7820 2c20 ideal (x , x , │ │ │ │ -0005f050: 7820 2920 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ +0005f020: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005f030: 7c6f 3820 3d20 6964 6561 6c20 2878 202c |o8 = ideal (x , │ │ │ │ +0005f040: 2078 202c 2078 2029 2020 2020 2020 2020 x , x ) │ │ │ │ +0005f050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f080: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005f090: 2020 2020 2020 2020 2032 2020 2031 2020 2 1 │ │ │ │ -0005f0a0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +0005f070: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005f080: 7c20 2020 2020 2020 2020 2020 2020 3220 | 2 │ │ │ │ +0005f090: 2020 3120 2020 3020 2020 2020 2020 2020 1 0 │ │ │ │ +0005f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f0d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005f0c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005f0d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0005f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f120: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005f130: 2020 2020 2020 2020 2020 205a 5a20 2020 ZZ │ │ │ │ +0005f110: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005f120: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0005f130: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 0005f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f170: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005f180: 2020 2020 2020 2020 2020 2d2d 2d5b 7320 ---[s │ │ │ │ -0005f190: 2e2e 7320 2c20 7820 2e2e 7820 5d20 2020 ..s , x ..x ] │ │ │ │ +0005f160: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005f170: 7c20 2020 2020 2020 2020 2020 2020 202d | - │ │ │ │ +0005f180: 2d2d 5b73 202e 2e73 202c 2078 202e 2e78 --[s ..s , x ..x │ │ │ │ +0005f190: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 0005f1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f1c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005f1d0: 2020 2020 2020 2020 2020 3130 3120 2030 101 0 │ │ │ │ -0005f1e0: 2020 2031 2020 2030 2020 2032 2020 2020 1 0 2 │ │ │ │ +0005f1b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005f1c0: 7c20 2020 2020 2020 2020 2020 2020 2031 | 1 │ │ │ │ +0005f1d0: 3031 2020 3020 2020 3120 2020 3020 2020 01 0 1 0 │ │ │ │ +0005f1e0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0005f1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f210: 2020 2020 2020 2020 207c 0a7c 6f38 203a |.|o8 : │ │ │ │ -0005f220: 2049 6465 616c 206f 6620 2d2d 2d2d 2d2d Ideal of ------ │ │ │ │ -0005f230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d20 2020 ------------- │ │ │ │ +0005f200: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005f210: 7c6f 3820 3a20 4964 6561 6c20 6f66 202d |o8 : Ideal of - │ │ │ │ +0005f220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0005f230: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ 0005f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f260: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f280: 2020 3320 2020 3320 2020 2020 2020 2020 3 3 │ │ │ │ +0005f250: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005f260: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0005f270: 2020 2020 2020 2033 2020 2033 2020 2020 3 3 │ │ │ │ +0005f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f2b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f2d0: 2878 202c 2078 2029 2020 2020 2020 2020 (x , x ) │ │ │ │ +0005f2a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005f2b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0005f2c0: 2020 2020 2028 7820 2c20 7820 2920 2020 (x , x ) │ │ │ │ +0005f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f300: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0005f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f320: 2020 3020 2020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +0005f2f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005f300: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0005f310: 2020 2020 2020 2030 2020 2031 2020 2020 0 1 │ │ │ │ +0005f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f350: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005f340: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0005f350: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0005f360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f3a0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 416e 2065 ---------+..An e │ │ │ │ -0005f3b0: 7861 6d70 6c65 2077 6865 7265 2074 6865 xample where the │ │ │ │ -0005f3c0: 2062 7569 6c74 2d69 6e20 676c 6f62 616c built-in global │ │ │ │ -0005f3d0: 2045 7874 2069 7320 6861 7264 2074 6f20 Ext is hard to │ │ │ │ -0005f3e0: 636f 6d70 6172 6520 6469 7265 6374 6c79 compare directly │ │ │ │ -0005f3f0: 2077 6974 6820 6f75 720a 6d65 7468 6f64 with our.method │ │ │ │ -0005f400: 206f 6620 636f 6d70 7574 6174 696f 6e3a of computation: │ │ │ │ -0005f410: 2049 202a 6775 6573 732a 2074 6861 7420 I *guess* that │ │ │ │ -0005f420: 7468 6520 7369 676e 2063 686f 6963 6573 the sign choices │ │ │ │ -0005f430: 2069 6e20 7468 6520 6275 696c 742d 696e in the built-in │ │ │ │ -0005f440: 2061 6d6f 756e 740a 6573 7365 6e74 6961 amount.essentia │ │ │ │ -0005f450: 6c6c 7920 746f 2061 2063 6861 6e67 6520 lly to a change │ │ │ │ -0005f460: 6f66 2076 6172 6961 626c 6520 696e 2074 of variable in t │ │ │ │ -0005f470: 6865 206e 6577 2076 6172 6961 626c 6573 he new variables │ │ │ │ -0005f480: 2c20 616e 6420 7370 6f69 6c20 616e 2065 , and spoil an e │ │ │ │ -0005f490: 6173 790a 636f 6d70 6172 6973 6f6e 2e20 asy.comparison. │ │ │ │ -0005f4a0: 4275 7420 666f 7220 6578 616d 706c 6520 But for example │ │ │ │ -0005f4b0: 7468 6520 6269 2d67 7261 6465 6420 4265 the bi-graded Be │ │ │ │ -0005f4c0: 7474 6920 6e75 6d62 6572 7320 6172 6520 tti numbers are │ │ │ │ -0005f4d0: 6571 7561 6c2e 2074 6869 7320 7365 656d equal. this seem │ │ │ │ -0005f4e0: 730a 746f 2073 7461 7274 2077 6974 6820 s.to start with │ │ │ │ -0005f4f0: 633d 332e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d c=3...+--------- │ │ │ │ +0005f390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0005f3a0: 0a41 6e20 6578 616d 706c 6520 7768 6572 .An example wher │ │ │ │ +0005f3b0: 6520 7468 6520 6275 696c 742d 696e 2067 e the built-in g │ │ │ │ +0005f3c0: 6c6f 6261 6c20 4578 7420 6973 2068 6172 lobal Ext is har │ │ │ │ +0005f3d0: 6420 746f 2063 6f6d 7061 7265 2064 6972 d to compare dir │ │ │ │ +0005f3e0: 6563 746c 7920 7769 7468 206f 7572 0a6d ectly with our.m │ │ │ │ +0005f3f0: 6574 686f 6420 6f66 2063 6f6d 7075 7461 ethod of computa │ │ │ │ +0005f400: 7469 6f6e 3a20 4920 2a67 7565 7373 2a20 tion: I *guess* │ │ │ │ +0005f410: 7468 6174 2074 6865 2073 6967 6e20 6368 that the sign ch │ │ │ │ +0005f420: 6f69 6365 7320 696e 2074 6865 2062 7569 oices in the bui │ │ │ │ +0005f430: 6c74 2d69 6e20 616d 6f75 6e74 0a65 7373 lt-in amount.ess │ │ │ │ +0005f440: 656e 7469 616c 6c79 2074 6f20 6120 6368 entially to a ch │ │ │ │ +0005f450: 616e 6765 206f 6620 7661 7269 6162 6c65 ange of variable │ │ │ │ +0005f460: 2069 6e20 7468 6520 6e65 7720 7661 7269 in the new vari │ │ │ │ +0005f470: 6162 6c65 732c 2061 6e64 2073 706f 696c ables, and spoil │ │ │ │ +0005f480: 2061 6e20 6561 7379 0a63 6f6d 7061 7269 an easy.compari │ │ │ │ +0005f490: 736f 6e2e 2042 7574 2066 6f72 2065 7861 son. But for exa │ │ │ │ +0005f4a0: 6d70 6c65 2074 6865 2062 692d 6772 6164 mple the bi-grad │ │ │ │ +0005f4b0: 6564 2042 6574 7469 206e 756d 6265 7273 ed Betti numbers │ │ │ │ +0005f4c0: 2061 7265 2065 7175 616c 2e20 7468 6973 are equal. this │ │ │ │ +0005f4d0: 2073 6565 6d73 0a74 6f20 7374 6172 7420 seems.to start │ │ │ │ +0005f4e0: 7769 7468 2063 3d33 2e0a 0a2b 2d2d 2d2d with c=3...+---- │ │ │ │ +0005f4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f540: 2d2d 2d2d 2b0a 7c69 3920 3a20 7365 7452 ----+.|i9 : setR │ │ │ │ -0005f550: 616e 646f 6d53 6565 6420 3020 2020 2020 andomSeed 0 │ │ │ │ +0005f530: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a ---------+.|i9 : │ │ │ │ +0005f540: 2073 6574 5261 6e64 6f6d 5365 6564 2030 setRandomSeed 0 │ │ │ │ +0005f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f590: 2020 2020 7c0a 7c20 2d2d 2073 6574 7469 |.| -- setti │ │ │ │ -0005f5a0: 6e67 2072 616e 646f 6d20 7365 6564 2074 ng random seed t │ │ │ │ -0005f5b0: 6f20 3020 2020 2020 2020 2020 2020 2020 o 0 │ │ │ │ +0005f580: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ +0005f590: 7365 7474 696e 6720 7261 6e64 6f6d 2073 setting random s │ │ │ │ +0005f5a0: 6565 6420 746f 2030 2020 2020 2020 2020 eed to 0 │ │ │ │ +0005f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f5e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005f5d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f630: 2020 2020 7c0a 7c6f 3920 3d20 3020 2020 |.|o9 = 0 │ │ │ │ +0005f620: 2020 2020 2020 2020 207c 0a7c 6f39 203d |.|o9 = │ │ │ │ +0005f630: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 0005f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f680: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0005f670: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005f680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f6d0: 2d2d 2d2d 2b0a 7c69 3130 203a 206e 203d ----+.|i10 : n = │ │ │ │ -0005f6e0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0005f6c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 ---------+.|i10 │ │ │ │ +0005f6d0: 3a20 6e20 3d20 3320 2020 2020 2020 2020 : n = 3 │ │ │ │ +0005f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f720: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005f710: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f770: 2020 2020 7c0a 7c6f 3130 203d 2033 2020 |.|o10 = 3 │ │ │ │ +0005f760: 2020 2020 2020 2020 207c 0a7c 6f31 3020 |.|o10 │ │ │ │ +0005f770: 3d20 3320 2020 2020 2020 2020 2020 2020 = 3 │ │ │ │ 0005f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f7c0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0005f7b0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005f7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f810: 2d2d 2d2d 2b0a 7c69 3131 203a 2063 203d ----+.|i11 : c = │ │ │ │ -0005f820: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0005f800: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 ---------+.|i11 │ │ │ │ +0005f810: 3a20 6320 3d20 3320 2020 2020 2020 2020 : c = 3 │ │ │ │ +0005f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f860: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005f850: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f8b0: 2020 2020 7c0a 7c6f 3131 203d 2033 2020 |.|o11 = 3 │ │ │ │ +0005f8a0: 2020 2020 2020 2020 207c 0a7c 6f31 3120 |.|o11 │ │ │ │ +0005f8b0: 3d20 3320 2020 2020 2020 2020 2020 2020 = 3 │ │ │ │ 0005f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f900: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0005f8f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005f900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f950: 2d2d 2d2d 2b0a 7c69 3132 203a 206b 6b20 ----+.|i12 : kk │ │ │ │ -0005f960: 3d20 5a5a 2f31 3031 2020 2020 2020 2020 = ZZ/101 │ │ │ │ +0005f940: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 ---------+.|i12 │ │ │ │ +0005f950: 3a20 6b6b 203d 205a 5a2f 3130 3120 2020 : kk = ZZ/101 │ │ │ │ +0005f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f9a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005f990: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005f9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f9f0: 2020 2020 7c0a 7c6f 3132 203d 206b 6b20 |.|o12 = kk │ │ │ │ +0005f9e0: 2020 2020 2020 2020 207c 0a7c 6f31 3220 |.|o12 │ │ │ │ +0005f9f0: 3d20 6b6b 2020 2020 2020 2020 2020 2020 = kk │ │ │ │ 0005fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fa40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005fa30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005fa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fa90: 2020 2020 7c0a 7c6f 3132 203a 2051 756f |.|o12 : Quo │ │ │ │ -0005faa0: 7469 656e 7452 696e 6720 2020 2020 2020 tientRing │ │ │ │ +0005fa80: 2020 2020 2020 2020 207c 0a7c 6f31 3220 |.|o12 │ │ │ │ +0005fa90: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ +0005faa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fae0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0005fad0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005fae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005faf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005fb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005fb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005fb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005fb30: 2d2d 2d2d 2b0a 7c69 3133 203a 2052 203d ----+.|i13 : R = │ │ │ │ -0005fb40: 206b 6b5b 785f 302e 2e78 5f28 6e2d 3129 kk[x_0..x_(n-1) │ │ │ │ -0005fb50: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +0005fb20: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 ---------+.|i13 │ │ │ │ +0005fb30: 3a20 5220 3d20 6b6b 5b78 5f30 2e2e 785f : R = kk[x_0..x_ │ │ │ │ +0005fb40: 286e 2d31 295d 2020 2020 2020 2020 2020 (n-1)] │ │ │ │ +0005fb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fb80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005fb70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005fb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fbd0: 2020 2020 7c0a 7c6f 3133 203d 2052 2020 |.|o13 = R │ │ │ │ +0005fbc0: 2020 2020 2020 2020 207c 0a7c 6f31 3320 |.|o13 │ │ │ │ +0005fbd0: 3d20 5220 2020 2020 2020 2020 2020 2020 = R │ │ │ │ 0005fbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fc20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005fc10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fc70: 2020 2020 7c0a 7c6f 3133 203a 2050 6f6c |.|o13 : Pol │ │ │ │ -0005fc80: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ +0005fc60: 2020 2020 2020 2020 207c 0a7c 6f31 3320 |.|o13 │ │ │ │ +0005fc70: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ +0005fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fcc0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0005fcb0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005fcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005fcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005fce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005fcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005fd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005fd10: 2d2d 2d2d 2b0a 7c69 3134 203a 2049 203d ----+.|i14 : I = │ │ │ │ -0005fd20: 2069 6465 616c 2061 7070 6c79 2863 2c20 ideal apply(c, │ │ │ │ -0005fd30: 692d 3e52 5f69 5e32 2920 2020 2020 2020 i->R_i^2) │ │ │ │ +0005fd00: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 ---------+.|i14 │ │ │ │ +0005fd10: 3a20 4920 3d20 6964 6561 6c20 6170 706c : I = ideal appl │ │ │ │ +0005fd20: 7928 632c 2069 2d3e 525f 695e 3229 2020 y(c, i->R_i^2) │ │ │ │ +0005fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fd60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005fd50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005fd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fdb0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0005fdc0: 2020 2020 2032 2020 2032 2020 2032 2020 2 2 2 │ │ │ │ +0005fda0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005fdb0: 2020 2020 2020 2020 2020 3220 2020 3220 2 2 │ │ │ │ +0005fdc0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0005fdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fe00: 2020 2020 7c0a 7c6f 3134 203d 2069 6465 |.|o14 = ide │ │ │ │ -0005fe10: 616c 2028 7820 2c20 7820 2c20 7820 2920 al (x , x , x ) │ │ │ │ +0005fdf0: 2020 2020 2020 2020 207c 0a7c 6f31 3420 |.|o14 │ │ │ │ +0005fe00: 3d20 6964 6561 6c20 2878 202c 2078 202c = ideal (x , x , │ │ │ │ +0005fe10: 2078 2029 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ 0005fe20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fe30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fe40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fe50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0005fe60: 2020 2020 2030 2020 2031 2020 2032 2020 0 1 2 │ │ │ │ +0005fe40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005fe50: 2020 2020 2020 2020 2020 3020 2020 3120 0 1 │ │ │ │ +0005fe60: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0005fe70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fe80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fea0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005fe90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005fea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005feb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fef0: 2020 2020 7c0a 7c6f 3134 203a 2049 6465 |.|o14 : Ide │ │ │ │ -0005ff00: 616c 206f 6620 5220 2020 2020 2020 2020 al of R │ │ │ │ +0005fee0: 2020 2020 2020 2020 207c 0a7c 6f31 3420 |.|o14 │ │ │ │ +0005fef0: 3a20 4964 6561 6c20 6f66 2052 2020 2020 : Ideal of R │ │ │ │ +0005ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ff10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ff30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ff40: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0005ff30: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0005ff40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ff50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ff60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ff70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ff80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ff90: 2d2d 2d2d 2b0a 7c69 3135 203a 2066 6620 ----+.|i15 : ff │ │ │ │ -0005ffa0: 3d20 6765 6e73 2049 2020 2020 2020 2020 = gens I │ │ │ │ +0005ff80: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3520 ---------+.|i15 │ │ │ │ +0005ff90: 3a20 6666 203d 2067 656e 7320 4920 2020 : ff = gens I │ │ │ │ +0005ffa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ffb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ffd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ffe0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0005ffd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0005ffe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060030: 2020 2020 7c0a 7c6f 3135 203d 207c 2078 |.|o15 = | x │ │ │ │ -00060040: 5f30 5e32 2078 5f31 5e32 2078 5f32 5e32 _0^2 x_1^2 x_2^2 │ │ │ │ -00060050: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00060020: 2020 2020 2020 2020 207c 0a7c 6f31 3520 |.|o15 │ │ │ │ +00060030: 3d20 7c20 785f 305e 3220 785f 315e 3220 = | x_0^2 x_1^2 │ │ │ │ +00060040: 785f 325e 3220 7c20 2020 2020 2020 2020 x_2^2 | │ │ │ │ +00060050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060080: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00060070: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00060080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000600a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000600b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000600c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000600d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000600e0: 2020 2020 2031 2020 2020 2020 3320 2020 1 3 │ │ │ │ +000600c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000600d0: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ +000600e0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 000600f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060120: 2020 2020 7c0a 7c6f 3135 203a 204d 6174 |.|o15 : Mat │ │ │ │ -00060130: 7269 7820 5220 203c 2d2d 2052 2020 2020 rix R <-- R │ │ │ │ +00060110: 2020 2020 2020 2020 207c 0a7c 6f31 3520 |.|o15 │ │ │ │ +00060120: 3a20 4d61 7472 6978 2052 2020 3c2d 2d20 : Matrix R <-- │ │ │ │ +00060130: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 00060140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060170: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00060160: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00060170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000601a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000601b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000601c0: 2d2d 2d2d 2b0a 7c69 3136 203a 2052 6261 ----+.|i16 : Rba │ │ │ │ -000601d0: 7220 3d20 522f 4920 2020 2020 2020 2020 r = R/I │ │ │ │ +000601b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 ---------+.|i16 │ │ │ │ +000601c0: 3a20 5262 6172 203d 2052 2f49 2020 2020 : Rbar = R/I │ │ │ │ +000601d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000601e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000601f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060210: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00060200: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00060210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060260: 2020 2020 7c0a 7c6f 3136 203d 2052 6261 |.|o16 = Rba │ │ │ │ -00060270: 7220 2020 2020 2020 2020 2020 2020 2020 r │ │ │ │ +00060250: 2020 2020 2020 2020 207c 0a7c 6f31 3620 |.|o16 │ │ │ │ +00060260: 3d20 5262 6172 2020 2020 2020 2020 2020 = Rbar │ │ │ │ +00060270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000602a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000602b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000602a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000602b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000602c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000602d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000602e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000602f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060300: 2020 2020 7c0a 7c6f 3136 203a 2051 756f |.|o16 : Quo │ │ │ │ -00060310: 7469 656e 7452 696e 6720 2020 2020 2020 tientRing │ │ │ │ +000602f0: 2020 2020 2020 2020 207c 0a7c 6f31 3620 |.|o16 │ │ │ │ +00060300: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ +00060310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060350: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00060340: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00060350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000603a0: 2d2d 2d2d 2b0a 7c69 3137 203a 2062 6172 ----+.|i17 : bar │ │ │ │ -000603b0: 203d 206d 6170 2852 6261 722c 2052 2920 = map(Rbar, R) │ │ │ │ +00060390: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3720 ---------+.|i17 │ │ │ │ +000603a0: 3a20 6261 7220 3d20 6d61 7028 5262 6172 : bar = map(Rbar │ │ │ │ +000603b0: 2c20 5229 2020 2020 2020 2020 2020 2020 , R) │ │ │ │ 000603c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000603d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000603e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000603f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000603e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000603f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060440: 2020 2020 7c0a 7c6f 3137 203d 206d 6170 |.|o17 = map │ │ │ │ -00060450: 2028 5262 6172 2c20 522c 207b 7820 2c20 (Rbar, R, {x , │ │ │ │ -00060460: 7820 2c20 7820 7d29 2020 2020 2020 2020 x , x }) │ │ │ │ +00060430: 2020 2020 2020 2020 207c 0a7c 6f31 3720 |.|o17 │ │ │ │ +00060440: 3d20 6d61 7020 2852 6261 722c 2052 2c20 = map (Rbar, R, │ │ │ │ +00060450: 7b78 202c 2078 202c 2078 207d 2920 2020 {x , x , x }) │ │ │ │ +00060460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060490: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000604a0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000604b0: 2031 2020 2032 2020 2020 2020 2020 2020 1 2 │ │ │ │ +00060480: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00060490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000604a0: 2020 3020 2020 3120 2020 3220 2020 2020 0 1 2 │ │ │ │ +000604b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000604c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000604d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000604e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000604d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000604e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000604f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060530: 2020 2020 7c0a 7c6f 3137 203a 2052 696e |.|o17 : Rin │ │ │ │ -00060540: 674d 6170 2052 6261 7220 3c2d 2d20 5220 gMap Rbar <-- R │ │ │ │ +00060520: 2020 2020 2020 2020 207c 0a7c 6f31 3720 |.|o17 │ │ │ │ +00060530: 3a20 5269 6e67 4d61 7020 5262 6172 203c : RingMap Rbar < │ │ │ │ +00060540: 2d2d 2052 2020 2020 2020 2020 2020 2020 -- R │ │ │ │ 00060550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060580: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00060570: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00060580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000605a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000605b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000605c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000605d0: 2d2d 2d2d 2b0a 7c69 3138 203a 204b 203d ----+.|i18 : K = │ │ │ │ -000605e0: 2063 6f6b 6572 2076 6172 7320 5262 6172 coker vars Rbar │ │ │ │ +000605c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3820 ---------+.|i18 │ │ │ │ +000605d0: 3a20 4b20 3d20 636f 6b65 7220 7661 7273 : K = coker vars │ │ │ │ +000605e0: 2052 6261 7220 2020 2020 2020 2020 2020 Rbar │ │ │ │ 000605f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060620: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00060610: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00060620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060670: 2020 2020 7c0a 7c6f 3138 203d 2063 6f6b |.|o18 = cok │ │ │ │ -00060680: 6572 6e65 6c20 7c20 785f 3020 785f 3120 ernel | x_0 x_1 │ │ │ │ -00060690: 785f 3220 7c20 2020 2020 2020 2020 2020 x_2 | │ │ │ │ +00060660: 2020 2020 2020 2020 207c 0a7c 6f31 3820 |.|o18 │ │ │ │ +00060670: 3d20 636f 6b65 726e 656c 207c 2078 5f30 = cokernel | x_0 │ │ │ │ +00060680: 2078 5f31 2078 5f32 207c 2020 2020 2020 x_1 x_2 | │ │ │ │ +00060690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000606a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000606b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000606c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000606b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000606c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000606d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000606e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000606f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060710: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00060720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060730: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ +00060700: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00060710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00060720: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00060730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060760: 2020 2020 7c0a 7c6f 3138 203a 2052 6261 |.|o18 : Rba │ │ │ │ -00060770: 722d 6d6f 6475 6c65 2c20 7175 6f74 6965 r-module, quotie │ │ │ │ -00060780: 6e74 206f 6620 5262 6172 2020 2020 2020 nt of Rbar │ │ │ │ +00060750: 2020 2020 2020 2020 207c 0a7c 6f31 3820 |.|o18 │ │ │ │ +00060760: 3a20 5262 6172 2d6d 6f64 756c 652c 2071 : Rbar-module, q │ │ │ │ +00060770: 756f 7469 656e 7420 6f66 2052 6261 7220 uotient of Rbar │ │ │ │ +00060780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000607a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000607b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000607a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000607b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000607c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000607d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000607e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000607f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060800: 2d2d 2d2d 2b0a 7c69 3139 203a 204d 6261 ----+.|i19 : Mba │ │ │ │ -00060810: 7220 3d20 7072 756e 6520 636f 6b65 7220 r = prune coker │ │ │ │ -00060820: 7261 6e64 6f6d 2852 6261 725e 322c 2052 random(Rbar^2, R │ │ │ │ -00060830: 6261 725e 7b2d 322c 2d32 7d29 2020 2020 bar^{-2,-2}) │ │ │ │ -00060840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060850: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000607f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3920 ---------+.|i19 │ │ │ │ +00060800: 3a20 4d62 6172 203d 2070 7275 6e65 2063 : Mbar = prune c │ │ │ │ +00060810: 6f6b 6572 2072 616e 646f 6d28 5262 6172 oker random(Rbar │ │ │ │ +00060820: 5e32 2c20 5262 6172 5e7b 2d32 2c2d 327d ^2, Rbar^{-2,-2} │ │ │ │ +00060830: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00060840: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00060850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000608a0: 2020 2020 7c0a 7c6f 3139 203d 2063 6f6b |.|o19 = cok │ │ │ │ -000608b0: 6572 6e65 6c20 7c20 785f 3078 5f31 2b31 ernel | x_0x_1+1 │ │ │ │ -000608c0: 3578 5f30 785f 322b 3338 785f 3178 5f32 5x_0x_2+38x_1x_2 │ │ │ │ -000608d0: 2034 3578 5f30 785f 322b 3239 785f 3178 45x_0x_2+29x_1x │ │ │ │ -000608e0: 5f32 2020 2020 2020 2020 7c20 2020 2020 _2 | │ │ │ │ -000608f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00060900: 2020 2020 2020 7c20 3335 785f 3078 5f32 | 35x_0x_2 │ │ │ │ -00060910: 2d33 3078 5f31 785f 3220 2020 2020 2020 -30x_1x_2 │ │ │ │ -00060920: 2078 5f30 785f 312d 3130 785f 3078 5f32 x_0x_1-10x_0x_2 │ │ │ │ -00060930: 2d32 3278 5f31 785f 3220 7c20 2020 2020 -22x_1x_2 | │ │ │ │ -00060940: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00060890: 2020 2020 2020 2020 207c 0a7c 6f31 3920 |.|o19 │ │ │ │ +000608a0: 3d20 636f 6b65 726e 656c 207c 2078 5f30 = cokernel | x_0 │ │ │ │ +000608b0: 785f 312b 3135 785f 3078 5f32 2b33 3878 x_1+15x_0x_2+38x │ │ │ │ +000608c0: 5f31 785f 3220 3435 785f 3078 5f32 2b32 _1x_2 45x_0x_2+2 │ │ │ │ +000608d0: 3978 5f31 785f 3220 2020 2020 2020 207c 9x_1x_2 | │ │ │ │ +000608e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000608f0: 2020 2020 2020 2020 2020 207c 2033 3578 | 35x │ │ │ │ +00060900: 5f30 785f 322d 3330 785f 3178 5f32 2020 _0x_2-30x_1x_2 │ │ │ │ +00060910: 2020 2020 2020 785f 3078 5f31 2d31 3078 x_0x_1-10x │ │ │ │ +00060920: 5f30 785f 322d 3232 785f 3178 5f32 207c _0x_2-22x_1x_2 | │ │ │ │ +00060930: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00060940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060990: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000609a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000609b0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00060980: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00060990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000609a0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000609b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000609c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000609d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000609e0: 2020 2020 7c0a 7c6f 3139 203a 2052 6261 |.|o19 : Rba │ │ │ │ -000609f0: 722d 6d6f 6475 6c65 2c20 7175 6f74 6965 r-module, quotie │ │ │ │ -00060a00: 6e74 206f 6620 5262 6172 2020 2020 2020 nt of Rbar │ │ │ │ +000609d0: 2020 2020 2020 2020 207c 0a7c 6f31 3920 |.|o19 │ │ │ │ +000609e0: 3a20 5262 6172 2d6d 6f64 756c 652c 2071 : Rbar-module, q │ │ │ │ +000609f0: 756f 7469 656e 7420 6f66 2052 6261 7220 uotient of Rbar │ │ │ │ +00060a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060a30: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00060a20: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00060a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060a80: 2d2d 2d2d 2b0a 7c69 3230 203a 2045 5320 ----+.|i20 : ES │ │ │ │ -00060a90: 3d20 6e65 7745 7874 284d 6261 722c 4b2c = newExt(Mbar,K, │ │ │ │ -00060aa0: 4c69 6674 203d 3e20 7472 7565 2920 2020 Lift => true) │ │ │ │ +00060a70: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3020 ---------+.|i20 │ │ │ │ +00060a80: 3a20 4553 203d 206e 6577 4578 7428 4d62 : ES = newExt(Mb │ │ │ │ +00060a90: 6172 2c4b 2c4c 6966 7420 3d3e 2074 7275 ar,K,Lift => tru │ │ │ │ +00060aa0: 6529 2020 2020 2020 2020 2020 2020 2020 e) │ │ │ │ 00060ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060ad0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00060ac0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00060ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060b20: 2020 2020 7c0a 7c6f 3230 203d 2063 6f6b |.|o20 = cok │ │ │ │ -00060b30: 6572 6e65 6c20 7b30 2c20 307d 2020 207c ernel {0, 0} | │ │ │ │ -00060b40: 2078 5f32 2078 5f31 2078 5f30 2030 2020 x_2 x_1 x_0 0 │ │ │ │ -00060b50: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060b60: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060b70: 2073 5f32 7c0a 7c20 2020 2020 2020 2020 s_2|.| │ │ │ │ -00060b80: 2020 2020 2020 7b30 2c20 307d 2020 207c {0, 0} | │ │ │ │ -00060b90: 2030 2020 2030 2020 2030 2020 2078 5f32 0 0 0 x_2 │ │ │ │ -00060ba0: 2078 5f31 2078 5f30 2030 2020 2030 2020 x_1 x_0 0 0 │ │ │ │ -00060bb0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060bc0: 2030 2020 7c0a 7c20 2020 2020 2020 2020 0 |.| │ │ │ │ -00060bd0: 2020 2020 2020 7b2d 322c 202d 337d 207c {-2, -3} | │ │ │ │ -00060be0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060bf0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060c00: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060c10: 2030 2020 7c0a 7c20 2020 2020 2020 2020 0 |.| │ │ │ │ -00060c20: 2020 2020 2020 7b2d 322c 202d 337d 207c {-2, -3} | │ │ │ │ -00060c30: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060c40: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060c50: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060c60: 2030 2020 7c0a 7c20 2020 2020 2020 2020 0 |.| │ │ │ │ -00060c70: 2020 2020 2020 7b2d 322c 202d 337d 207c {-2, -3} | │ │ │ │ -00060c80: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060c90: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060ca0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060cb0: 2030 2020 7c0a 7c20 2020 2020 2020 2020 0 |.| │ │ │ │ -00060cc0: 2020 2020 2020 7b2d 322c 202d 337d 207c {-2, -3} | │ │ │ │ -00060cd0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060ce0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060cf0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060d00: 2030 2020 7c0a 7c20 2020 2020 2020 2020 0 |.| │ │ │ │ -00060d10: 2020 2020 2020 7b2d 312c 202d 327d 207c {-1, -2} | │ │ │ │ -00060d20: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060d30: 2030 2020 2030 2020 2078 5f32 2078 5f31 0 0 x_2 x_1 │ │ │ │ -00060d40: 2078 5f30 2030 2020 2030 2020 2030 2020 x_0 0 0 0 │ │ │ │ -00060d50: 2030 2020 7c0a 7c20 2020 2020 2020 2020 0 |.| │ │ │ │ -00060d60: 2020 2020 2020 7b2d 312c 202d 327d 207c {-1, -2} | │ │ │ │ -00060d70: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060d80: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00060d90: 2030 2020 2078 5f32 2078 5f31 2078 5f30 0 x_2 x_1 x_0 │ │ │ │ -00060da0: 2030 2020 7c0a 7c20 2020 2020 2020 2020 0 |.| │ │ │ │ +00060b10: 2020 2020 2020 2020 207c 0a7c 6f32 3020 |.|o20 │ │ │ │ +00060b20: 3d20 636f 6b65 726e 656c 207b 302c 2030 = cokernel {0, 0 │ │ │ │ +00060b30: 7d20 2020 7c20 785f 3220 785f 3120 785f } | x_2 x_1 x_ │ │ │ │ +00060b40: 3020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 0 │ │ │ │ +00060b50: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00060b60: 2020 3020 2020 735f 327c 0a7c 2020 2020 0 s_2|.| │ │ │ │ +00060b70: 2020 2020 2020 2020 2020 207b 302c 2030 {0, 0 │ │ │ │ +00060b80: 7d20 2020 7c20 3020 2020 3020 2020 3020 } | 0 0 0 │ │ │ │ +00060b90: 2020 785f 3220 785f 3120 785f 3020 3020 x_2 x_1 x_0 0 │ │ │ │ +00060ba0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00060bb0: 2020 3020 2020 3020 207c 0a7c 2020 2020 0 0 |.| │ │ │ │ +00060bc0: 2020 2020 2020 2020 2020 207b 2d32 2c20 {-2, │ │ │ │ +00060bd0: 2d33 7d20 7c20 3020 2020 3020 2020 3020 -3} | 0 0 0 │ │ │ │ +00060be0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00060bf0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00060c00: 2020 3020 2020 3020 207c 0a7c 2020 2020 0 0 |.| │ │ │ │ +00060c10: 2020 2020 2020 2020 2020 207b 2d32 2c20 {-2, │ │ │ │ +00060c20: 2d33 7d20 7c20 3020 2020 3020 2020 3020 -3} | 0 0 0 │ │ │ │ +00060c30: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00060c40: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00060c50: 2020 3020 2020 3020 207c 0a7c 2020 2020 0 0 |.| │ │ │ │ +00060c60: 2020 2020 2020 2020 2020 207b 2d32 2c20 {-2, │ │ │ │ +00060c70: 2d33 7d20 7c20 3020 2020 3020 2020 3020 -3} | 0 0 0 │ │ │ │ +00060c80: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00060c90: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00060ca0: 2020 3020 2020 3020 207c 0a7c 2020 2020 0 0 |.| │ │ │ │ +00060cb0: 2020 2020 2020 2020 2020 207b 2d32 2c20 {-2, │ │ │ │ +00060cc0: 2d33 7d20 7c20 3020 2020 3020 2020 3020 -3} | 0 0 0 │ │ │ │ +00060cd0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00060ce0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00060cf0: 2020 3020 2020 3020 207c 0a7c 2020 2020 0 0 |.| │ │ │ │ +00060d00: 2020 2020 2020 2020 2020 207b 2d31 2c20 {-1, │ │ │ │ +00060d10: 2d32 7d20 7c20 3020 2020 3020 2020 3020 -2} | 0 0 0 │ │ │ │ +00060d20: 2020 3020 2020 3020 2020 3020 2020 785f 0 0 0 x_ │ │ │ │ +00060d30: 3220 785f 3120 785f 3020 3020 2020 3020 2 x_1 x_0 0 0 │ │ │ │ +00060d40: 2020 3020 2020 3020 207c 0a7c 2020 2020 0 0 |.| │ │ │ │ +00060d50: 2020 2020 2020 2020 2020 207b 2d31 2c20 {-1, │ │ │ │ +00060d60: 2d32 7d20 7c20 3020 2020 3020 2020 3020 -2} | 0 0 0 │ │ │ │ +00060d70: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00060d80: 2020 3020 2020 3020 2020 785f 3220 785f 0 0 x_2 x_ │ │ │ │ +00060d90: 3120 785f 3020 3020 207c 0a7c 2020 2020 1 x_0 0 |.| │ │ │ │ +00060da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060df0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00060de0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00060df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060e30: 2020 2020 2020 2020 3820 2020 2020 2020 8 │ │ │ │ -00060e40: 2020 2020 7c0a 7c6f 3230 203a 206b 6b5b |.|o20 : kk[ │ │ │ │ -00060e50: 7320 2e2e 7320 2c20 7820 2e2e 7820 5d2d s ..s , x ..x ]- │ │ │ │ -00060e60: 6d6f 6475 6c65 2c20 7175 6f74 6965 6e74 module, quotient │ │ │ │ -00060e70: 206f 6620 286b 6b5b 7320 2e2e 7320 2c20 of (kk[s ..s , │ │ │ │ -00060e80: 7820 2e2e 7820 5d29 2020 2020 2020 2020 x ..x ]) │ │ │ │ -00060e90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00060ea0: 2030 2020 2032 2020 2030 2020 2032 2020 0 2 0 2 │ │ │ │ -00060eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060ec0: 2020 2020 2020 2020 2030 2020 2032 2020 0 2 │ │ │ │ -00060ed0: 2030 2020 2032 2020 2020 2020 2020 2020 0 2 │ │ │ │ -00060ee0: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ +00060e20: 2020 2020 2020 2020 2020 2020 2038 2020 8 │ │ │ │ +00060e30: 2020 2020 2020 2020 207c 0a7c 6f32 3020 |.|o20 │ │ │ │ +00060e40: 3a20 6b6b 5b73 202e 2e73 202c 2078 202e : kk[s ..s , x . │ │ │ │ +00060e50: 2e78 205d 2d6d 6f64 756c 652c 2071 756f .x ]-module, quo │ │ │ │ +00060e60: 7469 656e 7420 6f66 2028 6b6b 5b73 202e tient of (kk[s . │ │ │ │ +00060e70: 2e73 202c 2078 202e 2e78 205d 2920 2020 .s , x ..x ]) │ │ │ │ +00060e80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00060e90: 2020 2020 2020 3020 2020 3220 2020 3020 0 2 0 │ │ │ │ +00060ea0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00060eb0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00060ec0: 2020 3220 2020 3020 2020 3220 2020 2020 2 0 2 │ │ │ │ +00060ed0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +00060ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060f30: 2d2d 2d2d 7c0a 7c73 5f31 2073 5f30 2030 ----|.|s_1 s_0 0 │ │ │ │ -00060f40: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00060f50: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00060f60: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00060f70: 2020 2030 2020 2030 2020 2020 2020 2020 0 0 │ │ │ │ -00060f80: 2020 2020 7c0a 7c30 2020 2030 2020 2073 |.|0 0 s │ │ │ │ -00060f90: 5f32 2073 5f31 2073 5f30 2030 2020 2030 _2 s_1 s_0 0 0 │ │ │ │ -00060fa0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00060fb0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00060fc0: 2020 2030 2020 2030 2020 2020 2020 2020 0 0 │ │ │ │ -00060fd0: 2020 2020 7c0a 7c30 2020 2030 2020 2030 |.|0 0 0 │ │ │ │ -00060fe0: 2020 2030 2020 2030 2020 2078 5f32 2078 0 0 x_2 x │ │ │ │ -00060ff0: 5f31 2078 5f30 2030 2020 2030 2020 2030 _1 x_0 0 0 0 │ │ │ │ -00061000: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00061010: 2020 2030 2020 2030 2020 2020 2020 2020 0 0 │ │ │ │ -00061020: 2020 2020 7c0a 7c30 2020 2030 2020 2030 |.|0 0 0 │ │ │ │ -00061030: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00061040: 2020 2030 2020 2078 5f32 2078 5f31 2078 0 x_2 x_1 x │ │ │ │ -00061050: 5f30 2030 2020 2030 2020 2030 2020 2030 _0 0 0 0 0 │ │ │ │ -00061060: 2020 2030 2020 2030 2020 2020 2020 2020 0 0 │ │ │ │ -00061070: 2020 2020 7c0a 7c30 2020 2030 2020 2030 |.|0 0 0 │ │ │ │ -00061080: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00061090: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -000610a0: 2020 2078 5f32 2078 5f31 2078 5f30 2030 x_2 x_1 x_0 0 │ │ │ │ -000610b0: 2020 2030 2020 2030 2020 2020 2020 2020 0 0 │ │ │ │ -000610c0: 2020 2020 7c0a 7c30 2020 2030 2020 2030 |.|0 0 0 │ │ │ │ -000610d0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -000610e0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -000610f0: 2020 2030 2020 2030 2020 2030 2020 2078 0 0 0 x │ │ │ │ -00061100: 5f32 2078 5f31 2078 5f30 2020 2020 2020 _2 x_1 x_0 │ │ │ │ -00061110: 2020 2020 7c0a 7c30 2020 2030 2020 2030 |.|0 0 0 │ │ │ │ -00061120: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00061130: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00061140: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00061150: 2020 2030 2020 2030 2020 2020 2020 2020 0 0 │ │ │ │ -00061160: 2020 2020 7c0a 7c30 2020 2030 2020 2030 |.|0 0 0 │ │ │ │ -00061170: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00061180: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00061190: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -000611a0: 2020 2030 2020 2030 2020 2020 2020 2020 0 0 │ │ │ │ -000611b0: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ +00060f20: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 735f 3120 ---------|.|s_1 │ │ │ │ +00060f30: 735f 3020 3020 2020 3020 2020 3020 2020 s_0 0 0 0 │ │ │ │ +00060f40: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00060f50: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00060f60: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00060f70: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00060f80: 3020 2020 735f 3220 735f 3120 735f 3020 0 s_2 s_1 s_0 │ │ │ │ +00060f90: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00060fa0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00060fb0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00060fc0: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00060fd0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00060fe0: 785f 3220 785f 3120 785f 3020 3020 2020 x_2 x_1 x_0 0 │ │ │ │ +00060ff0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00061000: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00061010: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061020: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00061030: 3020 2020 3020 2020 3020 2020 785f 3220 0 0 0 x_2 │ │ │ │ +00061040: 785f 3120 785f 3020 3020 2020 3020 2020 x_1 x_0 0 0 │ │ │ │ +00061050: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00061060: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061070: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00061080: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00061090: 3020 2020 3020 2020 785f 3220 785f 3120 0 0 x_2 x_1 │ │ │ │ +000610a0: 785f 3020 3020 2020 3020 2020 3020 2020 x_0 0 0 0 │ │ │ │ +000610b0: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +000610c0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +000610d0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +000610e0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +000610f0: 3020 2020 785f 3220 785f 3120 785f 3020 0 x_2 x_1 x_0 │ │ │ │ +00061100: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061110: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00061120: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00061130: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00061140: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00061150: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061160: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00061170: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00061180: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00061190: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +000611a0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +000611b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000611c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000611d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000611e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000611f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061200: 2d2d 2d2d 7c0a 7c30 2020 2020 2020 2020 ----|.|0 │ │ │ │ -00061210: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ -00061220: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ -00061230: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ -00061240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061250: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ -00061260: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ -00061270: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ -00061280: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ -00061290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000612a0: 2020 2020 7c0a 7c73 5f30 2d31 3173 5f31 |.|s_0-11s_1 │ │ │ │ -000612b0: 2d34 3073 5f32 202d 735f 3120 2020 2020 -40s_2 -s_1 │ │ │ │ -000612c0: 2020 2020 2020 2039 735f 312d 3233 735f 9s_1-23s_ │ │ │ │ -000612d0: 3220 2020 2020 3137 735f 3120 2020 2020 2 17s_1 │ │ │ │ -000612e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000612f0: 2020 2020 7c0a 7c34 3573 5f31 2d33 3573 |.|45s_1-35s │ │ │ │ -00061300: 5f32 2020 2020 2033 3873 5f31 2020 2020 _2 38s_1 │ │ │ │ -00061310: 2020 2020 2020 2073 5f30 2d37 735f 312b s_0-7s_1+ │ │ │ │ -00061320: 3135 735f 3220 735f 3120 2020 2020 2020 15s_2 s_1 │ │ │ │ -00061330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061340: 2020 2020 7c0a 7c2d 3130 735f 312d 3236 |.|-10s_1-26 │ │ │ │ -00061350: 735f 3220 2020 2073 5f30 2b34 3973 5f31 s_2 s_0+49s_1 │ │ │ │ -00061360: 2d34 3073 5f32 2033 3473 5f31 2b34 735f -40s_2 34s_1+4s_ │ │ │ │ -00061370: 3220 2020 2020 3973 5f31 2d32 3373 5f32 2 9s_1-23s_2 │ │ │ │ -00061380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061390: 2020 2020 7c0a 7c35 3073 5f31 2d73 5f32 |.|50s_1-s_2 │ │ │ │ -000613a0: 2020 2020 2020 2034 3573 5f31 2d33 3573 45s_1-35s │ │ │ │ -000613b0: 5f32 2020 2020 2031 3073 5f31 2b32 3673 _2 10s_1+26s │ │ │ │ -000613c0: 5f32 2020 2020 735f 302d 3438 735f 312b _2 s_0-48s_1+ │ │ │ │ -000613d0: 3135 735f 3220 2020 2020 2020 2020 2020 15s_2 │ │ │ │ -000613e0: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ -000613f0: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ -00061400: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ -00061410: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ -00061420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061430: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ -00061440: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ -00061450: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ -00061460: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ -00061470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061480: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ +000611f0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3020 2020 ---------|.|0 │ │ │ │ +00061200: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00061210: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00061220: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +00061230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061240: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061250: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00061260: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00061270: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +00061280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061290: 2020 2020 2020 2020 207c 0a7c 735f 302d |.|s_0- │ │ │ │ +000612a0: 3131 735f 312d 3430 735f 3220 2d73 5f31 11s_1-40s_2 -s_1 │ │ │ │ +000612b0: 2020 2020 2020 2020 2020 2020 3973 5f31 9s_1 │ │ │ │ +000612c0: 2d32 3373 5f32 2020 2020 2031 3773 5f31 -23s_2 17s_1 │ │ │ │ +000612d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000612e0: 2020 2020 2020 2020 207c 0a7c 3435 735f |.|45s_ │ │ │ │ +000612f0: 312d 3335 735f 3220 2020 2020 3338 735f 1-35s_2 38s_ │ │ │ │ +00061300: 3120 2020 2020 2020 2020 2020 735f 302d 1 s_0- │ │ │ │ +00061310: 3773 5f31 2b31 3573 5f32 2073 5f31 2020 7s_1+15s_2 s_1 │ │ │ │ +00061320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061330: 2020 2020 2020 2020 207c 0a7c 2d31 3073 |.|-10s │ │ │ │ +00061340: 5f31 2d32 3673 5f32 2020 2020 735f 302b _1-26s_2 s_0+ │ │ │ │ +00061350: 3439 735f 312d 3430 735f 3220 3334 735f 49s_1-40s_2 34s_ │ │ │ │ +00061360: 312b 3473 5f32 2020 2020 2039 735f 312d 1+4s_2 9s_1- │ │ │ │ +00061370: 3233 735f 3220 2020 2020 2020 2020 2020 23s_2 │ │ │ │ +00061380: 2020 2020 2020 2020 207c 0a7c 3530 735f |.|50s_ │ │ │ │ +00061390: 312d 735f 3220 2020 2020 2020 3435 735f 1-s_2 45s_ │ │ │ │ +000613a0: 312d 3335 735f 3220 2020 2020 3130 735f 1-35s_2 10s_ │ │ │ │ +000613b0: 312b 3236 735f 3220 2020 2073 5f30 2d34 1+26s_2 s_0-4 │ │ │ │ +000613c0: 3873 5f31 2b31 3573 5f32 2020 2020 2020 8s_1+15s_2 │ │ │ │ +000613d0: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +000613e0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +000613f0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00061400: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +00061410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061420: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061430: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00061440: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00061450: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +00061460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061470: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +00061480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000614a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000614b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000614c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000614d0: 2d2d 2d2d 7c0a 7c30 2020 2020 2020 2020 ----|.|0 │ │ │ │ +000614c0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3020 2020 ---------|.|0 │ │ │ │ +000614d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000614e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000614f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061520: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ +00061510: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061570: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ +00061560: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000615a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000615b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000615c0: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ +000615b0: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +000615c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000615d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000615e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000615f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061610: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ +00061600: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061660: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ +00061650: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000616a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000616b0: 2020 2020 7c0a 7c73 5f30 5e32 2b34 3273 |.|s_0^2+42s │ │ │ │ -000616c0: 5f30 735f 312d 3330 735f 315e 322d 3235 _0s_1-30s_1^2-25 │ │ │ │ -000616d0: 735f 3073 5f32 2d33 3573 5f31 735f 322b s_0s_2-35s_1s_2+ │ │ │ │ -000616e0: 3973 5f32 5e32 2020 2020 2020 2020 2020 9s_2^2 │ │ │ │ -000616f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061700: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ +000616a0: 2020 2020 2020 2020 207c 0a7c 735f 305e |.|s_0^ │ │ │ │ +000616b0: 322b 3432 735f 3073 5f31 2d33 3073 5f31 2+42s_0s_1-30s_1 │ │ │ │ +000616c0: 5e32 2d32 3573 5f30 735f 322d 3335 735f ^2-25s_0s_2-35s_ │ │ │ │ +000616d0: 3173 5f32 2b39 735f 325e 3220 2020 2020 1s_2+9s_2^2 │ │ │ │ +000616e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000616f0: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061750: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ +00061740: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +00061750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000617a0: 2d2d 2d2d 7c0a 7c30 2020 2020 2020 2020 ----|.|0 │ │ │ │ +00061790: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3020 2020 ---------|.|0 │ │ │ │ +000617a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000617b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000617c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000617d0: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ -000617e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000617f0: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ +000617c0: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +000617d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000617e0: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +000617f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061820: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ -00061830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061840: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ +00061810: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +00061820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061830: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061870: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ -00061880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061890: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ +00061860: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +00061870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061880: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000618a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000618b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000618c0: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ -000618d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000618e0: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ +000618b0: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +000618c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000618d0: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +000618e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000618f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061910: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ -00061920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061930: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ +00061900: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +00061910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061920: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061960: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ -00061970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061980: 2020 2020 7c0a 7c30 2020 2020 2020 2020 |.|0 │ │ │ │ +00061950: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +00061960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061970: 2020 2020 2020 2020 207c 0a7c 3020 2020 |.|0 │ │ │ │ +00061980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000619a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000619b0: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ -000619c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000619d0: 2020 2020 7c0a 7c73 5f30 5e32 2b34 3273 |.|s_0^2+42s │ │ │ │ -000619e0: 5f30 735f 312d 3330 735f 315e 322d 3235 _0s_1-30s_1^2-25 │ │ │ │ -000619f0: 735f 3073 5f32 2d33 3573 5f31 735f 322b s_0s_2-35s_1s_2+ │ │ │ │ -00061a00: 3973 5f32 5e32 207c 2020 2020 2020 2020 9s_2^2 | │ │ │ │ -00061a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061a20: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000619a0: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +000619b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000619c0: 2020 2020 2020 2020 207c 0a7c 735f 305e |.|s_0^ │ │ │ │ +000619d0: 322b 3432 735f 3073 5f31 2d33 3073 5f31 2+42s_0s_1-30s_1 │ │ │ │ +000619e0: 5e32 2d32 3573 5f30 735f 322d 3335 735f ^2-25s_0s_2-35s_ │ │ │ │ +000619f0: 3173 5f32 2b39 735f 325e 3220 7c20 2020 1s_2+9s_2^2 | │ │ │ │ +00061a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061a10: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00061a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061a70: 2d2d 2d2d 2b0a 7c69 3231 203a 2053 203d ----+.|i21 : S = │ │ │ │ -00061a80: 2072 696e 6720 4553 2020 2020 2020 2020 ring ES │ │ │ │ +00061a60: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3120 ---------+.|i21 │ │ │ │ +00061a70: 3a20 5320 3d20 7269 6e67 2045 5320 2020 : S = ring ES │ │ │ │ +00061a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061ac0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00061ab0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00061ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061b10: 2020 2020 7c0a 7c6f 3231 203d 2053 2020 |.|o21 = S │ │ │ │ +00061b00: 2020 2020 2020 2020 207c 0a7c 6f32 3120 |.|o21 │ │ │ │ +00061b10: 3d20 5320 2020 2020 2020 2020 2020 2020 = S │ │ │ │ 00061b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061b60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00061b50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00061b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061bb0: 2020 2020 7c0a 7c6f 3231 203a 2050 6f6c |.|o21 : Pol │ │ │ │ -00061bc0: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ +00061ba0: 2020 2020 2020 2020 207c 0a7c 6f32 3120 |.|o21 │ │ │ │ +00061bb0: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ +00061bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061c00: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00061bf0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00061c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061c50: 2d2d 2d2d 2b0a 0a63 6f6d 7061 7265 2077 ----+..compare w │ │ │ │ -00061c60: 6974 6820 7468 6520 6275 696c 742d 696e ith the built-in │ │ │ │ -00061c70: 2045 7874 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d Ext..+--------- │ │ │ │ +00061c40: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 636f 6d70 ---------+..comp │ │ │ │ +00061c50: 6172 6520 7769 7468 2074 6865 2062 7569 are with the bui │ │ │ │ +00061c60: 6c74 2d69 6e20 4578 740a 0a2b 2d2d 2d2d lt-in Ext..+---- │ │ │ │ +00061c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061cb0: 2b0a 7c69 3232 203a 2045 4520 3d20 4578 +.|i22 : EE = Ex │ │ │ │ -00061cc0: 7428 4d62 6172 2c4b 293b 2020 2020 2020 t(Mbar,K); │ │ │ │ +00061ca0: 2d2d 2d2d 2d2b 0a7c 6932 3220 3a20 4545 -----+.|i22 : EE │ │ │ │ +00061cb0: 203d 2045 7874 284d 6261 722c 4b29 3b20 = Ext(Mbar,K); │ │ │ │ +00061cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061ce0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00061ce0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00061cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061d20: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3233 203a --------+.|i23 : │ │ │ │ -00061d30: 2053 2720 3d20 7269 6e67 2045 4520 2d2d S' = ring EE -- │ │ │ │ -00061d40: 206e 6f74 6520 7468 6174 2053 2720 6973 note that S' is │ │ │ │ -00061d50: 2074 6865 2070 6f6c 796e 6f6d 6961 6c20 the polynomial │ │ │ │ -00061d60: 7269 6e67 7c0a 7c20 2020 2020 2020 2020 ring|.| │ │ │ │ +00061d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00061d20: 6932 3320 3a20 5327 203d 2072 696e 6720 i23 : S' = ring │ │ │ │ +00061d30: 4545 202d 2d20 6e6f 7465 2074 6861 7420 EE -- note that │ │ │ │ +00061d40: 5327 2069 7320 7468 6520 706f 6c79 6e6f S' is the polyno │ │ │ │ +00061d50: 6d69 616c 2072 696e 677c 0a7c 2020 2020 mial ring|.| │ │ │ │ +00061d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061da0: 7c0a 7c6f 3233 203d 2053 2720 2020 2020 |.|o23 = S' │ │ │ │ +00061d90: 2020 2020 207c 0a7c 6f32 3320 3d20 5327 |.|o23 = S' │ │ │ │ +00061da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061dd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00061dd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00061de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061e10: 2020 2020 2020 2020 7c0a 7c6f 3233 203a |.|o23 : │ │ │ │ -00061e20: 2050 6f6c 796e 6f6d 6961 6c52 696e 6720 PolynomialRing │ │ │ │ +00061e00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00061e10: 6f32 3320 3a20 506f 6c79 6e6f 6d69 616c o23 : Polynomial │ │ │ │ +00061e20: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 00061e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061e50: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00061e40: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00061e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061e90: 2b0a 0a54 6865 2074 776f 2076 6572 7369 +..The two versi │ │ │ │ -00061ea0: 6f6e 7320 6f66 2045 7874 2061 7070 6561 ons of Ext appea │ │ │ │ -00061eb0: 7220 746f 2062 6520 7468 6520 7361 6d65 r to be the same │ │ │ │ -00061ec0: 2075 7020 746f 2063 6861 6e67 6520 6f66 up to change of │ │ │ │ -00061ed0: 2076 6172 6961 626c 6573 3a0a 0a2b 2d2d variables:..+-- │ │ │ │ +00061e80: 2d2d 2d2d 2d2b 0a0a 5468 6520 7477 6f20 -----+..The two │ │ │ │ +00061e90: 7665 7273 696f 6e73 206f 6620 4578 7420 versions of Ext │ │ │ │ +00061ea0: 6170 7065 6172 2074 6f20 6265 2074 6865 appear to be the │ │ │ │ +00061eb0: 2073 616d 6520 7570 2074 6f20 6368 616e same up to chan │ │ │ │ +00061ec0: 6765 206f 6620 7661 7269 6162 6c65 733a ge of variables: │ │ │ │ +00061ed0: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ 00061ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00061f20: 6932 3420 3a20 4120 3d20 6672 6565 5265 i24 : A = freeRe │ │ │ │ -00061f30: 736f 6c75 7469 6f6e 2045 5320 2020 2020 solution ES │ │ │ │ +00061f10: 2d2d 2b0a 7c69 3234 203a 2041 203d 2066 --+.|i24 : A = f │ │ │ │ +00061f20: 7265 6552 6573 6f6c 7574 696f 6e20 4553 reeResolution ES │ │ │ │ +00061f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061f50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00061f60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00061f50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00061f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061fa0: 207c 0a7c 2020 2020 2020 2038 2020 2020 |.| 8 │ │ │ │ -00061fb0: 2020 3336 2020 2020 2020 3636 2020 2020 36 66 │ │ │ │ -00061fc0: 2020 3634 2020 2020 2020 3336 2020 2020 64 36 │ │ │ │ -00061fd0: 2020 3132 2020 2020 2020 3220 2020 2020 12 2 │ │ │ │ -00061fe0: 2020 207c 0a7c 6f32 3420 3d20 5320 203c |.|o24 = S < │ │ │ │ -00061ff0: 2d2d 2053 2020 203c 2d2d 2053 2020 203c -- S <-- S < │ │ │ │ -00062000: 2d2d 2053 2020 203c 2d2d 2053 2020 203c -- S <-- S < │ │ │ │ -00062010: 2d2d 2053 2020 203c 2d2d 2053 2020 2020 -- S <-- S │ │ │ │ -00062020: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061f90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00061fa0: 3820 2020 2020 2033 3620 2020 2020 2036 8 36 6 │ │ │ │ +00061fb0: 3620 2020 2020 2036 3420 2020 2020 2033 6 64 3 │ │ │ │ +00061fc0: 3620 2020 2020 2031 3220 2020 2020 2032 6 12 2 │ │ │ │ +00061fd0: 2020 2020 2020 2020 7c0a 7c6f 3234 203d |.|o24 = │ │ │ │ +00061fe0: 2053 2020 3c2d 2d20 5320 2020 3c2d 2d20 S <-- S <-- │ │ │ │ +00061ff0: 5320 2020 3c2d 2d20 5320 2020 3c2d 2d20 S <-- S <-- │ │ │ │ +00062000: 5320 2020 3c2d 2d20 5320 2020 3c2d 2d20 S <-- S <-- │ │ │ │ +00062010: 5320 2020 2020 2020 2020 7c0a 7c20 2020 S |.| │ │ │ │ +00062020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062060: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00062070: 3020 2020 2020 2031 2020 2020 2020 2032 0 1 2 │ │ │ │ -00062080: 2020 2020 2020 2033 2020 2020 2020 2034 3 4 │ │ │ │ -00062090: 2020 2020 2020 2035 2020 2020 2020 2036 5 6 │ │ │ │ -000620a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00062050: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00062060: 2020 2020 2030 2020 2020 2020 3120 2020 0 1 │ │ │ │ +00062070: 2020 2020 3220 2020 2020 2020 3320 2020 2 3 │ │ │ │ +00062080: 2020 2020 3420 2020 2020 2020 3520 2020 4 5 │ │ │ │ +00062090: 2020 2020 3620 2020 2020 2020 2020 7c0a 6 |. │ │ │ │ +000620a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000620b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000620c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000620d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000620e0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -000620f0: 3420 3a20 436f 6d70 6c65 7820 2020 2020 4 : Complex │ │ │ │ +000620e0: 7c0a 7c6f 3234 203a 2043 6f6d 706c 6578 |.|o24 : Complex │ │ │ │ +000620f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062120: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00062120: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00062130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00062170: 0a7c 6932 3520 3a20 4220 3d20 6672 6565 .|i25 : B = free │ │ │ │ -00062180: 5265 736f 6c75 7469 6f6e 2045 4520 2020 Resolution EE │ │ │ │ +00062160: 2d2d 2d2d 2b0a 7c69 3235 203a 2042 203d ----+.|i25 : B = │ │ │ │ +00062170: 2066 7265 6552 6573 6f6c 7574 696f 6e20 freeResolution │ │ │ │ +00062180: 4545 2020 2020 2020 2020 2020 2020 2020 EE │ │ │ │ 00062190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000621a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000621b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000621a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000621b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000621c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000621d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000621e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000621f0: 2020 207c 0a7c 2020 2020 2020 2020 3820 |.| 8 │ │ │ │ -00062200: 2020 2020 2020 3336 2020 2020 2020 2036 36 6 │ │ │ │ -00062210: 3620 2020 2020 2020 3634 2020 2020 2020 6 64 │ │ │ │ -00062220: 2033 3620 2020 2020 2020 3132 2020 2020 36 12 │ │ │ │ -00062230: 2020 2032 207c 0a7c 6f32 3520 3d20 5327 2 |.|o25 = S' │ │ │ │ -00062240: 2020 3c2d 2d20 5327 2020 203c 2d2d 2053 <-- S' <-- S │ │ │ │ -00062250: 2720 2020 3c2d 2d20 5327 2020 203c 2d2d ' <-- S' <-- │ │ │ │ -00062260: 2053 2720 2020 3c2d 2d20 5327 2020 203c S' <-- S' < │ │ │ │ -00062270: 2d2d 2053 2720 207c 0a7c 2020 2020 2020 -- S' |.| │ │ │ │ +000621e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000621f0: 2020 2038 2020 2020 2020 2033 3620 2020 8 36 │ │ │ │ +00062200: 2020 2020 3636 2020 2020 2020 2036 3420 66 64 │ │ │ │ +00062210: 2020 2020 2020 3336 2020 2020 2020 2031 36 1 │ │ │ │ +00062220: 3220 2020 2020 2020 3220 7c0a 7c6f 3235 2 2 |.|o25 │ │ │ │ +00062230: 203d 2053 2720 203c 2d2d 2053 2720 2020 = S' <-- S' │ │ │ │ +00062240: 3c2d 2d20 5327 2020 203c 2d2d 2053 2720 <-- S' <-- S' │ │ │ │ +00062250: 2020 3c2d 2d20 5327 2020 203c 2d2d 2053 <-- S' <-- S │ │ │ │ +00062260: 2720 2020 3c2d 2d20 5327 2020 7c0a 7c20 ' <-- S' |.| │ │ │ │ +00062270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000622a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000622b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000622c0: 2020 3020 2020 2020 2020 3120 2020 2020 0 1 │ │ │ │ -000622d0: 2020 2032 2020 2020 2020 2020 3320 2020 2 3 │ │ │ │ -000622e0: 2020 2020 2034 2020 2020 2020 2020 3520 4 5 │ │ │ │ -000622f0: 2020 2020 2020 2036 2020 207c 0a7c 2020 6 |.| │ │ │ │ +000622a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000622b0: 7c20 2020 2020 2030 2020 2020 2020 2031 | 0 1 │ │ │ │ +000622c0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000622d0: 2033 2020 2020 2020 2020 3420 2020 2020 3 4 │ │ │ │ +000622e0: 2020 2035 2020 2020 2020 2020 3620 2020 5 6 │ │ │ │ +000622f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00062300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062330: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00062340: 6f32 3520 3a20 436f 6d70 6c65 7820 2020 o25 : Complex │ │ │ │ +00062330: 2020 7c0a 7c6f 3235 203a 2043 6f6d 706c |.|o25 : Compl │ │ │ │ +00062340: 6578 2020 2020 2020 2020 2020 2020 2020 ex │ │ │ │ 00062350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00062380: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00062370: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00062380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000623a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000623b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000623c0: 2d2b 0a7c 6932 3620 3a20 616c 6c28 6c65 -+.|i26 : all(le │ │ │ │ -000623d0: 6e67 7468 2041 2b31 2c20 692d 3e20 736f ngth A+1, i-> so │ │ │ │ -000623e0: 7274 2064 6567 7265 6573 2041 5f69 203d rt degrees A_i = │ │ │ │ -000623f0: 3d20 736f 7274 2064 6567 7265 6573 2042 = sort degrees B │ │ │ │ -00062400: 5f69 297c 0a7c 2020 2020 2020 2020 2020 _i)|.| │ │ │ │ +000623b0: 2d2d 2d2d 2d2d 2b0a 7c69 3236 203a 2061 ------+.|i26 : a │ │ │ │ +000623c0: 6c6c 286c 656e 6774 6820 412b 312c 2069 ll(length A+1, i │ │ │ │ +000623d0: 2d3e 2073 6f72 7420 6465 6772 6565 7320 -> sort degrees │ │ │ │ +000623e0: 415f 6920 3d3d 2073 6f72 7420 6465 6772 A_i == sort degr │ │ │ │ +000623f0: 6565 7320 425f 6929 7c0a 7c20 2020 2020 ees B_i)|.| │ │ │ │ +00062400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062440: 2020 2020 207c 0a7c 6f32 3620 3d20 7472 |.|o26 = tr │ │ │ │ -00062450: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00062430: 2020 2020 2020 2020 2020 7c0a 7c6f 3236 |.|o26 │ │ │ │ +00062440: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +00062450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062480: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00062470: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00062480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000624a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000624b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000624c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 6275 7420 ---------+..but │ │ │ │ -000624d0: 7468 6579 2068 6176 6520 6170 7061 7265 they have appare │ │ │ │ -000624e0: 6e74 6c79 2064 6966 6665 7265 6e74 2061 ntly different a │ │ │ │ -000624f0: 6e6e 6968 696c 6174 6f72 730a 0a2b 2d2d nnihilators..+-- │ │ │ │ +000624b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000624c0: 0a62 7574 2074 6865 7920 6861 7665 2061 .but they have a │ │ │ │ +000624d0: 7070 6172 656e 746c 7920 6469 6666 6572 pparently differ │ │ │ │ +000624e0: 656e 7420 616e 6e69 6869 6c61 746f 7273 ent annihilators │ │ │ │ +000624f0: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ 00062500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062540: 2d2d 2d2b 0a7c 6932 3720 3a20 616e 6e20 ---+.|i27 : ann │ │ │ │ -00062550: 4545 2020 2020 2020 2020 2020 2020 2020 EE │ │ │ │ +00062530: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3237 203a --------+.|i27 : │ │ │ │ +00062540: 2061 6e6e 2045 4520 2020 2020 2020 2020 ann EE │ │ │ │ +00062550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062580: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00062580: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00062590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000625a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000625b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000625c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000625d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000625e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000625f0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00062600: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00062610: 2020 2020 2020 2020 2032 207c 0a7c 6f32 2 |.|o2 │ │ │ │ -00062620: 3720 3d20 6964 6561 6c20 2878 202c 2078 7 = ideal (x , x │ │ │ │ -00062630: 202c 2078 202c 2058 2020 2b20 3431 5820 , x , X + 41X │ │ │ │ -00062640: 5820 202d 2033 3758 2020 2d20 3134 5820 X - 37X - 14X │ │ │ │ -00062650: 5820 202d 2032 3958 2058 2020 2b20 3435 X - 29X X + 45 │ │ │ │ -00062660: 5820 297c 0a7c 2020 2020 2020 2020 2020 X )|.| │ │ │ │ -00062670: 2020 2020 3220 2020 3120 2020 3020 2020 2 1 0 │ │ │ │ -00062680: 3120 2020 2020 2031 2032 2020 2020 2020 1 1 2 │ │ │ │ -00062690: 3220 2020 2020 2031 2033 2020 2020 2020 2 1 3 │ │ │ │ -000626a0: 3220 3320 2020 2020 2033 207c 0a7c 2020 2 3 3 |.| │ │ │ │ +000625c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000625d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000625e0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000625f0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00062600: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00062610: 7c0a 7c6f 3237 203d 2069 6465 616c 2028 |.|o27 = ideal ( │ │ │ │ +00062620: 7820 2c20 7820 2c20 7820 2c20 5820 202b x , x , x , X + │ │ │ │ +00062630: 2034 3158 2058 2020 2d20 3337 5820 202d 41X X - 37X - │ │ │ │ +00062640: 2031 3458 2058 2020 2d20 3239 5820 5820 14X X - 29X X │ │ │ │ +00062650: 202b 2034 3558 2029 7c0a 7c20 2020 2020 + 45X )|.| │ │ │ │ +00062660: 2020 2020 2020 2020 2032 2020 2031 2020 2 1 │ │ │ │ +00062670: 2030 2020 2031 2020 2020 2020 3120 3220 0 1 1 2 │ │ │ │ +00062680: 2020 2020 2032 2020 2020 2020 3120 3320 2 1 3 │ │ │ │ +00062690: 2020 2020 2032 2033 2020 2020 2020 3320 2 3 3 │ │ │ │ +000626a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000626b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000626c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000626d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000626e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000626f0: 2020 207c 0a7c 6f32 3720 3a20 4964 6561 |.|o27 : Idea │ │ │ │ -00062700: 6c20 6f66 2053 2720 2020 2020 2020 2020 l of S' │ │ │ │ +000626e0: 2020 2020 2020 2020 7c0a 7c6f 3237 203a |.|o27 : │ │ │ │ +000626f0: 2049 6465 616c 206f 6620 5327 2020 2020 Ideal of S' │ │ │ │ +00062700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062730: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00062730: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00062740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062780: 2d2d 2d2b 0a7c 6932 3820 3a20 616e 6e20 ---+.|i28 : ann │ │ │ │ -00062790: 4553 2020 2020 2020 2020 2020 2020 2020 ES │ │ │ │ +00062770: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3238 203a --------+.|i28 : │ │ │ │ +00062780: 2061 6e6e 2045 5320 2020 2020 2020 2020 ann ES │ │ │ │ +00062790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000627a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000627b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000627c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000627c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000627d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000627e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000627f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062810: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00062820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062830: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00062840: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00062850: 2020 2020 2020 2020 3220 207c 0a7c 6f32 2 |.|o2 │ │ │ │ -00062860: 3820 3d20 6964 6561 6c20 2878 202c 2078 8 = ideal (x , x │ │ │ │ -00062870: 202c 2078 202c 2073 2020 2b20 3432 7320 , x , s + 42s │ │ │ │ -00062880: 7320 202d 2033 3073 2020 2d20 3235 7320 s - 30s - 25s │ │ │ │ -00062890: 7320 202d 2033 3573 2073 2020 2b20 3973 s - 35s s + 9s │ │ │ │ -000628a0: 2029 207c 0a7c 2020 2020 2020 2020 2020 ) |.| │ │ │ │ -000628b0: 2020 2020 3220 2020 3120 2020 3020 2020 2 1 0 │ │ │ │ -000628c0: 3020 2020 2020 2030 2031 2020 2020 2020 0 0 1 │ │ │ │ -000628d0: 3120 2020 2020 2030 2032 2020 2020 2020 1 0 2 │ │ │ │ -000628e0: 3120 3220 2020 2020 3220 207c 0a7c 2020 1 2 2 |.| │ │ │ │ +00062800: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00062810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062820: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00062830: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00062840: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00062850: 7c0a 7c6f 3238 203d 2069 6465 616c 2028 |.|o28 = ideal ( │ │ │ │ +00062860: 7820 2c20 7820 2c20 7820 2c20 7320 202b x , x , x , s + │ │ │ │ +00062870: 2034 3273 2073 2020 2d20 3330 7320 202d 42s s - 30s - │ │ │ │ +00062880: 2032 3573 2073 2020 2d20 3335 7320 7320 25s s - 35s s │ │ │ │ +00062890: 202b 2039 7320 2920 7c0a 7c20 2020 2020 + 9s ) |.| │ │ │ │ +000628a0: 2020 2020 2020 2020 2032 2020 2031 2020 2 1 │ │ │ │ +000628b0: 2030 2020 2030 2020 2020 2020 3020 3120 0 0 0 1 │ │ │ │ +000628c0: 2020 2020 2031 2020 2020 2020 3020 3220 1 0 2 │ │ │ │ +000628d0: 2020 2020 2031 2032 2020 2020 2032 2020 1 2 2 │ │ │ │ +000628e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000628f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062930: 2020 207c 0a7c 6f32 3820 3a20 4964 6561 |.|o28 : Idea │ │ │ │ -00062940: 6c20 6f66 2053 2020 2020 2020 2020 2020 l of S │ │ │ │ +00062920: 2020 2020 2020 2020 7c0a 7c6f 3238 203a |.|o28 : │ │ │ │ +00062930: 2049 6465 616c 206f 6620 5320 2020 2020 Ideal of S │ │ │ │ +00062940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062970: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00062970: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00062980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000629a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000629b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000629c0: 2d2d 2d2b 0a0a 616e 6420 696e 2066 6163 ---+..and in fac │ │ │ │ -000629d0: 7420 7468 6579 2061 7265 206e 6f74 2069 t they are not i │ │ │ │ -000629e0: 736f 6d6f 7270 6869 633a 0a0a 2b2d 2d2d somorphic:..+--- │ │ │ │ +000629b0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a61 6e64 2069 --------+..and i │ │ │ │ +000629c0: 6e20 6661 6374 2074 6865 7920 6172 6520 n fact they are │ │ │ │ +000629d0: 6e6f 7420 6973 6f6d 6f72 7068 6963 3a0a not isomorphic:. │ │ │ │ +000629e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000629f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3239 ----------+.|i29 │ │ │ │ -00062a40: 203a 2045 4574 6f45 5320 3d20 6d61 7028 : EEtoES = map( │ │ │ │ -00062a50: 7269 6e67 2045 532c 7269 6e67 2045 452c ring ES,ring EE, │ │ │ │ -00062a60: 2067 656e 7320 7269 6e67 2045 5329 2020 gens ring ES) │ │ │ │ -00062a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062a80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00062a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00062a30: 0a7c 6932 3920 3a20 4545 746f 4553 203d .|i29 : EEtoES = │ │ │ │ +00062a40: 206d 6170 2872 696e 6720 4553 2c72 696e map(ring ES,rin │ │ │ │ +00062a50: 6720 4545 2c20 6765 6e73 2072 696e 6720 g EE, gens ring │ │ │ │ +00062a60: 4553 2920 2020 2020 2020 2020 2020 2020 ES) │ │ │ │ +00062a70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062a80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00062a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062ad0: 2020 2020 2020 2020 2020 7c0a 7c6f 3239 |.|o29 │ │ │ │ -00062ae0: 203d 206d 6170 2028 532c 2053 272c 207b = map (S, S', { │ │ │ │ -00062af0: 7320 2c20 7320 2c20 7320 2c20 7820 2c20 s , s , s , x , │ │ │ │ -00062b00: 7820 2c20 7820 7d29 2020 2020 2020 2020 x , x }) │ │ │ │ -00062b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062b20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00062b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062b40: 2030 2020 2031 2020 2032 2020 2030 2020 0 1 2 0 │ │ │ │ -00062b50: 2031 2020 2032 2020 2020 2020 2020 2020 1 2 │ │ │ │ -00062b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062b70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00062ac0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062ad0: 0a7c 6f32 3920 3d20 6d61 7020 2853 2c20 .|o29 = map (S, │ │ │ │ +00062ae0: 5327 2c20 7b73 202c 2073 202c 2073 202c S', {s , s , s , │ │ │ │ +00062af0: 2078 202c 2078 202c 2078 207d 2920 2020 x , x , x }) │ │ │ │ +00062b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062b20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062b30: 2020 2020 2020 3020 2020 3120 2020 3220 0 1 2 │ │ │ │ +00062b40: 2020 3020 2020 3120 2020 3220 2020 2020 0 1 2 │ │ │ │ +00062b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062b60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00062b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062bc0: 2020 2020 2020 2020 2020 7c0a 7c6f 3239 |.|o29 │ │ │ │ -00062bd0: 203a 2052 696e 674d 6170 2053 203c 2d2d : RingMap S <-- │ │ │ │ -00062be0: 2053 2720 2020 2020 2020 2020 2020 2020 S' │ │ │ │ +00062bb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062bc0: 0a7c 6f32 3920 3a20 5269 6e67 4d61 7020 .|o29 : RingMap │ │ │ │ +00062bd0: 5320 3c2d 2d20 5327 2020 2020 2020 2020 S <-- S' │ │ │ │ +00062be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062c10: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00062c00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062c10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00062c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3330 ----------+.|i30 │ │ │ │ -00062c70: 203a 2045 4527 203d 2063 6f6b 6572 2045 : EE' = coker E │ │ │ │ -00062c80: 4574 6f45 5320 7072 6573 656e 7461 7469 EtoES presentati │ │ │ │ -00062c90: 6f6e 2045 4520 2020 2020 2020 2020 2020 on EE │ │ │ │ -00062ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062cb0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00062c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00062c60: 0a7c 6933 3020 3a20 4545 2720 3d20 636f .|i30 : EE' = co │ │ │ │ +00062c70: 6b65 7220 4545 746f 4553 2070 7265 7365 ker EEtoES prese │ │ │ │ +00062c80: 6e74 6174 696f 6e20 4545 2020 2020 2020 ntation EE │ │ │ │ +00062c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062ca0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062cb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00062cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062d00: 2020 2020 2020 2020 2020 7c0a 7c6f 3330 |.|o30 │ │ │ │ -00062d10: 203d 2063 6f6b 6572 6e65 6c20 7b30 2c20 = cokernel {0, │ │ │ │ -00062d20: 307d 2020 207c 2078 5f32 2078 5f31 2078 0} | x_2 x_1 x │ │ │ │ -00062d30: 5f30 2030 2020 2030 2020 2030 2020 2030 _0 0 0 0 0 │ │ │ │ -00062d40: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00062d50: 2020 2030 2020 2073 5f32 7c0a 7c20 2020 0 s_2|.| │ │ │ │ -00062d60: 2020 2020 2020 2020 2020 2020 7b30 2c20 {0, │ │ │ │ -00062d70: 307d 2020 207c 2030 2020 2030 2020 2030 0} | 0 0 0 │ │ │ │ -00062d80: 2020 2078 5f32 2078 5f31 2078 5f30 2030 x_2 x_1 x_0 0 │ │ │ │ -00062d90: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00062da0: 2020 2030 2020 2030 2020 7c0a 7c20 2020 0 0 |.| │ │ │ │ -00062db0: 2020 2020 2020 2020 2020 2020 7b2d 312c {-1, │ │ │ │ -00062dc0: 202d 327d 207c 2030 2020 2030 2020 2030 -2} | 0 0 0 │ │ │ │ -00062dd0: 2020 2030 2020 2030 2020 2030 2020 2078 0 0 0 x │ │ │ │ -00062de0: 5f32 2078 5f31 2078 5f30 2030 2020 2030 _2 x_1 x_0 0 0 │ │ │ │ -00062df0: 2020 2030 2020 2030 2020 7c0a 7c20 2020 0 0 |.| │ │ │ │ -00062e00: 2020 2020 2020 2020 2020 2020 7b2d 312c {-1, │ │ │ │ -00062e10: 202d 327d 207c 2030 2020 2030 2020 2030 -2} | 0 0 0 │ │ │ │ -00062e20: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00062e30: 2020 2030 2020 2030 2020 2078 5f32 2078 0 0 x_2 x │ │ │ │ -00062e40: 5f31 2078 5f30 2030 2020 7c0a 7c20 2020 _1 x_0 0 |.| │ │ │ │ -00062e50: 2020 2020 2020 2020 2020 2020 7b2d 322c {-2, │ │ │ │ -00062e60: 202d 337d 207c 2030 2020 2030 2020 2030 -3} | 0 0 0 │ │ │ │ -00062e70: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00062e80: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00062e90: 2020 2030 2020 2030 2020 7c0a 7c20 2020 0 0 |.| │ │ │ │ -00062ea0: 2020 2020 2020 2020 2020 2020 7b2d 322c {-2, │ │ │ │ -00062eb0: 202d 337d 207c 2030 2020 2030 2020 2030 -3} | 0 0 0 │ │ │ │ -00062ec0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00062ed0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00062ee0: 2020 2030 2020 2030 2020 7c0a 7c20 2020 0 0 |.| │ │ │ │ -00062ef0: 2020 2020 2020 2020 2020 2020 7b2d 322c {-2, │ │ │ │ -00062f00: 202d 337d 207c 2030 2020 2030 2020 2030 -3} | 0 0 0 │ │ │ │ -00062f10: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00062f20: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00062f30: 2020 2030 2020 2030 2020 7c0a 7c20 2020 0 0 |.| │ │ │ │ -00062f40: 2020 2020 2020 2020 2020 2020 7b2d 322c {-2, │ │ │ │ -00062f50: 202d 337d 207c 2030 2020 2030 2020 2030 -3} | 0 0 0 │ │ │ │ -00062f60: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00062f70: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -00062f80: 2020 2030 2020 2030 2020 7c0a 7c20 2020 0 0 |.| │ │ │ │ +00062cf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062d00: 0a7c 6f33 3020 3d20 636f 6b65 726e 656c .|o30 = cokernel │ │ │ │ +00062d10: 207b 302c 2030 7d20 2020 7c20 785f 3220 {0, 0} | x_2 │ │ │ │ +00062d20: 785f 3120 785f 3020 3020 2020 3020 2020 x_1 x_0 0 0 │ │ │ │ +00062d30: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00062d40: 3020 2020 3020 2020 3020 2020 735f 327c 0 0 0 s_2| │ │ │ │ +00062d50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062d60: 207b 302c 2030 7d20 2020 7c20 3020 2020 {0, 0} | 0 │ │ │ │ +00062d70: 3020 2020 3020 2020 785f 3220 785f 3120 0 0 x_2 x_1 │ │ │ │ +00062d80: 785f 3020 3020 2020 3020 2020 3020 2020 x_0 0 0 0 │ │ │ │ +00062d90: 3020 2020 3020 2020 3020 2020 3020 207c 0 0 0 0 | │ │ │ │ +00062da0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062db0: 207b 2d31 2c20 2d32 7d20 7c20 3020 2020 {-1, -2} | 0 │ │ │ │ +00062dc0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00062dd0: 3020 2020 785f 3220 785f 3120 785f 3020 0 x_2 x_1 x_0 │ │ │ │ +00062de0: 3020 2020 3020 2020 3020 2020 3020 207c 0 0 0 0 | │ │ │ │ +00062df0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062e00: 207b 2d31 2c20 2d32 7d20 7c20 3020 2020 {-1, -2} | 0 │ │ │ │ +00062e10: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00062e20: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00062e30: 785f 3220 785f 3120 785f 3020 3020 207c x_2 x_1 x_0 0 | │ │ │ │ +00062e40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062e50: 207b 2d32 2c20 2d33 7d20 7c20 3020 2020 {-2, -3} | 0 │ │ │ │ +00062e60: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00062e70: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00062e80: 3020 2020 3020 2020 3020 2020 3020 207c 0 0 0 0 | │ │ │ │ +00062e90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062ea0: 207b 2d32 2c20 2d33 7d20 7c20 3020 2020 {-2, -3} | 0 │ │ │ │ +00062eb0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00062ec0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00062ed0: 3020 2020 3020 2020 3020 2020 3020 207c 0 0 0 0 | │ │ │ │ +00062ee0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062ef0: 207b 2d32 2c20 2d33 7d20 7c20 3020 2020 {-2, -3} | 0 │ │ │ │ +00062f00: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00062f10: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00062f20: 3020 2020 3020 2020 3020 2020 3020 207c 0 0 0 0 | │ │ │ │ +00062f30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062f40: 207b 2d32 2c20 2d33 7d20 7c20 3020 2020 {-2, -3} | 0 │ │ │ │ +00062f50: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00062f60: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00062f70: 3020 2020 3020 2020 3020 2020 3020 207c 0 0 0 0 | │ │ │ │ +00062f80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00062f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062fd0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00062fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062ff0: 2020 2020 2020 2020 2020 3820 2020 2020 8 │ │ │ │ +00062fc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062fd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062fe0: 2020 2020 2020 2020 2020 2020 2020 2038 8 │ │ │ │ +00062ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063020: 2020 2020 2020 2020 2020 7c0a 7c6f 3330 |.|o30 │ │ │ │ -00063030: 203a 2053 2d6d 6f64 756c 652c 2071 756f : S-module, quo │ │ │ │ -00063040: 7469 656e 7420 6f66 2053 2020 2020 2020 tient of S │ │ │ │ +00063010: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063020: 0a7c 6f33 3020 3a20 532d 6d6f 6475 6c65 .|o30 : S-module │ │ │ │ +00063030: 2c20 7175 6f74 6965 6e74 206f 6620 5320 , quotient of S │ │ │ │ +00063040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063070: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ +00063060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063070: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00063080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000630a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000630b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000630c0: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c73 5f31 ----------|.|s_1 │ │ │ │ -000630d0: 2073 5f30 2030 2020 2030 2020 2030 2020 s_0 0 0 0 │ │ │ │ -000630e0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -000630f0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063100: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063110: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ -00063120: 2030 2020 2073 5f32 2073 5f31 2073 5f30 0 s_2 s_1 s_0 │ │ │ │ -00063130: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063140: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063150: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063160: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ -00063170: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063180: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063190: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -000631a0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -000631b0: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ -000631c0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -000631d0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -000631e0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -000631f0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063200: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ -00063210: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063220: 2078 5f32 2078 5f31 2078 5f30 2030 2020 x_2 x_1 x_0 0 │ │ │ │ -00063230: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063240: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063250: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ -00063260: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063270: 2030 2020 2030 2020 2030 2020 2078 5f32 0 0 0 x_2 │ │ │ │ -00063280: 2078 5f31 2078 5f30 2030 2020 2030 2020 x_1 x_0 0 0 │ │ │ │ -00063290: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -000632a0: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ -000632b0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -000632c0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -000632d0: 2030 2020 2030 2020 2078 5f32 2078 5f31 0 0 x_2 x_1 │ │ │ │ -000632e0: 2078 5f30 2030 2020 2030 2020 2030 2020 x_0 0 0 0 │ │ │ │ -000632f0: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ -00063300: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063310: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063320: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -00063330: 2030 2020 2078 5f32 2078 5f31 2078 5f30 0 x_2 x_1 x_0 │ │ │ │ -00063340: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ +000630b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000630c0: 0a7c 735f 3120 735f 3020 3020 2020 3020 .|s_1 s_0 0 0 │ │ │ │ +000630d0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +000630e0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +000630f0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00063100: 2020 3020 2020 2020 2020 2020 2020 207c 0 | │ │ │ │ +00063110: 0a7c 3020 2020 3020 2020 735f 3220 735f .|0 0 s_2 s_ │ │ │ │ +00063120: 3120 735f 3020 3020 2020 3020 2020 3020 1 s_0 0 0 0 │ │ │ │ +00063130: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00063140: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00063150: 2020 3020 2020 2020 2020 2020 2020 207c 0 | │ │ │ │ +00063160: 0a7c 3020 2020 3020 2020 3020 2020 3020 .|0 0 0 0 │ │ │ │ +00063170: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00063180: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00063190: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +000631a0: 2020 3020 2020 2020 2020 2020 2020 207c 0 | │ │ │ │ +000631b0: 0a7c 3020 2020 3020 2020 3020 2020 3020 .|0 0 0 0 │ │ │ │ +000631c0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +000631d0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +000631e0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +000631f0: 2020 3020 2020 2020 2020 2020 2020 207c 0 | │ │ │ │ +00063200: 0a7c 3020 2020 3020 2020 3020 2020 3020 .|0 0 0 0 │ │ │ │ +00063210: 2020 3020 2020 785f 3220 785f 3120 785f 0 x_2 x_1 x_ │ │ │ │ +00063220: 3020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 0 │ │ │ │ +00063230: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00063240: 2020 3020 2020 2020 2020 2020 2020 207c 0 | │ │ │ │ +00063250: 0a7c 3020 2020 3020 2020 3020 2020 3020 .|0 0 0 0 │ │ │ │ +00063260: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00063270: 2020 785f 3220 785f 3120 785f 3020 3020 x_2 x_1 x_0 0 │ │ │ │ +00063280: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00063290: 2020 3020 2020 2020 2020 2020 2020 207c 0 | │ │ │ │ +000632a0: 0a7c 3020 2020 3020 2020 3020 2020 3020 .|0 0 0 0 │ │ │ │ +000632b0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +000632c0: 2020 3020 2020 3020 2020 3020 2020 785f 0 0 0 x_ │ │ │ │ +000632d0: 3220 785f 3120 785f 3020 3020 2020 3020 2 x_1 x_0 0 0 │ │ │ │ +000632e0: 2020 3020 2020 2020 2020 2020 2020 207c 0 | │ │ │ │ +000632f0: 0a7c 3020 2020 3020 2020 3020 2020 3020 .|0 0 0 0 │ │ │ │ +00063300: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00063310: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +00063320: 2020 3020 2020 3020 2020 785f 3220 785f 0 0 x_2 x_ │ │ │ │ +00063330: 3120 785f 3020 2020 2020 2020 2020 207c 1 x_0 | │ │ │ │ +00063340: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00063350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063390: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c30 2020 ----------|.|0 │ │ │ │ -000633a0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000633b0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000633c0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000633d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000633e0: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ -000633f0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -00063400: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -00063410: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -00063420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063430: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ -00063440: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -00063450: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -00063460: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -00063470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063480: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ -00063490: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000634a0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000634b0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000634c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000634d0: 2020 2020 2020 2020 2020 7c0a 7c73 5f30 |.|s_0 │ │ │ │ -000634e0: 2d31 3873 5f31 2d33 3273 5f32 202d 3237 -18s_1-32s_2 -27 │ │ │ │ -000634f0: 735f 312b 3235 735f 3220 2020 2034 3273 s_1+25s_2 42s │ │ │ │ -00063500: 5f31 2020 2020 2020 2020 2020 202d 3232 _1 -22 │ │ │ │ -00063510: 735f 3120 2020 2020 2020 2020 2020 2020 s_1 │ │ │ │ -00063520: 2020 2020 2020 2020 2020 7c0a 7c32 3373 |.|23s │ │ │ │ -00063530: 5f31 2d34 3173 5f32 2020 2020 2073 5f30 _1-41s_2 s_0 │ │ │ │ -00063540: 2d34 3273 5f31 2b31 3873 5f32 202d 3435 -42s_1+18s_2 -45 │ │ │ │ -00063550: 735f 3120 2020 2020 2020 2020 202d 3432 s_1 -42 │ │ │ │ -00063560: 735f 3120 2020 2020 2020 2020 2020 2020 s_1 │ │ │ │ -00063570: 2020 2020 2020 2020 2020 7c0a 7c2d 3432 |.|-42 │ │ │ │ -00063580: 735f 3220 2020 2020 2020 2020 2032 3273 s_2 22s │ │ │ │ -00063590: 5f32 2020 2020 2020 2020 2020 2073 5f30 _2 s_0 │ │ │ │ -000635a0: 2d31 3873 5f31 2d33 3273 5f32 202d 3237 -18s_1-32s_2 -27 │ │ │ │ -000635b0: 735f 312b 3235 735f 3220 2020 2020 2020 s_1+25s_2 │ │ │ │ -000635c0: 2020 2020 2020 2020 2020 7c0a 7c34 3573 |.|45s │ │ │ │ -000635d0: 5f32 2020 2020 2020 2020 2020 2034 3273 _2 42s │ │ │ │ -000635e0: 5f32 2020 2020 2020 2020 2020 2032 3373 _2 23s │ │ │ │ -000635f0: 5f31 2d34 3173 5f32 2020 2020 2073 5f30 _1-41s_2 s_0 │ │ │ │ -00063600: 2d34 3273 5f31 2b31 3873 5f32 2020 2020 -42s_1+18s_2 │ │ │ │ -00063610: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ +00063380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00063390: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ +000633a0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000633b0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000633c0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000633d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000633e0: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ +000633f0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00063400: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00063410: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00063420: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063430: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ +00063440: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00063450: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00063460: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00063470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063480: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ +00063490: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000634a0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000634b0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000634c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000634d0: 0a7c 735f 302d 3138 735f 312d 3332 735f .|s_0-18s_1-32s_ │ │ │ │ +000634e0: 3220 2d32 3773 5f31 2b32 3573 5f32 2020 2 -27s_1+25s_2 │ │ │ │ +000634f0: 2020 3432 735f 3120 2020 2020 2020 2020 42s_1 │ │ │ │ +00063500: 2020 2d32 3273 5f31 2020 2020 2020 2020 -22s_1 │ │ │ │ +00063510: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063520: 0a7c 3233 735f 312d 3431 735f 3220 2020 .|23s_1-41s_2 │ │ │ │ +00063530: 2020 735f 302d 3432 735f 312b 3138 735f s_0-42s_1+18s_ │ │ │ │ +00063540: 3220 2d34 3573 5f31 2020 2020 2020 2020 2 -45s_1 │ │ │ │ +00063550: 2020 2d34 3273 5f31 2020 2020 2020 2020 -42s_1 │ │ │ │ +00063560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063570: 0a7c 2d34 3273 5f32 2020 2020 2020 2020 .|-42s_2 │ │ │ │ +00063580: 2020 3232 735f 3220 2020 2020 2020 2020 22s_2 │ │ │ │ +00063590: 2020 735f 302d 3138 735f 312d 3332 735f s_0-18s_1-32s_ │ │ │ │ +000635a0: 3220 2d32 3773 5f31 2b32 3573 5f32 2020 2 -27s_1+25s_2 │ │ │ │ +000635b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000635c0: 0a7c 3435 735f 3220 2020 2020 2020 2020 .|45s_2 │ │ │ │ +000635d0: 2020 3432 735f 3220 2020 2020 2020 2020 42s_2 │ │ │ │ +000635e0: 2020 3233 735f 312d 3431 735f 3220 2020 23s_1-41s_2 │ │ │ │ +000635f0: 2020 735f 302d 3432 735f 312b 3138 735f s_0-42s_1+18s_ │ │ │ │ +00063600: 3220 2020 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +00063610: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00063620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063660: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c30 2020 ----------|.|0 │ │ │ │ +00063650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00063660: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 00063670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000636a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000636b0: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ +000636a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000636b0: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 000636c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000636d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000636e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000636f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063700: 2020 2020 2020 2020 2020 7c0a 7c73 5f30 |.|s_0 │ │ │ │ -00063710: 5e32 2b34 3173 5f30 735f 312d 3337 735f ^2+41s_0s_1-37s_ │ │ │ │ -00063720: 315e 322d 3134 735f 3073 5f32 2d32 3973 1^2-14s_0s_2-29s │ │ │ │ -00063730: 5f31 735f 322b 3435 735f 325e 3220 2020 _1s_2+45s_2^2 │ │ │ │ -00063740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063750: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ +000636f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063700: 0a7c 735f 305e 322b 3431 735f 3073 5f31 .|s_0^2+41s_0s_1 │ │ │ │ +00063710: 2d33 3773 5f31 5e32 2d31 3473 5f30 735f -37s_1^2-14s_0s_ │ │ │ │ +00063720: 322d 3239 735f 3173 5f32 2b34 3573 5f32 2-29s_1s_2+45s_2 │ │ │ │ +00063730: 5e32 2020 2020 2020 2020 2020 2020 2020 ^2 │ │ │ │ +00063740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063750: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 00063760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000637a0: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ +00063790: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000637a0: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 000637b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000637c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000637d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000637e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000637f0: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ +000637e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000637f0: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 00063800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063840: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ +00063830: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063840: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 00063850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063890: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ +00063880: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063890: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 000638a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000638b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000638c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000638d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000638e0: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ +000638d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000638e0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000638f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063930: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c30 2020 ----------|.|0 │ │ │ │ +00063920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00063930: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 00063940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063960: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ -00063970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063980: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ +00063960: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00063970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063980: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 00063990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000639a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000639b0: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ -000639c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000639d0: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ +000639b0: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000639c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000639d0: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 000639e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000639f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063a00: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ -00063a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063a20: 2020 2020 2020 2020 2020 7c0a 7c73 5f30 |.|s_0 │ │ │ │ -00063a30: 5e32 2b34 3173 5f30 735f 312d 3337 735f ^2+41s_0s_1-37s_ │ │ │ │ -00063a40: 315e 322d 3134 735f 3073 5f32 2d32 3973 1^2-14s_0s_2-29s │ │ │ │ -00063a50: 5f31 735f 322b 3435 735f 325e 3220 7c20 _1s_2+45s_2^2 | │ │ │ │ -00063a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063a70: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ +00063a00: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00063a10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063a20: 0a7c 735f 305e 322b 3431 735f 3073 5f31 .|s_0^2+41s_0s_1 │ │ │ │ +00063a30: 2d33 3773 5f31 5e32 2d31 3473 5f30 735f -37s_1^2-14s_0s_ │ │ │ │ +00063a40: 322d 3239 735f 3173 5f32 2b34 3573 5f32 2-29s_1s_2+45s_2 │ │ │ │ +00063a50: 5e32 207c 2020 2020 2020 2020 2020 2020 ^2 | │ │ │ │ +00063a60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063a70: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 00063a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063aa0: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ -00063ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063ac0: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ +00063aa0: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00063ab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063ac0: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 00063ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063af0: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ -00063b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063b10: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ +00063af0: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00063b00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063b10: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 00063b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063b40: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ -00063b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063b60: 2020 2020 2020 2020 2020 7c0a 7c30 2020 |.|0 │ │ │ │ +00063b40: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00063b50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063b60: 0a7c 3020 2020 2020 2020 2020 2020 2020 .|0 │ │ │ │ 00063b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063b90: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ -00063ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063bb0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00063b90: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00063ba0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063bb0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00063bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3331 ----------+.|i31 │ │ │ │ -00063c10: 203a 2048 203d 2048 6f6d 2845 4527 2c45 : H = Hom(EE',E │ │ │ │ -00063c20: 5329 3b20 2020 2020 2020 2020 2020 2020 S); │ │ │ │ +00063bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00063c00: 0a7c 6933 3120 3a20 4820 3d20 486f 6d28 .|i31 : H = Hom( │ │ │ │ +00063c10: 4545 272c 4553 293b 2020 2020 2020 2020 EE',ES); │ │ │ │ +00063c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063c50: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00063c40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063c50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00063c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3332 ----------+.|i32 │ │ │ │ -00063cb0: 203a 2051 203d 2070 6f73 6974 696f 6e73 : Q = positions │ │ │ │ -00063cc0: 2864 6567 7265 6573 2074 6172 6765 7420 (degrees target │ │ │ │ -00063cd0: 7072 6573 656e 7461 7469 6f6e 2048 2c20 presentation H, │ │ │ │ -00063ce0: 692d 3e20 6920 3d3d 207b 302c 307d 2920 i-> i == {0,0}) │ │ │ │ -00063cf0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00063c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00063ca0: 0a7c 6933 3220 3a20 5120 3d20 706f 7369 .|i32 : Q = posi │ │ │ │ +00063cb0: 7469 6f6e 7328 6465 6772 6565 7320 7461 tions(degrees ta │ │ │ │ +00063cc0: 7267 6574 2070 7265 7365 6e74 6174 696f rget presentatio │ │ │ │ +00063cd0: 6e20 482c 2069 2d3e 2069 203d 3d20 7b30 n H, i-> i == {0 │ │ │ │ +00063ce0: 2c30 7d29 2020 2020 2020 2020 2020 207c ,0}) | │ │ │ │ +00063cf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00063d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063d40: 2020 2020 2020 2020 2020 7c0a 7c6f 3332 |.|o32 │ │ │ │ -00063d50: 203d 207b 382c 2039 2c20 3130 2c20 3131 = {8, 9, 10, 11 │ │ │ │ -00063d60: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00063d30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063d40: 0a7c 6f33 3220 3d20 7b38 2c20 392c 2031 .|o32 = {8, 9, 1 │ │ │ │ +00063d50: 302c 2031 317d 2020 2020 2020 2020 2020 0, 11} │ │ │ │ +00063d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063d90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00063d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063d90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00063da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063de0: 2020 2020 2020 2020 2020 7c0a 7c6f 3332 |.|o32 │ │ │ │ -00063df0: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ +00063dd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063de0: 0a7c 6f33 3220 3a20 4c69 7374 2020 2020 .|o32 : List │ │ │ │ +00063df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063e30: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00063e20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063e30: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00063e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3333 ----------+.|i33 │ │ │ │ -00063e90: 203a 2066 203d 2073 756d 2851 2c20 702d : f = sum(Q, p- │ │ │ │ -00063ea0: 3e20 7261 6e64 6f6d 2028 535e 312c 2053 > random (S^1, S │ │ │ │ -00063eb0: 5e31 292a 2a68 6f6d 6f6d 6f72 7068 6973 ^1)**homomorphis │ │ │ │ -00063ec0: 6d20 485f 7b70 7d29 2020 2020 2020 2020 m H_{p}) │ │ │ │ -00063ed0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00063e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00063e80: 0a7c 6933 3320 3a20 6620 3d20 7375 6d28 .|i33 : f = sum( │ │ │ │ +00063e90: 512c 2070 2d3e 2072 616e 646f 6d20 2853 Q, p-> random (S │ │ │ │ +00063ea0: 5e31 2c20 535e 3129 2a2a 686f 6d6f 6d6f ^1, S^1)**homomo │ │ │ │ +00063eb0: 7270 6869 736d 2048 5f7b 707d 2920 2020 rphism H_{p}) │ │ │ │ +00063ec0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063ed0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00063ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063f20: 2020 2020 2020 2020 2020 7c0a 7c6f 3333 |.|o33 │ │ │ │ -00063f30: 203d 207b 302c 2030 7d20 2020 7c20 2d33 = {0, 0} | -3 │ │ │ │ -00063f40: 3820 3339 2030 2030 2030 2030 2030 2030 8 39 0 0 0 0 0 0 │ │ │ │ -00063f50: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00063f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063f70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00063f80: 2020 207b 302c 2030 7d20 2020 7c20 2d31 {0, 0} | -1 │ │ │ │ -00063f90: 3620 3231 2030 2030 2030 2030 2030 2030 6 21 0 0 0 0 0 0 │ │ │ │ -00063fa0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00063fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063fc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00063fd0: 2020 207b 2d32 2c20 2d33 7d20 7c20 3020 {-2, -3} | 0 │ │ │ │ -00063fe0: 2020 3020 2030 2030 2030 2030 2030 2030 0 0 0 0 0 0 0 │ │ │ │ -00063ff0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00064000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064010: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00064020: 2020 207b 2d32 2c20 2d33 7d20 7c20 3020 {-2, -3} | 0 │ │ │ │ -00064030: 2020 3020 2030 2030 2030 2030 2030 2030 0 0 0 0 0 0 0 │ │ │ │ -00064040: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00064050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064060: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00064070: 2020 207b 2d32 2c20 2d33 7d20 7c20 3020 {-2, -3} | 0 │ │ │ │ -00064080: 2020 3020 2030 2030 2030 2030 2030 2030 0 0 0 0 0 0 0 │ │ │ │ -00064090: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000640a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000640b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000640c0: 2020 207b 2d32 2c20 2d33 7d20 7c20 3020 {-2, -3} | 0 │ │ │ │ -000640d0: 2020 3020 2030 2030 2030 2030 2030 2030 0 0 0 0 0 0 0 │ │ │ │ -000640e0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000640f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064100: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00064110: 2020 207b 2d31 2c20 2d32 7d20 7c20 3020 {-1, -2} | 0 │ │ │ │ -00064120: 2020 3020 2030 2030 2030 2030 2030 2030 0 0 0 0 0 0 0 │ │ │ │ -00064130: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00064140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064150: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00064160: 2020 207b 2d31 2c20 2d32 7d20 7c20 3020 {-1, -2} | 0 │ │ │ │ -00064170: 2020 3020 2030 2030 2030 2030 2030 2030 0 0 0 0 0 0 0 │ │ │ │ -00064180: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00064190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000641a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00063f10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063f20: 0a7c 6f33 3320 3d20 7b30 2c20 307d 2020 .|o33 = {0, 0} │ │ │ │ +00063f30: 207c 202d 3338 2033 3920 3020 3020 3020 | -38 39 0 0 0 │ │ │ │ +00063f40: 3020 3020 3020 7c20 2020 2020 2020 2020 0 0 0 | │ │ │ │ +00063f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063f60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063f70: 0a7c 2020 2020 2020 7b30 2c20 307d 2020 .| {0, 0} │ │ │ │ +00063f80: 207c 202d 3136 2032 3120 3020 3020 3020 | -16 21 0 0 0 │ │ │ │ +00063f90: 3020 3020 3020 7c20 2020 2020 2020 2020 0 0 0 | │ │ │ │ +00063fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063fc0: 0a7c 2020 2020 2020 7b2d 322c 202d 337d .| {-2, -3} │ │ │ │ +00063fd0: 207c 2030 2020 2030 2020 3020 3020 3020 | 0 0 0 0 0 │ │ │ │ +00063fe0: 3020 3020 3020 7c20 2020 2020 2020 2020 0 0 0 | │ │ │ │ +00063ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064000: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064010: 0a7c 2020 2020 2020 7b2d 322c 202d 337d .| {-2, -3} │ │ │ │ +00064020: 207c 2030 2020 2030 2020 3020 3020 3020 | 0 0 0 0 0 │ │ │ │ +00064030: 3020 3020 3020 7c20 2020 2020 2020 2020 0 0 0 | │ │ │ │ +00064040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064060: 0a7c 2020 2020 2020 7b2d 322c 202d 337d .| {-2, -3} │ │ │ │ +00064070: 207c 2030 2020 2030 2020 3020 3020 3020 | 0 0 0 0 0 │ │ │ │ +00064080: 3020 3020 3020 7c20 2020 2020 2020 2020 0 0 0 | │ │ │ │ +00064090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000640a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000640b0: 0a7c 2020 2020 2020 7b2d 322c 202d 337d .| {-2, -3} │ │ │ │ +000640c0: 207c 2030 2020 2030 2020 3020 3020 3020 | 0 0 0 0 0 │ │ │ │ +000640d0: 3020 3020 3020 7c20 2020 2020 2020 2020 0 0 0 | │ │ │ │ +000640e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000640f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064100: 0a7c 2020 2020 2020 7b2d 312c 202d 327d .| {-1, -2} │ │ │ │ +00064110: 207c 2030 2020 2030 2020 3020 3020 3020 | 0 0 0 0 0 │ │ │ │ +00064120: 3020 3020 3020 7c20 2020 2020 2020 2020 0 0 0 | │ │ │ │ +00064130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064150: 0a7c 2020 2020 2020 7b2d 312c 202d 327d .| {-1, -2} │ │ │ │ +00064160: 207c 2030 2020 2030 2020 3020 3020 3020 | 0 0 0 0 0 │ │ │ │ +00064170: 3020 3020 3020 7c20 2020 2020 2020 2020 0 0 0 | │ │ │ │ +00064180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064190: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000641a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000641b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000641c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000641d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000641e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000641f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3333 |.|o33 │ │ │ │ -00064200: 203a 204d 6174 7269 7820 4553 203c 2d2d : Matrix ES <-- │ │ │ │ -00064210: 2045 4527 2020 2020 2020 2020 2020 2020 EE' │ │ │ │ +000641e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000641f0: 0a7c 6f33 3320 3a20 4d61 7472 6978 2045 .|o33 : Matrix E │ │ │ │ +00064200: 5320 3c2d 2d20 4545 2720 2020 2020 2020 S <-- EE' │ │ │ │ +00064210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064240: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00064230: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064240: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00064250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064290: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a49 6620 ----------+..If │ │ │ │ -000642a0: 4545 2061 6e64 2045 5320 7765 7265 2069 EE and ES were i │ │ │ │ -000642b0: 736f 6d6f 7270 6869 632c 2077 6520 776f somorphic, we wo │ │ │ │ -000642c0: 756c 6420 6578 7065 6374 2063 6f6b 6572 uld expect coker │ │ │ │ -000642d0: 2066 2074 6f20 6265 2030 2c20 616e 6420 f to be 0, and │ │ │ │ -000642e0: 6974 2773 206e 6f74 2e0a 7072 756e 6520 it's not..prune │ │ │ │ -000642f0: 636f 6b65 7220 660a 0a53 6565 2061 6c73 coker f..See als │ │ │ │ -00064300: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ -00064310: 2a6e 6f74 6520 4578 743a 2028 4d61 6361 *note Ext: (Maca │ │ │ │ -00064320: 756c 6179 3244 6f63 2945 7874 2c20 2d2d ulay2Doc)Ext, -- │ │ │ │ -00064330: 2063 6f6d 7075 7465 2061 6e20 4578 7420 compute an Ext │ │ │ │ -00064340: 6d6f 6475 6c65 0a20 202a 202a 6e6f 7465 module. * *note │ │ │ │ -00064350: 2045 6973 656e 6275 6453 6861 6d61 7368 EisenbudShamash │ │ │ │ -00064360: 546f 7461 6c3a 2045 6973 656e 6275 6453 Total: EisenbudS │ │ │ │ -00064370: 6861 6d61 7368 546f 7461 6c2c 202d 2d20 hamashTotal, -- │ │ │ │ -00064380: 5072 6563 7572 736f 7220 636f 6d70 6c65 Precursor comple │ │ │ │ -00064390: 7820 6f66 0a20 2020 2074 6f74 616c 2045 x of. total E │ │ │ │ -000643a0: 7874 0a0a 5761 7973 2074 6f20 7573 6520 xt..Ways to use │ │ │ │ -000643b0: 6e65 7745 7874 3a0a 3d3d 3d3d 3d3d 3d3d newExt:.======== │ │ │ │ -000643c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -000643d0: 2022 6e65 7745 7874 284d 6f64 756c 652c "newExt(Module, │ │ │ │ -000643e0: 4d6f 6475 6c65 2922 0a0a 466f 7220 7468 Module)"..For th │ │ │ │ -000643f0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -00064400: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00064410: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -00064420: 6520 6e65 7745 7874 3a20 6e65 7745 7874 e newExt: newExt │ │ │ │ -00064430: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ -00064440: 686f 6420 6675 6e63 7469 6f6e 2077 6974 hod function wit │ │ │ │ -00064450: 6820 6f70 7469 6f6e 733a 0a28 4d61 6361 h options:.(Maca │ │ │ │ -00064460: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -00064470: 756e 6374 696f 6e57 6974 684f 7074 696f unctionWithOptio │ │ │ │ -00064480: 6e73 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ns,...---------- │ │ │ │ +00064280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00064290: 0a0a 4966 2045 4520 616e 6420 4553 2077 ..If EE and ES w │ │ │ │ +000642a0: 6572 6520 6973 6f6d 6f72 7068 6963 2c20 ere isomorphic, │ │ │ │ +000642b0: 7765 2077 6f75 6c64 2065 7870 6563 7420 we would expect │ │ │ │ +000642c0: 636f 6b65 7220 6620 746f 2062 6520 302c coker f to be 0, │ │ │ │ +000642d0: 2061 6e64 2069 7427 7320 6e6f 742e 0a70 and it's not..p │ │ │ │ +000642e0: 7275 6e65 2063 6f6b 6572 2066 0a0a 5365 rune coker f..Se │ │ │ │ +000642f0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +00064300: 0a20 202a 202a 6e6f 7465 2045 7874 3a20 . * *note Ext: │ │ │ │ +00064310: 284d 6163 6175 6c61 7932 446f 6329 4578 (Macaulay2Doc)Ex │ │ │ │ +00064320: 742c 202d 2d20 636f 6d70 7574 6520 616e t, -- compute an │ │ │ │ +00064330: 2045 7874 206d 6f64 756c 650a 2020 2a20 Ext module. * │ │ │ │ +00064340: 2a6e 6f74 6520 4569 7365 6e62 7564 5368 *note EisenbudSh │ │ │ │ +00064350: 616d 6173 6854 6f74 616c 3a20 4569 7365 amashTotal: Eise │ │ │ │ +00064360: 6e62 7564 5368 616d 6173 6854 6f74 616c nbudShamashTotal │ │ │ │ +00064370: 2c20 2d2d 2050 7265 6375 7273 6f72 2063 , -- Precursor c │ │ │ │ +00064380: 6f6d 706c 6578 206f 660a 2020 2020 746f omplex of. to │ │ │ │ +00064390: 7461 6c20 4578 740a 0a57 6179 7320 746f tal Ext..Ways to │ │ │ │ +000643a0: 2075 7365 206e 6577 4578 743a 0a3d 3d3d use newExt:.=== │ │ │ │ +000643b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000643c0: 0a0a 2020 2a20 226e 6577 4578 7428 4d6f .. * "newExt(Mo │ │ │ │ +000643d0: 6475 6c65 2c4d 6f64 756c 6529 220a 0a46 dule,Module)"..F │ │ │ │ +000643e0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +000643f0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +00064400: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +00064410: 202a 6e6f 7465 206e 6577 4578 743a 206e *note newExt: n │ │ │ │ +00064420: 6577 4578 742c 2069 7320 6120 2a6e 6f74 ewExt, is a *not │ │ │ │ +00064430: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ +00064440: 6e20 7769 7468 206f 7074 696f 6e73 3a0a n with options:. │ │ │ │ +00064450: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ +00064460: 7468 6f64 4675 6e63 7469 6f6e 5769 7468 thodFunctionWith │ │ │ │ +00064470: 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d Options,...----- │ │ │ │ +00064480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000644a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000644b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000644c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000644d0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -000644e0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -000644f0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -00064500: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -00064510: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -00064520: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -00064530: 6179 322f 7061 636b 6167 6573 2f0a 436f ay2/packages/.Co │ │ │ │ -00064540: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ -00064550: 6f6e 5265 736f 6c75 7469 6f6e 732e 6d32 onResolutions.m2 │ │ │ │ -00064560: 3a32 3536 343a 302e 0a1f 0a46 696c 653a :2564:0....File: │ │ │ │ -00064570: 2043 6f6d 706c 6574 6549 6e74 6572 7365 CompleteInterse │ │ │ │ -00064580: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ -00064590: 2e69 6e66 6f2c 204e 6f64 653a 206f 6464 .info, Node: odd │ │ │ │ -000645a0: 4578 744d 6f64 756c 652c 204e 6578 743a ExtModule, Next: │ │ │ │ -000645b0: 204f 7074 696d 6973 6d2c 2050 7265 763a Optimism, Prev: │ │ │ │ -000645c0: 206e 6577 4578 742c 2055 703a 2054 6f70 newExt, Up: Top │ │ │ │ -000645d0: 0a0a 6f64 6445 7874 4d6f 6475 6c65 202d ..oddExtModule - │ │ │ │ -000645e0: 2d20 6f64 6420 7061 7274 206f 6620 4578 - odd part of Ex │ │ │ │ -000645f0: 745e 2a28 4d2c 6b29 206f 7665 7220 6120 t^*(M,k) over a │ │ │ │ -00064600: 636f 6d70 6c65 7465 2069 6e74 6572 7365 complete interse │ │ │ │ -00064610: 6374 696f 6e20 6173 206d 6f64 756c 6520 ction as module │ │ │ │ -00064620: 6f76 6572 2043 4920 6f70 6572 6174 6f72 over CI operator │ │ │ │ -00064630: 2072 696e 670a 2a2a 2a2a 2a2a 2a2a 2a2a ring.********** │ │ │ │ +000644c0: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +000644d0: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +000644e0: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +000644f0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +00064500: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +00064510: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +00064520: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +00064530: 732f 0a43 6f6d 706c 6574 6549 6e74 6572 s/.CompleteInter │ │ │ │ +00064540: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ +00064550: 6e73 2e6d 323a 3235 3634 3a30 2e0a 1f0a ns.m2:2564:0.... │ │ │ │ +00064560: 4669 6c65 3a20 436f 6d70 6c65 7465 496e File: CompleteIn │ │ │ │ +00064570: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ +00064580: 7469 6f6e 732e 696e 666f 2c20 4e6f 6465 tions.info, Node │ │ │ │ +00064590: 3a20 6f64 6445 7874 4d6f 6475 6c65 2c20 : oddExtModule, │ │ │ │ +000645a0: 4e65 7874 3a20 4f70 7469 6d69 736d 2c20 Next: Optimism, │ │ │ │ +000645b0: 5072 6576 3a20 6e65 7745 7874 2c20 5570 Prev: newExt, Up │ │ │ │ +000645c0: 3a20 546f 700a 0a6f 6464 4578 744d 6f64 : Top..oddExtMod │ │ │ │ +000645d0: 756c 6520 2d2d 206f 6464 2070 6172 7420 ule -- odd part │ │ │ │ +000645e0: 6f66 2045 7874 5e2a 284d 2c6b 2920 6f76 of Ext^*(M,k) ov │ │ │ │ +000645f0: 6572 2061 2063 6f6d 706c 6574 6520 696e er a complete in │ │ │ │ +00064600: 7465 7273 6563 7469 6f6e 2061 7320 6d6f tersection as mo │ │ │ │ +00064610: 6475 6c65 206f 7665 7220 4349 206f 7065 dule over CI ope │ │ │ │ +00064620: 7261 746f 7220 7269 6e67 0a2a 2a2a 2a2a rator ring.***** │ │ │ │ +00064630: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00064640: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00064650: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00064660: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00064670: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00064680: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00064690: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ -000646a0: 7361 6765 3a20 0a20 2020 2020 2020 2045 sage: . E │ │ │ │ -000646b0: 203d 206f 6464 4578 744d 6f64 756c 6520 = oddExtModule │ │ │ │ -000646c0: 4d0a 2020 2a20 496e 7075 7473 3a0a 2020 M. * Inputs:. │ │ │ │ -000646d0: 2020 2020 2a20 4d2c 2061 202a 6e6f 7465 * M, a *note │ │ │ │ -000646e0: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ -000646f0: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ -00064700: 6f76 6572 2061 2063 6f6d 706c 6574 6520 over a complete │ │ │ │ -00064710: 696e 7465 7273 6563 7469 6f6e 0a20 2020 intersection. │ │ │ │ -00064720: 2020 2020 2072 696e 670a 2020 2a20 2a6e ring. * *n │ │ │ │ -00064730: 6f74 6520 4f70 7469 6f6e 616c 2069 6e70 ote Optional inp │ │ │ │ -00064740: 7574 733a 2028 4d61 6361 756c 6179 3244 uts: (Macaulay2D │ │ │ │ -00064750: 6f63 2975 7369 6e67 2066 756e 6374 696f oc)using functio │ │ │ │ -00064760: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ -00064770: 2069 6e70 7574 732c 3a0a 2020 2020 2020 inputs,:. │ │ │ │ -00064780: 2a20 4f75 7452 696e 6720 3d3e 202e 2e2e * OutRing => ... │ │ │ │ -00064790: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -000647a0: 300a 2020 2a20 4f75 7470 7574 733a 0a20 0. * Outputs:. │ │ │ │ -000647b0: 2020 2020 202a 2045 2c20 6120 2a6e 6f74 * E, a *not │ │ │ │ -000647c0: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ -000647d0: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ -000647e0: 206f 7665 7220 6120 706f 6c79 6e6f 6d69 over a polynomi │ │ │ │ -000647f0: 616c 2072 696e 6720 7769 7468 0a20 2020 al ring with. │ │ │ │ -00064800: 2020 2020 2067 656e 7320 696e 2064 6567 gens in deg │ │ │ │ -00064810: 7265 6520 310a 0a44 6573 6372 6970 7469 ree 1..Descripti │ │ │ │ -00064820: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -00064830: 4578 7472 6163 7473 2074 6865 206f 6464 Extracts the odd │ │ │ │ -00064840: 2064 6567 7265 6520 7061 7274 2066 726f degree part fro │ │ │ │ -00064850: 6d20 4578 744d 6f64 756c 6520 4d2e 2049 m ExtModule M. I │ │ │ │ -00064860: 6620 7468 6520 6f70 7469 6f6e 616c 2061 f the optional a │ │ │ │ -00064870: 7267 756d 656e 7420 4f75 7452 696e 670a rgument OutRing. │ │ │ │ -00064880: 3d3e 2054 2069 7320 6769 7665 6e2c 2061 => T is given, a │ │ │ │ -00064890: 6e64 2063 6c61 7373 2054 203d 3d3d 2050 nd class T === P │ │ │ │ -000648a0: 6f6c 796e 6f6d 6961 6c52 696e 672c 2074 olynomialRing, t │ │ │ │ -000648b0: 6865 6e20 7468 6520 6f75 7470 7574 2077 hen the output w │ │ │ │ -000648c0: 696c 6c20 6265 2061 206d 6f64 756c 650a ill be a module. │ │ │ │ -000648d0: 6f76 6572 2054 2e0a 0a2b 2d2d 2d2d 2d2d over T...+------ │ │ │ │ +00064680: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00064690: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +000646a0: 2020 2020 4520 3d20 6f64 6445 7874 4d6f E = oddExtMo │ │ │ │ +000646b0: 6475 6c65 204d 0a20 202a 2049 6e70 7574 dule M. * Input │ │ │ │ +000646c0: 733a 0a20 2020 2020 202a 204d 2c20 6120 s:. * M, a │ │ │ │ +000646d0: 2a6e 6f74 6520 6d6f 6475 6c65 3a20 284d *note module: (M │ │ │ │ +000646e0: 6163 6175 6c61 7932 446f 6329 4d6f 6475 acaulay2Doc)Modu │ │ │ │ +000646f0: 6c65 2c2c 206f 7665 7220 6120 636f 6d70 le,, over a comp │ │ │ │ +00064700: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ +00064710: 6e0a 2020 2020 2020 2020 7269 6e67 0a20 n. ring. │ │ │ │ +00064720: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ +00064730: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ +00064740: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ +00064750: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +00064760: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ +00064770: 2020 2020 202a 204f 7574 5269 6e67 203d * OutRing = │ │ │ │ +00064780: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +00064790: 616c 7565 2030 0a20 202a 204f 7574 7075 alue 0. * Outpu │ │ │ │ +000647a0: 7473 3a0a 2020 2020 2020 2a20 452c 2061 ts:. * E, a │ │ │ │ +000647b0: 202a 6e6f 7465 206d 6f64 756c 653a 2028 *note module: ( │ │ │ │ +000647c0: 4d61 6361 756c 6179 3244 6f63 294d 6f64 Macaulay2Doc)Mod │ │ │ │ +000647d0: 756c 652c 2c20 6f76 6572 2061 2070 6f6c ule,, over a pol │ │ │ │ +000647e0: 796e 6f6d 6961 6c20 7269 6e67 2077 6974 ynomial ring wit │ │ │ │ +000647f0: 680a 2020 2020 2020 2020 6765 6e73 2069 h. gens i │ │ │ │ +00064800: 6e20 6465 6772 6565 2031 0a0a 4465 7363 n degree 1..Desc │ │ │ │ +00064810: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +00064820: 3d3d 3d0a 0a45 7874 7261 6374 7320 7468 ===..Extracts th │ │ │ │ +00064830: 6520 6f64 6420 6465 6772 6565 2070 6172 e odd degree par │ │ │ │ +00064840: 7420 6672 6f6d 2045 7874 4d6f 6475 6c65 t from ExtModule │ │ │ │ +00064850: 204d 2e20 4966 2074 6865 206f 7074 696f M. If the optio │ │ │ │ +00064860: 6e61 6c20 6172 6775 6d65 6e74 204f 7574 nal argument Out │ │ │ │ +00064870: 5269 6e67 0a3d 3e20 5420 6973 2067 6976 Ring.=> T is giv │ │ │ │ +00064880: 656e 2c20 616e 6420 636c 6173 7320 5420 en, and class T │ │ │ │ +00064890: 3d3d 3d20 506f 6c79 6e6f 6d69 616c 5269 === PolynomialRi │ │ │ │ +000648a0: 6e67 2c20 7468 656e 2074 6865 206f 7574 ng, then the out │ │ │ │ +000648b0: 7075 7420 7769 6c6c 2062 6520 6120 6d6f put will be a mo │ │ │ │ +000648c0: 6475 6c65 0a6f 7665 7220 542e 0a0a 2b2d dule.over T...+- │ │ │ │ +000648d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000648e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000648f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064910: 2d2d 2d2b 0a7c 6931 203a 206b 6b3d 205a ---+.|i1 : kk= Z │ │ │ │ -00064920: 5a2f 3130 3120 2020 2020 2020 2020 2020 Z/101 │ │ │ │ +00064900: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +00064910: 6b6b 3d20 5a5a 2f31 3031 2020 2020 2020 kk= ZZ/101 │ │ │ │ +00064920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064940: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00064950: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00064940: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00064950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064980: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00064990: 203d 206b 6b20 2020 2020 2020 2020 2020 = kk │ │ │ │ +00064980: 7c0a 7c6f 3120 3d20 6b6b 2020 2020 2020 |.|o1 = kk │ │ │ │ +00064990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000649a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000649b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000649c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000649b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000649c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000649d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000649e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000649f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064a00: 2020 207c 0a7c 6f31 203a 2051 756f 7469 |.|o1 : Quoti │ │ │ │ -00064a10: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +000649f0: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +00064a00: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +00064a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064a30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00064a40: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00064a30: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00064a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00064a80: 203a 2053 203d 206b 6b5b 782c 792c 7a5d : S = kk[x,y,z] │ │ │ │ +00064a70: 2b0a 7c69 3220 3a20 5320 3d20 6b6b 5b78 +.|i2 : S = kk[x │ │ │ │ +00064a80: 2c79 2c7a 5d20 2020 2020 2020 2020 2020 ,y,z] │ │ │ │ 00064a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064ab0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00064aa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00064ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064af0: 2020 207c 0a7c 6f32 203d 2053 2020 2020 |.|o2 = S │ │ │ │ +00064ae0: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ +00064af0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 00064b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064b20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00064b30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00064b20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00064b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064b60: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00064b70: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ -00064b80: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -00064b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064ba0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00064b60: 7c0a 7c6f 3220 3a20 506f 6c79 6e6f 6d69 |.|o2 : Polynomi │ │ │ │ +00064b70: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ +00064b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064b90: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00064ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064be0: 2d2d 2d2b 0a7c 6933 203a 2049 3220 3d20 ---+.|i3 : I2 = │ │ │ │ -00064bf0: 6964 6561 6c22 7833 2c79 7a22 2020 2020 ideal"x3,yz" │ │ │ │ +00064bd0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +00064be0: 4932 203d 2069 6465 616c 2278 332c 797a I2 = ideal"x3,yz │ │ │ │ +00064bf0: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ 00064c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064c10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00064c20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00064c10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00064c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064c50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00064c60: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +00064c50: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00064c60: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 00064c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064c90: 2020 2020 2020 207c 0a7c 6f33 203d 2069 |.|o3 = i │ │ │ │ -00064ca0: 6465 616c 2028 7820 2c20 792a 7a29 2020 deal (x , y*z) │ │ │ │ +00064c80: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00064c90: 3320 3d20 6964 6561 6c20 2878 202c 2079 3 = ideal (x , y │ │ │ │ +00064ca0: 2a7a 2920 2020 2020 2020 2020 2020 2020 *z) │ │ │ │ 00064cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064cd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00064cc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00064cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064d00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00064d10: 0a7c 6f33 203a 2049 6465 616c 206f 6620 .|o3 : Ideal of │ │ │ │ -00064d20: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +00064d00: 2020 2020 7c0a 7c6f 3320 3a20 4964 6561 |.|o3 : Idea │ │ │ │ +00064d10: 6c20 6f66 2053 2020 2020 2020 2020 2020 l of S │ │ │ │ +00064d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064d40: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00064d40: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00064d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064d80: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2052 -------+.|i4 : R │ │ │ │ -00064d90: 3220 3d20 532f 4932 2020 2020 2020 2020 2 = S/I2 │ │ │ │ +00064d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00064d80: 3420 3a20 5232 203d 2053 2f49 3220 2020 4 : R2 = S/I2 │ │ │ │ +00064d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064dc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00064db0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00064dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064df0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00064e00: 0a7c 6f34 203d 2052 3220 2020 2020 2020 .|o4 = R2 │ │ │ │ +00064df0: 2020 2020 7c0a 7c6f 3420 3d20 5232 2020 |.|o4 = R2 │ │ │ │ +00064e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064e30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00064e30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00064e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064e70: 2020 2020 2020 207c 0a7c 6f34 203a 2051 |.|o4 : Q │ │ │ │ -00064e80: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +00064e60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00064e70: 3420 3a20 5175 6f74 6965 6e74 5269 6e67 4 : QuotientRing │ │ │ │ +00064e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064eb0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00064ea0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00064eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00064ef0: 0a7c 6935 203a 204d 3220 3d20 5232 5e31 .|i5 : M2 = R2^1 │ │ │ │ -00064f00: 2f69 6465 616c 2278 322c 792c 7a22 2020 /ideal"x2,y,z" │ │ │ │ +00064ee0: 2d2d 2d2d 2b0a 7c69 3520 3a20 4d32 203d ----+.|i5 : M2 = │ │ │ │ +00064ef0: 2052 325e 312f 6964 6561 6c22 7832 2c79 R2^1/ideal"x2,y │ │ │ │ +00064f00: 2c7a 2220 2020 2020 2020 2020 2020 2020 ,z" │ │ │ │ 00064f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064f20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00064f20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00064f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064f60: 2020 2020 2020 207c 0a7c 6f35 203d 2063 |.|o5 = c │ │ │ │ -00064f70: 6f6b 6572 6e65 6c20 7c20 7832 2079 207a okernel | x2 y z │ │ │ │ -00064f80: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00064f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064fa0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00064f50: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00064f60: 3520 3d20 636f 6b65 726e 656c 207c 2078 5 = cokernel | x │ │ │ │ +00064f70: 3220 7920 7a20 7c20 2020 2020 2020 2020 2 y z | │ │ │ │ +00064f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064f90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00064fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064fd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00064fe0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00064ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065000: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00065010: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ -00065020: 203a 2052 322d 6d6f 6475 6c65 2c20 7175 : R2-module, qu │ │ │ │ -00065030: 6f74 6965 6e74 206f 6620 5232 2020 2020 otient of R2 │ │ │ │ -00065040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065050: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00064fd0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00064fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064ff0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +00065000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065010: 7c0a 7c6f 3520 3a20 5232 2d6d 6f64 756c |.|o5 : R2-modul │ │ │ │ +00065020: 652c 2071 756f 7469 656e 7420 6f66 2052 e, quotient of R │ │ │ │ +00065030: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00065040: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00065050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065090: 2d2d 2d2b 0a7c 6936 203a 2062 6574 7469 ---+.|i6 : betti │ │ │ │ -000650a0: 2066 7265 6552 6573 6f6c 7574 696f 6e20 freeResolution │ │ │ │ -000650b0: 284d 322c 204c 656e 6774 684c 696d 6974 (M2, LengthLimit │ │ │ │ -000650c0: 203d 3e31 3029 2020 2020 2020 2020 207c =>10) | │ │ │ │ -000650d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065080: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ +00065090: 6265 7474 6920 6672 6565 5265 736f 6c75 betti freeResolu │ │ │ │ +000650a0: 7469 6f6e 2028 4d32 2c20 4c65 6e67 7468 tion (M2, Length │ │ │ │ +000650b0: 4c69 6d69 7420 3d3e 3130 2920 2020 2020 Limit =>10) │ │ │ │ +000650c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000650d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000650e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000650f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065100: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00065110: 2020 2020 2020 2020 2020 3020 3120 3220 0 1 2 │ │ │ │ -00065120: 3320 3420 2035 2020 3620 2037 2020 3820 3 4 5 6 7 8 │ │ │ │ -00065130: 2039 2031 3020 2020 2020 2020 2020 2020 9 10 │ │ │ │ -00065140: 2020 2020 2020 207c 0a7c 6f36 203d 2074 |.|o6 = t │ │ │ │ -00065150: 6f74 616c 3a20 3120 3320 3520 3720 3920 otal: 1 3 5 7 9 │ │ │ │ -00065160: 3131 2031 3320 3135 2031 3720 3139 2032 11 13 15 17 19 2 │ │ │ │ -00065170: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00065180: 2020 207c 0a7c 2020 2020 2020 2020 2030 |.| 0 │ │ │ │ -00065190: 3a20 3120 3220 3220 3220 3220 2032 2020 : 1 2 2 2 2 2 │ │ │ │ -000651a0: 3220 2032 2020 3220 2032 2020 3220 2020 2 2 2 2 2 │ │ │ │ -000651b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000651c0: 0a7c 2020 2020 2020 2020 2031 3a20 2e20 .| 1: . │ │ │ │ -000651d0: 3120 3320 3420 3420 2034 2020 3420 2034 1 3 4 4 4 4 4 │ │ │ │ -000651e0: 2020 3420 2034 2020 3420 2020 2020 2020 4 4 4 │ │ │ │ -000651f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00065200: 2020 2020 2020 2032 3a20 2e20 2e20 2e20 2: . . . │ │ │ │ -00065210: 3120 3320 2034 2020 3420 2034 2020 3420 1 3 4 4 4 4 │ │ │ │ -00065220: 2034 2020 3420 2020 2020 2020 2020 2020 4 4 │ │ │ │ -00065230: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00065240: 2020 2033 3a20 2e20 2e20 2e20 2e20 2e20 3: . . . . . │ │ │ │ -00065250: 2031 2020 3320 2034 2020 3420 2034 2020 1 3 4 4 4 │ │ │ │ -00065260: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00065270: 2020 207c 0a7c 2020 2020 2020 2020 2034 |.| 4 │ │ │ │ -00065280: 3a20 2e20 2e20 2e20 2e20 2e20 202e 2020 : . . . . . . │ │ │ │ -00065290: 2e20 2031 2020 3320 2034 2020 3420 2020 . 1 3 4 4 │ │ │ │ -000652a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000652b0: 0a7c 2020 2020 2020 2020 2035 3a20 2e20 .| 5: . │ │ │ │ -000652c0: 2e20 2e20 2e20 2e20 202e 2020 2e20 202e . . . . . . . │ │ │ │ -000652d0: 2020 2e20 2031 2020 3320 2020 2020 2020 . 1 3 │ │ │ │ -000652e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00065100: 7c0a 7c20 2020 2020 2020 2020 2020 2030 |.| 0 │ │ │ │ +00065110: 2031 2032 2033 2034 2020 3520 2036 2020 1 2 3 4 5 6 │ │ │ │ +00065120: 3720 2038 2020 3920 3130 2020 2020 2020 7 8 9 10 │ │ │ │ +00065130: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00065140: 3620 3d20 746f 7461 6c3a 2031 2033 2035 6 = total: 1 3 5 │ │ │ │ +00065150: 2037 2039 2031 3120 3133 2031 3520 3137 7 9 11 13 15 17 │ │ │ │ +00065160: 2031 3920 3231 2020 2020 2020 2020 2020 19 21 │ │ │ │ +00065170: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00065180: 2020 2020 303a 2031 2032 2032 2032 2032 0: 1 2 2 2 2 │ │ │ │ +00065190: 2020 3220 2032 2020 3220 2032 2020 3220 2 2 2 2 2 │ │ │ │ +000651a0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000651b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000651c0: 313a 202e 2031 2033 2034 2034 2020 3420 1: . 1 3 4 4 4 │ │ │ │ +000651d0: 2034 2020 3420 2034 2020 3420 2034 2020 4 4 4 4 4 │ │ │ │ +000651e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000651f0: 7c0a 7c20 2020 2020 2020 2020 323a 202e |.| 2: . │ │ │ │ +00065200: 202e 202e 2031 2033 2020 3420 2034 2020 . . 1 3 4 4 │ │ │ │ +00065210: 3420 2034 2020 3420 2034 2020 2020 2020 4 4 4 4 │ │ │ │ +00065220: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00065230: 2020 2020 2020 2020 333a 202e 202e 202e 3: . . . │ │ │ │ +00065240: 202e 202e 2020 3120 2033 2020 3420 2034 . . 1 3 4 4 │ │ │ │ +00065250: 2020 3420 2034 2020 2020 2020 2020 2020 4 4 │ │ │ │ +00065260: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00065270: 2020 2020 343a 202e 202e 202e 202e 202e 4: . . . . . │ │ │ │ +00065280: 2020 2e20 202e 2020 3120 2033 2020 3420 . . 1 3 4 │ │ │ │ +00065290: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +000652a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000652b0: 353a 202e 202e 202e 202e 202e 2020 2e20 5: . . . . . . │ │ │ │ +000652c0: 202e 2020 2e20 202e 2020 3120 2033 2020 . . . 1 3 │ │ │ │ +000652d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000652e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000652f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065320: 2020 2020 2020 207c 0a7c 6f36 203a 2042 |.|o6 : B │ │ │ │ -00065330: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ +00065310: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00065320: 3620 3a20 4265 7474 6954 616c 6c79 2020 6 : BettiTally │ │ │ │ +00065330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065360: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00065350: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00065360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000653a0: 0a7c 6937 203a 2045 203d 2045 7874 4d6f .|i7 : E = ExtMo │ │ │ │ -000653b0: 6475 6c65 204d 3220 2020 2020 2020 2020 dule M2 │ │ │ │ +00065390: 2d2d 2d2d 2b0a 7c69 3720 3a20 4520 3d20 ----+.|i7 : E = │ │ │ │ +000653a0: 4578 744d 6f64 756c 6520 4d32 2020 2020 ExtModule M2 │ │ │ │ +000653b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000653c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000653d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000653d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000653e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000653f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065410: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00065420: 2020 2020 2020 2020 2020 2038 2020 2020 8 │ │ │ │ +00065400: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00065410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065420: 3820 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ 00065430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065450: 2020 207c 0a7c 6f37 203d 2028 6b6b 5b58 |.|o7 = (kk[X │ │ │ │ -00065460: 202e 2e58 205d 2920 2020 2020 2020 2020 ..X ]) │ │ │ │ +00065440: 2020 2020 2020 2020 7c0a 7c6f 3720 3d20 |.|o7 = │ │ │ │ +00065450: 286b 6b5b 5820 2e2e 5820 5d29 2020 2020 (kk[X ..X ]) │ │ │ │ +00065460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00065490: 0a7c 2020 2020 2020 2020 2020 3020 2020 .| 0 │ │ │ │ -000654a0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00065480: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00065490: 2030 2020 2031 2020 2020 2020 2020 2020 0 1 │ │ │ │ +000654a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000654b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000654c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000654c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000654d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000654e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000654f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065500: 2020 2020 2020 207c 0a7c 6f37 203a 206b |.|o7 : k │ │ │ │ -00065510: 6b5b 5820 2e2e 5820 5d2d 6d6f 6475 6c65 k[X ..X ]-module │ │ │ │ -00065520: 2c20 6672 6565 2c20 6465 6772 6565 7320 , free, degrees │ │ │ │ -00065530: 7b30 2e2e 312c 2032 3a31 2c20 333a 322c {0..1, 2:1, 3:2, │ │ │ │ -00065540: 2033 7d7c 0a7c 2020 2020 2020 2020 2030 3}|.| 0 │ │ │ │ -00065550: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000654f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00065500: 3720 3a20 6b6b 5b58 202e 2e58 205d 2d6d 7 : kk[X ..X ]-m │ │ │ │ +00065510: 6f64 756c 652c 2066 7265 652c 2064 6567 odule, free, deg │ │ │ │ +00065520: 7265 6573 207b 302e 2e31 2c20 323a 312c rees {0..1, 2:1, │ │ │ │ +00065530: 2033 3a32 2c20 337d 7c0a 7c20 2020 2020 3:2, 3}|.| │ │ │ │ +00065540: 2020 2020 3020 2020 3120 2020 2020 2020 0 1 │ │ │ │ +00065550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065570: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00065580: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00065570: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00065580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000655a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000655b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 -----------+.|i8 │ │ │ │ -000655c0: 203a 2061 7070 6c79 2874 6f4c 6973 7428 : apply(toList( │ │ │ │ -000655d0: 302e 2e31 3029 2c20 692d 3e68 696c 6265 0..10), i->hilbe │ │ │ │ -000655e0: 7274 4675 6e63 7469 6f6e 2869 2c20 4529 rtFunction(i, E) │ │ │ │ -000655f0: 2920 2020 2020 207c 0a7c 2020 2020 2020 ) |.| │ │ │ │ +000655b0: 2b0a 7c69 3820 3a20 6170 706c 7928 746f +.|i8 : apply(to │ │ │ │ +000655c0: 4c69 7374 2830 2e2e 3130 292c 2069 2d3e List(0..10), i-> │ │ │ │ +000655d0: 6869 6c62 6572 7446 756e 6374 696f 6e28 hilbertFunction( │ │ │ │ +000655e0: 692c 2045 2929 2020 2020 2020 7c0a 7c20 i, E)) |.| │ │ │ │ +000655f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065630: 2020 207c 0a7c 6f38 203d 207b 312c 2033 |.|o8 = {1, 3 │ │ │ │ -00065640: 2c20 352c 2037 2c20 392c 2031 312c 2031 , 5, 7, 9, 11, 1 │ │ │ │ -00065650: 332c 2031 352c 2031 372c 2031 392c 2032 3, 15, 17, 19, 2 │ │ │ │ -00065660: 317d 2020 2020 2020 2020 2020 2020 207c 1} | │ │ │ │ -00065670: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065620: 2020 2020 2020 2020 7c0a 7c6f 3820 3d20 |.|o8 = │ │ │ │ +00065630: 7b31 2c20 332c 2035 2c20 372c 2039 2c20 {1, 3, 5, 7, 9, │ │ │ │ +00065640: 3131 2c20 3133 2c20 3135 2c20 3137 2c20 11, 13, 15, 17, │ │ │ │ +00065650: 3139 2c20 3231 7d20 2020 2020 2020 2020 19, 21} │ │ │ │ +00065660: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00065670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000656a0: 2020 2020 2020 2020 2020 207c 0a7c 6f38 |.|o8 │ │ │ │ -000656b0: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ +000656a0: 7c0a 7c6f 3820 3a20 4c69 7374 2020 2020 |.|o8 : List │ │ │ │ +000656b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000656c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000656d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000656e0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000656d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000656e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000656f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065720: 2d2d 2d2b 0a7c 6939 203a 2045 6f64 6420 ---+.|i9 : Eodd │ │ │ │ -00065730: 3d20 6f64 6445 7874 4d6f 6475 6c65 204d = oddExtModule M │ │ │ │ -00065740: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00065750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00065760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065710: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 --------+.|i9 : │ │ │ │ +00065720: 456f 6464 203d 206f 6464 4578 744d 6f64 Eodd = oddExtMod │ │ │ │ +00065730: 756c 6520 4d32 2020 2020 2020 2020 2020 ule M2 │ │ │ │ +00065740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065750: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00065760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065790: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000657a0: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ +00065790: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000657a0: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ 000657b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000657c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000657d0: 2020 2020 2020 207c 0a7c 6f39 203d 2028 |.|o9 = ( │ │ │ │ -000657e0: 6b6b 5b58 202e 2e58 205d 2920 2020 2020 kk[X ..X ]) │ │ │ │ +000657c0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000657d0: 3920 3d20 286b 6b5b 5820 2e2e 5820 5d29 9 = (kk[X ..X ]) │ │ │ │ +000657e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000657f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065810: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00065820: 3020 2020 3120 2020 2020 2020 2020 2020 0 1 │ │ │ │ +00065800: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00065810: 2020 2020 2030 2020 2031 2020 2020 2020 0 1 │ │ │ │ +00065820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065840: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00065850: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065840: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00065850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065880: 2020 2020 2020 2020 2020 207c 0a7c 6f39 |.|o9 │ │ │ │ -00065890: 203a 206b 6b5b 5820 2e2e 5820 5d2d 6d6f : kk[X ..X ]-mo │ │ │ │ -000658a0: 6475 6c65 2c20 6672 6565 2c20 6465 6772 dule, free, degr │ │ │ │ -000658b0: 6565 7320 7b33 3a30 2c20 317d 2020 2020 ees {3:0, 1} │ │ │ │ -000658c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000658d0: 2020 2030 2020 2031 2020 2020 2020 2020 0 1 │ │ │ │ +00065880: 7c0a 7c6f 3920 3a20 6b6b 5b58 202e 2e58 |.|o9 : kk[X ..X │ │ │ │ +00065890: 205d 2d6d 6f64 756c 652c 2066 7265 652c ]-module, free, │ │ │ │ +000658a0: 2064 6567 7265 6573 207b 333a 302c 2031 degrees {3:0, 1 │ │ │ │ +000658b0: 7d20 2020 2020 2020 2020 2020 7c0a 7c20 } |.| │ │ │ │ +000658c0: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ +000658d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000658e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000658f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065900: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000658f0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00065900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00065940: 0a7c 6931 3020 3a20 6170 706c 7928 746f .|i10 : apply(to │ │ │ │ -00065950: 4c69 7374 2830 2e2e 3529 2c20 692d 3e68 List(0..5), i->h │ │ │ │ -00065960: 696c 6265 7274 4675 6e63 7469 6f6e 2869 ilbertFunction(i │ │ │ │ -00065970: 2c20 456f 6464 2929 2020 207c 0a7c 2020 , Eodd)) |.| │ │ │ │ +00065930: 2d2d 2d2d 2b0a 7c69 3130 203a 2061 7070 ----+.|i10 : app │ │ │ │ +00065940: 6c79 2874 6f4c 6973 7428 302e 2e35 292c ly(toList(0..5), │ │ │ │ +00065950: 2069 2d3e 6869 6c62 6572 7446 756e 6374 i->hilbertFunct │ │ │ │ +00065960: 696f 6e28 692c 2045 6f64 6429 2920 2020 ion(i, Eodd)) │ │ │ │ +00065970: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00065980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000659a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000659b0: 2020 2020 2020 207c 0a7c 6f31 3020 3d20 |.|o10 = │ │ │ │ -000659c0: 7b33 2c20 372c 2031 312c 2031 352c 2031 {3, 7, 11, 15, 1 │ │ │ │ -000659d0: 392c 2032 337d 2020 2020 2020 2020 2020 9, 23} │ │ │ │ -000659e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000659f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000659a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000659b0: 3130 203d 207b 332c 2037 2c20 3131 2c20 10 = {3, 7, 11, │ │ │ │ +000659c0: 3135 2c20 3139 2c20 3233 7d20 2020 2020 15, 19, 23} │ │ │ │ +000659d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000659e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000659f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065a20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00065a30: 0a7c 6f31 3020 3a20 4c69 7374 2020 2020 .|o10 : List │ │ │ │ +00065a20: 2020 2020 7c0a 7c6f 3130 203a 204c 6973 |.|o10 : Lis │ │ │ │ +00065a30: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 00065a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065a60: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00065a60: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00065a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065aa0: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ -00065ab0: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -00065ac0: 202a 6e6f 7465 2045 7874 4d6f 6475 6c65 *note ExtModule │ │ │ │ -00065ad0: 3a20 4578 744d 6f64 756c 652c 202d 2d20 : ExtModule, -- │ │ │ │ -00065ae0: 4578 745e 2a28 4d2c 6b29 206f 7665 7220 Ext^*(M,k) over │ │ │ │ -00065af0: 6120 636f 6d70 6c65 7465 2069 6e74 6572 a complete inter │ │ │ │ -00065b00: 7365 6374 696f 6e20 6173 0a20 2020 206d section as. m │ │ │ │ -00065b10: 6f64 756c 6520 6f76 6572 2043 4920 6f70 odule over CI op │ │ │ │ -00065b20: 6572 6174 6f72 2072 696e 670a 2020 2a20 erator ring. * │ │ │ │ -00065b30: 2a6e 6f74 6520 6576 656e 4578 744d 6f64 *note evenExtMod │ │ │ │ -00065b40: 756c 653a 2065 7665 6e45 7874 4d6f 6475 ule: evenExtModu │ │ │ │ -00065b50: 6c65 2c20 2d2d 2065 7665 6e20 7061 7274 le, -- even part │ │ │ │ -00065b60: 206f 6620 4578 745e 2a28 4d2c 6b29 206f of Ext^*(M,k) o │ │ │ │ -00065b70: 7665 7220 610a 2020 2020 636f 6d70 6c65 ver a. comple │ │ │ │ -00065b80: 7465 2069 6e74 6572 7365 6374 696f 6e20 te intersection │ │ │ │ -00065b90: 6173 206d 6f64 756c 6520 6f76 6572 2043 as module over C │ │ │ │ -00065ba0: 4920 6f70 6572 6174 6f72 2072 696e 670a I operator ring. │ │ │ │ -00065bb0: 2020 2a20 2a6e 6f74 6520 4f75 7452 696e * *note OutRin │ │ │ │ -00065bc0: 673a 204f 7574 5269 6e67 2c20 2d2d 204f g: OutRing, -- O │ │ │ │ -00065bd0: 7074 696f 6e20 616c 6c6f 7769 6e67 2073 ption allowing s │ │ │ │ -00065be0: 7065 6369 6669 6361 7469 6f6e 206f 6620 pecification of │ │ │ │ -00065bf0: 7468 6520 7269 6e67 206f 7665 720a 2020 the ring over. │ │ │ │ -00065c00: 2020 7768 6963 6820 7468 6520 6f75 7470 which the outp │ │ │ │ -00065c10: 7574 2069 7320 6465 6669 6e65 640a 0a57 ut is defined..W │ │ │ │ -00065c20: 6179 7320 746f 2075 7365 206f 6464 4578 ays to use oddEx │ │ │ │ -00065c30: 744d 6f64 756c 653a 0a3d 3d3d 3d3d 3d3d tModule:.======= │ │ │ │ -00065c40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00065c50: 3d3d 0a0a 2020 2a20 226f 6464 4578 744d ==.. * "oddExtM │ │ │ │ -00065c60: 6f64 756c 6528 4d6f 6475 6c65 2922 0a0a odule(Module)".. │ │ │ │ -00065c70: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -00065c80: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -00065c90: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -00065ca0: 7420 2a6e 6f74 6520 6f64 6445 7874 4d6f t *note oddExtMo │ │ │ │ -00065cb0: 6475 6c65 3a20 6f64 6445 7874 4d6f 6475 dule: oddExtModu │ │ │ │ -00065cc0: 6c65 2c20 6973 2061 202a 6e6f 7465 206d le, is a *note m │ │ │ │ -00065cd0: 6574 686f 6420 6675 6e63 7469 6f6e 2077 ethod function w │ │ │ │ -00065ce0: 6974 680a 6f70 7469 6f6e 733a 2028 4d61 ith.options: (Ma │ │ │ │ -00065cf0: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ -00065d00: 6446 756e 6374 696f 6e57 6974 684f 7074 dFunctionWithOpt │ │ │ │ -00065d10: 696f 6e73 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d ions,...-------- │ │ │ │ +00065a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ +00065aa0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +00065ab0: 0a0a 2020 2a20 2a6e 6f74 6520 4578 744d .. * *note ExtM │ │ │ │ +00065ac0: 6f64 756c 653a 2045 7874 4d6f 6475 6c65 odule: ExtModule │ │ │ │ +00065ad0: 2c20 2d2d 2045 7874 5e2a 284d 2c6b 2920 , -- Ext^*(M,k) │ │ │ │ +00065ae0: 6f76 6572 2061 2063 6f6d 706c 6574 6520 over a complete │ │ │ │ +00065af0: 696e 7465 7273 6563 7469 6f6e 2061 730a intersection as. │ │ │ │ +00065b00: 2020 2020 6d6f 6475 6c65 206f 7665 7220 module over │ │ │ │ +00065b10: 4349 206f 7065 7261 746f 7220 7269 6e67 CI operator ring │ │ │ │ +00065b20: 0a20 202a 202a 6e6f 7465 2065 7665 6e45 . * *note evenE │ │ │ │ +00065b30: 7874 4d6f 6475 6c65 3a20 6576 656e 4578 xtModule: evenEx │ │ │ │ +00065b40: 744d 6f64 756c 652c 202d 2d20 6576 656e tModule, -- even │ │ │ │ +00065b50: 2070 6172 7420 6f66 2045 7874 5e2a 284d part of Ext^*(M │ │ │ │ +00065b60: 2c6b 2920 6f76 6572 2061 0a20 2020 2063 ,k) over a. c │ │ │ │ +00065b70: 6f6d 706c 6574 6520 696e 7465 7273 6563 omplete intersec │ │ │ │ +00065b80: 7469 6f6e 2061 7320 6d6f 6475 6c65 206f tion as module o │ │ │ │ +00065b90: 7665 7220 4349 206f 7065 7261 746f 7220 ver CI operator │ │ │ │ +00065ba0: 7269 6e67 0a20 202a 202a 6e6f 7465 204f ring. * *note O │ │ │ │ +00065bb0: 7574 5269 6e67 3a20 4f75 7452 696e 672c utRing: OutRing, │ │ │ │ +00065bc0: 202d 2d20 4f70 7469 6f6e 2061 6c6c 6f77 -- Option allow │ │ │ │ +00065bd0: 696e 6720 7370 6563 6966 6963 6174 696f ing specificatio │ │ │ │ +00065be0: 6e20 6f66 2074 6865 2072 696e 6720 6f76 n of the ring ov │ │ │ │ +00065bf0: 6572 0a20 2020 2077 6869 6368 2074 6865 er. which the │ │ │ │ +00065c00: 206f 7574 7075 7420 6973 2064 6566 696e output is defin │ │ │ │ +00065c10: 6564 0a0a 5761 7973 2074 6f20 7573 6520 ed..Ways to use │ │ │ │ +00065c20: 6f64 6445 7874 4d6f 6475 6c65 3a0a 3d3d oddExtModule:.== │ │ │ │ +00065c30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00065c40: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 6f64 =======.. * "od │ │ │ │ +00065c50: 6445 7874 4d6f 6475 6c65 284d 6f64 756c dExtModule(Modul │ │ │ │ +00065c60: 6529 220a 0a46 6f72 2074 6865 2070 726f e)"..For the pro │ │ │ │ +00065c70: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +00065c80: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +00065c90: 6f62 6a65 6374 202a 6e6f 7465 206f 6464 object *note odd │ │ │ │ +00065ca0: 4578 744d 6f64 756c 653a 206f 6464 4578 ExtModule: oddEx │ │ │ │ +00065cb0: 744d 6f64 756c 652c 2069 7320 6120 2a6e tModule, is a *n │ │ │ │ +00065cc0: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ +00065cd0: 696f 6e20 7769 7468 0a6f 7074 696f 6e73 ion with.options │ │ │ │ +00065ce0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00065cf0: 4d65 7468 6f64 4675 6e63 7469 6f6e 5769 MethodFunctionWi │ │ │ │ +00065d00: 7468 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d thOptions,...--- │ │ │ │ +00065d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065d60: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -00065d70: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -00065d80: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -00065d90: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -00065da0: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -00065db0: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -00065dc0: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ -00065dd0: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ -00065de0: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ -00065df0: 6d32 3a33 3637 393a 302e 0a1f 0a46 696c m2:3679:0....Fil │ │ │ │ -00065e00: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ -00065e10: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -00065e20: 6e73 2e69 6e66 6f2c 204e 6f64 653a 204f ns.info, Node: O │ │ │ │ -00065e30: 7074 696d 6973 6d2c 204e 6578 743a 204f ptimism, Next: O │ │ │ │ -00065e40: 7574 5269 6e67 2c20 5072 6576 3a20 6f64 utRing, Prev: od │ │ │ │ -00065e50: 6445 7874 4d6f 6475 6c65 2c20 5570 3a20 dExtModule, Up: │ │ │ │ -00065e60: 546f 700a 0a4f 7074 696d 6973 6d20 2d2d Top..Optimism -- │ │ │ │ -00065e70: 204f 7074 696f 6e20 746f 2068 6967 6853 Option to highS │ │ │ │ -00065e80: 797a 7967 790a 2a2a 2a2a 2a2a 2a2a 2a2a yzygy.********** │ │ │ │ -00065e90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00065ea0: 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 6167 ******.. * Usag │ │ │ │ -00065eb0: 653a 200a 2020 2020 2020 2020 6869 6768 e: . high │ │ │ │ -00065ec0: 5379 7a79 6779 284d 2c20 4f70 7469 6d69 Syzygy(M, Optimi │ │ │ │ -00065ed0: 736d 203d 3e20 3129 0a20 202a 2049 6e70 sm => 1). * Inp │ │ │ │ -00065ee0: 7574 733a 0a20 2020 2020 202a 204f 7074 uts:. * Opt │ │ │ │ -00065ef0: 696d 6973 6d2c 2061 6e20 2a6e 6f74 6520 imism, an *note │ │ │ │ -00065f00: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ -00065f10: 6179 3244 6f63 295a 5a2c 2c20 0a0a 4465 ay2Doc)ZZ,, ..De │ │ │ │ -00065f20: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -00065f30: 3d3d 3d3d 3d0a 0a49 6620 6869 6768 5379 =====..If highSy │ │ │ │ -00065f40: 7a79 6779 284d 2920 6368 6f6f 7365 7320 zygy(M) chooses │ │ │ │ -00065f50: 7468 6520 702d 7468 2073 797a 7967 792c the p-th syzygy, │ │ │ │ -00065f60: 2074 6865 6e20 6869 6768 5379 7a79 6779 then highSyzygy │ │ │ │ -00065f70: 284d 2c4f 7074 696d 6973 6d3d 3e72 290a (M,Optimism=>r). │ │ │ │ -00065f80: 6368 6f6f 7365 7320 7468 6520 2870 2d72 chooses the (p-r │ │ │ │ -00065f90: 292d 7468 2073 797a 7967 792e 2028 506f )-th syzygy. (Po │ │ │ │ -00065fa0: 7369 7469 7665 204f 7074 696d 6973 6d20 sitive Optimism │ │ │ │ -00065fb0: 6368 6f6f 7365 7320 6120 6c6f 7765 7220 chooses a lower │ │ │ │ -00065fc0: 2268 6967 6822 2073 797a 7967 792c 0a6e "high" syzygy,.n │ │ │ │ -00065fd0: 6567 6174 6976 6520 4f70 7469 6d69 736d egative Optimism │ │ │ │ -00065fe0: 2061 2068 6967 6865 7220 2268 6967 6822 a higher "high" │ │ │ │ -00065ff0: 2073 797a 7967 792e 0a0a 4361 7665 6174 syzygy...Caveat │ │ │ │ -00066000: 0a3d 3d3d 3d3d 3d0a 0a41 7265 2074 6865 .======..Are the │ │ │ │ -00066010: 7265 2063 6173 6573 2077 6865 6e20 706f re cases when po │ │ │ │ -00066020: 7369 7469 7665 204f 7074 696d 6973 6d20 sitive Optimism │ │ │ │ -00066030: 6973 206a 7573 7469 6669 6564 3f0a 0a53 is justified?..S │ │ │ │ -00066040: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -00066050: 0a0a 2020 2a20 2a6e 6f74 6520 6d66 426f .. * *note mfBo │ │ │ │ -00066060: 756e 643a 206d 6642 6f75 6e64 2c20 2d2d und: mfBound, -- │ │ │ │ -00066070: 2064 6574 6572 6d69 6e65 7320 686f 7720 determines how │ │ │ │ -00066080: 6869 6768 2061 2073 797a 7967 7920 746f high a syzygy to │ │ │ │ -00066090: 2074 616b 6520 666f 720a 2020 2020 226d take for. "m │ │ │ │ -000660a0: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ -000660b0: 6f6e 220a 2020 2a20 2a6e 6f74 6520 6869 on". * *note hi │ │ │ │ -000660c0: 6768 5379 7a79 6779 3a20 6869 6768 5379 ghSyzygy: highSy │ │ │ │ -000660d0: 7a79 6779 2c20 2d2d 2052 6574 7572 6e73 zygy, -- Returns │ │ │ │ -000660e0: 2061 2073 797a 7967 7920 6d6f 6475 6c65 a syzygy module │ │ │ │ -000660f0: 206f 6e65 2062 6579 6f6e 6420 7468 650a one beyond the. │ │ │ │ -00066100: 2020 2020 7265 6775 6c61 7269 7479 206f regularity o │ │ │ │ -00066110: 6620 4578 7428 4d2c 6b29 0a0a 4675 6e63 f Ext(M,k)..Func │ │ │ │ -00066120: 7469 6f6e 7320 7769 7468 206f 7074 696f tions with optio │ │ │ │ -00066130: 6e61 6c20 6172 6775 6d65 6e74 206e 616d nal argument nam │ │ │ │ -00066140: 6564 204f 7074 696d 6973 6d3a 0a3d 3d3d ed Optimism:.=== │ │ │ │ +00065d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +00065d60: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +00065d70: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +00065d80: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +00065d90: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +00065da0: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +00065db0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +00065dc0: 6765 732f 0a43 6f6d 706c 6574 6549 6e74 ges/.CompleteInt │ │ │ │ +00065dd0: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ +00065de0: 696f 6e73 2e6d 323a 3336 3739 3a30 2e0a ions.m2:3679:0.. │ │ │ │ +00065df0: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ +00065e00: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +00065e10: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ +00065e20: 6465 3a20 4f70 7469 6d69 736d 2c20 4e65 de: Optimism, Ne │ │ │ │ +00065e30: 7874 3a20 4f75 7452 696e 672c 2050 7265 xt: OutRing, Pre │ │ │ │ +00065e40: 763a 206f 6464 4578 744d 6f64 756c 652c v: oddExtModule, │ │ │ │ +00065e50: 2055 703a 2054 6f70 0a0a 4f70 7469 6d69 Up: Top..Optimi │ │ │ │ +00065e60: 736d 202d 2d20 4f70 7469 6f6e 2074 6f20 sm -- Option to │ │ │ │ +00065e70: 6869 6768 5379 7a79 6779 0a2a 2a2a 2a2a highSyzygy.***** │ │ │ │ +00065e80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00065e90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +00065ea0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +00065eb0: 2068 6967 6853 797a 7967 7928 4d2c 204f highSyzygy(M, O │ │ │ │ +00065ec0: 7074 696d 6973 6d20 3d3e 2031 290a 2020 ptimism => 1). │ │ │ │ +00065ed0: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ +00065ee0: 2a20 4f70 7469 6d69 736d 2c20 616e 202a * Optimism, an * │ │ │ │ +00065ef0: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ +00065f00: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ +00065f10: 200a 0a44 6573 6372 6970 7469 6f6e 0a3d ..Description.= │ │ │ │ +00065f20: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4966 2068 ==========..If h │ │ │ │ +00065f30: 6967 6853 797a 7967 7928 4d29 2063 686f ighSyzygy(M) cho │ │ │ │ +00065f40: 6f73 6573 2074 6865 2070 2d74 6820 7379 oses the p-th sy │ │ │ │ +00065f50: 7a79 6779 2c20 7468 656e 2068 6967 6853 zygy, then highS │ │ │ │ +00065f60: 797a 7967 7928 4d2c 4f70 7469 6d69 736d yzygy(M,Optimism │ │ │ │ +00065f70: 3d3e 7229 0a63 686f 6f73 6573 2074 6865 =>r).chooses the │ │ │ │ +00065f80: 2028 702d 7229 2d74 6820 7379 7a79 6779 (p-r)-th syzygy │ │ │ │ +00065f90: 2e20 2850 6f73 6974 6976 6520 4f70 7469 . (Positive Opti │ │ │ │ +00065fa0: 6d69 736d 2063 686f 6f73 6573 2061 206c mism chooses a l │ │ │ │ +00065fb0: 6f77 6572 2022 6869 6768 2220 7379 7a79 ower "high" syzy │ │ │ │ +00065fc0: 6779 2c0a 6e65 6761 7469 7665 204f 7074 gy,.negative Opt │ │ │ │ +00065fd0: 696d 6973 6d20 6120 6869 6768 6572 2022 imism a higher " │ │ │ │ +00065fe0: 6869 6768 2220 7379 7a79 6779 2e0a 0a43 high" syzygy...C │ │ │ │ +00065ff0: 6176 6561 740a 3d3d 3d3d 3d3d 0a0a 4172 aveat.======..Ar │ │ │ │ +00066000: 6520 7468 6572 6520 6361 7365 7320 7768 e there cases wh │ │ │ │ +00066010: 656e 2070 6f73 6974 6976 6520 4f70 7469 en positive Opti │ │ │ │ +00066020: 6d69 736d 2069 7320 6a75 7374 6966 6965 mism is justifie │ │ │ │ +00066030: 643f 0a0a 5365 6520 616c 736f 0a3d 3d3d d?..See also.=== │ │ │ │ +00066040: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +00066050: 206d 6642 6f75 6e64 3a20 6d66 426f 756e mfBound: mfBoun │ │ │ │ +00066060: 642c 202d 2d20 6465 7465 726d 696e 6573 d, -- determines │ │ │ │ +00066070: 2068 6f77 2068 6967 6820 6120 7379 7a79 how high a syzy │ │ │ │ +00066080: 6779 2074 6f20 7461 6b65 2066 6f72 0a20 gy to take for. │ │ │ │ +00066090: 2020 2022 6d61 7472 6978 4661 6374 6f72 "matrixFactor │ │ │ │ +000660a0: 697a 6174 696f 6e22 0a20 202a 202a 6e6f ization". * *no │ │ │ │ +000660b0: 7465 2068 6967 6853 797a 7967 793a 2068 te highSyzygy: h │ │ │ │ +000660c0: 6967 6853 797a 7967 792c 202d 2d20 5265 ighSyzygy, -- Re │ │ │ │ +000660d0: 7475 726e 7320 6120 7379 7a79 6779 206d turns a syzygy m │ │ │ │ +000660e0: 6f64 756c 6520 6f6e 6520 6265 796f 6e64 odule one beyond │ │ │ │ +000660f0: 2074 6865 0a20 2020 2072 6567 756c 6172 the. regular │ │ │ │ +00066100: 6974 7920 6f66 2045 7874 284d 2c6b 290a ity of Ext(M,k). │ │ │ │ +00066110: 0a46 756e 6374 696f 6e73 2077 6974 6820 .Functions with │ │ │ │ +00066120: 6f70 7469 6f6e 616c 2061 7267 756d 656e optional argumen │ │ │ │ +00066130: 7420 6e61 6d65 6420 4f70 7469 6d69 736d t named Optimism │ │ │ │ +00066140: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ 00066150: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00066160: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00066170: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ -00066180: 202a 2022 6869 6768 5379 7a79 6779 282e * "highSyzygy(. │ │ │ │ -00066190: 2e2e 2c4f 7074 696d 6973 6d3d 3e2e 2e2e ..,Optimism=>... │ │ │ │ -000661a0: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ -000661b0: 6869 6768 5379 7a79 6779 3a20 6869 6768 highSyzygy: high │ │ │ │ -000661c0: 5379 7a79 6779 2c20 2d2d 0a20 2020 2052 Syzygy, --. R │ │ │ │ -000661d0: 6574 7572 6e73 2061 2073 797a 7967 7920 eturns a syzygy │ │ │ │ -000661e0: 6d6f 6475 6c65 206f 6e65 2062 6579 6f6e module one beyon │ │ │ │ -000661f0: 6420 7468 6520 7265 6775 6c61 7269 7479 d the regularity │ │ │ │ -00066200: 206f 6620 4578 7428 4d2c 6b29 0a20 202a of Ext(M,k). * │ │ │ │ -00066210: 2022 7477 6f4d 6f6e 6f6d 6961 6c73 282e "twoMonomials(. │ │ │ │ -00066220: 2e2e 2c4f 7074 696d 6973 6d3d 3e2e 2e2e ..,Optimism=>... │ │ │ │ -00066230: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ -00066240: 7477 6f4d 6f6e 6f6d 6961 6c73 3a20 7477 twoMonomials: tw │ │ │ │ -00066250: 6f4d 6f6e 6f6d 6961 6c73 2c0a 2020 2020 oMonomials,. │ │ │ │ -00066260: 2d2d 2074 616c 6c79 2074 6865 2073 6571 -- tally the seq │ │ │ │ -00066270: 7565 6e63 6573 206f 6620 4252 616e 6b73 uences of BRanks │ │ │ │ -00066280: 2066 6f72 2063 6572 7461 696e 2065 7861 for certain exa │ │ │ │ -00066290: 6d70 6c65 730a 0a46 6f72 2074 6865 2070 mples..For the p │ │ │ │ -000662a0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -000662b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -000662c0: 6520 6f62 6a65 6374 202a 6e6f 7465 204f e object *note O │ │ │ │ -000662d0: 7074 696d 6973 6d3a 204f 7074 696d 6973 ptimism: Optimis │ │ │ │ -000662e0: 6d2c 2069 7320 6120 2a6e 6f74 6520 7379 m, is a *note sy │ │ │ │ -000662f0: 6d62 6f6c 3a20 284d 6163 6175 6c61 7932 mbol: (Macaulay2 │ │ │ │ -00066300: 446f 6329 5379 6d62 6f6c 2c2e 0a0a 2d2d Doc)Symbol,...-- │ │ │ │ +00066170: 3d3d 0a0a 2020 2a20 2268 6967 6853 797a ==.. * "highSyz │ │ │ │ +00066180: 7967 7928 2e2e 2e2c 4f70 7469 6d69 736d ygy(...,Optimism │ │ │ │ +00066190: 3d3e 2e2e 2e29 2220 2d2d 2073 6565 202a =>...)" -- see * │ │ │ │ +000661a0: 6e6f 7465 2068 6967 6853 797a 7967 793a note highSyzygy: │ │ │ │ +000661b0: 2068 6967 6853 797a 7967 792c 202d 2d0a highSyzygy, --. │ │ │ │ +000661c0: 2020 2020 5265 7475 726e 7320 6120 7379 Returns a sy │ │ │ │ +000661d0: 7a79 6779 206d 6f64 756c 6520 6f6e 6520 zygy module one │ │ │ │ +000661e0: 6265 796f 6e64 2074 6865 2072 6567 756c beyond the regul │ │ │ │ +000661f0: 6172 6974 7920 6f66 2045 7874 284d 2c6b arity of Ext(M,k │ │ │ │ +00066200: 290a 2020 2a20 2274 776f 4d6f 6e6f 6d69 ). * "twoMonomi │ │ │ │ +00066210: 616c 7328 2e2e 2e2c 4f70 7469 6d69 736d als(...,Optimism │ │ │ │ +00066220: 3d3e 2e2e 2e29 2220 2d2d 2073 6565 202a =>...)" -- see * │ │ │ │ +00066230: 6e6f 7465 2074 776f 4d6f 6e6f 6d69 616c note twoMonomial │ │ │ │ +00066240: 733a 2074 776f 4d6f 6e6f 6d69 616c 732c s: twoMonomials, │ │ │ │ +00066250: 0a20 2020 202d 2d20 7461 6c6c 7920 7468 . -- tally th │ │ │ │ +00066260: 6520 7365 7175 656e 6365 7320 6f66 2042 e sequences of B │ │ │ │ +00066270: 5261 6e6b 7320 666f 7220 6365 7274 6169 Ranks for certai │ │ │ │ +00066280: 6e20 6578 616d 706c 6573 0a0a 466f 7220 n examples..For │ │ │ │ +00066290: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +000662a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000662b0: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +000662c0: 6f74 6520 4f70 7469 6d69 736d 3a20 4f70 ote Optimism: Op │ │ │ │ +000662d0: 7469 6d69 736d 2c20 6973 2061 202a 6e6f timism, is a *no │ │ │ │ +000662e0: 7465 2073 796d 626f 6c3a 2028 4d61 6361 te symbol: (Maca │ │ │ │ +000662f0: 756c 6179 3244 6f63 2953 796d 626f 6c2c ulay2Doc)Symbol, │ │ │ │ +00066300: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 00066310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -00066360: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -00066370: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -00066380: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -00066390: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -000663a0: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -000663b0: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -000663c0: 6167 6573 2f0a 436f 6d70 6c65 7465 496e ages/.CompleteIn │ │ │ │ -000663d0: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ -000663e0: 7469 6f6e 732e 6d32 3a33 3136 353a 302e tions.m2:3165:0. │ │ │ │ -000663f0: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ -00066400: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ -00066410: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ -00066420: 6f64 653a 204f 7574 5269 6e67 2c20 4e65 ode: OutRing, Ne │ │ │ │ -00066430: 7874 3a20 7073 694d 6170 732c 2050 7265 xt: psiMaps, Pre │ │ │ │ -00066440: 763a 204f 7074 696d 6973 6d2c 2055 703a v: Optimism, Up: │ │ │ │ -00066450: 2054 6f70 0a0a 4f75 7452 696e 6720 2d2d Top..OutRing -- │ │ │ │ -00066460: 204f 7074 696f 6e20 616c 6c6f 7769 6e67 Option allowing │ │ │ │ -00066470: 2073 7065 6369 6669 6361 7469 6f6e 206f specification o │ │ │ │ -00066480: 6620 7468 6520 7269 6e67 206f 7665 7220 f the ring over │ │ │ │ -00066490: 7768 6963 6820 7468 6520 6f75 7470 7574 which the output │ │ │ │ -000664a0: 2069 7320 6465 6669 6e65 640a 2a2a 2a2a is defined.**** │ │ │ │ +00066350: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00066360: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00066370: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +00066380: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +00066390: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +000663a0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +000663b0: 2f70 6163 6b61 6765 732f 0a43 6f6d 706c /packages/.Compl │ │ │ │ +000663c0: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ +000663d0: 6573 6f6c 7574 696f 6e73 2e6d 323a 3331 esolutions.m2:31 │ │ │ │ +000663e0: 3635 3a30 2e0a 1f0a 4669 6c65 3a20 436f 65:0....File: Co │ │ │ │ +000663f0: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ +00066400: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ +00066410: 666f 2c20 4e6f 6465 3a20 4f75 7452 696e fo, Node: OutRin │ │ │ │ +00066420: 672c 204e 6578 743a 2070 7369 4d61 7073 g, Next: psiMaps │ │ │ │ +00066430: 2c20 5072 6576 3a20 4f70 7469 6d69 736d , Prev: Optimism │ │ │ │ +00066440: 2c20 5570 3a20 546f 700a 0a4f 7574 5269 , Up: Top..OutRi │ │ │ │ +00066450: 6e67 202d 2d20 4f70 7469 6f6e 2061 6c6c ng -- Option all │ │ │ │ +00066460: 6f77 696e 6720 7370 6563 6966 6963 6174 owing specificat │ │ │ │ +00066470: 696f 6e20 6f66 2074 6865 2072 696e 6720 ion of the ring │ │ │ │ +00066480: 6f76 6572 2077 6869 6368 2074 6865 206f over which the o │ │ │ │ +00066490: 7574 7075 7420 6973 2064 6566 696e 6564 utput is defined │ │ │ │ +000664a0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ 000664b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000664c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000664d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000664e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000664f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00066500: 2a0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d *..See also.==== │ │ │ │ -00066510: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -00066520: 6576 656e 4578 744d 6f64 756c 653a 2065 evenExtModule: e │ │ │ │ -00066530: 7665 6e45 7874 4d6f 6475 6c65 2c20 2d2d venExtModule, -- │ │ │ │ -00066540: 2065 7665 6e20 7061 7274 206f 6620 4578 even part of Ex │ │ │ │ -00066550: 745e 2a28 4d2c 6b29 206f 7665 7220 610a t^*(M,k) over a. │ │ │ │ -00066560: 2020 2020 636f 6d70 6c65 7465 2069 6e74 complete int │ │ │ │ -00066570: 6572 7365 6374 696f 6e20 6173 206d 6f64 ersection as mod │ │ │ │ -00066580: 756c 6520 6f76 6572 2043 4920 6f70 6572 ule over CI oper │ │ │ │ -00066590: 6174 6f72 2072 696e 670a 2020 2a20 2a6e ator ring. * *n │ │ │ │ -000665a0: 6f74 6520 6f64 6445 7874 4d6f 6475 6c65 ote oddExtModule │ │ │ │ -000665b0: 3a20 6f64 6445 7874 4d6f 6475 6c65 2c20 : oddExtModule, │ │ │ │ -000665c0: 2d2d 206f 6464 2070 6172 7420 6f66 2045 -- odd part of E │ │ │ │ -000665d0: 7874 5e2a 284d 2c6b 2920 6f76 6572 2061 xt^*(M,k) over a │ │ │ │ -000665e0: 2063 6f6d 706c 6574 650a 2020 2020 696e complete. in │ │ │ │ -000665f0: 7465 7273 6563 7469 6f6e 2061 7320 6d6f tersection as mo │ │ │ │ -00066600: 6475 6c65 206f 7665 7220 4349 206f 7065 dule over CI ope │ │ │ │ -00066610: 7261 746f 7220 7269 6e67 0a0a 4675 6e63 rator ring..Func │ │ │ │ -00066620: 7469 6f6e 7320 7769 7468 206f 7074 696f tions with optio │ │ │ │ -00066630: 6e61 6c20 6172 6775 6d65 6e74 206e 616d nal argument nam │ │ │ │ -00066640: 6564 204f 7574 5269 6e67 3a0a 3d3d 3d3d ed OutRing:.==== │ │ │ │ +000664f0: 2a2a 2a2a 2a2a 0a0a 5365 6520 616c 736f ******..See also │ │ │ │ +00066500: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +00066510: 6e6f 7465 2065 7665 6e45 7874 4d6f 6475 note evenExtModu │ │ │ │ +00066520: 6c65 3a20 6576 656e 4578 744d 6f64 756c le: evenExtModul │ │ │ │ +00066530: 652c 202d 2d20 6576 656e 2070 6172 7420 e, -- even part │ │ │ │ +00066540: 6f66 2045 7874 5e2a 284d 2c6b 2920 6f76 of Ext^*(M,k) ov │ │ │ │ +00066550: 6572 2061 0a20 2020 2063 6f6d 706c 6574 er a. complet │ │ │ │ +00066560: 6520 696e 7465 7273 6563 7469 6f6e 2061 e intersection a │ │ │ │ +00066570: 7320 6d6f 6475 6c65 206f 7665 7220 4349 s module over CI │ │ │ │ +00066580: 206f 7065 7261 746f 7220 7269 6e67 0a20 operator ring. │ │ │ │ +00066590: 202a 202a 6e6f 7465 206f 6464 4578 744d * *note oddExtM │ │ │ │ +000665a0: 6f64 756c 653a 206f 6464 4578 744d 6f64 odule: oddExtMod │ │ │ │ +000665b0: 756c 652c 202d 2d20 6f64 6420 7061 7274 ule, -- odd part │ │ │ │ +000665c0: 206f 6620 4578 745e 2a28 4d2c 6b29 206f of Ext^*(M,k) o │ │ │ │ +000665d0: 7665 7220 6120 636f 6d70 6c65 7465 0a20 ver a complete. │ │ │ │ +000665e0: 2020 2069 6e74 6572 7365 6374 696f 6e20 intersection │ │ │ │ +000665f0: 6173 206d 6f64 756c 6520 6f76 6572 2043 as module over C │ │ │ │ +00066600: 4920 6f70 6572 6174 6f72 2072 696e 670a I operator ring. │ │ │ │ +00066610: 0a46 756e 6374 696f 6e73 2077 6974 6820 .Functions with │ │ │ │ +00066620: 6f70 7469 6f6e 616c 2061 7267 756d 656e optional argumen │ │ │ │ +00066630: 7420 6e61 6d65 6420 4f75 7452 696e 673a t named OutRing: │ │ │ │ +00066640: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ 00066650: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00066660: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00066670: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -00066680: 2022 6576 656e 4578 744d 6f64 756c 6528 "evenExtModule( │ │ │ │ -00066690: 2e2e 2e2c 4f75 7452 696e 673d 3e2e 2e2e ...,OutRing=>... │ │ │ │ -000666a0: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ -000666b0: 6576 656e 4578 744d 6f64 756c 653a 0a20 evenExtModule:. │ │ │ │ -000666c0: 2020 2065 7665 6e45 7874 4d6f 6475 6c65 evenExtModule │ │ │ │ -000666d0: 2c20 2d2d 2065 7665 6e20 7061 7274 206f , -- even part o │ │ │ │ -000666e0: 6620 4578 745e 2a28 4d2c 6b29 206f 7665 f Ext^*(M,k) ove │ │ │ │ -000666f0: 7220 6120 636f 6d70 6c65 7465 2069 6e74 r a complete int │ │ │ │ -00066700: 6572 7365 6374 696f 6e20 6173 0a20 2020 ersection as. │ │ │ │ -00066710: 206d 6f64 756c 6520 6f76 6572 2043 4920 module over CI │ │ │ │ -00066720: 6f70 6572 6174 6f72 2072 696e 670a 2020 operator ring. │ │ │ │ -00066730: 2a20 226f 6464 4578 744d 6f64 756c 6528 * "oddExtModule( │ │ │ │ -00066740: 2e2e 2e2c 4f75 7452 696e 673d 3e2e 2e2e ...,OutRing=>... │ │ │ │ -00066750: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ -00066760: 6f64 6445 7874 4d6f 6475 6c65 3a20 6f64 oddExtModule: od │ │ │ │ -00066770: 6445 7874 4d6f 6475 6c65 2c0a 2020 2020 dExtModule,. │ │ │ │ -00066780: 2d2d 206f 6464 2070 6172 7420 6f66 2045 -- odd part of E │ │ │ │ -00066790: 7874 5e2a 284d 2c6b 2920 6f76 6572 2061 xt^*(M,k) over a │ │ │ │ -000667a0: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ -000667b0: 6563 7469 6f6e 2061 7320 6d6f 6475 6c65 ection as module │ │ │ │ -000667c0: 206f 7665 7220 4349 0a20 2020 206f 7065 over CI. ope │ │ │ │ -000667d0: 7261 746f 7220 7269 6e67 0a0a 466f 7220 rator ring..For │ │ │ │ -000667e0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -000667f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00066800: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -00066810: 6f74 6520 4f75 7452 696e 673a 204f 7574 ote OutRing: Out │ │ │ │ -00066820: 5269 6e67 2c20 6973 2061 202a 6e6f 7465 Ring, is a *note │ │ │ │ -00066830: 2073 796d 626f 6c3a 2028 4d61 6361 756c symbol: (Macaul │ │ │ │ -00066840: 6179 3244 6f63 2953 796d 626f 6c2c 2e0a ay2Doc)Symbol,.. │ │ │ │ -00066850: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ +00066670: 0a0a 2020 2a20 2265 7665 6e45 7874 4d6f .. * "evenExtMo │ │ │ │ +00066680: 6475 6c65 282e 2e2e 2c4f 7574 5269 6e67 dule(...,OutRing │ │ │ │ +00066690: 3d3e 2e2e 2e29 2220 2d2d 2073 6565 202a =>...)" -- see * │ │ │ │ +000666a0: 6e6f 7465 2065 7665 6e45 7874 4d6f 6475 note evenExtModu │ │ │ │ +000666b0: 6c65 3a0a 2020 2020 6576 656e 4578 744d le:. evenExtM │ │ │ │ +000666c0: 6f64 756c 652c 202d 2d20 6576 656e 2070 odule, -- even p │ │ │ │ +000666d0: 6172 7420 6f66 2045 7874 5e2a 284d 2c6b art of Ext^*(M,k │ │ │ │ +000666e0: 2920 6f76 6572 2061 2063 6f6d 706c 6574 ) over a complet │ │ │ │ +000666f0: 6520 696e 7465 7273 6563 7469 6f6e 2061 e intersection a │ │ │ │ +00066700: 730a 2020 2020 6d6f 6475 6c65 206f 7665 s. module ove │ │ │ │ +00066710: 7220 4349 206f 7065 7261 746f 7220 7269 r CI operator ri │ │ │ │ +00066720: 6e67 0a20 202a 2022 6f64 6445 7874 4d6f ng. * "oddExtMo │ │ │ │ +00066730: 6475 6c65 282e 2e2e 2c4f 7574 5269 6e67 dule(...,OutRing │ │ │ │ +00066740: 3d3e 2e2e 2e29 2220 2d2d 2073 6565 202a =>...)" -- see * │ │ │ │ +00066750: 6e6f 7465 206f 6464 4578 744d 6f64 756c note oddExtModul │ │ │ │ +00066760: 653a 206f 6464 4578 744d 6f64 756c 652c e: oddExtModule, │ │ │ │ +00066770: 0a20 2020 202d 2d20 6f64 6420 7061 7274 . -- odd part │ │ │ │ +00066780: 206f 6620 4578 745e 2a28 4d2c 6b29 206f of Ext^*(M,k) o │ │ │ │ +00066790: 7665 7220 6120 636f 6d70 6c65 7465 2069 ver a complete i │ │ │ │ +000667a0: 6e74 6572 7365 6374 696f 6e20 6173 206d ntersection as m │ │ │ │ +000667b0: 6f64 756c 6520 6f76 6572 2043 490a 2020 odule over CI. │ │ │ │ +000667c0: 2020 6f70 6572 6174 6f72 2072 696e 670a operator ring. │ │ │ │ +000667d0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +000667e0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +000667f0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +00066800: 6374 202a 6e6f 7465 204f 7574 5269 6e67 ct *note OutRing │ │ │ │ +00066810: 3a20 4f75 7452 696e 672c 2069 7320 6120 : OutRing, is a │ │ │ │ +00066820: 2a6e 6f74 6520 7379 6d62 6f6c 3a20 284d *note symbol: (M │ │ │ │ +00066830: 6163 6175 6c61 7932 446f 6329 5379 6d62 acaulay2Doc)Symb │ │ │ │ +00066840: 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ol,...---------- │ │ │ │ +00066850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000668a0: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -000668b0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -000668c0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -000668d0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -000668e0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -000668f0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -00066900: 6163 6b61 6765 732f 0a43 6f6d 706c 6574 ackages/.Complet │ │ │ │ -00066910: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ -00066920: 6f6c 7574 696f 6e73 2e6d 323a 3336 3035 olutions.m2:3605 │ │ │ │ -00066930: 3a30 2e0a 1f0a 4669 6c65 3a20 436f 6d70 :0....File: Comp │ │ │ │ -00066940: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ -00066950: 5265 736f 6c75 7469 6f6e 732e 696e 666f Resolutions.info │ │ │ │ -00066960: 2c20 4e6f 6465 3a20 7073 694d 6170 732c , Node: psiMaps, │ │ │ │ -00066970: 204e 6578 743a 2072 6567 756c 6172 6974 Next: regularit │ │ │ │ -00066980: 7953 6571 7565 6e63 652c 2050 7265 763a ySequence, Prev: │ │ │ │ -00066990: 204f 7574 5269 6e67 2c20 5570 3a20 546f OutRing, Up: To │ │ │ │ -000669a0: 700a 0a70 7369 4d61 7073 202d 2d20 6c69 p..psiMaps -- li │ │ │ │ -000669b0: 7374 2074 6865 206d 6170 7320 2070 7369 st the maps psi │ │ │ │ -000669c0: 2870 293a 2042 5f31 2870 2920 2d2d 3e20 (p): B_1(p) --> │ │ │ │ -000669d0: 415f 3028 702d 3129 2069 6e20 6120 6d61 A_0(p-1) in a ma │ │ │ │ -000669e0: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ -000669f0: 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a n.************** │ │ │ │ +00066890: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +000668a0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +000668b0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +000668c0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +000668d0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +000668e0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +000668f0: 6179 322f 7061 636b 6167 6573 2f0a 436f ay2/packages/.Co │ │ │ │ +00066900: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ +00066910: 6f6e 5265 736f 6c75 7469 6f6e 732e 6d32 onResolutions.m2 │ │ │ │ +00066920: 3a33 3630 353a 302e 0a1f 0a46 696c 653a :3605:0....File: │ │ │ │ +00066930: 2043 6f6d 706c 6574 6549 6e74 6572 7365 CompleteInterse │ │ │ │ +00066940: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ +00066950: 2e69 6e66 6f2c 204e 6f64 653a 2070 7369 .info, Node: psi │ │ │ │ +00066960: 4d61 7073 2c20 4e65 7874 3a20 7265 6775 Maps, Next: regu │ │ │ │ +00066970: 6c61 7269 7479 5365 7175 656e 6365 2c20 laritySequence, │ │ │ │ +00066980: 5072 6576 3a20 4f75 7452 696e 672c 2055 Prev: OutRing, U │ │ │ │ +00066990: 703a 2054 6f70 0a0a 7073 694d 6170 7320 p: Top..psiMaps │ │ │ │ +000669a0: 2d2d 206c 6973 7420 7468 6520 6d61 7073 -- list the maps │ │ │ │ +000669b0: 2020 7073 6928 7029 3a20 425f 3128 7029 psi(p): B_1(p) │ │ │ │ +000669c0: 202d 2d3e 2041 5f30 2870 2d31 2920 696e --> A_0(p-1) in │ │ │ │ +000669d0: 2061 206d 6174 7269 7846 6163 746f 7269 a matrixFactori │ │ │ │ +000669e0: 7a61 7469 6f6e 0a2a 2a2a 2a2a 2a2a 2a2a zation.********* │ │ │ │ +000669f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00066a00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00066a10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00066a20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00066a30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00066a40: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -00066a50: 2020 2020 2020 7073 6d61 7073 203d 2070 psmaps = p │ │ │ │ -00066a60: 7369 4d61 7073 206d 660a 2020 2a20 496e siMaps mf. * In │ │ │ │ -00066a70: 7075 7473 3a0a 2020 2020 2020 2a20 6d66 puts:. * mf │ │ │ │ -00066a80: 2c20 6120 2a6e 6f74 6520 6c69 7374 3a20 , a *note list: │ │ │ │ -00066a90: 284d 6163 6175 6c61 7932 446f 6329 4c69 (Macaulay2Doc)Li │ │ │ │ -00066aa0: 7374 2c2c 206f 7574 7075 7420 6f66 2061 st,, output of a │ │ │ │ -00066ab0: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ -00066ac0: 7469 6f6e 0a20 2020 2020 2020 2063 6f6d tion. com │ │ │ │ -00066ad0: 7075 7461 7469 6f6e 0a20 202a 204f 7574 putation. * Out │ │ │ │ -00066ae0: 7075 7473 3a0a 2020 2020 2020 2a20 7073 puts:. * ps │ │ │ │ -00066af0: 6d61 7073 2c20 6120 2a6e 6f74 6520 6c69 maps, a *note li │ │ │ │ -00066b00: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ -00066b10: 6329 4c69 7374 2c2c 206c 6973 7420 6d61 c)List,, list ma │ │ │ │ -00066b20: 7472 6963 6573 2024 645f 703a 0a20 2020 trices $d_p:. │ │ │ │ -00066b30: 2020 2020 2042 5f31 2870 295c 746f 2041 B_1(p)\to A │ │ │ │ -00066b40: 5f30 2870 2d31 2924 0a0a 4465 7363 7269 _0(p-1)$..Descri │ │ │ │ -00066b50: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -00066b60: 3d0a 0a53 6565 2074 6865 2064 6f63 756d =..See the docum │ │ │ │ -00066b70: 656e 7461 7469 6f6e 2066 6f72 206d 6174 entation for mat │ │ │ │ -00066b80: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -00066b90: 2066 6f72 2061 6e20 6578 616d 706c 652e for an example. │ │ │ │ -00066ba0: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -00066bb0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 206d ===.. * *note m │ │ │ │ -00066bc0: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ -00066bd0: 6f6e 3a20 6d61 7472 6978 4661 6374 6f72 on: matrixFactor │ │ │ │ -00066be0: 697a 6174 696f 6e2c 202d 2d20 4d61 7073 ization, -- Maps │ │ │ │ -00066bf0: 2069 6e20 6120 6869 6768 6572 0a20 2020 in a higher. │ │ │ │ -00066c00: 2063 6f64 696d 656e 7369 6f6e 206d 6174 codimension mat │ │ │ │ -00066c10: 7269 7820 6661 6374 6f72 697a 6174 696f rix factorizatio │ │ │ │ -00066c20: 6e0a 2020 2a20 2a6e 6f74 6520 4252 616e n. * *note BRan │ │ │ │ -00066c30: 6b73 3a20 4252 616e 6b73 2c20 2d2d 2072 ks: BRanks, -- r │ │ │ │ -00066c40: 616e 6b73 206f 6620 7468 6520 6d6f 6475 anks of the modu │ │ │ │ -00066c50: 6c65 7320 425f 6928 6429 2069 6e20 610a les B_i(d) in a. │ │ │ │ -00066c60: 2020 2020 6d61 7472 6978 4661 6374 6f72 matrixFactor │ │ │ │ -00066c70: 697a 6174 696f 6e0a 2020 2a20 2a6e 6f74 ization. * *not │ │ │ │ -00066c80: 6520 624d 6170 733a 2062 4d61 7073 2c20 e bMaps: bMaps, │ │ │ │ -00066c90: 2d2d 206c 6973 7420 7468 6520 6d61 7073 -- list the maps │ │ │ │ -00066ca0: 2020 645f 703a 425f 3128 7029 2d2d 3e42 d_p:B_1(p)-->B │ │ │ │ -00066cb0: 5f30 2870 2920 696e 2061 0a20 2020 206d _0(p) in a. m │ │ │ │ -00066cc0: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ -00066cd0: 6f6e 0a20 202a 202a 6e6f 7465 2064 4d61 on. * *note dMa │ │ │ │ -00066ce0: 7073 3a20 644d 6170 732c 202d 2d20 6c69 ps: dMaps, -- li │ │ │ │ -00066cf0: 7374 2074 6865 206d 6170 7320 2064 2870 st the maps d(p │ │ │ │ -00066d00: 293a 415f 3128 7029 2d2d 3e20 415f 3028 ):A_1(p)--> A_0( │ │ │ │ -00066d10: 7029 2069 6e20 610a 2020 2020 6d61 7472 p) in a. matr │ │ │ │ -00066d20: 6978 4661 6374 6f72 697a 6174 696f 6e0a ixFactorization. │ │ │ │ -00066d30: 2020 2a20 2a6e 6f74 6520 684d 6170 733a * *note hMaps: │ │ │ │ -00066d40: 2068 4d61 7073 2c20 2d2d 206c 6973 7420 hMaps, -- list │ │ │ │ -00066d50: 7468 6520 6d61 7073 2020 6828 7029 3a20 the maps h(p): │ │ │ │ -00066d60: 415f 3028 7029 2d2d 3e20 415f 3128 7029 A_0(p)--> A_1(p) │ │ │ │ -00066d70: 2069 6e20 610a 2020 2020 6d61 7472 6978 in a. matrix │ │ │ │ -00066d80: 4661 6374 6f72 697a 6174 696f 6e0a 0a57 Factorization..W │ │ │ │ -00066d90: 6179 7320 746f 2075 7365 2070 7369 4d61 ays to use psiMa │ │ │ │ -00066da0: 7073 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ps:.============ │ │ │ │ -00066db0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2270 ========.. * "p │ │ │ │ -00066dc0: 7369 4d61 7073 284c 6973 7429 220a 0a46 siMaps(List)"..F │ │ │ │ -00066dd0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -00066de0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -00066df0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00066e00: 202a 6e6f 7465 2070 7369 4d61 7073 3a20 *note psiMaps: │ │ │ │ -00066e10: 7073 694d 6170 732c 2069 7320 6120 2a6e psiMaps, is a *n │ │ │ │ -00066e20: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -00066e30: 696f 6e3a 0a28 4d61 6361 756c 6179 3244 ion:.(Macaulay2D │ │ │ │ -00066e40: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -00066e50: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ +00066a30: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ +00066a40: 3a20 0a20 2020 2020 2020 2070 736d 6170 : . psmap │ │ │ │ +00066a50: 7320 3d20 7073 694d 6170 7320 6d66 0a20 s = psiMaps mf. │ │ │ │ +00066a60: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +00066a70: 202a 206d 662c 2061 202a 6e6f 7465 206c * mf, a *note l │ │ │ │ +00066a80: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ +00066a90: 6f63 294c 6973 742c 2c20 6f75 7470 7574 oc)List,, output │ │ │ │ +00066aa0: 206f 6620 6120 6d61 7472 6978 4661 6374 of a matrixFact │ │ │ │ +00066ab0: 6f72 697a 6174 696f 6e0a 2020 2020 2020 orization. │ │ │ │ +00066ac0: 2020 636f 6d70 7574 6174 696f 6e0a 2020 computation. │ │ │ │ +00066ad0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +00066ae0: 202a 2070 736d 6170 732c 2061 202a 6e6f * psmaps, a *no │ │ │ │ +00066af0: 7465 206c 6973 743a 2028 4d61 6361 756c te list: (Macaul │ │ │ │ +00066b00: 6179 3244 6f63 294c 6973 742c 2c20 6c69 ay2Doc)List,, li │ │ │ │ +00066b10: 7374 206d 6174 7269 6365 7320 2464 5f70 st matrices $d_p │ │ │ │ +00066b20: 3a0a 2020 2020 2020 2020 425f 3128 7029 :. B_1(p) │ │ │ │ +00066b30: 5c74 6f20 415f 3028 702d 3129 240a 0a44 \to A_0(p-1)$..D │ │ │ │ +00066b40: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +00066b50: 3d3d 3d3d 3d3d 0a0a 5365 6520 7468 6520 ======..See the │ │ │ │ +00066b60: 646f 6375 6d65 6e74 6174 696f 6e20 666f documentation fo │ │ │ │ +00066b70: 7220 6d61 7472 6978 4661 6374 6f72 697a r matrixFactoriz │ │ │ │ +00066b80: 6174 696f 6e20 666f 7220 616e 2065 7861 ation for an exa │ │ │ │ +00066b90: 6d70 6c65 2e0a 0a53 6565 2061 6c73 6f0a mple...See also. │ │ │ │ +00066ba0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +00066bb0: 6f74 6520 6d61 7472 6978 4661 6374 6f72 ote matrixFactor │ │ │ │ +00066bc0: 697a 6174 696f 6e3a 206d 6174 7269 7846 ization: matrixF │ │ │ │ +00066bd0: 6163 746f 7269 7a61 7469 6f6e 2c20 2d2d actorization, -- │ │ │ │ +00066be0: 204d 6170 7320 696e 2061 2068 6967 6865 Maps in a highe │ │ │ │ +00066bf0: 720a 2020 2020 636f 6469 6d65 6e73 696f r. codimensio │ │ │ │ +00066c00: 6e20 6d61 7472 6978 2066 6163 746f 7269 n matrix factori │ │ │ │ +00066c10: 7a61 7469 6f6e 0a20 202a 202a 6e6f 7465 zation. * *note │ │ │ │ +00066c20: 2042 5261 6e6b 733a 2042 5261 6e6b 732c BRanks: BRanks, │ │ │ │ +00066c30: 202d 2d20 7261 6e6b 7320 6f66 2074 6865 -- ranks of the │ │ │ │ +00066c40: 206d 6f64 756c 6573 2042 5f69 2864 2920 modules B_i(d) │ │ │ │ +00066c50: 696e 2061 0a20 2020 206d 6174 7269 7846 in a. matrixF │ │ │ │ +00066c60: 6163 746f 7269 7a61 7469 6f6e 0a20 202a actorization. * │ │ │ │ +00066c70: 202a 6e6f 7465 2062 4d61 7073 3a20 624d *note bMaps: bM │ │ │ │ +00066c80: 6170 732c 202d 2d20 6c69 7374 2074 6865 aps, -- list the │ │ │ │ +00066c90: 206d 6170 7320 2064 5f70 3a42 5f31 2870 maps d_p:B_1(p │ │ │ │ +00066ca0: 292d 2d3e 425f 3028 7029 2069 6e20 610a )-->B_0(p) in a. │ │ │ │ +00066cb0: 2020 2020 6d61 7472 6978 4661 6374 6f72 matrixFactor │ │ │ │ +00066cc0: 697a 6174 696f 6e0a 2020 2a20 2a6e 6f74 ization. * *not │ │ │ │ +00066cd0: 6520 644d 6170 733a 2064 4d61 7073 2c20 e dMaps: dMaps, │ │ │ │ +00066ce0: 2d2d 206c 6973 7420 7468 6520 6d61 7073 -- list the maps │ │ │ │ +00066cf0: 2020 6428 7029 3a41 5f31 2870 292d 2d3e d(p):A_1(p)--> │ │ │ │ +00066d00: 2041 5f30 2870 2920 696e 2061 0a20 2020 A_0(p) in a. │ │ │ │ +00066d10: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ +00066d20: 7469 6f6e 0a20 202a 202a 6e6f 7465 2068 tion. * *note h │ │ │ │ +00066d30: 4d61 7073 3a20 684d 6170 732c 202d 2d20 Maps: hMaps, -- │ │ │ │ +00066d40: 6c69 7374 2074 6865 206d 6170 7320 2068 list the maps h │ │ │ │ +00066d50: 2870 293a 2041 5f30 2870 292d 2d3e 2041 (p): A_0(p)--> A │ │ │ │ +00066d60: 5f31 2870 2920 696e 2061 0a20 2020 206d _1(p) in a. m │ │ │ │ +00066d70: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ +00066d80: 6f6e 0a0a 5761 7973 2074 6f20 7573 6520 on..Ways to use │ │ │ │ +00066d90: 7073 694d 6170 733a 0a3d 3d3d 3d3d 3d3d psiMaps:.======= │ │ │ │ +00066da0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +00066db0: 202a 2022 7073 694d 6170 7328 4c69 7374 * "psiMaps(List │ │ │ │ +00066dc0: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ +00066dd0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +00066de0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +00066df0: 626a 6563 7420 2a6e 6f74 6520 7073 694d bject *note psiM │ │ │ │ +00066e00: 6170 733a 2070 7369 4d61 7073 2c20 6973 aps: psiMaps, is │ │ │ │ +00066e10: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ +00066e20: 6675 6e63 7469 6f6e 3a0a 284d 6163 6175 function:.(Macau │ │ │ │ +00066e30: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ +00066e40: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ +00066e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066ea0: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -00066eb0: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -00066ec0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -00066ed0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -00066ee0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -00066ef0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -00066f00: 7932 2f70 6163 6b61 6765 732f 0a43 6f6d y2/packages/.Com │ │ │ │ -00066f10: 706c 6574 6549 6e74 6572 7365 6374 696f pleteIntersectio │ │ │ │ -00066f20: 6e52 6573 6f6c 7574 696f 6e73 2e6d 323a nResolutions.m2: │ │ │ │ -00066f30: 3434 3832 3a30 2e0a 1f0a 4669 6c65 3a20 4482:0....File: │ │ │ │ -00066f40: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ -00066f50: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ -00066f60: 696e 666f 2c20 4e6f 6465 3a20 7265 6775 info, Node: regu │ │ │ │ -00066f70: 6c61 7269 7479 5365 7175 656e 6365 2c20 laritySequence, │ │ │ │ -00066f80: 4e65 7874 3a20 5332 2c20 5072 6576 3a20 Next: S2, Prev: │ │ │ │ -00066f90: 7073 694d 6170 732c 2055 703a 2054 6f70 psiMaps, Up: Top │ │ │ │ -00066fa0: 0a0a 7265 6775 6c61 7269 7479 5365 7175 ..regularitySequ │ │ │ │ -00066fb0: 656e 6365 202d 2d20 7265 6775 6c61 7269 ence -- regulari │ │ │ │ -00066fc0: 7479 206f 6620 4578 7420 6d6f 6475 6c65 ty of Ext module │ │ │ │ -00066fd0: 7320 666f 7220 6120 7365 7175 656e 6365 s for a sequence │ │ │ │ -00066fe0: 206f 6620 4d43 4d20 6170 7072 6f78 696d of MCM approxim │ │ │ │ -00066ff0: 6174 696f 6e73 0a2a 2a2a 2a2a 2a2a 2a2a ations.********* │ │ │ │ +00066e90: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00066ea0: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00066eb0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00066ec0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00066ed0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00066ee0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00066ef0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +00066f00: 2f0a 436f 6d70 6c65 7465 496e 7465 7273 /.CompleteInters │ │ │ │ +00066f10: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ +00066f20: 732e 6d32 3a34 3438 323a 302e 0a1f 0a46 s.m2:4482:0....F │ │ │ │ +00066f30: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ +00066f40: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ +00066f50: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ +00066f60: 2072 6567 756c 6172 6974 7953 6571 7565 regularitySeque │ │ │ │ +00066f70: 6e63 652c 204e 6578 743a 2053 322c 2050 nce, Next: S2, P │ │ │ │ +00066f80: 7265 763a 2070 7369 4d61 7073 2c20 5570 rev: psiMaps, Up │ │ │ │ +00066f90: 3a20 546f 700a 0a72 6567 756c 6172 6974 : Top..regularit │ │ │ │ +00066fa0: 7953 6571 7565 6e63 6520 2d2d 2072 6567 ySequence -- reg │ │ │ │ +00066fb0: 756c 6172 6974 7920 6f66 2045 7874 206d ularity of Ext m │ │ │ │ +00066fc0: 6f64 756c 6573 2066 6f72 2061 2073 6571 odules for a seq │ │ │ │ +00066fd0: 7565 6e63 6520 6f66 204d 434d 2061 7070 uence of MCM app │ │ │ │ +00066fe0: 726f 7869 6d61 7469 6f6e 730a 2a2a 2a2a roximations.**** │ │ │ │ +00066ff0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00067000: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00067010: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00067020: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00067030: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00067040: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -00067050: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -00067060: 204c 203d 2072 6567 756c 6172 6974 7953 L = regularityS │ │ │ │ -00067070: 6571 7565 6e63 6520 2852 2c4d 290a 2020 equence (R,M). │ │ │ │ -00067080: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -00067090: 2a20 522c 2061 202a 6e6f 7465 206c 6973 * R, a *note lis │ │ │ │ -000670a0: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ -000670b0: 294c 6973 742c 2c20 6c69 7374 206f 6620 )List,, list of │ │ │ │ -000670c0: 7269 6e67 7320 525f 6920 3d0a 2020 2020 rings R_i =. │ │ │ │ -000670d0: 2020 2020 532f 2866 5f30 2e2e 665f 7b28 S/(f_0..f_{( │ │ │ │ -000670e0: 692d 3129 7d29 2c20 636f 6d70 6c65 7465 i-1)}), complete │ │ │ │ -000670f0: 2069 6e74 6572 7365 6374 696f 6e73 0a20 intersections. │ │ │ │ -00067100: 2020 2020 202a 204d 2c20 6120 2a6e 6f74 * M, a *not │ │ │ │ -00067110: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ -00067120: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ -00067130: 206d 6f64 756c 6520 6f76 6572 2052 5f63 module over R_c │ │ │ │ -00067140: 2077 6865 7265 2063 203d 0a20 2020 2020 where c =. │ │ │ │ -00067150: 2020 206c 656e 6774 6820 5220 2d20 312e length R - 1. │ │ │ │ -00067160: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -00067170: 2020 2020 2a20 4c2c 2061 202a 6e6f 7465 * L, a *note │ │ │ │ -00067180: 206c 6973 743a 2028 4d61 6361 756c 6179 list: (Macaulay │ │ │ │ -00067190: 3244 6f63 294c 6973 742c 2c20 4c69 7374 2Doc)List,, List │ │ │ │ -000671a0: 206f 6620 7061 6972 7320 7b72 6567 756c of pairs {regul │ │ │ │ -000671b0: 6172 6974 790a 2020 2020 2020 2020 6576 arity. ev │ │ │ │ -000671c0: 656e 4578 744d 6f64 756c 6520 4d5f 692c enExtModule M_i, │ │ │ │ -000671d0: 2072 6567 756c 6172 6974 7920 6f64 6445 regularity oddE │ │ │ │ -000671e0: 7874 4d6f 6475 6c65 204d 5f69 290a 0a44 xtModule M_i)..D │ │ │ │ -000671f0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -00067200: 3d3d 3d3d 3d3d 0a0a 436f 6d70 7574 6573 ======..Computes │ │ │ │ -00067210: 2074 6865 206e 6f6e 2d66 7265 6520 7061 the non-free pa │ │ │ │ -00067220: 7274 7320 4d5f 6920 6f66 2074 6865 204d rts M_i of the M │ │ │ │ -00067230: 434d 2061 7070 726f 7869 6d61 7469 6f6e CM approximation │ │ │ │ -00067240: 2074 6f20 4d20 6f76 6572 2052 5f69 2c0a to M over R_i,. │ │ │ │ -00067250: 7374 6f70 7069 6e67 2077 6865 6e20 4d5f stopping when M_ │ │ │ │ -00067260: 6920 6265 636f 6d65 7320 6672 6565 2c20 i becomes free, │ │ │ │ -00067270: 616e 6420 7265 7475 726e 7320 7468 6520 and returns the │ │ │ │ -00067280: 6c69 7374 2077 686f 7365 2065 6c65 6d65 list whose eleme │ │ │ │ -00067290: 6e74 7320 6172 6520 7468 650a 7061 6972 nts are the.pair │ │ │ │ -000672a0: 7320 6f66 2072 6567 756c 6172 6974 6965 s of regularitie │ │ │ │ -000672b0: 732c 2073 7461 7274 696e 6720 7769 7468 s, starting with │ │ │ │ -000672c0: 204d 5f7b 2863 2d31 297d 204e 6f74 6520 M_{(c-1)} Note │ │ │ │ -000672d0: 7468 6174 2074 6865 2066 6972 7374 2070 that the first p │ │ │ │ -000672e0: 6169 7220 6973 2066 6f72 0a74 6865 0a0a air is for.the.. │ │ │ │ -000672f0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00067040: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +00067050: 2020 2020 2020 4c20 3d20 7265 6775 6c61 L = regula │ │ │ │ +00067060: 7269 7479 5365 7175 656e 6365 2028 522c ritySequence (R, │ │ │ │ +00067070: 4d29 0a20 202a 2049 6e70 7574 733a 0a20 M). * Inputs:. │ │ │ │ +00067080: 2020 2020 202a 2052 2c20 6120 2a6e 6f74 * R, a *not │ │ │ │ +00067090: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ +000670a0: 7932 446f 6329 4c69 7374 2c2c 206c 6973 y2Doc)List,, lis │ │ │ │ +000670b0: 7420 6f66 2072 696e 6773 2052 5f69 203d t of rings R_i = │ │ │ │ +000670c0: 0a20 2020 2020 2020 2053 2f28 665f 302e . S/(f_0. │ │ │ │ +000670d0: 2e66 5f7b 2869 2d31 297d 292c 2063 6f6d .f_{(i-1)}), com │ │ │ │ +000670e0: 706c 6574 6520 696e 7465 7273 6563 7469 plete intersecti │ │ │ │ +000670f0: 6f6e 730a 2020 2020 2020 2a20 4d2c 2061 ons. * M, a │ │ │ │ +00067100: 202a 6e6f 7465 206d 6f64 756c 653a 2028 *note module: ( │ │ │ │ +00067110: 4d61 6361 756c 6179 3244 6f63 294d 6f64 Macaulay2Doc)Mod │ │ │ │ +00067120: 756c 652c 2c20 6d6f 6475 6c65 206f 7665 ule,, module ove │ │ │ │ +00067130: 7220 525f 6320 7768 6572 6520 6320 3d0a r R_c where c =. │ │ │ │ +00067140: 2020 2020 2020 2020 6c65 6e67 7468 2052 length R │ │ │ │ +00067150: 202d 2031 2e0a 2020 2a20 4f75 7470 7574 - 1.. * Output │ │ │ │ +00067160: 733a 0a20 2020 2020 202a 204c 2c20 6120 s:. * L, a │ │ │ │ +00067170: 2a6e 6f74 6520 6c69 7374 3a20 284d 6163 *note list: (Mac │ │ │ │ +00067180: 6175 6c61 7932 446f 6329 4c69 7374 2c2c aulay2Doc)List,, │ │ │ │ +00067190: 204c 6973 7420 6f66 2070 6169 7273 207b List of pairs { │ │ │ │ +000671a0: 7265 6775 6c61 7269 7479 0a20 2020 2020 regularity. │ │ │ │ +000671b0: 2020 2065 7665 6e45 7874 4d6f 6475 6c65 evenExtModule │ │ │ │ +000671c0: 204d 5f69 2c20 7265 6775 6c61 7269 7479 M_i, regularity │ │ │ │ +000671d0: 206f 6464 4578 744d 6f64 756c 6520 4d5f oddExtModule M_ │ │ │ │ +000671e0: 6929 0a0a 4465 7363 7269 7074 696f 6e0a i)..Description. │ │ │ │ +000671f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a43 6f6d ===========..Com │ │ │ │ +00067200: 7075 7465 7320 7468 6520 6e6f 6e2d 6672 putes the non-fr │ │ │ │ +00067210: 6565 2070 6172 7473 204d 5f69 206f 6620 ee parts M_i of │ │ │ │ +00067220: 7468 6520 4d43 4d20 6170 7072 6f78 696d the MCM approxim │ │ │ │ +00067230: 6174 696f 6e20 746f 204d 206f 7665 7220 ation to M over │ │ │ │ +00067240: 525f 692c 0a73 746f 7070 696e 6720 7768 R_i,.stopping wh │ │ │ │ +00067250: 656e 204d 5f69 2062 6563 6f6d 6573 2066 en M_i becomes f │ │ │ │ +00067260: 7265 652c 2061 6e64 2072 6574 7572 6e73 ree, and returns │ │ │ │ +00067270: 2074 6865 206c 6973 7420 7768 6f73 6520 the list whose │ │ │ │ +00067280: 656c 656d 656e 7473 2061 7265 2074 6865 elements are the │ │ │ │ +00067290: 0a70 6169 7273 206f 6620 7265 6775 6c61 .pairs of regula │ │ │ │ +000672a0: 7269 7469 6573 2c20 7374 6172 7469 6e67 rities, starting │ │ │ │ +000672b0: 2077 6974 6820 4d5f 7b28 632d 3129 7d20 with M_{(c-1)} │ │ │ │ +000672c0: 4e6f 7465 2074 6861 7420 7468 6520 6669 Note that the fi │ │ │ │ +000672d0: 7273 7420 7061 6972 2069 7320 666f 720a rst pair is for. │ │ │ │ +000672e0: 7468 650a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d the..+---------- │ │ │ │ +000672f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00067330: 0a7c 6931 203a 2063 203d 2033 3b64 3d32 .|i1 : c = 3;d=2 │ │ │ │ +00067320: 2d2d 2d2d 2b0a 7c69 3120 3a20 6320 3d20 ----+.|i1 : c = │ │ │ │ +00067330: 333b 643d 3220 2020 2020 2020 2020 2020 3;d=2 │ │ │ │ 00067340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067370: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00067360: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00067370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000673a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000673b0: 207c 0a7c 6f32 203d 2032 2020 2020 2020 |.|o2 = 2 │ │ │ │ +000673a0: 2020 2020 2020 7c0a 7c6f 3220 3d20 3220 |.|o2 = 2 │ │ │ │ +000673b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000673c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000673d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000673e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000673f0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000673e0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000673f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067430: 2d2d 2d2b 0a7c 6933 203a 2052 203d 2073 ---+.|i3 : R = s │ │ │ │ -00067440: 6574 7570 5269 6e67 7328 632c 6429 3b20 etupRings(c,d); │ │ │ │ +00067420: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +00067430: 5220 3d20 7365 7475 7052 696e 6773 2863 R = setupRings(c │ │ │ │ +00067440: 2c64 293b 2020 2020 2020 2020 2020 2020 ,d); │ │ │ │ 00067450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067470: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00067460: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00067470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000674a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000674b0: 2d2d 2d2d 2d2b 0a7c 6934 203a 2052 6320 -----+.|i4 : Rc │ │ │ │ -000674c0: 3d20 525f 6320 2020 2020 2020 2020 2020 = R_c │ │ │ │ +000674a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ +000674b0: 3a20 5263 203d 2052 5f63 2020 2020 2020 : Rc = R_c │ │ │ │ +000674c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000674d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000674e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000674f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000674e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000674f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067530: 2020 2020 2020 207c 0a7c 6f34 203d 2052 |.|o4 = R │ │ │ │ -00067540: 6320 2020 2020 2020 2020 2020 2020 2020 c │ │ │ │ +00067520: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00067530: 3420 3d20 5263 2020 2020 2020 2020 2020 4 = Rc │ │ │ │ +00067540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067570: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00067560: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00067570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000675a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000675b0: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ -000675c0: 2051 756f 7469 656e 7452 696e 6720 2020 QuotientRing │ │ │ │ +000675a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000675b0: 7c6f 3420 3a20 5175 6f74 6965 6e74 5269 |o4 : QuotientRi │ │ │ │ +000675c0: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 000675d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000675e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000675f0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000675e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000675f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00067600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ -00067640: 203a 204d 203d 2063 6f6b 6572 206d 6174 : M = coker mat │ │ │ │ -00067650: 7269 787b 7b52 635f 302c 5263 5f31 2c52 rix{{Rc_0,Rc_1,R │ │ │ │ -00067660: 635f 327d 2c7b 5263 5f31 2c52 635f 322c c_2},{Rc_1,Rc_2, │ │ │ │ -00067670: 5263 5f30 7d7d 2020 2020 2020 7c0a 7c20 Rc_0}} |.| │ │ │ │ +00067630: 2b0a 7c69 3520 3a20 4d20 3d20 636f 6b65 +.|i5 : M = coke │ │ │ │ +00067640: 7220 6d61 7472 6978 7b7b 5263 5f30 2c52 r matrix{{Rc_0,R │ │ │ │ +00067650: 635f 312c 5263 5f32 7d2c 7b52 635f 312c c_1,Rc_2},{Rc_1, │ │ │ │ +00067660: 5263 5f32 2c52 635f 307d 7d20 2020 2020 Rc_2,Rc_0}} │ │ │ │ +00067670: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00067680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000676a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000676b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000676c0: 6f35 203d 2063 6f6b 6572 6e65 6c20 7c20 o5 = cokernel | │ │ │ │ -000676d0: 785f 3020 785f 3120 785f 3220 7c20 2020 x_0 x_1 x_2 | │ │ │ │ +000676b0: 2020 7c0a 7c6f 3520 3d20 636f 6b65 726e |.|o5 = cokern │ │ │ │ +000676c0: 656c 207c 2078 5f30 2078 5f31 2078 5f32 el | x_0 x_1 x_2 │ │ │ │ +000676d0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000676e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000676f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00067700: 7c20 2020 2020 2020 2020 2020 2020 207c | | │ │ │ │ -00067710: 2078 5f31 2078 5f32 2078 5f30 207c 2020 x_1 x_2 x_0 | │ │ │ │ +000676f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00067700: 2020 2020 7c20 785f 3120 785f 3220 785f | x_1 x_2 x_ │ │ │ │ +00067710: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 00067720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067740: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00067730: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00067740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067780: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00067790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000677a0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000677b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000677c0: 207c 0a7c 6f35 203a 2052 632d 6d6f 6475 |.|o5 : Rc-modu │ │ │ │ -000677d0: 6c65 2c20 7175 6f74 6965 6e74 206f 6620 le, quotient of │ │ │ │ -000677e0: 5263 2020 2020 2020 2020 2020 2020 2020 Rc │ │ │ │ -000677f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067800: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00067770: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00067780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067790: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000677a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000677b0: 2020 2020 2020 7c0a 7c6f 3520 3a20 5263 |.|o5 : Rc │ │ │ │ +000677c0: 2d6d 6f64 756c 652c 2071 756f 7469 656e -module, quotien │ │ │ │ +000677d0: 7420 6f66 2052 6320 2020 2020 2020 2020 t of Rc │ │ │ │ +000677e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000677f0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00067800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067840: 2d2d 2d2b 0a7c 6936 203a 2072 6567 756c ---+.|i6 : regul │ │ │ │ -00067850: 6172 6974 7953 6571 7565 6e63 6528 522c aritySequence(R, │ │ │ │ -00067860: 4d29 2020 2020 2020 2020 2020 2020 2020 M) │ │ │ │ -00067870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067880: 2020 2020 7c0a 7c72 6567 2065 7665 6e20 |.|reg even │ │ │ │ -00067890: 6578 742c 2073 6f63 2064 6567 7320 6576 ext, soc degs ev │ │ │ │ -000678a0: 656e 2065 7874 2c20 7265 6720 6f64 6420 en ext, reg odd │ │ │ │ -000678b0: 6578 742c 2073 6f63 2064 6567 7320 6f64 ext, soc degs od │ │ │ │ -000678c0: 6420 6578 747c 0a7c 2020 2020 2020 2020 d ext|.| │ │ │ │ +00067830: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ +00067840: 7265 6775 6c61 7269 7479 5365 7175 656e regularitySequen │ │ │ │ +00067850: 6365 2852 2c4d 2920 2020 2020 2020 2020 ce(R,M) │ │ │ │ +00067860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067870: 2020 2020 2020 2020 207c 0a7c 7265 6720 |.|reg │ │ │ │ +00067880: 6576 656e 2065 7874 2c20 736f 6320 6465 even ext, soc de │ │ │ │ +00067890: 6773 2065 7665 6e20 6578 742c 2072 6567 gs even ext, reg │ │ │ │ +000678a0: 206f 6464 2065 7874 2c20 736f 6320 6465 odd ext, soc de │ │ │ │ +000678b0: 6773 206f 6464 2065 7874 7c0a 7c20 2020 gs odd ext|.| │ │ │ │ +000678c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000678d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000678e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000678f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067900: 2020 2020 2020 7c0a 7c7b 332c 207b 312c |.|{3, {1, │ │ │ │ -00067910: 2031 2c20 317d 2c20 322c 207b 312c 2031 1, 1}, 2, {1, 1 │ │ │ │ -00067920: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ -00067930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067940: 2020 2020 2020 207c 0a7c 7b32 2c20 7b30 |.|{2, {0 │ │ │ │ -00067950: 2c20 302c 2030 2c20 317d 2c20 322c 207b , 0, 0, 1}, 2, { │ │ │ │ -00067960: 302c 2030 2c20 307d 7d20 2020 2020 2020 0, 0, 0}} │ │ │ │ -00067970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067980: 2020 2020 2020 2020 7c0a 7c7b 302c 207b |.|{0, { │ │ │ │ -00067990: 7d2c 2030 2c20 7b7d 7d20 2020 2020 2020 }, 0, {}} │ │ │ │ +000678f0: 2020 2020 2020 2020 2020 207c 0a7c 7b33 |.|{3 │ │ │ │ +00067900: 2c20 7b31 2c20 312c 2031 7d2c 2032 2c20 , {1, 1, 1}, 2, │ │ │ │ +00067910: 7b31 2c20 317d 7d20 2020 2020 2020 2020 {1, 1}} │ │ │ │ +00067920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067930: 2020 2020 2020 2020 2020 2020 7c0a 7c7b |.|{ │ │ │ │ +00067940: 322c 207b 302c 2030 2c20 302c 2031 7d2c 2, {0, 0, 0, 1}, │ │ │ │ +00067950: 2032 2c20 7b30 2c20 302c 2030 7d7d 2020 2, {0, 0, 0}} │ │ │ │ +00067960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067970: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00067980: 7b30 2c20 7b7d 2c20 302c 207b 7d7d 2020 {0, {}, 0, {}} │ │ │ │ +00067990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000679a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000679b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000679c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000679b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000679c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000679d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000679e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000679f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 ----------+..See │ │ │ │ -00067a10: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ -00067a20: 2020 2a20 2a6e 6f74 6520 6170 7072 6f78 * *note approx │ │ │ │ -00067a30: 696d 6174 696f 6e3a 2028 4d43 4d41 7070 imation: (MCMApp │ │ │ │ -00067a40: 726f 7869 6d61 7469 6f6e 7329 6170 7072 roximations)appr │ │ │ │ -00067a50: 6f78 696d 6174 696f 6e2c 202d 2d20 7265 oximation, -- re │ │ │ │ -00067a60: 7475 726e 7320 7061 6972 206f 660a 2020 turns pair of. │ │ │ │ -00067a70: 2020 636f 6d70 6f6e 656e 7473 206f 6620 components of │ │ │ │ -00067a80: 7468 6520 6d61 7020 6672 6f6d 2074 6865 the map from the │ │ │ │ -00067a90: 204d 434d 2061 7070 726f 7869 6d61 7469 MCM approximati │ │ │ │ -00067aa0: 6f6e 0a20 202a 202a 6e6f 7465 2061 7573 on. * *note aus │ │ │ │ -00067ab0: 6c61 6e64 6572 496e 7661 7269 616e 743a landerInvariant: │ │ │ │ -00067ac0: 2028 4d43 4d41 7070 726f 7869 6d61 7469 (MCMApproximati │ │ │ │ -00067ad0: 6f6e 7329 6175 736c 616e 6465 7249 6e76 ons)auslanderInv │ │ │ │ -00067ae0: 6172 6961 6e74 2c20 2d2d 0a20 2020 206d ariant, --. m │ │ │ │ -00067af0: 6561 7375 7265 7320 6661 696c 7572 6520 easures failure │ │ │ │ -00067b00: 6f66 2073 7572 6a65 6374 6976 6974 7920 of surjectivity │ │ │ │ -00067b10: 6f66 2074 6865 2065 7373 656e 7469 616c of the essential │ │ │ │ -00067b20: 204d 434d 2061 7070 726f 7869 6d61 7469 MCM approximati │ │ │ │ -00067b30: 6f6e 0a0a 5761 7973 2074 6f20 7573 6520 on..Ways to use │ │ │ │ -00067b40: 7265 6775 6c61 7269 7479 5365 7175 656e regularitySequen │ │ │ │ -00067b50: 6365 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ce:.============ │ │ │ │ -00067b60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00067b70: 3d3d 3d0a 0a20 202a 2022 7265 6775 6c61 ===.. * "regula │ │ │ │ -00067b80: 7269 7479 5365 7175 656e 6365 284c 6973 ritySequence(Lis │ │ │ │ -00067b90: 742c 4d6f 6475 6c65 2922 0a0a 466f 7220 t,Module)"..For │ │ │ │ -00067ba0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -00067bb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00067bc0: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -00067bd0: 6f74 6520 7265 6775 6c61 7269 7479 5365 ote regularitySe │ │ │ │ -00067be0: 7175 656e 6365 3a20 7265 6775 6c61 7269 quence: regulari │ │ │ │ -00067bf0: 7479 5365 7175 656e 6365 2c20 6973 2061 tySequence, is a │ │ │ │ -00067c00: 202a 6e6f 7465 206d 6574 686f 640a 6675 *note method.fu │ │ │ │ -00067c10: 6e63 7469 6f6e 3a20 284d 6163 6175 6c61 nction: (Macaula │ │ │ │ -00067c20: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ -00067c30: 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d tion,...-------- │ │ │ │ +000679f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00067a00: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +00067a10: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2061 ===.. * *note a │ │ │ │ +00067a20: 7070 726f 7869 6d61 7469 6f6e 3a20 284d pproximation: (M │ │ │ │ +00067a30: 434d 4170 7072 6f78 696d 6174 696f 6e73 CMApproximations │ │ │ │ +00067a40: 2961 7070 726f 7869 6d61 7469 6f6e 2c20 )approximation, │ │ │ │ +00067a50: 2d2d 2072 6574 7572 6e73 2070 6169 7220 -- returns pair │ │ │ │ +00067a60: 6f66 0a20 2020 2063 6f6d 706f 6e65 6e74 of. component │ │ │ │ +00067a70: 7320 6f66 2074 6865 206d 6170 2066 726f s of the map fro │ │ │ │ +00067a80: 6d20 7468 6520 4d43 4d20 6170 7072 6f78 m the MCM approx │ │ │ │ +00067a90: 696d 6174 696f 6e0a 2020 2a20 2a6e 6f74 imation. * *not │ │ │ │ +00067aa0: 6520 6175 736c 616e 6465 7249 6e76 6172 e auslanderInvar │ │ │ │ +00067ab0: 6961 6e74 3a20 284d 434d 4170 7072 6f78 iant: (MCMApprox │ │ │ │ +00067ac0: 696d 6174 696f 6e73 2961 7573 6c61 6e64 imations)ausland │ │ │ │ +00067ad0: 6572 496e 7661 7269 616e 742c 202d 2d0a erInvariant, --. │ │ │ │ +00067ae0: 2020 2020 6d65 6173 7572 6573 2066 6169 measures fai │ │ │ │ +00067af0: 6c75 7265 206f 6620 7375 726a 6563 7469 lure of surjecti │ │ │ │ +00067b00: 7669 7479 206f 6620 7468 6520 6573 7365 vity of the esse │ │ │ │ +00067b10: 6e74 6961 6c20 4d43 4d20 6170 7072 6f78 ntial MCM approx │ │ │ │ +00067b20: 696d 6174 696f 6e0a 0a57 6179 7320 746f imation..Ways to │ │ │ │ +00067b30: 2075 7365 2072 6567 756c 6172 6974 7953 use regularityS │ │ │ │ +00067b40: 6571 7565 6e63 653a 0a3d 3d3d 3d3d 3d3d equence:.======= │ │ │ │ +00067b50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00067b60: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2272 ========.. * "r │ │ │ │ +00067b70: 6567 756c 6172 6974 7953 6571 7565 6e63 egularitySequenc │ │ │ │ +00067b80: 6528 4c69 7374 2c4d 6f64 756c 6529 220a e(List,Module)". │ │ │ │ +00067b90: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +00067ba0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +00067bb0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +00067bc0: 6374 202a 6e6f 7465 2072 6567 756c 6172 ct *note regular │ │ │ │ +00067bd0: 6974 7953 6571 7565 6e63 653a 2072 6567 itySequence: reg │ │ │ │ +00067be0: 756c 6172 6974 7953 6571 7565 6e63 652c ularitySequence, │ │ │ │ +00067bf0: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ +00067c00: 6f64 0a66 756e 6374 696f 6e3a 2028 4d61 od.function: (Ma │ │ │ │ +00067c10: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ +00067c20: 6446 756e 6374 696f 6e2c 2e0a 0a2d 2d2d dFunction,...--- │ │ │ │ +00067c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067c80: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -00067c90: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -00067ca0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -00067cb0: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -00067cc0: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -00067cd0: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -00067ce0: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ -00067cf0: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ -00067d00: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ -00067d10: 6d32 3a32 3630 303a 302e 0a1f 0a46 696c m2:2600:0....Fil │ │ │ │ -00067d20: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ -00067d30: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -00067d40: 6e73 2e69 6e66 6f2c 204e 6f64 653a 2053 ns.info, Node: S │ │ │ │ -00067d50: 322c 204e 6578 743a 2053 6861 6d61 7368 2, Next: Shamash │ │ │ │ -00067d60: 2c20 5072 6576 3a20 7265 6775 6c61 7269 , Prev: regulari │ │ │ │ -00067d70: 7479 5365 7175 656e 6365 2c20 5570 3a20 tySequence, Up: │ │ │ │ -00067d80: 546f 700a 0a53 3220 2d2d 2055 6e69 7665 Top..S2 -- Unive │ │ │ │ -00067d90: 7273 616c 206d 6170 2074 6f20 6120 6d6f rsal map to a mo │ │ │ │ -00067da0: 6475 6c65 2073 6174 6973 6679 696e 6720 dule satisfying │ │ │ │ -00067db0: 5365 7272 6527 7320 636f 6e64 6974 696f Serre's conditio │ │ │ │ -00067dc0: 6e20 5332 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a n S2.*********** │ │ │ │ +00067c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +00067c80: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +00067c90: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +00067ca0: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +00067cb0: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +00067cc0: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +00067cd0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +00067ce0: 6765 732f 0a43 6f6d 706c 6574 6549 6e74 ges/.CompleteInt │ │ │ │ +00067cf0: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ +00067d00: 696f 6e73 2e6d 323a 3236 3030 3a30 2e0a ions.m2:2600:0.. │ │ │ │ +00067d10: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ +00067d20: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +00067d30: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ +00067d40: 6465 3a20 5332 2c20 4e65 7874 3a20 5368 de: S2, Next: Sh │ │ │ │ +00067d50: 616d 6173 682c 2050 7265 763a 2072 6567 amash, Prev: reg │ │ │ │ +00067d60: 756c 6172 6974 7953 6571 7565 6e63 652c ularitySequence, │ │ │ │ +00067d70: 2055 703a 2054 6f70 0a0a 5332 202d 2d20 Up: Top..S2 -- │ │ │ │ +00067d80: 556e 6976 6572 7361 6c20 6d61 7020 746f Universal map to │ │ │ │ +00067d90: 2061 206d 6f64 756c 6520 7361 7469 7366 a module satisf │ │ │ │ +00067da0: 7969 6e67 2053 6572 7265 2773 2063 6f6e ying Serre's con │ │ │ │ +00067db0: 6469 7469 6f6e 2053 320a 2a2a 2a2a 2a2a dition S2.****** │ │ │ │ +00067dc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00067dd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00067de0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00067df0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00067e00: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ -00067e10: 200a 2020 2020 2020 2020 6620 3d20 5332 . f = S2 │ │ │ │ -00067e20: 2862 2c4d 290a 2020 2a20 496e 7075 7473 (b,M). * Inputs │ │ │ │ -00067e30: 3a0a 2020 2020 2020 2a20 622c 2061 6e20 :. * b, an │ │ │ │ -00067e40: 2a6e 6f74 6520 696e 7465 6765 723a 2028 *note integer: ( │ │ │ │ -00067e50: 4d61 6361 756c 6179 3244 6f63 295a 5a2c Macaulay2Doc)ZZ, │ │ │ │ -00067e60: 2c20 6465 6772 6565 2062 6f75 6e64 2074 , degree bound t │ │ │ │ -00067e70: 6f20 7768 6963 6820 746f 2063 6172 7279 o which to carry │ │ │ │ -00067e80: 0a20 2020 2020 2020 2074 6865 2063 6f6d . the com │ │ │ │ -00067e90: 7075 7461 7469 6f6e 0a20 2020 2020 202a putation. * │ │ │ │ -00067ea0: 204d 2c20 6120 2a6e 6f74 6520 6d6f 6475 M, a *note modu │ │ │ │ -00067eb0: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ -00067ec0: 6329 4d6f 6475 6c65 2c2c 200a 2020 2a20 c)Module,, . * │ │ │ │ -00067ed0: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -00067ee0: 2066 2c20 6120 2a6e 6f74 6520 6d61 7472 f, a *note matr │ │ │ │ -00067ef0: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ -00067f00: 6329 4d61 7472 6978 2c2c 2064 6566 696e c)Matrix,, defin │ │ │ │ -00067f10: 696e 6720 6120 6d61 7020 4d2d 2d3e 4d27 ing a map M-->M' │ │ │ │ -00067f20: 2074 6861 740a 2020 2020 2020 2020 6167 that. ag │ │ │ │ -00067f30: 7265 6573 2077 6974 6820 7468 6520 5332 rees with the S2 │ │ │ │ -00067f40: 2d69 6669 6361 7469 6f6e 206f 6620 4d20 -ification of M │ │ │ │ -00067f50: 696e 2064 6567 7265 6573 2024 5c67 6571 in degrees $\geq │ │ │ │ -00067f60: 2062 240a 0a44 6573 6372 6970 7469 6f6e b$..Description │ │ │ │ -00067f70: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4966 .===========..If │ │ │ │ -00067f80: 204d 2069 7320 6120 6772 6164 6564 206d M is a graded m │ │ │ │ -00067f90: 6f64 756c 6520 6f76 6572 2061 2072 696e odule over a rin │ │ │ │ -00067fa0: 6720 532c 2074 6865 6e20 7468 6520 5332 g S, then the S2 │ │ │ │ -00067fb0: 2d69 6669 6361 7469 6f6e 206f 6620 4d20 -ification of M │ │ │ │ -00067fc0: 6973 205c 7375 6d5f 7b64 0a5c 696e 205a is \sum_{d.\in Z │ │ │ │ -00067fd0: 5a7d 2048 5e30 2828 7368 6561 6620 4d29 Z} H^0((sheaf M) │ │ │ │ -00067fe0: 2864 2929 2c20 7768 6963 6820 6d61 7920 (d)), which may │ │ │ │ -00067ff0: 6265 2063 6f6d 7075 7465 6420 6173 206c be computed as l │ │ │ │ -00068000: 696d 5f7b 642d 3e5c 696e 6674 797d 2048 im_{d->\infty} H │ │ │ │ -00068010: 6f6d 2849 5f64 2c4d 292c 0a77 6865 7265 om(I_d,M),.where │ │ │ │ -00068020: 2049 5f64 2069 7320 616e 7920 7365 7175 I_d is any sequ │ │ │ │ -00068030: 656e 6365 206f 6620 6964 6561 6c73 2063 ence of ideals c │ │ │ │ -00068040: 6f6e 7461 696e 6564 2069 6e20 6869 6768 ontained in high │ │ │ │ -00068050: 6572 2061 6e64 2068 6967 6865 7220 706f er and higher po │ │ │ │ -00068060: 7765 7273 206f 660a 535f 2b2e 2054 6865 wers of.S_+. The │ │ │ │ -00068070: 7265 2069 7320 6120 6e61 7475 7261 6c20 re is a natural │ │ │ │ -00068080: 7265 7374 7269 6374 696f 6e20 6d61 7020 restriction map │ │ │ │ -00068090: 663a 204d 203d 2048 6f6d 2853 2c4d 2920 f: M = Hom(S,M) │ │ │ │ -000680a0: 5c74 6f20 486f 6d28 495f 642c 4d29 2e20 \to Hom(I_d,M). │ │ │ │ -000680b0: 5765 0a63 6f6d 7075 7465 2061 6c6c 2074 We.compute all t │ │ │ │ -000680c0: 6869 7320 7573 696e 6720 7468 6520 6964 his using the id │ │ │ │ -000680d0: 6561 6c73 2049 5f64 2067 656e 6572 6174 eals I_d generat │ │ │ │ -000680e0: 6564 2062 7920 7468 6520 642d 7468 2070 ed by the d-th p │ │ │ │ -000680f0: 6f77 6572 7320 6f66 2074 6865 0a76 6172 owers of the.var │ │ │ │ -00068100: 6961 626c 6573 2069 6e20 532e 0a0a 5369 iables in S...Si │ │ │ │ -00068110: 6e63 6520 7468 6520 7265 7375 6c74 206d nce the result m │ │ │ │ -00068120: 6179 206e 6f74 2062 6520 6669 6e69 7465 ay not be finite │ │ │ │ -00068130: 6c79 2067 656e 6572 6174 6564 2028 7468 ly generated (th │ │ │ │ -00068140: 6973 2068 6170 7065 6e73 2069 6620 616e is happens if an │ │ │ │ -00068150: 6420 6f6e 6c79 2069 6620 4d0a 6861 7320 d only if M.has │ │ │ │ -00068160: 616e 2061 7373 6f63 6961 7465 6420 7072 an associated pr │ │ │ │ -00068170: 696d 6520 6f66 2064 696d 656e 7369 6f6e ime of dimension │ │ │ │ -00068180: 2031 292c 2077 6520 636f 6d70 7574 6520 1), we compute │ │ │ │ -00068190: 6f6e 6c79 2075 7020 746f 2061 2073 7065 only up to a spe │ │ │ │ -000681a0: 6369 6669 6564 0a64 6567 7265 6520 626f cified.degree bo │ │ │ │ -000681b0: 756e 6420 622e 2046 6f72 2074 6865 2072 und b. For the r │ │ │ │ -000681c0: 6573 756c 7420 746f 2062 6520 636f 7272 esult to be corr │ │ │ │ -000681d0: 6563 7420 646f 776e 2074 6f20 6465 6772 ect down to degr │ │ │ │ -000681e0: 6565 2062 2c20 6974 2069 7320 7375 6666 ee b, it is suff │ │ │ │ -000681f0: 6963 6965 6e74 0a74 6f20 636f 6d70 7574 icient.to comput │ │ │ │ -00068200: 6520 486f 6d28 492c 4d29 2077 6865 7265 e Hom(I,M) where │ │ │ │ -00068210: 2049 205c 7375 6273 6574 2028 535f 2b29 I \subset (S_+) │ │ │ │ -00068220: 5e7b 722d 627d 2e0a 0a2b 2d2d 2d2d 2d2d ^{r-b}...+------ │ │ │ │ +00067df0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ +00067e00: 7361 6765 3a20 0a20 2020 2020 2020 2066 sage: . f │ │ │ │ +00067e10: 203d 2053 3228 622c 4d29 0a20 202a 2049 = S2(b,M). * I │ │ │ │ +00067e20: 6e70 7574 733a 0a20 2020 2020 202a 2062 nputs:. * b │ │ │ │ +00067e30: 2c20 616e 202a 6e6f 7465 2069 6e74 6567 , an *note integ │ │ │ │ +00067e40: 6572 3a20 284d 6163 6175 6c61 7932 446f er: (Macaulay2Do │ │ │ │ +00067e50: 6329 5a5a 2c2c 2064 6567 7265 6520 626f c)ZZ,, degree bo │ │ │ │ +00067e60: 756e 6420 746f 2077 6869 6368 2074 6f20 und to which to │ │ │ │ +00067e70: 6361 7272 790a 2020 2020 2020 2020 7468 carry. th │ │ │ │ +00067e80: 6520 636f 6d70 7574 6174 696f 6e0a 2020 e computation. │ │ │ │ +00067e90: 2020 2020 2a20 4d2c 2061 202a 6e6f 7465 * M, a *note │ │ │ │ +00067ea0: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ +00067eb0: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ +00067ec0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +00067ed0: 2020 2020 2a20 662c 2061 202a 6e6f 7465 * f, a *note │ │ │ │ +00067ee0: 206d 6174 7269 783a 2028 4d61 6361 756c matrix: (Macaul │ │ │ │ +00067ef0: 6179 3244 6f63 294d 6174 7269 782c 2c20 ay2Doc)Matrix,, │ │ │ │ +00067f00: 6465 6669 6e69 6e67 2061 206d 6170 204d defining a map M │ │ │ │ +00067f10: 2d2d 3e4d 2720 7468 6174 0a20 2020 2020 -->M' that. │ │ │ │ +00067f20: 2020 2061 6772 6565 7320 7769 7468 2074 agrees with t │ │ │ │ +00067f30: 6865 2053 322d 6966 6963 6174 696f 6e20 he S2-ification │ │ │ │ +00067f40: 6f66 204d 2069 6e20 6465 6772 6565 7320 of M in degrees │ │ │ │ +00067f50: 245c 6765 7120 6224 0a0a 4465 7363 7269 $\geq b$..Descri │ │ │ │ +00067f60: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +00067f70: 3d0a 0a49 6620 4d20 6973 2061 2067 7261 =..If M is a gra │ │ │ │ +00067f80: 6465 6420 6d6f 6475 6c65 206f 7665 7220 ded module over │ │ │ │ +00067f90: 6120 7269 6e67 2053 2c20 7468 656e 2074 a ring S, then t │ │ │ │ +00067fa0: 6865 2053 322d 6966 6963 6174 696f 6e20 he S2-ification │ │ │ │ +00067fb0: 6f66 204d 2069 7320 5c73 756d 5f7b 640a of M is \sum_{d. │ │ │ │ +00067fc0: 5c69 6e20 5a5a 7d20 485e 3028 2873 6865 \in ZZ} H^0((she │ │ │ │ +00067fd0: 6166 204d 2928 6429 292c 2077 6869 6368 af M)(d)), which │ │ │ │ +00067fe0: 206d 6179 2062 6520 636f 6d70 7574 6564 may be computed │ │ │ │ +00067ff0: 2061 7320 6c69 6d5f 7b64 2d3e 5c69 6e66 as lim_{d->\inf │ │ │ │ +00068000: 7479 7d20 486f 6d28 495f 642c 4d29 2c0a ty} Hom(I_d,M),. │ │ │ │ +00068010: 7768 6572 6520 495f 6420 6973 2061 6e79 where I_d is any │ │ │ │ +00068020: 2073 6571 7565 6e63 6520 6f66 2069 6465 sequence of ide │ │ │ │ +00068030: 616c 7320 636f 6e74 6169 6e65 6420 696e als contained in │ │ │ │ +00068040: 2068 6967 6865 7220 616e 6420 6869 6768 higher and high │ │ │ │ +00068050: 6572 2070 6f77 6572 7320 6f66 0a53 5f2b er powers of.S_+ │ │ │ │ +00068060: 2e20 5468 6572 6520 6973 2061 206e 6174 . There is a nat │ │ │ │ +00068070: 7572 616c 2072 6573 7472 6963 7469 6f6e ural restriction │ │ │ │ +00068080: 206d 6170 2066 3a20 4d20 3d20 486f 6d28 map f: M = Hom( │ │ │ │ +00068090: 532c 4d29 205c 746f 2048 6f6d 2849 5f64 S,M) \to Hom(I_d │ │ │ │ +000680a0: 2c4d 292e 2057 650a 636f 6d70 7574 6520 ,M). We.compute │ │ │ │ +000680b0: 616c 6c20 7468 6973 2075 7369 6e67 2074 all this using t │ │ │ │ +000680c0: 6865 2069 6465 616c 7320 495f 6420 6765 he ideals I_d ge │ │ │ │ +000680d0: 6e65 7261 7465 6420 6279 2074 6865 2064 nerated by the d │ │ │ │ +000680e0: 2d74 6820 706f 7765 7273 206f 6620 7468 -th powers of th │ │ │ │ +000680f0: 650a 7661 7269 6162 6c65 7320 696e 2053 e.variables in S │ │ │ │ +00068100: 2e0a 0a53 696e 6365 2074 6865 2072 6573 ...Since the res │ │ │ │ +00068110: 756c 7420 6d61 7920 6e6f 7420 6265 2066 ult may not be f │ │ │ │ +00068120: 696e 6974 656c 7920 6765 6e65 7261 7465 initely generate │ │ │ │ +00068130: 6420 2874 6869 7320 6861 7070 656e 7320 d (this happens │ │ │ │ +00068140: 6966 2061 6e64 206f 6e6c 7920 6966 204d if and only if M │ │ │ │ +00068150: 0a68 6173 2061 6e20 6173 736f 6369 6174 .has an associat │ │ │ │ +00068160: 6564 2070 7269 6d65 206f 6620 6469 6d65 ed prime of dime │ │ │ │ +00068170: 6e73 696f 6e20 3129 2c20 7765 2063 6f6d nsion 1), we com │ │ │ │ +00068180: 7075 7465 206f 6e6c 7920 7570 2074 6f20 pute only up to │ │ │ │ +00068190: 6120 7370 6563 6966 6965 640a 6465 6772 a specified.degr │ │ │ │ +000681a0: 6565 2062 6f75 6e64 2062 2e20 466f 7220 ee bound b. For │ │ │ │ +000681b0: 7468 6520 7265 7375 6c74 2074 6f20 6265 the result to be │ │ │ │ +000681c0: 2063 6f72 7265 6374 2064 6f77 6e20 746f correct down to │ │ │ │ +000681d0: 2064 6567 7265 6520 622c 2069 7420 6973 degree b, it is │ │ │ │ +000681e0: 2073 7566 6669 6369 656e 740a 746f 2063 sufficient.to c │ │ │ │ +000681f0: 6f6d 7075 7465 2048 6f6d 2849 2c4d 2920 ompute Hom(I,M) │ │ │ │ +00068200: 7768 6572 6520 4920 5c73 7562 7365 7420 where I \subset │ │ │ │ +00068210: 2853 5f2b 295e 7b72 2d62 7d2e 0a0a 2b2d (S_+)^{r-b}...+- │ │ │ │ +00068220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068270: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 206b -------+.|i1 : k │ │ │ │ -00068280: 6b3d 5a5a 2f31 3031 2020 2020 2020 2020 k=ZZ/101 │ │ │ │ +00068260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00068270: 3120 3a20 6b6b 3d5a 5a2f 3130 3120 2020 1 : kk=ZZ/101 │ │ │ │ +00068280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000682a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000682b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000682c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000682b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000682c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000682d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000682e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000682f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068310: 2020 2020 2020 207c 0a7c 6f31 203d 206b |.|o1 = k │ │ │ │ -00068320: 6b20 2020 2020 2020 2020 2020 2020 2020 k │ │ │ │ +00068300: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00068310: 3120 3d20 6b6b 2020 2020 2020 2020 2020 1 = kk │ │ │ │ +00068320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068360: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00068350: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000683a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000683b0: 2020 2020 2020 207c 0a7c 6f31 203a 2051 |.|o1 : Q │ │ │ │ -000683c0: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +000683a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000683b0: 3120 3a20 5175 6f74 6965 6e74 5269 6e67 1 : QuotientRing │ │ │ │ +000683c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000683d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000683e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000683f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068400: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000683f0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00068400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068450: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2053 -------+.|i2 : S │ │ │ │ -00068460: 203d 206b 6b5b 612c 622c 632c 645d 2020 = kk[a,b,c,d] │ │ │ │ +00068440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00068450: 3220 3a20 5320 3d20 6b6b 5b61 2c62 2c63 2 : S = kk[a,b,c │ │ │ │ +00068460: 2c64 5d20 2020 2020 2020 2020 2020 2020 ,d] │ │ │ │ 00068470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000684a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00068490: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000684a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000684b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000684c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000684d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000684e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000684f0: 2020 2020 2020 207c 0a7c 6f32 203d 2053 |.|o2 = S │ │ │ │ +000684e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000684f0: 3220 3d20 5320 2020 2020 2020 2020 2020 2 = S │ │ │ │ 00068500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068540: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00068530: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068590: 2020 2020 2020 207c 0a7c 6f32 203a 2050 |.|o2 : P │ │ │ │ -000685a0: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +00068580: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00068590: 3220 3a20 506f 6c79 6e6f 6d69 616c 5269 2 : PolynomialRi │ │ │ │ +000685a0: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 000685b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000685c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000685d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000685e0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000685d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000685e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000685f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068630: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 204d -------+.|i3 : M │ │ │ │ -00068640: 203d 2074 7275 6e63 6174 6528 332c 535e = truncate(3,S^ │ │ │ │ -00068650: 3129 2020 2020 2020 2020 2020 2020 2020 1) │ │ │ │ +00068620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00068630: 3320 3a20 4d20 3d20 7472 756e 6361 7465 3 : M = truncate │ │ │ │ +00068640: 2833 2c53 5e31 2920 2020 2020 2020 2020 (3,S^1) │ │ │ │ +00068650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068680: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00068670: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000686a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000686b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000686c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000686d0: 2020 2020 2020 207c 0a7c 6f33 203d 2069 |.|o3 = i │ │ │ │ -000686e0: 6d61 6765 207c 2064 3320 6364 3220 6264 mage | d3 cd2 bd │ │ │ │ -000686f0: 3220 6164 3220 6332 6420 6263 6420 6163 2 ad2 c2d bcd ac │ │ │ │ -00068700: 6420 6232 6420 6162 6420 6132 6420 6333 d b2d abd a2d c3 │ │ │ │ -00068710: 2062 6332 2061 6332 2062 3263 2061 6263 bc2 ac2 b2c abc │ │ │ │ -00068720: 2061 3263 2062 337c 0a7c 2020 2020 2020 a2c b3|.| │ │ │ │ +000686c0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000686d0: 3320 3d20 696d 6167 6520 7c20 6433 2063 3 = image | d3 c │ │ │ │ +000686e0: 6432 2062 6432 2061 6432 2063 3264 2062 d2 bd2 ad2 c2d b │ │ │ │ +000686f0: 6364 2061 6364 2062 3264 2061 6264 2061 cd acd b2d abd a │ │ │ │ +00068700: 3264 2063 3320 6263 3220 6163 3220 6232 2d c3 bc2 ac2 b2 │ │ │ │ +00068710: 6320 6162 6320 6132 6320 6233 7c0a 7c20 c abc a2c b3|.| │ │ │ │ +00068720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068770: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00068780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068790: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ +00068760: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068780: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +00068790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000687a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000687b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000687c0: 2020 2020 2020 207c 0a7c 6f33 203a 2053 |.|o3 : S │ │ │ │ -000687d0: 2d6d 6f64 756c 652c 2073 7562 6d6f 6475 -module, submodu │ │ │ │ -000687e0: 6c65 206f 6620 5320 2020 2020 2020 2020 le of S │ │ │ │ +000687b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000687c0: 3320 3a20 532d 6d6f 6475 6c65 2c20 7375 3 : S-module, su │ │ │ │ +000687d0: 626d 6f64 756c 6520 6f66 2053 2020 2020 bmodule of S │ │ │ │ +000687e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000687f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068810: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +00068800: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +00068810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068860: 2d2d 2d2d 2d2d 2d7c 0a7c 6162 3220 6132 -------|.|ab2 a2 │ │ │ │ -00068870: 6220 6133 207c 2020 2020 2020 2020 2020 b a3 | │ │ │ │ +00068850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c61 ------------|.|a │ │ │ │ +00068860: 6232 2061 3262 2061 3320 7c20 2020 2020 b2 a2b a3 | │ │ │ │ +00068870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000688a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000688b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000688a0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000688b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000688c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000688d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000688e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000688f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068900: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2062 -------+.|i4 : b │ │ │ │ -00068910: 6574 7469 206d 6174 7269 7820 5332 2830 etti matrix S2(0 │ │ │ │ -00068920: 2c4d 2920 2020 2020 2020 2020 2020 2020 ,M) │ │ │ │ +000688f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00068900: 3420 3a20 6265 7474 6920 6d61 7472 6978 4 : betti matrix │ │ │ │ +00068910: 2053 3228 302c 4d29 2020 2020 2020 2020 S2(0,M) │ │ │ │ +00068920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068950: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00068940: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000689a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000689b0: 2020 2020 2020 3020 2031 2020 2020 2020 0 1 │ │ │ │ +00068990: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000689a0: 2020 2020 2020 2020 2020 2030 2020 3120 0 1 │ │ │ │ +000689b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000689c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000689d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000689e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000689f0: 2020 2020 2020 207c 0a7c 6f34 203d 2074 |.|o4 = t │ │ │ │ -00068a00: 6f74 616c 3a20 3120 3230 2020 2020 2020 otal: 1 20 │ │ │ │ +000689e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000689f0: 3420 3d20 746f 7461 6c3a 2031 2032 3020 4 = total: 1 20 │ │ │ │ +00068a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068a40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00068a50: 2020 2030 3a20 3120 202e 2020 2020 2020 0: 1 . │ │ │ │ +00068a30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068a40: 2020 2020 2020 2020 303a 2031 2020 2e20 0: 1 . │ │ │ │ +00068a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068a90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00068aa0: 2020 2031 3a20 2e20 202e 2020 2020 2020 1: . . │ │ │ │ +00068a80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068a90: 2020 2020 2020 2020 313a 202e 2020 2e20 1: . . │ │ │ │ +00068aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ae0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00068af0: 2020 2032 3a20 2e20 3230 2020 2020 2020 2: . 20 │ │ │ │ +00068ad0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068ae0: 2020 2020 2020 2020 323a 202e 2032 3020 2: . 20 │ │ │ │ +00068af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068b30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00068b20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068b80: 2020 2020 2020 207c 0a7c 6f34 203a 2042 |.|o4 : B │ │ │ │ -00068b90: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ +00068b70: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00068b80: 3420 3a20 4265 7474 6954 616c 6c79 2020 4 : BettiTally │ │ │ │ +00068b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068bd0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00068bc0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00068bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068c20: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2062 -------+.|i5 : b │ │ │ │ -00068c30: 6574 7469 206d 6174 7269 7820 5332 2831 etti matrix S2(1 │ │ │ │ -00068c40: 2c4d 2920 2020 2020 2020 2020 2020 2020 ,M) │ │ │ │ +00068c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00068c20: 3520 3a20 6265 7474 6920 6d61 7472 6978 5 : betti matrix │ │ │ │ +00068c30: 2053 3228 312c 4d29 2020 2020 2020 2020 S2(1,M) │ │ │ │ +00068c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068c70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00068c60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068cc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00068cd0: 2020 2020 2020 3020 2031 2020 2020 2020 0 1 │ │ │ │ +00068cb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068cc0: 2020 2020 2020 2020 2020 2030 2020 3120 0 1 │ │ │ │ +00068cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068d10: 2020 2020 2020 207c 0a7c 6f35 203d 2074 |.|o5 = t │ │ │ │ -00068d20: 6f74 616c 3a20 3120 3230 2020 2020 2020 otal: 1 20 │ │ │ │ +00068d00: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00068d10: 3520 3d20 746f 7461 6c3a 2031 2032 3020 5 = total: 1 20 │ │ │ │ +00068d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068d60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00068d70: 2020 2030 3a20 3120 202e 2020 2020 2020 0: 1 . │ │ │ │ +00068d50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068d60: 2020 2020 2020 2020 303a 2031 2020 2e20 0: 1 . │ │ │ │ +00068d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068db0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00068dc0: 2020 2031 3a20 2e20 202e 2020 2020 2020 1: . . │ │ │ │ +00068da0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068db0: 2020 2020 2020 2020 313a 202e 2020 2e20 1: . . │ │ │ │ +00068dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068e00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00068e10: 2020 2032 3a20 2e20 3230 2020 2020 2020 2: . 20 │ │ │ │ +00068df0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068e00: 2020 2020 2020 2020 323a 202e 2032 3020 2: . 20 │ │ │ │ +00068e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068e50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00068e40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ea0: 2020 2020 2020 207c 0a7c 6f35 203a 2042 |.|o5 : B │ │ │ │ -00068eb0: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ +00068e90: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00068ea0: 3520 3a20 4265 7474 6954 616c 6c79 2020 5 : BettiTally │ │ │ │ +00068eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ef0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00068ee0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00068ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068f40: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 204d -------+.|i6 : M │ │ │ │ -00068f50: 203d 2053 5e31 2f69 6e74 6572 7365 6374 = S^1/intersect │ │ │ │ -00068f60: 2869 6465 616c 2261 2c62 2c63 222c 2069 (ideal"a,b,c", i │ │ │ │ -00068f70: 6465 616c 2262 2c63 2c64 222c 6964 6561 deal"b,c,d",idea │ │ │ │ -00068f80: 6c22 632c 642c 6122 2c69 6465 616c 2264 l"c,d,a",ideal"d │ │ │ │ -00068f90: 2c61 2c62 2229 207c 0a7c 2020 2020 2020 ,a,b") |.| │ │ │ │ +00068f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00068f40: 3620 3a20 4d20 3d20 535e 312f 696e 7465 6 : M = S^1/inte │ │ │ │ +00068f50: 7273 6563 7428 6964 6561 6c22 612c 622c rsect(ideal"a,b, │ │ │ │ +00068f60: 6322 2c20 6964 6561 6c22 622c 632c 6422 c", ideal"b,c,d" │ │ │ │ +00068f70: 2c69 6465 616c 2263 2c64 2c61 222c 6964 ,ideal"c,d,a",id │ │ │ │ +00068f80: 6561 6c22 642c 612c 6222 2920 7c0a 7c20 eal"d,a,b") |.| │ │ │ │ +00068f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068fe0: 2020 2020 2020 207c 0a7c 6f36 203d 2063 |.|o6 = c │ │ │ │ -00068ff0: 6f6b 6572 6e65 6c20 7c20 6364 2062 6420 okernel | cd bd │ │ │ │ -00069000: 6164 2062 6320 6163 2061 6220 7c20 2020 ad bc ac ab | │ │ │ │ +00068fd0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00068fe0: 3620 3d20 636f 6b65 726e 656c 207c 2063 6 = cokernel | c │ │ │ │ +00068ff0: 6420 6264 2061 6420 6263 2061 6320 6162 d bd ad bc ac ab │ │ │ │ +00069000: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00069010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069030: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00069020: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00069030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069080: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00069090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000690a0: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +00069070: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00069080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069090: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +000690a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000690b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000690c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000690d0: 2020 2020 2020 207c 0a7c 6f36 203a 2053 |.|o6 : S │ │ │ │ -000690e0: 2d6d 6f64 756c 652c 2071 756f 7469 656e -module, quotien │ │ │ │ -000690f0: 7420 6f66 2053 2020 2020 2020 2020 2020 t of S │ │ │ │ +000690c0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000690d0: 3620 3a20 532d 6d6f 6475 6c65 2c20 7175 6 : S-module, qu │ │ │ │ +000690e0: 6f74 6965 6e74 206f 6620 5320 2020 2020 otient of S │ │ │ │ +000690f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069120: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00069110: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00069120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069170: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2070 -------+.|i7 : p │ │ │ │ -00069180: 7275 6e65 2073 6f75 7263 6520 5332 2830 rune source S2(0 │ │ │ │ -00069190: 2c4d 2920 2020 2020 2020 2020 2020 2020 ,M) │ │ │ │ +00069160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00069170: 3720 3a20 7072 756e 6520 736f 7572 6365 7 : prune source │ │ │ │ +00069180: 2053 3228 302c 4d29 2020 2020 2020 2020 S2(0,M) │ │ │ │ +00069190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000691a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000691b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000691c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000691b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000691c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000691d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000691e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000691f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069210: 2020 2020 2020 207c 0a7c 6f37 203d 2063 |.|o7 = c │ │ │ │ -00069220: 6f6b 6572 6e65 6c20 7c20 6364 2062 6420 okernel | cd bd │ │ │ │ -00069230: 6164 2062 6320 6163 2061 6220 7c20 2020 ad bc ac ab | │ │ │ │ +00069200: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00069210: 3720 3d20 636f 6b65 726e 656c 207c 2063 7 = cokernel | c │ │ │ │ +00069220: 6420 6264 2061 6420 6263 2061 6320 6162 d bd ad bc ac ab │ │ │ │ +00069230: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00069240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069260: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00069250: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00069260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000692a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000692b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000692c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000692d0: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +000692a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000692b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000692c0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +000692d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000692e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000692f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069300: 2020 2020 2020 207c 0a7c 6f37 203a 2053 |.|o7 : S │ │ │ │ -00069310: 2d6d 6f64 756c 652c 2071 756f 7469 656e -module, quotien │ │ │ │ -00069320: 7420 6f66 2053 2020 2020 2020 2020 2020 t of S │ │ │ │ +000692f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00069300: 3720 3a20 532d 6d6f 6475 6c65 2c20 7175 7 : S-module, qu │ │ │ │ +00069310: 6f74 6965 6e74 206f 6620 5320 2020 2020 otient of S │ │ │ │ +00069320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069350: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00069340: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00069350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000693a0: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2070 -------+.|i8 : p │ │ │ │ -000693b0: 7275 6e65 2074 6172 6765 7420 5332 2830 rune target S2(0 │ │ │ │ -000693c0: 2c4d 2920 2020 2020 2020 2020 2020 2020 ,M) │ │ │ │ +00069390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000693a0: 3820 3a20 7072 756e 6520 7461 7267 6574 8 : prune target │ │ │ │ +000693b0: 2053 3228 302c 4d29 2020 2020 2020 2020 S2(0,M) │ │ │ │ +000693c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000693d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000693e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000693f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000693e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000693f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069440: 2020 2020 2020 207c 0a7c 6f38 203d 2063 |.|o8 = c │ │ │ │ -00069450: 6f6b 6572 6e65 6c20 7b2d 317d 207c 2064 okernel {-1} | d │ │ │ │ -00069460: 2063 2062 2030 2030 2030 2030 2030 2030 c b 0 0 0 0 0 0 │ │ │ │ -00069470: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ -00069480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069490: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000694a0: 2020 2020 2020 2020 7b2d 317d 207c 2030 {-1} | 0 │ │ │ │ -000694b0: 2030 2030 2064 2063 2061 2030 2030 2030 0 0 d c a 0 0 0 │ │ │ │ -000694c0: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ -000694d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000694e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000694f0: 2020 2020 2020 2020 7b2d 317d 207c 2030 {-1} | 0 │ │ │ │ -00069500: 2030 2030 2030 2030 2030 2064 2062 2061 0 0 0 0 0 d b a │ │ │ │ -00069510: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ -00069520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069530: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00069540: 2020 2020 2020 2020 7b2d 317d 207c 2030 {-1} | 0 │ │ │ │ -00069550: 2030 2030 2030 2030 2030 2030 2030 2030 0 0 0 0 0 0 0 0 │ │ │ │ -00069560: 2063 2062 2061 207c 2020 2020 2020 2020 c b a | │ │ │ │ -00069570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069580: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00069430: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00069440: 3820 3d20 636f 6b65 726e 656c 207b 2d31 8 = cokernel {-1 │ │ │ │ +00069450: 7d20 7c20 6420 6320 6220 3020 3020 3020 } | d c b 0 0 0 │ │ │ │ +00069460: 3020 3020 3020 3020 3020 3020 7c20 2020 0 0 0 0 0 0 | │ │ │ │ +00069470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069480: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00069490: 2020 2020 2020 2020 2020 2020 207b 2d31 {-1 │ │ │ │ +000694a0: 7d20 7c20 3020 3020 3020 6420 6320 6120 } | 0 0 0 d c a │ │ │ │ +000694b0: 3020 3020 3020 3020 3020 3020 7c20 2020 0 0 0 0 0 0 | │ │ │ │ +000694c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000694d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000694e0: 2020 2020 2020 2020 2020 2020 207b 2d31 {-1 │ │ │ │ +000694f0: 7d20 7c20 3020 3020 3020 3020 3020 3020 } | 0 0 0 0 0 0 │ │ │ │ +00069500: 6420 6220 6120 3020 3020 3020 7c20 2020 d b a 0 0 0 | │ │ │ │ +00069510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069520: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00069530: 2020 2020 2020 2020 2020 2020 207b 2d31 {-1 │ │ │ │ +00069540: 7d20 7c20 3020 3020 3020 3020 3020 3020 } | 0 0 0 0 0 0 │ │ │ │ +00069550: 3020 3020 3020 6320 6220 6120 7c20 2020 0 0 0 c b a | │ │ │ │ +00069560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069570: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00069580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000695a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000695b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000695c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000695d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000695e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000695f0: 2020 2020 2020 3420 2020 2020 2020 2020 4 │ │ │ │ +000695c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000695d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000695e0: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ +000695f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069620: 2020 2020 2020 207c 0a7c 6f38 203a 2053 |.|o8 : S │ │ │ │ -00069630: 2d6d 6f64 756c 652c 2071 756f 7469 656e -module, quotien │ │ │ │ -00069640: 7420 6f66 2053 2020 2020 2020 2020 2020 t of S │ │ │ │ +00069610: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00069620: 3820 3a20 532d 6d6f 6475 6c65 2c20 7175 8 : S-module, qu │ │ │ │ +00069630: 6f74 6965 6e74 206f 6620 5320 2020 2020 otient of S │ │ │ │ +00069640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069670: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00069660: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00069670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000696a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000696b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000696c0: 2d2d 2d2d 2d2d 2d2b 0a0a 4174 206f 6e65 -------+..At one │ │ │ │ -000696d0: 2074 696d 6520 4445 2068 6f70 6564 2074 time DE hoped t │ │ │ │ -000696e0: 6861 742c 2069 6620 4d20 7765 7265 2061 hat, if M were a │ │ │ │ -000696f0: 206d 6f64 756c 6520 6f76 6572 2074 6865 module over the │ │ │ │ -00069700: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ -00069710: 6563 7469 6f6e 2052 0a77 6974 6820 7265 ection R.with re │ │ │ │ -00069720: 7369 6475 6520 6669 656c 6420 6b2c 2074 sidue field k, t │ │ │ │ -00069730: 6865 6e20 7468 6520 6e61 7475 7261 6c20 hen the natural │ │ │ │ -00069740: 6d61 7020 6672 6f6d 2022 636f 6d70 6c65 map from "comple │ │ │ │ -00069750: 7465 2220 4578 7420 6d6f 6475 6c65 2022 te" Ext module " │ │ │ │ -00069760: 2877 6964 6568 6174 0a45 7874 295f 5228 (widehat.Ext)_R( │ │ │ │ -00069770: 4d2c 6b29 2220 746f 2074 6865 2053 322d M,k)" to the S2- │ │ │ │ -00069780: 6966 6963 6174 696f 6e20 6f66 2045 7874 ification of Ext │ │ │ │ -00069790: 5f52 284d 2c6b 2920 776f 756c 6420 6265 _R(M,k) would be │ │ │ │ -000697a0: 2073 7572 6a65 6374 6976 653b 0a65 7175 surjective;.equ │ │ │ │ -000697b0: 6976 616c 656e 746c 792c 2069 6620 4e20 ivalently, if N │ │ │ │ -000697c0: 7765 7265 2061 2073 7566 6669 6369 656e were a sufficien │ │ │ │ -000697d0: 746c 7920 6e65 6761 7469 7665 2073 797a tly negative syz │ │ │ │ -000697e0: 7967 7920 6f66 204d 2c20 7468 656e 2074 ygy of M, then t │ │ │ │ -000697f0: 6865 2066 6972 7374 0a6c 6f63 616c 2063 he first.local c │ │ │ │ -00069800: 6f68 6f6d 6f6c 6f67 7920 6d6f 6475 6c65 ohomology module │ │ │ │ -00069810: 206f 6620 4578 745f 5228 4d2c 6b29 2077 of Ext_R(M,k) w │ │ │ │ -00069820: 6f75 6c64 2062 6520 7a65 726f 2e20 5468 ould be zero. Th │ │ │ │ -00069830: 6973 2069 7320 6661 6c73 652c 2061 7320 is is false, as │ │ │ │ -00069840: 7368 6f77 6e20 6279 0a74 6865 2066 6f6c shown by.the fol │ │ │ │ -00069850: 6c6f 7769 6e67 2065 7861 6d70 6c65 3a0a lowing example:. │ │ │ │ -00069860: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000696b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a41 ------------+..A │ │ │ │ +000696c0: 7420 6f6e 6520 7469 6d65 2044 4520 686f t one time DE ho │ │ │ │ +000696d0: 7065 6420 7468 6174 2c20 6966 204d 2077 ped that, if M w │ │ │ │ +000696e0: 6572 6520 6120 6d6f 6475 6c65 206f 7665 ere a module ove │ │ │ │ +000696f0: 7220 7468 6520 636f 6d70 6c65 7465 2069 r the complete i │ │ │ │ +00069700: 6e74 6572 7365 6374 696f 6e20 520a 7769 ntersection R.wi │ │ │ │ +00069710: 7468 2072 6573 6964 7565 2066 6965 6c64 th residue field │ │ │ │ +00069720: 206b 2c20 7468 656e 2074 6865 206e 6174 k, then the nat │ │ │ │ +00069730: 7572 616c 206d 6170 2066 726f 6d20 2263 ural map from "c │ │ │ │ +00069740: 6f6d 706c 6574 6522 2045 7874 206d 6f64 omplete" Ext mod │ │ │ │ +00069750: 756c 6520 2228 7769 6465 6861 740a 4578 ule "(widehat.Ex │ │ │ │ +00069760: 7429 5f52 284d 2c6b 2922 2074 6f20 7468 t)_R(M,k)" to th │ │ │ │ +00069770: 6520 5332 2d69 6669 6361 7469 6f6e 206f e S2-ification o │ │ │ │ +00069780: 6620 4578 745f 5228 4d2c 6b29 2077 6f75 f Ext_R(M,k) wou │ │ │ │ +00069790: 6c64 2062 6520 7375 726a 6563 7469 7665 ld be surjective │ │ │ │ +000697a0: 3b0a 6571 7569 7661 6c65 6e74 6c79 2c20 ;.equivalently, │ │ │ │ +000697b0: 6966 204e 2077 6572 6520 6120 7375 6666 if N were a suff │ │ │ │ +000697c0: 6963 6965 6e74 6c79 206e 6567 6174 6976 iciently negativ │ │ │ │ +000697d0: 6520 7379 7a79 6779 206f 6620 4d2c 2074 e syzygy of M, t │ │ │ │ +000697e0: 6865 6e20 7468 6520 6669 7273 740a 6c6f hen the first.lo │ │ │ │ +000697f0: 6361 6c20 636f 686f 6d6f 6c6f 6779 206d cal cohomology m │ │ │ │ +00069800: 6f64 756c 6520 6f66 2045 7874 5f52 284d odule of Ext_R(M │ │ │ │ +00069810: 2c6b 2920 776f 756c 6420 6265 207a 6572 ,k) would be zer │ │ │ │ +00069820: 6f2e 2054 6869 7320 6973 2066 616c 7365 o. This is false │ │ │ │ +00069830: 2c20 6173 2073 686f 776e 2062 790a 7468 , as shown by.th │ │ │ │ +00069840: 6520 666f 6c6c 6f77 696e 6720 6578 616d e following exam │ │ │ │ +00069850: 706c 653a 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ple:..+--------- │ │ │ │ +00069860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069890: 2d2d 2d2b 0a7c 6939 203a 2053 203d 205a ---+.|i9 : S = Z │ │ │ │ -000698a0: 5a2f 3130 315b 785f 302e 2e78 5f32 5d3b Z/101[x_0..x_2]; │ │ │ │ -000698b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000698c0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00069880: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 --------+.|i9 : │ │ │ │ +00069890: 5320 3d20 5a5a 2f31 3031 5b78 5f30 2e2e S = ZZ/101[x_0.. │ │ │ │ +000698a0: 785f 325d 3b20 2020 2020 2020 2020 2020 x_2]; │ │ │ │ +000698b0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000698c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000698d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000698e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000698f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00069900: 3020 3a20 6666 203d 2061 7070 6c79 2833 0 : ff = apply(3 │ │ │ │ -00069910: 2c20 692d 3e78 5f69 5e32 293b 2020 2020 , i->x_i^2); │ │ │ │ -00069920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00069930: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000698f0: 2b0a 7c69 3130 203a 2066 6620 3d20 6170 +.|i10 : ff = ap │ │ │ │ +00069900: 706c 7928 332c 2069 2d3e 785f 695e 3229 ply(3, i->x_i^2) │ │ │ │ +00069910: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00069920: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00069930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069960: 2d2d 2d2b 0a7c 6931 3120 3a20 5220 3d20 ---+.|i11 : R = │ │ │ │ -00069970: 532f 6964 6561 6c20 6666 3b20 2020 2020 S/ideal ff; │ │ │ │ -00069980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069990: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00069950: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a --------+.|i11 : │ │ │ │ +00069960: 2052 203d 2053 2f69 6465 616c 2066 663b R = S/ideal ff; │ │ │ │ +00069970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069980: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00069990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000699a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000699b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000699c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -000699d0: 3220 3a20 4d20 3d20 636f 6b65 726e 656c 2 : M = cokernel │ │ │ │ -000699e0: 206d 6174 7269 7820 7b7b 785f 302c 2078 matrix {{x_0, x │ │ │ │ -000699f0: 5f31 2a78 5f32 7d7d 3b20 2020 2020 207c _1*x_2}}; | │ │ │ │ -00069a00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000699c0: 2b0a 7c69 3132 203a 204d 203d 2063 6f6b +.|i12 : M = cok │ │ │ │ +000699d0: 6572 6e65 6c20 6d61 7472 6978 207b 7b78 ernel matrix {{x │ │ │ │ +000699e0: 5f30 2c20 785f 312a 785f 327d 7d3b 2020 _0, x_1*x_2}}; │ │ │ │ +000699f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00069a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069a30: 2d2d 2d2b 0a7c 6931 3320 3a20 6220 3d20 ---+.|i13 : b = │ │ │ │ -00069a40: 353b 2020 2020 2020 2020 2020 2020 2020 5; │ │ │ │ -00069a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069a60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00069a20: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a --------+.|i13 : │ │ │ │ +00069a30: 2062 203d 2035 3b20 2020 2020 2020 2020 b = 5; │ │ │ │ +00069a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069a50: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00069a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00069aa0: 3420 3a20 4d62 203d 2070 7275 6e65 2073 4 : Mb = prune s │ │ │ │ -00069ab0: 797a 7967 794d 6f64 756c 6528 2d62 2c4d yzygyModule(-b,M │ │ │ │ -00069ac0: 293b 2020 2020 2020 2020 2020 2020 207c ); | │ │ │ │ -00069ad0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00069a90: 2b0a 7c69 3134 203a 204d 6220 3d20 7072 +.|i14 : Mb = pr │ │ │ │ +00069aa0: 756e 6520 7379 7a79 6779 4d6f 6475 6c65 une syzygyModule │ │ │ │ +00069ab0: 282d 622c 4d29 3b20 2020 2020 2020 2020 (-b,M); │ │ │ │ +00069ac0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00069ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069b00: 2d2d 2d2b 0a7c 6931 3520 3a20 4520 3d20 ---+.|i15 : E = │ │ │ │ -00069b10: 7072 756e 6520 6576 656e 4578 744d 6f64 prune evenExtMod │ │ │ │ -00069b20: 756c 6520 4d62 3b20 2020 2020 2020 2020 ule Mb; │ │ │ │ -00069b30: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00069af0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3135 203a --------+.|i15 : │ │ │ │ +00069b00: 2045 203d 2070 7275 6e65 2065 7665 6e45 E = prune evenE │ │ │ │ +00069b10: 7874 4d6f 6475 6c65 204d 623b 2020 2020 xtModule Mb; │ │ │ │ +00069b20: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00069b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00069b70: 3620 3a20 5332 6d61 7020 3d20 5332 2830 6 : S2map = S2(0 │ │ │ │ -00069b80: 2c45 293b 2020 2020 2020 2020 2020 2020 ,E); │ │ │ │ -00069b90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00069ba0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069b60: 2b0a 7c69 3136 203a 2053 326d 6170 203d +.|i16 : S2map = │ │ │ │ +00069b70: 2053 3228 302c 4529 3b20 2020 2020 2020 S2(0,E); │ │ │ │ +00069b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069b90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00069ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069bd0: 2020 207c 0a7c 6f31 3620 3a20 4d61 7472 |.|o16 : Matr │ │ │ │ -00069be0: 6978 2020 2020 2020 2020 2020 2020 2020 ix │ │ │ │ -00069bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069c00: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00069bc0: 2020 2020 2020 2020 7c0a 7c6f 3136 203a |.|o16 : │ │ │ │ +00069bd0: 204d 6174 7269 7820 2020 2020 2020 2020 Matrix │ │ │ │ +00069be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069bf0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00069c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00069c40: 3720 3a20 5345 203d 2070 7275 6e65 2074 7 : SE = prune t │ │ │ │ -00069c50: 6172 6765 7420 5332 6d61 703b 2020 2020 arget S2map; │ │ │ │ -00069c60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00069c70: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00069c30: 2b0a 7c69 3137 203a 2053 4520 3d20 7072 +.|i17 : SE = pr │ │ │ │ +00069c40: 756e 6520 7461 7267 6574 2053 326d 6170 une target S2map │ │ │ │ +00069c50: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00069c60: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00069c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069ca0: 2d2d 2d2b 0a7c 6931 3820 3a20 6578 7472 ---+.|i18 : extr │ │ │ │ -00069cb0: 6120 3d20 7072 756e 6520 636f 6b65 7220 a = prune coker │ │ │ │ -00069cc0: 5332 6d61 703b 2020 2020 2020 2020 2020 S2map; │ │ │ │ -00069cd0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00069c90: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3138 203a --------+.|i18 : │ │ │ │ +00069ca0: 2065 7874 7261 203d 2070 7275 6e65 2063 extra = prune c │ │ │ │ +00069cb0: 6f6b 6572 2053 326d 6170 3b20 2020 2020 oker S2map; │ │ │ │ +00069cc0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00069cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00069d10: 3920 3a20 4b45 203d 2070 7275 6e65 206b 9 : KE = prune k │ │ │ │ -00069d20: 6572 2053 326d 6170 3b20 2020 2020 2020 er S2map; │ │ │ │ -00069d30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00069d40: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00069d00: 2b0a 7c69 3139 203a 204b 4520 3d20 7072 +.|i19 : KE = pr │ │ │ │ +00069d10: 756e 6520 6b65 7220 5332 6d61 703b 2020 une ker S2map; │ │ │ │ +00069d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069d30: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00069d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069d70: 2d2d 2d2b 0a7c 6932 3020 3a20 6265 7474 ---+.|i20 : bett │ │ │ │ -00069d80: 6920 6672 6565 5265 736f 6c75 7469 6f6e i freeResolution │ │ │ │ -00069d90: 284d 622c 204c 656e 6774 684c 696d 6974 (Mb, LengthLimit │ │ │ │ -00069da0: 203d 3e20 3130 297c 0a7c 2020 2020 2020 => 10)|.| │ │ │ │ +00069d60: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a --------+.|i20 : │ │ │ │ +00069d70: 2062 6574 7469 2066 7265 6552 6573 6f6c betti freeResol │ │ │ │ +00069d80: 7574 696f 6e28 4d62 2c20 4c65 6e67 7468 ution(Mb, Length │ │ │ │ +00069d90: 4c69 6d69 7420 3d3e 2031 3029 7c0a 7c20 Limit => 10)|.| │ │ │ │ +00069da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069dd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00069de0: 2020 2020 2020 2020 2020 2020 3020 2031 0 1 │ │ │ │ -00069df0: 2032 2033 2034 2035 2036 2037 2038 2020 2 3 4 5 6 7 8 │ │ │ │ -00069e00: 3920 3130 2020 2020 2020 2020 2020 207c 9 10 | │ │ │ │ -00069e10: 0a7c 6f32 3020 3d20 746f 7461 6c3a 2032 .|o20 = total: 2 │ │ │ │ -00069e20: 3020 3134 2039 2035 2032 2031 2032 2034 0 14 9 5 2 1 2 4 │ │ │ │ -00069e30: 2037 2031 3120 3136 2020 2020 2020 2020 7 11 16 │ │ │ │ -00069e40: 2020 207c 0a7c 2020 2020 2020 2020 202d |.| - │ │ │ │ -00069e50: 363a 2032 3020 3134 2039 2035 2032 202e 6: 20 14 9 5 2 . │ │ │ │ -00069e60: 202e 202e 202e 2020 2e20 202e 2020 2020 . . . . . │ │ │ │ -00069e70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00069e80: 2020 202d 353a 2020 2e20 202e 202e 202e -5: . . . . │ │ │ │ -00069e90: 202e 2031 2031 2031 2031 2020 3120 2031 . 1 1 1 1 1 1 │ │ │ │ -00069ea0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00069eb0: 2020 2020 2020 202d 343a 2020 2e20 202e -4: . . │ │ │ │ -00069ec0: 202e 202e 202e 202e 2031 2033 2036 2031 . . . . 1 3 6 1 │ │ │ │ -00069ed0: 3020 3135 2020 2020 2020 2020 2020 207c 0 15 | │ │ │ │ -00069ee0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069dd0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00069de0: 2030 2020 3120 3220 3320 3420 3520 3620 0 1 2 3 4 5 6 │ │ │ │ +00069df0: 3720 3820 2039 2031 3020 2020 2020 2020 7 8 9 10 │ │ │ │ +00069e00: 2020 2020 7c0a 7c6f 3230 203d 2074 6f74 |.|o20 = tot │ │ │ │ +00069e10: 616c 3a20 3230 2031 3420 3920 3520 3220 al: 20 14 9 5 2 │ │ │ │ +00069e20: 3120 3220 3420 3720 3131 2031 3620 2020 1 2 4 7 11 16 │ │ │ │ +00069e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00069e40: 2020 2020 2d36 3a20 3230 2031 3420 3920 -6: 20 14 9 │ │ │ │ +00069e50: 3520 3220 2e20 2e20 2e20 2e20 202e 2020 5 2 . . . . . │ │ │ │ +00069e60: 2e20 2020 2020 2020 2020 2020 7c0a 7c20 . |.| │ │ │ │ +00069e70: 2020 2020 2020 2020 2d35 3a20 202e 2020 -5: . │ │ │ │ +00069e80: 2e20 2e20 2e20 2e20 3120 3120 3120 3120 . . . . 1 1 1 1 │ │ │ │ +00069e90: 2031 2020 3120 2020 2020 2020 2020 2020 1 1 │ │ │ │ +00069ea0: 7c0a 7c20 2020 2020 2020 2020 2d34 3a20 |.| -4: │ │ │ │ +00069eb0: 202e 2020 2e20 2e20 2e20 2e20 2e20 3120 . . . . . . 1 │ │ │ │ +00069ec0: 3320 3620 3130 2031 3520 2020 2020 2020 3 6 10 15 │ │ │ │ +00069ed0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00069ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069f10: 2020 207c 0a7c 6f32 3020 3a20 4265 7474 |.|o20 : Bett │ │ │ │ -00069f20: 6954 616c 6c79 2020 2020 2020 2020 2020 iTally │ │ │ │ -00069f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069f40: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00069f00: 2020 2020 2020 2020 7c0a 7c6f 3230 203a |.|o20 : │ │ │ │ +00069f10: 2042 6574 7469 5461 6c6c 7920 2020 2020 BettiTally │ │ │ │ +00069f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069f30: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00069f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00069f80: 3120 3a20 6170 706c 7920 2835 2c20 692d 1 : apply (5, i- │ │ │ │ -00069f90: 3e20 6869 6c62 6572 7446 756e 6374 696f > hilbertFunctio │ │ │ │ -00069fa0: 6e28 692c 204b 4529 2920 2020 2020 207c n(i, KE)) | │ │ │ │ -00069fb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069f70: 2b0a 7c69 3231 203a 2061 7070 6c79 2028 +.|i21 : apply ( │ │ │ │ +00069f80: 352c 2069 2d3e 2068 696c 6265 7274 4675 5, i-> hilbertFu │ │ │ │ +00069f90: 6e63 7469 6f6e 2869 2c20 4b45 2929 2020 nction(i, KE)) │ │ │ │ +00069fa0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00069fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069fe0: 2020 207c 0a7c 6f32 3120 3d20 7b32 302c |.|o21 = {20, │ │ │ │ -00069ff0: 2039 2c20 322c 2030 2c20 307d 2020 2020 9, 2, 0, 0} │ │ │ │ -0006a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a010: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00069fd0: 2020 2020 2020 2020 7c0a 7c6f 3231 203d |.|o21 = │ │ │ │ +00069fe0: 207b 3230 2c20 392c 2032 2c20 302c 2030 {20, 9, 2, 0, 0 │ │ │ │ +00069ff0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0006a000: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0006a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a040: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -0006a050: 3120 3a20 4c69 7374 2020 2020 2020 2020 1 : List │ │ │ │ +0006a040: 7c0a 7c6f 3231 203a 204c 6973 7420 2020 |.|o21 : List │ │ │ │ +0006a050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006a080: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0006a070: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0006a080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a0b0: 2d2d 2d2b 0a7c 6932 3220 3a20 6170 706c ---+.|i22 : appl │ │ │ │ -0006a0c0: 7920 2835 2c20 692d 3e20 6869 6c62 6572 y (5, i-> hilber │ │ │ │ -0006a0d0: 7446 756e 6374 696f 6e28 692c 2045 2929 tFunction(i, E)) │ │ │ │ -0006a0e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0006a0a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3232 203a --------+.|i22 : │ │ │ │ +0006a0b0: 2061 7070 6c79 2028 352c 2069 2d3e 2068 apply (5, i-> h │ │ │ │ +0006a0c0: 696c 6265 7274 4675 6e63 7469 6f6e 2869 ilbertFunction(i │ │ │ │ +0006a0d0: 2c20 4529 2920 2020 2020 2020 7c0a 7c20 , E)) |.| │ │ │ │ +0006a0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a110: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -0006a120: 3220 3d20 7b32 302c 2039 2c20 322c 2032 2 = {20, 9, 2, 2 │ │ │ │ -0006a130: 2c20 377d 2020 2020 2020 2020 2020 2020 , 7} │ │ │ │ -0006a140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006a150: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0006a110: 7c0a 7c6f 3232 203d 207b 3230 2c20 392c |.|o22 = {20, 9, │ │ │ │ +0006a120: 2032 2c20 322c 2037 7d20 2020 2020 2020 2, 2, 7} │ │ │ │ +0006a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a140: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0006a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a180: 2020 207c 0a7c 6f32 3220 3a20 4c69 7374 |.|o22 : List │ │ │ │ +0006a170: 2020 2020 2020 2020 7c0a 7c6f 3232 203a |.|o22 : │ │ │ │ +0006a180: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 0006a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a1b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0006a1a0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0006a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -0006a1f0: 3320 3a20 6170 706c 7920 2835 2c20 692d 3 : apply (5, i- │ │ │ │ -0006a200: 3e20 6869 6c62 6572 7446 756e 6374 696f > hilbertFunctio │ │ │ │ -0006a210: 6e28 692c 2053 4529 2920 2020 2020 207c n(i, SE)) | │ │ │ │ -0006a220: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0006a1e0: 2b0a 7c69 3233 203a 2061 7070 6c79 2028 +.|i23 : apply ( │ │ │ │ +0006a1f0: 352c 2069 2d3e 2068 696c 6265 7274 4675 5, i-> hilbertFu │ │ │ │ +0006a200: 6e63 7469 6f6e 2869 2c20 5345 2929 2020 nction(i, SE)) │ │ │ │ +0006a210: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0006a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a250: 2020 207c 0a7c 6f32 3320 3d20 7b31 2c20 |.|o23 = {1, │ │ │ │ -0006a260: 312c 2031 2c20 322c 2037 7d20 2020 2020 1, 1, 2, 7} │ │ │ │ -0006a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a280: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0006a240: 2020 2020 2020 2020 7c0a 7c6f 3233 203d |.|o23 = │ │ │ │ +0006a250: 207b 312c 2031 2c20 312c 2032 2c20 377d {1, 1, 1, 2, 7} │ │ │ │ +0006a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a270: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0006a280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a2b0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -0006a2c0: 3320 3a20 4c69 7374 2020 2020 2020 2020 3 : List │ │ │ │ +0006a2b0: 7c0a 7c6f 3233 203a 204c 6973 7420 2020 |.|o23 : List │ │ │ │ +0006a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a2e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006a2f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0006a2e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0006a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a320: 2d2d 2d2b 0a7c 6932 3420 3a20 6170 706c ---+.|i24 : appl │ │ │ │ -0006a330: 7920 2835 2c20 692d 3e20 6869 6c62 6572 y (5, i-> hilber │ │ │ │ -0006a340: 7446 756e 6374 696f 6e28 692c 2065 7874 tFunction(i, ext │ │ │ │ -0006a350: 7261 2929 2020 207c 0a7c 2020 2020 2020 ra)) |.| │ │ │ │ +0006a310: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3234 203a --------+.|i24 : │ │ │ │ +0006a320: 2061 7070 6c79 2028 352c 2069 2d3e 2068 apply (5, i-> h │ │ │ │ +0006a330: 696c 6265 7274 4675 6e63 7469 6f6e 2869 ilbertFunction(i │ │ │ │ +0006a340: 2c20 6578 7472 6129 2920 2020 7c0a 7c20 , extra)) |.| │ │ │ │ +0006a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a380: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -0006a390: 3420 3d20 7b31 2c20 312c 2031 2c20 302c 4 = {1, 1, 1, 0, │ │ │ │ -0006a3a0: 2030 7d20 2020 2020 2020 2020 2020 2020 0} │ │ │ │ -0006a3b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006a3c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0006a380: 7c0a 7c6f 3234 203d 207b 312c 2031 2c20 |.|o24 = {1, 1, │ │ │ │ +0006a390: 312c 2030 2c20 307d 2020 2020 2020 2020 1, 0, 0} │ │ │ │ +0006a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a3b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0006a3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a3f0: 2020 207c 0a7c 6f32 3420 3a20 4c69 7374 |.|o24 : List │ │ │ │ +0006a3e0: 2020 2020 2020 2020 7c0a 7c6f 3234 203a |.|o24 : │ │ │ │ +0006a3f0: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 0006a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a420: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0006a410: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0006a420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4361 -----------+..Ca │ │ │ │ -0006a460: 7665 6174 0a3d 3d3d 3d3d 3d0a 0a54 6578 veat.======..Tex │ │ │ │ -0006a470: 7420 5332 2d69 6669 6361 7469 6f6e 2069 t S2-ification i │ │ │ │ -0006a480: 7320 7265 6c61 7465 6420 746f 2063 6f6d s related to com │ │ │ │ -0006a490: 7075 7469 6e67 2063 6f68 6f6d 6f6c 6f67 puting cohomolog │ │ │ │ -0006a4a0: 7920 616e 6420 746f 2063 6f6d 7075 7469 y and to computi │ │ │ │ -0006a4b0: 6e67 2069 6e74 6567 7261 6c0a 636c 6f73 ng integral.clos │ │ │ │ -0006a4c0: 7572 653b 2074 6865 7265 2061 7265 2073 ure; there are s │ │ │ │ -0006a4d0: 6372 6970 7473 2069 6e20 7468 6f73 6520 cripts in those │ │ │ │ -0006a4e0: 7061 636b 6167 6573 2074 6861 7420 7072 packages that pr │ │ │ │ -0006a4f0: 6f64 7563 6520 616e 2053 322d 6966 6963 oduce an S2-ific │ │ │ │ -0006a500: 6174 696f 6e2c 2062 7574 0a6f 6e65 2074 ation, but.one t │ │ │ │ -0006a510: 616b 6573 2061 2072 696e 6720 6173 2061 akes a ring as a │ │ │ │ -0006a520: 7267 756d 656e 7420 616e 6420 7468 6520 rgument and the │ │ │ │ -0006a530: 6f74 6865 7220 646f 6573 6e27 7420 7072 other doesn't pr │ │ │ │ -0006a540: 6f64 7563 6520 7468 6520 636f 6d70 6172 oduce the compar │ │ │ │ -0006a550: 6973 6f6e 206d 6170 2e0a 0a53 6565 2061 ison map...See a │ │ │ │ -0006a560: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -0006a570: 2a20 2a6e 6f74 6520 496e 7465 6772 616c * *note Integral │ │ │ │ -0006a580: 436c 6f73 7572 653a 2028 496e 7465 6772 Closure: (Integr │ │ │ │ -0006a590: 616c 436c 6f73 7572 6529 546f 702c 202d alClosure)Top, - │ │ │ │ -0006a5a0: 2d20 726f 7574 696e 6573 2066 6f72 2069 - routines for i │ │ │ │ -0006a5b0: 6e74 6567 7261 6c0a 2020 2020 636c 6f73 ntegral. clos │ │ │ │ -0006a5c0: 7572 6520 6f66 2061 6666 696e 6520 646f ure of affine do │ │ │ │ -0006a5d0: 6d61 696e 7320 616e 6420 6964 6561 6c73 mains and ideals │ │ │ │ -0006a5e0: 0a20 202a 202a 6e6f 7465 206d 616b 6553 . * *note makeS │ │ │ │ -0006a5f0: 323a 2028 496e 7465 6772 616c 436c 6f73 2: (IntegralClos │ │ │ │ -0006a600: 7572 6529 6d61 6b65 5332 2c20 2d2d 2063 ure)makeS2, -- c │ │ │ │ -0006a610: 6f6d 7075 7465 2074 6865 2053 3269 6669 ompute the S2ifi │ │ │ │ -0006a620: 6361 7469 6f6e 206f 6620 610a 2020 2020 cation of a. │ │ │ │ -0006a630: 7265 6475 6365 6420 7269 6e67 0a20 202a reduced ring. * │ │ │ │ -0006a640: 202a 6e6f 7465 2042 4747 3a20 2842 4747 *note BGG: (BGG │ │ │ │ -0006a650: 2954 6f70 2c20 2d2d 2042 6572 6e73 7465 )Top, -- Bernste │ │ │ │ -0006a660: 696e 2d47 656c 2766 616e 642d 4765 6c27 in-Gel'fand-Gel' │ │ │ │ -0006a670: 6661 6e64 2063 6f72 7265 7370 6f6e 6465 fand corresponde │ │ │ │ -0006a680: 6e63 650a 2020 2a20 2a6e 6f74 6520 636f nce. * *note co │ │ │ │ -0006a690: 686f 6d6f 6c6f 6779 3a20 284d 6163 6175 homology: (Macau │ │ │ │ -0006a6a0: 6c61 7932 446f 6329 636f 686f 6d6f 6c6f lay2Doc)cohomolo │ │ │ │ -0006a6b0: 6779 2c20 2d2d 2067 656e 6572 616c 2063 gy, -- general c │ │ │ │ -0006a6c0: 6f68 6f6d 6f6c 6f67 7920 6675 6e63 746f ohomology functo │ │ │ │ -0006a6d0: 720a 2020 2a20 4848 5e5a 5a20 5375 6d4f r. * HH^ZZ SumO │ │ │ │ -0006a6e0: 6654 7769 7374 7320 286d 6973 7369 6e67 fTwists (missing │ │ │ │ -0006a6f0: 2064 6f63 756d 656e 7461 7469 6f6e 290a documentation). │ │ │ │ -0006a700: 0a57 6179 7320 746f 2075 7365 2053 323a .Ways to use S2: │ │ │ │ -0006a710: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0006a720: 0a0a 2020 2a20 2253 3228 5a5a 2c4d 6f64 .. * "S2(ZZ,Mod │ │ │ │ -0006a730: 756c 6529 220a 0a46 6f72 2074 6865 2070 ule)"..For the p │ │ │ │ -0006a740: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -0006a750: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -0006a760: 6520 6f62 6a65 6374 202a 6e6f 7465 2053 e object *note S │ │ │ │ -0006a770: 323a 2053 322c 2069 7320 6120 2a6e 6f74 2: S2, is a *not │ │ │ │ -0006a780: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ -0006a790: 6e3a 0a28 4d61 6361 756c 6179 3244 6f63 n:.(Macaulay2Doc │ │ │ │ -0006a7a0: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ -0006a7b0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +0006a450: 2b0a 0a43 6176 6561 740a 3d3d 3d3d 3d3d +..Caveat.====== │ │ │ │ +0006a460: 0a0a 5465 7874 2053 322d 6966 6963 6174 ..Text S2-ificat │ │ │ │ +0006a470: 696f 6e20 6973 2072 656c 6174 6564 2074 ion is related t │ │ │ │ +0006a480: 6f20 636f 6d70 7574 696e 6720 636f 686f o computing coho │ │ │ │ +0006a490: 6d6f 6c6f 6779 2061 6e64 2074 6f20 636f mology and to co │ │ │ │ +0006a4a0: 6d70 7574 696e 6720 696e 7465 6772 616c mputing integral │ │ │ │ +0006a4b0: 0a63 6c6f 7375 7265 3b20 7468 6572 6520 .closure; there │ │ │ │ +0006a4c0: 6172 6520 7363 7269 7074 7320 696e 2074 are scripts in t │ │ │ │ +0006a4d0: 686f 7365 2070 6163 6b61 6765 7320 7468 hose packages th │ │ │ │ +0006a4e0: 6174 2070 726f 6475 6365 2061 6e20 5332 at produce an S2 │ │ │ │ +0006a4f0: 2d69 6669 6361 7469 6f6e 2c20 6275 740a -ification, but. │ │ │ │ +0006a500: 6f6e 6520 7461 6b65 7320 6120 7269 6e67 one takes a ring │ │ │ │ +0006a510: 2061 7320 6172 6775 6d65 6e74 2061 6e64 as argument and │ │ │ │ +0006a520: 2074 6865 206f 7468 6572 2064 6f65 736e the other doesn │ │ │ │ +0006a530: 2774 2070 726f 6475 6365 2074 6865 2063 't produce the c │ │ │ │ +0006a540: 6f6d 7061 7269 736f 6e20 6d61 702e 0a0a omparison map... │ │ │ │ +0006a550: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +0006a560: 3d0a 0a20 202a 202a 6e6f 7465 2049 6e74 =.. * *note Int │ │ │ │ +0006a570: 6567 7261 6c43 6c6f 7375 7265 3a20 2849 egralClosure: (I │ │ │ │ +0006a580: 6e74 6567 7261 6c43 6c6f 7375 7265 2954 ntegralClosure)T │ │ │ │ +0006a590: 6f70 2c20 2d2d 2072 6f75 7469 6e65 7320 op, -- routines │ │ │ │ +0006a5a0: 666f 7220 696e 7465 6772 616c 0a20 2020 for integral. │ │ │ │ +0006a5b0: 2063 6c6f 7375 7265 206f 6620 6166 6669 closure of affi │ │ │ │ +0006a5c0: 6e65 2064 6f6d 6169 6e73 2061 6e64 2069 ne domains and i │ │ │ │ +0006a5d0: 6465 616c 730a 2020 2a20 2a6e 6f74 6520 deals. * *note │ │ │ │ +0006a5e0: 6d61 6b65 5332 3a20 2849 6e74 6567 7261 makeS2: (Integra │ │ │ │ +0006a5f0: 6c43 6c6f 7375 7265 296d 616b 6553 322c lClosure)makeS2, │ │ │ │ +0006a600: 202d 2d20 636f 6d70 7574 6520 7468 6520 -- compute the │ │ │ │ +0006a610: 5332 6966 6963 6174 696f 6e20 6f66 2061 S2ification of a │ │ │ │ +0006a620: 0a20 2020 2072 6564 7563 6564 2072 696e . reduced rin │ │ │ │ +0006a630: 670a 2020 2a20 2a6e 6f74 6520 4247 473a g. * *note BGG: │ │ │ │ +0006a640: 2028 4247 4729 546f 702c 202d 2d20 4265 (BGG)Top, -- Be │ │ │ │ +0006a650: 726e 7374 6569 6e2d 4765 6c27 6661 6e64 rnstein-Gel'fand │ │ │ │ +0006a660: 2d47 656c 2766 616e 6420 636f 7272 6573 -Gel'fand corres │ │ │ │ +0006a670: 706f 6e64 656e 6365 0a20 202a 202a 6e6f pondence. * *no │ │ │ │ +0006a680: 7465 2063 6f68 6f6d 6f6c 6f67 793a 2028 te cohomology: ( │ │ │ │ +0006a690: 4d61 6361 756c 6179 3244 6f63 2963 6f68 Macaulay2Doc)coh │ │ │ │ +0006a6a0: 6f6d 6f6c 6f67 792c 202d 2d20 6765 6e65 omology, -- gene │ │ │ │ +0006a6b0: 7261 6c20 636f 686f 6d6f 6c6f 6779 2066 ral cohomology f │ │ │ │ +0006a6c0: 756e 6374 6f72 0a20 202a 2048 485e 5a5a unctor. * HH^ZZ │ │ │ │ +0006a6d0: 2053 756d 4f66 5477 6973 7473 2028 6d69 SumOfTwists (mi │ │ │ │ +0006a6e0: 7373 696e 6720 646f 6375 6d65 6e74 6174 ssing documentat │ │ │ │ +0006a6f0: 696f 6e29 0a0a 5761 7973 2074 6f20 7573 ion)..Ways to us │ │ │ │ +0006a700: 6520 5332 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d e S2:.========== │ │ │ │ +0006a710: 3d3d 3d3d 3d0a 0a20 202a 2022 5332 285a =====.. * "S2(Z │ │ │ │ +0006a720: 5a2c 4d6f 6475 6c65 2922 0a0a 466f 7220 Z,Module)"..For │ │ │ │ +0006a730: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +0006a740: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0006a750: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +0006a760: 6f74 6520 5332 3a20 5332 2c20 6973 2061 ote S2: S2, is a │ │ │ │ +0006a770: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ +0006a780: 6e63 7469 6f6e 3a0a 284d 6163 6175 6c61 nction:.(Macaula │ │ │ │ +0006a790: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ +0006a7a0: 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d tion,...-------- │ │ │ │ +0006a7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a800: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -0006a810: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -0006a820: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -0006a830: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -0006a840: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -0006a850: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -0006a860: 2f70 6163 6b61 6765 732f 0a43 6f6d 706c /packages/.Compl │ │ │ │ -0006a870: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ -0006a880: 6573 6f6c 7574 696f 6e73 2e6d 323a 3338 esolutions.m2:38 │ │ │ │ -0006a890: 3833 3a30 2e0a 1f0a 4669 6c65 3a20 436f 83:0....File: Co │ │ │ │ -0006a8a0: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ -0006a8b0: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ -0006a8c0: 666f 2c20 4e6f 6465 3a20 5368 616d 6173 fo, Node: Shamas │ │ │ │ -0006a8d0: 682c 204e 6578 743a 2073 706c 6974 7469 h, Next: splitti │ │ │ │ -0006a8e0: 6e67 732c 2050 7265 763a 2053 322c 2055 ngs, Prev: S2, U │ │ │ │ -0006a8f0: 703a 2054 6f70 0a0a 5368 616d 6173 6820 p: Top..Shamash │ │ │ │ -0006a900: 2d2d 2043 6f6d 7075 7465 7320 7468 6520 -- Computes the │ │ │ │ -0006a910: 5368 616d 6173 6820 436f 6d70 6c65 780a Shamash Complex. │ │ │ │ +0006a7f0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +0006a800: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +0006a810: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +0006a820: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +0006a830: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +0006a840: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +0006a850: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ +0006a860: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ +0006a870: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ +0006a880: 6d32 3a33 3838 333a 302e 0a1f 0a46 696c m2:3883:0....Fil │ │ │ │ +0006a890: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ +0006a8a0: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ +0006a8b0: 6e73 2e69 6e66 6f2c 204e 6f64 653a 2053 ns.info, Node: S │ │ │ │ +0006a8c0: 6861 6d61 7368 2c20 4e65 7874 3a20 7370 hamash, Next: sp │ │ │ │ +0006a8d0: 6c69 7474 696e 6773 2c20 5072 6576 3a20 littings, Prev: │ │ │ │ +0006a8e0: 5332 2c20 5570 3a20 546f 700a 0a53 6861 S2, Up: Top..Sha │ │ │ │ +0006a8f0: 6d61 7368 202d 2d20 436f 6d70 7574 6573 mash -- Computes │ │ │ │ +0006a900: 2074 6865 2053 6861 6d61 7368 2043 6f6d the Shamash Com │ │ │ │ +0006a910: 706c 6578 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a plex.*********** │ │ │ │ 0006a920: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006a930: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006a940: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ -0006a950: 6765 3a20 0a20 2020 2020 2020 2046 4620 ge: . FF │ │ │ │ -0006a960: 3d20 5368 616d 6173 6828 6666 2c46 2c6c = Shamash(ff,F,l │ │ │ │ -0006a970: 656e 290a 2020 2020 2020 2020 4646 203d en). FF = │ │ │ │ -0006a980: 2053 6861 6d61 7368 2852 6261 722c 462c Shamash(Rbar,F, │ │ │ │ -0006a990: 6c65 6e29 0a20 202a 2049 6e70 7574 733a len). * Inputs: │ │ │ │ -0006a9a0: 0a20 2020 2020 202a 2066 662c 2061 202a . * ff, a * │ │ │ │ -0006a9b0: 6e6f 7465 206d 6174 7269 783a 2028 4d61 note matrix: (Ma │ │ │ │ -0006a9c0: 6361 756c 6179 3244 6f63 294d 6174 7269 caulay2Doc)Matri │ │ │ │ -0006a9d0: 782c 2c20 3120 7820 3120 4d61 7472 6978 x,, 1 x 1 Matrix │ │ │ │ -0006a9e0: 206f 7665 7220 7269 6e67 2046 2e0a 2020 over ring F.. │ │ │ │ -0006a9f0: 2020 2020 2a20 5262 6172 2c20 6120 2a6e * Rbar, a *n │ │ │ │ -0006aa00: 6f74 6520 7269 6e67 3a20 284d 6163 6175 ote ring: (Macau │ │ │ │ -0006aa10: 6c61 7932 446f 6329 5269 6e67 2c2c 2072 lay2Doc)Ring,, r │ │ │ │ -0006aa20: 696e 6720 4620 6d6f 6420 6964 6561 6c20 ing F mod ideal │ │ │ │ -0006aa30: 6666 0a20 2020 2020 202a 2046 2c20 6120 ff. * F, a │ │ │ │ -0006aa40: 2a6e 6f74 6520 636f 6d70 6c65 783a 2028 *note complex: ( │ │ │ │ -0006aa50: 436f 6d70 6c65 7865 7329 436f 6d70 6c65 Complexes)Comple │ │ │ │ -0006aa60: 782c 2c20 6465 6669 6e65 6420 6f76 6572 x,, defined over │ │ │ │ -0006aa70: 2072 696e 6720 6666 0a20 2020 2020 202a ring ff. * │ │ │ │ -0006aa80: 206c 656e 2c20 616e 202a 6e6f 7465 2069 len, an *note i │ │ │ │ -0006aa90: 6e74 6567 6572 3a20 284d 6163 6175 6c61 nteger: (Macaula │ │ │ │ -0006aaa0: 7932 446f 6329 5a5a 2c2c 200a 2020 2a20 y2Doc)ZZ,, . * │ │ │ │ -0006aab0: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -0006aac0: 2046 462c 2061 202a 6e6f 7465 2063 6f6d FF, a *note com │ │ │ │ -0006aad0: 706c 6578 3a20 2843 6f6d 706c 6578 6573 plex: (Complexes │ │ │ │ -0006aae0: 2943 6f6d 706c 6578 2c2c 2063 6861 696e )Complex,, chain │ │ │ │ -0006aaf0: 2063 6f6d 706c 6578 206f 7665 7220 2872 complex over (r │ │ │ │ -0006ab00: 696e 670a 2020 2020 2020 2020 4629 2f28 ing. F)/( │ │ │ │ -0006ab10: 6964 6561 6c20 6666 290a 0a44 6573 6372 ideal ff)..Descr │ │ │ │ -0006ab20: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -0006ab30: 3d3d 0a0a 4c65 7420 5220 3d20 7269 6e67 ==..Let R = ring │ │ │ │ -0006ab40: 2046 203d 2072 696e 6720 6666 2c20 616e F = ring ff, an │ │ │ │ -0006ab50: 6420 5262 6172 203d 2052 2f28 6964 6561 d Rbar = R/(idea │ │ │ │ -0006ab60: 6c20 6629 2c20 7768 6572 6520 6666 203d l f), where ff = │ │ │ │ -0006ab70: 206d 6174 7269 787b 7b66 7d7d 2069 7320 matrix{{f}} is │ │ │ │ -0006ab80: 610a 3178 3120 6d61 7472 6978 2077 686f a.1x1 matrix who │ │ │ │ -0006ab90: 7365 2065 6e74 7279 2069 7320 6120 6e6f se entry is a no │ │ │ │ -0006aba0: 6e7a 6572 6f64 6976 6973 6f72 2069 6e20 nzerodivisor in │ │ │ │ -0006abb0: 522e 2054 6865 2063 6f6d 706c 6578 2046 R. The complex F │ │ │ │ -0006abc0: 2073 686f 756c 6420 6164 6d69 7420 610a should admit a. │ │ │ │ -0006abd0: 7379 7374 656d 206f 6620 6869 6768 6572 system of higher │ │ │ │ -0006abe0: 2068 6f6d 6f74 6f70 6965 7320 666f 7220 homotopies for │ │ │ │ -0006abf0: 7468 6520 656e 7472 7920 6f66 2066 662c the entry of ff, │ │ │ │ -0006ac00: 2072 6574 7572 6e65 6420 6279 2074 6865 returned by the │ │ │ │ -0006ac10: 2063 616c 6c0a 6d61 6b65 486f 6d6f 746f call.makeHomoto │ │ │ │ -0006ac20: 7069 6573 2866 662c 4629 2e0a 0a54 6865 pies(ff,F)...The │ │ │ │ -0006ac30: 2063 6f6d 706c 6578 2046 4620 6861 7320 complex FF has │ │ │ │ -0006ac40: 7465 726d 730a 0a46 465f 7b32 2a69 7d20 terms..FF_{2*i} │ │ │ │ -0006ac50: 3d20 5262 6172 2a2a 2846 5f30 202b 2b20 = Rbar**(F_0 ++ │ │ │ │ -0006ac60: 465f 3220 2b2b 202e 2e20 2b2b 2046 5f69 F_2 ++ .. ++ F_i │ │ │ │ -0006ac70: 290a 0a46 465f 7b32 2a69 2b31 7d20 3d20 )..FF_{2*i+1} = │ │ │ │ -0006ac80: 5262 6172 2a2a 2846 5f31 202b 2b20 465f Rbar**(F_1 ++ F_ │ │ │ │ -0006ac90: 3320 2b2b 2e2e 2b2b 465f 7b32 2a69 2b31 3 ++..++F_{2*i+1 │ │ │ │ -0006aca0: 7d29 0a0a 616e 6420 6d61 7073 206d 6164 })..and maps mad │ │ │ │ -0006acb0: 6520 6672 6f6d 2074 6865 2068 6967 6865 e from the highe │ │ │ │ -0006acc0: 7220 686f 6d6f 746f 7069 6573 2e0a 0a46 r homotopies...F │ │ │ │ -0006acd0: 6f72 2074 6865 2063 6173 6520 6f66 2061 or the case of a │ │ │ │ -0006ace0: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ -0006acf0: 6563 7469 6f6e 206f 6620 6869 6768 6572 ection of higher │ │ │ │ -0006ad00: 2063 6f64 696d 656e 7369 6f6e 2c20 6f72 codimension, or │ │ │ │ -0006ad10: 2074 6f20 7365 6520 7468 650a 636f 6d70 to see the.comp │ │ │ │ -0006ad20: 6f6e 656e 7473 206f 6620 7468 6520 7265 onents of the re │ │ │ │ -0006ad30: 736f 6c75 7469 6f6e 2061 7320 7375 6d6d solution as summ │ │ │ │ -0006ad40: 616e 6473 206f 6620 4646 5f6a 2c20 7573 ands of FF_j, us │ │ │ │ -0006ad50: 6520 7468 6520 726f 7574 696e 650a 4569 e the routine.Ei │ │ │ │ -0006ad60: 7365 6e62 7564 5368 616d 6173 6820 696e senbudShamash in │ │ │ │ -0006ad70: 7374 6561 642e 0a0a 2b2d 2d2d 2d2d 2d2d stead...+------- │ │ │ │ +0006a930: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ +0006a940: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +0006a950: 2020 4646 203d 2053 6861 6d61 7368 2866 FF = Shamash(f │ │ │ │ +0006a960: 662c 462c 6c65 6e29 0a20 2020 2020 2020 f,F,len). │ │ │ │ +0006a970: 2046 4620 3d20 5368 616d 6173 6828 5262 FF = Shamash(Rb │ │ │ │ +0006a980: 6172 2c46 2c6c 656e 290a 2020 2a20 496e ar,F,len). * In │ │ │ │ +0006a990: 7075 7473 3a0a 2020 2020 2020 2a20 6666 puts:. * ff │ │ │ │ +0006a9a0: 2c20 6120 2a6e 6f74 6520 6d61 7472 6978 , a *note matrix │ │ │ │ +0006a9b0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0006a9c0: 4d61 7472 6978 2c2c 2031 2078 2031 204d Matrix,, 1 x 1 M │ │ │ │ +0006a9d0: 6174 7269 7820 6f76 6572 2072 696e 6720 atrix over ring │ │ │ │ +0006a9e0: 462e 0a20 2020 2020 202a 2052 6261 722c F.. * Rbar, │ │ │ │ +0006a9f0: 2061 202a 6e6f 7465 2072 696e 673a 2028 a *note ring: ( │ │ │ │ +0006aa00: 4d61 6361 756c 6179 3244 6f63 2952 696e Macaulay2Doc)Rin │ │ │ │ +0006aa10: 672c 2c20 7269 6e67 2046 206d 6f64 2069 g,, ring F mod i │ │ │ │ +0006aa20: 6465 616c 2066 660a 2020 2020 2020 2a20 deal ff. * │ │ │ │ +0006aa30: 462c 2061 202a 6e6f 7465 2063 6f6d 706c F, a *note compl │ │ │ │ +0006aa40: 6578 3a20 2843 6f6d 706c 6578 6573 2943 ex: (Complexes)C │ │ │ │ +0006aa50: 6f6d 706c 6578 2c2c 2064 6566 696e 6564 omplex,, defined │ │ │ │ +0006aa60: 206f 7665 7220 7269 6e67 2066 660a 2020 over ring ff. │ │ │ │ +0006aa70: 2020 2020 2a20 6c65 6e2c 2061 6e20 2a6e * len, an *n │ │ │ │ +0006aa80: 6f74 6520 696e 7465 6765 723a 2028 4d61 ote integer: (Ma │ │ │ │ +0006aa90: 6361 756c 6179 3244 6f63 295a 5a2c 2c20 caulay2Doc)ZZ,, │ │ │ │ +0006aaa0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +0006aab0: 2020 2020 2a20 4646 2c20 6120 2a6e 6f74 * FF, a *not │ │ │ │ +0006aac0: 6520 636f 6d70 6c65 783a 2028 436f 6d70 e complex: (Comp │ │ │ │ +0006aad0: 6c65 7865 7329 436f 6d70 6c65 782c 2c20 lexes)Complex,, │ │ │ │ +0006aae0: 6368 6169 6e20 636f 6d70 6c65 7820 6f76 chain complex ov │ │ │ │ +0006aaf0: 6572 2028 7269 6e67 0a20 2020 2020 2020 er (ring. │ │ │ │ +0006ab00: 2046 292f 2869 6465 616c 2066 6629 0a0a F)/(ideal ff).. │ │ │ │ +0006ab10: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0006ab20: 3d3d 3d3d 3d3d 3d0a 0a4c 6574 2052 203d =======..Let R = │ │ │ │ +0006ab30: 2072 696e 6720 4620 3d20 7269 6e67 2066 ring F = ring f │ │ │ │ +0006ab40: 662c 2061 6e64 2052 6261 7220 3d20 522f f, and Rbar = R/ │ │ │ │ +0006ab50: 2869 6465 616c 2066 292c 2077 6865 7265 (ideal f), where │ │ │ │ +0006ab60: 2066 6620 3d20 6d61 7472 6978 7b7b 667d ff = matrix{{f} │ │ │ │ +0006ab70: 7d20 6973 2061 0a31 7831 206d 6174 7269 } is a.1x1 matri │ │ │ │ +0006ab80: 7820 7768 6f73 6520 656e 7472 7920 6973 x whose entry is │ │ │ │ +0006ab90: 2061 206e 6f6e 7a65 726f 6469 7669 736f a nonzerodiviso │ │ │ │ +0006aba0: 7220 696e 2052 2e20 5468 6520 636f 6d70 r in R. The comp │ │ │ │ +0006abb0: 6c65 7820 4620 7368 6f75 6c64 2061 646d lex F should adm │ │ │ │ +0006abc0: 6974 2061 0a73 7973 7465 6d20 6f66 2068 it a.system of h │ │ │ │ +0006abd0: 6967 6865 7220 686f 6d6f 746f 7069 6573 igher homotopies │ │ │ │ +0006abe0: 2066 6f72 2074 6865 2065 6e74 7279 206f for the entry o │ │ │ │ +0006abf0: 6620 6666 2c20 7265 7475 726e 6564 2062 f ff, returned b │ │ │ │ +0006ac00: 7920 7468 6520 6361 6c6c 0a6d 616b 6548 y the call.makeH │ │ │ │ +0006ac10: 6f6d 6f74 6f70 6965 7328 6666 2c46 292e omotopies(ff,F). │ │ │ │ +0006ac20: 0a0a 5468 6520 636f 6d70 6c65 7820 4646 ..The complex FF │ │ │ │ +0006ac30: 2068 6173 2074 6572 6d73 0a0a 4646 5f7b has terms..FF_{ │ │ │ │ +0006ac40: 322a 697d 203d 2052 6261 722a 2a28 465f 2*i} = Rbar**(F_ │ │ │ │ +0006ac50: 3020 2b2b 2046 5f32 202b 2b20 2e2e 202b 0 ++ F_2 ++ .. + │ │ │ │ +0006ac60: 2b20 465f 6929 0a0a 4646 5f7b 322a 692b + F_i)..FF_{2*i+ │ │ │ │ +0006ac70: 317d 203d 2052 6261 722a 2a28 465f 3120 1} = Rbar**(F_1 │ │ │ │ +0006ac80: 2b2b 2046 5f33 202b 2b2e 2e2b 2b46 5f7b ++ F_3 ++..++F_{ │ │ │ │ +0006ac90: 322a 692b 317d 290a 0a61 6e64 206d 6170 2*i+1})..and map │ │ │ │ +0006aca0: 7320 6d61 6465 2066 726f 6d20 7468 6520 s made from the │ │ │ │ +0006acb0: 6869 6768 6572 2068 6f6d 6f74 6f70 6965 higher homotopie │ │ │ │ +0006acc0: 732e 0a0a 466f 7220 7468 6520 6361 7365 s...For the case │ │ │ │ +0006acd0: 206f 6620 6120 636f 6d70 6c65 7465 2069 of a complete i │ │ │ │ +0006ace0: 6e74 6572 7365 6374 696f 6e20 6f66 2068 ntersection of h │ │ │ │ +0006acf0: 6967 6865 7220 636f 6469 6d65 6e73 696f igher codimensio │ │ │ │ +0006ad00: 6e2c 206f 7220 746f 2073 6565 2074 6865 n, or to see the │ │ │ │ +0006ad10: 0a63 6f6d 706f 6e65 6e74 7320 6f66 2074 .components of t │ │ │ │ +0006ad20: 6865 2072 6573 6f6c 7574 696f 6e20 6173 he resolution as │ │ │ │ +0006ad30: 2073 756d 6d61 6e64 7320 6f66 2046 465f summands of FF_ │ │ │ │ +0006ad40: 6a2c 2075 7365 2074 6865 2072 6f75 7469 j, use the routi │ │ │ │ +0006ad50: 6e65 0a45 6973 656e 6275 6453 6861 6d61 ne.EisenbudShama │ │ │ │ +0006ad60: 7368 2069 6e73 7465 6164 2e0a 0a2b 2d2d sh instead...+-- │ │ │ │ +0006ad70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ad80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ad90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ada0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0006adb0: 6931 203a 2053 203d 205a 5a2f 3130 315b i1 : S = ZZ/101[ │ │ │ │ -0006adc0: 782c 792c 7a5d 2020 2020 2020 2020 2020 x,y,z] │ │ │ │ -0006add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ade0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0006ada0: 2d2d 2b0a 7c69 3120 3a20 5320 3d20 5a5a --+.|i1 : S = ZZ │ │ │ │ +0006adb0: 2f31 3031 5b78 2c79 2c7a 5d20 2020 2020 /101[x,y,z] │ │ │ │ +0006adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006add0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006adf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ae10: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -0006ae20: 203d 2053 2020 2020 2020 2020 2020 2020 = S │ │ │ │ +0006ae10: 7c0a 7c6f 3120 3d20 5320 2020 2020 2020 |.|o1 = S │ │ │ │ +0006ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ae50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006ae40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0006ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ae80: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ -0006ae90: 2050 6f6c 796e 6f6d 6961 6c52 696e 6720 PolynomialRing │ │ │ │ +0006ae70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0006ae80: 7c6f 3120 3a20 506f 6c79 6e6f 6d69 616c |o1 : Polynomial │ │ │ │ +0006ae90: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 0006aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aec0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0006aeb0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006aec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006aed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006aee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006aef0: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2052 -------+.|i2 : R │ │ │ │ -0006af00: 203d 2053 2f69 6465 616c 2278 332c 7933 = S/ideal"x3,y3 │ │ │ │ -0006af10: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ -0006af20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006af30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0006aee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0006aef0: 3220 3a20 5220 3d20 532f 6964 6561 6c22 2 : R = S/ideal" │ │ │ │ +0006af00: 7833 2c79 3322 2020 2020 2020 2020 2020 x3,y3" │ │ │ │ +0006af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006af20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006af30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006af60: 2020 2020 207c 0a7c 6f32 203d 2052 2020 |.|o2 = R │ │ │ │ +0006af50: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +0006af60: 3d20 5220 2020 2020 2020 2020 2020 2020 = R │ │ │ │ 0006af70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006af90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0006af90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006afd0: 2020 207c 0a7c 6f32 203a 2051 756f 7469 |.|o2 : Quoti │ │ │ │ -0006afe0: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ -0006aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b000: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0006afc0: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ +0006afd0: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +0006afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006aff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006b000: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0006b010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b040: 2d2b 0a7c 6933 203a 204d 203d 2052 5e31 -+.|i3 : M = R^1 │ │ │ │ -0006b050: 2f69 6465 616c 2878 2c79 2c7a 2920 2020 /ideal(x,y,z) │ │ │ │ -0006b060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b070: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0006b030: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 4d20 ------+.|i3 : M │ │ │ │ +0006b040: 3d20 525e 312f 6964 6561 6c28 782c 792c = R^1/ideal(x,y, │ │ │ │ +0006b050: 7a29 2020 2020 2020 2020 2020 2020 2020 z) │ │ │ │ +0006b060: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b0a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006b0b0: 0a7c 6f33 203d 2063 6f6b 6572 6e65 6c20 .|o3 = cokernel │ │ │ │ -0006b0c0: 7c20 7820 7920 7a20 7c20 2020 2020 2020 | x y z | │ │ │ │ -0006b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b0e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0006b0a0: 2020 2020 7c0a 7c6f 3320 3d20 636f 6b65 |.|o3 = coke │ │ │ │ +0006b0b0: 726e 656c 207c 2078 2079 207a 207c 2020 rnel | x y z | │ │ │ │ +0006b0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b0d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b110: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006b110: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b130: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ -0006b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b150: 2020 2020 7c0a 7c6f 3320 3a20 522d 6d6f |.|o3 : R-mo │ │ │ │ -0006b160: 6475 6c65 2c20 7175 6f74 6965 6e74 206f dule, quotient o │ │ │ │ -0006b170: 6620 5220 2020 2020 2020 2020 2020 2020 f R │ │ │ │ -0006b180: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0006b130: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0006b140: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ +0006b150: 2052 2d6d 6f64 756c 652c 2071 756f 7469 R-module, quoti │ │ │ │ +0006b160: 656e 7420 6f66 2052 2020 2020 2020 2020 ent of R │ │ │ │ +0006b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b180: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0006b190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b1c0: 2d2d 2b0a 7c69 3420 3a20 4620 3d20 6672 --+.|i4 : F = fr │ │ │ │ -0006b1d0: 6565 5265 736f 6c75 7469 6f6e 284d 2c20 eeResolution(M, │ │ │ │ -0006b1e0: 4c65 6e67 7468 4c69 6d69 7420 3d3e 2034 LengthLimit => 4 │ │ │ │ -0006b1f0: 2920 2020 2020 2020 207c 0a7c 2020 2020 ) |.| │ │ │ │ +0006b1b0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2046 -------+.|i4 : F │ │ │ │ +0006b1c0: 203d 2066 7265 6552 6573 6f6c 7574 696f = freeResolutio │ │ │ │ +0006b1d0: 6e28 4d2c 204c 656e 6774 684c 696d 6974 n(M, LengthLimit │ │ │ │ +0006b1e0: 203d 3e20 3429 2020 2020 2020 2020 7c0a => 4) |. │ │ │ │ +0006b1f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0006b200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b230: 7c0a 7c20 2020 2020 2031 2020 2020 2020 |.| 1 │ │ │ │ -0006b240: 3320 2020 2020 2035 2020 2020 2020 3720 3 5 7 │ │ │ │ -0006b250: 2020 2020 2039 2020 2020 2020 2020 2020 9 │ │ │ │ -0006b260: 2020 2020 2020 207c 0a7c 6f34 203d 2052 |.|o4 = R │ │ │ │ -0006b270: 2020 3c2d 2d20 5220 203c 2d2d 2052 2020 <-- R <-- R │ │ │ │ -0006b280: 3c2d 2d20 5220 203c 2d2d 2052 2020 2020 <-- R <-- R │ │ │ │ -0006b290: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006b2a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0006b220: 2020 2020 207c 0a7c 2020 2020 2020 3120 |.| 1 │ │ │ │ +0006b230: 2020 2020 2033 2020 2020 2020 3520 2020 3 5 │ │ │ │ +0006b240: 2020 2037 2020 2020 2020 3920 2020 2020 7 9 │ │ │ │ +0006b250: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0006b260: 3420 3d20 5220 203c 2d2d 2052 2020 3c2d 4 = R <-- R <- │ │ │ │ +0006b270: 2d20 5220 203c 2d2d 2052 2020 3c2d 2d20 - R <-- R <-- │ │ │ │ +0006b280: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0006b290: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006b2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b2d0: 2020 2020 207c 0a7c 2020 2020 2030 2020 |.| 0 │ │ │ │ -0006b2e0: 2020 2020 3120 2020 2020 2032 2020 2020 1 2 │ │ │ │ -0006b2f0: 2020 3320 2020 2020 2034 2020 2020 2020 3 4 │ │ │ │ -0006b300: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0006b2c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006b2d0: 2020 3020 2020 2020 2031 2020 2020 2020 0 1 │ │ │ │ +0006b2e0: 3220 2020 2020 2033 2020 2020 2020 3420 2 3 4 │ │ │ │ +0006b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b300: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b340: 2020 207c 0a7c 6f34 203a 2043 6f6d 706c |.|o4 : Compl │ │ │ │ -0006b350: 6578 2020 2020 2020 2020 2020 2020 2020 ex │ │ │ │ -0006b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b370: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0006b330: 2020 2020 2020 2020 7c0a 7c6f 3420 3a20 |.|o4 : │ │ │ │ +0006b340: 436f 6d70 6c65 7820 2020 2020 2020 2020 Complex │ │ │ │ +0006b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b360: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006b370: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0006b380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b3b0: 2d2b 0a7c 6935 203a 2066 6620 3d20 6d61 -+.|i5 : ff = ma │ │ │ │ -0006b3c0: 7472 6978 7b7b 7a5e 337d 7d20 2020 2020 trix{{z^3}} │ │ │ │ -0006b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b3e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0006b3a0: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 6666 ------+.|i5 : ff │ │ │ │ +0006b3b0: 203d 206d 6174 7269 787b 7b7a 5e33 7d7d = matrix{{z^3}} │ │ │ │ +0006b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b3d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006b3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006b420: 0a7c 6f35 203d 207c 207a 3320 7c20 2020 .|o5 = | z3 | │ │ │ │ +0006b410: 2020 2020 7c0a 7c6f 3520 3d20 7c20 7a33 |.|o5 = | z3 │ │ │ │ +0006b420: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0006b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b450: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0006b440: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b480: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0006b490: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ -0006b4a0: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ -0006b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b4c0: 2020 2020 7c0a 7c6f 3520 3a20 4d61 7472 |.|o5 : Matr │ │ │ │ -0006b4d0: 6978 2052 2020 3c2d 2d20 5220 2020 2020 ix R <-- R │ │ │ │ +0006b480: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006b490: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +0006b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b4b0: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ +0006b4c0: 204d 6174 7269 7820 5220 203c 2d2d 2052 Matrix R <-- R │ │ │ │ +0006b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b4f0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0006b4f0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0006b500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b530: 2d2d 2b0a 7c69 3620 3a20 5231 203d 2052 --+.|i6 : R1 = R │ │ │ │ -0006b540: 2f69 6465 616c 2066 6620 2020 2020 2020 /ideal ff │ │ │ │ -0006b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b560: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006b520: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2052 -------+.|i6 : R │ │ │ │ +0006b530: 3120 3d20 522f 6964 6561 6c20 6666 2020 1 = R/ideal ff │ │ │ │ +0006b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b550: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0006b560: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0006b570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b5a0: 7c0a 7c6f 3620 3d20 5231 2020 2020 2020 |.|o6 = R1 │ │ │ │ +0006b590: 2020 2020 207c 0a7c 6f36 203d 2052 3120 |.|o6 = R1 │ │ │ │ +0006b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b5d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0006b5c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0006b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b600: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006b610: 7c6f 3620 3a20 5175 6f74 6965 6e74 5269 |o6 : QuotientRi │ │ │ │ -0006b620: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ -0006b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b640: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006b600: 2020 207c 0a7c 6f36 203a 2051 756f 7469 |.|o6 : Quoti │ │ │ │ +0006b610: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +0006b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b630: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0006b640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0006b680: 3720 3a20 6265 7474 6920 4620 2020 2020 7 : betti F │ │ │ │ +0006b670: 2d2b 0a7c 6937 203a 2062 6574 7469 2046 -+.|i7 : betti F │ │ │ │ +0006b680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b6b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006b6a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0006b6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b6e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0006b6f0: 2020 2020 2020 2020 2030 2031 2032 2033 0 1 2 3 │ │ │ │ -0006b700: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0006b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b720: 207c 0a7c 6f37 203d 2074 6f74 616c 3a20 |.|o7 = total: │ │ │ │ -0006b730: 3120 3320 3520 3720 3920 2020 2020 2020 1 3 5 7 9 │ │ │ │ -0006b740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b750: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0006b760: 2020 2020 303a 2031 2033 2033 2031 202e 0: 1 3 3 1 . │ │ │ │ +0006b6d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006b6e0: 0a7c 2020 2020 2020 2020 2020 2020 3020 .| 0 │ │ │ │ +0006b6f0: 3120 3220 3320 3420 2020 2020 2020 2020 1 2 3 4 │ │ │ │ +0006b700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b710: 2020 2020 2020 7c0a 7c6f 3720 3d20 746f |.|o7 = to │ │ │ │ +0006b720: 7461 6c3a 2031 2033 2035 2037 2039 2020 tal: 1 3 5 7 9 │ │ │ │ +0006b730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b740: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006b750: 2020 2020 2020 2020 2030 3a20 3120 3320 0: 1 3 │ │ │ │ +0006b760: 3320 3120 2e20 2020 2020 2020 2020 2020 3 1 . │ │ │ │ 0006b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b780: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006b790: 0a7c 2020 2020 2020 2020 2031 3a20 2e20 .| 1: . │ │ │ │ -0006b7a0: 2e20 3220 3620 3620 2020 2020 2020 2020 . 2 6 6 │ │ │ │ -0006b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b7c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0006b7d0: 2020 323a 202e 202e 202e 202e 2033 2020 2: . . . . 3 │ │ │ │ +0006b780: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0006b790: 313a 202e 202e 2032 2036 2036 2020 2020 1: . . 2 6 6 │ │ │ │ +0006b7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b7b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006b7c0: 2020 2020 2020 2032 3a20 2e20 2e20 2e20 2: . . . │ │ │ │ +0006b7d0: 2e20 3320 2020 2020 2020 2020 2020 2020 . 3 │ │ │ │ 0006b7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b7f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006b7f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006b800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b830: 2020 2020 7c0a 7c6f 3720 3a20 4265 7474 |.|o7 : Bett │ │ │ │ -0006b840: 6954 616c 6c79 2020 2020 2020 2020 2020 iTally │ │ │ │ +0006b820: 2020 2020 2020 2020 207c 0a7c 6f37 203a |.|o7 : │ │ │ │ +0006b830: 2042 6574 7469 5461 6c6c 7920 2020 2020 BettiTally │ │ │ │ +0006b840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b860: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0006b860: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0006b870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b8a0: 2d2d 2b0a 7c69 3820 3a20 4646 203d 2053 --+.|i8 : FF = S │ │ │ │ -0006b8b0: 6861 6d61 7368 2866 662c 462c 3429 2020 hamash(ff,F,4) │ │ │ │ -0006b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b8d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006b890: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2046 -------+.|i8 : F │ │ │ │ +0006b8a0: 4620 3d20 5368 616d 6173 6828 6666 2c46 F = Shamash(ff,F │ │ │ │ +0006b8b0: 2c34 2920 2020 2020 2020 2020 2020 2020 ,4) │ │ │ │ +0006b8c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0006b8d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0006b8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b910: 7c0a 7c20 2020 2020 2f20 525c 3120 2020 |.| / R\1 │ │ │ │ -0006b920: 2020 2f20 525c 3320 2020 2020 2f20 525c / R\3 / R\ │ │ │ │ -0006b930: 3620 2020 2020 2f20 525c 3130 2020 2020 6 / R\10 │ │ │ │ -0006b940: 202f 2052 5c31 357c 0a7c 6f38 203d 207c / R\15|.|o8 = | │ │ │ │ -0006b950: 2d2d 7c20 203c 2d2d 207c 2d2d 7c20 203c --| <-- |--| < │ │ │ │ -0006b960: 2d2d 207c 2d2d 7c20 203c 2d2d 207c 2d2d -- |--| <-- |-- │ │ │ │ -0006b970: 7c20 2020 3c2d 2d20 7c2d 2d7c 2020 7c0a | <-- |--| |. │ │ │ │ -0006b980: 7c20 2020 2020 7c20 337c 2020 2020 2020 | | 3| │ │ │ │ -0006b990: 7c20 337c 2020 2020 2020 7c20 337c 2020 | 3| | 3| │ │ │ │ -0006b9a0: 2020 2020 7c20 337c 2020 2020 2020 207c | 3| | │ │ │ │ -0006b9b0: 2033 7c20 207c 0a7c 2020 2020 205c 7a20 3| |.| \z │ │ │ │ -0006b9c0: 2f20 2020 2020 205c 7a20 2f20 2020 2020 / \z / │ │ │ │ -0006b9d0: 205c 7a20 2f20 2020 2020 205c 7a20 2f20 \z / \z / │ │ │ │ -0006b9e0: 2020 2020 2020 5c7a 202f 2020 7c0a 7c20 \z / |.| │ │ │ │ +0006b900: 2020 2020 207c 0a7c 2020 2020 202f 2052 |.| / R │ │ │ │ +0006b910: 5c31 2020 2020 202f 2052 5c33 2020 2020 \1 / R\3 │ │ │ │ +0006b920: 202f 2052 5c36 2020 2020 202f 2052 5c31 / R\6 / R\1 │ │ │ │ +0006b930: 3020 2020 2020 2f20 525c 3135 7c0a 7c6f 0 / R\15|.|o │ │ │ │ +0006b940: 3820 3d20 7c2d 2d7c 2020 3c2d 2d20 7c2d 8 = |--| <-- |- │ │ │ │ +0006b950: 2d7c 2020 3c2d 2d20 7c2d 2d7c 2020 3c2d -| <-- |--| <- │ │ │ │ +0006b960: 2d20 7c2d 2d7c 2020 203c 2d2d 207c 2d2d - |--| <-- |-- │ │ │ │ +0006b970: 7c20 207c 0a7c 2020 2020 207c 2033 7c20 | |.| | 3| │ │ │ │ +0006b980: 2020 2020 207c 2033 7c20 2020 2020 207c | 3| | │ │ │ │ +0006b990: 2033 7c20 2020 2020 207c 2033 7c20 2020 3| | 3| │ │ │ │ +0006b9a0: 2020 2020 7c20 337c 2020 7c0a 7c20 2020 | 3| |.| │ │ │ │ +0006b9b0: 2020 5c7a 202f 2020 2020 2020 5c7a 202f \z / \z / │ │ │ │ +0006b9c0: 2020 2020 2020 5c7a 202f 2020 2020 2020 \z / │ │ │ │ +0006b9d0: 5c7a 202f 2020 2020 2020 205c 7a20 2f20 \z / \z / │ │ │ │ +0006b9e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ba20: 2020 207c 0a7c 2020 2020 2030 2020 2020 |.| 0 │ │ │ │ -0006ba30: 2020 2020 2031 2020 2020 2020 2020 2032 1 2 │ │ │ │ -0006ba40: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ -0006ba50: 2020 2020 3420 2020 2020 7c0a 7c20 2020 4 |.| │ │ │ │ +0006ba10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0006ba20: 3020 2020 2020 2020 2020 3120 2020 2020 0 1 │ │ │ │ +0006ba30: 2020 2020 3220 2020 2020 2020 2020 3320 2 3 │ │ │ │ +0006ba40: 2020 2020 2020 2020 2034 2020 2020 207c 4 | │ │ │ │ +0006ba50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0006ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ba90: 207c 0a7c 6f38 203a 2043 6f6d 706c 6578 |.|o8 : Complex │ │ │ │ +0006ba80: 2020 2020 2020 7c0a 7c6f 3820 3a20 436f |.|o8 : Co │ │ │ │ +0006ba90: 6d70 6c65 7820 2020 2020 2020 2020 2020 mplex │ │ │ │ 0006baa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bac0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0006bab0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0006bac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006bad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006bae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006baf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0006bb00: 0a7c 6939 203a 2047 4720 3d20 5368 616d .|i9 : GG = Sham │ │ │ │ -0006bb10: 6173 6828 5231 2c46 2c34 2920 2020 2020 ash(R1,F,4) │ │ │ │ -0006bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bb30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0006baf0: 2d2d 2d2d 2b0a 7c69 3920 3a20 4747 203d ----+.|i9 : GG = │ │ │ │ +0006bb00: 2053 6861 6d61 7368 2852 312c 462c 3429 Shamash(R1,F,4) │ │ │ │ +0006bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006bb20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bb60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0006bb70: 2020 2020 2020 2031 2020 2020 2020 2033 1 3 │ │ │ │ -0006bb80: 2020 2020 2020 2036 2020 2020 2020 2031 6 1 │ │ │ │ -0006bb90: 3020 2020 2020 2020 3135 2020 2020 2020 0 15 │ │ │ │ -0006bba0: 2020 2020 7c0a 7c6f 3920 3d20 5231 2020 |.|o9 = R1 │ │ │ │ -0006bbb0: 3c2d 2d20 5231 2020 3c2d 2d20 5231 2020 <-- R1 <-- R1 │ │ │ │ -0006bbc0: 3c2d 2d20 5231 2020 203c 2d2d 2052 3120 <-- R1 <-- R1 │ │ │ │ -0006bbd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006bb60: 2020 7c0a 7c20 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ +0006bb70: 2020 2020 3320 2020 2020 2020 3620 2020 3 6 │ │ │ │ +0006bb80: 2020 2020 3130 2020 2020 2020 2031 3520 10 15 │ │ │ │ +0006bb90: 2020 2020 2020 2020 207c 0a7c 6f39 203d |.|o9 = │ │ │ │ +0006bba0: 2052 3120 203c 2d2d 2052 3120 203c 2d2d R1 <-- R1 <-- │ │ │ │ +0006bbb0: 2052 3120 203c 2d2d 2052 3120 2020 3c2d R1 <-- R1 <- │ │ │ │ +0006bbc0: 2d20 5231 2020 2020 2020 2020 2020 2020 - R1 │ │ │ │ +0006bbd0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bc10: 2020 7c0a 7c20 2020 2020 3020 2020 2020 |.| 0 │ │ │ │ -0006bc20: 2020 3120 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ -0006bc30: 2020 3320 2020 2020 2020 2034 2020 2020 3 4 │ │ │ │ -0006bc40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006bc00: 2020 2020 2020 207c 0a7c 2020 2020 2030 |.| 0 │ │ │ │ +0006bc10: 2020 2020 2020 2031 2020 2020 2020 2032 1 2 │ │ │ │ +0006bc20: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ +0006bc30: 3420 2020 2020 2020 2020 2020 2020 7c0a 4 |. │ │ │ │ +0006bc40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0006bc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bc80: 7c0a 7c6f 3920 3a20 436f 6d70 6c65 7820 |.|o9 : Complex │ │ │ │ +0006bc70: 2020 2020 207c 0a7c 6f39 203a 2043 6f6d |.|o9 : Com │ │ │ │ +0006bc80: 706c 6578 2020 2020 2020 2020 2020 2020 plex │ │ │ │ 0006bc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bcb0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0006bca0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0006bcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006bcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006bcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006bce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0006bcf0: 7c69 3130 203a 2062 6574 7469 2046 4620 |i10 : betti FF │ │ │ │ +0006bce0: 2d2d 2d2b 0a7c 6931 3020 3a20 6265 7474 ---+.|i10 : bett │ │ │ │ +0006bcf0: 6920 4646 2020 2020 2020 2020 2020 2020 i FF │ │ │ │ 0006bd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bd20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006bd10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bd50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0006bd60: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ -0006bd70: 3220 2033 2020 3420 2020 2020 2020 2020 2 3 4 │ │ │ │ -0006bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bd90: 2020 207c 0a7c 6f31 3020 3d20 746f 7461 |.|o10 = tota │ │ │ │ -0006bda0: 6c3a 2031 2033 2036 2031 3020 3135 2020 l: 1 3 6 10 15 │ │ │ │ -0006bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bdc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0006bdd0: 2020 2020 2020 2030 3a20 3120 3320 3320 0: 1 3 3 │ │ │ │ -0006bde0: 2031 2020 2e20 2020 2020 2020 2020 2020 1 . │ │ │ │ -0006bdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006be00: 207c 0a7c 2020 2020 2020 2020 2020 313a |.| 1: │ │ │ │ -0006be10: 202e 202e 2033 2020 3920 2039 2020 2020 . . 3 9 9 │ │ │ │ -0006be20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006be30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0006be40: 2020 2020 2032 3a20 2e20 2e20 2e20 202e 2: . . . . │ │ │ │ -0006be50: 2020 3620 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -0006be60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006be70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0006bd50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006bd60: 2030 2031 2032 2020 3320 2034 2020 2020 0 1 2 3 4 │ │ │ │ +0006bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006bd80: 2020 2020 2020 2020 7c0a 7c6f 3130 203d |.|o10 = │ │ │ │ +0006bd90: 2074 6f74 616c 3a20 3120 3320 3620 3130 total: 1 3 6 10 │ │ │ │ +0006bda0: 2031 3520 2020 2020 2020 2020 2020 2020 15 │ │ │ │ +0006bdb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006bdc0: 0a7c 2020 2020 2020 2020 2020 303a 2031 .| 0: 1 │ │ │ │ +0006bdd0: 2033 2033 2020 3120 202e 2020 2020 2020 3 3 1 . │ │ │ │ +0006bde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006bdf0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0006be00: 2020 2031 3a20 2e20 2e20 3320 2039 2020 1: . . 3 9 │ │ │ │ +0006be10: 3920 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ +0006be20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006be30: 2020 2020 2020 2020 2020 323a 202e 202e 2: . . │ │ │ │ +0006be40: 202e 2020 2e20 2036 2020 2020 2020 2020 . . 6 │ │ │ │ +0006be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006be60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0006be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bea0: 2020 2020 2020 7c0a 7c6f 3130 203a 2042 |.|o10 : B │ │ │ │ -0006beb0: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ +0006be90: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0006bea0: 3020 3a20 4265 7474 6954 616c 6c79 2020 0 : BettiTally │ │ │ │ +0006beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bed0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0006bed0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0006bee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006bef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006bf00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006bf10: 2d2d 2d2d 2b0a 7c69 3131 203a 2062 6574 ----+.|i11 : bet │ │ │ │ -0006bf20: 7469 2047 4720 2020 2020 2020 2020 2020 ti GG │ │ │ │ +0006bf00: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 ---------+.|i11 │ │ │ │ +0006bf10: 3a20 6265 7474 6920 4747 2020 2020 2020 : betti GG │ │ │ │ +0006bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bf40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006bf40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bf80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0006bf90: 2020 3020 3120 3220 2033 2020 3420 2020 0 1 2 3 4 │ │ │ │ -0006bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bfb0: 2020 2020 2020 2020 207c 0a7c 6f31 3120 |.|o11 │ │ │ │ -0006bfc0: 3d20 746f 7461 6c3a 2031 2033 2036 2031 = total: 1 3 6 1 │ │ │ │ -0006bfd0: 3020 3135 2020 2020 2020 2020 2020 2020 0 15 │ │ │ │ -0006bfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bff0: 7c0a 7c20 2020 2020 2020 2020 2030 3a20 |.| 0: │ │ │ │ -0006c000: 3120 3320 3320 2031 2020 2e20 2020 2020 1 3 3 1 . │ │ │ │ -0006c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c020: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0006c030: 2020 2020 313a 202e 202e 2033 2020 3920 1: . . 3 9 │ │ │ │ -0006c040: 2039 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ -0006c050: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006c060: 7c20 2020 2020 2020 2020 2032 3a20 2e20 | 2: . │ │ │ │ -0006c070: 2e20 2e20 202e 2020 3620 2020 2020 2020 . . . 6 │ │ │ │ -0006c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c090: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006bf70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0006bf80: 2020 2020 2020 2030 2031 2032 2020 3320 0 1 2 3 │ │ │ │ +0006bf90: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0006bfa0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0006bfb0: 7c6f 3131 203d 2074 6f74 616c 3a20 3120 |o11 = total: 1 │ │ │ │ +0006bfc0: 3320 3620 3130 2031 3520 2020 2020 2020 3 6 10 15 │ │ │ │ +0006bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006bfe0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006bff0: 2020 303a 2031 2033 2033 2020 3120 202e 0: 1 3 3 1 . │ │ │ │ +0006c000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006c010: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0006c020: 2020 2020 2020 2020 2031 3a20 2e20 2e20 1: . . │ │ │ │ +0006c030: 3320 2039 2020 3920 2020 2020 2020 2020 3 9 9 │ │ │ │ +0006c040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006c050: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c060: 323a 202e 202e 202e 2020 2e20 2036 2020 2: . . . . 6 │ │ │ │ +0006c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006c080: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c0c0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0006c0d0: 3131 203a 2042 6574 7469 5461 6c6c 7920 11 : BettiTally │ │ │ │ +0006c0c0: 207c 0a7c 6f31 3120 3a20 4265 7474 6954 |.|o11 : BettiT │ │ │ │ +0006c0d0: 616c 6c79 2020 2020 2020 2020 2020 2020 ally │ │ │ │ 0006c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c100: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0006c0f0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0006c100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006c120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006c130: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 ----------+.|i12 │ │ │ │ -0006c140: 203a 2072 696e 6720 4747 2020 2020 2020 : ring GG │ │ │ │ +0006c120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0006c130: 0a7c 6931 3220 3a20 7269 6e67 2047 4720 .|i12 : ring GG │ │ │ │ +0006c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c170: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c160: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0006c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c1a0: 2020 2020 2020 2020 7c0a 7c6f 3132 203d |.|o12 = │ │ │ │ -0006c1b0: 2052 3120 2020 2020 2020 2020 2020 2020 R1 │ │ │ │ +0006c190: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006c1a0: 6f31 3220 3d20 5231 2020 2020 2020 2020 o12 = R1 │ │ │ │ +0006c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c1d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006c1e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0006c1d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0006c1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c210: 2020 2020 2020 7c0a 7c6f 3132 203a 2051 |.|o12 : Q │ │ │ │ -0006c220: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +0006c200: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0006c210: 3220 3a20 5175 6f74 6965 6e74 5269 6e67 2 : QuotientRing │ │ │ │ +0006c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c240: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0006c240: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0006c250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006c270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006c280: 2d2d 2d2d 2b0a 7c69 3133 203a 2061 7070 ----+.|i13 : app │ │ │ │ -0006c290: 6c79 286c 656e 6774 6820 4747 2c20 692d ly(length GG, i- │ │ │ │ -0006c2a0: 3e70 7275 6e65 2048 485f 6920 4646 2920 >prune HH_i FF) │ │ │ │ -0006c2b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006c270: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 ---------+.|i13 │ │ │ │ +0006c280: 3a20 6170 706c 7928 6c65 6e67 7468 2047 : apply(length G │ │ │ │ +0006c290: 472c 2069 2d3e 7072 756e 6520 4848 5f69 G, i->prune HH_i │ │ │ │ +0006c2a0: 2046 4629 2020 2020 2020 2020 2020 2020 FF) │ │ │ │ +0006c2b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c2f0: 2020 7c0a 7c6f 3133 203d 207b 636f 6b65 |.|o13 = {coke │ │ │ │ -0006c300: 726e 656c 207c 207a 2079 2078 207c 2c20 rnel | z y x |, │ │ │ │ -0006c310: 302c 2030 2c20 307d 2020 2020 2020 2020 0, 0, 0} │ │ │ │ -0006c320: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006c2e0: 2020 2020 2020 207c 0a7c 6f31 3320 3d20 |.|o13 = │ │ │ │ +0006c2f0: 7b63 6f6b 6572 6e65 6c20 7c20 7a20 7920 {cokernel | z y │ │ │ │ +0006c300: 7820 7c2c 2030 2c20 302c 2030 7d20 2020 x |, 0, 0, 0} │ │ │ │ +0006c310: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0006c320: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0006c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c360: 7c0a 7c6f 3133 203a 204c 6973 7420 2020 |.|o13 : List │ │ │ │ +0006c350: 2020 2020 207c 0a7c 6f31 3320 3a20 4c69 |.|o13 : Li │ │ │ │ +0006c360: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ 0006c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c390: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0006c380: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0006c390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006c3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0006c3d0: 0a43 6176 6561 740a 3d3d 3d3d 3d3d 0a0a .Caveat.======.. │ │ │ │ -0006c3e0: 4620 6973 2061 7373 756d 6564 2074 6f20 F is assumed to │ │ │ │ -0006c3f0: 6265 2061 2068 6f6d 6f6c 6f67 6963 616c be a homological │ │ │ │ -0006c400: 2063 6f6d 706c 6578 2073 7461 7274 696e complex startin │ │ │ │ -0006c410: 6720 6672 6f6d 2046 5f30 2e20 5468 6520 g from F_0. The │ │ │ │ -0006c420: 6d61 7472 6978 2066 6620 6d75 7374 0a62 matrix ff must.b │ │ │ │ -0006c430: 6520 3178 312e 0a0a 5365 6520 616c 736f e 1x1...See also │ │ │ │ -0006c440: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ -0006c450: 6e6f 7465 2045 6973 656e 6275 6453 6861 note EisenbudSha │ │ │ │ -0006c460: 6d61 7368 3a20 4569 7365 6e62 7564 5368 mash: EisenbudSh │ │ │ │ -0006c470: 616d 6173 682c 202d 2d20 436f 6d70 7574 amash, -- Comput │ │ │ │ -0006c480: 6573 2074 6865 2045 6973 656e 6275 642d es the Eisenbud- │ │ │ │ -0006c490: 5368 616d 6173 680a 2020 2020 436f 6d70 Shamash. Comp │ │ │ │ -0006c4a0: 6c65 780a 2020 2a20 2a6e 6f74 6520 6d61 lex. * *note ma │ │ │ │ -0006c4b0: 6b65 486f 6d6f 746f 7069 6573 3a20 6d61 keHomotopies: ma │ │ │ │ -0006c4c0: 6b65 486f 6d6f 746f 7069 6573 2c20 2d2d keHomotopies, -- │ │ │ │ -0006c4d0: 2072 6574 7572 6e73 2061 2073 7973 7465 returns a syste │ │ │ │ -0006c4e0: 6d20 6f66 2068 6967 6865 720a 2020 2020 m of higher. │ │ │ │ -0006c4f0: 686f 6d6f 746f 7069 6573 0a0a 5761 7973 homotopies..Ways │ │ │ │ -0006c500: 2074 6f20 7573 6520 5368 616d 6173 683a to use Shamash: │ │ │ │ -0006c510: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0006c520: 3d3d 3d3d 3d0a 0a20 202a 2022 5368 616d =====.. * "Sham │ │ │ │ -0006c530: 6173 6828 4d61 7472 6978 2c43 6f6d 706c ash(Matrix,Compl │ │ │ │ -0006c540: 6578 2c5a 5a29 220a 2020 2a20 2253 6861 ex,ZZ)". * "Sha │ │ │ │ -0006c550: 6d61 7368 2852 696e 672c 436f 6d70 6c65 mash(Ring,Comple │ │ │ │ -0006c560: 782c 5a5a 2922 0a0a 466f 7220 7468 6520 x,ZZ)"..For the │ │ │ │ -0006c570: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -0006c580: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -0006c590: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -0006c5a0: 5368 616d 6173 683a 2053 6861 6d61 7368 Shamash: Shamash │ │ │ │ -0006c5b0: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ -0006c5c0: 686f 6420 6675 6e63 7469 6f6e 3a0a 284d hod function:.(M │ │ │ │ -0006c5d0: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -0006c5e0: 6f64 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d odFunction,...-- │ │ │ │ +0006c3c0: 2d2d 2d2b 0a0a 4361 7665 6174 0a3d 3d3d ---+..Caveat.=== │ │ │ │ +0006c3d0: 3d3d 3d0a 0a46 2069 7320 6173 7375 6d65 ===..F is assume │ │ │ │ +0006c3e0: 6420 746f 2062 6520 6120 686f 6d6f 6c6f d to be a homolo │ │ │ │ +0006c3f0: 6769 6361 6c20 636f 6d70 6c65 7820 7374 gical complex st │ │ │ │ +0006c400: 6172 7469 6e67 2066 726f 6d20 465f 302e arting from F_0. │ │ │ │ +0006c410: 2054 6865 206d 6174 7269 7820 6666 206d The matrix ff m │ │ │ │ +0006c420: 7573 740a 6265 2031 7831 2e0a 0a53 6565 ust.be 1x1...See │ │ │ │ +0006c430: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ +0006c440: 2020 2a20 2a6e 6f74 6520 4569 7365 6e62 * *note Eisenb │ │ │ │ +0006c450: 7564 5368 616d 6173 683a 2045 6973 656e udShamash: Eisen │ │ │ │ +0006c460: 6275 6453 6861 6d61 7368 2c20 2d2d 2043 budShamash, -- C │ │ │ │ +0006c470: 6f6d 7075 7465 7320 7468 6520 4569 7365 omputes the Eise │ │ │ │ +0006c480: 6e62 7564 2d53 6861 6d61 7368 0a20 2020 nbud-Shamash. │ │ │ │ +0006c490: 2043 6f6d 706c 6578 0a20 202a 202a 6e6f Complex. * *no │ │ │ │ +0006c4a0: 7465 206d 616b 6548 6f6d 6f74 6f70 6965 te makeHomotopie │ │ │ │ +0006c4b0: 733a 206d 616b 6548 6f6d 6f74 6f70 6965 s: makeHomotopie │ │ │ │ +0006c4c0: 732c 202d 2d20 7265 7475 726e 7320 6120 s, -- returns a │ │ │ │ +0006c4d0: 7379 7374 656d 206f 6620 6869 6768 6572 system of higher │ │ │ │ +0006c4e0: 0a20 2020 2068 6f6d 6f74 6f70 6965 730a . homotopies. │ │ │ │ +0006c4f0: 0a57 6179 7320 746f 2075 7365 2053 6861 .Ways to use Sha │ │ │ │ +0006c500: 6d61 7368 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d mash:.========== │ │ │ │ +0006c510: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +0006c520: 2253 6861 6d61 7368 284d 6174 7269 782c "Shamash(Matrix, │ │ │ │ +0006c530: 436f 6d70 6c65 782c 5a5a 2922 0a20 202a Complex,ZZ)". * │ │ │ │ +0006c540: 2022 5368 616d 6173 6828 5269 6e67 2c43 "Shamash(Ring,C │ │ │ │ +0006c550: 6f6d 706c 6578 2c5a 5a29 220a 0a46 6f72 omplex,ZZ)"..For │ │ │ │ +0006c560: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +0006c570: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0006c580: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +0006c590: 6e6f 7465 2053 6861 6d61 7368 3a20 5368 note Shamash: Sh │ │ │ │ +0006c5a0: 616d 6173 682c 2069 7320 6120 2a6e 6f74 amash, is a *not │ │ │ │ +0006c5b0: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ +0006c5c0: 6e3a 0a28 4d61 6361 756c 6179 3244 6f63 n:.(Macaulay2Doc │ │ │ │ +0006c5d0: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ +0006c5e0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 0006c5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006c630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -0006c640: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -0006c650: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -0006c660: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -0006c670: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -0006c680: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -0006c690: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -0006c6a0: 6167 6573 2f0a 436f 6d70 6c65 7465 496e ages/.CompleteIn │ │ │ │ -0006c6b0: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ -0006c6c0: 7469 6f6e 732e 6d32 3a34 3736 303a 302e tions.m2:4760:0. │ │ │ │ -0006c6d0: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ -0006c6e0: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ -0006c6f0: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ -0006c700: 6f64 653a 2073 706c 6974 7469 6e67 732c ode: splittings, │ │ │ │ -0006c710: 204e 6578 743a 2073 7461 626c 6548 6f6d Next: stableHom │ │ │ │ -0006c720: 2c20 5072 6576 3a20 5368 616d 6173 682c , Prev: Shamash, │ │ │ │ -0006c730: 2055 703a 2054 6f70 0a0a 7370 6c69 7474 Up: Top..splitt │ │ │ │ -0006c740: 696e 6773 202d 2d20 636f 6d70 7574 6520 ings -- compute │ │ │ │ -0006c750: 7468 6520 7370 6c69 7474 696e 6773 206f the splittings o │ │ │ │ -0006c760: 6620 6120 7370 6c69 7420 7269 6768 7420 f a split right │ │ │ │ -0006c770: 6578 6163 7420 7365 7175 656e 6365 0a2a exact sequence.* │ │ │ │ +0006c630: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +0006c640: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +0006c650: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +0006c660: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +0006c670: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +0006c680: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +0006c690: 2f70 6163 6b61 6765 732f 0a43 6f6d 706c /packages/.Compl │ │ │ │ +0006c6a0: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ +0006c6b0: 6573 6f6c 7574 696f 6e73 2e6d 323a 3437 esolutions.m2:47 │ │ │ │ +0006c6c0: 3630 3a30 2e0a 1f0a 4669 6c65 3a20 436f 60:0....File: Co │ │ │ │ +0006c6d0: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ +0006c6e0: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ +0006c6f0: 666f 2c20 4e6f 6465 3a20 7370 6c69 7474 fo, Node: splitt │ │ │ │ +0006c700: 696e 6773 2c20 4e65 7874 3a20 7374 6162 ings, Next: stab │ │ │ │ +0006c710: 6c65 486f 6d2c 2050 7265 763a 2053 6861 leHom, Prev: Sha │ │ │ │ +0006c720: 6d61 7368 2c20 5570 3a20 546f 700a 0a73 mash, Up: Top..s │ │ │ │ +0006c730: 706c 6974 7469 6e67 7320 2d2d 2063 6f6d plittings -- com │ │ │ │ +0006c740: 7075 7465 2074 6865 2073 706c 6974 7469 pute the splitti │ │ │ │ +0006c750: 6e67 7320 6f66 2061 2073 706c 6974 2072 ngs of a split r │ │ │ │ +0006c760: 6967 6874 2065 7861 6374 2073 6571 7565 ight exact seque │ │ │ │ +0006c770: 6e63 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a nce.************ │ │ │ │ 0006c780: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006c790: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006c7a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006c7b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006c7c0: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -0006c7d0: 0a20 2020 2020 2020 2078 203d 2073 706c . x = spl │ │ │ │ -0006c7e0: 6974 7469 6e67 7328 612c 6229 0a20 202a ittings(a,b). * │ │ │ │ -0006c7f0: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -0006c800: 2061 2c20 6120 2a6e 6f74 6520 6d61 7472 a, a *note matr │ │ │ │ -0006c810: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ -0006c820: 6329 4d61 7472 6978 2c2c 206d 6170 7320 c)Matrix,, maps │ │ │ │ -0006c830: 696e 746f 2074 6865 206b 6572 6e65 6c20 into the kernel │ │ │ │ -0006c840: 6f66 2062 0a20 2020 2020 202a 2062 2c20 of b. * b, │ │ │ │ -0006c850: 6120 2a6e 6f74 6520 6d61 7472 6978 3a20 a *note matrix: │ │ │ │ -0006c860: 284d 6163 6175 6c61 7932 446f 6329 4d61 (Macaulay2Doc)Ma │ │ │ │ -0006c870: 7472 6978 2c2c 2072 6570 7265 7365 6e74 trix,, represent │ │ │ │ -0006c880: 696e 6720 6120 7375 726a 6563 7469 6f6e ing a surjection │ │ │ │ -0006c890: 0a20 2020 2020 2020 2066 726f 6d20 7461 . from ta │ │ │ │ -0006c8a0: 7267 6574 2061 2074 6f20 6120 6672 6565 rget a to a free │ │ │ │ -0006c8b0: 206d 6f64 756c 650a 2020 2a20 4f75 7470 module. * Outp │ │ │ │ -0006c8c0: 7574 733a 0a20 2020 2020 202a 204c 2c20 uts:. * L, │ │ │ │ -0006c8d0: 6120 2a6e 6f74 6520 6c69 7374 3a20 284d a *note list: (M │ │ │ │ -0006c8e0: 6163 6175 6c61 7932 446f 6329 4c69 7374 acaulay2Doc)List │ │ │ │ -0006c8f0: 2c2c 204c 203d 205c 7b73 6967 6d61 2c74 ,, L = \{sigma,t │ │ │ │ -0006c900: 6175 5c7d 2c20 7370 6c69 7474 696e 6773 au\}, splittings │ │ │ │ -0006c910: 206f 660a 2020 2020 2020 2020 612c 6220 of. a,b │ │ │ │ -0006c920: 7265 7370 6563 7469 7665 6c79 0a0a 4465 respectively..De │ │ │ │ -0006c930: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -0006c940: 3d3d 3d3d 3d0a 0a41 7373 756d 696e 6720 =====..Assuming │ │ │ │ -0006c950: 7468 6174 2028 612c 6229 2061 7265 2074 that (a,b) are t │ │ │ │ -0006c960: 6865 206d 6170 7320 6f66 2061 2072 6967 he maps of a rig │ │ │ │ -0006c970: 6874 2065 7861 6374 2073 6571 7565 6e63 ht exact sequenc │ │ │ │ -0006c980: 650a 0a24 305c 746f 2041 5c74 6f20 425c e..$0\to A\to B\ │ │ │ │ -0006c990: 746f 2043 205c 746f 2030 240a 0a77 6974 to C \to 0$..wit │ │ │ │ -0006c9a0: 6820 422c 2043 2066 7265 652c 2074 6865 h B, C free, the │ │ │ │ -0006c9b0: 2073 6372 6970 7420 7072 6f64 7563 6573 script produces │ │ │ │ -0006c9c0: 2061 2070 6169 7220 6f66 206d 6170 7320 a pair of maps │ │ │ │ -0006c9d0: 7369 676d 612c 2074 6175 2077 6974 6820 sigma, tau with │ │ │ │ -0006c9e0: 2474 6175 3a20 4320 5c74 6f0a 4224 2061 $tau: C \to.B$ a │ │ │ │ -0006c9f0: 2073 706c 6974 7469 6e67 206f 6620 6220 splitting of b │ │ │ │ -0006ca00: 616e 6420 2473 6967 6d61 3a20 4220 5c74 and $sigma: B \t │ │ │ │ -0006ca10: 6f20 4124 2061 2073 706c 6974 7469 6e67 o A$ a splitting │ │ │ │ -0006ca20: 206f 6620 613b 2074 6861 7420 6973 2c0a of a; that is,. │ │ │ │ -0006ca30: 0a24 612a 7369 676d 612b 7461 752a 6220 .$a*sigma+tau*b │ │ │ │ -0006ca40: 3d20 315f 4224 0a0a 2473 6967 6d61 2a61 = 1_B$..$sigma*a │ │ │ │ -0006ca50: 203d 2031 5f41 240a 0a24 622a 7461 7520 = 1_A$..$b*tau │ │ │ │ -0006ca60: 3d20 315f 4324 0a0a 2b2d 2d2d 2d2d 2d2d = 1_C$..+------- │ │ │ │ +0006c7b0: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ +0006c7c0: 6167 653a 200a 2020 2020 2020 2020 7820 age: . x │ │ │ │ +0006c7d0: 3d20 7370 6c69 7474 696e 6773 2861 2c62 = splittings(a,b │ │ │ │ +0006c7e0: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ +0006c7f0: 2020 2020 2a20 612c 2061 202a 6e6f 7465 * a, a *note │ │ │ │ +0006c800: 206d 6174 7269 783a 2028 4d61 6361 756c matrix: (Macaul │ │ │ │ +0006c810: 6179 3244 6f63 294d 6174 7269 782c 2c20 ay2Doc)Matrix,, │ │ │ │ +0006c820: 6d61 7073 2069 6e74 6f20 7468 6520 6b65 maps into the ke │ │ │ │ +0006c830: 726e 656c 206f 6620 620a 2020 2020 2020 rnel of b. │ │ │ │ +0006c840: 2a20 622c 2061 202a 6e6f 7465 206d 6174 * b, a *note mat │ │ │ │ +0006c850: 7269 783a 2028 4d61 6361 756c 6179 3244 rix: (Macaulay2D │ │ │ │ +0006c860: 6f63 294d 6174 7269 782c 2c20 7265 7072 oc)Matrix,, repr │ │ │ │ +0006c870: 6573 656e 7469 6e67 2061 2073 7572 6a65 esenting a surje │ │ │ │ +0006c880: 6374 696f 6e0a 2020 2020 2020 2020 6672 ction. fr │ │ │ │ +0006c890: 6f6d 2074 6172 6765 7420 6120 746f 2061 om target a to a │ │ │ │ +0006c8a0: 2066 7265 6520 6d6f 6475 6c65 0a20 202a free module. * │ │ │ │ +0006c8b0: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +0006c8c0: 2a20 4c2c 2061 202a 6e6f 7465 206c 6973 * L, a *note lis │ │ │ │ +0006c8d0: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ +0006c8e0: 294c 6973 742c 2c20 4c20 3d20 5c7b 7369 )List,, L = \{si │ │ │ │ +0006c8f0: 676d 612c 7461 755c 7d2c 2073 706c 6974 gma,tau\}, split │ │ │ │ +0006c900: 7469 6e67 7320 6f66 0a20 2020 2020 2020 tings of. │ │ │ │ +0006c910: 2061 2c62 2072 6573 7065 6374 6976 656c a,b respectivel │ │ │ │ +0006c920: 790a 0a44 6573 6372 6970 7469 6f6e 0a3d y..Description.= │ │ │ │ +0006c930: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4173 7375 ==========..Assu │ │ │ │ +0006c940: 6d69 6e67 2074 6861 7420 2861 2c62 2920 ming that (a,b) │ │ │ │ +0006c950: 6172 6520 7468 6520 6d61 7073 206f 6620 are the maps of │ │ │ │ +0006c960: 6120 7269 6768 7420 6578 6163 7420 7365 a right exact se │ │ │ │ +0006c970: 7175 656e 6365 0a0a 2430 5c74 6f20 415c quence..$0\to A\ │ │ │ │ +0006c980: 746f 2042 5c74 6f20 4320 5c74 6f20 3024 to B\to C \to 0$ │ │ │ │ +0006c990: 0a0a 7769 7468 2042 2c20 4320 6672 6565 ..with B, C free │ │ │ │ +0006c9a0: 2c20 7468 6520 7363 7269 7074 2070 726f , the script pro │ │ │ │ +0006c9b0: 6475 6365 7320 6120 7061 6972 206f 6620 duces a pair of │ │ │ │ +0006c9c0: 6d61 7073 2073 6967 6d61 2c20 7461 7520 maps sigma, tau │ │ │ │ +0006c9d0: 7769 7468 2024 7461 753a 2043 205c 746f with $tau: C \to │ │ │ │ +0006c9e0: 0a42 2420 6120 7370 6c69 7474 696e 6720 .B$ a splitting │ │ │ │ +0006c9f0: 6f66 2062 2061 6e64 2024 7369 676d 613a of b and $sigma: │ │ │ │ +0006ca00: 2042 205c 746f 2041 2420 6120 7370 6c69 B \to A$ a spli │ │ │ │ +0006ca10: 7474 696e 6720 6f66 2061 3b20 7468 6174 tting of a; that │ │ │ │ +0006ca20: 2069 732c 0a0a 2461 2a73 6967 6d61 2b74 is,..$a*sigma+t │ │ │ │ +0006ca30: 6175 2a62 203d 2031 5f42 240a 0a24 7369 au*b = 1_B$..$si │ │ │ │ +0006ca40: 676d 612a 6120 3d20 315f 4124 0a0a 2462 gma*a = 1_A$..$b │ │ │ │ +0006ca50: 2a74 6175 203d 2031 5f43 240a 0a2b 2d2d *tau = 1_C$..+-- │ │ │ │ +0006ca60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ca70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ca80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ca90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006caa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006cab0: 2d2d 2d2b 0a7c 6931 203a 206b 6b3d 205a ---+.|i1 : kk= Z │ │ │ │ -0006cac0: 5a2f 3130 3120 2020 2020 2020 2020 2020 Z/101 │ │ │ │ +0006caa0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +0006cab0: 6b6b 3d20 5a5a 2f31 3031 2020 2020 2020 kk= ZZ/101 │ │ │ │ +0006cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cb00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006caf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006cb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cb40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0006cb50: 6f31 203d 206b 6b20 2020 2020 2020 2020 o1 = kk │ │ │ │ +0006cb40: 2020 7c0a 7c6f 3120 3d20 6b6b 2020 2020 |.|o1 = kk │ │ │ │ +0006cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cb90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006cb80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006cb90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0006cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cbe0: 2020 2020 2020 207c 0a7c 6f31 203a 2051 |.|o1 : Q │ │ │ │ -0006cbf0: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +0006cbd0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0006cbe0: 3120 3a20 5175 6f74 6965 6e74 5269 6e67 1 : QuotientRing │ │ │ │ +0006cbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cc30: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0006cc20: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0006cc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006cc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006cc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006cc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006cc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006cc80: 2d2b 0a7c 6932 203a 2053 203d 206b 6b5b -+.|i2 : S = kk[ │ │ │ │ -0006cc90: 782c 792c 7a5d 2020 2020 2020 2020 2020 x,y,z] │ │ │ │ +0006cc70: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 5320 ------+.|i2 : S │ │ │ │ +0006cc80: 3d20 6b6b 5b78 2c79 2c7a 5d20 2020 2020 = kk[x,y,z] │ │ │ │ +0006cc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ccc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006ccd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0006ccc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006ccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cd10: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -0006cd20: 203d 2053 2020 2020 2020 2020 2020 2020 = S │ │ │ │ +0006cd10: 7c0a 7c6f 3220 3d20 5320 2020 2020 2020 |.|o2 = S │ │ │ │ +0006cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cd60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0006cd50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cdb0: 2020 2020 207c 0a7c 6f32 203a 2050 6f6c |.|o2 : Pol │ │ │ │ -0006cdc0: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ +0006cda0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +0006cdb0: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ +0006cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ce00: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0006cdf0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0006ce00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ce10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ce20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ce30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ce40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0006ce50: 0a7c 6933 203a 2073 6574 5261 6e64 6f6d .|i3 : setRandom │ │ │ │ -0006ce60: 5365 6564 2030 2020 2020 2020 2020 2020 Seed 0 │ │ │ │ +0006ce40: 2d2d 2d2d 2b0a 7c69 3320 3a20 7365 7452 ----+.|i3 : setR │ │ │ │ +0006ce50: 616e 646f 6d53 6565 6420 3020 2020 2020 andomSeed 0 │ │ │ │ +0006ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ce70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ce80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ce90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0006cea0: 2d2d 2073 6574 7469 6e67 2072 616e 646f -- setting rando │ │ │ │ -0006ceb0: 6d20 7365 6564 2074 6f20 3020 2020 2020 m seed to 0 │ │ │ │ +0006ce90: 207c 0a7c 202d 2d20 7365 7474 696e 6720 |.| -- setting │ │ │ │ +0006cea0: 7261 6e64 6f6d 2073 6565 6420 746f 2030 random seed to 0 │ │ │ │ +0006ceb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cee0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006ced0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0006cee0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0006cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cf30: 2020 2020 2020 7c0a 7c6f 3320 3d20 3020 |.|o3 = 0 │ │ │ │ +0006cf20: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +0006cf30: 203d 2030 2020 2020 2020 2020 2020 2020 = 0 │ │ │ │ 0006cf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cf80: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0006cf70: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0006cf80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006cf90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006cfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006cfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006cfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006cfd0: 2b0a 7c69 3420 3a20 7420 3d20 7261 6e64 +.|i4 : t = rand │ │ │ │ -0006cfe0: 6f6d 2853 5e7b 323a 2d31 2c32 3a2d 327d om(S^{2:-1,2:-2} │ │ │ │ -0006cff0: 2c20 535e 7b33 3a2d 312c 343a 2d32 7d29 , S^{3:-1,4:-2}) │ │ │ │ +0006cfc0: 2d2d 2d2d 2d2b 0a7c 6934 203a 2074 203d -----+.|i4 : t = │ │ │ │ +0006cfd0: 2072 616e 646f 6d28 535e 7b32 3a2d 312c random(S^{2:-1, │ │ │ │ +0006cfe0: 323a 2d32 7d2c 2053 5e7b 333a 2d31 2c34 2:-2}, S^{3:-1,4 │ │ │ │ +0006cff0: 3a2d 327d 2920 2020 2020 2020 2020 2020 :-2}) │ │ │ │ 0006d000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d010: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006d010: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d060: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ -0006d070: 3d20 7b31 7d20 7c20 3234 2020 2d33 3620 = {1} | 24 -36 │ │ │ │ -0006d080: 2d33 3020 3339 782d 3433 792b 3435 7a20 -30 39x-43y+45z │ │ │ │ -0006d090: 2032 3178 2d31 3579 2d33 347a 2033 3478 21x-15y-34z 34x │ │ │ │ -0006d0a0: 2d32 3879 2d34 387a 2020 3139 782d 3437 -28y-48z 19x-47 │ │ │ │ -0006d0b0: 792d 3437 7a20 7c7c 0a7c 2020 2020 207b y-47z ||.| { │ │ │ │ -0006d0c0: 317d 207c 202d 3239 2031 3920 2031 3920 1} | -29 19 19 │ │ │ │ -0006d0d0: 202d 3437 782b 3338 792b 3437 7a20 2d33 -47x+38y+47z -3 │ │ │ │ -0006d0e0: 3978 2b32 792b 3139 7a20 2d31 3878 2b31 9x+2y+19z -18x+1 │ │ │ │ -0006d0f0: 3679 2d31 367a 202d 3133 782b 3232 792b 6y-16z -13x+22y+ │ │ │ │ -0006d100: 377a 207c 7c0a 7c20 2020 2020 7b32 7d20 7z ||.| {2} │ │ │ │ -0006d110: 7c20 3020 2020 3020 2020 3020 2020 2d31 | 0 0 0 -1 │ │ │ │ -0006d120: 3020 2020 2020 2020 2020 202d 3239 2020 0 -29 │ │ │ │ -0006d130: 2020 2020 2020 202d 3820 2020 2020 2020 -8 │ │ │ │ -0006d140: 2020 2020 2d32 3220 2020 2020 2020 2020 -22 │ │ │ │ -0006d150: 7c7c 0a7c 2020 2020 207b 327d 207c 2030 ||.| {2} | 0 │ │ │ │ -0006d160: 2020 2030 2020 2030 2020 202d 3239 2020 0 0 -29 │ │ │ │ -0006d170: 2020 2020 2020 2020 2d32 3420 2020 2020 -24 │ │ │ │ -0006d180: 2020 2020 2d33 3820 2020 2020 2020 2020 -38 │ │ │ │ -0006d190: 202d 3136 2020 2020 2020 2020 207c 7c0a -16 ||. │ │ │ │ -0006d1a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0006d050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006d060: 0a7c 6f34 203d 207b 317d 207c 2032 3420 .|o4 = {1} | 24 │ │ │ │ +0006d070: 202d 3336 202d 3330 2033 3978 2d34 3379 -36 -30 39x-43y │ │ │ │ +0006d080: 2b34 357a 2020 3231 782d 3135 792d 3334 +45z 21x-15y-34 │ │ │ │ +0006d090: 7a20 3334 782d 3238 792d 3438 7a20 2031 z 34x-28y-48z 1 │ │ │ │ +0006d0a0: 3978 2d34 3779 2d34 377a 207c 7c0a 7c20 9x-47y-47z ||.| │ │ │ │ +0006d0b0: 2020 2020 7b31 7d20 7c20 2d32 3920 3139 {1} | -29 19 │ │ │ │ +0006d0c0: 2020 3139 2020 2d34 3778 2b33 3879 2b34 19 -47x+38y+4 │ │ │ │ +0006d0d0: 377a 202d 3339 782b 3279 2b31 397a 202d 7z -39x+2y+19z - │ │ │ │ +0006d0e0: 3138 782b 3136 792d 3136 7a20 2d31 3378 18x+16y-16z -13x │ │ │ │ +0006d0f0: 2b32 3279 2b37 7a20 7c7c 0a7c 2020 2020 +22y+7z ||.| │ │ │ │ +0006d100: 207b 327d 207c 2030 2020 2030 2020 2030 {2} | 0 0 0 │ │ │ │ +0006d110: 2020 202d 3130 2020 2020 2020 2020 2020 -10 │ │ │ │ +0006d120: 2d32 3920 2020 2020 2020 2020 2d38 2020 -29 -8 │ │ │ │ +0006d130: 2020 2020 2020 2020 202d 3232 2020 2020 -22 │ │ │ │ +0006d140: 2020 2020 207c 7c0a 7c20 2020 2020 7b32 ||.| {2 │ │ │ │ +0006d150: 7d20 7c20 3020 2020 3020 2020 3020 2020 } | 0 0 0 │ │ │ │ +0006d160: 2d32 3920 2020 2020 2020 2020 202d 3234 -29 -24 │ │ │ │ +0006d170: 2020 2020 2020 2020 202d 3338 2020 2020 -38 │ │ │ │ +0006d180: 2020 2020 2020 2d31 3620 2020 2020 2020 -16 │ │ │ │ +0006d190: 2020 7c7c 0a7c 2020 2020 2020 2020 2020 ||.| │ │ │ │ +0006d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d1e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0006d1f0: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ -0006d200: 2020 3720 2020 2020 2020 2020 2020 2020 7 │ │ │ │ +0006d1e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d1f0: 3420 2020 2020 2037 2020 2020 2020 2020 4 7 │ │ │ │ +0006d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d230: 2020 2020 2020 2020 7c0a 7c6f 3420 3a20 |.|o4 : │ │ │ │ -0006d240: 4d61 7472 6978 2053 2020 3c2d 2d20 5320 Matrix S <-- S │ │ │ │ +0006d220: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006d230: 6f34 203a 204d 6174 7269 7820 5320 203c o4 : Matrix S < │ │ │ │ +0006d240: 2d2d 2053 2020 2020 2020 2020 2020 2020 -- S │ │ │ │ 0006d250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d280: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006d270: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0006d280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006d2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006d2d0: 2d2d 2b0a 7c69 3520 3a20 7373 203d 2073 --+.|i5 : ss = s │ │ │ │ -0006d2e0: 706c 6974 7469 6e67 7328 7379 7a20 742c plittings(syz t, │ │ │ │ -0006d2f0: 2074 2920 2020 2020 2020 2020 2020 2020 t) │ │ │ │ +0006d2c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2073 -------+.|i5 : s │ │ │ │ +0006d2d0: 7320 3d20 7370 6c69 7474 696e 6773 2873 s = splittings(s │ │ │ │ +0006d2e0: 797a 2074 2c20 7429 2020 2020 2020 2020 yz t, t) │ │ │ │ +0006d2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d310: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006d320: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0006d310: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0006d320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d360: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0006d370: 3520 3d20 7b7b 317d 207c 2030 2030 2031 5 = {{1} | 0 0 1 │ │ │ │ -0006d380: 2030 2030 2030 2020 2030 2020 7c2c 207b 0 0 0 0 |, { │ │ │ │ -0006d390: 317d 207c 202d 3237 2032 2020 3133 782d 1} | -27 2 13x- │ │ │ │ -0006d3a0: 3130 792b 3433 7a20 3530 782d 3334 792d 10y+43z 50x-34y- │ │ │ │ -0006d3b0: 3530 7a20 7c7d 2020 207c 0a7c 2020 2020 50z |} |.| │ │ │ │ -0006d3c0: 2020 7b32 7d20 7c20 3020 3020 3020 3020 {2} | 0 0 0 0 │ │ │ │ -0006d3d0: 3020 2d33 3120 2d36 207c 2020 7b31 7d20 0 -31 -6 | {1} │ │ │ │ -0006d3e0: 7c20 2d34 2020 3335 2032 3278 2b33 3279 | -4 35 22x+32y │ │ │ │ -0006d3f0: 2b34 337a 202d 3778 2d38 792d 3237 7a20 +43z -7x-8y-27z │ │ │ │ -0006d400: 207c 2020 2020 7c0a 7c20 2020 2020 207b | |.| { │ │ │ │ -0006d410: 327d 207c 2030 2030 2030 2030 2030 2032 2} | 0 0 0 0 0 2 │ │ │ │ -0006d420: 3920 2039 2020 7c20 207b 317d 207c 2030 9 9 | {1} | 0 │ │ │ │ -0006d430: 2020 2030 2020 3020 2020 2020 2020 2020 0 0 │ │ │ │ -0006d440: 2020 3020 2020 2020 2020 2020 2020 7c20 0 | │ │ │ │ -0006d450: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0006d460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d470: 2020 2020 2020 7b32 7d20 7c20 3020 2020 {2} | 0 │ │ │ │ -0006d480: 3020 202d 3235 2020 2020 2020 2020 2032 0 -25 2 │ │ │ │ -0006d490: 3620 2020 2020 2020 2020 207c 2020 2020 6 | │ │ │ │ -0006d4a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0006d4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d4c0: 2020 207b 327d 207c 2030 2020 2030 2020 {2} | 0 0 │ │ │ │ -0006d4d0: 3236 2020 2020 2020 2020 2020 2d32 2020 26 -2 │ │ │ │ -0006d4e0: 2020 2020 2020 2020 7c20 2020 207c 0a7c | |.| │ │ │ │ +0006d360: 207c 0a7c 6f35 203d 207b 7b31 7d20 7c20 |.|o5 = {{1} | │ │ │ │ +0006d370: 3020 3020 3120 3020 3020 3020 2020 3020 0 0 1 0 0 0 0 │ │ │ │ +0006d380: 207c 2c20 7b31 7d20 7c20 2d32 3720 3220 |, {1} | -27 2 │ │ │ │ +0006d390: 2031 3378 2d31 3079 2b34 337a 2035 3078 13x-10y+43z 50x │ │ │ │ +0006d3a0: 2d33 3479 2d35 307a 207c 7d20 2020 7c0a -34y-50z |} |. │ │ │ │ +0006d3b0: 7c20 2020 2020 207b 327d 207c 2030 2030 | {2} | 0 0 │ │ │ │ +0006d3c0: 2030 2030 2030 202d 3331 202d 3620 7c20 0 0 0 -31 -6 | │ │ │ │ +0006d3d0: 207b 317d 207c 202d 3420 2033 3520 3232 {1} | -4 35 22 │ │ │ │ +0006d3e0: 782b 3332 792b 3433 7a20 2d37 782d 3879 x+32y+43z -7x-8y │ │ │ │ +0006d3f0: 2d32 377a 2020 7c20 2020 207c 0a7c 2020 -27z | |.| │ │ │ │ +0006d400: 2020 2020 7b32 7d20 7c20 3020 3020 3020 {2} | 0 0 0 │ │ │ │ +0006d410: 3020 3020 3239 2020 3920 207c 2020 7b31 0 0 29 9 | {1 │ │ │ │ +0006d420: 7d20 7c20 3020 2020 3020 2030 2020 2020 } | 0 0 0 │ │ │ │ +0006d430: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ +0006d440: 2020 207c 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +0006d450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006d460: 2020 2020 2020 2020 2020 207b 327d 207c {2} | │ │ │ │ +0006d470: 2030 2020 2030 2020 2d32 3520 2020 2020 0 0 -25 │ │ │ │ +0006d480: 2020 2020 3236 2020 2020 2020 2020 2020 26 │ │ │ │ +0006d490: 7c20 2020 207c 0a7c 2020 2020 2020 2020 | |.| │ │ │ │ +0006d4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006d4b0: 2020 2020 2020 2020 7b32 7d20 7c20 3020 {2} | 0 │ │ │ │ +0006d4c0: 2020 3020 2032 3620 2020 2020 2020 2020 0 26 │ │ │ │ +0006d4d0: 202d 3220 2020 2020 2020 2020 207c 2020 -2 | │ │ │ │ +0006d4e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d510: 7b32 7d20 7c20 3020 2020 3020 2030 2020 {2} | 0 0 0 │ │ │ │ -0006d520: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ -0006d530: 2020 2020 207c 2020 2020 7c0a 7c20 2020 | |.| │ │ │ │ +0006d500: 2020 2020 207b 327d 207c 2030 2020 2030 {2} | 0 0 │ │ │ │ +0006d510: 2020 3020 2020 2020 2020 2020 2020 3020 0 0 │ │ │ │ +0006d520: 2020 2020 2020 2020 2020 7c20 2020 207c | | │ │ │ │ +0006d530: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0006d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d550: 2020 2020 2020 2020 2020 2020 207b 327d {2} │ │ │ │ -0006d560: 207c 2030 2020 2030 2020 3020 2020 2020 | 0 0 0 │ │ │ │ -0006d570: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ -0006d580: 2020 7c20 2020 207c 0a7c 2020 2020 2020 | |.| │ │ │ │ +0006d550: 2020 7b32 7d20 7c20 3020 2020 3020 2030 {2} | 0 0 0 │ │ │ │ +0006d560: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +0006d570: 2020 2020 2020 207c 2020 2020 7c0a 7c20 | |.| │ │ │ │ +0006d580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d5d0: 2020 2020 7c0a 7c6f 3520 3a20 4c69 7374 |.|o5 : List │ │ │ │ +0006d5c0: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ +0006d5d0: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 0006d5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d620: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0006d610: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0006d620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006d660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0006d670: 7c69 3620 3a20 7373 2f62 6574 7469 2020 |i6 : ss/betti │ │ │ │ +0006d660: 2d2d 2d2b 0a7c 6936 203a 2073 732f 6265 ---+.|i6 : ss/be │ │ │ │ +0006d670: 7474 6920 2020 2020 2020 2020 2020 2020 tti │ │ │ │ 0006d680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d6b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006d6b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d700: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0006d710: 2020 2020 2020 2020 3020 3120 2020 2020 0 1 │ │ │ │ -0006d720: 2020 2020 3020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +0006d6f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006d700: 2020 2020 2020 2020 2020 2020 2030 2031 0 1 │ │ │ │ +0006d710: 2020 2020 2020 2020 2030 2031 2020 2020 0 1 │ │ │ │ +0006d720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d750: 2020 2020 207c 0a7c 6f36 203d 207b 746f |.|o6 = {to │ │ │ │ -0006d760: 7461 6c3a 2033 2037 2c20 746f 7461 6c3a tal: 3 7, total: │ │ │ │ -0006d770: 2037 2034 7d20 2020 2020 2020 2020 2020 7 4} │ │ │ │ +0006d740: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ +0006d750: 3d20 7b74 6f74 616c 3a20 3320 372c 2074 = {total: 3 7, t │ │ │ │ +0006d760: 6f74 616c 3a20 3720 347d 2020 2020 2020 otal: 7 4} │ │ │ │ +0006d770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d7a0: 2020 7c0a 7c20 2020 2020 2020 2020 2030 |.| 0 │ │ │ │ -0006d7b0: 3a20 2e20 3320 2020 2020 2030 3a20 2e20 : . 3 0: . │ │ │ │ -0006d7c0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0006d790: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0006d7a0: 2020 2020 303a 202e 2033 2020 2020 2020 0: . 3 │ │ │ │ +0006d7b0: 303a 202e 2032 2020 2020 2020 2020 2020 0: . 2 │ │ │ │ +0006d7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d7e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006d7f0: 0a7c 2020 2020 2020 2020 2020 313a 2031 .| 1: 1 │ │ │ │ -0006d800: 2034 2020 2020 2020 313a 2033 2032 2020 4 1: 3 2 │ │ │ │ +0006d7e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0006d7f0: 2031 3a20 3120 3420 2020 2020 2031 3a20 1: 1 4 1: │ │ │ │ +0006d800: 3320 3220 2020 2020 2020 2020 2020 2020 3 2 │ │ │ │ 0006d810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d830: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0006d840: 2020 2020 2020 2020 2032 3a20 3220 2e20 2: 2 . │ │ │ │ -0006d850: 2020 2020 2032 3a20 3420 2e20 2020 2020 2: 4 . │ │ │ │ +0006d830: 207c 0a7c 2020 2020 2020 2020 2020 323a |.| 2: │ │ │ │ +0006d840: 2032 202e 2020 2020 2020 323a 2034 202e 2 . 2: 4 . │ │ │ │ +0006d850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d880: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006d870: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0006d880: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0006d890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d8d0: 2020 2020 2020 7c0a 7c6f 3620 3a20 4c69 |.|o6 : Li │ │ │ │ -0006d8e0: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +0006d8c0: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ +0006d8d0: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ +0006d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d920: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0006d910: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0006d920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006d960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006d970: 2b0a 0a57 6179 7320 746f 2075 7365 2073 +..Ways to use s │ │ │ │ -0006d980: 706c 6974 7469 6e67 733a 0a3d 3d3d 3d3d plittings:.===== │ │ │ │ -0006d990: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0006d9a0: 3d3d 0a0a 2020 2a20 2273 706c 6974 7469 ==.. * "splitti │ │ │ │ -0006d9b0: 6e67 7328 4d61 7472 6978 2c4d 6174 7269 ngs(Matrix,Matri │ │ │ │ -0006d9c0: 7829 220a 0a46 6f72 2074 6865 2070 726f x)"..For the pro │ │ │ │ -0006d9d0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0006d9e0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0006d9f0: 6f62 6a65 6374 202a 6e6f 7465 2073 706c object *note spl │ │ │ │ -0006da00: 6974 7469 6e67 733a 2073 706c 6974 7469 ittings: splitti │ │ │ │ -0006da10: 6e67 732c 2069 7320 6120 2a6e 6f74 6520 ngs, is a *note │ │ │ │ -0006da20: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ -0006da30: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ -0006da40: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ -0006da50: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ +0006d960: 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 6f20 -----+..Ways to │ │ │ │ +0006d970: 7573 6520 7370 6c69 7474 696e 6773 3a0a use splittings:. │ │ │ │ +0006d980: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0006d990: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7370 =======.. * "sp │ │ │ │ +0006d9a0: 6c69 7474 696e 6773 284d 6174 7269 782c littings(Matrix, │ │ │ │ +0006d9b0: 4d61 7472 6978 2922 0a0a 466f 7220 7468 Matrix)"..For th │ │ │ │ +0006d9c0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +0006d9d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0006d9e0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +0006d9f0: 6520 7370 6c69 7474 696e 6773 3a20 7370 e splittings: sp │ │ │ │ +0006da00: 6c69 7474 696e 6773 2c20 6973 2061 202a littings, is a * │ │ │ │ +0006da10: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ +0006da20: 7469 6f6e 3a0a 284d 6163 6175 6c61 7932 tion:.(Macaulay2 │ │ │ │ +0006da30: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ +0006da40: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ +0006da50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006da60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006da70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006da80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006da90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006daa0: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -0006dab0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -0006dac0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -0006dad0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -0006dae0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -0006daf0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -0006db00: 6163 6b61 6765 732f 0a43 6f6d 706c 6574 ackages/.Complet │ │ │ │ -0006db10: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ -0006db20: 6f6c 7574 696f 6e73 2e6d 323a 3339 3235 olutions.m2:3925 │ │ │ │ -0006db30: 3a30 2e0a 1f0a 4669 6c65 3a20 436f 6d70 :0....File: Comp │ │ │ │ -0006db40: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ -0006db50: 5265 736f 6c75 7469 6f6e 732e 696e 666f Resolutions.info │ │ │ │ -0006db60: 2c20 4e6f 6465 3a20 7374 6162 6c65 486f , Node: stableHo │ │ │ │ -0006db70: 6d2c 204e 6578 743a 2073 756d 5477 6f4d m, Next: sumTwoM │ │ │ │ -0006db80: 6f6e 6f6d 6961 6c73 2c20 5072 6576 3a20 onomials, Prev: │ │ │ │ -0006db90: 7370 6c69 7474 696e 6773 2c20 5570 3a20 splittings, Up: │ │ │ │ -0006dba0: 546f 700a 0a73 7461 626c 6548 6f6d 202d Top..stableHom - │ │ │ │ -0006dbb0: 2d20 6d61 7020 6672 6f6d 2048 6f6d 284d - map from Hom(M │ │ │ │ -0006dbc0: 2c4e 2920 746f 2074 6865 2073 7461 626c ,N) to the stabl │ │ │ │ -0006dbd0: 6520 486f 6d20 6d6f 6475 6c65 0a2a 2a2a e Hom module.*** │ │ │ │ +0006da90: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +0006daa0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +0006dab0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +0006dac0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +0006dad0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +0006dae0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +0006daf0: 6179 322f 7061 636b 6167 6573 2f0a 436f ay2/packages/.Co │ │ │ │ +0006db00: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ +0006db10: 6f6e 5265 736f 6c75 7469 6f6e 732e 6d32 onResolutions.m2 │ │ │ │ +0006db20: 3a33 3932 353a 302e 0a1f 0a46 696c 653a :3925:0....File: │ │ │ │ +0006db30: 2043 6f6d 706c 6574 6549 6e74 6572 7365 CompleteInterse │ │ │ │ +0006db40: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ +0006db50: 2e69 6e66 6f2c 204e 6f64 653a 2073 7461 .info, Node: sta │ │ │ │ +0006db60: 626c 6548 6f6d 2c20 4e65 7874 3a20 7375 bleHom, Next: su │ │ │ │ +0006db70: 6d54 776f 4d6f 6e6f 6d69 616c 732c 2050 mTwoMonomials, P │ │ │ │ +0006db80: 7265 763a 2073 706c 6974 7469 6e67 732c rev: splittings, │ │ │ │ +0006db90: 2055 703a 2054 6f70 0a0a 7374 6162 6c65 Up: Top..stable │ │ │ │ +0006dba0: 486f 6d20 2d2d 206d 6170 2066 726f 6d20 Hom -- map from │ │ │ │ +0006dbb0: 486f 6d28 4d2c 4e29 2074 6f20 7468 6520 Hom(M,N) to the │ │ │ │ +0006dbc0: 7374 6162 6c65 2048 6f6d 206d 6f64 756c stable Hom modul │ │ │ │ +0006dbd0: 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a e.************** │ │ │ │ 0006dbe0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006dbf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006dc00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006dc10: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ -0006dc20: 200a 2020 2020 2020 2020 7020 3d20 7374 . p = st │ │ │ │ -0006dc30: 6162 6c65 486f 6d28 4d2c 4e29 0a20 202a ableHom(M,N). * │ │ │ │ -0006dc40: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -0006dc50: 204d 2c20 6120 2a6e 6f74 6520 6d6f 6475 M, a *note modu │ │ │ │ -0006dc60: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ -0006dc70: 6329 4d6f 6475 6c65 2c2c 200a 2020 2020 c)Module,, . │ │ │ │ -0006dc80: 2020 2a20 4e2c 2061 202a 6e6f 7465 206d * N, a *note m │ │ │ │ -0006dc90: 6f64 756c 653a 2028 4d61 6361 756c 6179 odule: (Macaulay │ │ │ │ -0006dca0: 3244 6f63 294d 6f64 756c 652c 2c20 0a20 2Doc)Module,, . │ │ │ │ -0006dcb0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -0006dcc0: 2020 2a20 702c 2061 202a 6e6f 7465 206d * p, a *note m │ │ │ │ -0006dcd0: 6174 7269 783a 2028 4d61 6361 756c 6179 atrix: (Macaulay │ │ │ │ -0006dce0: 3244 6f63 294d 6174 7269 782c 2c20 7072 2Doc)Matrix,, pr │ │ │ │ -0006dcf0: 6f6a 6563 7469 6f6e 2066 726f 6d20 486f ojection from Ho │ │ │ │ -0006dd00: 6d28 4d2c 4e29 2074 6f0a 2020 2020 2020 m(M,N) to. │ │ │ │ -0006dd10: 2020 7468 6520 7374 6162 6c65 2048 6f6d the stable Hom │ │ │ │ -0006dd20: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -0006dd30: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 2073 =========..The s │ │ │ │ -0006dd40: 7461 626c 6520 486f 6d20 6973 2048 6f6d table Hom is Hom │ │ │ │ -0006dd50: 284d 2c4e 292f 5420 7768 6572 6520 5420 (M,N)/T where T │ │ │ │ -0006dd60: 6973 2074 6865 2073 7562 6d6f 6475 6c65 is the submodule │ │ │ │ -0006dd70: 206f 6620 686f 6d6f 6d6f 7270 6869 736d of homomorphism │ │ │ │ -0006dd80: 7320 7468 6174 0a66 6163 746f 7220 7468 s that.factor th │ │ │ │ -0006dd90: 726f 7567 6820 6120 6672 6565 2063 6f76 rough a free cov │ │ │ │ -0006dda0: 6572 206f 6620 4e20 286f 722c 2065 7175 er of N (or, equ │ │ │ │ -0006ddb0: 6976 616c 656e 746c 792c 2074 6872 6f75 ivalently, throu │ │ │ │ -0006ddc0: 6768 2061 6e79 2070 726f 6a65 6374 6976 gh any projectiv │ │ │ │ -0006ddd0: 6529 0a0a 5365 6520 616c 736f 0a3d 3d3d e)..See also.=== │ │ │ │ -0006dde0: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -0006ddf0: 2069 7353 7461 626c 7954 7269 7669 616c isStablyTrivial │ │ │ │ -0006de00: 3a20 6973 5374 6162 6c79 5472 6976 6961 : isStablyTrivia │ │ │ │ -0006de10: 6c2c 202d 2d20 7265 7475 726e 7320 7472 l, -- returns tr │ │ │ │ -0006de20: 7565 2069 6620 7468 6520 6d61 7020 676f ue if the map go │ │ │ │ -0006de30: 6573 2074 6f0a 2020 2020 3020 756e 6465 es to. 0 unde │ │ │ │ -0006de40: 7220 7374 6162 6c65 486f 6d0a 0a57 6179 r stableHom..Way │ │ │ │ -0006de50: 7320 746f 2075 7365 2073 7461 626c 6548 s to use stableH │ │ │ │ -0006de60: 6f6d 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d om:.============ │ │ │ │ -0006de70: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -0006de80: 2273 7461 626c 6548 6f6d 284d 6f64 756c "stableHom(Modul │ │ │ │ -0006de90: 652c 4d6f 6475 6c65 2922 0a0a 466f 7220 e,Module)"..For │ │ │ │ -0006dea0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -0006deb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0006dec0: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -0006ded0: 6f74 6520 7374 6162 6c65 486f 6d3a 2073 ote stableHom: s │ │ │ │ -0006dee0: 7461 626c 6548 6f6d 2c20 6973 2061 202a tableHom, is a * │ │ │ │ -0006def0: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ -0006df00: 7469 6f6e 3a0a 284d 6163 6175 6c61 7932 tion:.(Macaulay2 │ │ │ │ -0006df10: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ -0006df20: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ +0006dc00: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ +0006dc10: 7361 6765 3a20 0a20 2020 2020 2020 2070 sage: . p │ │ │ │ +0006dc20: 203d 2073 7461 626c 6548 6f6d 284d 2c4e = stableHom(M,N │ │ │ │ +0006dc30: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ +0006dc40: 2020 2020 2a20 4d2c 2061 202a 6e6f 7465 * M, a *note │ │ │ │ +0006dc50: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ +0006dc60: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ +0006dc70: 0a20 2020 2020 202a 204e 2c20 6120 2a6e . * N, a *n │ │ │ │ +0006dc80: 6f74 6520 6d6f 6475 6c65 3a20 284d 6163 ote module: (Mac │ │ │ │ +0006dc90: 6175 6c61 7932 446f 6329 4d6f 6475 6c65 aulay2Doc)Module │ │ │ │ +0006dca0: 2c2c 200a 2020 2a20 4f75 7470 7574 733a ,, . * Outputs: │ │ │ │ +0006dcb0: 0a20 2020 2020 202a 2070 2c20 6120 2a6e . * p, a *n │ │ │ │ +0006dcc0: 6f74 6520 6d61 7472 6978 3a20 284d 6163 ote matrix: (Mac │ │ │ │ +0006dcd0: 6175 6c61 7932 446f 6329 4d61 7472 6978 aulay2Doc)Matrix │ │ │ │ +0006dce0: 2c2c 2070 726f 6a65 6374 696f 6e20 6672 ,, projection fr │ │ │ │ +0006dcf0: 6f6d 2048 6f6d 284d 2c4e 2920 746f 0a20 om Hom(M,N) to. │ │ │ │ +0006dd00: 2020 2020 2020 2074 6865 2073 7461 626c the stabl │ │ │ │ +0006dd10: 6520 486f 6d0a 0a44 6573 6372 6970 7469 e Hom..Descripti │ │ │ │ +0006dd20: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +0006dd30: 5468 6520 7374 6162 6c65 2048 6f6d 2069 The stable Hom i │ │ │ │ +0006dd40: 7320 486f 6d28 4d2c 4e29 2f54 2077 6865 s Hom(M,N)/T whe │ │ │ │ +0006dd50: 7265 2054 2069 7320 7468 6520 7375 626d re T is the subm │ │ │ │ +0006dd60: 6f64 756c 6520 6f66 2068 6f6d 6f6d 6f72 odule of homomor │ │ │ │ +0006dd70: 7068 6973 6d73 2074 6861 740a 6661 6374 phisms that.fact │ │ │ │ +0006dd80: 6f72 2074 6872 6f75 6768 2061 2066 7265 or through a fre │ │ │ │ +0006dd90: 6520 636f 7665 7220 6f66 204e 2028 6f72 e cover of N (or │ │ │ │ +0006dda0: 2c20 6571 7569 7661 6c65 6e74 6c79 2c20 , equivalently, │ │ │ │ +0006ddb0: 7468 726f 7567 6820 616e 7920 7072 6f6a through any proj │ │ │ │ +0006ddc0: 6563 7469 7665 290a 0a53 6565 2061 6c73 ective)..See als │ │ │ │ +0006ddd0: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +0006dde0: 2a6e 6f74 6520 6973 5374 6162 6c79 5472 *note isStablyTr │ │ │ │ +0006ddf0: 6976 6961 6c3a 2069 7353 7461 626c 7954 ivial: isStablyT │ │ │ │ +0006de00: 7269 7669 616c 2c20 2d2d 2072 6574 7572 rivial, -- retur │ │ │ │ +0006de10: 6e73 2074 7275 6520 6966 2074 6865 206d ns true if the m │ │ │ │ +0006de20: 6170 2067 6f65 7320 746f 0a20 2020 2030 ap goes to. 0 │ │ │ │ +0006de30: 2075 6e64 6572 2073 7461 626c 6548 6f6d under stableHom │ │ │ │ +0006de40: 0a0a 5761 7973 2074 6f20 7573 6520 7374 ..Ways to use st │ │ │ │ +0006de50: 6162 6c65 486f 6d3a 0a3d 3d3d 3d3d 3d3d ableHom:.======= │ │ │ │ +0006de60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0006de70: 0a20 202a 2022 7374 6162 6c65 486f 6d28 . * "stableHom( │ │ │ │ +0006de80: 4d6f 6475 6c65 2c4d 6f64 756c 6529 220a Module,Module)". │ │ │ │ +0006de90: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +0006dea0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +0006deb0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +0006dec0: 6374 202a 6e6f 7465 2073 7461 626c 6548 ct *note stableH │ │ │ │ +0006ded0: 6f6d 3a20 7374 6162 6c65 486f 6d2c 2069 om: stableHom, i │ │ │ │ +0006dee0: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ +0006def0: 2066 756e 6374 696f 6e3a 0a28 4d61 6361 function:.(Maca │ │ │ │ +0006df00: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ +0006df10: 756e 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d unction,...----- │ │ │ │ +0006df20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006df30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006df40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006df50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006df60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006df70: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0006df80: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0006df90: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0006dfa0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0006dfb0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0006dfc0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0006dfd0: 6179 322f 7061 636b 6167 6573 2f0a 436f ay2/packages/.Co │ │ │ │ -0006dfe0: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ -0006dff0: 6f6e 5265 736f 6c75 7469 6f6e 732e 6d32 onResolutions.m2 │ │ │ │ -0006e000: 3a34 3634 393a 302e 0a1f 0a46 696c 653a :4649:0....File: │ │ │ │ -0006e010: 2043 6f6d 706c 6574 6549 6e74 6572 7365 CompleteInterse │ │ │ │ -0006e020: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ -0006e030: 2e69 6e66 6f2c 204e 6f64 653a 2073 756d .info, Node: sum │ │ │ │ -0006e040: 5477 6f4d 6f6e 6f6d 6961 6c73 2c20 4e65 TwoMonomials, Ne │ │ │ │ -0006e050: 7874 3a20 5461 7465 5265 736f 6c75 7469 xt: TateResoluti │ │ │ │ -0006e060: 6f6e 2c20 5072 6576 3a20 7374 6162 6c65 on, Prev: stable │ │ │ │ -0006e070: 486f 6d2c 2055 703a 2054 6f70 0a0a 7375 Hom, Up: Top..su │ │ │ │ -0006e080: 6d54 776f 4d6f 6e6f 6d69 616c 7320 2d2d mTwoMonomials -- │ │ │ │ -0006e090: 2074 616c 6c79 2074 6865 2073 6571 7565 tally the seque │ │ │ │ -0006e0a0: 6e63 6573 206f 6620 4252 616e 6b73 2066 nces of BRanks f │ │ │ │ -0006e0b0: 6f72 2063 6572 7461 696e 2065 7861 6d70 or certain examp │ │ │ │ -0006e0c0: 6c65 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a les.************ │ │ │ │ +0006df60: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +0006df70: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +0006df80: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +0006df90: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +0006dfa0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +0006dfb0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +0006dfc0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +0006dfd0: 732f 0a43 6f6d 706c 6574 6549 6e74 6572 s/.CompleteInter │ │ │ │ +0006dfe0: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ +0006dff0: 6e73 2e6d 323a 3436 3439 3a30 2e0a 1f0a ns.m2:4649:0.... │ │ │ │ +0006e000: 4669 6c65 3a20 436f 6d70 6c65 7465 496e File: CompleteIn │ │ │ │ +0006e010: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ +0006e020: 7469 6f6e 732e 696e 666f 2c20 4e6f 6465 tions.info, Node │ │ │ │ +0006e030: 3a20 7375 6d54 776f 4d6f 6e6f 6d69 616c : sumTwoMonomial │ │ │ │ +0006e040: 732c 204e 6578 743a 2054 6174 6552 6573 s, Next: TateRes │ │ │ │ +0006e050: 6f6c 7574 696f 6e2c 2050 7265 763a 2073 olution, Prev: s │ │ │ │ +0006e060: 7461 626c 6548 6f6d 2c20 5570 3a20 546f tableHom, Up: To │ │ │ │ +0006e070: 700a 0a73 756d 5477 6f4d 6f6e 6f6d 6961 p..sumTwoMonomia │ │ │ │ +0006e080: 6c73 202d 2d20 7461 6c6c 7920 7468 6520 ls -- tally the │ │ │ │ +0006e090: 7365 7175 656e 6365 7320 6f66 2042 5261 sequences of BRa │ │ │ │ +0006e0a0: 6e6b 7320 666f 7220 6365 7274 6169 6e20 nks for certain │ │ │ │ +0006e0b0: 6578 616d 706c 6573 0a2a 2a2a 2a2a 2a2a examples.******* │ │ │ │ +0006e0c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006e0d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006e0e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006e0f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006e100: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ -0006e110: 7361 6765 3a20 0a20 2020 2020 2020 2073 sage: . s │ │ │ │ -0006e120: 756d 5477 6f4d 6f6e 6f6d 6961 6c73 2863 umTwoMonomials(c │ │ │ │ -0006e130: 2c64 290a 2020 2a20 496e 7075 7473 3a0a ,d). * Inputs:. │ │ │ │ -0006e140: 2020 2020 2020 2a20 632c 2061 6e20 2a6e * c, an *n │ │ │ │ -0006e150: 6f74 6520 696e 7465 6765 723a 2028 4d61 ote integer: (Ma │ │ │ │ -0006e160: 6361 756c 6179 3244 6f63 295a 5a2c 2c20 caulay2Doc)ZZ,, │ │ │ │ -0006e170: 636f 6469 6d65 6e73 696f 6e20 696e 2077 codimension in w │ │ │ │ -0006e180: 6869 6368 2074 6f20 776f 726b 0a20 2020 hich to work. │ │ │ │ -0006e190: 2020 202a 2064 2c20 616e 202a 6e6f 7465 * d, an *note │ │ │ │ -0006e1a0: 2069 6e74 6567 6572 3a20 284d 6163 6175 integer: (Macau │ │ │ │ -0006e1b0: 6c61 7932 446f 6329 5a5a 2c2c 2064 6567 lay2Doc)ZZ,, deg │ │ │ │ -0006e1c0: 7265 6520 6f66 2074 6865 206d 6f6e 6f6d ree of the monom │ │ │ │ -0006e1d0: 6961 6c73 2074 6f20 7461 6b65 0a20 202a ials to take. * │ │ │ │ -0006e1e0: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -0006e1f0: 2a20 542c 2061 202a 6e6f 7465 2074 616c * T, a *note tal │ │ │ │ -0006e200: 6c79 3a20 284d 6163 6175 6c61 7932 446f ly: (Macaulay2Do │ │ │ │ -0006e210: 6329 5461 6c6c 792c 2c20 0a0a 4465 7363 c)Tally,, ..Desc │ │ │ │ -0006e220: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -0006e230: 3d3d 3d0a 0a74 616c 6c69 6573 2074 6865 ===..tallies the │ │ │ │ -0006e240: 2073 6571 7565 6e63 6573 206f 6620 422d sequences of B- │ │ │ │ -0006e250: 7261 6e6b 7320 7468 6174 206f 6363 7572 ranks that occur │ │ │ │ -0006e260: 2066 6f72 2073 756d 7320 6f66 2070 6169 for sums of pai │ │ │ │ -0006e270: 7273 206f 6620 6d6f 6e6f 6d69 616c 7320 rs of monomials │ │ │ │ -0006e280: 696e 2052 0a3d 2053 2f28 642d 7468 2070 in R.= S/(d-th p │ │ │ │ -0006e290: 6f77 6572 7320 6f66 2074 6865 2076 6172 owers of the var │ │ │ │ -0006e2a0: 6961 626c 6573 292c 2077 6974 6820 6675 iables), with fu │ │ │ │ -0006e2b0: 6c6c 2063 6f6d 706c 6578 6974 7920 283d ll complexity (= │ │ │ │ -0006e2c0: 6329 3b20 7468 6174 2069 732c 2066 6f72 c); that is, for │ │ │ │ -0006e2d0: 2061 6e0a 6170 7072 6f70 7269 6174 6520 an.appropriate │ │ │ │ -0006e2e0: 7379 7a79 6779 204d 206f 6620 4d30 203d syzygy M of M0 = │ │ │ │ -0006e2f0: 2052 2f28 6d31 2b6d 3229 2077 6865 7265 R/(m1+m2) where │ │ │ │ -0006e300: 206d 3120 616e 6420 6d32 2061 7265 206d m1 and m2 are m │ │ │ │ -0006e310: 6f6e 6f6d 6961 6c73 206f 6620 7468 650a onomials of the. │ │ │ │ -0006e320: 7361 6d65 2064 6567 7265 652e 0a0a 2b2d same degree...+- │ │ │ │ +0006e0f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0006e100: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +0006e110: 2020 2020 7375 6d54 776f 4d6f 6e6f 6d69 sumTwoMonomi │ │ │ │ +0006e120: 616c 7328 632c 6429 0a20 202a 2049 6e70 als(c,d). * Inp │ │ │ │ +0006e130: 7574 733a 0a20 2020 2020 202a 2063 2c20 uts:. * c, │ │ │ │ +0006e140: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ +0006e150: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0006e160: 5a5a 2c2c 2063 6f64 696d 656e 7369 6f6e ZZ,, codimension │ │ │ │ +0006e170: 2069 6e20 7768 6963 6820 746f 2077 6f72 in which to wor │ │ │ │ +0006e180: 6b0a 2020 2020 2020 2a20 642c 2061 6e20 k. * d, an │ │ │ │ +0006e190: 2a6e 6f74 6520 696e 7465 6765 723a 2028 *note integer: ( │ │ │ │ +0006e1a0: 4d61 6361 756c 6179 3244 6f63 295a 5a2c Macaulay2Doc)ZZ, │ │ │ │ +0006e1b0: 2c20 6465 6772 6565 206f 6620 7468 6520 , degree of the │ │ │ │ +0006e1c0: 6d6f 6e6f 6d69 616c 7320 746f 2074 616b monomials to tak │ │ │ │ +0006e1d0: 650a 2020 2a20 4f75 7470 7574 733a 0a20 e. * Outputs:. │ │ │ │ +0006e1e0: 2020 2020 202a 2054 2c20 6120 2a6e 6f74 * T, a *not │ │ │ │ +0006e1f0: 6520 7461 6c6c 793a 2028 4d61 6361 756c e tally: (Macaul │ │ │ │ +0006e200: 6179 3244 6f63 2954 616c 6c79 2c2c 200a ay2Doc)Tally,, . │ │ │ │ +0006e210: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0006e220: 3d3d 3d3d 3d3d 3d3d 0a0a 7461 6c6c 6965 ========..tallie │ │ │ │ +0006e230: 7320 7468 6520 7365 7175 656e 6365 7320 s the sequences │ │ │ │ +0006e240: 6f66 2042 2d72 616e 6b73 2074 6861 7420 of B-ranks that │ │ │ │ +0006e250: 6f63 6375 7220 666f 7220 7375 6d73 206f occur for sums o │ │ │ │ +0006e260: 6620 7061 6972 7320 6f66 206d 6f6e 6f6d f pairs of monom │ │ │ │ +0006e270: 6961 6c73 2069 6e20 520a 3d20 532f 2864 ials in R.= S/(d │ │ │ │ +0006e280: 2d74 6820 706f 7765 7273 206f 6620 7468 -th powers of th │ │ │ │ +0006e290: 6520 7661 7269 6162 6c65 7329 2c20 7769 e variables), wi │ │ │ │ +0006e2a0: 7468 2066 756c 6c20 636f 6d70 6c65 7869 th full complexi │ │ │ │ +0006e2b0: 7479 2028 3d63 293b 2074 6861 7420 6973 ty (=c); that is │ │ │ │ +0006e2c0: 2c20 666f 7220 616e 0a61 7070 726f 7072 , for an.appropr │ │ │ │ +0006e2d0: 6961 7465 2073 797a 7967 7920 4d20 6f66 iate syzygy M of │ │ │ │ +0006e2e0: 204d 3020 3d20 522f 286d 312b 6d32 2920 M0 = R/(m1+m2) │ │ │ │ +0006e2f0: 7768 6572 6520 6d31 2061 6e64 206d 3220 where m1 and m2 │ │ │ │ +0006e300: 6172 6520 6d6f 6e6f 6d69 616c 7320 6f66 are monomials of │ │ │ │ +0006e310: 2074 6865 0a73 616d 6520 6465 6772 6565 the.same degree │ │ │ │ +0006e320: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ 0006e330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e360: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 7365 ------+.|i1 : se │ │ │ │ -0006e370: 7452 616e 646f 6d53 6565 6420 3020 2020 tRandomSeed 0 │ │ │ │ +0006e350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0006e360: 203a 2073 6574 5261 6e64 6f6d 5365 6564 : setRandomSeed │ │ │ │ +0006e370: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 0006e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e3a0: 7c0a 7c20 2d2d 2073 6574 7469 6e67 2072 |.| -- setting r │ │ │ │ -0006e3b0: 616e 646f 6d20 7365 6564 2074 6f20 3020 andom seed to 0 │ │ │ │ -0006e3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e3d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006e390: 2020 2020 207c 0a7c 202d 2d20 7365 7474 |.| -- sett │ │ │ │ +0006e3a0: 696e 6720 7261 6e64 6f6d 2073 6565 6420 ing random seed │ │ │ │ +0006e3b0: 746f 2030 2020 2020 2020 2020 2020 2020 to 0 │ │ │ │ +0006e3c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006e3d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0006e3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e410: 2020 2020 7c0a 7c6f 3120 3d20 3020 2020 |.|o1 = 0 │ │ │ │ +0006e400: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ +0006e410: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 0006e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e440: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006e450: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0006e440: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0006e450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e480: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ -0006e490: 7375 6d54 776f 4d6f 6e6f 6d69 616c 7328 sumTwoMonomials( │ │ │ │ -0006e4a0: 322c 3329 2020 2020 2020 2020 2020 2020 2,3) │ │ │ │ -0006e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e4c0: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -0006e4d0: 3430 3430 3532 7320 2863 7075 293b 2030 404052s (cpu); 0 │ │ │ │ -0006e4e0: 2e33 3333 3438 3873 2028 7468 7265 6164 .333488s (thread │ │ │ │ -0006e4f0: 293b 2030 7320 2867 6329 2020 7c0a 7c32 ); 0s (gc) |.|2 │ │ │ │ +0006e470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0006e480: 6932 203a 2073 756d 5477 6f4d 6f6e 6f6d i2 : sumTwoMonom │ │ │ │ +0006e490: 6961 6c73 2832 2c33 2920 2020 2020 2020 ials(2,3) │ │ │ │ +0006e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006e4b0: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ +0006e4c0: 6564 2030 2e36 3031 3537 3473 2028 6370 ed 0.601574s (cp │ │ │ │ +0006e4d0: 7529 3b20 302e 3431 3735 3034 7320 2874 u); 0.417504s (t │ │ │ │ +0006e4e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +0006e4f0: 207c 0a7c 3220 2020 2020 2020 2020 2020 |.|2 │ │ │ │ 0006e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e530: 2020 2020 2020 7c0a 7c54 616c 6c79 7b7b |.|Tally{{ │ │ │ │ -0006e540: 7b32 2c20 327d 2c20 7b31 2c20 327d 7d20 {2, 2}, {1, 2}} │ │ │ │ -0006e550: 3d3e 2033 7d20 2020 2020 2020 2020 2020 => 3} │ │ │ │ -0006e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e570: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006e520: 2020 2020 2020 2020 2020 207c 0a7c 5461 |.|Ta │ │ │ │ +0006e530: 6c6c 797b 7b7b 322c 2032 7d2c 207b 312c lly{{{2, 2}, {1, │ │ │ │ +0006e540: 2032 7d7d 203d 3e20 337d 2020 2020 2020 2}} => 3} │ │ │ │ +0006e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006e560: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e5a0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -0006e5b0: 2075 7365 6420 302e 3230 3032 3632 7320 used 0.200262s │ │ │ │ -0006e5c0: 2863 7075 293b 2030 2e31 3234 3331 3173 (cpu); 0.124311s │ │ │ │ -0006e5d0: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -0006e5e0: 6329 2020 7c0a 7c33 2020 2020 2020 2020 c) |.|3 │ │ │ │ +0006e590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006e5a0: 0a7c 202d 2d20 7573 6564 2030 2e33 3130 .| -- used 0.310 │ │ │ │ +0006e5b0: 3737 7320 2863 7075 293b 2030 2e31 3633 77s (cpu); 0.163 │ │ │ │ +0006e5c0: 3331 3873 2028 7468 7265 6164 293b 2030 318s (thread); 0 │ │ │ │ +0006e5d0: 7320 2867 6329 2020 207c 0a7c 3320 2020 s (gc) |.|3 │ │ │ │ +0006e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e610: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006e620: 7c54 616c 6c79 7b7b 7b32 2c20 327d 2c20 |Tally{{{2, 2}, │ │ │ │ -0006e630: 7b31 2c20 327d 7d20 3d3e 2031 7d20 2020 {1, 2}} => 1} │ │ │ │ -0006e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e650: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0006e610: 2020 207c 0a7c 5461 6c6c 797b 7b7b 322c |.|Tally{{{2, │ │ │ │ +0006e620: 2032 7d2c 207b 312c 2032 7d7d 203d 3e20 2}, {1, 2}} => │ │ │ │ +0006e630: 317d 2020 2020 2020 2020 2020 2020 2020 1} │ │ │ │ +0006e640: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e690: 2020 7c0a 7c20 2d2d 2075 7365 6420 332e |.| -- used 3. │ │ │ │ -0006e6a0: 3630 3765 2d30 3673 2028 6370 7529 3b20 607e-06s (cpu); │ │ │ │ -0006e6b0: 332e 3133 3565 2d30 3673 2028 7468 7265 3.135e-06s (thre │ │ │ │ -0006e6c0: 6164 293b 2030 7320 2867 6329 7c0a 7c34 ad); 0s (gc)|.|4 │ │ │ │ +0006e680: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ +0006e690: 6564 2033 2e39 3934 652d 3036 7320 2863 ed 3.994e-06s (c │ │ │ │ +0006e6a0: 7075 293b 2033 2e31 3339 652d 3036 7320 pu); 3.139e-06s │ │ │ │ +0006e6b0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +0006e6c0: 297c 0a7c 3420 2020 2020 2020 2020 2020 )|.|4 │ │ │ │ 0006e6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e700: 2020 2020 2020 7c0a 7c54 616c 6c79 7b7d |.|Tally{} │ │ │ │ +0006e6f0: 2020 2020 2020 2020 2020 207c 0a7c 5461 |.|Ta │ │ │ │ +0006e700: 6c6c 797b 7d20 2020 2020 2020 2020 2020 lly{} │ │ │ │ 0006e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e740: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0006e730: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006e740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e770: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 ----------+..See │ │ │ │ -0006e780: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ -0006e790: 2020 2a20 2a6e 6f74 6520 7477 6f4d 6f6e * *note twoMon │ │ │ │ -0006e7a0: 6f6d 6961 6c73 3a20 7477 6f4d 6f6e 6f6d omials: twoMonom │ │ │ │ -0006e7b0: 6961 6c73 2c20 2d2d 2074 616c 6c79 2074 ials, -- tally t │ │ │ │ -0006e7c0: 6865 2073 6571 7565 6e63 6573 206f 6620 he sequences of │ │ │ │ -0006e7d0: 4252 616e 6b73 2066 6f72 0a20 2020 2063 BRanks for. c │ │ │ │ -0006e7e0: 6572 7461 696e 2065 7861 6d70 6c65 730a ertain examples. │ │ │ │ -0006e7f0: 0a57 6179 7320 746f 2075 7365 2073 756d .Ways to use sum │ │ │ │ -0006e800: 5477 6f4d 6f6e 6f6d 6961 6c73 3a0a 3d3d TwoMonomials:.== │ │ │ │ -0006e810: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0006e820: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -0006e830: 2273 756d 5477 6f4d 6f6e 6f6d 6961 6c73 "sumTwoMonomials │ │ │ │ -0006e840: 285a 5a2c 5a5a 2922 0a0a 466f 7220 7468 (ZZ,ZZ)"..For th │ │ │ │ -0006e850: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0006e860: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0006e870: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0006e880: 6520 7375 6d54 776f 4d6f 6e6f 6d69 616c e sumTwoMonomial │ │ │ │ -0006e890: 733a 2073 756d 5477 6f4d 6f6e 6f6d 6961 s: sumTwoMonomia │ │ │ │ -0006e8a0: 6c73 2c20 6973 2061 202a 6e6f 7465 206d ls, is a *note m │ │ │ │ -0006e8b0: 6574 686f 6420 6675 6e63 7469 6f6e 3a0a ethod function:. │ │ │ │ -0006e8c0: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ -0006e8d0: 7468 6f64 4675 6e63 7469 6f6e 2c2e 0a0a thodFunction,... │ │ │ │ +0006e760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0006e770: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +0006e780: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2074 ===.. * *note t │ │ │ │ +0006e790: 776f 4d6f 6e6f 6d69 616c 733a 2074 776f woMonomials: two │ │ │ │ +0006e7a0: 4d6f 6e6f 6d69 616c 732c 202d 2d20 7461 Monomials, -- ta │ │ │ │ +0006e7b0: 6c6c 7920 7468 6520 7365 7175 656e 6365 lly the sequence │ │ │ │ +0006e7c0: 7320 6f66 2042 5261 6e6b 7320 666f 720a s of BRanks for. │ │ │ │ +0006e7d0: 2020 2020 6365 7274 6169 6e20 6578 616d certain exam │ │ │ │ +0006e7e0: 706c 6573 0a0a 5761 7973 2074 6f20 7573 ples..Ways to us │ │ │ │ +0006e7f0: 6520 7375 6d54 776f 4d6f 6e6f 6d69 616c e sumTwoMonomial │ │ │ │ +0006e800: 733a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d s:.============= │ │ │ │ +0006e810: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0006e820: 0a20 202a 2022 7375 6d54 776f 4d6f 6e6f . * "sumTwoMono │ │ │ │ +0006e830: 6d69 616c 7328 5a5a 2c5a 5a29 220a 0a46 mials(ZZ,ZZ)"..F │ │ │ │ +0006e840: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +0006e850: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +0006e860: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +0006e870: 202a 6e6f 7465 2073 756d 5477 6f4d 6f6e *note sumTwoMon │ │ │ │ +0006e880: 6f6d 6961 6c73 3a20 7375 6d54 776f 4d6f omials: sumTwoMo │ │ │ │ +0006e890: 6e6f 6d69 616c 732c 2069 7320 6120 2a6e nomials, is a *n │ │ │ │ +0006e8a0: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ +0006e8b0: 696f 6e3a 0a28 4d61 6361 756c 6179 3244 ion:.(Macaulay2D │ │ │ │ +0006e8c0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +0006e8d0: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ 0006e8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -0006e930: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -0006e940: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -0006e950: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -0006e960: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -0006e970: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -0006e980: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -0006e990: 636b 6167 6573 2f0a 436f 6d70 6c65 7465 ckages/.Complete │ │ │ │ -0006e9a0: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ -0006e9b0: 6c75 7469 6f6e 732e 6d32 3a34 3531 323a lutions.m2:4512: │ │ │ │ -0006e9c0: 302e 0a1f 0a46 696c 653a 2043 6f6d 706c 0....File: Compl │ │ │ │ -0006e9d0: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ -0006e9e0: 6573 6f6c 7574 696f 6e73 2e69 6e66 6f2c esolutions.info, │ │ │ │ -0006e9f0: 204e 6f64 653a 2054 6174 6552 6573 6f6c Node: TateResol │ │ │ │ -0006ea00: 7574 696f 6e2c 204e 6578 743a 2074 656e ution, Next: ten │ │ │ │ -0006ea10: 736f 7257 6974 6843 6f6d 706f 6e65 6e74 sorWithComponent │ │ │ │ -0006ea20: 732c 2050 7265 763a 2073 756d 5477 6f4d s, Prev: sumTwoM │ │ │ │ -0006ea30: 6f6e 6f6d 6961 6c73 2c20 5570 3a20 546f onomials, Up: To │ │ │ │ -0006ea40: 700a 0a54 6174 6552 6573 6f6c 7574 696f p..TateResolutio │ │ │ │ -0006ea50: 6e20 2d2d 2054 6174 6552 6573 6f6c 7574 n -- TateResolut │ │ │ │ -0006ea60: 696f 6e20 6f66 2061 206d 6f64 756c 6520 ion of a module │ │ │ │ -0006ea70: 6f76 6572 2061 6e20 6578 7465 7269 6f72 over an exterior │ │ │ │ -0006ea80: 2061 6c67 6562 7261 0a2a 2a2a 2a2a 2a2a algebra.******* │ │ │ │ +0006e920: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +0006e930: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +0006e940: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +0006e950: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +0006e960: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +0006e970: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +0006e980: 7932 2f70 6163 6b61 6765 732f 0a43 6f6d y2/packages/.Com │ │ │ │ +0006e990: 706c 6574 6549 6e74 6572 7365 6374 696f pleteIntersectio │ │ │ │ +0006e9a0: 6e52 6573 6f6c 7574 696f 6e73 2e6d 323a nResolutions.m2: │ │ │ │ +0006e9b0: 3435 3132 3a30 2e0a 1f0a 4669 6c65 3a20 4512:0....File: │ │ │ │ +0006e9c0: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ +0006e9d0: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ +0006e9e0: 696e 666f 2c20 4e6f 6465 3a20 5461 7465 info, Node: Tate │ │ │ │ +0006e9f0: 5265 736f 6c75 7469 6f6e 2c20 4e65 7874 Resolution, Next │ │ │ │ +0006ea00: 3a20 7465 6e73 6f72 5769 7468 436f 6d70 : tensorWithComp │ │ │ │ +0006ea10: 6f6e 656e 7473 2c20 5072 6576 3a20 7375 onents, Prev: su │ │ │ │ +0006ea20: 6d54 776f 4d6f 6e6f 6d69 616c 732c 2055 mTwoMonomials, U │ │ │ │ +0006ea30: 703a 2054 6f70 0a0a 5461 7465 5265 736f p: Top..TateReso │ │ │ │ +0006ea40: 6c75 7469 6f6e 202d 2d20 5461 7465 5265 lution -- TateRe │ │ │ │ +0006ea50: 736f 6c75 7469 6f6e 206f 6620 6120 6d6f solution of a mo │ │ │ │ +0006ea60: 6475 6c65 206f 7665 7220 616e 2065 7874 dule over an ext │ │ │ │ +0006ea70: 6572 696f 7220 616c 6765 6272 610a 2a2a erior algebra.** │ │ │ │ +0006ea80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006ea90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006eaa0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006eab0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006eac0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -0006ead0: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -0006eae0: 2020 2020 4620 3d20 5461 7465 5265 736f F = TateReso │ │ │ │ -0006eaf0: 6c75 7469 6f6e 284d 2c6c 6f77 6572 2c75 lution(M,lower,u │ │ │ │ -0006eb00: 7070 6572 290a 2020 2a20 496e 7075 7473 pper). * Inputs │ │ │ │ -0006eb10: 3a0a 2020 2020 2020 2a20 4d2c 2061 202a :. * M, a * │ │ │ │ -0006eb20: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -0006eb30: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -0006eb40: 652c 2c20 0a20 2020 2020 202a 206c 6f77 e,, . * low │ │ │ │ -0006eb50: 6572 2c20 616e 202a 6e6f 7465 2069 6e74 er, an *note int │ │ │ │ -0006eb60: 6567 6572 3a20 284d 6163 6175 6c61 7932 eger: (Macaulay2 │ │ │ │ -0006eb70: 446f 6329 5a5a 2c2c 200a 2020 2020 2020 Doc)ZZ,, . │ │ │ │ -0006eb80: 2a20 7570 7065 722c 2061 6e20 2a6e 6f74 * upper, an *not │ │ │ │ -0006eb90: 6520 696e 7465 6765 723a 2028 4d61 6361 e integer: (Maca │ │ │ │ -0006eba0: 756c 6179 3244 6f63 295a 5a2c 2c20 6c6f ulay2Doc)ZZ,, lo │ │ │ │ -0006ebb0: 7765 7220 616e 6420 7570 7065 7220 626f wer and upper bo │ │ │ │ -0006ebc0: 756e 6473 2066 6f72 0a20 2020 2020 2020 unds for. │ │ │ │ -0006ebd0: 2074 6865 2072 6573 6f6c 7574 696f 6e0a the resolution. │ │ │ │ -0006ebe0: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ -0006ebf0: 2020 202a 2046 2c20 6120 2a6e 6f74 6520 * F, a *note │ │ │ │ -0006ec00: 636f 6d70 6c65 783a 2028 436f 6d70 6c65 complex: (Comple │ │ │ │ -0006ec10: 7865 7329 436f 6d70 6c65 782c 2c20 0a0a xes)Complex,, .. │ │ │ │ -0006ec20: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -0006ec30: 3d3d 3d3d 3d3d 3d0a 0a46 6f72 6d73 2061 =======..Forms a │ │ │ │ -0006ec40: 6e20 696e 7465 7276 616c 2c20 6c6f 7765 n interval, lowe │ │ │ │ -0006ec50: 722e 2e75 7070 6572 2c20 6f66 2061 2064 r..upper, of a d │ │ │ │ -0006ec60: 6f75 626c 7920 696e 6669 6e69 7465 2066 oubly infinite f │ │ │ │ -0006ec70: 7265 6520 7265 736f 6c75 7469 6f6e 206f ree resolution o │ │ │ │ -0006ec80: 6620 6120 610a 436f 6865 6e2d 4d61 6361 f a a.Cohen-Maca │ │ │ │ -0006ec90: 756c 6179 206d 6f64 756c 6520 6f76 6572 ulay module over │ │ │ │ -0006eca0: 2061 2047 6f72 656e 7374 6569 6e20 7269 a Gorenstein ri │ │ │ │ -0006ecb0: 6e67 2c20 7375 6368 2061 7320 616e 7920 ng, such as any │ │ │ │ -0006ecc0: 6d6f 6475 6c65 206f 7665 7220 616e 0a65 module over an.e │ │ │ │ -0006ecd0: 7874 6572 696f 7220 616c 6765 6272 6120 xterior algebra │ │ │ │ -0006ece0: 2861 6374 7561 6c6c 792c 2061 6e79 206d (actually, any m │ │ │ │ -0006ecf0: 6f64 756c 6520 6f76 6572 2061 6e79 2072 odule over any r │ │ │ │ -0006ed00: 696e 672e 290a 0a2b 2d2d 2d2d 2d2d 2d2d ing.)..+-------- │ │ │ │ +0006eac0: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ +0006ead0: 0a20 2020 2020 2020 2046 203d 2054 6174 . F = Tat │ │ │ │ +0006eae0: 6552 6573 6f6c 7574 696f 6e28 4d2c 6c6f eResolution(M,lo │ │ │ │ +0006eaf0: 7765 722c 7570 7065 7229 0a20 202a 2049 wer,upper). * I │ │ │ │ +0006eb00: 6e70 7574 733a 0a20 2020 2020 202a 204d nputs:. * M │ │ │ │ +0006eb10: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +0006eb20: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0006eb30: 4d6f 6475 6c65 2c2c 200a 2020 2020 2020 Module,, . │ │ │ │ +0006eb40: 2a20 6c6f 7765 722c 2061 6e20 2a6e 6f74 * lower, an *not │ │ │ │ +0006eb50: 6520 696e 7465 6765 723a 2028 4d61 6361 e integer: (Maca │ │ │ │ +0006eb60: 756c 6179 3244 6f63 295a 5a2c 2c20 0a20 ulay2Doc)ZZ,, . │ │ │ │ +0006eb70: 2020 2020 202a 2075 7070 6572 2c20 616e * upper, an │ │ │ │ +0006eb80: 202a 6e6f 7465 2069 6e74 6567 6572 3a20 *note integer: │ │ │ │ +0006eb90: 284d 6163 6175 6c61 7932 446f 6329 5a5a (Macaulay2Doc)ZZ │ │ │ │ +0006eba0: 2c2c 206c 6f77 6572 2061 6e64 2075 7070 ,, lower and upp │ │ │ │ +0006ebb0: 6572 2062 6f75 6e64 7320 666f 720a 2020 er bounds for. │ │ │ │ +0006ebc0: 2020 2020 2020 7468 6520 7265 736f 6c75 the resolu │ │ │ │ +0006ebd0: 7469 6f6e 0a20 202a 204f 7574 7075 7473 tion. * Outputs │ │ │ │ +0006ebe0: 3a0a 2020 2020 2020 2a20 462c 2061 202a :. * F, a * │ │ │ │ +0006ebf0: 6e6f 7465 2063 6f6d 706c 6578 3a20 2843 note complex: (C │ │ │ │ +0006ec00: 6f6d 706c 6578 6573 2943 6f6d 706c 6578 omplexes)Complex │ │ │ │ +0006ec10: 2c2c 200a 0a44 6573 6372 6970 7469 6f6e ,, ..Description │ │ │ │ +0006ec20: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 466f .===========..Fo │ │ │ │ +0006ec30: 726d 7320 616e 2069 6e74 6572 7661 6c2c rms an interval, │ │ │ │ +0006ec40: 206c 6f77 6572 2e2e 7570 7065 722c 206f lower..upper, o │ │ │ │ +0006ec50: 6620 6120 646f 7562 6c79 2069 6e66 696e f a doubly infin │ │ │ │ +0006ec60: 6974 6520 6672 6565 2072 6573 6f6c 7574 ite free resolut │ │ │ │ +0006ec70: 696f 6e20 6f66 2061 2061 0a43 6f68 656e ion of a a.Cohen │ │ │ │ +0006ec80: 2d4d 6163 6175 6c61 7920 6d6f 6475 6c65 -Macaulay module │ │ │ │ +0006ec90: 206f 7665 7220 6120 476f 7265 6e73 7465 over a Gorenste │ │ │ │ +0006eca0: 696e 2072 696e 672c 2073 7563 6820 6173 in ring, such as │ │ │ │ +0006ecb0: 2061 6e79 206d 6f64 756c 6520 6f76 6572 any module over │ │ │ │ +0006ecc0: 2061 6e0a 6578 7465 7269 6f72 2061 6c67 an.exterior alg │ │ │ │ +0006ecd0: 6562 7261 2028 6163 7475 616c 6c79 2c20 ebra (actually, │ │ │ │ +0006ece0: 616e 7920 6d6f 6475 6c65 206f 7665 7220 any module over │ │ │ │ +0006ecf0: 616e 7920 7269 6e67 2e29 0a0a 2b2d 2d2d any ring.)..+--- │ │ │ │ +0006ed00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ed10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ed20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ed30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ed40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ed50: 2d2d 2d2d 2d2b 0a7c 6931 203a 2045 203d -----+.|i1 : E = │ │ │ │ -0006ed60: 205a 5a2f 3130 315b 612c 622c 632c 2053 ZZ/101[a,b,c, S │ │ │ │ -0006ed70: 6b65 7743 6f6d 6d75 7461 7469 7665 3d3e kewCommutative=> │ │ │ │ -0006ed80: 7472 7565 5d20 2020 2020 2020 2020 2020 true] │ │ │ │ -0006ed90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006eda0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006ed40: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ +0006ed50: 3a20 4520 3d20 5a5a 2f31 3031 5b61 2c62 : E = ZZ/101[a,b │ │ │ │ +0006ed60: 2c63 2c20 536b 6577 436f 6d6d 7574 6174 ,c, SkewCommutat │ │ │ │ +0006ed70: 6976 653d 3e74 7275 655d 2020 2020 2020 ive=>true] │ │ │ │ +0006ed80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006ed90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006eda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006edb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006edc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006edd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ede0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006edf0: 2020 2020 207c 0a7c 6f31 203d 2045 2020 |.|o1 = E │ │ │ │ +0006ede0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +0006edf0: 3d20 4520 2020 2020 2020 2020 2020 2020 = E │ │ │ │ 0006ee00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ee40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006ee30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ee50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ee90: 2020 2020 207c 0a7c 6f31 203a 2050 6f6c |.|o1 : Pol │ │ │ │ -0006eea0: 796e 6f6d 6961 6c52 696e 672c 2033 2073 ynomialRing, 3 s │ │ │ │ -0006eeb0: 6b65 7720 636f 6d6d 7574 6174 6976 6520 kew commutative │ │ │ │ -0006eec0: 7661 7269 6162 6c65 2873 2920 2020 2020 variable(s) │ │ │ │ -0006eed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006eee0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006ee80: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +0006ee90: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ +0006eea0: 2c20 3320 736b 6577 2063 6f6d 6d75 7461 , 3 skew commuta │ │ │ │ +0006eeb0: 7469 7665 2076 6172 6961 626c 6528 7329 tive variable(s) │ │ │ │ +0006eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006eed0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0006eee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006eef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ef00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ef10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ef20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ef30: 2d2d 2d2d 2d2b 0a7c 6932 203a 204d 203d -----+.|i2 : M = │ │ │ │ -0006ef40: 2063 6f6b 6572 206d 6170 2845 5e32 2c20 coker map(E^2, │ │ │ │ -0006ef50: 455e 7b2d 317d 2c20 6d61 7472 6978 2261 E^{-1}, matrix"a │ │ │ │ -0006ef60: 623b 6263 2229 2020 2020 2020 2020 2020 b;bc") │ │ │ │ -0006ef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ef80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006ef20: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ +0006ef30: 3a20 4d20 3d20 636f 6b65 7220 6d61 7028 : M = coker map( │ │ │ │ +0006ef40: 455e 322c 2045 5e7b 2d31 7d2c 206d 6174 E^2, E^{-1}, mat │ │ │ │ +0006ef50: 7269 7822 6162 3b62 6322 2920 2020 2020 rix"ab;bc") │ │ │ │ +0006ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006ef70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006ef80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006efd0: 2020 2020 207c 0a7c 6f32 203d 2063 6f6b |.|o2 = cok │ │ │ │ -0006efe0: 6572 6e65 6c20 7c20 6162 207c 2020 2020 ernel | ab | │ │ │ │ +0006efc0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +0006efd0: 3d20 636f 6b65 726e 656c 207c 2061 6220 = cokernel | ab │ │ │ │ +0006efe0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0006eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f020: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0006f030: 2020 2020 2020 7c20 6263 207c 2020 2020 | bc | │ │ │ │ +0006f010: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006f020: 2020 2020 2020 2020 2020 207c 2062 6320 | bc │ │ │ │ +0006f030: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0006f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f070: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006f060: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f0c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0006f0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f0e0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0006f0b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006f0d0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0006f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f110: 2020 2020 207c 0a7c 6f32 203a 2045 2d6d |.|o2 : E-m │ │ │ │ -0006f120: 6f64 756c 652c 2071 756f 7469 656e 7420 odule, quotient │ │ │ │ -0006f130: 6f66 2045 2020 2020 2020 2020 2020 2020 of E │ │ │ │ +0006f100: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +0006f110: 3a20 452d 6d6f 6475 6c65 2c20 7175 6f74 : E-module, quot │ │ │ │ +0006f120: 6965 6e74 206f 6620 4520 2020 2020 2020 ient of E │ │ │ │ +0006f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f160: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006f150: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0006f160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f1b0: 2d2d 2d2d 2d2b 0a7c 6933 203a 2070 7265 -----+.|i3 : pre │ │ │ │ -0006f1c0: 7365 6e74 6174 696f 6e20 4d20 2020 2020 sentation M │ │ │ │ +0006f1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ +0006f1b0: 3a20 7072 6573 656e 7461 7469 6f6e 204d : presentation M │ │ │ │ +0006f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f200: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006f1f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f250: 2020 2020 207c 0a7c 6f33 203d 207c 2061 |.|o3 = | a │ │ │ │ -0006f260: 6220 7c20 2020 2020 2020 2020 2020 2020 b | │ │ │ │ +0006f240: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ +0006f250: 3d20 7c20 6162 207c 2020 2020 2020 2020 = | ab | │ │ │ │ +0006f260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f2a0: 2020 2020 207c 0a7c 2020 2020 207c 2062 |.| | b │ │ │ │ -0006f2b0: 6320 7c20 2020 2020 2020 2020 2020 2020 c | │ │ │ │ +0006f290: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006f2a0: 2020 7c20 6263 207c 2020 2020 2020 2020 | bc | │ │ │ │ +0006f2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f2f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006f2e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006f2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f340: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0006f350: 2020 2020 2032 2020 2020 2020 3120 2020 2 1 │ │ │ │ +0006f330: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006f340: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0006f350: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0006f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f390: 2020 2020 207c 0a7c 6f33 203a 204d 6174 |.|o3 : Mat │ │ │ │ -0006f3a0: 7269 7820 4520 203c 2d2d 2045 2020 2020 rix E <-- E │ │ │ │ +0006f380: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ +0006f390: 3a20 4d61 7472 6978 2045 2020 3c2d 2d20 : Matrix E <-- │ │ │ │ +0006f3a0: 4520 2020 2020 2020 2020 2020 2020 2020 E │ │ │ │ 0006f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f3e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006f3d0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0006f3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f430: 2d2d 2d2d 2d2b 0a7c 6934 203a 2054 6174 -----+.|i4 : Tat │ │ │ │ -0006f440: 6552 6573 6f6c 7574 696f 6e28 4d2c 2d32 eResolution(M,-2 │ │ │ │ -0006f450: 2c37 2920 2020 2020 2020 2020 2020 2020 ,7) │ │ │ │ +0006f420: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ +0006f430: 3a20 5461 7465 5265 736f 6c75 7469 6f6e : TateResolution │ │ │ │ +0006f440: 284d 2c2d 322c 3729 2020 2020 2020 2020 (M,-2,7) │ │ │ │ +0006f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f480: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006f470: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f4d0: 2020 2020 207c 0a7c 2020 2020 2020 3920 |.| 9 │ │ │ │ -0006f4e0: 2020 2020 2035 2020 2020 2020 3220 2020 5 2 │ │ │ │ -0006f4f0: 2020 2031 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ -0006f500: 2034 2020 2020 2020 3720 2020 2020 2031 4 7 1 │ │ │ │ -0006f510: 3120 2020 2020 2031 3620 2020 2020 2032 1 16 2 │ │ │ │ -0006f520: 3220 2020 207c 0a7c 6f34 203d 2045 2020 2 |.|o4 = E │ │ │ │ -0006f530: 3c2d 2d20 4520 203c 2d2d 2045 2020 3c2d <-- E <-- E <- │ │ │ │ -0006f540: 2d20 4520 203c 2d2d 2045 2020 3c2d 2d20 - E <-- E <-- │ │ │ │ -0006f550: 4520 203c 2d2d 2045 2020 3c2d 2d20 4520 E <-- E <-- E │ │ │ │ -0006f560: 2020 3c2d 2d20 4520 2020 3c2d 2d20 4520 <-- E <-- E │ │ │ │ -0006f570: 2020 3c2d 2d7c 0a7c 2020 2020 2020 2020 <--|.| │ │ │ │ +0006f4c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006f4d0: 2020 2039 2020 2020 2020 3520 2020 2020 9 5 │ │ │ │ +0006f4e0: 2032 2020 2020 2020 3120 2020 2020 2032 2 1 2 │ │ │ │ +0006f4f0: 2020 2020 2020 3420 2020 2020 2037 2020 4 7 │ │ │ │ +0006f500: 2020 2020 3131 2020 2020 2020 3136 2020 11 16 │ │ │ │ +0006f510: 2020 2020 3232 2020 2020 7c0a 7c6f 3420 22 |.|o4 │ │ │ │ +0006f520: 3d20 4520 203c 2d2d 2045 2020 3c2d 2d20 = E <-- E <-- │ │ │ │ +0006f530: 4520 203c 2d2d 2045 2020 3c2d 2d20 4520 E <-- E <-- E │ │ │ │ +0006f540: 203c 2d2d 2045 2020 3c2d 2d20 4520 203c <-- E <-- E < │ │ │ │ +0006f550: 2d2d 2045 2020 203c 2d2d 2045 2020 203c -- E <-- E < │ │ │ │ +0006f560: 2d2d 2045 2020 203c 2d2d 7c0a 7c20 2020 -- E <--|.| │ │ │ │ +0006f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f5c0: 2020 2020 207c 0a7c 2020 2020 202d 3220 |.| -2 │ │ │ │ -0006f5d0: 2020 2020 2d31 2020 2020 2030 2020 2020 -1 0 │ │ │ │ -0006f5e0: 2020 3120 2020 2020 2032 2020 2020 2020 1 2 │ │ │ │ -0006f5f0: 3320 2020 2020 2034 2020 2020 2020 3520 3 4 5 │ │ │ │ -0006f600: 2020 2020 2020 3620 2020 2020 2020 3720 6 7 │ │ │ │ -0006f610: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006f5b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006f5c0: 2020 2d32 2020 2020 202d 3120 2020 2020 -2 -1 │ │ │ │ +0006f5d0: 3020 2020 2020 2031 2020 2020 2020 3220 0 1 2 │ │ │ │ +0006f5e0: 2020 2020 2033 2020 2020 2020 3420 2020 3 4 │ │ │ │ +0006f5f0: 2020 2035 2020 2020 2020 2036 2020 2020 5 6 │ │ │ │ +0006f600: 2020 2037 2020 2020 2020 7c0a 7c20 2020 7 |.| │ │ │ │ +0006f610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f660: 2020 2020 207c 0a7c 6f34 203a 2043 6f6d |.|o4 : Com │ │ │ │ -0006f670: 706c 6578 2020 2020 2020 2020 2020 2020 plex │ │ │ │ +0006f650: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +0006f660: 3a20 436f 6d70 6c65 7820 2020 2020 2020 : Complex │ │ │ │ +0006f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f6b0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +0006f6a0: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ +0006f6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f700: 2d2d 2d2d 2d7c 0a7c 3020 2020 2020 2020 -----|.|0 │ │ │ │ +0006f6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c30 2020 ----------|.|0 │ │ │ │ +0006f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f750: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006f740: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f7a0: 2020 2020 207c 0a7c 3820 2020 2020 2020 |.|8 │ │ │ │ +0006f790: 2020 2020 2020 2020 2020 7c0a 7c38 2020 |.|8 │ │ │ │ +0006f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f7f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006f7e0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0006f7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f840: 2d2d 2d2d 2d2b 0a0a 4361 7665 6174 0a3d -----+..Caveat.= │ │ │ │ -0006f850: 3d3d 3d3d 3d0a 0a49 6e20 6120 7072 6576 =====..In a prev │ │ │ │ -0006f860: 696f 7573 2076 6572 7369 6f6e 206f 6620 ious version of │ │ │ │ -0006f870: 7468 6973 2073 6372 6970 742c 2074 6869 this script, thi │ │ │ │ -0006f880: 7320 636f 6d6d 616e 6420 7265 7475 726e s command return │ │ │ │ -0006f890: 6564 2061 2062 6574 7469 2074 6162 6c65 ed a betti table │ │ │ │ -0006f8a0: 3b20 6e6f 770a 7573 6520 2262 6574 7469 ; now.use "betti │ │ │ │ -0006f8b0: 2054 6174 6552 6573 6f6c 7574 696f 6e22 TateResolution" │ │ │ │ -0006f8c0: 2069 6e73 7465 6164 2e0a 0a57 6179 7320 instead...Ways │ │ │ │ -0006f8d0: 746f 2075 7365 2054 6174 6552 6573 6f6c to use TateResol │ │ │ │ -0006f8e0: 7574 696f 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d ution:.========= │ │ │ │ -0006f8f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0006f900: 3d3d 0a0a 2020 2a20 2254 6174 6552 6573 ==.. * "TateRes │ │ │ │ -0006f910: 6f6c 7574 696f 6e28 4d6f 6475 6c65 2922 olution(Module)" │ │ │ │ -0006f920: 0a20 202a 2022 5461 7465 5265 736f 6c75 . * "TateResolu │ │ │ │ -0006f930: 7469 6f6e 284d 6f64 756c 652c 5a5a 2922 tion(Module,ZZ)" │ │ │ │ -0006f940: 0a20 202a 2022 5461 7465 5265 736f 6c75 . * "TateResolu │ │ │ │ -0006f950: 7469 6f6e 284d 6f64 756c 652c 5a5a 2c5a tion(Module,ZZ,Z │ │ │ │ -0006f960: 5a29 220a 0a46 6f72 2074 6865 2070 726f Z)"..For the pro │ │ │ │ -0006f970: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0006f980: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0006f990: 6f62 6a65 6374 202a 6e6f 7465 2054 6174 object *note Tat │ │ │ │ -0006f9a0: 6552 6573 6f6c 7574 696f 6e3a 2054 6174 eResolution: Tat │ │ │ │ -0006f9b0: 6552 6573 6f6c 7574 696f 6e2c 2069 7320 eResolution, is │ │ │ │ -0006f9c0: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ -0006f9d0: 756e 6374 696f 6e3a 0a28 4d61 6361 756c unction:.(Macaul │ │ │ │ -0006f9e0: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ -0006f9f0: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ +0006f830: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a43 6176 ----------+..Cav │ │ │ │ +0006f840: 6561 740a 3d3d 3d3d 3d3d 0a0a 496e 2061 eat.======..In a │ │ │ │ +0006f850: 2070 7265 7669 6f75 7320 7665 7273 696f previous versio │ │ │ │ +0006f860: 6e20 6f66 2074 6869 7320 7363 7269 7074 n of this script │ │ │ │ +0006f870: 2c20 7468 6973 2063 6f6d 6d61 6e64 2072 , this command r │ │ │ │ +0006f880: 6574 7572 6e65 6420 6120 6265 7474 6920 eturned a betti │ │ │ │ +0006f890: 7461 626c 653b 206e 6f77 0a75 7365 2022 table; now.use " │ │ │ │ +0006f8a0: 6265 7474 6920 5461 7465 5265 736f 6c75 betti TateResolu │ │ │ │ +0006f8b0: 7469 6f6e 2220 696e 7374 6561 642e 0a0a tion" instead... │ │ │ │ +0006f8c0: 5761 7973 2074 6f20 7573 6520 5461 7465 Ways to use Tate │ │ │ │ +0006f8d0: 5265 736f 6c75 7469 6f6e 3a0a 3d3d 3d3d Resolution:.==== │ │ │ │ +0006f8e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0006f8f0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 5461 =======.. * "Ta │ │ │ │ +0006f900: 7465 5265 736f 6c75 7469 6f6e 284d 6f64 teResolution(Mod │ │ │ │ +0006f910: 756c 6529 220a 2020 2a20 2254 6174 6552 ule)". * "TateR │ │ │ │ +0006f920: 6573 6f6c 7574 696f 6e28 4d6f 6475 6c65 esolution(Module │ │ │ │ +0006f930: 2c5a 5a29 220a 2020 2a20 2254 6174 6552 ,ZZ)". * "TateR │ │ │ │ +0006f940: 6573 6f6c 7574 696f 6e28 4d6f 6475 6c65 esolution(Module │ │ │ │ +0006f950: 2c5a 5a2c 5a5a 2922 0a0a 466f 7220 7468 ,ZZ,ZZ)"..For th │ │ │ │ +0006f960: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +0006f970: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0006f980: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +0006f990: 6520 5461 7465 5265 736f 6c75 7469 6f6e e TateResolution │ │ │ │ +0006f9a0: 3a20 5461 7465 5265 736f 6c75 7469 6f6e : TateResolution │ │ │ │ +0006f9b0: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ +0006f9c0: 686f 6420 6675 6e63 7469 6f6e 3a0a 284d hod function:.(M │ │ │ │ +0006f9d0: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ +0006f9e0: 6f64 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d odFunction,...-- │ │ │ │ +0006f9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fa00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fa10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fa20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006fa30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006fa40: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -0006fa50: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -0006fa60: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -0006fa70: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -0006fa80: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -0006fa90: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -0006faa0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -0006fab0: 0a43 6f6d 706c 6574 6549 6e74 6572 7365 .CompleteInterse │ │ │ │ -0006fac0: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ -0006fad0: 2e6d 323a 3334 3939 3a30 2e0a 1f0a 4669 .m2:3499:0....Fi │ │ │ │ -0006fae0: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ -0006faf0: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ -0006fb00: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ -0006fb10: 7465 6e73 6f72 5769 7468 436f 6d70 6f6e tensorWithCompon │ │ │ │ -0006fb20: 656e 7473 2c20 4e65 7874 3a20 746f 4172 ents, Next: toAr │ │ │ │ -0006fb30: 7261 792c 2050 7265 763a 2054 6174 6552 ray, Prev: TateR │ │ │ │ -0006fb40: 6573 6f6c 7574 696f 6e2c 2055 703a 2054 esolution, Up: T │ │ │ │ -0006fb50: 6f70 0a0a 7465 6e73 6f72 5769 7468 436f op..tensorWithCo │ │ │ │ -0006fb60: 6d70 6f6e 656e 7473 202d 2d20 666f 726d mponents -- form │ │ │ │ -0006fb70: 7320 7468 6520 7465 6e73 6f72 2070 726f s the tensor pro │ │ │ │ -0006fb80: 6475 6374 2c20 7072 6573 6572 7669 6e67 duct, preserving │ │ │ │ -0006fb90: 2064 6972 6563 7420 7375 6d20 696e 666f direct sum info │ │ │ │ -0006fba0: 726d 6174 696f 6e0a 2a2a 2a2a 2a2a 2a2a rmation.******** │ │ │ │ +0006fa30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +0006fa40: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +0006fa50: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +0006fa60: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +0006fa70: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +0006fa80: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +0006fa90: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +0006faa0: 6167 6573 2f0a 436f 6d70 6c65 7465 496e ages/.CompleteIn │ │ │ │ +0006fab0: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ +0006fac0: 7469 6f6e 732e 6d32 3a33 3439 393a 302e tions.m2:3499:0. │ │ │ │ +0006fad0: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ +0006fae0: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ +0006faf0: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ +0006fb00: 6f64 653a 2074 656e 736f 7257 6974 6843 ode: tensorWithC │ │ │ │ +0006fb10: 6f6d 706f 6e65 6e74 732c 204e 6578 743a omponents, Next: │ │ │ │ +0006fb20: 2074 6f41 7272 6179 2c20 5072 6576 3a20 toArray, Prev: │ │ │ │ +0006fb30: 5461 7465 5265 736f 6c75 7469 6f6e 2c20 TateResolution, │ │ │ │ +0006fb40: 5570 3a20 546f 700a 0a74 656e 736f 7257 Up: Top..tensorW │ │ │ │ +0006fb50: 6974 6843 6f6d 706f 6e65 6e74 7320 2d2d ithComponents -- │ │ │ │ +0006fb60: 2066 6f72 6d73 2074 6865 2074 656e 736f forms the tenso │ │ │ │ +0006fb70: 7220 7072 6f64 7563 742c 2070 7265 7365 r product, prese │ │ │ │ +0006fb80: 7276 696e 6720 6469 7265 6374 2073 756d rving direct sum │ │ │ │ +0006fb90: 2069 6e66 6f72 6d61 7469 6f6e 0a2a 2a2a information.*** │ │ │ │ +0006fba0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006fbb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006fbc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006fbd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006fbe0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006fbf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -0006fc00: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -0006fc10: 2054 203d 2074 656e 736f 7228 4d2c 4e29 T = tensor(M,N) │ │ │ │ -0006fc20: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ -0006fc30: 2020 202a 204d 2c20 6120 2a6e 6f74 6520 * M, a *note │ │ │ │ -0006fc40: 6d6f 6475 6c65 3a20 284d 6163 6175 6c61 module: (Macaula │ │ │ │ -0006fc50: 7932 446f 6329 4d6f 6475 6c65 2c2c 200a y2Doc)Module,, . │ │ │ │ -0006fc60: 2020 2020 2020 2a20 4e2c 2061 202a 6e6f * N, a *no │ │ │ │ -0006fc70: 7465 206d 6f64 756c 653a 2028 4d61 6361 te module: (Maca │ │ │ │ -0006fc80: 756c 6179 3244 6f63 294d 6f64 756c 652c ulay2Doc)Module, │ │ │ │ -0006fc90: 2c20 0a20 202a 204f 7574 7075 7473 3a0a , . * Outputs:. │ │ │ │ -0006fca0: 2020 2020 2020 2a20 542c 2061 202a 6e6f * T, a *no │ │ │ │ -0006fcb0: 7465 206d 6f64 756c 653a 2028 4d61 6361 te module: (Maca │ │ │ │ -0006fcc0: 756c 6179 3244 6f63 294d 6f64 756c 652c ulay2Doc)Module, │ │ │ │ -0006fcd0: 2c20 0a0a 4465 7363 7269 7074 696f 6e0a , ..Description. │ │ │ │ -0006fce0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a49 6620 ===========..If │ │ │ │ -0006fcf0: 4d20 616e 642f 6f72 204e 2061 7265 2064 M and/or N are d │ │ │ │ -0006fd00: 6972 6563 7420 7375 6d20 6d6f 6475 6c65 irect sum module │ │ │ │ -0006fd10: 7320 2869 7344 6972 6563 7453 756d 204d s (isDirectSum M │ │ │ │ -0006fd20: 203d 3d20 7472 7565 2920 7468 656e 2054 == true) then T │ │ │ │ -0006fd30: 2069 7320 7468 650a 6469 7265 6374 2073 is the.direct s │ │ │ │ -0006fd40: 756d 206f 6620 7468 6520 7465 6e73 6f72 um of the tensor │ │ │ │ -0006fd50: 2070 726f 6475 6374 7320 6265 7477 6565 products betwee │ │ │ │ -0006fd60: 6e20 7468 6520 636f 6d70 6f6e 656e 7473 n the components │ │ │ │ -0006fd70: 2e20 5468 6973 2053 484f 554c 4420 6265 . This SHOULD be │ │ │ │ -0006fd80: 2062 7569 6c74 0a69 6e74 6f20 4d2a 2a4e built.into M**N │ │ │ │ -0006fd90: 2c20 6275 7420 6973 6e27 7420 6173 206f , but isn't as o │ │ │ │ -0006fda0: 6620 4d32 2c20 762e 2031 2e37 0a0a 5365 f M2, v. 1.7..Se │ │ │ │ -0006fdb0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -0006fdc0: 0a20 202a 202a 6e6f 7465 2048 6f6d 5769 . * *note HomWi │ │ │ │ -0006fdd0: 7468 436f 6d70 6f6e 656e 7473 3a20 486f thComponents: Ho │ │ │ │ -0006fde0: 6d57 6974 6843 6f6d 706f 6e65 6e74 732c mWithComponents, │ │ │ │ -0006fdf0: 202d 2d20 636f 6d70 7574 6573 2048 6f6d -- computes Hom │ │ │ │ -0006fe00: 2c20 7072 6573 6572 7669 6e67 0a20 2020 , preserving. │ │ │ │ -0006fe10: 2064 6972 6563 7420 7375 6d20 696e 666f direct sum info │ │ │ │ -0006fe20: 726d 6174 696f 6e0a 2020 2a20 2a6e 6f74 rmation. * *not │ │ │ │ -0006fe30: 6520 6475 616c 5769 7468 436f 6d70 6f6e e dualWithCompon │ │ │ │ -0006fe40: 656e 7473 3a20 6475 616c 5769 7468 436f ents: dualWithCo │ │ │ │ -0006fe50: 6d70 6f6e 656e 7473 2c20 2d2d 2064 7561 mponents, -- dua │ │ │ │ -0006fe60: 6c20 6d6f 6475 6c65 2070 7265 7365 7276 l module preserv │ │ │ │ -0006fe70: 696e 670a 2020 2020 6469 7265 6374 2073 ing. direct s │ │ │ │ -0006fe80: 756d 2069 6e66 6f72 6d61 7469 6f6e 0a0a um information.. │ │ │ │ -0006fe90: 5761 7973 2074 6f20 7573 6520 7465 6e73 Ways to use tens │ │ │ │ -0006fea0: 6f72 5769 7468 436f 6d70 6f6e 656e 7473 orWithComponents │ │ │ │ -0006feb0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -0006fec0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0006fed0: 3d3d 3d0a 0a20 202a 2022 7465 6e73 6f72 ===.. * "tensor │ │ │ │ -0006fee0: 5769 7468 436f 6d70 6f6e 656e 7473 284d WithComponents(M │ │ │ │ -0006fef0: 6f64 756c 652c 4d6f 6475 6c65 2922 0a0a odule,Module)".. │ │ │ │ -0006ff00: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -0006ff10: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -0006ff20: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -0006ff30: 7420 2a6e 6f74 6520 7465 6e73 6f72 5769 t *note tensorWi │ │ │ │ -0006ff40: 7468 436f 6d70 6f6e 656e 7473 3a20 7465 thComponents: te │ │ │ │ -0006ff50: 6e73 6f72 5769 7468 436f 6d70 6f6e 656e nsorWithComponen │ │ │ │ -0006ff60: 7473 2c20 6973 2061 202a 6e6f 7465 206d ts, is a *note m │ │ │ │ -0006ff70: 6574 686f 640a 6675 6e63 7469 6f6e 3a20 ethod.function: │ │ │ │ -0006ff80: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ -0006ff90: 7468 6f64 4675 6e63 7469 6f6e 2c2e 0a0a thodFunction,... │ │ │ │ +0006fbf0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +0006fc00: 2020 2020 2020 5420 3d20 7465 6e73 6f72 T = tensor │ │ │ │ +0006fc10: 284d 2c4e 290a 2020 2a20 496e 7075 7473 (M,N). * Inputs │ │ │ │ +0006fc20: 3a0a 2020 2020 2020 2a20 4d2c 2061 202a :. * M, a * │ │ │ │ +0006fc30: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ +0006fc40: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ +0006fc50: 652c 2c20 0a20 2020 2020 202a 204e 2c20 e,, . * N, │ │ │ │ +0006fc60: 6120 2a6e 6f74 6520 6d6f 6475 6c65 3a20 a *note module: │ │ │ │ +0006fc70: 284d 6163 6175 6c61 7932 446f 6329 4d6f (Macaulay2Doc)Mo │ │ │ │ +0006fc80: 6475 6c65 2c2c 200a 2020 2a20 4f75 7470 dule,, . * Outp │ │ │ │ +0006fc90: 7574 733a 0a20 2020 2020 202a 2054 2c20 uts:. * T, │ │ │ │ +0006fca0: 6120 2a6e 6f74 6520 6d6f 6475 6c65 3a20 a *note module: │ │ │ │ +0006fcb0: 284d 6163 6175 6c61 7932 446f 6329 4d6f (Macaulay2Doc)Mo │ │ │ │ +0006fcc0: 6475 6c65 2c2c 200a 0a44 6573 6372 6970 dule,, ..Descrip │ │ │ │ +0006fcd0: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +0006fce0: 0a0a 4966 204d 2061 6e64 2f6f 7220 4e20 ..If M and/or N │ │ │ │ +0006fcf0: 6172 6520 6469 7265 6374 2073 756d 206d are direct sum m │ │ │ │ +0006fd00: 6f64 756c 6573 2028 6973 4469 7265 6374 odules (isDirect │ │ │ │ +0006fd10: 5375 6d20 4d20 3d3d 2074 7275 6529 2074 Sum M == true) t │ │ │ │ +0006fd20: 6865 6e20 5420 6973 2074 6865 0a64 6972 hen T is the.dir │ │ │ │ +0006fd30: 6563 7420 7375 6d20 6f66 2074 6865 2074 ect sum of the t │ │ │ │ +0006fd40: 656e 736f 7220 7072 6f64 7563 7473 2062 ensor products b │ │ │ │ +0006fd50: 6574 7765 656e 2074 6865 2063 6f6d 706f etween the compo │ │ │ │ +0006fd60: 6e65 6e74 732e 2054 6869 7320 5348 4f55 nents. This SHOU │ │ │ │ +0006fd70: 4c44 2062 6520 6275 696c 740a 696e 746f LD be built.into │ │ │ │ +0006fd80: 204d 2a2a 4e2c 2062 7574 2069 736e 2774 M**N, but isn't │ │ │ │ +0006fd90: 2061 7320 6f66 204d 322c 2076 2e20 312e as of M2, v. 1. │ │ │ │ +0006fda0: 370a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 7..See also.==== │ │ │ │ +0006fdb0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +0006fdc0: 486f 6d57 6974 6843 6f6d 706f 6e65 6e74 HomWithComponent │ │ │ │ +0006fdd0: 733a 2048 6f6d 5769 7468 436f 6d70 6f6e s: HomWithCompon │ │ │ │ +0006fde0: 656e 7473 2c20 2d2d 2063 6f6d 7075 7465 ents, -- compute │ │ │ │ +0006fdf0: 7320 486f 6d2c 2070 7265 7365 7276 696e s Hom, preservin │ │ │ │ +0006fe00: 670a 2020 2020 6469 7265 6374 2073 756d g. direct sum │ │ │ │ +0006fe10: 2069 6e66 6f72 6d61 7469 6f6e 0a20 202a information. * │ │ │ │ +0006fe20: 202a 6e6f 7465 2064 7561 6c57 6974 6843 *note dualWithC │ │ │ │ +0006fe30: 6f6d 706f 6e65 6e74 733a 2064 7561 6c57 omponents: dualW │ │ │ │ +0006fe40: 6974 6843 6f6d 706f 6e65 6e74 732c 202d ithComponents, - │ │ │ │ +0006fe50: 2d20 6475 616c 206d 6f64 756c 6520 7072 - dual module pr │ │ │ │ +0006fe60: 6573 6572 7669 6e67 0a20 2020 2064 6972 eserving. dir │ │ │ │ +0006fe70: 6563 7420 7375 6d20 696e 666f 726d 6174 ect sum informat │ │ │ │ +0006fe80: 696f 6e0a 0a57 6179 7320 746f 2075 7365 ion..Ways to use │ │ │ │ +0006fe90: 2074 656e 736f 7257 6974 6843 6f6d 706f tensorWithCompo │ │ │ │ +0006fea0: 6e65 6e74 733a 0a3d 3d3d 3d3d 3d3d 3d3d nents:.========= │ │ │ │ +0006feb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0006fec0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2274 ========.. * "t │ │ │ │ +0006fed0: 656e 736f 7257 6974 6843 6f6d 706f 6e65 ensorWithCompone │ │ │ │ +0006fee0: 6e74 7328 4d6f 6475 6c65 2c4d 6f64 756c nts(Module,Modul │ │ │ │ +0006fef0: 6529 220a 0a46 6f72 2074 6865 2070 726f e)"..For the pro │ │ │ │ +0006ff00: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +0006ff10: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +0006ff20: 6f62 6a65 6374 202a 6e6f 7465 2074 656e object *note ten │ │ │ │ +0006ff30: 736f 7257 6974 6843 6f6d 706f 6e65 6e74 sorWithComponent │ │ │ │ +0006ff40: 733a 2074 656e 736f 7257 6974 6843 6f6d s: tensorWithCom │ │ │ │ +0006ff50: 706f 6e65 6e74 732c 2069 7320 6120 2a6e ponents, is a *n │ │ │ │ +0006ff60: 6f74 6520 6d65 7468 6f64 0a66 756e 6374 ote method.funct │ │ │ │ +0006ff70: 696f 6e3a 2028 4d61 6361 756c 6179 3244 ion: (Macaulay2D │ │ │ │ +0006ff80: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +0006ff90: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ 0006ffa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ffb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ffc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ffd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ffe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -0006fff0: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -00070000: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -00070010: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -00070020: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -00070030: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -00070040: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -00070050: 636b 6167 6573 2f0a 436f 6d70 6c65 7465 ckages/.Complete │ │ │ │ -00070060: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ -00070070: 6c75 7469 6f6e 732e 6d32 3a32 3636 373a lutions.m2:2667: │ │ │ │ -00070080: 302e 0a1f 0a46 696c 653a 2043 6f6d 706c 0....File: Compl │ │ │ │ -00070090: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ -000700a0: 6573 6f6c 7574 696f 6e73 2e69 6e66 6f2c esolutions.info, │ │ │ │ -000700b0: 204e 6f64 653a 2074 6f41 7272 6179 2c20 Node: toArray, │ │ │ │ -000700c0: 4e65 7874 3a20 7477 6f4d 6f6e 6f6d 6961 Next: twoMonomia │ │ │ │ -000700d0: 6c73 2c20 5072 6576 3a20 7465 6e73 6f72 ls, Prev: tensor │ │ │ │ -000700e0: 5769 7468 436f 6d70 6f6e 656e 7473 2c20 WithComponents, │ │ │ │ -000700f0: 5570 3a20 546f 700a 0a74 6f41 7272 6179 Up: Top..toArray │ │ │ │ -00070100: 202d 2d20 6d61 6b65 7320 616e 2061 7272 -- makes an arr │ │ │ │ -00070110: 6179 2066 726f 6d20 6120 4c69 7374 206f ay from a List o │ │ │ │ -00070120: 7220 6672 6f6d 2061 2073 696e 676c 6520 r from a single │ │ │ │ -00070130: 696e 7465 6765 720a 2a2a 2a2a 2a2a 2a2a integer.******** │ │ │ │ +0006ffe0: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +0006fff0: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +00070000: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +00070010: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +00070020: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +00070030: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +00070040: 7932 2f70 6163 6b61 6765 732f 0a43 6f6d y2/packages/.Com │ │ │ │ +00070050: 706c 6574 6549 6e74 6572 7365 6374 696f pleteIntersectio │ │ │ │ +00070060: 6e52 6573 6f6c 7574 696f 6e73 2e6d 323a nResolutions.m2: │ │ │ │ +00070070: 3236 3637 3a30 2e0a 1f0a 4669 6c65 3a20 2667:0....File: │ │ │ │ +00070080: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ +00070090: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ +000700a0: 696e 666f 2c20 4e6f 6465 3a20 746f 4172 info, Node: toAr │ │ │ │ +000700b0: 7261 792c 204e 6578 743a 2074 776f 4d6f ray, Next: twoMo │ │ │ │ +000700c0: 6e6f 6d69 616c 732c 2050 7265 763a 2074 nomials, Prev: t │ │ │ │ +000700d0: 656e 736f 7257 6974 6843 6f6d 706f 6e65 ensorWithCompone │ │ │ │ +000700e0: 6e74 732c 2055 703a 2054 6f70 0a0a 746f nts, Up: Top..to │ │ │ │ +000700f0: 4172 7261 7920 2d2d 206d 616b 6573 2061 Array -- makes a │ │ │ │ +00070100: 6e20 6172 7261 7920 6672 6f6d 2061 204c n array from a L │ │ │ │ +00070110: 6973 7420 6f72 2066 726f 6d20 6120 7369 ist or from a si │ │ │ │ +00070120: 6e67 6c65 2069 6e74 6567 6572 0a2a 2a2a ngle integer.*** │ │ │ │ +00070130: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00070140: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00070150: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00070160: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00070170: 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 6167 ******.. * Usag │ │ │ │ -00070180: 653a 200a 2020 2020 2020 2020 6172 7220 e: . arr │ │ │ │ -00070190: 3d20 746f 4172 7261 7920 4c0a 2020 2020 = toArray L. │ │ │ │ -000701a0: 2020 2020 6172 7220 3d20 746f 4172 7261 arr = toArra │ │ │ │ -000701b0: 7920 6e0a 2020 2a20 496e 7075 7473 3a0a y n. * Inputs:. │ │ │ │ -000701c0: 2020 2020 2020 2a20 4c2c 2061 202a 6e6f * L, a *no │ │ │ │ -000701d0: 7465 206c 6973 743a 2028 4d61 6361 756c te list: (Macaul │ │ │ │ -000701e0: 6179 3244 6f63 294c 6973 742c 2c20 0a20 ay2Doc)List,, . │ │ │ │ -000701f0: 2020 2020 202a 206e 2c20 616e 202a 6e6f * n, an *no │ │ │ │ -00070200: 7465 2069 6e74 6567 6572 3a20 284d 6163 te integer: (Mac │ │ │ │ -00070210: 6175 6c61 7932 446f 6329 5a5a 2c2c 200a aulay2Doc)ZZ,, . │ │ │ │ -00070220: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ -00070230: 2020 202a 2061 7272 2c20 616e 202a 6e6f * arr, an *no │ │ │ │ -00070240: 7465 2061 7272 6179 3a20 284d 6163 6175 te array: (Macau │ │ │ │ -00070250: 6c61 7932 446f 6329 4172 7261 792c 2c20 lay2Doc)Array,, │ │ │ │ -00070260: 0a0a 5761 7973 2074 6f20 7573 6520 746f ..Ways to use to │ │ │ │ -00070270: 4172 7261 793a 0a3d 3d3d 3d3d 3d3d 3d3d Array:.========= │ │ │ │ -00070280: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -00070290: 2022 746f 4172 7261 7928 4c69 7374 2922 "toArray(List)" │ │ │ │ -000702a0: 0a20 202a 2022 746f 4172 7261 7928 5a5a . * "toArray(ZZ │ │ │ │ -000702b0: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ -000702c0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -000702d0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -000702e0: 626a 6563 7420 2a6e 6f74 6520 746f 4172 bject *note toAr │ │ │ │ -000702f0: 7261 793a 2074 6f41 7272 6179 2c20 6973 ray: toArray, is │ │ │ │ -00070300: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ -00070310: 6675 6e63 7469 6f6e 3a0a 284d 6163 6175 function:.(Macau │ │ │ │ -00070320: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ -00070330: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ +00070160: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +00070170: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +00070180: 2061 7272 203d 2074 6f41 7272 6179 204c arr = toArray L │ │ │ │ +00070190: 0a20 2020 2020 2020 2061 7272 203d 2074 . arr = t │ │ │ │ +000701a0: 6f41 7272 6179 206e 0a20 202a 2049 6e70 oArray n. * Inp │ │ │ │ +000701b0: 7574 733a 0a20 2020 2020 202a 204c 2c20 uts:. * L, │ │ │ │ +000701c0: 6120 2a6e 6f74 6520 6c69 7374 3a20 284d a *note list: (M │ │ │ │ +000701d0: 6163 6175 6c61 7932 446f 6329 4c69 7374 acaulay2Doc)List │ │ │ │ +000701e0: 2c2c 200a 2020 2020 2020 2a20 6e2c 2061 ,, . * n, a │ │ │ │ +000701f0: 6e20 2a6e 6f74 6520 696e 7465 6765 723a n *note integer: │ │ │ │ +00070200: 2028 4d61 6361 756c 6179 3244 6f63 295a (Macaulay2Doc)Z │ │ │ │ +00070210: 5a2c 2c20 0a20 202a 204f 7574 7075 7473 Z,, . * Outputs │ │ │ │ +00070220: 3a0a 2020 2020 2020 2a20 6172 722c 2061 :. * arr, a │ │ │ │ +00070230: 6e20 2a6e 6f74 6520 6172 7261 793a 2028 n *note array: ( │ │ │ │ +00070240: 4d61 6361 756c 6179 3244 6f63 2941 7272 Macaulay2Doc)Arr │ │ │ │ +00070250: 6179 2c2c 200a 0a57 6179 7320 746f 2075 ay,, ..Ways to u │ │ │ │ +00070260: 7365 2074 6f41 7272 6179 3a0a 3d3d 3d3d se toArray:.==== │ │ │ │ +00070270: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00070280: 0a0a 2020 2a20 2274 6f41 7272 6179 284c .. * "toArray(L │ │ │ │ +00070290: 6973 7429 220a 2020 2a20 2274 6f41 7272 ist)". * "toArr │ │ │ │ +000702a0: 6179 285a 5a29 220a 0a46 6f72 2074 6865 ay(ZZ)"..For the │ │ │ │ +000702b0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +000702c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +000702d0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +000702e0: 2074 6f41 7272 6179 3a20 746f 4172 7261 toArray: toArra │ │ │ │ +000702f0: 792c 2069 7320 6120 2a6e 6f74 6520 6d65 y, is a *note me │ │ │ │ +00070300: 7468 6f64 2066 756e 6374 696f 6e3a 0a28 thod function:.( │ │ │ │ +00070310: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ +00070320: 686f 6446 756e 6374 696f 6e2c 2e0a 0a2d hodFunction,...- │ │ │ │ +00070330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070380: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -00070390: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -000703a0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -000703b0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -000703c0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -000703d0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -000703e0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -000703f0: 2f0a 436f 6d70 6c65 7465 496e 7465 7273 /.CompleteInters │ │ │ │ -00070400: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ -00070410: 732e 6d32 3a33 3934 333a 302e 0a1f 0a46 s.m2:3943:0....F │ │ │ │ -00070420: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ -00070430: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ -00070440: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ -00070450: 2074 776f 4d6f 6e6f 6d69 616c 732c 2050 twoMonomials, P │ │ │ │ -00070460: 7265 763a 2074 6f41 7272 6179 2c20 5570 rev: toArray, Up │ │ │ │ -00070470: 3a20 546f 700a 0a74 776f 4d6f 6e6f 6d69 : Top..twoMonomi │ │ │ │ -00070480: 616c 7320 2d2d 2074 616c 6c79 2074 6865 als -- tally the │ │ │ │ -00070490: 2073 6571 7565 6e63 6573 206f 6620 4252 sequences of BR │ │ │ │ -000704a0: 616e 6b73 2066 6f72 2063 6572 7461 696e anks for certain │ │ │ │ -000704b0: 2065 7861 6d70 6c65 730a 2a2a 2a2a 2a2a examples.****** │ │ │ │ +00070370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +00070380: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +00070390: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +000703a0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +000703b0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +000703c0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +000703d0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +000703e0: 6b61 6765 732f 0a43 6f6d 706c 6574 6549 kages/.CompleteI │ │ │ │ +000703f0: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ +00070400: 7574 696f 6e73 2e6d 323a 3339 3433 3a30 utions.m2:3943:0 │ │ │ │ +00070410: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ +00070420: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ +00070430: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ +00070440: 4e6f 6465 3a20 7477 6f4d 6f6e 6f6d 6961 Node: twoMonomia │ │ │ │ +00070450: 6c73 2c20 5072 6576 3a20 746f 4172 7261 ls, Prev: toArra │ │ │ │ +00070460: 792c 2055 703a 2054 6f70 0a0a 7477 6f4d y, Up: Top..twoM │ │ │ │ +00070470: 6f6e 6f6d 6961 6c73 202d 2d20 7461 6c6c onomials -- tall │ │ │ │ +00070480: 7920 7468 6520 7365 7175 656e 6365 7320 y the sequences │ │ │ │ +00070490: 6f66 2042 5261 6e6b 7320 666f 7220 6365 of BRanks for ce │ │ │ │ +000704a0: 7274 6169 6e20 6578 616d 706c 6573 0a2a rtain examples.* │ │ │ │ +000704b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000704c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000704d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000704e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000704f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ -00070500: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -00070510: 2020 5420 3d20 5477 6f4d 6f6e 6f6d 6961 T = TwoMonomia │ │ │ │ -00070520: 6c73 2863 2c64 290a 2020 2a20 496e 7075 ls(c,d). * Inpu │ │ │ │ -00070530: 7473 3a0a 2020 2020 2020 2a20 632c 2061 ts:. * c, a │ │ │ │ -00070540: 6e20 2a6e 6f74 6520 696e 7465 6765 723a n *note integer: │ │ │ │ -00070550: 2028 4d61 6361 756c 6179 3244 6f63 295a (Macaulay2Doc)Z │ │ │ │ -00070560: 5a2c 2c20 636f 6469 6d65 6e73 696f 6e20 Z,, codimension │ │ │ │ -00070570: 696e 2077 6869 6368 2074 6f20 776f 726b in which to work │ │ │ │ -00070580: 0a20 2020 2020 202a 2064 2c20 616e 202a . * d, an * │ │ │ │ -00070590: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ -000705a0: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ -000705b0: 2064 6567 7265 6520 6f66 2074 6865 206d degree of the m │ │ │ │ -000705c0: 6f6e 6f6d 6961 6c73 2074 6f20 7461 6b65 onomials to take │ │ │ │ -000705d0: 0a20 202a 202a 6e6f 7465 204f 7074 696f . * *note Optio │ │ │ │ -000705e0: 6e61 6c20 696e 7075 7473 3a20 284d 6163 nal inputs: (Mac │ │ │ │ -000705f0: 6175 6c61 7932 446f 6329 7573 696e 6720 aulay2Doc)using │ │ │ │ -00070600: 6675 6e63 7469 6f6e 7320 7769 7468 206f functions with o │ │ │ │ -00070610: 7074 696f 6e61 6c20 696e 7075 7473 2c3a ptional inputs,: │ │ │ │ -00070620: 0a20 2020 2020 202a 204f 7074 696d 6973 . * Optimis │ │ │ │ -00070630: 6d20 3d3e 202e 2e2e 2c20 6465 6661 756c m => ..., defaul │ │ │ │ -00070640: 7420 7661 6c75 6520 300a 2020 2a20 4f75 t value 0. * Ou │ │ │ │ -00070650: 7470 7574 733a 0a20 2020 2020 202a 2054 tputs:. * T │ │ │ │ -00070660: 2c20 6120 2a6e 6f74 6520 7461 6c6c 793a , a *note tally: │ │ │ │ -00070670: 2028 4d61 6361 756c 6179 3244 6f63 2954 (Macaulay2Doc)T │ │ │ │ -00070680: 616c 6c79 2c2c 200a 0a44 6573 6372 6970 ally,, ..Descrip │ │ │ │ -00070690: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -000706a0: 0a0a 7461 6c6c 6965 7320 7468 6520 7365 ..tallies the se │ │ │ │ -000706b0: 7175 656e 6365 7320 6f66 2042 2d72 616e quences of B-ran │ │ │ │ -000706c0: 6b73 2074 6861 7420 6f63 6375 7220 666f ks that occur fo │ │ │ │ -000706d0: 7220 6964 6561 6c73 2067 656e 6572 6174 r ideals generat │ │ │ │ -000706e0: 6564 2062 7920 7061 6972 7320 6f66 0a6d ed by pairs of.m │ │ │ │ -000706f0: 6f6e 6f6d 6961 6c73 2069 6e20 5220 3d20 onomials in R = │ │ │ │ -00070700: 532f 2864 2d74 6820 706f 7765 7273 206f S/(d-th powers o │ │ │ │ -00070710: 6620 7468 6520 7661 7269 6162 6c65 7329 f the variables) │ │ │ │ -00070720: 2c20 7769 7468 2066 756c 6c20 636f 6d70 , with full comp │ │ │ │ -00070730: 6c65 7869 7479 2028 3d63 293b 0a74 6861 lexity (=c);.tha │ │ │ │ -00070740: 7420 6973 2c20 666f 7220 616e 2061 7070 t is, for an app │ │ │ │ -00070750: 726f 7072 6961 7465 2073 797a 7967 7920 ropriate syzygy │ │ │ │ -00070760: 4d20 6f66 204d 3020 3d20 522f 286d 312c M of M0 = R/(m1, │ │ │ │ -00070770: 206d 3229 2077 6865 7265 206d 3120 616e m2) where m1 an │ │ │ │ -00070780: 6420 6d32 2061 7265 0a6d 6f6e 6f6d 6961 d m2 are.monomia │ │ │ │ -00070790: 6c73 206f 6620 7468 6520 7361 6d65 2064 ls of the same d │ │ │ │ -000707a0: 6567 7265 652e 0a0a 2b2d 2d2d 2d2d 2d2d egree...+------- │ │ │ │ +000704f0: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ +00070500: 2020 2020 2020 2054 203d 2054 776f 4d6f T = TwoMo │ │ │ │ +00070510: 6e6f 6d69 616c 7328 632c 6429 0a20 202a nomials(c,d). * │ │ │ │ +00070520: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +00070530: 2063 2c20 616e 202a 6e6f 7465 2069 6e74 c, an *note int │ │ │ │ +00070540: 6567 6572 3a20 284d 6163 6175 6c61 7932 eger: (Macaulay2 │ │ │ │ +00070550: 446f 6329 5a5a 2c2c 2063 6f64 696d 656e Doc)ZZ,, codimen │ │ │ │ +00070560: 7369 6f6e 2069 6e20 7768 6963 6820 746f sion in which to │ │ │ │ +00070570: 2077 6f72 6b0a 2020 2020 2020 2a20 642c work. * d, │ │ │ │ +00070580: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ +00070590: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ +000705a0: 295a 5a2c 2c20 6465 6772 6565 206f 6620 )ZZ,, degree of │ │ │ │ +000705b0: 7468 6520 6d6f 6e6f 6d69 616c 7320 746f the monomials to │ │ │ │ +000705c0: 2074 616b 650a 2020 2a20 2a6e 6f74 6520 take. * *note │ │ │ │ +000705d0: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ +000705e0: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ +000705f0: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ +00070600: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ +00070610: 7574 732c 3a0a 2020 2020 2020 2a20 4f70 uts,:. * Op │ │ │ │ +00070620: 7469 6d69 736d 203d 3e20 2e2e 2e2c 2064 timism => ..., d │ │ │ │ +00070630: 6566 6175 6c74 2076 616c 7565 2030 0a20 efault value 0. │ │ │ │ +00070640: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +00070650: 2020 2a20 542c 2061 202a 6e6f 7465 2074 * T, a *note t │ │ │ │ +00070660: 616c 6c79 3a20 284d 6163 6175 6c61 7932 ally: (Macaulay2 │ │ │ │ +00070670: 446f 6329 5461 6c6c 792c 2c20 0a0a 4465 Doc)Tally,, ..De │ │ │ │ +00070680: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +00070690: 3d3d 3d3d 3d0a 0a74 616c 6c69 6573 2074 =====..tallies t │ │ │ │ +000706a0: 6865 2073 6571 7565 6e63 6573 206f 6620 he sequences of │ │ │ │ +000706b0: 422d 7261 6e6b 7320 7468 6174 206f 6363 B-ranks that occ │ │ │ │ +000706c0: 7572 2066 6f72 2069 6465 616c 7320 6765 ur for ideals ge │ │ │ │ +000706d0: 6e65 7261 7465 6420 6279 2070 6169 7273 nerated by pairs │ │ │ │ +000706e0: 206f 660a 6d6f 6e6f 6d69 616c 7320 696e of.monomials in │ │ │ │ +000706f0: 2052 203d 2053 2f28 642d 7468 2070 6f77 R = S/(d-th pow │ │ │ │ +00070700: 6572 7320 6f66 2074 6865 2076 6172 6961 ers of the varia │ │ │ │ +00070710: 626c 6573 292c 2077 6974 6820 6675 6c6c bles), with full │ │ │ │ +00070720: 2063 6f6d 706c 6578 6974 7920 283d 6329 complexity (=c) │ │ │ │ +00070730: 3b0a 7468 6174 2069 732c 2066 6f72 2061 ;.that is, for a │ │ │ │ +00070740: 6e20 6170 7072 6f70 7269 6174 6520 7379 n appropriate sy │ │ │ │ +00070750: 7a79 6779 204d 206f 6620 4d30 203d 2052 zygy M of M0 = R │ │ │ │ +00070760: 2f28 6d31 2c20 6d32 2920 7768 6572 6520 /(m1, m2) where │ │ │ │ +00070770: 6d31 2061 6e64 206d 3220 6172 650a 6d6f m1 and m2 are.mo │ │ │ │ +00070780: 6e6f 6d69 616c 7320 6f66 2074 6865 2073 nomials of the s │ │ │ │ +00070790: 616d 6520 6465 6772 6565 2e0a 0a2b 2d2d ame degree...+-- │ │ │ │ +000707a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000707b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000707c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000707d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000707e0: 7c69 3120 3a20 7365 7452 616e 646f 6d53 |i1 : setRandomS │ │ │ │ -000707f0: 6565 6420 3020 2020 2020 2020 2020 2020 eed 0 │ │ │ │ -00070800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070810: 2020 2020 2020 7c0a 7c20 2d2d 2073 6574 |.| -- set │ │ │ │ -00070820: 7469 6e67 2072 616e 646f 6d20 7365 6564 ting random seed │ │ │ │ -00070830: 2074 6f20 3020 2020 2020 2020 2020 2020 to 0 │ │ │ │ -00070840: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00070850: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000707d0: 2d2d 2d2b 0a7c 6931 203a 2073 6574 5261 ---+.|i1 : setRa │ │ │ │ +000707e0: 6e64 6f6d 5365 6564 2030 2020 2020 2020 ndomSeed 0 │ │ │ │ +000707f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00070800: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +00070810: 2d20 7365 7474 696e 6720 7261 6e64 6f6d - setting random │ │ │ │ +00070820: 2073 6565 6420 746f 2030 2020 2020 2020 seed to 0 │ │ │ │ +00070830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00070840: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00070850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070880: 2020 2020 2020 7c0a 7c6f 3120 3d20 3020 |.|o1 = 0 │ │ │ │ +00070870: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00070880: 203d 2030 2020 2020 2020 2020 2020 2020 = 0 │ │ │ │ 00070890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000708a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000708b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000708c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000708b0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000708c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000708d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000708e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000708f0: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 7477 ------+.|i2 : tw │ │ │ │ -00070900: 6f4d 6f6e 6f6d 6961 6c73 2832 2c33 2920 oMonomials(2,3) │ │ │ │ +000708e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +000708f0: 203a 2074 776f 4d6f 6e6f 6d69 616c 7328 : twoMonomials( │ │ │ │ +00070900: 322c 3329 2020 2020 2020 2020 2020 2020 2,3) │ │ │ │ 00070910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00070930: 7c20 2d2d 2075 7365 6420 302e 3832 3933 | -- used 0.8293 │ │ │ │ -00070940: 3131 7320 2863 7075 293b 2030 2e36 3133 11s (cpu); 0.613 │ │ │ │ -00070950: 3932 3873 2028 7468 7265 6164 293b 2030 928s (thread); 0 │ │ │ │ -00070960: 7320 2867 6329 7c0a 7c32 2020 2020 2020 s (gc)|.|2 │ │ │ │ +00070920: 2020 207c 0a7c 202d 2d20 7573 6564 2031 |.| -- used 1 │ │ │ │ +00070930: 2e33 3336 3038 7320 2863 7075 293b 2030 .33608s (cpu); 0 │ │ │ │ +00070940: 2e37 3430 3331 3673 2028 7468 7265 6164 .740316s (thread │ │ │ │ +00070950: 293b 2030 7320 2867 6329 207c 0a7c 3220 ); 0s (gc) |.|2 │ │ │ │ +00070960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070990: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000709a0: 7c54 616c 6c79 7b7b 7b31 2c20 317d 7d20 |Tally{{{1, 1}} │ │ │ │ -000709b0: 3d3e 2032 2020 2020 2020 2020 7d20 2020 => 2 } │ │ │ │ -000709c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000709d0: 2020 2020 2020 7c0a 7c20 2020 2020 207b |.| { │ │ │ │ -000709e0: 7b32 2c20 327d 2c20 7b31 2c20 327d 7d20 {2, 2}, {1, 2}} │ │ │ │ -000709f0: 3d3e 2034 2020 2020 2020 2020 2020 2020 => 4 │ │ │ │ -00070a00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00070a10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00070990: 2020 207c 0a7c 5461 6c6c 797b 7b7b 312c |.|Tally{{{1, │ │ │ │ +000709a0: 2031 7d7d 203d 3e20 3220 2020 2020 2020 1}} => 2 │ │ │ │ +000709b0: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000709c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000709d0: 2020 2020 7b7b 322c 2032 7d2c 207b 312c {{2, 2}, {1, │ │ │ │ +000709e0: 2032 7d7d 203d 3e20 3420 2020 2020 2020 2}} => 4 │ │ │ │ +000709f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00070a00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00070a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070a40: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00070a50: 6420 302e 3431 3132 3973 2028 6370 7529 d 0.41129s (cpu) │ │ │ │ -00070a60: 3b20 302e 3333 3734 3634 7320 2874 6872 ; 0.337464s (thr │ │ │ │ -00070a70: 6561 6429 3b20 3073 2028 6763 2920 7c0a ead); 0s (gc) |. │ │ │ │ -00070a80: 7c33 2020 2020 2020 2020 2020 2020 2020 |3 │ │ │ │ +00070a30: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +00070a40: 2d20 7573 6564 2030 2e35 3736 3234 3173 - used 0.576241s │ │ │ │ +00070a50: 2028 6370 7529 3b20 302e 3339 3738 3633 (cpu); 0.397863 │ │ │ │ +00070a60: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00070a70: 6763 297c 0a7c 3320 2020 2020 2020 2020 gc)|.|3 │ │ │ │ +00070a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070ab0: 2020 2020 2020 7c0a 7c54 616c 6c79 7b7b |.|Tally{{ │ │ │ │ -00070ac0: 7b32 2c20 327d 2c20 7b31 2c20 327d 7d20 {2, 2}, {1, 2}} │ │ │ │ -00070ad0: 3d3e 2032 7d20 2020 2020 2020 2020 2020 => 2} │ │ │ │ -00070ae0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00070af0: 7c20 2020 2020 207b 7b33 2c20 337d 2c20 | {{3, 3}, │ │ │ │ -00070b00: 7b32 2c20 337d 7d20 3d3e 2031 2020 2020 {2, 3}} => 1 │ │ │ │ -00070b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070b20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00070aa0: 2020 2020 2020 2020 2020 207c 0a7c 5461 |.|Ta │ │ │ │ +00070ab0: 6c6c 797b 7b7b 322c 2032 7d2c 207b 312c lly{{{2, 2}, {1, │ │ │ │ +00070ac0: 2032 7d7d 203d 3e20 327d 2020 2020 2020 2}} => 2} │ │ │ │ +00070ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00070ae0: 2020 207c 0a7c 2020 2020 2020 7b7b 332c |.| {{3, │ │ │ │ +00070af0: 2033 7d2c 207b 322c 2033 7d7d 203d 3e20 3}, {2, 3}} => │ │ │ │ +00070b00: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00070b10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00070b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070b50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00070b60: 7c20 2d2d 2075 7365 6420 302e 3139 3331 | -- used 0.1931 │ │ │ │ -00070b70: 3735 7320 2863 7075 293b 2030 2e31 3336 75s (cpu); 0.136 │ │ │ │ -00070b80: 3030 3273 2028 7468 7265 6164 293b 2030 002s (thread); 0 │ │ │ │ -00070b90: 7320 2867 6329 7c0a 7c34 2020 2020 2020 s (gc)|.|4 │ │ │ │ +00070b50: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ +00070b60: 2e32 3935 3437 3973 2028 6370 7529 3b20 .295479s (cpu); │ │ │ │ +00070b70: 302e 3135 3731 3434 7320 2874 6872 6561 0.157144s (threa │ │ │ │ +00070b80: 6429 3b20 3073 2028 6763 297c 0a7c 3420 d); 0s (gc)|.|4 │ │ │ │ +00070b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070bc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00070bd0: 7c54 616c 6c79 7b7b 7b32 2c20 327d 2c20 |Tally{{{2, 2}, │ │ │ │ -00070be0: 7b31 2c20 327d 7d20 3d3e 2031 7d20 2020 {1, 2}} => 1} │ │ │ │ -00070bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070c00: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00070bc0: 2020 207c 0a7c 5461 6c6c 797b 7b7b 322c |.|Tally{{{2, │ │ │ │ +00070bd0: 2032 7d2c 207b 312c 2032 7d7d 203d 3e20 2}, {1, 2}} => │ │ │ │ +00070be0: 317d 2020 2020 2020 2020 2020 2020 2020 1} │ │ │ │ +00070bf0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00070c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00070c40: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -00070c50: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 7477 ==.. * *note tw │ │ │ │ -00070c60: 6f4d 6f6e 6f6d 6961 6c73 3a20 7477 6f4d oMonomials: twoM │ │ │ │ -00070c70: 6f6e 6f6d 6961 6c73 2c20 2d2d 2074 616c onomials, -- tal │ │ │ │ -00070c80: 6c79 2074 6865 2073 6571 7565 6e63 6573 ly the sequences │ │ │ │ -00070c90: 206f 6620 4252 616e 6b73 2066 6f72 0a20 of BRanks for. │ │ │ │ -00070ca0: 2020 2063 6572 7461 696e 2065 7861 6d70 certain examp │ │ │ │ -00070cb0: 6c65 730a 0a57 6179 7320 746f 2075 7365 les..Ways to use │ │ │ │ -00070cc0: 2074 776f 4d6f 6e6f 6d69 616c 733a 0a3d twoMonomials:.= │ │ │ │ -00070cd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00070ce0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2274 ========.. * "t │ │ │ │ -00070cf0: 776f 4d6f 6e6f 6d69 616c 7328 5a5a 2c5a woMonomials(ZZ,Z │ │ │ │ -00070d00: 5a29 220a 0a46 6f72 2074 6865 2070 726f Z)"..For the pro │ │ │ │ -00070d10: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -00070d20: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -00070d30: 6f62 6a65 6374 202a 6e6f 7465 2074 776f object *note two │ │ │ │ -00070d40: 4d6f 6e6f 6d69 616c 733a 2074 776f 4d6f Monomials: twoMo │ │ │ │ -00070d50: 6e6f 6d69 616c 732c 2069 7320 6120 2a6e nomials, is a *n │ │ │ │ -00070d60: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -00070d70: 696f 6e20 7769 7468 0a6f 7074 696f 6e73 ion with.options │ │ │ │ -00070d80: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00070d90: 4d65 7468 6f64 4675 6e63 7469 6f6e 5769 MethodFunctionWi │ │ │ │ -00070da0: 7468 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d thOptions,...--- │ │ │ │ +00070c30: 2d2d 2d2b 0a0a 5365 6520 616c 736f 0a3d ---+..See also.= │ │ │ │ +00070c40: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ +00070c50: 7465 2074 776f 4d6f 6e6f 6d69 616c 733a te twoMonomials: │ │ │ │ +00070c60: 2074 776f 4d6f 6e6f 6d69 616c 732c 202d twoMonomials, - │ │ │ │ +00070c70: 2d20 7461 6c6c 7920 7468 6520 7365 7175 - tally the sequ │ │ │ │ +00070c80: 656e 6365 7320 6f66 2042 5261 6e6b 7320 ences of BRanks │ │ │ │ +00070c90: 666f 720a 2020 2020 6365 7274 6169 6e20 for. certain │ │ │ │ +00070ca0: 6578 616d 706c 6573 0a0a 5761 7973 2074 examples..Ways t │ │ │ │ +00070cb0: 6f20 7573 6520 7477 6f4d 6f6e 6f6d 6961 o use twoMonomia │ │ │ │ +00070cc0: 6c73 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ls:.============ │ │ │ │ +00070cd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +00070ce0: 202a 2022 7477 6f4d 6f6e 6f6d 6961 6c73 * "twoMonomials │ │ │ │ +00070cf0: 285a 5a2c 5a5a 2922 0a0a 466f 7220 7468 (ZZ,ZZ)"..For th │ │ │ │ +00070d00: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +00070d10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00070d20: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +00070d30: 6520 7477 6f4d 6f6e 6f6d 6961 6c73 3a20 e twoMonomials: │ │ │ │ +00070d40: 7477 6f4d 6f6e 6f6d 6961 6c73 2c20 6973 twoMonomials, is │ │ │ │ +00070d50: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ +00070d60: 6675 6e63 7469 6f6e 2077 6974 680a 6f70 function with.op │ │ │ │ +00070d70: 7469 6f6e 733a 2028 4d61 6361 756c 6179 tions: (Macaulay │ │ │ │ +00070d80: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ +00070d90: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ +00070da0: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ 00070db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -00070e00: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -00070e10: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -00070e20: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -00070e30: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -00070e40: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -00070e50: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -00070e60: 6765 732f 0a43 6f6d 706c 6574 6549 6e74 ges/.CompleteInt │ │ │ │ -00070e70: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ -00070e80: 696f 6e73 2e6d 323a 3435 3434 3a30 2e0a ions.m2:4544:0.. │ │ │ │ -00070e90: 1f0a 5461 6720 5461 626c 653a 0a4e 6f64 ..Tag Table:.Nod │ │ │ │ -00070ea0: 653a 2054 6f70 7f33 3136 0a4e 6f64 653a e: Top.316.Node: │ │ │ │ -00070eb0: 2041 5261 6e6b 737f 3336 3338 320a 4e6f ARanks.36382.No │ │ │ │ -00070ec0: 6465 3a20 4175 676d 656e 7461 7469 6f6e de: Augmentation │ │ │ │ -00070ed0: 7f33 3739 3438 0a4e 6f64 653a 2042 4747 .37948.Node: BGG │ │ │ │ -00070ee0: 4c7f 3339 3136 310a 4e6f 6465 3a20 624d L.39161.Node: bM │ │ │ │ -00070ef0: 6170 737f 3432 3539 380a 4e6f 6465 3a20 aps.42598.Node: │ │ │ │ -00070f00: 4252 616e 6b73 7f34 3431 3030 0a4e 6f64 BRanks.44100.Nod │ │ │ │ -00070f10: 653a 2043 6865 636b 7f35 3136 3934 0a4e e: Check.51694.N │ │ │ │ -00070f20: 6f64 653a 2063 6f6d 706c 6578 6974 797f ode: complexity. │ │ │ │ -00070f30: 3533 3434 330a 4e6f 6465 3a20 636f 7379 53443.Node: cosy │ │ │ │ -00070f40: 7a79 6779 5265 737f 3539 3636 360a 4e6f zygyRes.59666.No │ │ │ │ -00070f50: 6465 3a20 644d 6170 737f 3632 3434 350a de: dMaps.62445. │ │ │ │ -00070f60: 4e6f 6465 3a20 6475 616c 5769 7468 436f Node: dualWithCo │ │ │ │ -00070f70: 6d70 6f6e 656e 7473 7f36 3339 3631 0a4e mponents.63961.N │ │ │ │ -00070f80: 6f64 653a 2045 6973 656e 6275 6453 6861 ode: EisenbudSha │ │ │ │ -00070f90: 6d61 7368 7f36 3533 3431 0a4e 6f64 653a mash.65341.Node: │ │ │ │ -00070fa0: 2045 6973 656e 6275 6453 6861 6d61 7368 EisenbudShamash │ │ │ │ -00070fb0: 546f 7461 6c7f 3831 3038 300a 4e6f 6465 Total.81080.Node │ │ │ │ -00070fc0: 3a20 6576 656e 4578 744d 6f64 756c 657f : evenExtModule. │ │ │ │ -00070fd0: 3936 3938 360a 4e6f 6465 3a20 6578 706f 96986.Node: expo │ │ │ │ -00070fe0: 7f31 3033 3239 340a 4e6f 6465 3a20 6578 .103294.Node: ex │ │ │ │ -00070ff0: 7465 7269 6f72 4578 744d 6f64 756c 657f teriorExtModule. │ │ │ │ -00071000: 3130 3731 3031 0a4e 6f64 653a 2065 7874 107101.Node: ext │ │ │ │ -00071010: 6572 696f 7248 6f6d 6f6c 6f67 794d 6f64 eriorHomologyMod │ │ │ │ -00071020: 756c 657f 3131 3935 3431 0a4e 6f64 653a ule.119541.Node: │ │ │ │ -00071030: 2065 7874 6572 696f 7254 6f72 4d6f 6475 exteriorTorModu │ │ │ │ -00071040: 6c65 7f31 3231 3230 370a 4e6f 6465 3a20 le.121207.Node: │ │ │ │ -00071050: 6578 7449 734f 6e65 506f 6c79 6e6f 6d69 extIsOnePolynomi │ │ │ │ -00071060: 616c 7f31 3332 3032 370a 4e6f 6465 3a20 al.132027.Node: │ │ │ │ -00071070: 4578 744d 6f64 756c 657f 3133 3537 3335 ExtModule.135735 │ │ │ │ -00071080: 0a4e 6f64 653a 2045 7874 4d6f 6475 6c65 .Node: ExtModule │ │ │ │ -00071090: 4461 7461 7f31 3437 3736 320a 4e6f 6465 Data.147762.Node │ │ │ │ -000710a0: 3a20 6578 7456 7343 6f68 6f6d 6f6c 6f67 : extVsCohomolog │ │ │ │ -000710b0: 797f 3135 3432 3032 0a4e 6f64 653a 2066 y.154202.Node: f │ │ │ │ -000710c0: 696e 6974 6542 6574 7469 4e75 6d62 6572 initeBettiNumber │ │ │ │ -000710d0: 737f 3136 3030 3434 0a4e 6f64 653a 2066 s.160044.Node: f │ │ │ │ -000710e0: 7265 6545 7874 6572 696f 7253 756d 6d61 reeExteriorSumma │ │ │ │ -000710f0: 6e64 7f31 3635 3836 320a 4e6f 6465 3a20 nd.165862.Node: │ │ │ │ -00071100: 4772 6164 696e 677f 3136 3837 3135 0a4e Grading.168715.N │ │ │ │ -00071110: 6f64 653a 2068 667f 3137 3030 3730 0a4e ode: hf.170070.N │ │ │ │ -00071120: 6f64 653a 2068 664d 6f64 756c 6541 7345 ode: hfModuleAsE │ │ │ │ -00071130: 7874 7f31 3730 3935 320a 4e6f 6465 3a20 xt.170952.Node: │ │ │ │ -00071140: 6869 6768 5379 7a79 6779 7f31 3734 3838 highSyzygy.17488 │ │ │ │ -00071150: 310a 4e6f 6465 3a20 684d 6170 737f 3138 1.Node: hMaps.18 │ │ │ │ -00071160: 3233 3831 0a4e 6f64 653a 2048 6f6d 5769 2381.Node: HomWi │ │ │ │ -00071170: 7468 436f 6d70 6f6e 656e 7473 7f31 3833 thComponents.183 │ │ │ │ -00071180: 3937 350a 4e6f 6465 3a20 696e 6669 6e69 975.Node: infini │ │ │ │ -00071190: 7465 4265 7474 694e 756d 6265 7273 7f31 teBettiNumbers.1 │ │ │ │ -000711a0: 3835 3338 360a 4e6f 6465 3a20 6973 4c69 85386.Node: isLi │ │ │ │ -000711b0: 6e65 6172 7f31 3931 3332 370a 4e6f 6465 near.191327.Node │ │ │ │ -000711c0: 3a20 6973 5175 6173 6952 6567 756c 6172 : isQuasiRegular │ │ │ │ -000711d0: 7f31 3932 3334 390a 4e6f 6465 3a20 6973 .192349.Node: is │ │ │ │ -000711e0: 5374 6162 6c79 5472 6976 6961 6c7f 3139 StablyTrivial.19 │ │ │ │ -000711f0: 3535 3836 0a4e 6f64 653a 206b 6f73 7a75 5586.Node: koszu │ │ │ │ -00071200: 6c45 7874 656e 7369 6f6e 7f32 3033 3033 lExtension.20303 │ │ │ │ -00071210: 390a 4e6f 6465 3a20 4c61 7965 7265 647f 9.Node: Layered. │ │ │ │ -00071220: 3230 3435 3934 0a4e 6f64 653a 206c 6179 204594.Node: lay │ │ │ │ -00071230: 6572 6564 5265 736f 6c75 7469 6f6e 7f32 eredResolution.2 │ │ │ │ -00071240: 3035 3936 320a 4e6f 6465 3a20 4c69 6674 05962.Node: Lift │ │ │ │ -00071250: 7f32 3238 3632 320a 4e6f 6465 3a20 6d61 .228622.Node: ma │ │ │ │ -00071260: 6b65 4669 6e69 7465 5265 736f 6c75 7469 keFiniteResoluti │ │ │ │ -00071270: 6f6e 7f32 3239 3634 350a 4e6f 6465 3a20 on.229645.Node: │ │ │ │ -00071280: 6d61 6b65 4669 6e69 7465 5265 736f 6c75 makeFiniteResolu │ │ │ │ -00071290: 7469 6f6e 436f 6469 6d32 7f32 3530 3338 tionCodim2.25038 │ │ │ │ -000712a0: 320a 4e6f 6465 3a20 6d61 6b65 486f 6d6f 2.Node: makeHomo │ │ │ │ -000712b0: 746f 7069 6573 7f32 3539 3437 300a 4e6f topies.259470.No │ │ │ │ -000712c0: 6465 3a20 6d61 6b65 486f 6d6f 746f 7069 de: makeHomotopi │ │ │ │ -000712d0: 6573 317f 3334 3732 3331 0a4e 6f64 653a es1.347231.Node: │ │ │ │ -000712e0: 206d 616b 6548 6f6d 6f74 6f70 6965 734f makeHomotopiesO │ │ │ │ -000712f0: 6e48 6f6d 6f6c 6f67 797f 3334 3838 3635 nHomology.348865 │ │ │ │ -00071300: 0a4e 6f64 653a 206d 616b 654d 6f64 756c .Node: makeModul │ │ │ │ -00071310: 657f 3335 3035 3130 0a4e 6f64 653a 206d e.350510.Node: m │ │ │ │ -00071320: 616b 6554 7f33 3631 3230 380a 4e6f 6465 akeT.361208.Node │ │ │ │ -00071330: 3a20 6d61 7472 6978 4661 6374 6f72 697a : matrixFactoriz │ │ │ │ -00071340: 6174 696f 6e7f 3336 3534 3037 0a4e 6f64 ation.365407.Nod │ │ │ │ -00071350: 653a 206d 6642 6f75 6e64 7f33 3734 3235 e: mfBound.37425 │ │ │ │ -00071360: 390a 4e6f 6465 3a20 6d6f 6475 6c65 4173 9.Node: moduleAs │ │ │ │ -00071370: 4578 747f 3337 3631 3531 0a4e 6f64 653a Ext.376151.Node: │ │ │ │ -00071380: 206e 6577 4578 747f 3338 3233 3939 0a4e newExt.382399.N │ │ │ │ -00071390: 6f64 653a 206f 6464 4578 744d 6f64 756c ode: oddExtModul │ │ │ │ -000713a0: 657f 3431 3039 3835 0a4e 6f64 653a 204f e.410985.Node: O │ │ │ │ -000713b0: 7074 696d 6973 6d7f 3431 3732 3735 0a4e ptimism.417275.N │ │ │ │ -000713c0: 6f64 653a 204f 7574 5269 6e67 7f34 3138 ode: OutRing.418 │ │ │ │ -000713d0: 3830 310a 4e6f 6465 3a20 7073 694d 6170 801.Node: psiMap │ │ │ │ -000713e0: 737f 3432 3031 3438 0a4e 6f64 653a 2072 s.420148.Node: r │ │ │ │ -000713f0: 6567 756c 6172 6974 7953 6571 7565 6e63 egularitySequenc │ │ │ │ -00071400: 657f 3432 3136 3838 0a4e 6f64 653a 2053 e.421688.Node: S │ │ │ │ -00071410: 327f 3432 3532 3433 0a4e 6f64 653a 2053 2.425243.Node: S │ │ │ │ -00071420: 6861 6d61 7368 7f34 3336 3337 340a 4e6f hamash.436374.No │ │ │ │ -00071430: 6465 3a20 7370 6c69 7474 696e 6773 7f34 de: splittings.4 │ │ │ │ -00071440: 3434 3131 330a 4e6f 6465 3a20 7374 6162 44113.Node: stab │ │ │ │ -00071450: 6c65 486f 6d7f 3434 3933 3332 0a4e 6f64 leHom.449332.Nod │ │ │ │ -00071460: 653a 2073 756d 5477 6f4d 6f6e 6f6d 6961 e: sumTwoMonomia │ │ │ │ -00071470: 6c73 7f34 3530 3536 390a 4e6f 6465 3a20 ls.450569.Node: │ │ │ │ -00071480: 5461 7465 5265 736f 6c75 7469 6f6e 7f34 TateResolution.4 │ │ │ │ -00071490: 3533 3035 390a 4e6f 6465 3a20 7465 6e73 53059.Node: tens │ │ │ │ -000714a0: 6f72 5769 7468 436f 6d70 6f6e 656e 7473 orWithComponents │ │ │ │ -000714b0: 7f34 3537 3433 360a 4e6f 6465 3a20 746f .457436.Node: to │ │ │ │ -000714c0: 4172 7261 797f 3435 3838 3833 0a4e 6f64 Array.458883.Nod │ │ │ │ -000714d0: 653a 2074 776f 4d6f 6e6f 6d69 616c 737f e: twoMonomials. │ │ │ │ -000714e0: 3435 3938 3035 0a1f 0a45 6e64 2054 6167 459805...End Tag │ │ │ │ -000714f0: 2054 6162 6c65 0a Table. │ │ │ │ +00070df0: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +00070e00: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +00070e10: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +00070e20: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +00070e30: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +00070e40: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +00070e50: 7061 636b 6167 6573 2f0a 436f 6d70 6c65 packages/.Comple │ │ │ │ +00070e60: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ +00070e70: 736f 6c75 7469 6f6e 732e 6d32 3a34 3534 solutions.m2:454 │ │ │ │ +00070e80: 343a 302e 0a1f 0a54 6167 2054 6162 6c65 4:0....Tag Table │ │ │ │ +00070e90: 3a0a 4e6f 6465 3a20 546f 707f 3331 360a :.Node: Top.316. │ │ │ │ +00070ea0: 4e6f 6465 3a20 4152 616e 6b73 7f33 3633 Node: ARanks.363 │ │ │ │ +00070eb0: 3832 0a4e 6f64 653a 2041 7567 6d65 6e74 82.Node: Augment │ │ │ │ +00070ec0: 6174 696f 6e7f 3337 3934 380a 4e6f 6465 ation.37948.Node │ │ │ │ +00070ed0: 3a20 4247 474c 7f33 3931 3631 0a4e 6f64 : BGGL.39161.Nod │ │ │ │ +00070ee0: 653a 2062 4d61 7073 7f34 3235 3938 0a4e e: bMaps.42598.N │ │ │ │ +00070ef0: 6f64 653a 2042 5261 6e6b 737f 3434 3130 ode: BRanks.4410 │ │ │ │ +00070f00: 300a 4e6f 6465 3a20 4368 6563 6b7f 3531 0.Node: Check.51 │ │ │ │ +00070f10: 3639 340a 4e6f 6465 3a20 636f 6d70 6c65 694.Node: comple │ │ │ │ +00070f20: 7869 7479 7f35 3334 3433 0a4e 6f64 653a xity.53443.Node: │ │ │ │ +00070f30: 2063 6f73 797a 7967 7952 6573 7f35 3936 cosyzygyRes.596 │ │ │ │ +00070f40: 3636 0a4e 6f64 653a 2064 4d61 7073 7f36 66.Node: dMaps.6 │ │ │ │ +00070f50: 3234 3435 0a4e 6f64 653a 2064 7561 6c57 2445.Node: dualW │ │ │ │ +00070f60: 6974 6843 6f6d 706f 6e65 6e74 737f 3633 ithComponents.63 │ │ │ │ +00070f70: 3936 310a 4e6f 6465 3a20 4569 7365 6e62 961.Node: Eisenb │ │ │ │ +00070f80: 7564 5368 616d 6173 687f 3635 3334 310a udShamash.65341. │ │ │ │ +00070f90: 4e6f 6465 3a20 4569 7365 6e62 7564 5368 Node: EisenbudSh │ │ │ │ +00070fa0: 616d 6173 6854 6f74 616c 7f38 3130 3639 amashTotal.81069 │ │ │ │ +00070fb0: 0a4e 6f64 653a 2065 7665 6e45 7874 4d6f .Node: evenExtMo │ │ │ │ +00070fc0: 6475 6c65 7f39 3639 3735 0a4e 6f64 653a dule.96975.Node: │ │ │ │ +00070fd0: 2065 7870 6f7f 3130 3332 3833 0a4e 6f64 expo.103283.Nod │ │ │ │ +00070fe0: 653a 2065 7874 6572 696f 7245 7874 4d6f e: exteriorExtMo │ │ │ │ +00070ff0: 6475 6c65 7f31 3037 3039 300a 4e6f 6465 dule.107090.Node │ │ │ │ +00071000: 3a20 6578 7465 7269 6f72 486f 6d6f 6c6f : exteriorHomolo │ │ │ │ +00071010: 6779 4d6f 6475 6c65 7f31 3139 3533 300a gyModule.119530. │ │ │ │ +00071020: 4e6f 6465 3a20 6578 7465 7269 6f72 546f Node: exteriorTo │ │ │ │ +00071030: 724d 6f64 756c 657f 3132 3131 3936 0a4e rModule.121196.N │ │ │ │ +00071040: 6f64 653a 2065 7874 4973 4f6e 6550 6f6c ode: extIsOnePol │ │ │ │ +00071050: 796e 6f6d 6961 6c7f 3133 3230 3136 0a4e ynomial.132016.N │ │ │ │ +00071060: 6f64 653a 2045 7874 4d6f 6475 6c65 7f31 ode: ExtModule.1 │ │ │ │ +00071070: 3335 3732 340a 4e6f 6465 3a20 4578 744d 35724.Node: ExtM │ │ │ │ +00071080: 6f64 756c 6544 6174 617f 3134 3737 3531 oduleData.147751 │ │ │ │ +00071090: 0a4e 6f64 653a 2065 7874 5673 436f 686f .Node: extVsCoho │ │ │ │ +000710a0: 6d6f 6c6f 6779 7f31 3534 3139 310a 4e6f mology.154191.No │ │ │ │ +000710b0: 6465 3a20 6669 6e69 7465 4265 7474 694e de: finiteBettiN │ │ │ │ +000710c0: 756d 6265 7273 7f31 3630 3033 330a 4e6f umbers.160033.No │ │ │ │ +000710d0: 6465 3a20 6672 6565 4578 7465 7269 6f72 de: freeExterior │ │ │ │ +000710e0: 5375 6d6d 616e 647f 3136 3538 3531 0a4e Summand.165851.N │ │ │ │ +000710f0: 6f64 653a 2047 7261 6469 6e67 7f31 3638 ode: Grading.168 │ │ │ │ +00071100: 3730 340a 4e6f 6465 3a20 6866 7f31 3730 704.Node: hf.170 │ │ │ │ +00071110: 3035 390a 4e6f 6465 3a20 6866 4d6f 6475 059.Node: hfModu │ │ │ │ +00071120: 6c65 4173 4578 747f 3137 3039 3431 0a4e leAsExt.170941.N │ │ │ │ +00071130: 6f64 653a 2068 6967 6853 797a 7967 797f ode: highSyzygy. │ │ │ │ +00071140: 3137 3438 3730 0a4e 6f64 653a 2068 4d61 174870.Node: hMa │ │ │ │ +00071150: 7073 7f31 3832 3337 300a 4e6f 6465 3a20 ps.182370.Node: │ │ │ │ +00071160: 486f 6d57 6974 6843 6f6d 706f 6e65 6e74 HomWithComponent │ │ │ │ +00071170: 737f 3138 3339 3634 0a4e 6f64 653a 2069 s.183964.Node: i │ │ │ │ +00071180: 6e66 696e 6974 6542 6574 7469 4e75 6d62 nfiniteBettiNumb │ │ │ │ +00071190: 6572 737f 3138 3533 3735 0a4e 6f64 653a ers.185375.Node: │ │ │ │ +000711a0: 2069 734c 696e 6561 727f 3139 3133 3136 isLinear.191316 │ │ │ │ +000711b0: 0a4e 6f64 653a 2069 7351 7561 7369 5265 .Node: isQuasiRe │ │ │ │ +000711c0: 6775 6c61 727f 3139 3233 3338 0a4e 6f64 gular.192338.Nod │ │ │ │ +000711d0: 653a 2069 7353 7461 626c 7954 7269 7669 e: isStablyTrivi │ │ │ │ +000711e0: 616c 7f31 3935 3537 350a 4e6f 6465 3a20 al.195575.Node: │ │ │ │ +000711f0: 6b6f 737a 756c 4578 7465 6e73 696f 6e7f koszulExtension. │ │ │ │ +00071200: 3230 3330 3238 0a4e 6f64 653a 204c 6179 203028.Node: Lay │ │ │ │ +00071210: 6572 6564 7f32 3034 3538 330a 4e6f 6465 ered.204583.Node │ │ │ │ +00071220: 3a20 6c61 7965 7265 6452 6573 6f6c 7574 : layeredResolut │ │ │ │ +00071230: 696f 6e7f 3230 3539 3531 0a4e 6f64 653a ion.205951.Node: │ │ │ │ +00071240: 204c 6966 747f 3232 3836 3131 0a4e 6f64 Lift.228611.Nod │ │ │ │ +00071250: 653a 206d 616b 6546 696e 6974 6552 6573 e: makeFiniteRes │ │ │ │ +00071260: 6f6c 7574 696f 6e7f 3232 3936 3334 0a4e olution.229634.N │ │ │ │ +00071270: 6f64 653a 206d 616b 6546 696e 6974 6552 ode: makeFiniteR │ │ │ │ +00071280: 6573 6f6c 7574 696f 6e43 6f64 696d 327f esolutionCodim2. │ │ │ │ +00071290: 3235 3033 3731 0a4e 6f64 653a 206d 616b 250371.Node: mak │ │ │ │ +000712a0: 6548 6f6d 6f74 6f70 6965 737f 3235 3934 eHomotopies.2594 │ │ │ │ +000712b0: 3539 0a4e 6f64 653a 206d 616b 6548 6f6d 59.Node: makeHom │ │ │ │ +000712c0: 6f74 6f70 6965 7331 7f33 3437 3232 300a otopies1.347220. │ │ │ │ +000712d0: 4e6f 6465 3a20 6d61 6b65 486f 6d6f 746f Node: makeHomoto │ │ │ │ +000712e0: 7069 6573 4f6e 486f 6d6f 6c6f 6779 7f33 piesOnHomology.3 │ │ │ │ +000712f0: 3438 3835 340a 4e6f 6465 3a20 6d61 6b65 48854.Node: make │ │ │ │ +00071300: 4d6f 6475 6c65 7f33 3530 3439 390a 4e6f Module.350499.No │ │ │ │ +00071310: 6465 3a20 6d61 6b65 547f 3336 3131 3937 de: makeT.361197 │ │ │ │ +00071320: 0a4e 6f64 653a 206d 6174 7269 7846 6163 .Node: matrixFac │ │ │ │ +00071330: 746f 7269 7a61 7469 6f6e 7f33 3635 3339 torization.36539 │ │ │ │ +00071340: 360a 4e6f 6465 3a20 6d66 426f 756e 647f 6.Node: mfBound. │ │ │ │ +00071350: 3337 3432 3438 0a4e 6f64 653a 206d 6f64 374248.Node: mod │ │ │ │ +00071360: 756c 6541 7345 7874 7f33 3736 3134 300a uleAsExt.376140. │ │ │ │ +00071370: 4e6f 6465 3a20 6e65 7745 7874 7f33 3832 Node: newExt.382 │ │ │ │ +00071380: 3338 380a 4e6f 6465 3a20 6f64 6445 7874 388.Node: oddExt │ │ │ │ +00071390: 4d6f 6475 6c65 7f34 3130 3937 340a 4e6f Module.410974.No │ │ │ │ +000713a0: 6465 3a20 4f70 7469 6d69 736d 7f34 3137 de: Optimism.417 │ │ │ │ +000713b0: 3236 340a 4e6f 6465 3a20 4f75 7452 696e 264.Node: OutRin │ │ │ │ +000713c0: 677f 3431 3837 3930 0a4e 6f64 653a 2070 g.418790.Node: p │ │ │ │ +000713d0: 7369 4d61 7073 7f34 3230 3133 370a 4e6f siMaps.420137.No │ │ │ │ +000713e0: 6465 3a20 7265 6775 6c61 7269 7479 5365 de: regularitySe │ │ │ │ +000713f0: 7175 656e 6365 7f34 3231 3637 370a 4e6f quence.421677.No │ │ │ │ +00071400: 6465 3a20 5332 7f34 3235 3233 320a 4e6f de: S2.425232.No │ │ │ │ +00071410: 6465 3a20 5368 616d 6173 687f 3433 3633 de: Shamash.4363 │ │ │ │ +00071420: 3633 0a4e 6f64 653a 2073 706c 6974 7469 63.Node: splitti │ │ │ │ +00071430: 6e67 737f 3434 3431 3032 0a4e 6f64 653a ngs.444102.Node: │ │ │ │ +00071440: 2073 7461 626c 6548 6f6d 7f34 3439 3332 stableHom.44932 │ │ │ │ +00071450: 310a 4e6f 6465 3a20 7375 6d54 776f 4d6f 1.Node: sumTwoMo │ │ │ │ +00071460: 6e6f 6d69 616c 737f 3435 3035 3538 0a4e nomials.450558.N │ │ │ │ +00071470: 6f64 653a 2054 6174 6552 6573 6f6c 7574 ode: TateResolut │ │ │ │ +00071480: 696f 6e7f 3435 3330 3438 0a4e 6f64 653a ion.453048.Node: │ │ │ │ +00071490: 2074 656e 736f 7257 6974 6843 6f6d 706f tensorWithCompo │ │ │ │ +000714a0: 6e65 6e74 737f 3435 3734 3235 0a4e 6f64 nents.457425.Nod │ │ │ │ +000714b0: 653a 2074 6f41 7272 6179 7f34 3538 3837 e: toArray.45887 │ │ │ │ +000714c0: 320a 4e6f 6465 3a20 7477 6f4d 6f6e 6f6d 2.Node: twoMonom │ │ │ │ +000714d0: 6961 6c73 7f34 3539 3739 340a 1f0a 456e ials.459794...En │ │ │ │ +000714e0: 6420 5461 6720 5461 626c 650a d Tag Table. │ │ ├── ./usr/share/info/ConnectionMatrices.info.gz │ │ │ ├── ConnectionMatrices.info │ │ │ │ @@ -2415,31 +2415,31 @@ │ │ │ │ 000096e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000096f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00009700: 7c69 3920 3a20 656c 6170 7365 6454 696d |i9 : elapsedTim │ │ │ │ 00009710: 6520 4120 3d20 636f 6e6e 6563 7469 6f6e e A = connection │ │ │ │ 00009720: 4d61 7472 6963 6573 2049 3b20 2020 2020 Matrices I; │ │ │ │ 00009730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009740: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00009750: 7c20 2d2d 2032 2e38 3635 3836 7320 656c | -- 2.86586s el │ │ │ │ +00009750: 7c20 2d2d 2032 2e35 3237 3533 7320 656c | -- 2.52753s el │ │ │ │ 00009760: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00009770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009790: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000097a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000097b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000097c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000097d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000097e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000097f0: 7c69 3130 203a 2065 6c61 7073 6564 5469 |i10 : elapsedTi │ │ │ │ 00009800: 6d65 2061 7373 6572 7420 6973 496e 7465 me assert isInte │ │ │ │ 00009810: 6772 6162 6c65 2041 2020 2020 2020 2020 grable A │ │ │ │ 00009820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009830: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00009840: 7c20 2d2d 2035 2e39 3335 3437 7320 656c | -- 5.93547s el │ │ │ │ -00009850: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ +00009840: 7c20 2d2d 2034 2e32 3634 3373 2065 6c61 | -- 4.2643s ela │ │ │ │ +00009850: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00009860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009880: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00009890: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000098a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000098b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000098c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -4559,15 +4559,15 @@ │ │ │ │ 00011ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011d00: 2b0a 7c69 3134 203a 2065 6c61 7073 6564 +.|i14 : elapsed │ │ │ │ 00011d10: 5469 6d65 2067 203d 2067 6175 6765 4d61 Time g = gaugeMa │ │ │ │ 00011d20: 7472 6978 2849 2c20 4229 3b20 2020 2020 trix(I, B); │ │ │ │ 00011d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011d50: 7c0a 7c20 2d2d 202e 3735 3832 3437 7320 |.| -- .758247s │ │ │ │ +00011d50: 7c0a 7c20 2d2d 202e 3533 3432 3831 7320 |.| -- .534281s │ │ │ │ 00011d60: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00011d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011da0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4589,30 +4589,30 @@ │ │ │ │ 00011ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011ee0: 2b0a 7c69 3135 203a 2065 6c61 7073 6564 +.|i15 : elapsed │ │ │ │ 00011ef0: 5469 6d65 2041 3120 3d20 6761 7567 6554 Time A1 = gaugeT │ │ │ │ 00011f00: 7261 6e73 666f 726d 2867 2c20 4129 3b20 ransform(g, A); │ │ │ │ 00011f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011f30: 7c0a 7c20 2d2d 2031 2e35 3139 3335 7320 |.| -- 1.51935s │ │ │ │ +00011f30: 7c0a 7c20 2d2d 2031 2e31 3436 3134 7320 |.| -- 1.14614s │ │ │ │ 00011f40: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00011f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f80: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00011f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011fd0: 2b0a 7c69 3136 203a 2065 6c61 7073 6564 +.|i16 : elapsed │ │ │ │ 00011fe0: 5469 6d65 2061 7373 6572 7420 6973 496e Time assert isIn │ │ │ │ 00011ff0: 7465 6772 6162 6c65 2041 3120 2020 2020 tegrable A1 │ │ │ │ 00012000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012020: 7c0a 7c20 2d2d 202e 3833 3731 3437 7320 |.| -- .837147s │ │ │ │ +00012020: 7c0a 7c20 2d2d 202e 3839 3736 3937 7320 |.| -- .897697s │ │ │ │ 00012030: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00012040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012070: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00012080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -5030,31 +5030,31 @@ │ │ │ │ 00013a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013a70: 2d2d 2d2d 2d2b 0a7c 6931 3920 3a20 656c -----+.|i19 : el │ │ │ │ 00013a80: 6170 7365 6454 696d 6520 4132 203d 2067 apsedTime A2 = g │ │ │ │ 00013a90: 6175 6765 5472 616e 7366 6f72 6d28 6368 augeTransform(ch │ │ │ │ 00013aa0: 616e 6765 4570 732c 2041 3129 3b20 2020 angeEps, A1); │ │ │ │ 00013ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ac0: 2020 2020 207c 0a7c 202d 2d20 2e34 3237 |.| -- .427 │ │ │ │ -00013ad0: 3934 3873 2065 6c61 7073 6564 2020 2020 948s elapsed │ │ │ │ +00013ac0: 2020 2020 207c 0a7c 202d 2d20 2e33 3238 |.| -- .328 │ │ │ │ +00013ad0: 3831 3773 2065 6c61 7073 6564 2020 2020 817s elapsed │ │ │ │ 00013ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013b10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00013b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b60: 2d2d 2d2d 2d2b 0a7c 6932 3020 3a20 656c -----+.|i20 : el │ │ │ │ 00013b70: 6170 7365 6454 696d 6520 6173 7365 7274 apsedTime assert │ │ │ │ 00013b80: 2069 7349 6e74 6567 7261 626c 6520 4132 isIntegrable A2 │ │ │ │ 00013b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013bb0: 2020 2020 207c 0a7c 202d 2d20 2e37 3135 |.| -- .715 │ │ │ │ -00013bc0: 3438 3773 2065 6c61 7073 6564 2020 2020 487s elapsed │ │ │ │ +00013bb0: 2020 2020 207c 0a7c 202d 2d20 2e36 3630 |.| -- .660 │ │ │ │ +00013bc0: 3633 3273 2065 6c61 7073 6564 2020 2020 632s elapsed │ │ │ │ 00013bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013c00: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00013c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -5440,30 +5440,30 @@ │ │ │ │ 000153f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00015410: 6937 203a 2065 6c61 7073 6564 5469 6d65 i7 : elapsedTime │ │ │ │ 00015420: 2041 203d 2063 6f6e 6e65 6374 696f 6e4d A = connectionM │ │ │ │ 00015430: 6174 7269 6365 7320 493b 2020 2020 2020 atrices I; │ │ │ │ 00015440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015450: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015460: 202d 2d20 2e32 3236 3131 3273 2065 6c61 -- .226112s ela │ │ │ │ +00015460: 202d 2d20 2e32 3032 3637 3173 2065 6c61 -- .202671s ela │ │ │ │ 00015470: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00015480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000154a0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 000154b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00015500: 6938 203a 2065 6c61 7073 6564 5469 6d65 i8 : elapsedTime │ │ │ │ 00015510: 2061 7373 6572 7420 6973 496e 7465 6772 assert isIntegr │ │ │ │ 00015520: 6162 6c65 2041 2020 2020 2020 2020 2020 able A │ │ │ │ 00015530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015540: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015550: 202d 2d20 2e31 3532 3638 3373 2065 6c61 -- .152683s ela │ │ │ │ +00015550: 202d 2d20 2e31 3738 3233 3473 2065 6c61 -- .178234s ela │ │ │ │ 00015560: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00015570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015590: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 000155a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ ├── ./usr/share/info/Cremona.info.gz │ │ │ ├── Cremona.info │ │ │ │ @@ -147,16 +147,16 @@ │ │ │ │ 00000920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000930: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2074 -------+.|i2 : t │ │ │ │ 00000940: 696d 6520 7068 6920 3d20 746f 4d61 7020 ime phi = toMap │ │ │ │ 00000950: 6d69 6e6f 7273 2833 2c6d 6174 7269 787b minors(3,matrix{ │ │ │ │ 00000960: 7b74 5f30 2e2e 745f 347d 2c7b 745f 312e {t_0..t_4},{t_1. │ │ │ │ 00000970: 2e74 5f35 7d2c 7b74 5f32 2e2e 745f 367d .t_5},{t_2..t_6} │ │ │ │ 00000980: 7d29 2020 2020 207c 0a7c 202d 2d20 7573 }) |.| -- us │ │ │ │ -00000990: 6564 2030 2e30 3034 3434 3635 3173 2028 ed 0.00444651s ( │ │ │ │ -000009a0: 6370 7529 3b20 302e 3030 3434 3431 3831 cpu); 0.00444181 │ │ │ │ +00000990: 6564 2030 2e30 3034 3934 3831 3373 2028 ed 0.00494813s ( │ │ │ │ +000009a0: 6370 7529 3b20 302e 3030 3439 3434 3539 cpu); 0.00494459 │ │ │ │ 000009b0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 000009c0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 000009d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000009e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000009f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -322,17 +322,17 @@ │ │ │ │ 00001410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001420: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 -------+.|i3 : t │ │ │ │ 00001430: 696d 6520 4a20 3d20 6b65 726e 656c 2870 ime J = kernel(p │ │ │ │ 00001440: 6869 2c32 2920 2020 2020 2020 2020 2020 hi,2) │ │ │ │ 00001450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001470: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001480: 6564 2030 2e31 3339 3938 3273 2028 6370 ed 0.139982s (cp │ │ │ │ -00001490: 7529 3b20 302e 3037 3039 3037 3473 2028 u); 0.0709074s ( │ │ │ │ -000014a0: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +00001480: 6564 2030 2e31 3539 3239 7320 2863 7075 ed 0.15929s (cpu │ │ │ │ +00001490: 293b 2030 2e30 3737 3339 3536 7320 2874 ); 0.0773956s (t │ │ │ │ +000014a0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 000014b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000014c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000014d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000014e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000014f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001510: 2020 2020 2020 207c 0a7c 6f33 203d 2069 |.|o3 = i │ │ │ │ @@ -387,16 +387,16 @@ │ │ │ │ 00001820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001830: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2074 -------+.|i4 : t │ │ │ │ 00001840: 696d 6520 6465 6772 6565 4d61 7020 7068 ime degreeMap ph │ │ │ │ 00001850: 6920 2020 2020 2020 2020 2020 2020 2020 i │ │ │ │ 00001860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001880: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001890: 6564 2030 2e30 3237 3339 3239 7320 2863 ed 0.0273929s (c │ │ │ │ -000018a0: 7075 293b 2030 2e30 3237 3339 3439 7320 pu); 0.0273949s │ │ │ │ +00001890: 6564 2030 2e30 3333 3330 3933 7320 2863 ed 0.0333093s (c │ │ │ │ +000018a0: 7075 293b 2030 2e30 3333 3331 3437 7320 pu); 0.0333147s │ │ │ │ 000018b0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 000018c0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000018d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000018e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000018f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -412,16 +412,16 @@ │ │ │ │ 000019b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000019c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2074 -------+.|i5 : t │ │ │ │ 000019d0: 696d 6520 7072 6f6a 6563 7469 7665 4465 ime projectiveDe │ │ │ │ 000019e0: 6772 6565 7320 7068 6920 2020 2020 2020 grees phi │ │ │ │ 000019f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a10: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001a20: 6564 2030 2e36 3630 3333 3673 2028 6370 ed 0.660336s (cp │ │ │ │ -00001a30: 7529 3b20 302e 3436 3735 3937 7320 2874 u); 0.467597s (t │ │ │ │ +00001a20: 6564 2030 2e36 3533 3735 3673 2028 6370 ed 0.653756s (cp │ │ │ │ +00001a30: 7529 3b20 302e 3438 3131 3431 7320 2874 u); 0.481141s (t │ │ │ │ 00001a40: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 00001a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00001a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -447,18 +447,18 @@ │ │ │ │ 00001be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001bf0: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2074 -------+.|i6 : t │ │ │ │ 00001c00: 696d 6520 7072 6f6a 6563 7469 7665 4465 ime projectiveDe │ │ │ │ 00001c10: 6772 6565 7328 7068 692c 4e75 6d44 6567 grees(phi,NumDeg │ │ │ │ 00001c20: 7265 6573 3d3e 3029 2020 2020 2020 2020 rees=>0) │ │ │ │ 00001c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001c40: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001c50: 6564 2030 2e30 3631 3532 3573 2028 6370 ed 0.061525s (cp │ │ │ │ -00001c60: 7529 3b20 302e 3036 3135 3330 3873 2028 u); 0.0615308s ( │ │ │ │ -00001c70: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ -00001c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00001c50: 6564 2030 2e30 3733 3434 3934 7320 2863 ed 0.0734494s (c │ │ │ │ +00001c60: 7075 293b 2030 2e30 3733 3435 3636 7320 pu); 0.0734566s │ │ │ │ +00001c70: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +00001c80: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00001c90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00001ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ce0: 2020 2020 2020 207c 0a7c 6f36 203d 207b |.|o6 = { │ │ │ │ 00001cf0: 357d 2020 2020 2020 2020 2020 2020 2020 5} │ │ │ │ @@ -482,15 +482,15 @@ │ │ │ │ 00001e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001e20: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2074 -------+.|i7 : t │ │ │ │ 00001e30: 696d 6520 7068 6920 3d20 746f 4d61 7028 ime phi = toMap( │ │ │ │ 00001e40: 7068 6920 2020 2020 2020 2020 2020 2020 phi │ │ │ │ 00001e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001e70: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001e80: 6564 2030 2e30 3032 3234 3937 3973 2028 ed 0.00224979s ( │ │ │ │ +00001e80: 6564 2030 2e30 3032 3638 3930 3373 2028 ed 0.00268903s ( │ │ │ │ 00001e90: 6370 7520 2020 2020 2020 2020 2020 2020 cpu │ │ │ │ 00001ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ec0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00001ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -567,16 +567,16 @@ │ │ │ │ 00002360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002370: 2d2d 2d2d 2d2d 2d7c 0a7c 2c44 6f6d 696e -------|.|,Domin │ │ │ │ 00002380: 616e 743d 3e4a 2920 2020 2020 2020 2020 ant=>J) │ │ │ │ 00002390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000023a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000023b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000023c0: 2020 2020 2020 207c 0a7c 293b 2030 2e30 |.|); 0.0 │ │ │ │ -000023d0: 3032 3235 3133 3773 2028 7468 7265 6164 0225137s (thread │ │ │ │ -000023e0: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +000023d0: 3032 3639 3137 7320 2874 6872 6561 6429 026917s (thread) │ │ │ │ +000023e0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 000023f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002410: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -832,16 +832,16 @@ │ │ │ │ 000033f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003400: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2074 -------+.|i8 : t │ │ │ │ 00003410: 696d 6520 7073 6920 3d20 696e 7665 7273 ime psi = invers │ │ │ │ 00003420: 654d 6170 2070 6869 2020 2020 2020 2020 eMap phi │ │ │ │ 00003430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003450: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00003460: 6564 2030 2e34 3634 3631 3873 2028 6370 ed 0.464618s (cp │ │ │ │ -00003470: 7529 3b20 302e 3338 3539 3731 7320 2874 u); 0.385971s (t │ │ │ │ +00003460: 6564 2030 2e34 3236 3730 3573 2028 6370 ed 0.426705s (cp │ │ │ │ +00003470: 7529 3b20 302e 3432 3634 3836 7320 2874 u); 0.426486s (t │ │ │ │ 00003480: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 00003490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000034b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1117,18 +1117,18 @@ │ │ │ │ 000045c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000045d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2074 -------+.|i9 : t │ │ │ │ 000045e0: 696d 6520 6973 496e 7665 7273 654d 6170 ime isInverseMap │ │ │ │ 000045f0: 2870 6869 2c70 7369 2920 2020 2020 2020 (phi,psi) │ │ │ │ 00004600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004620: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00004630: 6564 2030 2e30 3039 3537 3736 3873 2028 ed 0.00957768s ( │ │ │ │ -00004640: 6370 7529 3b20 302e 3030 3935 3832 3337 cpu); 0.00958237 │ │ │ │ -00004650: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00004660: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +00004630: 6564 2030 2e30 3130 3934 3539 7320 2863 ed 0.0109459s (c │ │ │ │ +00004640: 7075 293b 2030 2e30 3130 3934 3632 7320 pu); 0.0109462s │ │ │ │ +00004650: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +00004660: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00004670: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00004680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046c0: 2020 2020 2020 207c 0a7c 6f39 203d 2074 |.|o9 = t │ │ │ │ 000046d0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ @@ -1142,17 +1142,17 @@ │ │ │ │ 00004750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004760: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ 00004770: 7469 6d65 2064 6567 7265 654d 6170 2070 time degreeMap p │ │ │ │ 00004780: 7369 2020 2020 2020 2020 2020 2020 2020 si │ │ │ │ 00004790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000047a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000047b0: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -000047c0: 6564 2030 2e33 3636 3038 7320 2863 7075 ed 0.36608s (cpu │ │ │ │ -000047d0: 293b 2030 2e32 3530 3637 3473 2028 7468 ); 0.250674s (th │ │ │ │ -000047e0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +000047c0: 6564 2030 2e36 3032 3737 3473 2028 6370 ed 0.602774s (cp │ │ │ │ +000047d0: 7529 3b20 302e 3331 3538 3839 7320 2874 u); 0.315889s (t │ │ │ │ +000047e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 000047f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004800: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00004810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004850: 2020 2020 2020 207c 0a7c 6f31 3020 3d20 |.|o10 = │ │ │ │ @@ -1167,16 +1167,16 @@ │ │ │ │ 000048e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000048f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 -------+.|i11 : │ │ │ │ 00004900: 7469 6d65 2070 726f 6a65 6374 6976 6544 time projectiveD │ │ │ │ 00004910: 6567 7265 6573 2070 7369 2020 2020 2020 egrees psi │ │ │ │ 00004920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004940: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00004950: 6564 2035 2e31 3232 3933 7320 2863 7075 ed 5.12293s (cpu │ │ │ │ -00004960: 293b 2034 2e33 3839 3734 7320 2874 6872 ); 4.38974s (thr │ │ │ │ +00004950: 6564 2035 2e37 3337 3631 7320 2863 7075 ed 5.73761s (cpu │ │ │ │ +00004960: 293b 2035 2e32 3838 3238 7320 2874 6872 ); 5.28828s (thr │ │ │ │ 00004970: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00004980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004990: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000049a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000049b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000049c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000049d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1214,17 +1214,17 @@ │ │ │ │ 00004bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00004be0: 0a7c 6931 3220 3a20 7469 6d65 2070 6869 .|i12 : time phi │ │ │ │ 00004bf0: 203d 2072 6174 696f 6e61 6c4d 6170 206d = rationalMap m │ │ │ │ 00004c00: 696e 6f72 7328 332c 6d61 7472 6978 7b7b inors(3,matrix{{ │ │ │ │ 00004c10: 745f 302e 2e74 5f34 7d2c 7b74 5f31 2e2e t_0..t_4},{t_1.. │ │ │ │ 00004c20: 745f 357d 2c7b 745f 322e 2e74 5f36 207c t_5},{t_2..t_6 | │ │ │ │ 00004c30: 0a7c 202d 2d20 7573 6564 2030 2e30 3032 .| -- used 0.002 │ │ │ │ -00004c40: 3134 3835 3373 2028 6370 7529 3b20 302e 14853s (cpu); 0. │ │ │ │ -00004c50: 3030 3231 3439 3039 7320 2874 6872 6561 00214909s (threa │ │ │ │ -00004c60: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +00004c40: 3632 3934 3973 2028 6370 7529 3b20 302e 62949s (cpu); 0. │ │ │ │ +00004c50: 3030 3236 3335 3273 2028 7468 7265 6164 0026352s (thread │ │ │ │ +00004c60: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 00004c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00004c80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00004c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00004cd0: 0a7c 6f31 3220 3d20 2d2d 2072 6174 696f .|o12 = -- ratio │ │ │ │ @@ -1493,17 +1493,17 @@ │ │ │ │ 00005d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00005d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00005d60: 0a7c 6931 3320 3a20 7469 6d65 2070 6869 .|i13 : time phi │ │ │ │ 00005d70: 203d 2072 6174 696f 6e61 6c4d 6170 2870 = rationalMap(p │ │ │ │ 00005d80: 6869 2c44 6f6d 696e 616e 743d 3e32 2920 hi,Dominant=>2) │ │ │ │ 00005d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00005db0: 0a7c 202d 2d20 7573 6564 2030 2e31 3539 .| -- used 0.159 │ │ │ │ -00005dc0: 3836 3973 2028 6370 7529 3b20 302e 3038 869s (cpu); 0.08 │ │ │ │ -00005dd0: 3139 3935 3973 2028 7468 7265 6164 293b 19959s (thread); │ │ │ │ +00005db0: 0a7c 202d 2d20 7573 6564 2030 2e31 3833 .| -- used 0.183 │ │ │ │ +00005dc0: 3737 3573 2028 6370 7529 3b20 302e 3039 775s (cpu); 0.09 │ │ │ │ +00005dd0: 3934 3531 3773 2028 7468 7265 6164 293b 94517s (thread); │ │ │ │ 00005de0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 00005df0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00005e00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00005e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2153,17 +2153,17 @@ │ │ │ │ 00008680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 000086a0: 0a7c 6931 3420 3a20 7469 6d65 2070 6869 .|i14 : time phi │ │ │ │ 000086b0: 5e28 2d31 2920 2020 2020 2020 2020 2020 ^(-1) │ │ │ │ 000086c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000086d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000086e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000086f0: 0a7c 202d 2d20 7573 6564 2030 2e34 3934 .| -- used 0.494 │ │ │ │ -00008700: 3834 3773 2028 6370 7529 3b20 302e 3431 847s (cpu); 0.41 │ │ │ │ -00008710: 3433 3531 7320 2874 6872 6561 6429 3b20 4351s (thread); │ │ │ │ +000086f0: 0a7c 202d 2d20 7573 6564 2030 2e34 3734 .| -- used 0.474 │ │ │ │ +00008700: 3234 3173 2028 6370 7529 3b20 302e 3437 241s (cpu); 0.47 │ │ │ │ +00008710: 3430 3938 7320 2874 6872 6561 6429 3b20 4098s (thread); │ │ │ │ 00008720: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 00008730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00008740: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00008750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008780: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2708,18 +2708,18 @@ │ │ │ │ 0000a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000a950: 0a7c 6931 3520 3a20 7469 6d65 2064 6567 .|i15 : time deg │ │ │ │ 0000a960: 7265 6573 2070 6869 5e28 2d31 2920 2020 rees phi^(-1) │ │ │ │ 0000a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a9a0: 0a7c 202d 2d20 7573 6564 2030 2e33 3433 .| -- used 0.343 │ │ │ │ -0000a9b0: 3631 3473 2028 6370 7529 3b20 302e 3236 614s (cpu); 0.26 │ │ │ │ -0000a9c0: 3934 3936 7320 2874 6872 6561 6429 3b20 9496s (thread); │ │ │ │ -0000a9d0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +0000a9a0: 0a7c 202d 2d20 7573 6564 2030 2e34 3637 .| -- used 0.467 │ │ │ │ +0000a9b0: 3433 3173 2028 6370 7529 3b20 302e 3333 431s (cpu); 0.33 │ │ │ │ +0000a9c0: 3733 3373 2028 7468 7265 6164 293b 2030 733s (thread); 0 │ │ │ │ +0000a9d0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 0000a9e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000a9f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000aa40: 0a7c 6f31 3520 3d20 7b35 2c20 3135 2c20 .|o15 = {5, 15, │ │ │ │ @@ -2743,18 +2743,18 @@ │ │ │ │ 0000ab60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ab70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000ab80: 0a7c 6931 3620 3a20 7469 6d65 2064 6567 .|i16 : time deg │ │ │ │ 0000ab90: 7265 6573 2070 6869 2020 2020 2020 2020 rees phi │ │ │ │ 0000aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000abc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000abd0: 0a7c 202d 2d20 7573 6564 2030 2e30 3137 .| -- used 0.017 │ │ │ │ -0000abe0: 3036 3673 2028 6370 7529 3b20 302e 3031 066s (cpu); 0.01 │ │ │ │ -0000abf0: 3637 3831 3373 2028 7468 7265 6164 293b 67813s (thread); │ │ │ │ -0000ac00: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ +0000abd0: 0a7c 202d 2d20 7573 6564 2030 2e30 3835 .| -- used 0.085 │ │ │ │ +0000abe0: 3431 3633 7320 2863 7075 293b 2030 2e30 4163s (cpu); 0.0 │ │ │ │ +0000abf0: 3237 3337 3034 7320 2874 6872 6561 6429 273704s (thread) │ │ │ │ +0000ac00: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0000ac10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000ac20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000ac70: 0a7c 6f31 3620 3d20 7b31 2c20 332c 2039 .|o16 = {1, 3, 9 │ │ │ │ @@ -2778,17 +2778,17 @@ │ │ │ │ 0000ad90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ada0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000adb0: 0a7c 6931 3720 3a20 7469 6d65 2064 6573 .|i17 : time des │ │ │ │ 0000adc0: 6372 6962 6520 7068 6920 2020 2020 2020 cribe phi │ │ │ │ 0000add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000adf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000ae00: 0a7c 202d 2d20 7573 6564 2030 2e30 3032 .| -- used 0.002 │ │ │ │ -0000ae10: 3837 3335 3173 2028 6370 7529 3b20 302e 87351s (cpu); 0. │ │ │ │ -0000ae20: 3030 3238 3734 3132 7320 2874 6872 6561 00287412s (threa │ │ │ │ +0000ae00: 0a7c 202d 2d20 7573 6564 2030 2e30 3033 .| -- used 0.003 │ │ │ │ +0000ae10: 3835 3139 3973 2028 6370 7529 3b20 302e 85199s (cpu); 0. │ │ │ │ +0000ae20: 3030 3338 3538 3438 7320 2874 6872 6561 00385848s (threa │ │ │ │ 0000ae30: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0000ae40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000ae50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2843,18 +2843,18 @@ │ │ │ │ 0000b1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000b1c0: 0a7c 6931 3820 3a20 7469 6d65 2064 6573 .|i18 : time des │ │ │ │ 0000b1d0: 6372 6962 6520 7068 695e 282d 3129 2020 cribe phi^(-1) │ │ │ │ 0000b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b210: 0a7c 202d 2d20 7573 6564 2030 2e30 3039 .| -- used 0.009 │ │ │ │ -0000b220: 3439 3336 3773 2028 6370 7529 3b20 302e 49367s (cpu); 0. │ │ │ │ -0000b230: 3030 3934 3934 3634 7320 2874 6872 6561 00949464s (threa │ │ │ │ -0000b240: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +0000b210: 0a7c 202d 2d20 7573 6564 2030 2e30 3131 .| -- used 0.011 │ │ │ │ +0000b220: 3338 3032 7320 2863 7075 293b 2030 2e30 3802s (cpu); 0.0 │ │ │ │ +0000b230: 3131 3338 3733 7320 2874 6872 6561 6429 113873s (thread) │ │ │ │ +0000b240: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0000b250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b260: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b2a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b2b0: 0a7c 6f31 3820 3d20 7261 7469 6f6e 616c .|o18 = rational │ │ │ │ @@ -2923,18 +2923,18 @@ │ │ │ │ 0000b6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000b6c0: 0a7c 6931 3920 3a20 7469 6d65 2028 662c .|i19 : time (f, │ │ │ │ 0000b6d0: 6729 203d 2067 7261 7068 2070 6869 5e2d g) = graph phi^- │ │ │ │ 0000b6e0: 313b 2066 3b20 2020 2020 2020 2020 2020 1; f; │ │ │ │ 0000b6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b710: 0a7c 202d 2d20 7573 6564 2030 2e30 3039 .| -- used 0.009 │ │ │ │ -0000b720: 3130 3138 3273 2028 6370 7529 3b20 302e 10182s (cpu); 0. │ │ │ │ -0000b730: 3030 3931 3032 3635 7320 2874 6872 6561 00910265s (threa │ │ │ │ -0000b740: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +0000b710: 0a7c 202d 2d20 7573 6564 2030 2e30 3131 .| -- used 0.011 │ │ │ │ +0000b720: 3337 3732 7320 2863 7075 293b 2030 2e30 3772s (cpu); 0.0 │ │ │ │ +0000b730: 3131 3338 3431 7320 2874 6872 6561 6429 113841s (thread) │ │ │ │ +0000b740: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0000b750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b7a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b7b0: 0a7c 6f32 3020 3a20 4d75 6c74 6968 6f6d .|o20 : Multihom │ │ │ │ @@ -2958,17 +2958,17 @@ │ │ │ │ 0000b8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000b8f0: 0a7c 6932 3120 3a20 7469 6d65 2064 6567 .|i21 : time deg │ │ │ │ 0000b900: 7265 6573 2066 2020 2020 2020 2020 2020 rees f │ │ │ │ 0000b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b940: 0a7c 202d 2d20 7573 6564 2031 2e32 3831 .| -- used 1.281 │ │ │ │ -0000b950: 3173 2028 6370 7529 3b20 302e 3936 3238 1s (cpu); 0.9628 │ │ │ │ -0000b960: 3739 7320 2874 6872 6561 6429 3b20 3073 79s (thread); 0s │ │ │ │ +0000b940: 0a7c 202d 2d20 7573 6564 2031 2e32 3535 .| -- used 1.255 │ │ │ │ +0000b950: 3938 7320 2863 7075 293b 2030 2e39 3938 98s (cpu); 0.998 │ │ │ │ +0000b960: 3931 7320 2874 6872 6561 6429 3b20 3073 91s (thread); 0s │ │ │ │ 0000b970: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0000b980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b990: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b9d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2993,18 +2993,18 @@ │ │ │ │ 0000bb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000bb20: 0a7c 6932 3220 3a20 7469 6d65 2064 6567 .|i22 : time deg │ │ │ │ 0000bb30: 7265 6520 6620 2020 2020 2020 2020 2020 ree f │ │ │ │ 0000bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bb60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000bb70: 0a7c 202d 2d20 7573 6564 2031 2e35 3838 .| -- used 1.588 │ │ │ │ -0000bb80: 652d 3035 7320 2863 7075 293b 2031 2e35 e-05s (cpu); 1.5 │ │ │ │ -0000bb90: 3530 3965 2d30 3573 2028 7468 7265 6164 509e-05s (thread │ │ │ │ -0000bba0: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +0000bb70: 0a7c 202d 2d20 7573 6564 2031 2e35 3939 .| -- used 1.599 │ │ │ │ +0000bb80: 3965 2d30 3573 2028 6370 7529 3b20 312e 9e-05s (cpu); 1. │ │ │ │ +0000bb90: 3532 3735 652d 3035 7320 2874 6872 6561 5275e-05s (threa │ │ │ │ +0000bba0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0000bbb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bbc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bc00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bc10: 0a7c 6f32 3220 3d20 3120 2020 2020 2020 .|o22 = 1 │ │ │ │ @@ -3019,16 +3019,16 @@ │ │ │ │ 0000bca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000bcb0: 0a7c 6932 3320 3a20 7469 6d65 2064 6573 .|i23 : time des │ │ │ │ 0000bcc0: 6372 6962 6520 6620 2020 2020 2020 2020 cribe f │ │ │ │ 0000bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bcf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bd00: 0a7c 202d 2d20 7573 6564 2030 2e30 3031 .| -- used 0.001 │ │ │ │ -0000bd10: 3736 3234 3673 2028 6370 7529 3b20 302e 76246s (cpu); 0. │ │ │ │ -0000bd20: 3030 3137 3633 3335 7320 2874 6872 6561 00176335s (threa │ │ │ │ +0000bd10: 3634 3432 3873 2028 6370 7529 3b20 302e 64428s (cpu); 0. │ │ │ │ +0000bd20: 3030 3136 3439 3431 7320 2874 6872 6561 00164941s (threa │ │ │ │ 0000bd30: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0000bd40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bd50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -4676,16 +4676,16 @@ │ │ │ │ 00012430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012440: 2b0a 7c69 3420 3a20 7469 6d65 2070 7369 +.|i4 : time psi │ │ │ │ 00012450: 203d 2061 6273 7472 6163 7452 6174 696f = abstractRatio │ │ │ │ 00012460: 6e61 6c4d 6170 2850 342c 5035 2c66 2920 nalMap(P4,P5,f) │ │ │ │ 00012470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012490: 7c0a 7c20 2d2d 2075 7365 6420 302e 3030 |.| -- used 0.00 │ │ │ │ -000124a0: 3034 3136 3534 3273 2028 6370 7529 3b20 0416542s (cpu); │ │ │ │ -000124b0: 302e 3030 3034 3038 3835 3773 2028 7468 0.000408857s (th │ │ │ │ +000124a0: 3034 3233 3439 3573 2028 6370 7529 3b20 0423495s (cpu); │ │ │ │ +000124b0: 302e 3030 3034 3137 3632 3473 2028 7468 0.000417624s (th │ │ │ │ 000124c0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 000124d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000124e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000124f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4746,18 +4746,18 @@ │ │ │ │ 00012890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000128a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000128b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 000128c0: 6935 203a 2074 696d 6520 7072 6f6a 6563 i5 : time projec │ │ │ │ 000128d0: 7469 7665 4465 6772 6565 7328 7073 692c tiveDegrees(psi, │ │ │ │ 000128e0: 3329 2020 2020 2020 2020 2020 2020 2020 3) │ │ │ │ 000128f0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00012900: 2d20 7573 6564 2030 2e33 3238 3735 7320 - used 0.32875s │ │ │ │ -00012910: 2863 7075 293b 2030 2e31 3835 3037 3773 (cpu); 0.185077s │ │ │ │ -00012920: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00012930: 6329 2020 2020 2020 207c 0a7c 2020 2020 c) |.| │ │ │ │ +00012900: 2d20 7573 6564 2030 2e33 3834 3335 3973 - used 0.384359s │ │ │ │ +00012910: 2028 6370 7529 3b20 302e 3230 3936 3333 (cpu); 0.209633 │ │ │ │ +00012920: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00012930: 6763 2920 2020 2020 207c 0a7c 2020 2020 gc) |.| │ │ │ │ 00012940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012970: 2020 2020 2020 207c 0a7c 6f35 203d 2032 |.|o5 = 2 │ │ │ │ 00012980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000129a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4765,17 +4765,17 @@ │ │ │ │ 000129c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000129d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000129e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000129f0: 2d2d 2d2b 0a7c 6936 203a 2074 696d 6520 ---+.|i6 : time │ │ │ │ 00012a00: 7261 7469 6f6e 616c 4d61 7020 7073 6920 rationalMap psi │ │ │ │ 00012a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012a30: 207c 0a7c 202d 2d20 7573 6564 2030 2e35 |.| -- used 0.5 │ │ │ │ -00012a40: 3130 3234 3873 2028 6370 7529 3b20 302e 10248s (cpu); 0. │ │ │ │ -00012a50: 3337 3330 3132 7320 2874 6872 6561 6429 373012s (thread) │ │ │ │ +00012a30: 207c 0a7c 202d 2d20 7573 6564 2030 2e34 |.| -- used 0.4 │ │ │ │ +00012a40: 3931 3637 3873 2028 6370 7529 3b20 302e 91678s (cpu); 0. │ │ │ │ +00012a50: 3339 3832 3039 7320 2874 6872 6561 6429 398209s (thread) │ │ │ │ 00012a60: 3b20 3073 2028 6763 2920 2020 2020 207c ; 0s (gc) | │ │ │ │ 00012a70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00012a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012aa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00012ab0: 6f36 203d 202d 2d20 7261 7469 6f6e 616c o6 = -- rational │ │ │ │ 00012ac0: 206d 6170 202d 2d20 2020 2020 2020 2020 map -- │ │ │ │ @@ -5189,16 +5189,16 @@ │ │ │ │ 00014440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014450: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3134 203a --------+.|i14 : │ │ │ │ 00014460: 2074 696d 6520 5420 3d20 6162 7374 7261 time T = abstra │ │ │ │ 00014470: 6374 5261 7469 6f6e 616c 4d61 7028 492c ctRationalMap(I, │ │ │ │ 00014480: 224f 4144 5022 2920 2020 2020 2020 2020 "OADP") │ │ │ │ 00014490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144a0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -000144b0: 6420 302e 3135 3130 3834 7320 2863 7075 d 0.151084s (cpu │ │ │ │ -000144c0: 293b 2030 2e30 3733 3333 3637 7320 2874 ); 0.0733367s (t │ │ │ │ +000144b0: 6420 302e 3137 3430 3735 7320 2863 7075 d 0.174075s (cpu │ │ │ │ +000144c0: 293b 2030 2e30 3739 3932 3439 7320 2874 ); 0.0799249s (t │ │ │ │ 000144d0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 000144e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00014500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5265,16 +5265,16 @@ │ │ │ │ 00014900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014930: 2d2d 2b0a 7c69 3135 203a 2074 696d 6520 --+.|i15 : time │ │ │ │ 00014940: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ 00014950: 7328 542c 3229 2020 2020 2020 2020 2020 s(T,2) │ │ │ │ 00014960: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00014970: 7365 6420 332e 3738 3438 3773 2028 6370 sed 3.78487s (cp │ │ │ │ -00014980: 7529 3b20 312e 3935 3132 3673 2028 7468 u); 1.95126s (th │ │ │ │ +00014970: 7365 6420 342e 3737 3434 3773 2028 6370 sed 4.77447s (cp │ │ │ │ +00014980: 7529 3b20 322e 3337 3731 3873 2028 7468 u); 2.37718s (th │ │ │ │ 00014990: 7265 6164 293b 2030 7320 2867 6329 7c0a read); 0s (gc)|. │ │ │ │ 000149a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000149b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000149c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000149d0: 2020 2020 7c0a 7c6f 3135 203d 2033 2020 |.|o15 = 3 │ │ │ │ 000149e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000149f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5291,16 +5291,16 @@ │ │ │ │ 00014aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ 00014ad0: 3620 3a20 7469 6d65 2054 3220 3d20 5420 6 : time T2 = T │ │ │ │ 00014ae0: 2a20 5420 2020 2020 2020 2020 2020 2020 * T │ │ │ │ 00014af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b00: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00014b10: 7365 6420 322e 3831 3132 652d 3035 7320 sed 2.8112e-05s │ │ │ │ -00014b20: 2863 7075 293b 2032 2e37 3834 3265 2d30 (cpu); 2.7842e-0 │ │ │ │ +00014b10: 7365 6420 332e 3130 3137 652d 3035 7320 sed 3.1017e-05s │ │ │ │ +00014b20: 2863 7075 293b 2032 2e39 3934 3165 2d30 (cpu); 2.9941e-0 │ │ │ │ 00014b30: 3573 2028 7468 7265 6164 293b 2030 7320 5s (thread); 0s │ │ │ │ 00014b40: 2867 6329 207c 0a7c 2020 2020 2020 2020 (gc) |.| │ │ │ │ 00014b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b80: 2020 7c0a 7c6f 3136 203d 202d 2d20 7261 |.|o16 = -- ra │ │ │ │ 00014b90: 7469 6f6e 616c 206d 6170 202d 2d20 2020 tional map -- │ │ │ │ @@ -5344,18 +5344,18 @@ │ │ │ │ 00014df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014e20: 2d2b 0a7c 6931 3720 3a20 7469 6d65 2070 -+.|i17 : time p │ │ │ │ 00014e30: 726f 6a65 6374 6976 6544 6567 7265 6573 rojectiveDegrees │ │ │ │ 00014e40: 2854 322c 3229 2020 2020 2020 2020 2020 (T2,2) │ │ │ │ 00014e50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014e60: 7c20 2d2d 2075 7365 6420 362e 3434 3236 | -- used 6.4426 │ │ │ │ -00014e70: 3373 2028 6370 7529 3b20 332e 3337 3936 3s (cpu); 3.3796 │ │ │ │ -00014e80: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ -00014e90: 2867 6329 2020 2020 2020 207c 0a7c 2020 (gc) |.| │ │ │ │ +00014e60: 7c20 2d2d 2075 7365 6420 372e 3538 3538 | -- used 7.5858 │ │ │ │ +00014e70: 3873 2028 6370 7529 3b20 332e 3635 3473 8s (cpu); 3.654s │ │ │ │ +00014e80: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ +00014e90: 6329 2020 2020 2020 2020 207c 0a7c 2020 c) |.| │ │ │ │ 00014ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ed0: 2020 2020 2020 2020 7c0a 7c6f 3137 203d |.|o17 = │ │ │ │ 00014ee0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00014ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5430,17 +5430,17 @@ │ │ │ │ 00015350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ 00015380: 3120 3a20 7469 6d65 2066 203d 2072 6174 1 : time f = rat │ │ │ │ 00015390: 696f 6e61 6c4d 6170 2054 2020 2020 2020 ionalMap T │ │ │ │ 000153a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000153b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000153c0: 0a7c 202d 2d20 7573 6564 2035 2e33 3239 .| -- used 5.329 │ │ │ │ -000153d0: 3332 7320 2863 7075 293b 2032 2e38 3733 32s (cpu); 2.873 │ │ │ │ -000153e0: 3136 7320 2874 6872 6561 6429 3b20 3073 16s (thread); 0s │ │ │ │ +000153c0: 0a7c 202d 2d20 7573 6564 2036 2e31 3338 .| -- used 6.138 │ │ │ │ +000153d0: 3736 7320 2863 7075 293b 2033 2e31 3036 76s (cpu); 3.106 │ │ │ │ +000153e0: 3131 7320 2874 6872 6561 6429 3b20 3073 11s (thread); 0s │ │ │ │ 000153f0: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00015400: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015440: 2020 2020 2020 207c 0a7c 6f32 3120 3d20 |.|o21 = │ │ │ │ 00015450: 2d2d 2072 6174 696f 6e61 6c20 6d61 7020 -- rational map │ │ │ │ @@ -6678,17 +6678,17 @@ │ │ │ │ 0001a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a160: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ 0001a170: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ 0001a180: 6572 7365 4d61 703a 2073 7465 7020 3130 erseMap: step 10 │ │ │ │ 0001a190: 206f 6620 3130 2020 2020 2020 2020 2020 of 10 │ │ │ │ 0001a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a1b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a1c0: 2d2d 2075 7365 6420 302e 3233 3831 3931 -- used 0.238191 │ │ │ │ -0001a1d0: 7320 2863 7075 293b 2030 2e31 3836 3231 s (cpu); 0.18621 │ │ │ │ -0001a1e0: 3273 2028 7468 7265 6164 293b 2030 7320 2s (thread); 0s │ │ │ │ +0001a1c0: 2d2d 2075 7365 6420 302e 3332 3131 3031 -- used 0.321101 │ │ │ │ +0001a1d0: 7320 2863 7075 293b 2030 2e32 3435 3438 s (cpu); 0.24548 │ │ │ │ +0001a1e0: 3473 2028 7468 7265 6164 293b 2030 7320 4s (thread); 0s │ │ │ │ 0001a1f0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0001a200: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0001a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a250: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ @@ -8043,17 +8043,17 @@ │ │ │ │ 0001f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f6b0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ 0001f6c0: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ 0001f6d0: 6572 7365 4d61 703a 2073 7465 7020 3320 erseMap: step 3 │ │ │ │ 0001f6e0: 6f66 2033 2020 2020 2020 2020 2020 2020 of 3 │ │ │ │ 0001f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f700: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001f710: 2d2d 2075 7365 6420 302e 3231 3836 3531 -- used 0.218651 │ │ │ │ -0001f720: 7320 2863 7075 293b 2030 2e31 3535 3437 s (cpu); 0.15547 │ │ │ │ -0001f730: 3173 2028 7468 7265 6164 293b 2030 7320 1s (thread); 0s │ │ │ │ +0001f710: 2d2d 2075 7365 6420 302e 3236 3334 3138 -- used 0.263418 │ │ │ │ +0001f720: 7320 2863 7075 293b 2030 2e31 3835 3934 s (cpu); 0.18594 │ │ │ │ +0001f730: 3873 2028 7468 7265 6164 293b 2030 7320 8s (thread); 0s │ │ │ │ 0001f740: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0001f750: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0001f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f7a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ @@ -10405,17 +10405,17 @@ │ │ │ │ 00028a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a50: 2020 2020 207c 0a7c 2d2d 2061 7070 726f |.|-- appro │ │ │ │ 00028a60: 7869 6d61 7465 496e 7665 7273 654d 6170 ximateInverseMap │ │ │ │ 00028a70: 3a20 7374 6570 2033 206f 6620 3320 2020 : step 3 of 3 │ │ │ │ 00028a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028aa0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00028ab0: 2032 2e31 3231 3033 7320 2863 7075 293b 2.12103s (cpu); │ │ │ │ -00028ac0: 2031 2e36 3737 3273 2028 7468 7265 6164 1.6772s (thread │ │ │ │ -00028ad0: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +00028ab0: 2032 2e30 3838 3237 7320 2863 7075 293b 2.08827s (cpu); │ │ │ │ +00028ac0: 2031 2e37 3539 3531 7320 2874 6872 6561 1.75951s (threa │ │ │ │ +00028ad0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 00028ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028af0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00028b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b40: 2020 2020 207c 0a7c 6f38 203d 202d 2d20 |.|o8 = -- │ │ │ │ @@ -11710,16 +11710,16 @@ │ │ │ │ 0002dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dbe0: 2020 2020 207c 0a7c 4365 7274 6966 793a |.|Certify: │ │ │ │ 0002dbf0: 206f 7574 7075 7420 6365 7274 6966 6965 output certifie │ │ │ │ 0002dc00: 6421 2020 2020 2020 2020 2020 2020 2020 d! │ │ │ │ 0002dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc30: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -0002dc40: 2033 2e32 3238 3933 7320 2863 7075 293b 3.22893s (cpu); │ │ │ │ -0002dc50: 2032 2e35 3633 3331 7320 2874 6872 6561 2.56331s (threa │ │ │ │ +0002dc40: 2033 2e31 3234 3137 7320 2863 7075 293b 3.12417s (cpu); │ │ │ │ +0002dc50: 2032 2e37 3036 3532 7320 2874 6872 6561 2.70652s (threa │ │ │ │ 0002dc60: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0002dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0002dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -13366,16 +13366,16 @@ │ │ │ │ 00034350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034380: 2b0a 7c69 3320 3a20 7469 6d65 2043 6865 +.|i3 : time Che │ │ │ │ 00034390: 726e 5363 6877 6172 747a 4d61 6350 6865 rnSchwartzMacPhe │ │ │ │ 000343a0: 7273 6f6e 2043 2020 2020 2020 2020 2020 rson C │ │ │ │ 000343b0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -000343c0: 7573 6564 2032 2e32 3234 3931 7320 2863 used 2.22491s (c │ │ │ │ -000343d0: 7075 293b 2031 2e32 3634 3738 7320 2874 pu); 1.26478s (t │ │ │ │ +000343c0: 7573 6564 2032 2e35 3439 3337 7320 2863 used 2.54937s (c │ │ │ │ +000343d0: 7075 293b 2031 2e32 3330 3031 7320 2874 pu); 1.23001s (t │ │ │ │ 000343e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 000343f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00034400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00034430: 2020 2020 2034 2020 2020 2033 2020 2020 4 3 │ │ │ │ 00034440: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ @@ -13409,17 +13409,17 @@ │ │ │ │ 00034600: 4368 6572 6e53 6368 7761 7274 7a4d 6163 ChernSchwartzMac │ │ │ │ 00034610: 5068 6572 736f 6e28 432c 4365 7274 6966 Pherson(C,Certif │ │ │ │ 00034620: 793d 3e74 7275 6529 2020 2020 7c0a 7c43 y=>true) |.|C │ │ │ │ 00034630: 6572 7469 6679 3a20 6f75 7470 7574 2063 ertify: output c │ │ │ │ 00034640: 6572 7469 6669 6564 2120 2020 2020 2020 ertified! │ │ │ │ 00034650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034660: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00034670: 2031 2e33 3337 3833 7320 2863 7075 293b 1.33783s (cpu); │ │ │ │ -00034680: 2030 2e39 3531 3335 3973 2028 7468 7265 0.951359s (thre │ │ │ │ -00034690: 6164 293b 2030 7320 2867 6329 2020 7c0a ad); 0s (gc) |. │ │ │ │ +00034670: 2031 2e35 3636 3531 7320 2863 7075 293b 1.56651s (cpu); │ │ │ │ +00034680: 2031 2e30 3034 3133 7320 2874 6872 6561 1.00413s (threa │ │ │ │ +00034690: 6429 3b20 3073 2028 6763 2920 2020 7c0a d); 0s (gc) |. │ │ │ │ 000346a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000346b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000346c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000346d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000346e0: 2034 2020 2020 2033 2020 2020 2032 2020 4 3 2 │ │ │ │ 000346f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -13619,18 +13619,18 @@ │ │ │ │ 00035320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 -----------+.|i9 │ │ │ │ 00035340: 203a 2074 696d 6520 4368 6572 6e43 6c61 : time ChernCla │ │ │ │ 00035350: 7373 2047 2020 2020 2020 2020 2020 2020 ss G │ │ │ │ 00035360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035380: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00035390: 2d20 7573 6564 2030 2e33 3230 3038 7320 - used 0.32008s │ │ │ │ -000353a0: 2863 7075 293b 2030 2e31 3837 3233 7320 (cpu); 0.18723s │ │ │ │ -000353b0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -000353c0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00035390: 2d20 7573 6564 2030 2e33 3936 3733 3973 - used 0.396739s │ │ │ │ +000353a0: 2028 6370 7529 3b20 302e 3231 3037 3733 (cpu); 0.210773 │ │ │ │ +000353b0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +000353c0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 000353d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000353e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000353f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00035430: 2020 2020 2020 3920 2020 2020 2038 2020 9 8 │ │ │ │ @@ -13679,17 +13679,17 @@ │ │ │ │ 000356e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000356f0: 2020 2020 2020 2020 2020 207c 0a7c 4365 |.|Ce │ │ │ │ 00035700: 7274 6966 793a 206f 7574 7075 7420 6365 rtify: output ce │ │ │ │ 00035710: 7274 6966 6965 6421 2020 2020 2020 2020 rtified! │ │ │ │ 00035720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035740: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00035750: 2d20 7573 6564 2030 2e31 3037 3637 3973 - used 0.107679s │ │ │ │ -00035760: 2028 6370 7529 3b20 302e 3033 3832 3533 (cpu); 0.038253 │ │ │ │ -00035770: 3173 2028 7468 7265 6164 293b 2030 7320 1s (thread); 0s │ │ │ │ +00035750: 2d20 7573 6564 2030 2e31 3939 3035 3573 - used 0.199055s │ │ │ │ +00035760: 2028 6370 7529 3b20 302e 3034 3631 3530 (cpu); 0.046150 │ │ │ │ +00035770: 3673 2028 7468 7265 6164 293b 2030 7320 6s (thread); 0s │ │ │ │ 00035780: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00035790: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000357a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000357b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000357c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000357d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000357e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ @@ -16336,16 +16336,16 @@ │ │ │ │ 0003fcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fd00: 2d2b 0a7c 6935 203a 2074 696d 6520 6465 -+.|i5 : time de │ │ │ │ 0003fd10: 6772 6565 4d61 7020 7068 6920 2020 2020 greeMap phi │ │ │ │ 0003fd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fd50: 207c 0a7c 202d 2d20 7573 6564 2030 2e30 |.| -- used 0.0 │ │ │ │ -0003fd60: 3435 3736 3334 7320 2863 7075 293b 2030 457634s (cpu); 0 │ │ │ │ -0003fd70: 2e30 3435 3736 3434 7320 2874 6872 6561 .0457644s (threa │ │ │ │ +0003fd60: 3536 3731 3739 7320 2863 7075 293b 2030 567179s (cpu); 0 │ │ │ │ +0003fd70: 2e30 3536 3731 3834 7320 2874 6872 6561 .0567184s (threa │ │ │ │ 0003fd80: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0003fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fda0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -17510,17 +17510,17 @@ │ │ │ │ 00044650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044670: 2d2b 0a7c 6937 203a 2074 696d 6520 6465 -+.|i7 : time de │ │ │ │ 00044680: 6772 6565 4d61 7020 7068 6927 2020 2020 greeMap phi' │ │ │ │ 00044690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000446a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000446b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000446c0: 207c 0a7c 202d 2d20 7573 6564 2031 2e32 |.| -- used 1.2 │ │ │ │ -000446d0: 3530 3538 7320 2863 7075 293b 2030 2e37 5058s (cpu); 0.7 │ │ │ │ -000446e0: 3137 3533 3773 2028 7468 7265 6164 293b 17537s (thread); │ │ │ │ +000446c0: 207c 0a7c 202d 2d20 7573 6564 2031 2e34 |.| -- used 1.4 │ │ │ │ +000446d0: 3738 3438 7320 2863 7075 293b 2030 2e39 7848s (cpu); 0.9 │ │ │ │ +000446e0: 3139 3236 3773 2028 7468 7265 6164 293b 19267s (thread); │ │ │ │ 000446f0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 00044700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044710: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00044720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -18325,17 +18325,17 @@ │ │ │ │ 00047940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047950: 2d2d 2b0a 7c69 3220 3a20 7469 6d65 2045 --+.|i2 : time E │ │ │ │ 00047960: 756c 6572 4368 6172 6163 7465 7269 7374 ulerCharacterist │ │ │ │ 00047970: 6963 2049 2020 2020 2020 2020 2020 2020 ic I │ │ │ │ 00047980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000479a0: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -000479b0: 3332 3336 3373 2028 6370 7529 3b20 302e 32363s (cpu); 0. │ │ │ │ -000479c0: 3139 3231 3132 7320 2874 6872 6561 6429 192112s (thread) │ │ │ │ -000479d0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +000479b0: 3334 3734 3234 7320 2863 7075 293b 2030 347424s (cpu); 0 │ │ │ │ +000479c0: 2e31 3835 3937 3573 2028 7468 7265 6164 .185975s (thread │ │ │ │ +000479d0: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 000479e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000479f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a40: 2020 7c0a 7c6f 3220 3d20 3130 2020 2020 |.|o2 = 10 │ │ │ │ @@ -18355,16 +18355,16 @@ │ │ │ │ 00047b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b30: 2020 7c0a 7c43 6572 7469 6679 3a20 6f75 |.|Certify: ou │ │ │ │ 00047b40: 7470 7574 2063 6572 7469 6669 6564 2120 tput certified! │ │ │ │ 00047b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b80: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -00047b90: 3031 3132 3339 3273 2028 6370 7529 3b20 0112392s (cpu); │ │ │ │ -00047ba0: 302e 3031 3039 3534 3973 2028 7468 7265 0.0109549s (thre │ │ │ │ +00047b90: 3038 3036 3635 3973 2028 6370 7529 3b20 0806659s (cpu); │ │ │ │ +00047ba0: 302e 3032 3131 3338 3773 2028 7468 7265 0.0211387s (thre │ │ │ │ 00047bb0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00047bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047bd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -19033,17 +19033,17 @@ │ │ │ │ 0004a580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 0004a5a0: 3420 3a20 7469 6d65 2066 6f72 6365 496d 4 : time forceIm │ │ │ │ 0004a5b0: 6167 6528 5068 692c 6964 6561 6c20 305f age(Phi,ideal 0_ │ │ │ │ 0004a5c0: 2874 6172 6765 7420 5068 6929 2920 2020 (target Phi)) │ │ │ │ 0004a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a5e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0004a5f0: 2d2d 2075 7365 6420 302e 3030 3036 3530 -- used 0.000650 │ │ │ │ -0004a600: 3232 3973 2028 6370 7529 3b20 302e 3030 229s (cpu); 0.00 │ │ │ │ -0004a610: 3036 3433 3534 3673 2028 7468 7265 6164 0643546s (thread │ │ │ │ +0004a5f0: 2d2d 2075 7365 6420 302e 3030 3038 3837 -- used 0.000887 │ │ │ │ +0004a600: 3935 3673 2028 6370 7529 3b20 302e 3030 956s (cpu); 0.00 │ │ │ │ +0004a610: 3038 3832 3538 3873 2028 7468 7265 6164 0882588s (thread │ │ │ │ 0004a620: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 0004a630: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 0004a640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ @@ -19645,16 +19645,16 @@ │ │ │ │ 0004cbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004cbd0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 -------+.|i3 : t │ │ │ │ 0004cbe0: 696d 6520 2870 312c 7032 2920 3d20 6772 ime (p1,p2) = gr │ │ │ │ 0004cbf0: 6170 6820 7068 693b 2020 2020 2020 2020 aph phi; │ │ │ │ 0004cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cc20: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -0004cc30: 6564 2030 2e30 3136 3332 3739 7320 2863 ed 0.0163279s (c │ │ │ │ -0004cc40: 7075 293b 2030 2e30 3136 3033 3833 7320 pu); 0.0160383s │ │ │ │ +0004cc30: 6564 2030 2e30 3535 3036 3437 7320 2863 ed 0.0550647s (c │ │ │ │ +0004cc40: 7075 293b 2030 2e30 3233 3739 3939 7320 pu); 0.0237999s │ │ │ │ 0004cc50: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 0004cc60: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 0004cc70: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0004cc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004cc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004cca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004ccb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -20942,16 +20942,16 @@ │ │ │ │ 00051cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051ce0: 2d2d 2d2d 2b0a 7c69 3920 3a20 7469 6d65 ----+.|i9 : time │ │ │ │ 00051cf0: 2067 203d 2067 7261 7068 2070 323b 2020 g = graph p2; │ │ │ │ 00051d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d30: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00051d40: 302e 3033 3333 3539 3573 2028 6370 7529 0.0333595s (cpu) │ │ │ │ -00051d50: 3b20 302e 3033 3330 3733 3373 2028 7468 ; 0.0330733s (th │ │ │ │ +00051d40: 302e 3036 3737 3835 3773 2028 6370 7529 0.0677857s (cpu) │ │ │ │ +00051d50: 3b20 302e 3033 3835 3138 3673 2028 7468 ; 0.0385186s (th │ │ │ │ 00051d60: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00051d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d80: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00051d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -21662,17 +21662,17 @@ │ │ │ │ 000549d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000549e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ 000549f0: 7469 6d65 2069 6465 616c 2070 6869 2020 time ideal phi │ │ │ │ 00054a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054a30: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00054a40: 7365 6420 302e 3030 3334 3939 3934 7320 sed 0.00349994s │ │ │ │ -00054a50: 2863 7075 293b 2030 2e30 3033 3439 3436 (cpu); 0.0034946 │ │ │ │ -00054a60: 3673 2028 7468 7265 6164 293b 2030 7320 6s (thread); 0s │ │ │ │ +00054a40: 7365 6420 302e 3030 3432 3530 3038 7320 sed 0.00425008s │ │ │ │ +00054a50: 2863 7075 293b 2030 2e30 3034 3234 3631 (cpu); 0.0042461 │ │ │ │ +00054a60: 3873 2028 7468 7265 6164 293b 2030 7320 8s (thread); 0s │ │ │ │ 00054a70: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00054a80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00054a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054ad0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ @@ -22297,18 +22297,18 @@ │ │ │ │ 00057180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057190: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ 000571a0: 7469 6d65 2069 6465 616c 2070 6869 2720 time ideal phi' │ │ │ │ 000571b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571e0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -000571f0: 7365 6420 302e 3039 3538 3236 3373 2028 sed 0.0958263s ( │ │ │ │ -00057200: 6370 7529 3b20 302e 3039 3538 3331 3873 cpu); 0.0958318s │ │ │ │ -00057210: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00057220: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ +000571f0: 7365 6420 302e 3130 3938 3836 7320 2863 sed 0.109886s (c │ │ │ │ +00057200: 7075 293b 2030 2e31 3039 3838 3873 2028 pu); 0.109888s ( │ │ │ │ +00057210: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +00057220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057230: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00057240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057280: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ 00057290: 6964 6561 6c20 3120 2020 2020 2020 2020 ideal 1 │ │ │ │ @@ -24856,17 +24856,17 @@ │ │ │ │ 00061170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061180: 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 696d -----+.|i3 : tim │ │ │ │ 00061190: 6520 696e 7665 7273 6520 7068 6920 2020 e inverse phi │ │ │ │ 000611a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000611b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000611c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000611d0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -000611e0: 2030 2e30 3631 3036 3873 2028 6370 7529 0.061068s (cpu) │ │ │ │ -000611f0: 3b20 302e 3036 3130 3634 3573 2028 7468 ; 0.0610645s (th │ │ │ │ -00061200: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +000611e0: 2030 2e31 3134 3738 3173 2028 6370 7529 0.114781s (cpu) │ │ │ │ +000611f0: 3b20 302e 3131 3437 3834 7320 2874 6872 ; 0.114784s (thr │ │ │ │ +00061200: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00061210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061220: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00061230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061270: 2020 2020 207c 0a7c 6f33 203d 202d 2d20 |.|o3 = -- │ │ │ │ @@ -27855,16 +27855,16 @@ │ │ │ │ 0006cce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ccf0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ 0006cd00: 2074 696d 6520 7073 6920 3d20 696e 7665 time psi = inve │ │ │ │ 0006cd10: 7273 654d 6170 2070 6869 2020 2020 2020 rseMap phi │ │ │ │ 0006cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd40: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -0006cd50: 7573 6564 2030 2e31 3630 3030 3173 2028 used 0.160001s ( │ │ │ │ -0006cd60: 6370 7529 3b20 302e 3130 3530 3632 7320 cpu); 0.105062s │ │ │ │ +0006cd50: 7573 6564 2030 2e32 3335 3439 3673 2028 used 0.235496s ( │ │ │ │ +0006cd60: 6370 7529 3b20 302e 3133 3536 3839 7320 cpu); 0.135689s │ │ │ │ 0006cd70: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 0006cd80: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 0006cd90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0006cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -28539,17 +28539,17 @@ │ │ │ │ 0006f7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f7c0: 2d2b 0a7c 6935 203a 2074 696d 6520 7073 -+.|i5 : time ps │ │ │ │ 0006f7d0: 6920 3d20 696e 7665 7273 654d 6170 2070 i = inverseMap p │ │ │ │ 0006f7e0: 6869 2020 2020 2020 2020 2020 2020 2020 hi │ │ │ │ 0006f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f810: 207c 0a7c 202d 2d20 7573 6564 2030 2e33 |.| -- used 0.3 │ │ │ │ -0006f820: 3532 3139 3173 2028 6370 7529 3b20 302e 52191s (cpu); 0. │ │ │ │ -0006f830: 3230 3739 3235 7320 2874 6872 6561 6429 207925s (thread) │ │ │ │ +0006f810: 207c 0a7c 202d 2d20 7573 6564 2030 2e34 |.| -- used 0.4 │ │ │ │ +0006f820: 3139 3034 3173 2028 6370 7529 3b20 302e 19041s (cpu); 0. │ │ │ │ +0006f830: 3232 3439 3833 7320 2874 6872 6561 6429 224983s (thread) │ │ │ │ 0006f840: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0006f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f860: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -29536,18 +29536,18 @@ │ │ │ │ 000735f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073600: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ 00073610: 7469 6d65 2069 7342 6972 6174 696f 6e61 time isBirationa │ │ │ │ 00073620: 6c20 7068 6920 2020 2020 2020 2020 2020 l phi │ │ │ │ 00073630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073650: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00073660: 7365 6420 302e 3031 3739 3232 3873 2028 sed 0.0179228s ( │ │ │ │ -00073670: 6370 7529 3b20 302e 3031 3739 3231 3373 cpu); 0.0179213s │ │ │ │ -00073680: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00073690: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ +00073660: 7365 6420 302e 3032 3233 3937 3373 2028 sed 0.0223973s ( │ │ │ │ +00073670: 6370 7529 3b20 302e 3032 3233 3939 7320 cpu); 0.022399s │ │ │ │ +00073680: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +00073690: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000736a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 000736b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000736c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000736d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000736e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000736f0: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ 00073700: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ @@ -29566,16 +29566,16 @@ │ │ │ │ 000737d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000737e0: 2020 2020 2020 2020 7c0a 7c43 6572 7469 |.|Certi │ │ │ │ 000737f0: 6679 3a20 6f75 7470 7574 2063 6572 7469 fy: output certi │ │ │ │ 00073800: 6669 6564 2120 2020 2020 2020 2020 2020 fied! │ │ │ │ 00073810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073830: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00073840: 7365 6420 302e 3031 3336 3031 3573 2028 sed 0.0136015s ( │ │ │ │ -00073850: 6370 7529 3b20 302e 3031 3332 3333 3273 cpu); 0.0132332s │ │ │ │ +00073840: 7365 6420 302e 3034 3430 3730 3173 2028 sed 0.0440701s ( │ │ │ │ +00073850: 6370 7529 3b20 302e 3031 3834 3831 3673 cpu); 0.0184816s │ │ │ │ 00073860: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ 00073870: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ 00073880: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00073890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000738a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000738b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000738c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -29739,17 +29739,17 @@ │ │ │ │ 000742a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000742b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000742c0: 0a7c 4365 7274 6966 793a 206f 7574 7075 .|Certify: outpu │ │ │ │ 000742d0: 7420 6365 7274 6966 6965 6421 2020 2020 t certified! │ │ │ │ 000742e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000742f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00074310: 0a7c 202d 2d20 7573 6564 2032 2e35 3030 .| -- used 2.500 │ │ │ │ -00074320: 3339 7320 2863 7075 293b 2031 2e39 3736 39s (cpu); 1.976 │ │ │ │ -00074330: 3436 7320 2874 6872 6561 6429 3b20 3073 46s (thread); 0s │ │ │ │ +00074310: 0a7c 202d 2d20 7573 6564 2032 2e37 3633 .| -- used 2.763 │ │ │ │ +00074320: 3433 7320 2863 7075 293b 2032 2e32 3735 43s (cpu); 2.275 │ │ │ │ +00074330: 3137 7320 2874 6872 6561 6429 3b20 3073 17s (thread); 0s │ │ │ │ 00074340: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00074350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00074360: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00074370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000743a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -30174,17 +30174,17 @@ │ │ │ │ 00075dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00075df0: 0a7c 4365 7274 6966 793a 206f 7574 7075 .|Certify: outpu │ │ │ │ 00075e00: 7420 6365 7274 6966 6965 6421 2020 2020 t certified! │ │ │ │ 00075e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00075e40: 0a7c 202d 2d20 7573 6564 2033 2e38 3530 .| -- used 3.850 │ │ │ │ -00075e50: 3637 7320 2863 7075 293b 2032 2e35 3233 67s (cpu); 2.523 │ │ │ │ -00075e60: 3535 7320 2874 6872 6561 6429 3b20 3073 55s (thread); 0s │ │ │ │ +00075e40: 0a7c 202d 2d20 7573 6564 2033 2e39 3534 .| -- used 3.954 │ │ │ │ +00075e50: 3934 7320 2863 7075 293b 2032 2e37 3739 94s (cpu); 2.779 │ │ │ │ +00075e60: 3437 7320 2874 6872 6561 6429 3b20 3073 47s (thread); 0s │ │ │ │ 00075e70: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00075e80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00075e90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00075ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075ed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -31483,17 +31483,17 @@ │ │ │ │ 0007afa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007afb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0007afc0: 7c69 3220 3a20 7469 6d65 206b 6572 6e65 |i2 : time kerne │ │ │ │ 0007afd0: 6c28 7068 692c 3129 2020 2020 2020 2020 l(phi,1) │ │ │ │ 0007afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b000: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b010: 7c20 2d2d 2075 7365 6420 302e 3031 3732 | -- used 0.0172 │ │ │ │ -0007b020: 3231 3673 2028 6370 7529 3b20 302e 3031 216s (cpu); 0.01 │ │ │ │ -0007b030: 3732 3138 3673 2028 7468 7265 6164 293b 72186s (thread); │ │ │ │ +0007b010: 7c20 2d2d 2075 7365 6420 302e 3032 3131 | -- used 0.0211 │ │ │ │ +0007b020: 3936 3373 2028 6370 7529 3b20 302e 3032 963s (cpu); 0.02 │ │ │ │ +0007b030: 3131 3935 3773 2028 7468 7265 6164 293b 11957s (thread); │ │ │ │ 0007b040: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 0007b050: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0007b060: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0007b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b0a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ @@ -31523,17 +31523,17 @@ │ │ │ │ 0007b220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0007b240: 7c69 3320 3a20 7469 6d65 206b 6572 6e65 |i3 : time kerne │ │ │ │ 0007b250: 6c28 7068 692c 3229 2020 2020 2020 2020 l(phi,2) │ │ │ │ 0007b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b280: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b290: 7c20 2d2d 2075 7365 6420 302e 3834 3835 | -- used 0.8485 │ │ │ │ -0007b2a0: 3038 7320 2863 7075 293b 2030 2e34 3433 08s (cpu); 0.443 │ │ │ │ -0007b2b0: 3538 7320 2874 6872 6561 6429 3b20 3073 58s (thread); 0s │ │ │ │ +0007b290: 7c20 2d2d 2075 7365 6420 312e 3137 3338 | -- used 1.1738 │ │ │ │ +0007b2a0: 3273 2028 6370 7529 3b20 302e 3534 3939 2s (cpu); 0.5499 │ │ │ │ +0007b2b0: 3733 7320 2874 6872 6561 6429 3b20 3073 73s (thread); 0s │ │ │ │ 0007b2c0: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0007b2d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0007b2e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0007b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b320: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ @@ -32424,18 +32424,18 @@ │ │ │ │ 0007ea70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007ea80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0007ea90: 7c69 3320 3a20 7469 6d65 2070 6172 616d |i3 : time param │ │ │ │ 0007eaa0: 6574 7269 7a65 204c 2020 2020 2020 2020 etrize L │ │ │ │ 0007eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007ead0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007eae0: 7c20 2d2d 2075 7365 6420 302e 3030 3532 | -- used 0.0052 │ │ │ │ -0007eaf0: 3235 3573 2028 6370 7529 3b20 302e 3030 255s (cpu); 0.00 │ │ │ │ -0007eb00: 3532 3230 3632 7320 2874 6872 6561 6429 522062s (thread) │ │ │ │ -0007eb10: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +0007eae0: 7c20 2d2d 2075 7365 6420 302e 3030 3539 | -- used 0.0059 │ │ │ │ +0007eaf0: 3335 3935 7320 2863 7075 293b 2030 2e30 3595s (cpu); 0.0 │ │ │ │ +0007eb00: 3035 3933 3530 3973 2028 7468 7265 6164 0593509s (thread │ │ │ │ +0007eb10: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 0007eb20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0007eb30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0007eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eb70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0007eb80: 7c6f 3320 3d20 2d2d 2072 6174 696f 6e61 |o3 = -- rationa │ │ │ │ @@ -32934,17 +32934,17 @@ │ │ │ │ 00080a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00080a70: 7c69 3520 3a20 7469 6d65 2070 6172 616d |i5 : time param │ │ │ │ 00080a80: 6574 7269 7a65 2051 2020 2020 2020 2020 etrize Q │ │ │ │ 00080a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080ab0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080ac0: 7c20 2d2d 2075 7365 6420 302e 3535 3639 | -- used 0.5569 │ │ │ │ -00080ad0: 3837 7320 2863 7075 293b 2030 2e33 3937 87s (cpu); 0.397 │ │ │ │ -00080ae0: 3539 3773 2028 7468 7265 6164 293b 2030 597s (thread); 0 │ │ │ │ +00080ac0: 7c20 2d2d 2075 7365 6420 302e 3536 3231 | -- used 0.5621 │ │ │ │ +00080ad0: 3335 7320 2863 7075 293b 2030 2e34 3230 35s (cpu); 0.420 │ │ │ │ +00080ae0: 3939 3673 2028 7468 7265 6164 293b 2030 996s (thread); 0 │ │ │ │ 00080af0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 00080b00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00080b10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00080b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080b50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ @@ -34395,18 +34395,18 @@ │ │ │ │ 000865a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000865b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 000865c0: 6932 203a 2074 696d 6520 7020 3d20 706f i2 : time p = po │ │ │ │ 000865d0: 696e 7420 736f 7572 6365 2066 2020 2020 int source f │ │ │ │ 000865e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000865f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086600: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00086610: 202d 2d20 7573 6564 2030 2e34 3435 3937 -- used 0.44597 │ │ │ │ -00086620: 7320 2863 7075 293b 2030 2e32 3135 3835 s (cpu); 0.21585 │ │ │ │ -00086630: 3673 2028 7468 7265 6164 293b 2030 7320 6s (thread); 0s │ │ │ │ -00086640: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +00086610: 202d 2d20 7573 6564 2030 2e35 3038 3034 -- used 0.50804 │ │ │ │ +00086620: 3273 2028 6370 7529 3b20 302e 3232 3130 2s (cpu); 0.2210 │ │ │ │ +00086630: 3336 7320 2874 6872 6561 6429 3b20 3073 36s (thread); 0s │ │ │ │ +00086640: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00086650: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00086660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000866a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000866b0: 6f32 203d 2069 6465 616c 2028 7920 2020 o2 = ideal (y │ │ │ │ @@ -34510,18 +34510,18 @@ │ │ │ │ 00086cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00086cf0: 6933 203a 2074 696d 6520 7020 3d3d 2066 i3 : time p == f │ │ │ │ 00086d00: 5e2a 2066 2070 2020 2020 2020 2020 2020 ^* f p │ │ │ │ 00086d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086d30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00086d40: 202d 2d20 7573 6564 2030 2e32 3035 3173 -- used 0.2051s │ │ │ │ -00086d50: 2028 6370 7529 3b20 302e 3133 3034 3039 (cpu); 0.130409 │ │ │ │ -00086d60: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00086d70: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +00086d40: 202d 2d20 7573 6564 2030 2e32 3332 3330 -- used 0.23230 │ │ │ │ +00086d50: 3473 2028 6370 7529 3b20 302e 3133 3535 4s (cpu); 0.1355 │ │ │ │ +00086d60: 3331 7320 2874 6872 6561 6429 3b20 3073 31s (thread); 0s │ │ │ │ +00086d70: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00086d80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00086d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086dd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00086de0: 6f33 203d 2074 7275 6520 2020 2020 2020 o3 = true │ │ │ │ @@ -34842,16 +34842,16 @@ │ │ │ │ 00088190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000881a0: 2020 207c 0a7c 4365 7274 6966 793a 206f |.|Certify: o │ │ │ │ 000881b0: 7574 7075 7420 6365 7274 6966 6965 6421 utput certified! │ │ │ │ 000881c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000881d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000881e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000881f0: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -00088200: 2e30 3134 3830 3431 7320 2863 7075 293b .0148041s (cpu); │ │ │ │ -00088210: 2030 2e30 3134 3438 3933 7320 2874 6872 0.0144893s (thr │ │ │ │ +00088200: 2e30 3537 3432 3837 7320 2863 7075 293b .0574287s (cpu); │ │ │ │ +00088210: 2030 2e30 3231 3434 3132 7320 2874 6872 0.0214412s (thr │ │ │ │ 00088220: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00088230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088240: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00088250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -34972,17 +34972,17 @@ │ │ │ │ 000889b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000889c0: 2020 207c 0a7c 4365 7274 6966 793a 206f |.|Certify: o │ │ │ │ 000889d0: 7574 7075 7420 6365 7274 6966 6965 6421 utput certified! │ │ │ │ 000889e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000889f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088a10: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -00088a20: 2e30 3131 3234 3931 7320 2863 7075 293b .0112491s (cpu); │ │ │ │ -00088a30: 2030 2e30 3130 3936 3031 7320 2874 6872 0.0109601s (thr │ │ │ │ -00088a40: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +00088a20: 2e30 3234 3539 7320 2863 7075 293b 2030 .02459s (cpu); 0 │ │ │ │ +00088a30: 2e30 3132 3737 3373 2028 7468 7265 6164 .012773s (thread │ │ │ │ +00088a40: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 00088a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088a60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00088a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088ab0: 2020 207c 0a7c 6f35 203d 207b 322c 2034 |.|o5 = {2, 4 │ │ │ │ @@ -35297,17 +35297,17 @@ │ │ │ │ 00089e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089e10: 2d2d 2d2b 0a7c 6937 203a 2074 696d 6520 ---+.|i7 : time │ │ │ │ 00089e20: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ 00089e30: 7320 7068 6920 2020 2020 2020 2020 2020 s phi │ │ │ │ 00089e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089e60: 2020 207c 0a7c 202d 2d20 7573 6564 2035 |.| -- used 5 │ │ │ │ -00089e70: 2e30 3336 3565 2d30 3573 2028 6370 7529 .0365e-05s (cpu) │ │ │ │ -00089e80: 3b20 342e 3530 3834 652d 3035 7320 2874 ; 4.5084e-05s (t │ │ │ │ -00089e90: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +00089e70: 2e31 3133 3365 2d30 3573 2028 6370 7529 .1133e-05s (cpu) │ │ │ │ +00089e80: 3b20 342e 3330 3965 2d30 3573 2028 7468 ; 4.309e-05s (th │ │ │ │ +00089e90: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00089ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089eb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00089ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089f00: 2020 207c 0a7c 6f37 203d 207b 312c 2032 |.|o7 = {1, 2 │ │ │ │ @@ -35332,16 +35332,16 @@ │ │ │ │ 0008a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008a040: 2d2d 2d2b 0a7c 6938 203a 2074 696d 6520 ---+.|i8 : time │ │ │ │ 0008a050: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ 0008a060: 7328 7068 692c 4e75 6d44 6567 7265 6573 s(phi,NumDegrees │ │ │ │ 0008a070: 3d3e 3129 2020 2020 2020 2020 2020 2020 =>1) │ │ │ │ 0008a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a090: 2020 207c 0a7c 202d 2d20 7573 6564 2032 |.| -- used 2 │ │ │ │ -0008a0a0: 2e30 3033 3865 2d30 3573 2028 6370 7529 .0038e-05s (cpu) │ │ │ │ -0008a0b0: 3b20 312e 3938 3837 652d 3035 7320 2874 ; 1.9887e-05s (t │ │ │ │ +0008a0a0: 2e37 3834 3665 2d30 3573 2028 6370 7529 .7846e-05s (cpu) │ │ │ │ +0008a0b0: 3b20 322e 3736 3632 652d 3035 7320 2874 ; 2.7662e-05s (t │ │ │ │ 0008a0c0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 0008a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a0e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0008a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -37824,18 +37824,18 @@ │ │ │ │ 00093bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093c10: 2b0a 7c69 3420 3a20 7469 6d65 2070 6869 +.|i4 : time phi │ │ │ │ 00093c20: 2120 3b20 2020 2020 2020 2020 2020 2020 ! ; │ │ │ │ 00093c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093c60: 7c0a 7c20 2d2d 2075 7365 6420 302e 3035 |.| -- used 0.05 │ │ │ │ -00093c70: 3535 3732 3973 2028 6370 7529 3b20 302e 55729s (cpu); 0. │ │ │ │ -00093c80: 3035 3531 3531 3273 2028 7468 7265 6164 0551512s (thread │ │ │ │ -00093c90: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +00093c60: 7c0a 7c20 2d2d 2075 7365 6420 302e 3131 |.| -- used 0.11 │ │ │ │ +00093c70: 3532 3634 7320 2863 7075 293b 2030 2e30 5264s (cpu); 0.0 │ │ │ │ +00093c80: 3733 3834 3334 7320 2874 6872 6561 6429 738434s (thread) │ │ │ │ +00093c90: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 00093ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093cb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00093cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093d00: 7c0a 7c6f 3420 3a20 5261 7469 6f6e 616c |.|o4 : Rational │ │ │ │ @@ -37999,17 +37999,17 @@ │ │ │ │ 000946e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000946f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094700: 2b0a 7c69 3920 3a20 7469 6d65 2070 6869 +.|i9 : time phi │ │ │ │ 00094710: 2120 3b20 2020 2020 2020 2020 2020 2020 ! ; │ │ │ │ 00094720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094750: 7c0a 7c20 2d2d 2075 7365 6420 302e 3033 |.| -- used 0.03 │ │ │ │ -00094760: 3539 3534 3973 2028 6370 7529 3b20 302e 59549s (cpu); 0. │ │ │ │ -00094770: 3033 3536 3837 3573 2028 7468 7265 6164 0356875s (thread │ │ │ │ +00094750: 7c0a 7c20 2d2d 2075 7365 6420 302e 3036 |.| -- used 0.06 │ │ │ │ +00094760: 3932 3033 3373 2028 6370 7529 3b20 302e 92033s (cpu); 0. │ │ │ │ +00094770: 3035 3539 3032 3973 2028 7468 7265 6164 0559029s (thread │ │ │ │ 00094780: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 00094790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000947a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000947b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000947c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000947d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000947e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -40043,18 +40043,18 @@ │ │ │ │ 0009c6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0009c6c0: 7c69 3620 3a20 7469 6d65 2070 6869 5e2a |i6 : time phi^* │ │ │ │ 0009c6d0: 2a20 7120 2020 2020 2020 2020 2020 2020 * q │ │ │ │ 0009c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c700: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c710: 7c20 2d2d 2075 7365 6420 302e 3135 3537 | -- used 0.1557 │ │ │ │ -0009c720: 3673 2028 6370 7529 3b20 302e 3135 3537 6s (cpu); 0.1557 │ │ │ │ -0009c730: 3631 7320 2874 6872 6561 6429 3b20 3073 61s (thread); 0s │ │ │ │ -0009c740: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ +0009c710: 7c20 2d2d 2075 7365 6420 302e 3137 3534 | -- used 0.1754 │ │ │ │ +0009c720: 3437 7320 2863 7075 293b 2030 2e31 3735 47s (cpu); 0.175 │ │ │ │ +0009c730: 3434 3873 2028 7468 7265 6164 293b 2030 448s (thread); 0 │ │ │ │ +0009c740: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 0009c750: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0009c760: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0009c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c7a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0009c7b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ @@ -42163,18 +42163,18 @@ │ │ │ │ 000a4b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4b40: 2d2b 0a7c 6933 203a 2074 696d 6520 7068 -+.|i3 : time ph │ │ │ │ 000a4b50: 6920 3d20 7261 7469 6f6e 616c 4d61 7028 i = rationalMap( │ │ │ │ 000a4b60: 562c 332c 3229 2020 2020 2020 2020 2020 V,3,2) │ │ │ │ 000a4b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4b90: 207c 0a7c 202d 2d20 7573 6564 2030 2e30 |.| -- used 0.0 │ │ │ │ -000a4ba0: 3935 3833 3433 7320 2863 7075 293b 2030 958343s (cpu); 0 │ │ │ │ -000a4bb0: 2e30 3935 3738 3533 7320 2874 6872 6561 .0957853s (threa │ │ │ │ -000a4bc0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +000a4b90: 207c 0a7c 202d 2d20 7573 6564 2030 2e31 |.| -- used 0.1 │ │ │ │ +000a4ba0: 3138 3233 3573 2028 6370 7529 3b20 302e 18235s (cpu); 0. │ │ │ │ +000a4bb0: 3131 3830 3138 7320 2874 6872 6561 6429 118018s (thread) │ │ │ │ +000a4bc0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 000a4bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4be0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a4bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4c30: 207c 0a7c 6f33 203d 202d 2d20 7261 7469 |.|o3 = -- rati │ │ │ │ @@ -43696,16 +43696,16 @@ │ │ │ │ 000aaaf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000aab00: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ 000aab10: 7469 6d65 2070 6869 203d 2072 6174 696f time phi = ratio │ │ │ │ 000aab20: 6e61 6c4d 6170 2044 2020 2020 2020 2020 nalMap D │ │ │ │ 000aab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aab50: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -000aab60: 7365 6420 302e 3032 3838 3839 3373 2028 sed 0.0288893s ( │ │ │ │ -000aab70: 6370 7529 3b20 302e 3032 3838 3839 3973 cpu); 0.0288899s │ │ │ │ +000aab60: 7365 6420 302e 3033 3435 3530 3473 2028 sed 0.0345504s ( │ │ │ │ +000aab70: 6370 7529 3b20 302e 3033 3435 3531 3473 cpu); 0.0345514s │ │ │ │ 000aab80: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ 000aab90: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ 000aaba0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 000aabb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aabc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aabd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aabe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -44706,16 +44706,16 @@ │ │ │ │ 000aea10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000aea20: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 --------+.|i7 : │ │ │ │ 000aea30: 7469 6d65 203f 2069 6d61 6765 2870 6869 time ? image(phi │ │ │ │ 000aea40: 2c22 4634 2229 2020 2020 2020 2020 2020 ,"F4") │ │ │ │ 000aea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aea60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aea70: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -000aea80: 7365 6420 312e 3238 3336 3573 2028 6370 sed 1.28365s (cp │ │ │ │ -000aea90: 7529 3b20 302e 3738 3634 3138 7320 2874 u); 0.786418s (t │ │ │ │ +000aea80: 7365 6420 312e 3833 3037 3373 2028 6370 sed 1.83073s (cp │ │ │ │ +000aea90: 7529 3b20 302e 3730 3734 3435 7320 2874 u); 0.707445s (t │ │ │ │ 000aeaa0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 000aeab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aeac0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 000aead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aeae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aeaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aeb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -46244,16 +46244,16 @@ │ │ │ │ 000b4a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000b4a40: 2d2d 2d2d 2b0a 7c69 3420 3a20 7469 6d65 ----+.|i4 : time │ │ │ │ 000b4a50: 2053 6567 7265 436c 6173 7320 5820 2020 SegreClass X │ │ │ │ 000b4a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4a90: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000b4aa0: 302e 3739 3832 3236 7320 2863 7075 293b 0.798226s (cpu); │ │ │ │ -000b4ab0: 2030 2e35 3039 3630 3273 2028 7468 7265 0.509602s (thre │ │ │ │ +000b4aa0: 302e 3831 3439 3337 7320 2863 7075 293b 0.814937s (cpu); │ │ │ │ +000b4ab0: 2030 2e35 3231 3636 3173 2028 7468 7265 0.521661s (thre │ │ │ │ 000b4ac0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 000b4ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4ae0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000b4af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -46299,16 +46299,16 @@ │ │ │ │ 000b4da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000b4db0: 2d2d 2d2d 2b0a 7c69 3520 3a20 7469 6d65 ----+.|i5 : time │ │ │ │ 000b4dc0: 2053 6567 7265 436c 6173 7320 6c69 6674 SegreClass lift │ │ │ │ 000b4dd0: 2858 2c50 3729 2020 2020 2020 2020 2020 (X,P7) │ │ │ │ 000b4de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4e00: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000b4e10: 302e 3534 3931 3331 7320 2863 7075 293b 0.549131s (cpu); │ │ │ │ -000b4e20: 2030 2e33 3333 3236 7320 2874 6872 6561 0.33326s (threa │ │ │ │ +000b4e10: 302e 3636 3738 3773 2028 6370 7529 3b20 0.66787s (cpu); │ │ │ │ +000b4e20: 302e 3336 3836 3335 7320 2874 6872 6561 0.368635s (threa │ │ │ │ 000b4e30: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 000b4e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4e50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000b4e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -46359,16 +46359,16 @@ │ │ │ │ 000b5160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5170: 2020 2020 7c0a 7c43 6572 7469 6679 3a20 |.|Certify: │ │ │ │ 000b5180: 6f75 7470 7574 2063 6572 7469 6669 6564 output certified │ │ │ │ 000b5190: 2120 2020 2020 2020 2020 2020 2020 2020 ! │ │ │ │ 000b51a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b51b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b51c0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000b51d0: 302e 3032 3132 3632 3473 2028 6370 7529 0.0212624s (cpu) │ │ │ │ -000b51e0: 3b20 302e 3032 3037 3339 3173 2028 7468 ; 0.0207391s (th │ │ │ │ +000b51d0: 302e 3034 3430 3630 3673 2028 6370 7529 0.0440606s (cpu) │ │ │ │ +000b51e0: 3b20 302e 3032 3537 3831 3573 2028 7468 ; 0.0257815s (th │ │ │ │ 000b51f0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 000b5200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5210: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000b5220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -46419,17 +46419,17 @@ │ │ │ │ 000b5520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5530: 2020 2020 7c0a 7c43 6572 7469 6679 3a20 |.|Certify: │ │ │ │ 000b5540: 6f75 7470 7574 2063 6572 7469 6669 6564 output certified │ │ │ │ 000b5550: 2120 2020 2020 2020 2020 2020 2020 2020 ! │ │ │ │ 000b5560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5580: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000b5590: 302e 3039 3734 3937 3573 2028 6370 7529 0.0974975s (cpu) │ │ │ │ -000b55a0: 3b20 302e 3039 3639 3635 3973 2028 7468 ; 0.0969659s (th │ │ │ │ -000b55b0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +000b5590: 302e 3136 3133 3731 7320 2863 7075 293b 0.161371s (cpu); │ │ │ │ +000b55a0: 2030 2e31 3233 3234 3373 2028 7468 7265 0.123243s (thre │ │ │ │ +000b55b0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 000b55c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b55d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000b55e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b55f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5620: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ @@ -46535,26 +46535,26 @@ │ │ │ │ 000b5c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b5c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5cc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000b5cd0: 6f39 2020 2020 205a 5a20 2020 2020 2020 o9 ZZ │ │ │ │ +000b5cd0: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ 000b5ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5d10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000b5d20: 3d20 2d2d 2d2d 2d2d 5b78 202e 2e78 205d = ------[x ..x ] │ │ │ │ -000b5d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000b5d20: 6f39 203d 202d 2d2d 2d2d 2d5b 7820 2e2e o9 = ------[x .. │ │ │ │ +000b5d30: 7820 5d20 2020 2020 2020 2020 2020 2020 x ] │ │ │ │ 000b5d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5d60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000b5d70: 2020 3130 3030 3033 2020 3020 2020 3620 100003 0 6 │ │ │ │ -000b5d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000b5d70: 2020 2020 2031 3030 3030 3320 2030 2020 100003 0 │ │ │ │ +000b5d80: 2036 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ 000b5d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5db0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b5dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -46570,18 +46570,18 @@ │ │ │ │ 000b5e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000b5ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 000b5eb0: 6931 3020 3a20 7469 6d65 2070 6869 203d i10 : time phi = │ │ │ │ 000b5ec0: 2069 6e76 6572 7365 4d61 7020 746f 4d61 inverseMap toMa │ │ │ │ 000b5ed0: 7028 6d69 6e6f 7273 2832 2c6d 6174 7269 p(minors(2,matri │ │ │ │ 000b5ee0: 787b 7b78 5f30 2c78 5f31 2c78 5f33 2c78 x{{x_0,x_1,x_3,x │ │ │ │ 000b5ef0: 5f34 2c78 5f35 7d2c 7b78 5f31 2c7c 0a7c _4,x_5},{x_1,|.| │ │ │ │ -000b5f00: 202d 2d20 7573 6564 2030 2e31 3937 3331 -- used 0.19731 │ │ │ │ -000b5f10: 3573 2028 6370 7529 3b20 302e 3039 3833 5s (cpu); 0.0983 │ │ │ │ -000b5f20: 3935 3273 2028 7468 7265 6164 293b 2030 952s (thread); 0 │ │ │ │ -000b5f30: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +000b5f00: 202d 2d20 7573 6564 2030 2e30 3638 3431 -- used 0.06841 │ │ │ │ +000b5f10: 3734 7320 2863 7075 293b 2030 2e30 3638 74s (cpu); 0.068 │ │ │ │ +000b5f20: 3430 3336 7320 2874 6872 6561 6429 3b20 4036s (thread); │ │ │ │ +000b5f30: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 000b5f40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b5f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5f90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b5fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -46775,17 +46775,17 @@ │ │ │ │ 000b6b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000b6b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 000b6b80: 6931 3120 3a20 7469 6d65 2053 6567 7265 i11 : time Segre │ │ │ │ 000b6b90: 436c 6173 7320 7068 6920 2020 2020 2020 Class phi │ │ │ │ 000b6ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b6bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b6bc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000b6bd0: 202d 2d20 7573 6564 2030 2e31 3639 3530 -- used 0.16950 │ │ │ │ -000b6be0: 3973 2028 6370 7529 3b20 302e 3136 3935 9s (cpu); 0.1695 │ │ │ │ -000b6bf0: 3134 7320 2874 6872 6561 6429 3b20 3073 14s (thread); 0s │ │ │ │ +000b6bd0: 202d 2d20 7573 6564 2030 2e34 3031 3932 -- used 0.40192 │ │ │ │ +000b6be0: 3273 2028 6370 7529 3b20 302e 3235 3837 2s (cpu); 0.2587 │ │ │ │ +000b6bf0: 3337 7320 2874 6872 6561 6429 3b20 3073 37s (thread); 0s │ │ │ │ 000b6c00: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 000b6c10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b6c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b6c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b6c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b6c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b6c60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ @@ -46935,17 +46935,17 @@ │ │ │ │ 000b7560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7570: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b7580: 2020 2020 2020 7469 6d65 2053 6567 7265 time Segre │ │ │ │ 000b7590: 436c 6173 7320 4220 2020 2020 2020 2020 Class B │ │ │ │ 000b75a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b75b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b75c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000b75d0: 202d 2d20 7573 6564 2030 2e35 3138 3736 -- used 0.51876 │ │ │ │ -000b75e0: 3473 2028 6370 7529 3b20 302e 3331 3537 4s (cpu); 0.3157 │ │ │ │ -000b75f0: 3839 7320 2874 6872 6561 6429 3b20 3073 89s (thread); 0s │ │ │ │ +000b75d0: 202d 2d20 7573 6564 2030 2e34 3333 3038 -- used 0.43308 │ │ │ │ +000b75e0: 3573 2028 6370 7529 3b20 302e 3239 3234 5s (cpu); 0.2924 │ │ │ │ +000b75f0: 3336 7320 2874 6872 6561 6429 3b20 3073 36s (thread); 0s │ │ │ │ 000b7600: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 000b7610: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b7620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7660: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ @@ -46995,18 +46995,18 @@ │ │ │ │ 000b7920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7930: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b7940: 2020 2020 2020 7469 6d65 2053 6567 7265 time Segre │ │ │ │ 000b7950: 436c 6173 7320 6c69 6674 2842 2c61 6d62 Class lift(B,amb │ │ │ │ 000b7960: 6965 6e74 2072 696e 6720 4229 2020 2020 ient ring B) │ │ │ │ 000b7970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7980: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000b7990: 202d 2d20 7573 6564 2031 2e33 3133 3831 -- used 1.31381 │ │ │ │ -000b79a0: 7320 2863 7075 293b 2030 2e38 3630 3831 s (cpu); 0.86081 │ │ │ │ -000b79b0: 3773 2028 7468 7265 6164 293b 2030 7320 7s (thread); 0s │ │ │ │ -000b79c0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +000b7990: 202d 2d20 7573 6564 2031 2e36 3539 3773 -- used 1.6597s │ │ │ │ +000b79a0: 2028 6370 7529 3b20 302e 3935 3938 3439 (cpu); 0.959849 │ │ │ │ +000b79b0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +000b79c0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 000b79d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b79e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b79f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7a20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b7a30: 2020 2020 2020 2020 2020 2039 2020 2020 9 │ │ │ │ @@ -47245,17 +47245,17 @@ │ │ │ │ 000b88c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000b88d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000b88e0: 7c69 3120 3a20 7469 6d65 2061 7070 6c79 |i1 : time apply │ │ │ │ 000b88f0: 2831 2e2e 3132 2c69 202d 3e20 6465 7363 (1..12,i -> desc │ │ │ │ 000b8900: 7269 6265 2073 7065 6369 616c 4372 656d ribe specialCrem │ │ │ │ 000b8910: 6f6e 6154 7261 6e73 666f 726d 6174 696f onaTransformatio │ │ │ │ 000b8920: 6e28 692c 5a5a 2f33 3333 3129 2920 7c0a n(i,ZZ/3331)) |. │ │ │ │ -000b8930: 7c20 2d2d 2075 7365 6420 312e 3437 3538 | -- used 1.4758 │ │ │ │ -000b8940: 3373 2028 6370 7529 3b20 312e 3134 3830 3s (cpu); 1.1480 │ │ │ │ -000b8950: 3273 2028 7468 7265 6164 293b 2030 7320 2s (thread); 0s │ │ │ │ +000b8930: 7c20 2d2d 2075 7365 6420 312e 3633 3236 | -- used 1.6326 │ │ │ │ +000b8940: 3173 2028 6370 7529 3b20 312e 3233 3737 1s (cpu); 1.2377 │ │ │ │ +000b8950: 3573 2028 7468 7265 6164 293b 2030 7320 5s (thread); 0s │ │ │ │ 000b8960: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 000b8970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000b8980: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000b8990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b89a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b89b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b89c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ @@ -48068,17 +48068,17 @@ │ │ │ │ 000bbc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000bbc40: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ 000bbc50: 2074 696d 6520 7370 6563 6961 6c43 7562 time specialCub │ │ │ │ 000bbc60: 6963 5472 616e 7366 6f72 6d61 7469 6f6e icTransformation │ │ │ │ 000bbc70: 2039 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ 000bbc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbc90: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -000bbca0: 7573 6564 2030 2e30 3934 3230 3535 7320 used 0.0942055s │ │ │ │ -000bbcb0: 2863 7075 293b 2030 2e30 3934 3230 3433 (cpu); 0.0942043 │ │ │ │ -000bbcc0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +000bbca0: 7573 6564 2030 2e31 3037 3334 7320 2863 used 0.10734s (c │ │ │ │ +000bbcb0: 7075 293b 2030 2e31 3037 3333 3973 2028 pu); 0.107339s ( │ │ │ │ +000bbcc0: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 000bbcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbce0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bbcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbd30: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ @@ -48387,2032 +48387,2032 @@ │ │ │ │ 000bd020: 6170 2066 726f 6d20 5050 5e36 2074 6f20 ap from PP^6 to │ │ │ │ 000bd030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd040: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ 000bd050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000bd060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000bd070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000bd080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000bd090: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 6763 2920 ---------|.|gc) │ │ │ │ -000bd0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd090: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 202c 2074 ---------|.| , t │ │ │ │ +000bd0a0: 202c 2074 202c 2074 202c 2074 202c 2074 , t , t , t , t │ │ │ │ +000bd0b0: 205d 2920 6465 6669 6e65 6420 6279 2020 ]) defined by │ │ │ │ 000bd0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd0e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd0e0: 2020 2020 2020 2020 207c 0a7c 3420 2020 |.|4 │ │ │ │ +000bd0f0: 3520 2020 3620 2020 3720 2020 3820 2020 5 6 7 8 │ │ │ │ +000bd100: 3920 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ 000bd110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd130: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bd140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd180: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bd190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd1a0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000bd1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd1d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd220: 2020 2020 2020 2020 207c 0a7c 202c 2074 |.| , t │ │ │ │ -000bd230: 202c 2074 202c 2074 202c 2074 202c 2074 , t , t , t , t │ │ │ │ -000bd240: 205d 2920 6465 6669 6e65 6420 6279 2020 ]) defined by │ │ │ │ -000bd250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd270: 2020 2020 2020 2020 207c 0a7c 3420 2020 |.|4 │ │ │ │ -000bd280: 3520 2020 3620 2020 3720 2020 3820 2020 5 6 7 8 │ │ │ │ -000bd290: 3920 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ +000bd1d0: 2020 2020 2020 2020 207c 0a7c 7420 202b |.|t + │ │ │ │ +000bd1e0: 2036 7420 7420 202b 2031 3374 2074 2020 6t t + 13t t │ │ │ │ +000bd1f0: 2b20 3133 7420 202d 2031 3074 2074 2020 + 13t - 10t t │ │ │ │ +000bd200: 2d20 3130 7420 7420 202b 2074 2074 2020 - 10t t + t t │ │ │ │ +000bd210: 2b20 3130 7420 7420 202d 2032 7420 7420 + 10t t - 2t t │ │ │ │ +000bd220: 202b 2020 2020 2020 207c 0a7c 2035 2020 + |.| 5 │ │ │ │ +000bd230: 2020 2033 2035 2020 2020 2020 3420 3520 3 5 4 5 │ │ │ │ +000bd240: 2020 2020 2035 2020 2020 2020 3020 3620 5 0 6 │ │ │ │ +000bd250: 2020 2020 2031 2036 2020 2020 3220 3620 1 6 2 6 │ │ │ │ +000bd260: 2020 2020 2034 2036 2020 2020 2035 2036 4 6 5 6 │ │ │ │ +000bd270: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bd280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd2c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd2d0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000bd2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd2f0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ 000bd300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd310: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd330: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000bd340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd360: 2020 2020 2020 2020 207c 0a7c 7420 202b |.|t + │ │ │ │ -000bd370: 2036 7420 7420 202b 2031 3374 2074 2020 6t t + 13t t │ │ │ │ -000bd380: 2b20 3133 7420 202d 2031 3074 2074 2020 + 13t - 10t t │ │ │ │ -000bd390: 2d20 3130 7420 7420 202b 2074 2074 2020 - 10t t + t t │ │ │ │ -000bd3a0: 2b20 3130 7420 7420 202d 2032 7420 7420 + 10t t - 2t t │ │ │ │ -000bd3b0: 202b 2020 2020 2020 207c 0a7c 2035 2020 + |.| 5 │ │ │ │ -000bd3c0: 2020 2033 2035 2020 2020 2020 3420 3520 3 5 4 5 │ │ │ │ -000bd3d0: 2020 2020 2035 2020 2020 2020 3020 3620 5 0 6 │ │ │ │ -000bd3e0: 2020 2020 2031 2036 2020 2020 3220 3620 1 6 2 6 │ │ │ │ -000bd3f0: 2020 2020 2034 2036 2020 2020 2035 2036 4 6 5 6 │ │ │ │ +000bd310: 2020 2020 2020 2020 207c 0a7c 2d20 3874 |.|- 8t │ │ │ │ +000bd320: 2020 2b20 3874 2074 2020 2b20 3874 2074 + 8t t + 8t t │ │ │ │ +000bd330: 2020 2b20 7420 7420 202d 2038 7420 7420 + t t - 8t t │ │ │ │ +000bd340: 202b 2074 2074 2020 2d20 3874 2020 2d20 + t t - 8t - │ │ │ │ +000bd350: 3274 2074 2020 2d20 7420 7420 202d 2032 2t t - t t - 2 │ │ │ │ +000bd360: 7420 2020 2020 2020 207c 0a7c 2020 2020 t |.| │ │ │ │ +000bd370: 3520 2020 2020 3020 3620 2020 2020 3120 5 0 6 1 │ │ │ │ +000bd380: 3620 2020 2032 2036 2020 2020 2034 2036 6 2 6 4 6 │ │ │ │ +000bd390: 2020 2020 3520 3620 2020 2020 3620 2020 5 6 6 │ │ │ │ +000bd3a0: 2020 3020 3720 2020 2031 2037 2020 2020 0 7 1 7 │ │ │ │ +000bd3b0: 2032 2020 2020 2020 207c 0a7c 2020 2020 2 |.| │ │ │ │ +000bd3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd400: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd410: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 000bd420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd430: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ 000bd440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd450: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd460: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000bd470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd480: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000bd490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd4a0: 2020 2020 2020 2020 207c 0a7c 2d20 3874 |.|- 8t │ │ │ │ -000bd4b0: 2020 2b20 3874 2074 2020 2b20 3874 2074 + 8t t + 8t t │ │ │ │ -000bd4c0: 2020 2b20 7420 7420 202d 2038 7420 7420 + t t - 8t t │ │ │ │ -000bd4d0: 202b 2074 2074 2020 2d20 3874 2020 2d20 + t t - 8t - │ │ │ │ -000bd4e0: 3274 2074 2020 2d20 7420 7420 202d 2032 2t t - t t - 2 │ │ │ │ -000bd4f0: 7420 2020 2020 2020 207c 0a7c 2020 2020 t |.| │ │ │ │ -000bd500: 3520 2020 2020 3020 3620 2020 2020 3120 5 0 6 1 │ │ │ │ -000bd510: 3620 2020 2032 2036 2020 2020 2034 2036 6 2 6 4 6 │ │ │ │ -000bd520: 2020 2020 3520 3620 2020 2020 3620 2020 5 6 6 │ │ │ │ -000bd530: 2020 3020 3720 2020 2031 2037 2020 2020 0 7 1 7 │ │ │ │ -000bd540: 2032 2020 2020 2020 207c 0a7c 2020 2020 2 |.| │ │ │ │ +000bd450: 2020 2020 2020 2020 207c 0a7c 3274 2074 |.|2t t │ │ │ │ +000bd460: 2020 2d20 3274 2020 2b20 3274 2074 2020 - 2t + 2t t │ │ │ │ +000bd470: 2b20 3274 2074 2020 2b20 7420 7420 202d + 2t t + t t - │ │ │ │ +000bd480: 2033 7420 7420 202d 2033 7420 202d 2074 3t t - 3t - t │ │ │ │ +000bd490: 2074 2020 2d20 7420 7420 202b 2074 2074 t - t t + t t │ │ │ │ +000bd4a0: 2020 2020 2020 2020 207c 0a7c 2020 3420 |.| 4 │ │ │ │ +000bd4b0: 3520 2020 2020 3520 2020 2020 3020 3620 5 5 0 6 │ │ │ │ +000bd4c0: 2020 2020 3120 3620 2020 2033 2036 2020 1 6 3 6 │ │ │ │ +000bd4d0: 2020 2034 2036 2020 2020 2036 2020 2020 4 6 6 │ │ │ │ +000bd4e0: 3020 3720 2020 2032 2037 2020 2020 3420 0 7 2 7 4 │ │ │ │ +000bd4f0: 3720 2020 2020 2020 207c 0a7c 2020 2020 7 |.| │ │ │ │ +000bd500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd540: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bd550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd590: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd5a0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000bd590: 2020 2020 2020 2020 207c 0a7c 2020 3220 |.| 2 │ │ │ │ +000bd5a0: 2020 2020 2020 3220 2020 2033 2020 2020 2 3 │ │ │ │ 000bd5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd5c0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000bd5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd5e0: 2020 2020 2020 2020 207c 0a7c 3274 2074 |.|2t t │ │ │ │ -000bd5f0: 2020 2d20 3274 2020 2b20 3274 2074 2020 - 2t + 2t t │ │ │ │ -000bd600: 2b20 3274 2074 2020 2b20 7420 7420 202d + 2t t + t t - │ │ │ │ -000bd610: 2033 7420 7420 202d 2033 7420 202d 2074 3t t - 3t - t │ │ │ │ -000bd620: 2074 2020 2d20 7420 7420 202b 2074 2074 t - t t + t t │ │ │ │ -000bd630: 2020 2020 2020 2020 207c 0a7c 2020 3420 |.| 4 │ │ │ │ -000bd640: 3520 2020 2020 3520 2020 2020 3020 3620 5 5 0 6 │ │ │ │ -000bd650: 2020 2020 3120 3620 2020 2033 2036 2020 1 6 3 6 │ │ │ │ -000bd660: 2020 2034 2036 2020 2020 2036 2020 2020 4 6 6 │ │ │ │ -000bd670: 3020 3720 2020 2032 2037 2020 2020 3420 0 7 2 7 4 │ │ │ │ -000bd680: 3720 2020 2020 2020 207c 0a7c 2020 2020 7 |.| │ │ │ │ +000bd5c0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000bd5d0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000bd5e0: 2020 2020 2020 2020 207c 0a7c 2078 2020 |.| x │ │ │ │ +000bd5f0: 2d20 3678 2078 2020 2b20 7820 202b 2032 - 6x x + x + 2 │ │ │ │ +000bd600: 7820 7820 7820 202d 2031 3678 2078 2078 x x x - 16x x x │ │ │ │ +000bd610: 2020 2b20 3778 2078 2020 2b20 3878 2078 + 7x x + 8x x │ │ │ │ +000bd620: 2020 2d20 3578 2078 2078 2020 2d20 3278 - 5x x x - 2x │ │ │ │ +000bd630: 2078 2020 2020 2020 207c 0a7c 3020 3220 x |.|0 2 │ │ │ │ +000bd640: 2020 2020 3120 3220 2020 2032 2020 2020 1 2 2 │ │ │ │ +000bd650: 2030 2032 2033 2020 2020 2020 3120 3220 0 2 3 1 2 │ │ │ │ +000bd660: 3320 2020 2020 3220 3320 2020 2020 3220 3 2 3 2 │ │ │ │ +000bd670: 3320 2020 2020 3020 3220 3420 2020 2020 3 0 2 4 │ │ │ │ +000bd680: 3120 2020 2020 2020 207c 0a7c 2020 2020 1 |.| │ │ │ │ 000bd690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd6d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd720: 2020 2020 2020 2020 207c 0a7c 2020 3220 |.| 2 │ │ │ │ -000bd730: 2020 2020 2020 3220 2020 2033 2020 2020 2 3 │ │ │ │ -000bd740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd750: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000bd760: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000bd770: 2020 2020 2020 2020 207c 0a7c 2078 2020 |.| x │ │ │ │ -000bd780: 2d20 3678 2078 2020 2b20 7820 202b 2032 - 6x x + x + 2 │ │ │ │ -000bd790: 7820 7820 7820 202d 2031 3678 2078 2078 x x x - 16x x x │ │ │ │ -000bd7a0: 2020 2b20 3778 2078 2020 2b20 3878 2078 + 7x x + 8x x │ │ │ │ -000bd7b0: 2020 2d20 3578 2078 2078 2020 2d20 3278 - 5x x x - 2x │ │ │ │ -000bd7c0: 2078 2020 2020 2020 207c 0a7c 3020 3220 x |.|0 2 │ │ │ │ -000bd7d0: 2020 2020 3120 3220 2020 2032 2020 2020 1 2 2 │ │ │ │ -000bd7e0: 2030 2032 2033 2020 2020 2020 3120 3220 0 2 3 1 2 │ │ │ │ -000bd7f0: 3320 2020 2020 3220 3320 2020 2020 3220 3 2 3 2 │ │ │ │ -000bd800: 3320 2020 2020 3020 3220 3420 2020 2020 3 0 2 4 │ │ │ │ -000bd810: 3120 2020 2020 2020 207c 0a7c 2020 2020 1 |.| │ │ │ │ -000bd820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd6e0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000bd6f0: 2020 2020 3220 2020 2020 2032 2020 2020 2 2 │ │ │ │ +000bd700: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000bd710: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000bd720: 2020 2020 2020 2020 207c 0a7c 2b20 3778 |.|+ 7x │ │ │ │ +000bd730: 2078 2078 2020 2b20 3678 2078 2020 2b20 x x + 6x x + │ │ │ │ +000bd740: 3278 2078 2020 2b20 7820 7820 202b 2031 2x x + x x + 1 │ │ │ │ +000bd750: 3278 2078 2020 2b20 3678 2078 2078 2020 2x x + 6x x x │ │ │ │ +000bd760: 2d20 3678 2078 2020 2d20 3678 2078 2078 - 6x x - 6x x x │ │ │ │ +000bd770: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bd780: 3020 3120 3220 2020 2020 3120 3220 2020 0 1 2 1 2 │ │ │ │ +000bd790: 2020 3020 3220 2020 2031 2032 2020 2020 0 2 1 2 │ │ │ │ +000bd7a0: 2020 3020 3320 2020 2020 3020 3120 3320 0 3 0 1 3 │ │ │ │ +000bd7b0: 2020 2020 3120 3320 2020 2020 3020 3220 1 3 0 2 │ │ │ │ +000bd7c0: 3320 2020 2020 2020 207c 0a7c 2020 2020 3 |.| │ │ │ │ +000bd7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd810: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bd820: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000bd830: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 000bd840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd860: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd870: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000bd880: 2020 2020 3220 2020 2020 2032 2020 2020 2 2 │ │ │ │ -000bd890: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000bd8a0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000bd8b0: 2020 2020 2020 2020 207c 0a7c 2b20 3778 |.|+ 7x │ │ │ │ -000bd8c0: 2078 2078 2020 2b20 3678 2078 2020 2b20 x x + 6x x + │ │ │ │ -000bd8d0: 3278 2078 2020 2b20 7820 7820 202b 2031 2x x + x x + 1 │ │ │ │ -000bd8e0: 3278 2078 2020 2b20 3678 2078 2078 2020 2x x + 6x x x │ │ │ │ -000bd8f0: 2d20 3678 2078 2020 2d20 3678 2078 2078 - 6x x - 6x x x │ │ │ │ +000bd850: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000bd860: 2020 2020 2020 2020 207c 0a7c 2d20 3132 |.|- 12 │ │ │ │ +000bd870: 7820 7820 7820 202d 2036 7820 7820 202d x x x - 6x x - │ │ │ │ +000bd880: 2031 3078 2078 2020 2b20 3678 2078 2078 10x x + 6x x x │ │ │ │ +000bd890: 2020 2b20 3138 7820 7820 7820 202b 2031 + 18x x x + 1 │ │ │ │ +000bd8a0: 3078 2078 2078 2020 2b20 3478 2078 2020 0x x x + 4x x │ │ │ │ +000bd8b0: 2d20 2020 2020 2020 207c 0a7c 2020 2020 - |.| │ │ │ │ +000bd8c0: 2030 2031 2032 2020 2020 2031 2032 2020 0 1 2 1 2 │ │ │ │ +000bd8d0: 2020 2020 3020 3320 2020 2020 3020 3120 0 3 0 1 │ │ │ │ +000bd8e0: 3320 2020 2020 2030 2032 2033 2020 2020 3 0 2 3 │ │ │ │ +000bd8f0: 2020 3120 3220 3320 2020 2020 3020 3320 1 2 3 0 3 │ │ │ │ 000bd900: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd910: 3020 3120 3220 2020 2020 3120 3220 2020 0 1 2 1 2 │ │ │ │ -000bd920: 2020 3020 3220 2020 2031 2032 2020 2020 0 2 1 2 │ │ │ │ -000bd930: 2020 3020 3320 2020 2020 3020 3120 3320 0 3 0 1 3 │ │ │ │ -000bd940: 2020 2020 3120 3320 2020 2020 3020 3220 1 3 0 2 │ │ │ │ -000bd950: 3320 2020 2020 2020 207c 0a7c 2020 2020 3 |.| │ │ │ │ -000bd960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd950: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bd960: 2020 2032 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ +000bd970: 2020 2020 2032 2020 2020 2033 2020 2020 2 3 │ │ │ │ +000bd980: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000bd990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd9a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd9b0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000bd9c0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000bd9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd9e0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -000bd9f0: 2020 2020 2020 2020 207c 0a7c 2d20 3132 |.|- 12 │ │ │ │ -000bda00: 7820 7820 7820 202d 2036 7820 7820 202d x x x - 6x x - │ │ │ │ -000bda10: 2031 3078 2078 2020 2b20 3678 2078 2078 10x x + 6x x x │ │ │ │ -000bda20: 2020 2b20 3138 7820 7820 7820 202b 2031 + 18x x x + 1 │ │ │ │ -000bda30: 3078 2078 2078 2020 2b20 3478 2078 2020 0x x x + 4x x │ │ │ │ -000bda40: 2d20 2020 2020 2020 207c 0a7c 2020 2020 - |.| │ │ │ │ -000bda50: 2030 2031 2032 2020 2020 2031 2032 2020 0 1 2 1 2 │ │ │ │ -000bda60: 2020 2020 3020 3320 2020 2020 3020 3120 0 3 0 1 │ │ │ │ -000bda70: 3320 2020 2020 2030 2032 2033 2020 2020 3 0 2 3 │ │ │ │ -000bda80: 2020 3120 3220 3320 2020 2020 3020 3320 1 2 3 0 3 │ │ │ │ +000bd9a0: 2020 2020 2020 2020 207c 0a7c 7820 202b |.|x + │ │ │ │ +000bd9b0: 2038 7820 7820 202b 2033 7820 7820 202d 8x x + 3x x - │ │ │ │ +000bd9c0: 2036 7820 7820 202b 2032 7820 202b 2038 6x x + 2x + 8 │ │ │ │ +000bd9d0: 7820 7820 202d 2038 7820 7820 7820 202b x x - 8x x x + │ │ │ │ +000bd9e0: 2035 7820 7820 7820 202d 2031 3678 2078 5x x x - 16x x │ │ │ │ +000bd9f0: 2078 2020 2020 2020 207c 0a7c 2032 2020 x |.| 2 │ │ │ │ +000bda00: 2020 2031 2032 2020 2020 2030 2032 2020 1 2 0 2 │ │ │ │ +000bda10: 2020 2031 2032 2020 2020 2032 2020 2020 1 2 2 │ │ │ │ +000bda20: 2030 2033 2020 2020 2030 2031 2033 2020 0 3 0 1 3 │ │ │ │ +000bda30: 2020 2030 2032 2033 2020 2020 2020 3120 0 2 3 1 │ │ │ │ +000bda40: 3220 2020 2020 2020 207c 0a7c 2020 2020 2 |.| │ │ │ │ +000bda50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bda60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bda70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bda80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bda90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bdaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdae0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bdaf0: 2020 2032 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000bdb00: 2020 2020 2032 2020 2020 2033 2020 2020 2 3 │ │ │ │ -000bdb10: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000bdb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdb30: 2020 2020 2020 2020 207c 0a7c 7820 202b |.|x + │ │ │ │ -000bdb40: 2038 7820 7820 202b 2033 7820 7820 202d 8x x + 3x x - │ │ │ │ -000bdb50: 2036 7820 7820 202b 2032 7820 202b 2038 6x x + 2x + 8 │ │ │ │ -000bdb60: 7820 7820 202d 2038 7820 7820 7820 202b x x - 8x x x + │ │ │ │ -000bdb70: 2035 7820 7820 7820 202d 2031 3678 2078 5x x x - 16x x │ │ │ │ -000bdb80: 2078 2020 2020 2020 207c 0a7c 2032 2020 x |.| 2 │ │ │ │ -000bdb90: 2020 2031 2032 2020 2020 2030 2032 2020 1 2 0 2 │ │ │ │ -000bdba0: 2020 2031 2032 2020 2020 2032 2020 2020 1 2 2 │ │ │ │ -000bdbb0: 2030 2033 2020 2020 2030 2031 2033 2020 0 3 0 1 3 │ │ │ │ -000bdbc0: 2020 2030 2032 2033 2020 2020 2020 3120 0 2 3 1 │ │ │ │ -000bdbd0: 3220 2020 2020 2020 207c 0a7c 2020 2020 2 |.| │ │ │ │ +000bdaa0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000bdab0: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000bdac0: 2033 2020 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ +000bdad0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000bdae0: 2020 2020 2020 2020 207c 0a7c 2b20 3678 |.|+ 6x │ │ │ │ +000bdaf0: 2078 2078 2020 2d20 3678 2078 2020 2d20 x x - 6x x - │ │ │ │ +000bdb00: 3378 2078 2020 2b20 3478 2078 2020 2d20 3x x + 4x x - │ │ │ │ +000bdb10: 7820 202b 2031 3478 2078 2020 2b20 3234 x + 14x x + 24 │ │ │ │ +000bdb20: 7820 7820 7820 202d 2033 3878 2078 2020 x x x - 38x x │ │ │ │ +000bdb30: 2d20 2020 2020 2020 207c 0a7c 2020 2020 - |.| │ │ │ │ +000bdb40: 3020 3120 3220 2020 2020 3120 3220 2020 0 1 2 1 2 │ │ │ │ +000bdb50: 2020 3020 3220 2020 2020 3120 3220 2020 0 2 1 2 │ │ │ │ +000bdb60: 2032 2020 2020 2020 3020 3320 2020 2020 2 0 3 │ │ │ │ +000bdb70: 2030 2031 2033 2020 2020 2020 3120 3320 0 1 3 1 3 │ │ │ │ +000bdb80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bdb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bdba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bdbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bdbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bdbd0: 2020 2020 2020 2020 207c 0a7c 2020 2032 |.| 2 │ │ │ │ 000bdbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdc20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bdc30: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000bdc40: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000bdc50: 2033 2020 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ -000bdc60: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000bdc70: 2020 2020 2020 2020 207c 0a7c 2b20 3678 |.|+ 6x │ │ │ │ -000bdc80: 2078 2078 2020 2d20 3678 2078 2020 2d20 x x - 6x x - │ │ │ │ -000bdc90: 3378 2078 2020 2b20 3478 2078 2020 2d20 3x x + 4x x - │ │ │ │ -000bdca0: 7820 202b 2031 3478 2078 2020 2b20 3234 x + 14x x + 24 │ │ │ │ -000bdcb0: 7820 7820 7820 202d 2033 3878 2078 2020 x x x - 38x x │ │ │ │ -000bdcc0: 2d20 2020 2020 2020 207c 0a7c 2020 2020 - |.| │ │ │ │ -000bdcd0: 3020 3120 3220 2020 2020 3120 3220 2020 0 1 2 1 2 │ │ │ │ -000bdce0: 2020 3020 3220 2020 2020 3120 3220 2020 0 2 1 2 │ │ │ │ -000bdcf0: 2032 2020 2020 2020 3020 3320 2020 2020 2 0 3 │ │ │ │ -000bdd00: 2030 2031 2033 2020 2020 2020 3120 3320 0 1 3 1 3 │ │ │ │ +000bdbf0: 2032 2020 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ +000bdc00: 2020 3220 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ +000bdc10: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000bdc20: 2020 2020 2020 2020 207c 0a7c 2d20 7820 |.|- x │ │ │ │ +000bdc30: 7820 202d 2032 7820 7820 7820 202b 2038 x - 2x x x + 8 │ │ │ │ +000bdc40: 7820 7820 202d 2078 2078 2020 2d20 3478 x x - x x - 4x │ │ │ │ +000bdc50: 2078 2020 2d20 3134 7820 7820 202b 2032 x - 14x x + 2 │ │ │ │ +000bdc60: 7820 7820 7820 202b 2033 3278 2078 2020 x x x + 32x x │ │ │ │ +000bdc70: 2b20 2020 2020 2020 207c 0a7c 2020 2030 + |.| 0 │ │ │ │ +000bdc80: 2032 2020 2020 2030 2031 2032 2020 2020 2 0 1 2 │ │ │ │ +000bdc90: 2031 2032 2020 2020 3020 3220 2020 2020 1 2 0 2 │ │ │ │ +000bdca0: 3120 3220 2020 2020 2030 2033 2020 2020 1 2 0 3 │ │ │ │ +000bdcb0: 2030 2031 2033 2020 2020 2020 3120 3320 0 1 3 1 3 │ │ │ │ +000bdcc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bdcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bdce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bdcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bdd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdd10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bdd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bdd20: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000bdd30: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000bdd40: 2020 2033 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ 000bdd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdd60: 2020 2020 2020 2020 207c 0a7c 2020 2032 |.| 2 │ │ │ │ -000bdd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdd80: 2032 2020 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ -000bdd90: 2020 3220 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ -000bdda0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000bddb0: 2020 2020 2020 2020 207c 0a7c 2d20 7820 |.|- x │ │ │ │ -000bddc0: 7820 202d 2032 7820 7820 7820 202b 2038 x - 2x x x + 8 │ │ │ │ -000bddd0: 7820 7820 202d 2078 2078 2020 2d20 3478 x x - x x - 4x │ │ │ │ -000bdde0: 2078 2020 2d20 3134 7820 7820 202b 2032 x - 14x x + 2 │ │ │ │ -000bddf0: 7820 7820 7820 202b 2033 3278 2078 2020 x x x + 32x x │ │ │ │ -000bde00: 2b20 2020 2020 2020 207c 0a7c 2020 2030 + |.| 0 │ │ │ │ -000bde10: 2032 2020 2020 2030 2031 2032 2020 2020 2 0 1 2 │ │ │ │ -000bde20: 2031 2032 2020 2020 3020 3220 2020 2020 1 2 0 2 │ │ │ │ -000bde30: 3120 3220 2020 2020 2030 2033 2020 2020 1 2 0 3 │ │ │ │ -000bde40: 2030 2031 2033 2020 2020 2020 3120 3320 0 1 3 1 3 │ │ │ │ +000bdd60: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ +000bdd70: 3478 2078 2078 2020 2b20 3878 2078 2020 4x x x + 8x x │ │ │ │ +000bdd80: 2b20 3378 2078 2020 2d20 3478 2078 2020 + 3x x - 4x x │ │ │ │ +000bdd90: 2b20 7820 202d 2038 7820 7820 202d 2033 + x - 8x x - 3 │ │ │ │ +000bdda0: 3278 2078 2078 2020 2b20 3878 2078 2078 2x x x + 8x x x │ │ │ │ +000bddb0: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ +000bddc0: 2020 3020 3120 3220 2020 2020 3120 3220 0 1 2 1 2 │ │ │ │ +000bddd0: 2020 2020 3020 3220 2020 2020 3120 3220 0 2 1 2 │ │ │ │ +000bdde0: 2020 2032 2020 2020 2030 2033 2020 2020 2 0 3 │ │ │ │ +000bddf0: 2020 3020 3120 3320 2020 2020 3020 3220 0 1 3 0 2 │ │ │ │ +000bde00: 3320 2020 2020 2020 207c 0a7c 2020 2020 3 |.| │ │ │ │ +000bde10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bde20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bde30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bde40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bde50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bde60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bde70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bde80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bde90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdea0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bdeb0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000bdec0: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000bded0: 2020 2033 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ -000bdee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdef0: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ -000bdf00: 3478 2078 2078 2020 2b20 3878 2078 2020 4x x x + 8x x │ │ │ │ -000bdf10: 2b20 3378 2078 2020 2d20 3478 2078 2020 + 3x x - 4x x │ │ │ │ -000bdf20: 2b20 7820 202d 2038 7820 7820 202d 2033 + x - 8x x - 3 │ │ │ │ -000bdf30: 3278 2078 2078 2020 2b20 3878 2078 2078 2x x x + 8x x x │ │ │ │ -000bdf40: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ -000bdf50: 2020 3020 3120 3220 2020 2020 3120 3220 0 1 2 1 2 │ │ │ │ -000bdf60: 2020 2020 3020 3220 2020 2020 3120 3220 0 2 1 2 │ │ │ │ -000bdf70: 2020 2032 2020 2020 2030 2033 2020 2020 2 0 3 │ │ │ │ -000bdf80: 2020 3020 3120 3320 2020 2020 3020 3220 0 1 3 0 2 │ │ │ │ -000bdf90: 3320 2020 2020 2020 207c 0a7c 2020 2020 3 |.| │ │ │ │ -000bdfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bde60: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000bde70: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000bde80: 2020 3320 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ +000bde90: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000bdea0: 2020 2020 2020 2020 207c 0a7c 2035 7820 |.| 5x │ │ │ │ +000bdeb0: 7820 7820 202b 2032 3478 2078 2020 2b20 x x + 24x x + │ │ │ │ +000bdec0: 3478 2078 2020 2d20 3978 2078 2020 2b20 4x x - 9x x + │ │ │ │ +000bded0: 3378 2020 2d20 3130 7820 7820 202b 2034 3x - 10x x + 4 │ │ │ │ +000bdee0: 7820 7820 7820 202b 2037 3078 2078 2020 x x x + 70x x │ │ │ │ +000bdef0: 2d20 2020 2020 2020 207c 0a7c 2020 2030 - |.| 0 │ │ │ │ +000bdf00: 2031 2032 2020 2020 2020 3120 3220 2020 1 2 1 2 │ │ │ │ +000bdf10: 2020 3020 3220 2020 2020 3120 3220 2020 0 2 1 2 │ │ │ │ +000bdf20: 2020 3220 2020 2020 2030 2033 2020 2020 2 0 3 │ │ │ │ +000bdf30: 2030 2031 2033 2020 2020 2020 3120 3320 0 1 3 1 3 │ │ │ │ +000bdf40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bdf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bdf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bdf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bdf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bdf90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bdfa0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000bdfb0: 3220 2020 2020 2020 3220 2020 2020 2032 2 2 2 │ │ │ │ 000bdfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdfe0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bdff0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000be000: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000be010: 2020 3320 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ -000be020: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000be030: 2020 2020 2020 2020 207c 0a7c 2035 7820 |.| 5x │ │ │ │ -000be040: 7820 7820 202b 2032 3478 2078 2020 2b20 x x + 24x x + │ │ │ │ -000be050: 3478 2078 2020 2d20 3978 2078 2020 2b20 4x x - 9x x + │ │ │ │ -000be060: 3378 2020 2d20 3130 7820 7820 202b 2034 3x - 10x x + 4 │ │ │ │ -000be070: 7820 7820 7820 202b 2037 3078 2078 2020 x x x + 70x x │ │ │ │ -000be080: 2d20 2020 2020 2020 207c 0a7c 2020 2030 - |.| 0 │ │ │ │ -000be090: 2031 2032 2020 2020 2020 3120 3220 2020 1 2 1 2 │ │ │ │ -000be0a0: 2020 3020 3220 2020 2020 3120 3220 2020 0 2 1 2 │ │ │ │ -000be0b0: 2020 3220 2020 2020 2030 2033 2020 2020 2 0 3 │ │ │ │ -000be0c0: 2030 2031 2033 2020 2020 2020 3120 3320 0 1 3 1 3 │ │ │ │ +000bdfd0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000bdfe0: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ +000bdff0: 202d 2031 3478 2078 2020 2b20 3878 2078 - 14x x + 8x x │ │ │ │ +000be000: 2020 2b20 3678 2078 2020 2b20 3132 7820 + 6x x + 12x │ │ │ │ +000be010: 7820 202d 2034 7820 7820 7820 202d 2033 x - 4x x x - 3 │ │ │ │ +000be020: 3278 2078 2020 2b20 3130 7820 7820 7820 2x x + 10x x x │ │ │ │ +000be030: 202b 2020 2020 2020 207c 0a7c 2031 2032 + |.| 1 2 │ │ │ │ +000be040: 2020 2020 2020 3120 3220 2020 2020 3020 1 2 0 │ │ │ │ +000be050: 3220 2020 2020 3120 3220 2020 2020 2030 2 1 2 0 │ │ │ │ +000be060: 2033 2020 2020 2030 2031 2033 2020 2020 3 0 1 3 │ │ │ │ +000be070: 2020 3120 3320 2020 2020 2030 2032 2033 1 3 0 2 3 │ │ │ │ +000be080: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000be090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be0d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be0e0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000be0f0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000be100: 2032 2020 2020 2033 2020 2020 2032 2020 2 3 2 │ │ │ │ 000be110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be120: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be130: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000be140: 3220 2020 2020 2020 3220 2020 2020 2032 2 2 2 │ │ │ │ -000be150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be160: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000be170: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ -000be180: 202d 2031 3478 2078 2020 2b20 3878 2078 - 14x x + 8x x │ │ │ │ -000be190: 2020 2b20 3678 2078 2020 2b20 3132 7820 + 6x x + 12x │ │ │ │ -000be1a0: 7820 202d 2034 7820 7820 7820 202d 2033 x - 4x x x - 3 │ │ │ │ -000be1b0: 3278 2078 2020 2b20 3130 7820 7820 7820 2x x + 10x x x │ │ │ │ -000be1c0: 202b 2020 2020 2020 207c 0a7c 2031 2032 + |.| 1 2 │ │ │ │ -000be1d0: 2020 2020 2020 3120 3220 2020 2020 3020 1 2 0 │ │ │ │ -000be1e0: 3220 2020 2020 3120 3220 2020 2020 2030 2 1 2 0 │ │ │ │ -000be1f0: 2033 2020 2020 2030 2031 2033 2020 2020 3 0 1 3 │ │ │ │ -000be200: 2020 3120 3320 2020 2020 2030 2032 2033 1 3 0 2 3 │ │ │ │ +000be120: 2032 2020 2020 2020 207c 0a7c 202b 2031 2 |.| + 1 │ │ │ │ +000be130: 3778 2078 2078 2020 2d20 3234 7820 7820 7x x x - 24x x │ │ │ │ +000be140: 202d 2031 3078 2078 2020 2b20 3131 7820 - 10x x + 11x │ │ │ │ +000be150: 7820 202d 2033 7820 202d 2036 7820 7820 x - 3x - 6x x │ │ │ │ +000be160: 202b 2032 3878 2078 2078 2020 2d20 3730 + 28x x x - 70 │ │ │ │ +000be170: 7820 2020 2020 2020 207c 0a7c 2020 2020 x |.| │ │ │ │ +000be180: 2020 3020 3120 3220 2020 2020 2031 2032 0 1 2 1 2 │ │ │ │ +000be190: 2020 2020 2020 3020 3220 2020 2020 2031 0 2 1 │ │ │ │ +000be1a0: 2032 2020 2020 2032 2020 2020 2030 2033 2 2 0 3 │ │ │ │ +000be1b0: 2020 2020 2020 3020 3120 3320 2020 2020 0 1 3 │ │ │ │ +000be1c0: 2031 2020 2020 2020 207c 0a7c 2020 2020 1 |.| │ │ │ │ +000be1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be210: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000be220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be260: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be270: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000be280: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000be290: 2032 2020 2020 2033 2020 2020 2032 2020 2 3 2 │ │ │ │ +000be260: 2020 2020 2020 2020 207c 0a7c 362d 6469 |.|6-di │ │ │ │ +000be270: 6d65 6e73 696f 6e61 6c20 7375 6276 6172 mensional subvar │ │ │ │ +000be280: 6965 7479 206f 6620 5050 5e39 2920 2020 iety of PP^9) │ │ │ │ +000be290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be2b0: 2032 2020 2020 2020 207c 0a7c 202b 2031 2 |.| + 1 │ │ │ │ -000be2c0: 3778 2078 2078 2020 2d20 3234 7820 7820 7x x x - 24x x │ │ │ │ -000be2d0: 202d 2031 3078 2078 2020 2b20 3131 7820 - 10x x + 11x │ │ │ │ -000be2e0: 7820 202d 2033 7820 202d 2036 7820 7820 x - 3x - 6x x │ │ │ │ -000be2f0: 202b 2032 3878 2078 2078 2020 2d20 3730 + 28x x x - 70 │ │ │ │ -000be300: 7820 2020 2020 2020 207c 0a7c 2020 2020 x |.| │ │ │ │ -000be310: 2020 3020 3120 3220 2020 2020 2031 2032 0 1 2 1 2 │ │ │ │ -000be320: 2020 2020 2020 3020 3220 2020 2020 2031 0 2 1 │ │ │ │ -000be330: 2032 2020 2020 2032 2020 2020 2030 2033 2 2 0 3 │ │ │ │ -000be340: 2020 2020 2020 3020 3120 3320 2020 2020 0 1 3 │ │ │ │ -000be350: 2031 2020 2020 2020 207c 0a7c 2020 2020 1 |.| │ │ │ │ -000be360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be3a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be3f0: 2020 2020 2020 2020 207c 0a7c 362d 6469 |.|6-di │ │ │ │ -000be400: 6d65 6e73 696f 6e61 6c20 7375 6276 6172 mensional subvar │ │ │ │ -000be410: 6965 7479 206f 6620 5050 5e39 2920 2020 iety of PP^9) │ │ │ │ +000be2b0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +000be2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000be2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000be2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000be2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000be300: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ +000be310: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000be320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be340: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000be350: 2020 2020 2020 2020 207c 0a7c 2031 3074 |.| 10t │ │ │ │ +000be360: 2020 2b20 3474 2074 2020 2d20 3774 2074 + 4t t - 7t t │ │ │ │ +000be370: 2020 2b20 3474 2074 2020 2d20 3274 2074 + 4t t - 2t t │ │ │ │ +000be380: 2020 2d20 3874 2074 2020 2b20 3239 7420 - 8t t + 29t │ │ │ │ +000be390: 7420 202d 2034 7420 202b 2031 3074 2074 t - 4t + 10t t │ │ │ │ +000be3a0: 2020 2d20 3474 2020 207c 0a7c 2020 2020 - 4t |.| │ │ │ │ +000be3b0: 3620 2020 2020 3020 3720 2020 2020 3120 6 0 7 1 │ │ │ │ +000be3c0: 3720 2020 2020 3220 3720 2020 2020 3420 7 2 7 4 │ │ │ │ +000be3d0: 3720 2020 2020 3520 3720 2020 2020 2036 7 5 7 6 │ │ │ │ +000be3e0: 2037 2020 2020 2037 2020 2020 2020 3120 7 7 1 │ │ │ │ +000be3f0: 3820 2020 2020 2020 207c 0a7c 2020 2020 8 |.| │ │ │ │ +000be400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be440: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ -000be450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000be460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000be470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000be480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000be490: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -000be4a0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000be4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be4d0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000be4e0: 2020 2020 2020 2020 207c 0a7c 2031 3074 |.| 10t │ │ │ │ -000be4f0: 2020 2b20 3474 2074 2020 2d20 3774 2074 + 4t t - 7t t │ │ │ │ -000be500: 2020 2b20 3474 2074 2020 2d20 3274 2074 + 4t t - 2t t │ │ │ │ -000be510: 2020 2d20 3874 2074 2020 2b20 3239 7420 - 8t t + 29t │ │ │ │ -000be520: 7420 202d 2034 7420 202b 2031 3074 2074 t - 4t + 10t t │ │ │ │ -000be530: 2020 2d20 3474 2020 207c 0a7c 2020 2020 - 4t |.| │ │ │ │ -000be540: 3620 2020 2020 3020 3720 2020 2020 3120 6 0 7 1 │ │ │ │ -000be550: 3720 2020 2020 3220 3720 2020 2020 3420 7 2 7 4 │ │ │ │ -000be560: 3720 2020 2020 3520 3720 2020 2020 2036 7 5 7 6 │ │ │ │ -000be570: 2037 2020 2020 2037 2020 2020 2020 3120 7 7 1 │ │ │ │ -000be580: 3820 2020 2020 2020 207c 0a7c 2020 2020 8 |.| │ │ │ │ -000be590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be440: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000be450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be470: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000be480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be490: 2020 2020 2020 2020 207c 0a7c 7420 202b |.|t + │ │ │ │ +000be4a0: 2033 7420 7420 202d 2032 7420 7420 202d 3t t - 2t t - │ │ │ │ +000be4b0: 2035 7420 7420 202d 2031 3374 2074 2020 5t t - 13t t │ │ │ │ +000be4c0: 2d20 7420 202d 2033 7420 7420 202d 2038 - t - 3t t - 8 │ │ │ │ +000be4d0: 7420 7420 202b 2032 7420 7420 202b 2038 t t + 2t t + 8 │ │ │ │ +000be4e0: 7420 7420 202d 2020 207c 0a7c 2037 2020 t t - |.| 7 │ │ │ │ +000be4f0: 2020 2033 2037 2020 2020 2034 2037 2020 3 7 4 7 │ │ │ │ +000be500: 2020 2035 2037 2020 2020 2020 3620 3720 5 7 6 7 │ │ │ │ +000be510: 2020 2037 2020 2020 2030 2038 2020 2020 7 0 8 │ │ │ │ +000be520: 2031 2038 2020 2020 2033 2038 2020 2020 1 8 3 8 │ │ │ │ +000be530: 2034 2038 2020 2020 207c 0a7c 2020 2020 4 8 |.| │ │ │ │ +000be540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be580: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000be590: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000be5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be5d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be600: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000be610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be620: 2020 2020 2020 2020 207c 0a7c 7420 202b |.|t + │ │ │ │ -000be630: 2033 7420 7420 202d 2032 7420 7420 202d 3t t - 2t t - │ │ │ │ -000be640: 2035 7420 7420 202d 2031 3374 2074 2020 5t t - 13t t │ │ │ │ -000be650: 2d20 7420 202d 2033 7420 7420 202d 2038 - t - 3t t - 8 │ │ │ │ -000be660: 7420 7420 202b 2032 7420 7420 202b 2038 t t + 2t t + 8 │ │ │ │ -000be670: 7420 7420 202d 2020 207c 0a7c 2037 2020 t t - |.| 7 │ │ │ │ -000be680: 2020 2033 2037 2020 2020 2034 2037 2020 3 7 4 7 │ │ │ │ -000be690: 2020 2035 2037 2020 2020 2020 3620 3720 5 7 6 7 │ │ │ │ -000be6a0: 2020 2037 2020 2020 2030 2038 2020 2020 7 0 8 │ │ │ │ -000be6b0: 2031 2038 2020 2020 2033 2038 2020 2020 1 8 3 8 │ │ │ │ -000be6c0: 2034 2038 2020 2020 207c 0a7c 2020 2020 4 8 |.| │ │ │ │ +000be5d0: 2020 2020 2020 2020 207c 0a7c 2d20 3474 |.|- 4t │ │ │ │ +000be5e0: 2074 2020 2b20 7420 202d 2032 7420 7420 t + t - 2t t │ │ │ │ +000be5f0: 202b 2074 2074 2020 2b20 3274 2074 2020 + t t + 2t t │ │ │ │ +000be600: 2d20 3274 2074 2020 2d20 3374 2074 2020 - 2t t - 3t t │ │ │ │ +000be610: 2b20 7420 7420 202d 2074 2074 2020 2d20 + t t - t t - │ │ │ │ +000be620: 7420 7420 202b 2020 207c 0a7c 2020 2020 t t + |.| │ │ │ │ +000be630: 3620 3720 2020 2037 2020 2020 2031 2038 6 7 7 1 8 │ │ │ │ +000be640: 2020 2020 3320 3820 2020 2020 3420 3820 3 8 4 8 │ │ │ │ +000be650: 2020 2020 3520 3820 2020 2020 3620 3820 5 8 6 8 │ │ │ │ +000be660: 2020 2037 2038 2020 2020 3020 3920 2020 7 8 0 9 │ │ │ │ +000be670: 2032 2039 2020 2020 207c 0a7c 2020 2020 2 9 |.| │ │ │ │ +000be680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be6c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000be6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be710: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be720: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000be730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be720: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000be730: 2020 2020 2020 2032 2020 2020 2032 2020 2 2 │ │ │ │ +000be740: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ 000be750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be760: 2020 2020 2020 2020 207c 0a7c 2d20 3474 |.|- 4t │ │ │ │ -000be770: 2074 2020 2b20 7420 202d 2032 7420 7420 t + t - 2t t │ │ │ │ -000be780: 202b 2074 2074 2020 2b20 3274 2074 2020 + t t + 2t t │ │ │ │ -000be790: 2d20 3274 2074 2020 2d20 3374 2074 2020 - 2t t - 3t t │ │ │ │ -000be7a0: 2b20 7420 7420 202d 2074 2074 2020 2d20 + t t - t t - │ │ │ │ -000be7b0: 7420 7420 202b 2020 207c 0a7c 2020 2020 t t + |.| │ │ │ │ -000be7c0: 3620 3720 2020 2037 2020 2020 2031 2038 6 7 7 1 8 │ │ │ │ -000be7d0: 2020 2020 3320 3820 2020 2020 3420 3820 3 8 4 8 │ │ │ │ -000be7e0: 2020 2020 3520 3820 2020 2020 3620 3820 5 8 6 8 │ │ │ │ -000be7f0: 2020 2037 2038 2020 2020 3020 3920 2020 7 8 0 9 │ │ │ │ -000be800: 2032 2039 2020 2020 207c 0a7c 2020 2020 2 9 |.| │ │ │ │ +000be760: 2020 2020 2020 2020 207c 0a7c 2078 2020 |.| x │ │ │ │ +000be770: 2b20 3378 2078 2020 2b20 3278 2078 2078 + 3x x + 2x x x │ │ │ │ +000be780: 2020 2d20 7820 7820 202b 2036 7820 7820 - x x + 6x x │ │ │ │ +000be790: 202d 2032 7820 7820 7820 202d 2034 7820 - 2x x x - 4x │ │ │ │ +000be7a0: 7820 202d 2078 2078 2078 2020 2b20 3878 x - x x x + 8x │ │ │ │ +000be7b0: 2078 2078 2020 2020 207c 0a7c 3220 3420 x x |.|2 4 │ │ │ │ +000be7c0: 2020 2020 3220 3420 2020 2020 3220 3320 2 4 2 3 │ │ │ │ +000be7d0: 3420 2020 2032 2034 2020 2020 2030 2035 4 2 4 0 5 │ │ │ │ +000be7e0: 2020 2020 2030 2031 2035 2020 2020 2031 0 1 5 1 │ │ │ │ +000be7f0: 2035 2020 2020 3020 3220 3520 2020 2020 5 0 2 5 │ │ │ │ +000be800: 3120 3220 3520 2020 207c 0a7c 2020 2020 1 2 5 |.| │ │ │ │ 000be810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be850: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be8a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be8b0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000be8c0: 2020 2020 2020 2032 2020 2020 2032 2020 2 2 │ │ │ │ -000be8d0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000be8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be8f0: 2020 2020 2020 2020 207c 0a7c 2078 2020 |.| x │ │ │ │ -000be900: 2b20 3378 2078 2020 2b20 3278 2078 2078 + 3x x + 2x x x │ │ │ │ -000be910: 2020 2d20 7820 7820 202b 2036 7820 7820 - x x + 6x x │ │ │ │ -000be920: 202d 2032 7820 7820 7820 202d 2034 7820 - 2x x x - 4x │ │ │ │ -000be930: 7820 202d 2078 2078 2078 2020 2b20 3878 x - x x x + 8x │ │ │ │ -000be940: 2078 2078 2020 2020 207c 0a7c 3220 3420 x x |.|2 4 │ │ │ │ -000be950: 2020 2020 3220 3420 2020 2020 3220 3320 2 4 2 3 │ │ │ │ -000be960: 3420 2020 2032 2034 2020 2020 2030 2035 4 2 4 0 5 │ │ │ │ -000be970: 2020 2020 2030 2031 2035 2020 2020 2031 0 1 5 1 │ │ │ │ -000be980: 2035 2020 2020 3020 3220 3520 2020 2020 5 0 2 5 │ │ │ │ -000be990: 3120 3220 3520 2020 207c 0a7c 2020 2020 1 2 5 |.| │ │ │ │ -000be9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be860: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000be870: 2020 2020 3220 2020 2020 2020 2032 2020 2 2 │ │ │ │ +000be880: 2020 2020 2032 2020 2020 2033 2020 2020 2 3 │ │ │ │ +000be890: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000be8a0: 2020 2020 2020 2020 207c 0a7c 2d20 3978 |.|- 9x │ │ │ │ +000be8b0: 2078 2078 2020 2d20 3278 2078 2020 2d20 x x - 2x x - │ │ │ │ +000be8c0: 3278 2078 2020 2b20 3130 7820 7820 202b 2x x + 10x x + │ │ │ │ +000be8d0: 2032 7820 7820 202d 2034 7820 202d 2078 2x x - 4x - x │ │ │ │ +000be8e0: 2078 2020 2d20 3378 2078 2078 2020 2b20 x - 3x x x + │ │ │ │ +000be8f0: 7820 7820 7820 2020 207c 0a7c 2020 2020 x x x |.| │ │ │ │ +000be900: 3120 3220 3320 2020 2020 3220 3320 2020 1 2 3 2 3 │ │ │ │ +000be910: 2020 3020 3320 2020 2020 2031 2033 2020 0 3 1 3 │ │ │ │ +000be920: 2020 2032 2033 2020 2020 2033 2020 2020 2 3 3 │ │ │ │ +000be930: 3020 3420 2020 2020 3020 3120 3420 2020 0 4 0 1 4 │ │ │ │ +000be940: 2030 2032 2034 2020 207c 0a7c 2020 2020 0 2 4 |.| │ │ │ │ +000be950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be990: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000be9a0: 3220 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ +000be9b0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 000be9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be9e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be9f0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000bea00: 2020 2020 3220 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000bea10: 2020 2020 2032 2020 2020 2033 2020 2020 2 3 │ │ │ │ -000bea20: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000bea30: 2020 2020 2020 2020 207c 0a7c 2d20 3978 |.|- 9x │ │ │ │ -000bea40: 2078 2078 2020 2d20 3278 2078 2020 2d20 x x - 2x x - │ │ │ │ -000bea50: 3278 2078 2020 2b20 3130 7820 7820 202b 2x x + 10x x + │ │ │ │ -000bea60: 2032 7820 7820 202d 2034 7820 202d 2078 2x x - 4x - x │ │ │ │ -000bea70: 2078 2020 2d20 3378 2078 2078 2020 2b20 x - 3x x x + │ │ │ │ -000bea80: 7820 7820 7820 2020 207c 0a7c 2020 2020 x x x |.| │ │ │ │ -000bea90: 3120 3220 3320 2020 2020 3220 3320 2020 1 2 3 2 3 │ │ │ │ -000beaa0: 2020 3020 3320 2020 2020 2031 2033 2020 0 3 1 3 │ │ │ │ -000beab0: 2020 2032 2033 2020 2020 2033 2020 2020 2 3 3 │ │ │ │ -000beac0: 3020 3420 2020 2020 3020 3120 3420 2020 0 4 0 1 4 │ │ │ │ -000bead0: 2030 2032 2034 2020 207c 0a7c 2020 2020 0 2 4 |.| │ │ │ │ -000beae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000beaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be9e0: 2020 2020 2020 2020 207c 0a7c 3478 2078 |.|4x x │ │ │ │ +000be9f0: 2020 2b20 3131 7820 7820 202b 2078 2078 + 11x x + x x │ │ │ │ +000bea00: 2078 2020 2d20 3278 2078 2020 2d20 3578 x - 2x x - 5x │ │ │ │ +000bea10: 2078 2078 2020 2d20 3578 2078 2078 2020 x x - 5x x x │ │ │ │ +000bea20: 2d20 3678 2078 2078 2020 2d20 3278 2078 - 6x x x - 2x x │ │ │ │ +000bea30: 2078 2020 2b20 2020 207c 0a7c 2020 3220 x + |.| 2 │ │ │ │ +000bea40: 3320 2020 2020 2030 2034 2020 2020 3020 3 0 4 0 │ │ │ │ +000bea50: 3120 3420 2020 2020 3120 3420 2020 2020 1 4 1 4 │ │ │ │ +000bea60: 3020 3220 3420 2020 2020 3120 3220 3420 0 2 4 1 2 4 │ │ │ │ +000bea70: 2020 2020 3020 3320 3420 2020 2020 3120 0 3 4 1 │ │ │ │ +000bea80: 3320 3420 2020 2020 207c 0a7c 2020 2020 3 4 |.| │ │ │ │ +000bea90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000beaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000beab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000beac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bead0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000beae0: 2020 3220 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000beaf0: 2020 2020 3220 2020 2020 2032 2020 2020 2 2 │ │ │ │ 000beb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000beb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000beb20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000beb30: 3220 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ -000beb40: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000beb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000beb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000beb70: 2020 2020 2020 2020 207c 0a7c 3478 2078 |.|4x x │ │ │ │ -000beb80: 2020 2b20 3131 7820 7820 202b 2078 2078 + 11x x + x x │ │ │ │ -000beb90: 2078 2020 2d20 3278 2078 2020 2d20 3578 x - 2x x - 5x │ │ │ │ -000beba0: 2078 2078 2020 2d20 3578 2078 2078 2020 x x - 5x x x │ │ │ │ -000bebb0: 2d20 3678 2078 2078 2020 2d20 3278 2078 - 6x x x - 2x x │ │ │ │ -000bebc0: 2078 2020 2b20 2020 207c 0a7c 2020 3220 x + |.| 2 │ │ │ │ -000bebd0: 3320 2020 2020 2030 2034 2020 2020 3020 3 0 4 0 │ │ │ │ -000bebe0: 3120 3420 2020 2020 3120 3420 2020 2020 1 4 1 4 │ │ │ │ -000bebf0: 3020 3220 3420 2020 2020 3120 3220 3420 0 2 4 1 2 4 │ │ │ │ -000bec00: 2020 2020 3020 3320 3420 2020 2020 3120 0 3 4 1 │ │ │ │ -000bec10: 3320 3420 2020 2020 207c 0a7c 2020 2020 3 4 |.| │ │ │ │ +000beb20: 2032 2020 2020 2020 207c 0a7c 2020 2b20 2 |.| + │ │ │ │ +000beb30: 3878 2078 2020 2b20 3878 2078 2020 2b20 8x x + 8x x + │ │ │ │ +000beb40: 3878 2078 2020 2d20 3130 7820 7820 202d 8x x - 10x x - │ │ │ │ +000beb50: 2034 7820 7820 7820 202b 2036 7820 7820 4x x x + 6x x │ │ │ │ +000beb60: 7820 202b 2032 7820 7820 7820 202b 2032 x + 2x x x + 2 │ │ │ │ +000beb70: 7820 7820 202b 2020 207c 0a7c 3320 2020 x x + |.|3 │ │ │ │ +000beb80: 2020 3220 3320 2020 2020 3020 3320 2020 2 3 0 3 │ │ │ │ +000beb90: 2020 3220 3320 2020 2020 2030 2034 2020 2 3 0 4 │ │ │ │ +000beba0: 2020 2030 2031 2034 2020 2020 2030 2032 0 1 4 0 2 │ │ │ │ +000bebb0: 2034 2020 2020 2031 2032 2034 2020 2020 4 1 2 4 │ │ │ │ +000bebc0: 2032 2034 2020 2020 207c 0a7c 2020 2020 2 4 |.| │ │ │ │ +000bebd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bec10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bec60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bec70: 2020 3220 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000bec80: 2020 2020 3220 2020 2020 2032 2020 2020 2 2 │ │ │ │ -000bec90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000beca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000becb0: 2032 2020 2020 2020 207c 0a7c 2020 2b20 2 |.| + │ │ │ │ -000becc0: 3878 2078 2020 2b20 3878 2078 2020 2b20 8x x + 8x x + │ │ │ │ -000becd0: 3878 2078 2020 2d20 3130 7820 7820 202d 8x x - 10x x - │ │ │ │ -000bece0: 2034 7820 7820 7820 202b 2036 7820 7820 4x x x + 6x x │ │ │ │ -000becf0: 7820 202b 2032 7820 7820 7820 202b 2032 x + 2x x x + 2 │ │ │ │ -000bed00: 7820 7820 202b 2020 207c 0a7c 3320 2020 x x + |.|3 │ │ │ │ -000bed10: 2020 3220 3320 2020 2020 3020 3320 2020 2 3 0 3 │ │ │ │ -000bed20: 2020 3220 3320 2020 2020 2030 2034 2020 2 3 0 4 │ │ │ │ -000bed30: 2020 2030 2031 2034 2020 2020 2030 2032 0 1 4 0 2 │ │ │ │ -000bed40: 2034 2020 2020 2031 2032 2034 2020 2020 4 1 2 4 │ │ │ │ -000bed50: 2032 2034 2020 2020 207c 0a7c 2020 2020 2 4 |.| │ │ │ │ +000bec30: 2020 2032 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ +000bec40: 2020 2020 2020 2032 2020 2020 2020 2032 2 2 │ │ │ │ +000bec50: 2020 2020 2020 3320 2020 2020 2032 2020 3 2 │ │ │ │ +000bec60: 2020 2020 2020 2020 207c 0a7c 3778 2078 |.|7x x │ │ │ │ +000bec70: 2078 2020 2b20 3134 7820 7820 7820 202d x + 14x x x - │ │ │ │ +000bec80: 2035 7820 7820 202d 2031 3078 2078 2020 5x x - 10x x │ │ │ │ +000bec90: 2b20 3338 7820 7820 202d 2038 7820 7820 + 38x x - 8x x │ │ │ │ +000beca0: 202d 2031 3278 2020 2b20 3234 7820 7820 - 12x + 24x x │ │ │ │ +000becb0: 202d 2031 3678 2020 207c 0a7c 2020 3020 - 16x |.| 0 │ │ │ │ +000becc0: 3220 3320 2020 2020 2031 2032 2033 2020 2 3 1 2 3 │ │ │ │ +000becd0: 2020 2032 2033 2020 2020 2020 3020 3320 2 3 0 3 │ │ │ │ +000bece0: 2020 2020 2031 2033 2020 2020 2032 2033 1 3 2 3 │ │ │ │ +000becf0: 2020 2020 2020 3320 2020 2020 2030 2034 3 0 4 │ │ │ │ +000bed00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bed10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bed50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bed80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bed90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000beda0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bedb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bedc0: 2020 2032 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ -000bedd0: 2020 2020 2020 2032 2020 2020 2020 2032 2 2 │ │ │ │ -000bede0: 2020 2020 2020 3320 2020 2020 2032 2020 3 2 │ │ │ │ -000bedf0: 2020 2020 2020 2020 207c 0a7c 3778 2078 |.|7x x │ │ │ │ -000bee00: 2078 2020 2b20 3134 7820 7820 7820 202d x + 14x x x - │ │ │ │ -000bee10: 2035 7820 7820 202d 2031 3078 2078 2020 5x x - 10x x │ │ │ │ -000bee20: 2b20 3338 7820 7820 202d 2038 7820 7820 + 38x x - 8x x │ │ │ │ -000bee30: 202d 2031 3278 2020 2b20 3234 7820 7820 - 12x + 24x x │ │ │ │ -000bee40: 202d 2031 3678 2020 207c 0a7c 2020 3020 - 16x |.| 0 │ │ │ │ -000bee50: 3220 3320 2020 2020 2031 2032 2033 2020 2 3 1 2 3 │ │ │ │ -000bee60: 2020 2032 2033 2020 2020 2020 3020 3320 2 3 0 3 │ │ │ │ -000bee70: 2020 2020 2031 2033 2020 2020 2032 2033 1 3 2 3 │ │ │ │ -000bee80: 2020 2020 2020 3320 2020 2020 2030 2034 3 0 4 │ │ │ │ +000bed70: 2020 2032 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ +000bed80: 2020 2020 2020 3220 2020 2020 3320 2020 2 3 │ │ │ │ +000bed90: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000beda0: 2020 2020 2020 2020 207c 0a7c 3278 2078 |.|2x x │ │ │ │ +000bedb0: 2078 2020 2d20 3136 7820 7820 7820 202b x - 16x x x + │ │ │ │ +000bedc0: 2034 7820 7820 202d 2032 3878 2078 2020 4x x - 28x x │ │ │ │ +000bedd0: 2b20 3878 2078 2020 2b20 3878 2020 2d20 + 8x x + 8x - │ │ │ │ +000bede0: 3131 7820 7820 202b 2031 3778 2078 2078 11x x + 17x x x │ │ │ │ +000bedf0: 2020 2b20 3478 2020 207c 0a7c 2020 3020 + 4x |.| 0 │ │ │ │ +000bee00: 3220 3320 2020 2020 2031 2032 2033 2020 2 3 1 2 3 │ │ │ │ +000bee10: 2020 2032 2033 2020 2020 2020 3120 3320 2 3 1 3 │ │ │ │ +000bee20: 2020 2020 3220 3320 2020 2020 3320 2020 2 3 3 │ │ │ │ +000bee30: 2020 2030 2034 2020 2020 2020 3020 3120 0 4 0 1 │ │ │ │ +000bee40: 3420 2020 2020 2020 207c 0a7c 2020 2020 4 |.| │ │ │ │ +000bee50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bee90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000beea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000beeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000beec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000beed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000beee0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000beef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bef00: 2020 2032 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ -000bef10: 2020 2020 2020 3220 2020 2020 3320 2020 2 3 │ │ │ │ -000bef20: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000bef30: 2020 2020 2020 2020 207c 0a7c 3278 2078 |.|2x x │ │ │ │ -000bef40: 2078 2020 2d20 3136 7820 7820 7820 202b x - 16x x x + │ │ │ │ -000bef50: 2034 7820 7820 202d 2032 3878 2078 2020 4x x - 28x x │ │ │ │ -000bef60: 2b20 3878 2078 2020 2b20 3878 2020 2d20 + 8x x + 8x - │ │ │ │ -000bef70: 3131 7820 7820 202b 2031 3778 2078 2078 11x x + 17x x x │ │ │ │ -000bef80: 2020 2b20 3478 2020 207c 0a7c 2020 3020 + 4x |.| 0 │ │ │ │ -000bef90: 3220 3320 2020 2020 2031 2032 2033 2020 2 3 1 2 3 │ │ │ │ -000befa0: 2020 2032 2033 2020 2020 2020 3120 3320 2 3 1 3 │ │ │ │ -000befb0: 2020 2020 3220 3320 2020 2020 3320 2020 2 3 3 │ │ │ │ -000befc0: 2020 2030 2034 2020 2020 2020 3020 3120 0 4 0 1 │ │ │ │ -000befd0: 3420 2020 2020 2020 207c 0a7c 2020 2020 4 |.| │ │ │ │ +000beea0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000beeb0: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000beec0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000beed0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000beee0: 2020 2020 2020 2020 207c 0a7c 2d20 3136 |.|- 16 │ │ │ │ +000beef0: 7820 7820 7820 202b 2035 7820 7820 202b x x x + 5x x + │ │ │ │ +000bef00: 2031 3678 2078 2020 2b20 3878 2078 2020 16x x + 8x x │ │ │ │ +000bef10: 2d20 3332 7820 7820 202b 2034 7820 7820 - 32x x + 4x x │ │ │ │ +000bef20: 7820 202b 2038 7820 7820 202d 2032 7820 x + 8x x - 2x │ │ │ │ +000bef30: 7820 7820 202d 2020 207c 0a7c 2020 2020 x x - |.| │ │ │ │ +000bef40: 2031 2032 2033 2020 2020 2032 2033 2020 1 2 3 2 3 │ │ │ │ +000bef50: 2020 2020 3020 3320 2020 2020 3220 3320 0 3 2 3 │ │ │ │ +000bef60: 2020 2020 2030 2034 2020 2020 2030 2031 0 4 0 1 │ │ │ │ +000bef70: 2034 2020 2020 2031 2034 2020 2020 2030 4 1 4 0 │ │ │ │ +000bef80: 2032 2034 2020 2020 207c 0a7c 2020 2020 2 4 |.| │ │ │ │ +000bef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000befa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000befb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000befc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000befd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000befe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000beff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf020: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bf030: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000bf040: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000bf050: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000bf060: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000bf070: 2020 2020 2020 2020 207c 0a7c 2d20 3136 |.|- 16 │ │ │ │ -000bf080: 7820 7820 7820 202b 2035 7820 7820 202b x x x + 5x x + │ │ │ │ -000bf090: 2031 3678 2078 2020 2b20 3878 2078 2020 16x x + 8x x │ │ │ │ -000bf0a0: 2d20 3332 7820 7820 202b 2034 7820 7820 - 32x x + 4x x │ │ │ │ -000bf0b0: 7820 202b 2038 7820 7820 202d 2032 7820 x + 8x x - 2x │ │ │ │ -000bf0c0: 7820 7820 202d 2020 207c 0a7c 2020 2020 x x - |.| │ │ │ │ -000bf0d0: 2031 2032 2033 2020 2020 2032 2033 2020 1 2 3 2 3 │ │ │ │ -000bf0e0: 2020 2020 3020 3320 2020 2020 3220 3320 0 3 2 3 │ │ │ │ -000bf0f0: 2020 2020 2030 2034 2020 2020 2030 2031 0 4 0 1 │ │ │ │ -000bf100: 2034 2020 2020 2031 2034 2020 2020 2030 4 1 4 0 │ │ │ │ -000bf110: 2032 2034 2020 2020 207c 0a7c 2020 2020 2 4 |.| │ │ │ │ -000bf120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf160: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bf170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf180: 2020 2032 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000bf190: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ -000bf1a0: 2020 2020 2020 3320 2020 2020 3220 2020 3 2 │ │ │ │ -000bf1b0: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ -000bf1c0: 7820 202d 2034 3778 2078 2078 2020 2b20 x - 47x x x + │ │ │ │ -000bf1d0: 3131 7820 7820 202d 2032 7820 7820 202d 11x x - 2x x - │ │ │ │ -000bf1e0: 2036 3678 2078 2020 2b20 3232 7820 7820 66x x + 22x x │ │ │ │ -000bf1f0: 202b 2032 3078 2020 2d20 3278 2078 2020 + 20x - 2x x │ │ │ │ -000bf200: 2b20 3138 7820 2020 207c 0a7c 2030 2032 + 18x |.| 0 2 │ │ │ │ -000bf210: 2033 2020 2020 2020 3120 3220 3320 2020 3 1 2 3 │ │ │ │ -000bf220: 2020 2032 2033 2020 2020 2030 2033 2020 2 3 0 3 │ │ │ │ -000bf230: 2020 2020 3120 3320 2020 2020 2032 2033 1 3 2 3 │ │ │ │ -000bf240: 2020 2020 2020 3320 2020 2020 3020 3420 3 0 4 │ │ │ │ -000bf250: 2020 2020 2030 2020 207c 0a7c 2020 2020 0 |.| │ │ │ │ +000beff0: 2020 2032 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ +000bf000: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ +000bf010: 2020 2020 2020 3320 2020 2020 3220 2020 3 2 │ │ │ │ +000bf020: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ +000bf030: 7820 202d 2034 3778 2078 2078 2020 2b20 x - 47x x x + │ │ │ │ +000bf040: 3131 7820 7820 202d 2032 7820 7820 202d 11x x - 2x x - │ │ │ │ +000bf050: 2036 3678 2078 2020 2b20 3232 7820 7820 66x x + 22x x │ │ │ │ +000bf060: 202b 2032 3078 2020 2d20 3278 2078 2020 + 20x - 2x x │ │ │ │ +000bf070: 2b20 3138 7820 2020 207c 0a7c 2030 2032 + 18x |.| 0 2 │ │ │ │ +000bf080: 2033 2020 2020 2020 3120 3220 3320 2020 3 1 2 3 │ │ │ │ +000bf090: 2020 2032 2033 2020 2020 2030 2033 2020 2 3 0 3 │ │ │ │ +000bf0a0: 2020 2020 3120 3320 2020 2020 2032 2033 1 3 2 3 │ │ │ │ +000bf0b0: 2020 2020 2020 3320 2020 2020 3020 3420 3 0 4 │ │ │ │ +000bf0c0: 2020 2020 2030 2020 207c 0a7c 2020 2020 0 |.| │ │ │ │ +000bf0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf110: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bf120: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000bf130: 2020 2020 3220 2020 2020 2020 2032 2020 2 2 │ │ │ │ +000bf140: 2020 2020 2020 3220 2020 2020 3320 2020 2 3 │ │ │ │ +000bf150: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000bf160: 2020 2020 2020 2020 207c 0a7c 2032 3678 |.| 26x │ │ │ │ +000bf170: 2078 2078 2020 2d20 3678 2078 2020 2b20 x x - 6x x + │ │ │ │ +000bf180: 3478 2078 2020 2b20 3238 7820 7820 202d 4x x + 28x x - │ │ │ │ +000bf190: 2031 3278 2078 2020 2d20 3878 2020 2d20 12x x - 8x - │ │ │ │ +000bf1a0: 3130 7820 7820 7820 202d 2032 7820 7820 10x x x - 2x x │ │ │ │ +000bf1b0: 202b 2031 3078 2020 207c 0a7c 2020 2020 + 10x |.| │ │ │ │ +000bf1c0: 3120 3220 3320 2020 2020 3220 3320 2020 1 2 3 2 3 │ │ │ │ +000bf1d0: 2020 3020 3320 2020 2020 2031 2033 2020 0 3 1 3 │ │ │ │ +000bf1e0: 2020 2020 3220 3320 2020 2020 3320 2020 2 3 3 │ │ │ │ +000bf1f0: 2020 2030 2031 2034 2020 2020 2031 2034 0 1 4 1 4 │ │ │ │ +000bf200: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bf210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf250: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bf260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf2a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bf2b0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000bf2c0: 2020 2020 3220 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000bf2d0: 2020 2020 2020 3220 2020 2020 3320 2020 2 3 │ │ │ │ -000bf2e0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000bf2f0: 2020 2020 2020 2020 207c 0a7c 2032 3678 |.| 26x │ │ │ │ -000bf300: 2078 2078 2020 2d20 3678 2078 2020 2b20 x x - 6x x + │ │ │ │ -000bf310: 3478 2078 2020 2b20 3238 7820 7820 202d 4x x + 28x x - │ │ │ │ -000bf320: 2031 3278 2078 2020 2d20 3878 2020 2d20 12x x - 8x - │ │ │ │ -000bf330: 3130 7820 7820 7820 202d 2032 7820 7820 10x x x - 2x x │ │ │ │ -000bf340: 202b 2031 3078 2020 207c 0a7c 2020 2020 + 10x |.| │ │ │ │ -000bf350: 3120 3220 3320 2020 2020 3220 3320 2020 1 2 3 2 3 │ │ │ │ -000bf360: 2020 3020 3320 2020 2020 2031 2033 2020 0 3 1 3 │ │ │ │ -000bf370: 2020 2020 3220 3320 2020 2020 3320 2020 2 3 3 │ │ │ │ -000bf380: 2020 2030 2031 2034 2020 2020 2031 2034 0 1 4 1 4 │ │ │ │ -000bf390: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bf3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf3e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bf3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf400: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000bf410: 2020 2020 2032 2020 2020 2020 2020 3220 2 2 │ │ │ │ -000bf420: 2020 2020 2020 2032 2020 2020 2020 3320 2 3 │ │ │ │ -000bf430: 2020 2020 3220 2020 207c 0a7c 7820 202d 2 |.|x - │ │ │ │ -000bf440: 2032 3178 2078 2078 2020 2b20 3437 7820 21x x x + 47x │ │ │ │ -000bf450: 7820 7820 202d 2031 3378 2078 2020 2d20 x x - 13x x - │ │ │ │ -000bf460: 3134 7820 7820 202b 2036 3678 2078 2020 14x x + 66x x │ │ │ │ -000bf470: 2d20 3232 7820 7820 202d 2032 3078 2020 - 22x x - 20x │ │ │ │ -000bf480: 2b20 3278 2078 2020 207c 0a7c 2033 2020 + 2x x |.| 3 │ │ │ │ -000bf490: 2020 2020 3020 3220 3320 2020 2020 2031 0 2 3 1 │ │ │ │ -000bf4a0: 2032 2033 2020 2020 2020 3220 3320 2020 2 3 2 3 │ │ │ │ -000bf4b0: 2020 2030 2033 2020 2020 2020 3120 3320 0 3 1 3 │ │ │ │ -000bf4c0: 2020 2020 2032 2033 2020 2020 2020 3320 2 3 3 │ │ │ │ -000bf4d0: 2020 2020 3020 2020 207c 0a7c 2d2d 2d2d 0 |.|---- │ │ │ │ -000bf4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000bf4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000bf500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000bf510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000bf520: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2074 2020 ---------|.| t │ │ │ │ -000bf530: 2d20 3133 7420 7420 202b 2031 3374 2074 - 13t t + 13t t │ │ │ │ -000bf540: 2020 2b20 3138 7420 7420 202d 2034 7420 + 18t t - 4t │ │ │ │ -000bf550: 7420 202b 2034 7420 7420 202d 2037 7420 t + 4t t - 7t │ │ │ │ -000bf560: 7420 202b 2034 7420 7420 202d 2032 7420 t + 4t t - 2t │ │ │ │ -000bf570: 7420 202d 2032 3174 207c 0a7c 3320 3820 t - 21t |.|3 8 │ │ │ │ -000bf580: 2020 2020 2034 2038 2020 2020 2020 3520 4 8 5 │ │ │ │ -000bf590: 3820 2020 2020 2036 2038 2020 2020 2037 8 6 8 7 │ │ │ │ -000bf5a0: 2038 2020 2020 2030 2039 2020 2020 2031 8 0 9 1 │ │ │ │ -000bf5b0: 2039 2020 2020 2032 2039 2020 2020 2034 9 2 9 4 │ │ │ │ -000bf5c0: 2039 2020 2020 2020 357c 0a7c 2020 2020 9 5|.| │ │ │ │ +000bf270: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000bf280: 2020 2020 2032 2020 2020 2020 2020 3220 2 2 │ │ │ │ +000bf290: 2020 2020 2020 2032 2020 2020 2020 3320 2 3 │ │ │ │ +000bf2a0: 2020 2020 3220 2020 207c 0a7c 7820 202d 2 |.|x - │ │ │ │ +000bf2b0: 2032 3178 2078 2078 2020 2b20 3437 7820 21x x x + 47x │ │ │ │ +000bf2c0: 7820 7820 202d 2031 3378 2078 2020 2d20 x x - 13x x - │ │ │ │ +000bf2d0: 3134 7820 7820 202b 2036 3678 2078 2020 14x x + 66x x │ │ │ │ +000bf2e0: 2d20 3232 7820 7820 202d 2032 3078 2020 - 22x x - 20x │ │ │ │ +000bf2f0: 2b20 3278 2078 2020 207c 0a7c 2033 2020 + 2x x |.| 3 │ │ │ │ +000bf300: 2020 2020 3020 3220 3320 2020 2020 2031 0 2 3 1 │ │ │ │ +000bf310: 2032 2033 2020 2020 2020 3220 3320 2020 2 3 2 3 │ │ │ │ +000bf320: 2020 2030 2033 2020 2020 2020 3120 3320 0 3 1 3 │ │ │ │ +000bf330: 2020 2020 2032 2033 2020 2020 2020 3320 2 3 3 │ │ │ │ +000bf340: 2020 2020 3020 2020 207c 0a7c 2d2d 2d2d 0 |.|---- │ │ │ │ +000bf350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000bf360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000bf370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000bf380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000bf390: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2074 2020 ---------|.| t │ │ │ │ +000bf3a0: 2d20 3133 7420 7420 202b 2031 3374 2074 - 13t t + 13t t │ │ │ │ +000bf3b0: 2020 2b20 3138 7420 7420 202d 2034 7420 + 18t t - 4t │ │ │ │ +000bf3c0: 7420 202b 2034 7420 7420 202d 2037 7420 t + 4t t - 7t │ │ │ │ +000bf3d0: 7420 202b 2034 7420 7420 202d 2032 7420 t + 4t t - 2t │ │ │ │ +000bf3e0: 7420 202d 2032 3174 207c 0a7c 3320 3820 t - 21t |.|3 8 │ │ │ │ +000bf3f0: 2020 2020 2034 2038 2020 2020 2020 3520 4 8 5 │ │ │ │ +000bf400: 3820 2020 2020 2036 2038 2020 2020 2037 8 6 8 7 │ │ │ │ +000bf410: 2038 2020 2020 2030 2039 2020 2020 2031 8 0 9 1 │ │ │ │ +000bf420: 2039 2020 2020 2032 2039 2020 2020 2034 9 2 9 4 │ │ │ │ +000bf430: 2039 2020 2020 2020 357c 0a7c 2020 2020 9 5|.| │ │ │ │ +000bf440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf480: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bf490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf4d0: 2020 2020 2020 2020 207c 0a7c 2038 7420 |.| 8t │ │ │ │ +000bf4e0: 7420 202d 2033 7420 7420 202d 2074 2074 t - 3t t - t t │ │ │ │ +000bf4f0: 2020 2d20 3274 2074 2020 2d20 7420 7420 - 2t t - t t │ │ │ │ +000bf500: 202d 2032 7420 7420 202b 2033 7420 7420 - 2t t + 3t t │ │ │ │ +000bf510: 202d 2032 7420 7420 202b 2033 7420 7420 - 2t t + 3t t │ │ │ │ +000bf520: 202d 2035 7420 7420 207c 0a7c 2020 2035 - 5t t |.| 5 │ │ │ │ +000bf530: 2038 2020 2020 2036 2038 2020 2020 3720 8 6 8 7 │ │ │ │ +000bf540: 3820 2020 2020 3020 3920 2020 2031 2039 8 0 9 1 9 │ │ │ │ +000bf550: 2020 2020 2032 2039 2020 2020 2033 2039 2 9 3 9 │ │ │ │ +000bf560: 2020 2020 2034 2039 2020 2020 2035 2039 4 9 5 9 │ │ │ │ +000bf570: 2020 2020 2036 2039 207c 0a7c 2020 2020 6 9 |.| │ │ │ │ +000bf580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf5c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bf5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf610: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bf620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf610: 2020 2020 2020 2020 207c 0a7c 2074 2074 |.| t t │ │ │ │ +000bf620: 2020 2b20 3274 2074 2020 2d20 7420 7420 + 2t t - t t │ │ │ │ +000bf630: 202b 2074 2074 2020 2b20 7420 7420 2020 + t t + t t │ │ │ │ 000bf640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf660: 2020 2020 2020 2020 207c 0a7c 2038 7420 |.| 8t │ │ │ │ -000bf670: 7420 202d 2033 7420 7420 202d 2074 2074 t - 3t t - t t │ │ │ │ -000bf680: 2020 2d20 3274 2074 2020 2d20 7420 7420 - 2t t - t t │ │ │ │ -000bf690: 202d 2032 7420 7420 202b 2033 7420 7420 - 2t t + 3t t │ │ │ │ -000bf6a0: 202d 2032 7420 7420 202b 2033 7420 7420 - 2t t + 3t t │ │ │ │ -000bf6b0: 202d 2035 7420 7420 207c 0a7c 2020 2035 - 5t t |.| 5 │ │ │ │ -000bf6c0: 2038 2020 2020 2036 2038 2020 2020 3720 8 6 8 7 │ │ │ │ -000bf6d0: 3820 2020 2020 3020 3920 2020 2031 2039 8 0 9 1 9 │ │ │ │ -000bf6e0: 2020 2020 2032 2039 2020 2020 2033 2039 2 9 3 9 │ │ │ │ -000bf6f0: 2020 2020 2034 2039 2020 2020 2035 2039 4 9 5 9 │ │ │ │ -000bf700: 2020 2020 2036 2039 207c 0a7c 2020 2020 6 9 |.| │ │ │ │ +000bf660: 2020 2020 2020 2020 207c 0a7c 2020 3420 |.| 4 │ │ │ │ +000bf670: 3920 2020 2020 3520 3920 2020 2036 2039 9 5 9 6 9 │ │ │ │ +000bf680: 2020 2020 3720 3920 2020 2038 2039 2020 7 9 8 9 │ │ │ │ +000bf690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf6b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bf6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf700: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bf710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf750: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bf760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf760: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000bf770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf780: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 000bf790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf7a0: 2020 2020 2020 2020 207c 0a7c 2074 2074 |.| t t │ │ │ │ -000bf7b0: 2020 2b20 3274 2074 2020 2d20 7420 7420 + 2t t - t t │ │ │ │ -000bf7c0: 202b 2074 2074 2020 2b20 7420 7420 2020 + t t + t t │ │ │ │ -000bf7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf7f0: 2020 2020 2020 2020 207c 0a7c 2020 3420 |.| 4 │ │ │ │ -000bf800: 3920 2020 2020 3520 3920 2020 2036 2039 9 5 9 6 9 │ │ │ │ -000bf810: 2020 2020 3720 3920 2020 2038 2039 2020 7 9 8 9 │ │ │ │ -000bf820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf840: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bf7a0: 3220 2020 2020 2020 207c 0a7c 2d20 3378 2 |.|- 3x │ │ │ │ +000bf7b0: 2078 2020 2b20 3278 2078 2078 2020 2b20 x + 2x x x + │ │ │ │ +000bf7c0: 3878 2078 2078 2020 2d20 3978 2078 2078 8x x x - 9x x x │ │ │ │ +000bf7d0: 2020 2d20 3478 2078 2020 2b20 3578 2078 - 4x x + 5x x │ │ │ │ +000bf7e0: 2078 2020 2d20 7820 7820 7820 202b 2078 x - x x x + x │ │ │ │ +000bf7f0: 2078 2020 2b20 7820 787c 0a7c 2020 2020 x + x x|.| │ │ │ │ +000bf800: 3220 3520 2020 2020 3020 3320 3520 2020 2 5 0 3 5 │ │ │ │ +000bf810: 2020 3120 3320 3520 2020 2020 3220 3320 1 3 5 2 3 │ │ │ │ +000bf820: 3520 2020 2020 3320 3520 2020 2020 3020 5 3 5 0 │ │ │ │ +000bf830: 3420 3520 2020 2032 2034 2035 2020 2020 4 5 2 4 5 │ │ │ │ +000bf840: 3420 3520 2020 2030 207c 0a7c 2020 2020 4 5 0 |.| │ │ │ │ 000bf850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf890: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bf8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf8e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bf8f0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000bf900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf910: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000bf920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf930: 3220 2020 2020 2020 207c 0a7c 2d20 3378 2 |.|- 3x │ │ │ │ -000bf940: 2078 2020 2b20 3278 2078 2078 2020 2b20 x + 2x x x + │ │ │ │ -000bf950: 3878 2078 2078 2020 2d20 3978 2078 2078 8x x x - 9x x x │ │ │ │ -000bf960: 2020 2d20 3478 2078 2020 2b20 3578 2078 - 4x x + 5x x │ │ │ │ -000bf970: 2078 2020 2d20 7820 7820 7820 202b 2078 x - x x x + x │ │ │ │ -000bf980: 2078 2020 2b20 7820 787c 0a7c 2020 2020 x + x x|.| │ │ │ │ -000bf990: 3220 3520 2020 2020 3020 3320 3520 2020 2 5 0 3 5 │ │ │ │ -000bf9a0: 2020 3120 3320 3520 2020 2020 3220 3320 1 3 5 2 3 │ │ │ │ -000bf9b0: 3520 2020 2020 3320 3520 2020 2020 3020 5 3 5 0 │ │ │ │ -000bf9c0: 3420 3520 2020 2032 2034 2035 2020 2020 4 5 2 4 5 │ │ │ │ -000bf9d0: 3420 3520 2020 2030 207c 0a7c 2020 2020 4 5 0 |.| │ │ │ │ -000bf9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfa20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bfa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfa50: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -000bfa60: 3220 2020 2020 2032 2020 2020 2020 3220 2 2 2 │ │ │ │ -000bfa70: 2020 2020 2020 2020 207c 0a7c 202b 2033 |.| + 3 │ │ │ │ -000bfa80: 7820 7820 7820 202b 2037 7820 7820 7820 x x x + 7x x x │ │ │ │ -000bfa90: 202d 2078 2078 2078 2020 2d20 3478 2078 - x x x - 4x x │ │ │ │ -000bfaa0: 2078 2020 2b20 7820 7820 202d 2078 2078 x + x x - x x │ │ │ │ -000bfab0: 2020 2b20 7820 7820 202d 2031 3078 2078 + x x - 10x x │ │ │ │ -000bfac0: 2020 2d20 3978 2078 207c 0a7c 2020 2020 - 9x x |.| │ │ │ │ -000bfad0: 2031 2032 2034 2020 2020 2030 2033 2034 1 2 4 0 3 4 │ │ │ │ -000bfae0: 2020 2020 3120 3320 3420 2020 2020 3220 1 3 4 2 │ │ │ │ -000bfaf0: 3320 3420 2020 2030 2034 2020 2020 3220 3 4 0 4 2 │ │ │ │ -000bfb00: 3420 2020 2033 2034 2020 2020 2020 3020 4 3 4 0 │ │ │ │ -000bfb10: 3520 2020 2020 3020 317c 0a7c 2020 2020 5 0 1|.| │ │ │ │ +000bf8c0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000bf8d0: 3220 2020 2020 2032 2020 2020 2020 3220 2 2 2 │ │ │ │ +000bf8e0: 2020 2020 2020 2020 207c 0a7c 202b 2033 |.| + 3 │ │ │ │ +000bf8f0: 7820 7820 7820 202b 2037 7820 7820 7820 x x x + 7x x x │ │ │ │ +000bf900: 202d 2078 2078 2078 2020 2d20 3478 2078 - x x x - 4x x │ │ │ │ +000bf910: 2078 2020 2b20 7820 7820 202d 2078 2078 x + x x - x x │ │ │ │ +000bf920: 2020 2b20 7820 7820 202d 2031 3078 2078 + x x - 10x x │ │ │ │ +000bf930: 2020 2d20 3978 2078 207c 0a7c 2020 2020 - 9x x |.| │ │ │ │ +000bf940: 2031 2032 2034 2020 2020 2030 2033 2034 1 2 4 0 3 4 │ │ │ │ +000bf950: 2020 2020 3120 3320 3420 2020 2020 3220 1 3 4 2 │ │ │ │ +000bf960: 3320 3420 2020 2030 2034 2020 2020 3220 3 4 0 4 2 │ │ │ │ +000bf970: 3420 2020 2033 2034 2020 2020 2020 3020 4 3 4 0 │ │ │ │ +000bf980: 3520 2020 2020 3020 317c 0a7c 2020 2020 5 0 1|.| │ │ │ │ +000bf990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bf9d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bf9e0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000bf9f0: 2020 3220 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ +000bfa00: 3220 2020 2033 2020 2020 2032 2020 2020 2 3 2 │ │ │ │ +000bfa10: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000bfa20: 2020 2020 2020 2020 207c 0a7c 3878 2078 |.|8x x │ │ │ │ +000bfa30: 2078 2020 2b20 3478 2078 2020 2b20 3678 x + 4x x + 6x │ │ │ │ +000bfa40: 2078 2020 2d20 7820 7820 202b 2078 2078 x - x x + x x │ │ │ │ +000bfa50: 2020 2b20 7820 202b 2034 7820 7820 202d + x + 4x x - │ │ │ │ +000bfa60: 2031 3378 2078 2078 2020 2d20 3134 7820 13x x x - 14x │ │ │ │ +000bfa70: 7820 202d 2032 3278 207c 0a7c 2020 3220 x - 22x |.| 2 │ │ │ │ +000bfa80: 3320 3420 2020 2020 3320 3420 2020 2020 3 4 3 4 │ │ │ │ +000bfa90: 3020 3420 2020 2031 2034 2020 2020 3220 0 4 1 4 2 │ │ │ │ +000bfaa0: 3420 2020 2034 2020 2020 2030 2035 2020 4 4 0 5 │ │ │ │ +000bfab0: 2020 2020 3020 3120 3520 2020 2020 2031 0 1 5 1 │ │ │ │ +000bfac0: 2035 2020 2020 2020 307c 0a7c 2020 2020 5 0|.| │ │ │ │ +000bfad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfb10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bfb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfb60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bfb70: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000bfb80: 2020 3220 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ -000bfb90: 3220 2020 2033 2020 2020 2032 2020 2020 2 3 2 │ │ │ │ -000bfba0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000bfbb0: 2020 2020 2020 2020 207c 0a7c 3878 2078 |.|8x x │ │ │ │ -000bfbc0: 2078 2020 2b20 3478 2078 2020 2b20 3678 x + 4x x + 6x │ │ │ │ -000bfbd0: 2078 2020 2d20 7820 7820 202b 2078 2078 x - x x + x x │ │ │ │ -000bfbe0: 2020 2b20 7820 202b 2034 7820 7820 202d + x + 4x x - │ │ │ │ -000bfbf0: 2031 3378 2078 2078 2020 2d20 3134 7820 13x x x - 14x │ │ │ │ -000bfc00: 7820 202d 2032 3278 207c 0a7c 2020 3220 x - 22x |.| 2 │ │ │ │ -000bfc10: 3320 3420 2020 2020 3320 3420 2020 2020 3 4 3 4 │ │ │ │ -000bfc20: 3020 3420 2020 2031 2034 2020 2020 3220 0 4 1 4 2 │ │ │ │ -000bfc30: 3420 2020 2034 2020 2020 2030 2035 2020 4 4 0 5 │ │ │ │ -000bfc40: 2020 2020 3020 3120 3520 2020 2020 2031 0 1 5 1 │ │ │ │ -000bfc50: 2035 2020 2020 2020 307c 0a7c 2020 2020 5 0|.| │ │ │ │ -000bfc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfb30: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000bfb40: 2020 2020 2020 2032 2020 2020 2020 3220 2 2 │ │ │ │ +000bfb50: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000bfb60: 2020 2020 2020 3220 207c 0a7c 2034 7820 2 |.| 4x │ │ │ │ +000bfb70: 7820 7820 202d 2034 7820 7820 7820 202b x x - 4x x x + │ │ │ │ +000bfb80: 2033 7820 7820 7820 202b 2034 7820 7820 3x x x + 4x x │ │ │ │ +000bfb90: 202d 2032 7820 7820 202b 2078 2078 2020 - 2x x + x x │ │ │ │ +000bfba0: 2d20 3878 2078 2020 2d20 3678 2078 2078 - 8x x - 6x x x │ │ │ │ +000bfbb0: 2020 2d20 3478 2078 207c 0a7c 2020 2030 - 4x x |.| 0 │ │ │ │ +000bfbc0: 2033 2034 2020 2020 2031 2033 2034 2020 3 4 1 3 4 │ │ │ │ +000bfbd0: 2020 2032 2033 2034 2020 2020 2033 2034 2 3 4 3 4 │ │ │ │ +000bfbe0: 2020 2020 2030 2034 2020 2020 3220 3420 0 4 2 4 │ │ │ │ +000bfbf0: 2020 2020 3020 3520 2020 2020 3020 3120 0 5 0 1 │ │ │ │ +000bfc00: 3520 2020 2020 3120 357c 0a7c 2020 2020 5 1 5|.| │ │ │ │ +000bfc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfc50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bfc60: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000bfc70: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 000bfc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bfc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfca0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bfcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfcc0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000bfcd0: 2020 2020 2020 2032 2020 2020 2020 3220 2 2 │ │ │ │ -000bfce0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000bfcf0: 2020 2020 2020 3220 207c 0a7c 2034 7820 2 |.| 4x │ │ │ │ -000bfd00: 7820 7820 202d 2034 7820 7820 7820 202b x x - 4x x x + │ │ │ │ -000bfd10: 2033 7820 7820 7820 202b 2034 7820 7820 3x x x + 4x x │ │ │ │ -000bfd20: 202d 2032 7820 7820 202b 2078 2078 2020 - 2x x + x x │ │ │ │ -000bfd30: 2d20 3878 2078 2020 2d20 3678 2078 2078 - 8x x - 6x x x │ │ │ │ -000bfd40: 2020 2d20 3478 2078 207c 0a7c 2020 2030 - 4x x |.| 0 │ │ │ │ -000bfd50: 2033 2034 2020 2020 2031 2033 2034 2020 3 4 1 3 4 │ │ │ │ -000bfd60: 2020 2032 2033 2034 2020 2020 2033 2034 2 3 4 3 4 │ │ │ │ -000bfd70: 2020 2020 2030 2034 2020 2020 3220 3420 0 4 2 4 │ │ │ │ -000bfd80: 2020 2020 3020 3520 2020 2020 3020 3120 0 5 0 1 │ │ │ │ -000bfd90: 3520 2020 2020 3120 357c 0a7c 2020 2020 5 1 5|.| │ │ │ │ -000bfda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfca0: 3220 2020 2020 2020 207c 0a7c 2078 2078 2 |.| x x │ │ │ │ +000bfcb0: 2020 2d20 3878 2078 2020 2b20 3378 2078 - 8x x + 3x x │ │ │ │ +000bfcc0: 2078 2020 2d20 3278 2078 2020 2b20 3137 x - 2x x + 17 │ │ │ │ +000bfcd0: 7820 7820 7820 202b 2031 3778 2078 2078 x x x + 17x x x │ │ │ │ +000bfce0: 2020 2d20 3578 2078 2078 2020 2d20 3878 - 5x x x - 8x │ │ │ │ +000bfcf0: 2078 2020 2b20 3135 787c 0a7c 3020 3120 x + 15x|.|0 1 │ │ │ │ +000bfd00: 3420 2020 2020 3120 3420 2020 2020 3120 4 1 4 1 │ │ │ │ +000bfd10: 3220 3420 2020 2020 3220 3420 2020 2020 2 4 2 4 │ │ │ │ +000bfd20: 2030 2033 2034 2020 2020 2020 3120 3320 0 3 4 1 3 │ │ │ │ +000bfd30: 3420 2020 2020 3220 3320 3420 2020 2020 4 2 3 4 │ │ │ │ +000bfd40: 3320 3420 2020 2020 207c 0a7c 2020 2020 3 4 |.| │ │ │ │ +000bfd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfd90: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ +000bfda0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 000bfdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bfdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfde0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bfdf0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000bfe00: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000bfe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfe20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bfe30: 3220 2020 2020 2020 207c 0a7c 2078 2078 2 |.| x x │ │ │ │ -000bfe40: 2020 2d20 3878 2078 2020 2b20 3378 2078 - 8x x + 3x x │ │ │ │ -000bfe50: 2078 2020 2d20 3278 2078 2020 2b20 3137 x - 2x x + 17 │ │ │ │ -000bfe60: 7820 7820 7820 202b 2031 3778 2078 2078 x x x + 17x x x │ │ │ │ -000bfe70: 2020 2d20 3578 2078 2078 2020 2d20 3878 - 5x x x - 8x │ │ │ │ -000bfe80: 2078 2020 2b20 3135 787c 0a7c 3020 3120 x + 15x|.|0 1 │ │ │ │ -000bfe90: 3420 2020 2020 3120 3420 2020 2020 3120 4 1 4 1 │ │ │ │ -000bfea0: 3220 3420 2020 2020 3220 3420 2020 2020 2 4 2 4 │ │ │ │ -000bfeb0: 2030 2033 2034 2020 2020 2020 3120 3320 0 3 4 1 3 │ │ │ │ -000bfec0: 3420 2020 2020 3220 3320 3420 2020 2020 4 2 3 4 │ │ │ │ -000bfed0: 3320 3420 2020 2020 207c 0a7c 2020 2020 3 4 |.| │ │ │ │ -000bfee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfdd0: 2020 2020 3220 2020 2020 2020 2020 3220 2 2 │ │ │ │ +000bfde0: 2020 2020 2020 3220 207c 0a7c 2078 2020 2 |.| x │ │ │ │ +000bfdf0: 2d20 3678 2078 2078 2020 2b20 7820 7820 - 6x x x + x x │ │ │ │ +000bfe00: 202d 2031 3278 2078 2078 2020 2d20 3878 - 12x x x - 8x │ │ │ │ +000bfe10: 2078 2078 2020 2b20 3678 2078 2078 2020 x x + 6x x x │ │ │ │ +000bfe20: 2b20 3478 2078 2020 2d20 3678 2078 2020 + 4x x - 6x x │ │ │ │ +000bfe30: 2b20 3378 2078 2020 2b7c 0a7c 3120 3420 + 3x x +|.|1 4 │ │ │ │ +000bfe40: 2020 2020 3120 3220 3420 2020 2032 2034 1 2 4 2 4 │ │ │ │ +000bfe50: 2020 2020 2020 3020 3320 3420 2020 2020 0 3 4 │ │ │ │ +000bfe60: 3120 3320 3420 2020 2020 3220 3320 3420 1 3 4 2 3 4 │ │ │ │ +000bfe70: 2020 2020 3320 3420 2020 2020 3020 3420 3 4 0 4 │ │ │ │ +000bfe80: 2020 2020 3120 3420 207c 0a7c 2020 2020 1 4 |.| │ │ │ │ +000bfe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfed0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bfee0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 000bfef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bff10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bff20: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ -000bff30: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000bff40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bff50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bff60: 2020 2020 3220 2020 2020 2020 2020 3220 2 2 │ │ │ │ -000bff70: 2020 2020 2020 3220 207c 0a7c 2078 2020 2 |.| x │ │ │ │ -000bff80: 2d20 3678 2078 2078 2020 2b20 7820 7820 - 6x x x + x x │ │ │ │ -000bff90: 202d 2031 3278 2078 2078 2020 2d20 3878 - 12x x x - 8x │ │ │ │ -000bffa0: 2078 2078 2020 2b20 3678 2078 2078 2020 x x + 6x x x │ │ │ │ -000bffb0: 2b20 3478 2078 2020 2d20 3678 2078 2020 + 4x x - 6x x │ │ │ │ -000bffc0: 2b20 3378 2078 2020 2b7c 0a7c 3120 3420 + 3x x +|.|1 4 │ │ │ │ -000bffd0: 2020 2020 3120 3220 3420 2020 2032 2034 1 2 4 2 4 │ │ │ │ -000bffe0: 2020 2020 2020 3020 3320 3420 2020 2020 0 3 4 │ │ │ │ -000bfff0: 3120 3320 3420 2020 2020 3220 3320 3420 1 3 4 2 3 4 │ │ │ │ -000c0000: 2020 2020 3320 3420 2020 2020 3020 3420 3 4 0 4 │ │ │ │ -000c0010: 2020 2020 3120 3420 207c 0a7c 2020 2020 1 4 |.| │ │ │ │ -000c0020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bff10: 3220 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +000bff20: 2033 2020 2020 2020 327c 0a7c 2034 7820 3 2|.| 4x │ │ │ │ +000bff30: 7820 7820 202b 2032 7820 7820 202d 2034 x x + 2x x - 4 │ │ │ │ +000bff40: 7820 7820 7820 202d 2031 3678 2078 2078 x x x - 16x x x │ │ │ │ +000bff50: 2020 2b20 3678 2078 2078 2020 2b20 3878 + 6x x x + 8x │ │ │ │ +000bff60: 2078 2020 2d20 3134 7820 7820 202d 2032 x - 14x x - 2 │ │ │ │ +000bff70: 7820 202d 2031 3078 207c 0a7c 2020 2031 x - 10x |.| 1 │ │ │ │ +000bff80: 2032 2034 2020 2020 2032 2034 2020 2020 2 4 2 4 │ │ │ │ +000bff90: 2030 2033 2034 2020 2020 2020 3120 3320 0 3 4 1 3 │ │ │ │ +000bffa0: 3420 2020 2020 3220 3320 3420 2020 2020 4 2 3 4 │ │ │ │ +000bffb0: 3320 3420 2020 2020 2030 2034 2020 2020 3 4 0 4 │ │ │ │ +000bffc0: 2034 2020 2020 2020 307c 0a7c 2020 2020 4 0|.| │ │ │ │ +000bffd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bffe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bfff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0010: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c0020: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000c0030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0040: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000c0050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0060: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c0070: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -000c0080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c00a0: 3220 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -000c00b0: 2033 2020 2020 2020 327c 0a7c 2034 7820 3 2|.| 4x │ │ │ │ -000c00c0: 7820 7820 202b 2032 7820 7820 202d 2034 x x + 2x x - 4 │ │ │ │ -000c00d0: 7820 7820 7820 202d 2031 3678 2078 2078 x x x - 16x x x │ │ │ │ -000c00e0: 2020 2b20 3678 2078 2078 2020 2b20 3878 + 6x x x + 8x │ │ │ │ -000c00f0: 2078 2020 2d20 3134 7820 7820 202d 2032 x - 14x x - 2 │ │ │ │ -000c0100: 7820 202d 2031 3078 207c 0a7c 2020 2031 x - 10x |.| 1 │ │ │ │ -000c0110: 2032 2034 2020 2020 2032 2034 2020 2020 2 4 2 4 │ │ │ │ -000c0120: 2030 2033 2034 2020 2020 2020 3120 3320 0 3 4 1 3 │ │ │ │ -000c0130: 3420 2020 2020 3220 3320 3420 2020 2020 4 2 3 4 │ │ │ │ -000c0140: 3320 3420 2020 2020 2030 2034 2020 2020 3 4 0 4 │ │ │ │ -000c0150: 2034 2020 2020 2020 307c 0a7c 2020 2020 4 0|.| │ │ │ │ -000c0160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0060: 2020 2020 2020 2032 207c 0a7c 7820 7820 2 |.|x x │ │ │ │ +000c0070: 202b 2032 7820 7820 202d 2038 7820 7820 + 2x x - 8x x │ │ │ │ +000c0080: 7820 202b 2032 7820 7820 7820 202b 2032 x + 2x x x + 2 │ │ │ │ +000c0090: 7820 7820 202d 2031 3978 2078 2078 2020 x x - 19x x x │ │ │ │ +000c00a0: 2d20 3778 2078 2078 2020 2b20 7820 7820 - 7x x x + x x │ │ │ │ +000c00b0: 7820 202b 2034 7820 787c 0a7c 2031 2034 x + 4x x|.| 1 4 │ │ │ │ +000c00c0: 2020 2020 2031 2034 2020 2020 2030 2032 1 4 0 2 │ │ │ │ +000c00d0: 2034 2020 2020 2031 2032 2034 2020 2020 4 1 2 4 │ │ │ │ +000c00e0: 2032 2034 2020 2020 2020 3020 3320 3420 2 4 0 3 4 │ │ │ │ +000c00f0: 2020 2020 3120 3320 3420 2020 2032 2033 1 3 4 2 3 │ │ │ │ +000c0100: 2034 2020 2020 2033 207c 0a7c 2020 2020 4 3 |.| │ │ │ │ +000c0110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0150: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c0160: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ 000c0170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c01a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c01b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000c01c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c01d0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c01e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c01f0: 2020 2020 2020 2032 207c 0a7c 7820 7820 2 |.|x x │ │ │ │ -000c0200: 202b 2032 7820 7820 202d 2038 7820 7820 + 2x x - 8x x │ │ │ │ -000c0210: 7820 202b 2032 7820 7820 7820 202b 2032 x + 2x x x + 2 │ │ │ │ -000c0220: 7820 7820 202d 2031 3978 2078 2078 2020 x x - 19x x x │ │ │ │ -000c0230: 2d20 3778 2078 2078 2020 2b20 7820 7820 - 7x x x + x x │ │ │ │ -000c0240: 7820 202b 2034 7820 787c 0a7c 2031 2034 x + 4x x|.| 1 4 │ │ │ │ -000c0250: 2020 2020 2031 2034 2020 2020 2030 2032 1 4 0 2 │ │ │ │ -000c0260: 2034 2020 2020 2031 2032 2034 2020 2020 4 1 2 4 │ │ │ │ -000c0270: 2032 2034 2020 2020 2020 3020 3320 3420 2 4 0 3 4 │ │ │ │ -000c0280: 2020 2020 3120 3320 3420 2020 2032 2033 1 3 4 2 3 │ │ │ │ -000c0290: 2034 2020 2020 2033 207c 0a7c 2020 2020 4 3 |.| │ │ │ │ -000c02a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0180: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000c0190: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000c01a0: 2020 2020 2032 2020 207c 0a7c 2078 2078 2 |.| x x │ │ │ │ +000c01b0: 2020 2b20 3378 2078 2078 2020 2b20 7820 + 3x x x + x │ │ │ │ +000c01c0: 7820 202b 2031 3078 2078 2078 2020 2b20 x + 10x x x + │ │ │ │ +000c01d0: 3278 2078 2078 2020 2d20 3278 2078 2020 2x x x - 2x x │ │ │ │ +000c01e0: 2b20 3278 2078 2020 2b20 3278 2078 2020 + 2x x + 2x x │ │ │ │ +000c01f0: 2b20 3132 7820 7820 207c 0a7c 3020 3220 + 12x x |.|0 2 │ │ │ │ +000c0200: 3420 2020 2020 3120 3220 3420 2020 2032 4 1 2 4 2 │ │ │ │ +000c0210: 2034 2020 2020 2020 3020 3320 3420 2020 4 0 3 4 │ │ │ │ +000c0220: 2020 3120 3320 3420 2020 2020 3120 3420 1 3 4 1 4 │ │ │ │ +000c0230: 2020 2020 3220 3420 2020 2020 3320 3420 2 4 3 4 │ │ │ │ +000c0240: 2020 2020 2031 2035 207c 0a7c 2020 2020 1 5 |.| │ │ │ │ +000c0250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0290: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c02a0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 000c02b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c02c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c02c0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ 000c02d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c02e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c02f0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000c0300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0310: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -000c0320: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000c0330: 2020 2020 2032 2020 207c 0a7c 2078 2078 2 |.| x x │ │ │ │ -000c0340: 2020 2b20 3378 2078 2078 2020 2b20 7820 + 3x x x + x │ │ │ │ -000c0350: 7820 202b 2031 3078 2078 2078 2020 2b20 x + 10x x x + │ │ │ │ -000c0360: 3278 2078 2078 2020 2d20 3278 2078 2020 2x x x - 2x x │ │ │ │ -000c0370: 2b20 3278 2078 2020 2b20 3278 2078 2020 + 2x x + 2x x │ │ │ │ -000c0380: 2b20 3132 7820 7820 207c 0a7c 3020 3220 + 12x x |.|0 2 │ │ │ │ -000c0390: 3420 2020 2020 3120 3220 3420 2020 2032 4 1 2 4 2 │ │ │ │ -000c03a0: 2034 2020 2020 2020 3020 3320 3420 2020 4 0 3 4 │ │ │ │ -000c03b0: 2020 3120 3320 3420 2020 2020 3120 3420 1 3 4 1 4 │ │ │ │ -000c03c0: 2020 2020 3220 3420 2020 2020 3320 3420 2 4 3 4 │ │ │ │ -000c03d0: 2020 2020 2031 2035 207c 0a7c 2020 2020 1 5 |.| │ │ │ │ -000c03e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c03f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c02e0: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ +000c02f0: 3278 2078 2078 2020 2d20 3130 7820 7820 2x x x - 10x x │ │ │ │ +000c0300: 202d 2031 3178 2078 2078 2020 2b20 3878 - 11x x x + 8x │ │ │ │ +000c0310: 2078 2078 2020 2d20 3578 2078 2020 2b20 x x - 5x x + │ │ │ │ +000c0320: 3378 2078 2078 2020 2b20 3233 7820 7820 3x x x + 23x x │ │ │ │ +000c0330: 7820 202d 2031 3178 207c 0a7c 3420 2020 x - 11x |.|4 │ │ │ │ +000c0340: 2020 3020 3120 3420 2020 2020 2031 2034 0 1 4 1 4 │ │ │ │ +000c0350: 2020 2020 2020 3020 3220 3420 2020 2020 0 2 4 │ │ │ │ +000c0360: 3120 3220 3420 2020 2020 3220 3420 2020 1 2 4 2 4 │ │ │ │ +000c0370: 2020 3020 3320 3420 2020 2020 2031 2033 0 3 4 1 3 │ │ │ │ +000c0380: 2034 2020 2020 2020 327c 0a7c 2d2d 2d2d 4 2|.|---- │ │ │ │ +000c0390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c03a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c03b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c03c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c03d0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7420 202b ---------|.|t + │ │ │ │ +000c03e0: 2031 3974 2074 2020 2d20 3474 2074 2020 19t t - 4t t │ │ │ │ +000c03f0: 2d20 3474 2074 202c 2020 2020 2020 2020 - 4t t , │ │ │ │ 000c0400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0420: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c0430: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000c0440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0450: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000c0420: 2020 2020 2020 2020 207c 0a7c 2039 2020 |.| 9 │ │ │ │ +000c0430: 2020 2020 3620 3920 2020 2020 3720 3920 6 9 7 9 │ │ │ │ +000c0440: 2020 2020 3820 3920 2020 2020 2020 2020 8 9 │ │ │ │ +000c0450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0470: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ -000c0480: 3278 2078 2078 2020 2d20 3130 7820 7820 2x x x - 10x x │ │ │ │ -000c0490: 202d 2031 3178 2078 2078 2020 2b20 3878 - 11x x x + 8x │ │ │ │ -000c04a0: 2078 2078 2020 2d20 3578 2078 2020 2b20 x x - 5x x + │ │ │ │ -000c04b0: 3378 2078 2078 2020 2b20 3233 7820 7820 3x x x + 23x x │ │ │ │ -000c04c0: 7820 202d 2031 3178 207c 0a7c 3420 2020 x - 11x |.|4 │ │ │ │ -000c04d0: 2020 3020 3120 3420 2020 2020 2031 2034 0 1 4 1 4 │ │ │ │ -000c04e0: 2020 2020 2020 3020 3220 3420 2020 2020 0 2 4 │ │ │ │ -000c04f0: 3120 3220 3420 2020 2020 3220 3420 2020 1 2 4 2 4 │ │ │ │ -000c0500: 2020 3020 3320 3420 2020 2020 2031 2033 0 3 4 1 3 │ │ │ │ -000c0510: 2034 2020 2020 2020 327c 0a7c 2d2d 2d2d 4 2|.|---- │ │ │ │ -000c0520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c0530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c0540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c0550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c0560: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7420 202b ---------|.|t + │ │ │ │ -000c0570: 2031 3974 2074 2020 2d20 3474 2074 2020 19t t - 4t t │ │ │ │ -000c0580: 2d20 3474 2074 202c 2020 2020 2020 2020 - 4t t , │ │ │ │ +000c0470: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c0480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c04a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c04b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c04c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c04d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c04e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c04f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0510: 2020 2020 2020 2020 207c 0a7c 2d20 7420 |.|- t │ │ │ │ +000c0520: 7420 202d 2074 2074 202c 2020 2020 2020 t - t t , │ │ │ │ +000c0530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0560: 2020 2020 2020 2020 207c 0a7c 2020 2037 |.| 7 │ │ │ │ +000c0570: 2039 2020 2020 3820 3920 2020 2020 2020 9 8 9 │ │ │ │ +000c0580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c05a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c05b0: 2020 2020 2020 2020 207c 0a7c 2039 2020 |.| 9 │ │ │ │ -000c05c0: 2020 2020 3620 3920 2020 2020 3720 3920 6 9 7 9 │ │ │ │ -000c05d0: 2020 2020 3820 3920 2020 2020 2020 2020 8 9 │ │ │ │ +000c05b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c05c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c05d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c05e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c05f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0600: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c0610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0650: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c0660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c06a0: 2020 2020 2020 2020 207c 0a7c 2d20 7420 |.|- t │ │ │ │ -000c06b0: 7420 202d 2074 2074 202c 2020 2020 2020 t - t t , │ │ │ │ +000c06a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c06b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c06c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c06d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c06e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c06f0: 2020 2020 2020 2020 207c 0a7c 2020 2037 |.| 7 │ │ │ │ -000c0700: 2039 2020 2020 3820 3920 2020 2020 2020 9 8 9 │ │ │ │ +000c06f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c0700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0740: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c0750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0790: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c07a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c07b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c07c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c07d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c07e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c07f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0830: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c0840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0880: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c0790: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ +000c07a0: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000c07b0: 2020 2020 3220 2020 2020 2032 2020 2020 2 2 │ │ │ │ +000c07c0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000c07d0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000c07e0: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ +000c07f0: 3678 2078 2020 2b20 3278 2078 2020 2b20 6x x + 2x x + │ │ │ │ +000c0800: 3678 2078 2020 2b20 7820 7820 202d 2032 6x x + x x - 2 │ │ │ │ +000c0810: 7820 202b 2034 7820 7820 7820 202d 2034 x + 4x x x - 4 │ │ │ │ +000c0820: 7820 7820 202d 2031 3178 2078 2078 2020 x x - 11x x x │ │ │ │ +000c0830: 2d20 3278 2078 2078 207c 0a7c 3520 2020 - 2x x x |.|5 │ │ │ │ +000c0840: 2020 3120 3520 2020 2020 3220 3520 2020 1 5 2 5 │ │ │ │ +000c0850: 2020 3320 3520 2020 2034 2035 2020 2020 3 5 4 5 │ │ │ │ +000c0860: 2035 2020 2020 2030 2031 2036 2020 2020 5 0 1 6 │ │ │ │ +000c0870: 2031 2036 2020 2020 2020 3020 3220 3620 1 6 0 2 6 │ │ │ │ +000c0880: 2020 2020 3120 3220 207c 0a7c 2020 2020 1 2 |.| │ │ │ │ 000c0890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c08a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c08b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c08c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c08d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c08e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c08f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c08f0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000c0900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0920: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ -000c0930: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000c0940: 2020 2020 3220 2020 2020 2032 2020 2020 2 2 │ │ │ │ -000c0950: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000c0960: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c0970: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ -000c0980: 3678 2078 2020 2b20 3278 2078 2020 2b20 6x x + 2x x + │ │ │ │ -000c0990: 3678 2078 2020 2b20 7820 7820 202d 2032 6x x + x x - 2 │ │ │ │ -000c09a0: 7820 202b 2034 7820 7820 7820 202d 2034 x + 4x x x - 4 │ │ │ │ -000c09b0: 7820 7820 202d 2031 3178 2078 2078 2020 x x - 11x x x │ │ │ │ -000c09c0: 2d20 3278 2078 2078 207c 0a7c 3520 2020 - 2x x x |.|5 │ │ │ │ -000c09d0: 2020 3120 3520 2020 2020 3220 3520 2020 1 5 2 5 │ │ │ │ -000c09e0: 2020 3320 3520 2020 2034 2035 2020 2020 3 5 4 5 │ │ │ │ -000c09f0: 2035 2020 2020 2030 2031 2036 2020 2020 5 0 1 6 │ │ │ │ -000c0a00: 2031 2036 2020 2020 2020 3020 3220 3620 1 6 0 2 6 │ │ │ │ -000c0a10: 2020 2020 3120 3220 207c 0a7c 2020 2020 1 2 |.| │ │ │ │ +000c0910: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000c0920: 2020 2020 2020 2020 207c 0a7c 7820 202b |.|x + │ │ │ │ +000c0930: 2038 7820 7820 7820 202b 2039 7820 7820 8x x x + 9x x │ │ │ │ +000c0940: 7820 202b 2032 7820 7820 202b 2038 7820 x + 2x x + 8x │ │ │ │ +000c0950: 7820 7820 202d 2038 7820 7820 7820 202d x x - 8x x x - │ │ │ │ +000c0960: 2036 7820 7820 7820 202b 2036 7820 7820 6x x x + 6x x │ │ │ │ +000c0970: 202d 2033 7820 7820 207c 0a7c 2035 2020 - 3x x |.| 5 │ │ │ │ +000c0980: 2020 2030 2032 2035 2020 2020 2031 2032 0 2 5 1 2 │ │ │ │ +000c0990: 2035 2020 2020 2032 2035 2020 2020 2030 5 2 5 0 │ │ │ │ +000c09a0: 2033 2035 2020 2020 2031 2033 2035 2020 3 5 1 3 5 │ │ │ │ +000c09b0: 2020 2032 2033 2035 2020 2020 2033 2035 2 3 5 3 5 │ │ │ │ +000c09c0: 2020 2020 2030 2034 207c 0a7c 2020 2020 0 4 |.| │ │ │ │ +000c09d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c09e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c09f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0a10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c0a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0a60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c0a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0a80: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000c0a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0aa0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000c0ab0: 2020 2020 2020 2020 207c 0a7c 7820 202b |.|x + │ │ │ │ -000c0ac0: 2038 7820 7820 7820 202b 2039 7820 7820 8x x x + 9x x │ │ │ │ -000c0ad0: 7820 202b 2032 7820 7820 202b 2038 7820 x + 2x x + 8x │ │ │ │ -000c0ae0: 7820 7820 202d 2038 7820 7820 7820 202d x x - 8x x x - │ │ │ │ -000c0af0: 2036 7820 7820 7820 202b 2036 7820 7820 6x x x + 6x x │ │ │ │ -000c0b00: 202d 2033 7820 7820 207c 0a7c 2035 2020 - 3x x |.| 5 │ │ │ │ -000c0b10: 2020 2030 2032 2035 2020 2020 2031 2032 0 2 5 1 2 │ │ │ │ -000c0b20: 2035 2020 2020 2032 2035 2020 2020 2030 5 2 5 0 │ │ │ │ -000c0b30: 2033 2035 2020 2020 2031 2033 2035 2020 3 5 1 3 5 │ │ │ │ -000c0b40: 2020 2032 2033 2035 2020 2020 2033 2035 2 3 5 3 5 │ │ │ │ -000c0b50: 2020 2020 2030 2034 207c 0a7c 2020 2020 0 4 |.| │ │ │ │ +000c0a50: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000c0a60: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ +000c0a70: 202d 2031 3178 2078 2078 2020 2b20 3278 - 11x x x + 2x │ │ │ │ +000c0a80: 2078 2078 2020 2b20 3138 7820 7820 7820 x x + 18x x x │ │ │ │ +000c0a90: 202b 2031 3278 2078 2078 2020 2d20 3478 + 12x x x - 4x │ │ │ │ +000c0aa0: 2078 2020 2b20 3130 7820 7820 7820 202d x + 10x x x - │ │ │ │ +000c0ab0: 2034 7820 7820 7820 207c 0a7c 2032 2035 4x x x |.| 2 5 │ │ │ │ +000c0ac0: 2020 2020 2020 3120 3220 3520 2020 2020 1 2 5 │ │ │ │ +000c0ad0: 3020 3320 3520 2020 2020 2031 2033 2035 0 3 5 1 3 5 │ │ │ │ +000c0ae0: 2020 2020 2020 3220 3320 3520 2020 2020 2 3 5 │ │ │ │ +000c0af0: 3320 3520 2020 2020 2030 2034 2035 2020 3 5 0 4 5 │ │ │ │ +000c0b00: 2020 2031 2034 2035 207c 0a7c 2020 2020 1 4 5 |.| │ │ │ │ +000c0b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0b50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c0b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0b70: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000c0b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c0b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0ba0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c0bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0be0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c0bf0: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ -000c0c00: 202d 2031 3178 2078 2078 2020 2b20 3278 - 11x x x + 2x │ │ │ │ -000c0c10: 2078 2078 2020 2b20 3138 7820 7820 7820 x x + 18x x x │ │ │ │ -000c0c20: 202b 2031 3278 2078 2078 2020 2d20 3478 + 12x x x - 4x │ │ │ │ -000c0c30: 2078 2020 2b20 3130 7820 7820 7820 202d x + 10x x x - │ │ │ │ -000c0c40: 2034 7820 7820 7820 207c 0a7c 2032 2035 4x x x |.| 2 5 │ │ │ │ -000c0c50: 2020 2020 2020 3120 3220 3520 2020 2020 1 2 5 │ │ │ │ -000c0c60: 3020 3320 3520 2020 2020 2031 2033 2035 0 3 5 1 3 5 │ │ │ │ -000c0c70: 2020 2020 2020 3220 3320 3520 2020 2020 2 3 5 │ │ │ │ -000c0c80: 3320 3520 2020 2020 2030 2034 2035 2020 3 5 0 4 5 │ │ │ │ -000c0c90: 2020 2031 2034 2035 207c 0a7c 2020 2020 1 4 5 |.| │ │ │ │ -000c0ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0ba0: 2020 2020 2020 2020 207c 0a7c 202b 2031 |.| + 1 │ │ │ │ +000c0bb0: 3278 2078 2078 2020 2b20 3132 7820 7820 2x x x + 12x x │ │ │ │ +000c0bc0: 7820 202d 2032 7820 7820 202b 2037 7820 x - 2x x + 7x │ │ │ │ +000c0bd0: 7820 7820 202b 2034 7820 7820 7820 202d x x + 4x x x - │ │ │ │ +000c0be0: 2037 7820 7820 7820 202d 2078 2078 2078 7x x x - x x x │ │ │ │ +000c0bf0: 2020 2b20 3578 2078 207c 0a7c 2020 2020 + 5x x |.| │ │ │ │ +000c0c00: 2020 3020 3220 3520 2020 2020 2031 2032 0 2 5 1 2 │ │ │ │ +000c0c10: 2035 2020 2020 2032 2035 2020 2020 2030 5 2 5 0 │ │ │ │ +000c0c20: 2033 2035 2020 2020 2031 2033 2035 2020 3 5 1 3 5 │ │ │ │ +000c0c30: 2020 2032 2033 2035 2020 2020 3020 3420 2 3 5 0 4 │ │ │ │ +000c0c40: 3520 2020 2020 3220 207c 0a7c 2020 2020 5 2 |.| │ │ │ │ +000c0c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0c90: 2020 2020 2020 2020 207c 0a7c 2020 3220 |.| 2 │ │ │ │ +000c0ca0: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000c0cb0: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ +000c0cc0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ 000c0cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0ce0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c0cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0d00: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000c0d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0d30: 2020 2020 2020 2020 207c 0a7c 202b 2031 |.| + 1 │ │ │ │ -000c0d40: 3278 2078 2078 2020 2b20 3132 7820 7820 2x x x + 12x x │ │ │ │ -000c0d50: 7820 202d 2032 7820 7820 202b 2037 7820 x - 2x x + 7x │ │ │ │ -000c0d60: 7820 7820 202b 2034 7820 7820 7820 202d x x + 4x x x - │ │ │ │ -000c0d70: 2037 7820 7820 7820 202d 2078 2078 2078 7x x x - x x x │ │ │ │ -000c0d80: 2020 2b20 3578 2078 207c 0a7c 2020 2020 + 5x x |.| │ │ │ │ -000c0d90: 2020 3020 3220 3520 2020 2020 2031 2032 0 2 5 1 2 │ │ │ │ -000c0da0: 2035 2020 2020 2032 2035 2020 2020 2030 5 2 5 0 │ │ │ │ -000c0db0: 2033 2035 2020 2020 2031 2033 2035 2020 3 5 1 3 5 │ │ │ │ -000c0dc0: 2020 2032 2033 2035 2020 2020 3020 3420 2 3 5 0 4 │ │ │ │ -000c0dd0: 3520 2020 2020 3220 207c 0a7c 2020 2020 5 2 |.| │ │ │ │ -000c0de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0ce0: 2020 2020 2020 2020 207c 0a7c 2078 2020 |.| x │ │ │ │ +000c0cf0: 2d20 3578 2078 2020 2b20 3578 2078 2020 - 5x x + 5x x │ │ │ │ +000c0d00: 2b20 3378 2020 2d20 3478 2078 2020 2d20 + 3x - 4x x - │ │ │ │ +000c0d10: 3136 7820 7820 7820 202b 2032 3078 2078 16x x x + 20x x │ │ │ │ +000c0d20: 2020 2b20 3278 2078 2078 2020 2d20 3578 + 2x x x - 5x │ │ │ │ +000c0d30: 2078 2078 2020 2b20 207c 0a7c 3020 3420 x x + |.|0 4 │ │ │ │ +000c0d40: 2020 2020 3120 3420 2020 2020 3320 3420 1 4 3 4 │ │ │ │ +000c0d50: 2020 2020 3420 2020 2020 3020 3520 2020 4 0 5 │ │ │ │ +000c0d60: 2020 2030 2031 2035 2020 2020 2020 3120 0 1 5 1 │ │ │ │ +000c0d70: 3520 2020 2020 3020 3220 3520 2020 2020 5 0 2 5 │ │ │ │ +000c0d80: 3120 3220 3520 2020 207c 0a7c 2020 2020 1 2 5 |.| │ │ │ │ +000c0d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0dd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c0de0: 3220 2020 2020 2020 3220 2020 2033 2020 2 2 3 │ │ │ │ +000c0df0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000c0e00: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 000c0e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0e20: 2020 2020 2020 2020 207c 0a7c 2020 3220 |.| 2 │ │ │ │ -000c0e30: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000c0e40: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ -000c0e50: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -000c0e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0e70: 2020 2020 2020 2020 207c 0a7c 2078 2020 |.| x │ │ │ │ -000c0e80: 2d20 3578 2078 2020 2b20 3578 2078 2020 - 5x x + 5x x │ │ │ │ -000c0e90: 2b20 3378 2020 2d20 3478 2078 2020 2d20 + 3x - 4x x - │ │ │ │ -000c0ea0: 3136 7820 7820 7820 202b 2032 3078 2078 16x x x + 20x x │ │ │ │ -000c0eb0: 2020 2b20 3278 2078 2078 2020 2d20 3578 + 2x x x - 5x │ │ │ │ -000c0ec0: 2078 2078 2020 2b20 207c 0a7c 3020 3420 x x + |.|0 4 │ │ │ │ -000c0ed0: 2020 2020 3120 3420 2020 2020 3320 3420 1 4 3 4 │ │ │ │ -000c0ee0: 2020 2020 3420 2020 2020 3020 3520 2020 4 0 5 │ │ │ │ -000c0ef0: 2020 2030 2031 2035 2020 2020 2020 3120 0 1 5 1 │ │ │ │ -000c0f00: 3520 2020 2020 3020 3220 3520 2020 2020 5 0 2 5 │ │ │ │ -000c0f10: 3120 3220 3520 2020 207c 0a7c 2020 2020 1 2 5 |.| │ │ │ │ -000c0f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0e20: 2020 2032 2020 2020 207c 0a7c 2078 2078 2 |.| x x │ │ │ │ +000c0e30: 2020 2d20 3278 2078 2020 2d20 7820 202b - 2x x - x + │ │ │ │ +000c0e40: 2035 7820 7820 202b 2037 7820 7820 7820 5x x + 7x x x │ │ │ │ +000c0e50: 202d 2032 3278 2078 2020 2d20 3278 2078 - 22x x - 2x x │ │ │ │ +000c0e60: 2078 2020 2b20 3130 7820 7820 7820 202d x + 10x x x - │ │ │ │ +000c0e70: 2033 7820 7820 202d 207c 0a7c 2020 3220 3x x - |.| 2 │ │ │ │ +000c0e80: 3420 2020 2020 3320 3420 2020 2034 2020 4 3 4 4 │ │ │ │ +000c0e90: 2020 2030 2035 2020 2020 2030 2031 2035 0 5 0 1 5 │ │ │ │ +000c0ea0: 2020 2020 2020 3120 3520 2020 2020 3020 1 5 0 │ │ │ │ +000c0eb0: 3220 3520 2020 2020 2031 2032 2035 2020 2 5 1 2 5 │ │ │ │ +000c0ec0: 2020 2032 2035 2020 207c 0a7c 2020 2020 2 5 |.| │ │ │ │ +000c0ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0f10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c0f20: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ 000c0f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c0f40: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ 000c0f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0f60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c0f70: 3220 2020 2020 2020 3220 2020 2033 2020 2 2 3 │ │ │ │ -000c0f80: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c0f90: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000c0fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c0fb0: 2020 2032 2020 2020 207c 0a7c 2078 2078 2 |.| x x │ │ │ │ -000c0fc0: 2020 2d20 3278 2078 2020 2d20 7820 202b - 2x x - x + │ │ │ │ -000c0fd0: 2035 7820 7820 202b 2037 7820 7820 7820 5x x + 7x x x │ │ │ │ -000c0fe0: 202d 2032 3278 2078 2020 2d20 3278 2078 - 22x x - 2x x │ │ │ │ -000c0ff0: 2078 2020 2b20 3130 7820 7820 7820 202d x + 10x x x - │ │ │ │ -000c1000: 2033 7820 7820 202d 207c 0a7c 2020 3220 3x x - |.| 2 │ │ │ │ -000c1010: 3420 2020 2020 3320 3420 2020 2034 2020 4 3 4 4 │ │ │ │ -000c1020: 2020 2030 2035 2020 2020 2030 2031 2035 0 5 0 1 5 │ │ │ │ -000c1030: 2020 2020 2020 3120 3520 2020 2020 3020 1 5 0 │ │ │ │ -000c1040: 3220 3520 2020 2020 2031 2032 2035 2020 2 5 1 2 5 │ │ │ │ -000c1050: 2020 2032 2035 2020 207c 0a7c 2020 2020 2 5 |.| │ │ │ │ -000c1060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c10a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c10b0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -000c10c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c10d0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000c10e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c10f0: 2020 2020 2020 2020 207c 0a7c 7820 202b |.|x + │ │ │ │ -000c1100: 2032 3678 2078 2078 2020 2b20 3478 2078 26x x x + 4x x │ │ │ │ -000c1110: 2020 2d20 3478 2078 2078 2020 2b20 3130 - 4x x x + 10 │ │ │ │ -000c1120: 7820 7820 7820 202d 2032 7820 7820 202d x x x - 2x x - │ │ │ │ -000c1130: 2032 3678 2078 2078 2020 2d20 3878 2078 26x x x - 8x x │ │ │ │ -000c1140: 2078 2020 2d20 3978 207c 0a7c 2035 2020 x - 9x |.| 5 │ │ │ │ -000c1150: 2020 2020 3020 3120 3520 2020 2020 3120 0 1 5 1 │ │ │ │ -000c1160: 3520 2020 2020 3020 3220 3520 2020 2020 5 0 2 5 │ │ │ │ -000c1170: 2031 2032 2035 2020 2020 2032 2035 2020 1 2 5 2 5 │ │ │ │ -000c1180: 2020 2020 3020 3320 3520 2020 2020 3120 0 3 5 1 │ │ │ │ -000c1190: 3320 3520 2020 2020 207c 0a7c 2020 2020 3 5 |.| │ │ │ │ +000c0f60: 2020 2020 2020 2020 207c 0a7c 7820 202b |.|x + │ │ │ │ +000c0f70: 2032 3678 2078 2078 2020 2b20 3478 2078 26x x x + 4x x │ │ │ │ +000c0f80: 2020 2d20 3478 2078 2078 2020 2b20 3130 - 4x x x + 10 │ │ │ │ +000c0f90: 7820 7820 7820 202d 2032 7820 7820 202d x x x - 2x x - │ │ │ │ +000c0fa0: 2032 3678 2078 2078 2020 2d20 3878 2078 26x x x - 8x x │ │ │ │ +000c0fb0: 2078 2020 2d20 3978 207c 0a7c 2035 2020 x - 9x |.| 5 │ │ │ │ +000c0fc0: 2020 2020 3020 3120 3520 2020 2020 3120 0 1 5 1 │ │ │ │ +000c0fd0: 3520 2020 2020 3020 3220 3520 2020 2020 5 0 2 5 │ │ │ │ +000c0fe0: 2031 2032 2035 2020 2020 2032 2035 2020 1 2 5 2 5 │ │ │ │ +000c0ff0: 2020 2020 3020 3320 3520 2020 2020 3120 0 3 5 1 │ │ │ │ +000c1000: 3320 3520 2020 2020 207c 0a7c 2020 2020 3 5 |.| │ │ │ │ +000c1010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1050: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c1060: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000c1070: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000c1080: 2033 2020 2020 2032 2020 2020 2020 2020 3 2 │ │ │ │ +000c1090: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000c10a0: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ +000c10b0: 3378 2078 2020 2b20 3778 2078 2020 2d20 3x x + 7x x - │ │ │ │ +000c10c0: 3378 2078 2020 2d20 3778 2078 2020 2d20 3x x - 7x x - │ │ │ │ +000c10d0: 7820 202b 2039 7820 7820 202d 2031 3278 x + 9x x - 12x │ │ │ │ +000c10e0: 2078 2078 2020 2d20 3432 7820 7820 202b x x - 42x x + │ │ │ │ +000c10f0: 2037 7820 7820 7820 207c 0a7c 3420 2020 7x x x |.|4 │ │ │ │ +000c1100: 2020 3020 3420 2020 2020 3120 3420 2020 0 4 1 4 │ │ │ │ +000c1110: 2020 3220 3420 2020 2020 3320 3420 2020 2 4 3 4 │ │ │ │ +000c1120: 2034 2020 2020 2030 2035 2020 2020 2020 4 0 5 │ │ │ │ +000c1130: 3020 3120 3520 2020 2020 2031 2035 2020 0 1 5 1 5 │ │ │ │ +000c1140: 2020 2030 2032 2035 207c 0a7c 2020 2020 0 2 5 |.| │ │ │ │ +000c1150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1190: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c11a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c11b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c11b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000c11c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c11d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c11e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c11f0: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000c1200: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000c1210: 2033 2020 2020 2032 2020 2020 2020 2020 3 2 │ │ │ │ -000c1220: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000c1230: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ -000c1240: 3378 2078 2020 2b20 3778 2078 2020 2d20 3x x + 7x x - │ │ │ │ -000c1250: 3378 2078 2020 2d20 3778 2078 2020 2d20 3x x - 7x x - │ │ │ │ -000c1260: 7820 202b 2039 7820 7820 202d 2031 3278 x + 9x x - 12x │ │ │ │ -000c1270: 2078 2078 2020 2d20 3432 7820 7820 202b x x - 42x x + │ │ │ │ -000c1280: 2037 7820 7820 7820 207c 0a7c 3420 2020 7x x x |.|4 │ │ │ │ -000c1290: 2020 3020 3420 2020 2020 3120 3420 2020 0 4 1 4 │ │ │ │ -000c12a0: 2020 3220 3420 2020 2020 3320 3420 2020 2 4 3 4 │ │ │ │ -000c12b0: 2034 2020 2020 2030 2035 2020 2020 2020 4 0 5 │ │ │ │ -000c12c0: 3020 3120 3520 2020 2020 2031 2035 2020 0 1 5 1 5 │ │ │ │ -000c12d0: 2020 2030 2032 2035 207c 0a7c 2020 2020 0 2 5 |.| │ │ │ │ -000c12e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c12f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1320: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c1330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1340: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000c1350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1360: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -000c1370: 2020 2020 2020 2020 207c 0a7c 2b20 3478 |.|+ 4x │ │ │ │ -000c1380: 2078 2078 2020 2d20 3137 7820 7820 7820 x x - 17x x x │ │ │ │ -000c1390: 202b 2037 7820 7820 202b 2032 7820 7820 + 7x x + 2x x │ │ │ │ -000c13a0: 7820 202d 2032 3478 2078 2078 2020 2b20 x - 24x x x + │ │ │ │ -000c13b0: 3138 7820 7820 7820 202b 2031 3278 2078 18x x x + 12x x │ │ │ │ -000c13c0: 2020 2d20 7820 7820 207c 0a7c 2020 2020 - x x |.| │ │ │ │ -000c13d0: 3020 3220 3520 2020 2020 2031 2032 2035 0 2 5 1 2 5 │ │ │ │ -000c13e0: 2020 2020 2032 2035 2020 2020 2030 2033 2 5 0 3 │ │ │ │ -000c13f0: 2035 2020 2020 2020 3120 3320 3520 2020 5 1 3 5 │ │ │ │ -000c1400: 2020 2032 2033 2035 2020 2020 2020 3320 2 3 5 3 │ │ │ │ -000c1410: 3520 2020 2031 2034 207c 0a7c 2020 2020 5 1 4 |.| │ │ │ │ -000c1420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c11d0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000c11e0: 2020 2020 2020 2020 207c 0a7c 2b20 3478 |.|+ 4x │ │ │ │ +000c11f0: 2078 2078 2020 2d20 3137 7820 7820 7820 x x - 17x x x │ │ │ │ +000c1200: 202b 2037 7820 7820 202b 2032 7820 7820 + 7x x + 2x x │ │ │ │ +000c1210: 7820 202d 2032 3478 2078 2078 2020 2b20 x - 24x x x + │ │ │ │ +000c1220: 3138 7820 7820 7820 202b 2031 3278 2078 18x x x + 12x x │ │ │ │ +000c1230: 2020 2d20 7820 7820 207c 0a7c 2020 2020 - x x |.| │ │ │ │ +000c1240: 3020 3220 3520 2020 2020 2031 2032 2035 0 2 5 1 2 5 │ │ │ │ +000c1250: 2020 2020 2032 2035 2020 2020 2030 2033 2 5 0 3 │ │ │ │ +000c1260: 2035 2020 2020 2020 3120 3320 3520 2020 5 1 3 5 │ │ │ │ +000c1270: 2020 2032 2033 2035 2020 2020 2020 3320 2 3 5 3 │ │ │ │ +000c1280: 3520 2020 2031 2034 207c 0a7c 2020 2020 5 1 4 |.| │ │ │ │ +000c1290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c12a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c12b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c12c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c12d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c12e0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000c12f0: 3220 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +000c1300: 3220 2020 2020 2020 3220 2020 2033 2020 2 2 3 │ │ │ │ +000c1310: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000c1320: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ +000c1330: 202d 2031 3278 2078 2020 2b20 3378 2078 - 12x x + 3x x │ │ │ │ +000c1340: 2020 2d20 3378 2078 2020 2d20 3278 2078 - 3x x - 2x x │ │ │ │ +000c1350: 2020 2b20 3378 2078 2020 2b20 7820 202d + 3x x + x - │ │ │ │ +000c1360: 2031 3178 2078 2020 2b20 3134 7820 7820 11x x + 14x x │ │ │ │ +000c1370: 7820 202b 2033 3478 207c 0a7c 2033 2034 x + 34x |.| 3 4 │ │ │ │ +000c1380: 2020 2020 2020 3320 3420 2020 2020 3020 3 4 0 │ │ │ │ +000c1390: 3420 2020 2020 3120 3420 2020 2020 3220 4 1 4 2 │ │ │ │ +000c13a0: 3420 2020 2020 3320 3420 2020 2034 2020 4 3 4 4 │ │ │ │ +000c13b0: 2020 2020 3020 3520 2020 2020 2030 2031 0 5 0 1 │ │ │ │ +000c13c0: 2035 2020 2020 2020 207c 0a7c 2d2d 2d2d 5 |.|---- │ │ │ │ +000c13d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c13e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c13f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c1400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c1410: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ +000c1420: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000c1430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1440: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 000c1450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1460: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c1470: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000c1480: 3220 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ -000c1490: 3220 2020 2020 2020 3220 2020 2033 2020 2 2 3 │ │ │ │ -000c14a0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000c14b0: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ -000c14c0: 202d 2031 3278 2078 2020 2b20 3378 2078 - 12x x + 3x x │ │ │ │ -000c14d0: 2020 2d20 3378 2078 2020 2d20 3278 2078 - 3x x - 2x x │ │ │ │ -000c14e0: 2020 2b20 3378 2078 2020 2b20 7820 202d + 3x x + x - │ │ │ │ -000c14f0: 2031 3178 2078 2020 2b20 3134 7820 7820 11x x + 14x x │ │ │ │ -000c1500: 7820 202b 2033 3478 207c 0a7c 2033 2034 x + 34x |.| 3 4 │ │ │ │ -000c1510: 2020 2020 2020 3320 3420 2020 2020 3020 3 4 0 │ │ │ │ -000c1520: 3420 2020 2020 3120 3420 2020 2020 3220 4 1 4 2 │ │ │ │ -000c1530: 3420 2020 2020 3320 3420 2020 2034 2020 4 3 4 4 │ │ │ │ -000c1540: 2020 2020 3020 3520 2020 2020 2030 2031 0 5 0 1 │ │ │ │ -000c1550: 2035 2020 2020 2020 207c 0a7c 2d2d 2d2d 5 |.|---- │ │ │ │ -000c1560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c1570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c1580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c1590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c15a0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -000c15b0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c15c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c15d0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000c15e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c15f0: 2020 2020 2020 2020 207c 0a7c 2020 2b20 |.| + │ │ │ │ -000c1600: 3678 2078 2020 2d20 3478 2078 2078 2020 6x x - 4x x x │ │ │ │ -000c1610: 2b20 3878 2078 2078 2020 2b20 3278 2078 + 8x x x + 2x x │ │ │ │ -000c1620: 2078 2020 2d20 3478 2078 2020 2b20 3278 x - 4x x + 2x │ │ │ │ -000c1630: 2078 2078 2020 2d20 3578 2078 2078 2020 x x - 5x x x │ │ │ │ -000c1640: 2d20 3278 2078 2020 207c 0a7c 3620 2020 - 2x x |.|6 │ │ │ │ -000c1650: 2020 3220 3620 2020 2020 3020 3320 3620 2 6 0 3 6 │ │ │ │ -000c1660: 2020 2020 3120 3320 3620 2020 2020 3220 1 3 6 2 │ │ │ │ -000c1670: 3320 3620 2020 2020 3320 3620 2020 2020 3 6 3 6 │ │ │ │ -000c1680: 3120 3420 3620 2020 2020 3220 3420 3620 1 4 6 2 4 6 │ │ │ │ -000c1690: 2020 2020 3320 3420 207c 0a7c 2020 2020 3 4 |.| │ │ │ │ -000c16a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c16b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c16c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c16d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c16e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c16f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1700: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000c1710: 3220 2020 2020 2020 3220 2020 2020 3220 2 2 2 │ │ │ │ -000c1720: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000c1730: 2020 2020 2020 2020 207c 0a7c 7820 202b |.|x + │ │ │ │ -000c1740: 2033 7820 7820 7820 202b 2078 2078 2078 3x x x + x x x │ │ │ │ -000c1750: 2020 2d20 3478 2078 2020 2b20 3478 2078 - 4x x + 4x x │ │ │ │ -000c1760: 2020 2d20 3278 2078 2020 2b20 3478 2078 - 2x x + 4x x │ │ │ │ -000c1770: 2020 2d20 7820 7820 7820 202d 2036 7820 - x x x - 6x │ │ │ │ -000c1780: 7820 202d 2032 7820 207c 0a7c 2035 2020 x - 2x |.| 5 │ │ │ │ -000c1790: 2020 2032 2034 2035 2020 2020 3320 3420 2 4 5 3 4 │ │ │ │ -000c17a0: 3520 2020 2020 3020 3520 2020 2020 3220 5 0 5 2 │ │ │ │ -000c17b0: 3520 2020 2020 3320 3520 2020 2020 3020 5 3 5 0 │ │ │ │ -000c17c0: 3620 2020 2030 2031 2036 2020 2020 2031 6 0 1 6 1 │ │ │ │ -000c17d0: 2036 2020 2020 2020 207c 0a7c 2020 2020 6 |.| │ │ │ │ -000c17e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c17f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1820: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c1830: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000c1840: 2020 2020 2032 2020 2020 2020 2020 3220 2 2 │ │ │ │ -000c1850: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000c1860: 2020 2020 2032 2020 2020 2033 2020 2020 2 3 │ │ │ │ -000c1870: 2020 3220 2020 2020 207c 0a7c 202d 2037 2 |.| - 7 │ │ │ │ -000c1880: 7820 7820 7820 202b 2034 7820 7820 202d x x x + 4x x - │ │ │ │ -000c1890: 2036 7820 7820 202d 2031 3578 2078 2020 6x x - 15x x │ │ │ │ -000c18a0: 2d20 3878 2078 2020 2b20 3878 2078 2020 - 8x x + 8x x │ │ │ │ -000c18b0: 2d20 7820 7820 202d 2034 7820 202b 2031 - x x - 4x + 1 │ │ │ │ -000c18c0: 3878 2078 2020 2b20 207c 0a7c 2020 2020 8x x + |.| │ │ │ │ -000c18d0: 2032 2034 2035 2020 2020 2034 2035 2020 2 4 5 4 5 │ │ │ │ -000c18e0: 2020 2030 2035 2020 2020 2020 3120 3520 0 5 1 5 │ │ │ │ -000c18f0: 2020 2020 3220 3520 2020 2020 3320 3520 2 5 3 5 │ │ │ │ -000c1900: 2020 2034 2035 2020 2020 2035 2020 2020 4 5 5 │ │ │ │ -000c1910: 2020 3020 3620 2020 207c 0a7c 2020 2020 0 6 |.| │ │ │ │ +000c1460: 2020 2020 2020 2020 207c 0a7c 2020 2b20 |.| + │ │ │ │ +000c1470: 3678 2078 2020 2d20 3478 2078 2078 2020 6x x - 4x x x │ │ │ │ +000c1480: 2b20 3878 2078 2078 2020 2b20 3278 2078 + 8x x x + 2x x │ │ │ │ +000c1490: 2078 2020 2d20 3478 2078 2020 2b20 3278 x - 4x x + 2x │ │ │ │ +000c14a0: 2078 2078 2020 2d20 3578 2078 2078 2020 x x - 5x x x │ │ │ │ +000c14b0: 2d20 3278 2078 2020 207c 0a7c 3620 2020 - 2x x |.|6 │ │ │ │ +000c14c0: 2020 3220 3620 2020 2020 3020 3320 3620 2 6 0 3 6 │ │ │ │ +000c14d0: 2020 2020 3120 3320 3620 2020 2020 3220 1 3 6 2 │ │ │ │ +000c14e0: 3320 3620 2020 2020 3320 3620 2020 2020 3 6 3 6 │ │ │ │ +000c14f0: 3120 3420 3620 2020 2020 3220 3420 3620 1 4 6 2 4 6 │ │ │ │ +000c1500: 2020 2020 3320 3420 207c 0a7c 2020 2020 3 4 |.| │ │ │ │ +000c1510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1550: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c1560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1570: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000c1580: 3220 2020 2020 2020 3220 2020 2020 3220 2 2 2 │ │ │ │ +000c1590: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000c15a0: 2020 2020 2020 2020 207c 0a7c 7820 202b |.|x + │ │ │ │ +000c15b0: 2033 7820 7820 7820 202b 2078 2078 2078 3x x x + x x x │ │ │ │ +000c15c0: 2020 2d20 3478 2078 2020 2b20 3478 2078 - 4x x + 4x x │ │ │ │ +000c15d0: 2020 2d20 3278 2078 2020 2b20 3478 2078 - 2x x + 4x x │ │ │ │ +000c15e0: 2020 2d20 7820 7820 7820 202d 2036 7820 - x x x - 6x │ │ │ │ +000c15f0: 7820 202d 2032 7820 207c 0a7c 2035 2020 x - 2x |.| 5 │ │ │ │ +000c1600: 2020 2032 2034 2035 2020 2020 3320 3420 2 4 5 3 4 │ │ │ │ +000c1610: 3520 2020 2020 3020 3520 2020 2020 3220 5 0 5 2 │ │ │ │ +000c1620: 3520 2020 2020 3320 3520 2020 2020 3020 5 3 5 0 │ │ │ │ +000c1630: 3620 2020 2030 2031 2036 2020 2020 2031 6 0 1 6 1 │ │ │ │ +000c1640: 2036 2020 2020 2020 207c 0a7c 2020 2020 6 |.| │ │ │ │ +000c1650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1690: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c16a0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000c16b0: 2020 2020 2032 2020 2020 2020 2020 3220 2 2 │ │ │ │ +000c16c0: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000c16d0: 2020 2020 2032 2020 2020 2033 2020 2020 2 3 │ │ │ │ +000c16e0: 2020 3220 2020 2020 207c 0a7c 202d 2037 2 |.| - 7 │ │ │ │ +000c16f0: 7820 7820 7820 202b 2034 7820 7820 202d x x x + 4x x - │ │ │ │ +000c1700: 2036 7820 7820 202d 2031 3578 2078 2020 6x x - 15x x │ │ │ │ +000c1710: 2d20 3878 2078 2020 2b20 3878 2078 2020 - 8x x + 8x x │ │ │ │ +000c1720: 2d20 7820 7820 202d 2034 7820 202b 2031 - x x - 4x + 1 │ │ │ │ +000c1730: 3878 2078 2020 2b20 207c 0a7c 2020 2020 8x x + |.| │ │ │ │ +000c1740: 2032 2034 2035 2020 2020 2034 2035 2020 2 4 5 4 5 │ │ │ │ +000c1750: 2020 2030 2035 2020 2020 2020 3120 3520 0 5 1 5 │ │ │ │ +000c1760: 2020 2020 3220 3520 2020 2020 3320 3520 2 5 3 5 │ │ │ │ +000c1770: 2020 2034 2035 2020 2020 2035 2020 2020 4 5 5 │ │ │ │ +000c1780: 2020 3020 3620 2020 207c 0a7c 2020 2020 0 6 |.| │ │ │ │ +000c1790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c17a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c17b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c17c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c17d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c17e0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000c17f0: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000c1800: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000c1810: 2020 2020 2032 2020 2020 2033 2020 2020 2 3 │ │ │ │ +000c1820: 2032 2020 2020 2020 207c 0a7c 2078 2020 2 |.| x │ │ │ │ +000c1830: 2b20 7820 7820 7820 202b 2078 2078 2020 + x x x + x x │ │ │ │ +000c1840: 2d20 3378 2078 2020 2d20 3678 2078 2020 - 3x x - 6x x │ │ │ │ +000c1850: 2b20 3678 2078 2020 2b20 3578 2078 2020 + 6x x + 5x x │ │ │ │ +000c1860: 2b20 7820 7820 202d 2032 7820 202d 2033 + x x - 2x - 3 │ │ │ │ +000c1870: 7820 7820 202d 2020 207c 0a7c 3420 3520 x x - |.|4 5 │ │ │ │ +000c1880: 2020 2033 2034 2035 2020 2020 3420 3520 3 4 5 4 5 │ │ │ │ +000c1890: 2020 2020 3020 3520 2020 2020 3120 3520 0 5 1 5 │ │ │ │ +000c18a0: 2020 2020 3220 3520 2020 2020 3320 3520 2 5 3 5 │ │ │ │ +000c18b0: 2020 2034 2035 2020 2020 2035 2020 2020 4 5 5 │ │ │ │ +000c18c0: 2030 2036 2020 2020 207c 0a7c 2020 2020 0 6 |.| │ │ │ │ +000c18d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c18e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c18f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1910: 2020 2020 2020 2020 207c 0a7c 2020 3220 |.| 2 │ │ │ │ 000c1920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c1930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1940: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000c1950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1960: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c1970: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000c1980: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000c1990: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000c19a0: 2020 2020 2032 2020 2020 2033 2020 2020 2 3 │ │ │ │ -000c19b0: 2032 2020 2020 2020 207c 0a7c 2078 2020 2 |.| x │ │ │ │ -000c19c0: 2b20 7820 7820 7820 202b 2078 2078 2020 + x x x + x x │ │ │ │ -000c19d0: 2d20 3378 2078 2020 2d20 3678 2078 2020 - 3x x - 6x x │ │ │ │ -000c19e0: 2b20 3678 2078 2020 2b20 3578 2078 2020 + 6x x + 5x x │ │ │ │ -000c19f0: 2b20 7820 7820 202d 2032 7820 202d 2033 + x x - 2x - 3 │ │ │ │ -000c1a00: 7820 7820 202d 2020 207c 0a7c 3420 3520 x x - |.|4 5 │ │ │ │ -000c1a10: 2020 2033 2034 2035 2020 2020 3420 3520 3 4 5 4 5 │ │ │ │ -000c1a20: 2020 2020 3020 3520 2020 2020 3120 3520 0 5 1 5 │ │ │ │ -000c1a30: 2020 2020 3220 3520 2020 2020 3320 3520 2 5 3 5 │ │ │ │ -000c1a40: 2020 2034 2035 2020 2020 2035 2020 2020 4 5 5 │ │ │ │ -000c1a50: 2030 2036 2020 2020 207c 0a7c 2020 2020 0 6 |.| │ │ │ │ +000c1960: 2020 2020 2020 2020 207c 0a7c 3278 2078 |.|2x x │ │ │ │ +000c1970: 2020 2b20 3135 7820 7820 7820 202d 2034 + 15x x x - 4 │ │ │ │ +000c1980: 3178 2078 2078 2020 2b20 3678 2078 2078 1x x x + 6x x x │ │ │ │ +000c1990: 2020 2b20 3230 7820 7820 202d 2034 7820 + 20x x - 4x │ │ │ │ +000c19a0: 7820 7820 202d 2031 3278 2078 2078 2020 x x - 12x x x │ │ │ │ +000c19b0: 2b20 7820 7820 7820 207c 0a7c 2020 3220 + x x x |.| 2 │ │ │ │ +000c19c0: 3520 2020 2020 2030 2033 2035 2020 2020 5 0 3 5 │ │ │ │ +000c19d0: 2020 3120 3320 3520 2020 2020 3220 3320 1 3 5 2 3 │ │ │ │ +000c19e0: 3520 2020 2020 2033 2035 2020 2020 2030 5 3 5 0 │ │ │ │ +000c19f0: 2034 2035 2020 2020 2020 3120 3420 3520 4 5 1 4 5 │ │ │ │ +000c1a00: 2020 2032 2034 2020 207c 0a7c 2020 2020 2 4 |.| │ │ │ │ +000c1a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1a50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c1a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c1a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1a80: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000c1a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1aa0: 2020 2020 2020 2020 207c 0a7c 2020 3220 |.| 2 │ │ │ │ -000c1ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1ad0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000c1ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1af0: 2020 2020 2020 2020 207c 0a7c 3278 2078 |.|2x x │ │ │ │ -000c1b00: 2020 2b20 3135 7820 7820 7820 202d 2034 + 15x x x - 4 │ │ │ │ -000c1b10: 3178 2078 2078 2020 2b20 3678 2078 2078 1x x x + 6x x x │ │ │ │ -000c1b20: 2020 2b20 3230 7820 7820 202d 2034 7820 + 20x x - 4x │ │ │ │ -000c1b30: 7820 7820 202d 2031 3278 2078 2078 2020 x x - 12x x x │ │ │ │ -000c1b40: 2b20 7820 7820 7820 207c 0a7c 2020 3220 + x x x |.| 2 │ │ │ │ -000c1b50: 3520 2020 2020 2030 2033 2035 2020 2020 5 0 3 5 │ │ │ │ -000c1b60: 2020 3120 3320 3520 2020 2020 3220 3320 1 3 5 2 3 │ │ │ │ -000c1b70: 3520 2020 2020 2033 2035 2020 2020 2030 5 3 5 0 │ │ │ │ -000c1b80: 2034 2035 2020 2020 2020 3120 3420 3520 4 5 1 4 5 │ │ │ │ -000c1b90: 2020 2032 2034 2020 207c 0a7c 2020 2020 2 4 |.| │ │ │ │ -000c1ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1aa0: 2020 2020 2020 2020 207c 0a7c 2036 7820 |.| 6x │ │ │ │ +000c1ab0: 7820 7820 202b 2033 3878 2078 2078 2020 x x + 38x x x │ │ │ │ +000c1ac0: 2d20 3130 7820 7820 7820 202d 2031 3678 - 10x x x - 16x │ │ │ │ +000c1ad0: 2078 2020 2b20 3378 2078 2078 2020 2b20 x + 3x x x + │ │ │ │ +000c1ae0: 3978 2078 2078 2020 2d20 3478 2078 2078 9x x x - 4x x x │ │ │ │ +000c1af0: 2020 2d20 3878 2020 207c 0a7c 2020 2030 - 8x |.| 0 │ │ │ │ +000c1b00: 2033 2035 2020 2020 2020 3120 3320 3520 3 5 1 3 5 │ │ │ │ +000c1b10: 2020 2020 2032 2033 2035 2020 2020 2020 2 3 5 │ │ │ │ +000c1b20: 3320 3520 2020 2020 3020 3420 3520 2020 3 5 0 4 5 │ │ │ │ +000c1b30: 2020 3120 3420 3520 2020 2020 3220 3420 1 4 5 2 4 │ │ │ │ +000c1b40: 3520 2020 2020 3320 207c 0a7c 2020 2020 5 3 |.| │ │ │ │ +000c1b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1b90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c1ba0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 000c1bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c1bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1be0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c1bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1c10: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c1c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1c30: 2020 2020 2020 2020 207c 0a7c 2036 7820 |.| 6x │ │ │ │ -000c1c40: 7820 7820 202b 2033 3878 2078 2078 2020 x x + 38x x x │ │ │ │ -000c1c50: 2d20 3130 7820 7820 7820 202d 2031 3678 - 10x x x - 16x │ │ │ │ -000c1c60: 2078 2020 2b20 3378 2078 2078 2020 2b20 x + 3x x x + │ │ │ │ -000c1c70: 3978 2078 2078 2020 2d20 3478 2078 2078 9x x x - 4x x x │ │ │ │ -000c1c80: 2020 2d20 3878 2020 207c 0a7c 2020 2030 - 8x |.| 0 │ │ │ │ -000c1c90: 2033 2035 2020 2020 2020 3120 3320 3520 3 5 1 3 5 │ │ │ │ -000c1ca0: 2020 2020 2032 2033 2035 2020 2020 2020 2 3 5 │ │ │ │ -000c1cb0: 3320 3520 2020 2020 3020 3420 3520 2020 3 5 0 4 5 │ │ │ │ -000c1cc0: 2020 3120 3420 3520 2020 2020 3220 3420 1 4 5 2 4 │ │ │ │ -000c1cd0: 3520 2020 2020 3320 207c 0a7c 2020 2020 5 3 |.| │ │ │ │ -000c1ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1bd0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000c1be0: 2020 2032 2020 2020 207c 0a7c 2078 2078 2 |.| x x │ │ │ │ +000c1bf0: 2020 2b20 3478 2078 2020 2d20 3131 7820 + 4x x - 11x │ │ │ │ +000c1c00: 7820 7820 202b 2031 3278 2078 2078 2020 x x + 12x x x │ │ │ │ +000c1c10: 2d20 3378 2078 2078 2020 2d20 3132 7820 - 3x x x - 12x │ │ │ │ +000c1c20: 7820 7820 202d 2033 7820 7820 202b 2037 x x - 3x x + 7 │ │ │ │ +000c1c30: 7820 7820 202b 2020 207c 0a7c 3220 3320 x x + |.|2 3 │ │ │ │ +000c1c40: 3520 2020 2020 3320 3520 2020 2020 2030 5 3 5 0 │ │ │ │ +000c1c50: 2034 2035 2020 2020 2020 3120 3420 3520 4 5 1 4 5 │ │ │ │ +000c1c60: 2020 2020 3220 3420 3520 2020 2020 2033 2 4 5 3 │ │ │ │ +000c1c70: 2034 2035 2020 2020 2034 2035 2020 2020 4 5 4 5 │ │ │ │ +000c1c80: 2030 2035 2020 2020 207c 0a7c 2020 2020 0 5 |.| │ │ │ │ +000c1c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1cd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c1ce0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ 000c1cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c1d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1d20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c1d30: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000c1d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1d60: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -000c1d70: 2020 2032 2020 2020 207c 0a7c 2078 2078 2 |.| x x │ │ │ │ -000c1d80: 2020 2b20 3478 2078 2020 2d20 3131 7820 + 4x x - 11x │ │ │ │ -000c1d90: 7820 7820 202b 2031 3278 2078 2078 2020 x x + 12x x x │ │ │ │ -000c1da0: 2d20 3378 2078 2078 2020 2d20 3132 7820 - 3x x x - 12x │ │ │ │ -000c1db0: 7820 7820 202d 2033 7820 7820 202b 2037 x x - 3x x + 7 │ │ │ │ -000c1dc0: 7820 7820 202b 2020 207c 0a7c 3220 3320 x x + |.|2 3 │ │ │ │ -000c1dd0: 3520 2020 2020 3320 3520 2020 2020 2030 5 3 5 0 │ │ │ │ -000c1de0: 2034 2035 2020 2020 2020 3120 3420 3520 4 5 1 4 5 │ │ │ │ -000c1df0: 2020 2020 3220 3420 3520 2020 2020 2033 2 4 5 3 │ │ │ │ -000c1e00: 2034 2035 2020 2020 2034 2035 2020 2020 4 5 4 5 │ │ │ │ -000c1e10: 2030 2035 2020 2020 207c 0a7c 2020 2020 0 5 |.| │ │ │ │ +000c1d10: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000c1d20: 2020 2020 2020 2020 207c 0a7c 202b 2032 |.| + 2 │ │ │ │ +000c1d30: 3878 2078 2078 2020 2d20 3478 2078 2020 8x x x - 4x x │ │ │ │ +000c1d40: 2b20 3133 7820 7820 7820 202b 2038 3278 + 13x x x + 82x │ │ │ │ +000c1d50: 2078 2078 2020 2d20 3234 7820 7820 7820 x x - 24x x x │ │ │ │ +000c1d60: 202d 2033 3878 2078 2020 2b20 3136 7820 - 38x x + 16x │ │ │ │ +000c1d70: 7820 7820 202b 2020 207c 0a7c 2020 2020 x x + |.| │ │ │ │ +000c1d80: 2020 3120 3220 3520 2020 2020 3220 3520 1 2 5 2 5 │ │ │ │ +000c1d90: 2020 2020 2030 2033 2035 2020 2020 2020 0 3 5 │ │ │ │ +000c1da0: 3120 3320 3520 2020 2020 2032 2033 2035 1 3 5 2 3 5 │ │ │ │ +000c1db0: 2020 2020 2020 3320 3520 2020 2020 2030 3 5 0 │ │ │ │ +000c1dc0: 2034 2035 2020 2020 207c 0a7c 2020 2020 4 5 |.| │ │ │ │ +000c1dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1e10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c1e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1e30: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000c1e40: 2032 2020 2020 2020 2032 2020 2020 2032 2 2 2 │ │ │ │ 000c1e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1e60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c1e70: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000c1e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1ea0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000c1eb0: 2020 2020 2020 2020 207c 0a7c 202b 2032 |.| + 2 │ │ │ │ -000c1ec0: 3878 2078 2078 2020 2d20 3478 2078 2020 8x x x - 4x x │ │ │ │ -000c1ed0: 2b20 3133 7820 7820 7820 202b 2038 3278 + 13x x x + 82x │ │ │ │ -000c1ee0: 2078 2078 2020 2d20 3234 7820 7820 7820 x x - 24x x x │ │ │ │ -000c1ef0: 202d 2033 3878 2078 2020 2b20 3136 7820 - 38x x + 16x │ │ │ │ -000c1f00: 7820 7820 202b 2020 207c 0a7c 2020 2020 x x + |.| │ │ │ │ -000c1f10: 2020 3120 3220 3520 2020 2020 3220 3520 1 2 5 2 5 │ │ │ │ -000c1f20: 2020 2020 2030 2033 2035 2020 2020 2020 0 3 5 │ │ │ │ -000c1f30: 3120 3320 3520 2020 2020 2032 2033 2035 1 3 5 2 3 5 │ │ │ │ -000c1f40: 2020 2020 2020 3320 3520 2020 2020 2030 3 5 0 │ │ │ │ -000c1f50: 2034 2035 2020 2020 207c 0a7c 2020 2020 4 5 |.| │ │ │ │ +000c1e60: 2020 3220 2020 2020 207c 0a7c 7820 202b 2 |.|x + │ │ │ │ +000c1e70: 2033 7820 7820 7820 202b 2032 7820 7820 3x x x + 2x x │ │ │ │ +000c1e80: 7820 202b 2033 7820 7820 202d 2035 7820 x + 3x x - 5x │ │ │ │ +000c1e90: 7820 202d 2034 7820 7820 202d 2036 7820 x - 4x x - 6x │ │ │ │ +000c1ea0: 7820 202d 2031 3278 2078 2078 2020 2d20 x - 12x x x - │ │ │ │ +000c1eb0: 3678 2078 2020 2b20 207c 0a7c 2035 2020 6x x + |.| 5 │ │ │ │ +000c1ec0: 2020 2032 2034 2035 2020 2020 2033 2034 2 4 5 3 4 │ │ │ │ +000c1ed0: 2035 2020 2020 2031 2035 2020 2020 2032 5 1 5 2 │ │ │ │ +000c1ee0: 2035 2020 2020 2033 2035 2020 2020 2030 5 3 5 0 │ │ │ │ +000c1ef0: 2036 2020 2020 2020 3020 3120 3620 2020 6 0 1 6 │ │ │ │ +000c1f00: 2020 3120 3620 2020 207c 0a7c 2020 2020 1 6 |.| │ │ │ │ +000c1f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1f50: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ 000c1f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c1f70: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 000c1f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c1f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1fa0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c1fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1fc0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -000c1fd0: 2032 2020 2020 2020 2032 2020 2020 2032 2 2 2 │ │ │ │ -000c1fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c1ff0: 2020 3220 2020 2020 207c 0a7c 7820 202b 2 |.|x + │ │ │ │ -000c2000: 2033 7820 7820 7820 202b 2032 7820 7820 3x x x + 2x x │ │ │ │ -000c2010: 7820 202b 2033 7820 7820 202d 2035 7820 x + 3x x - 5x │ │ │ │ -000c2020: 7820 202d 2034 7820 7820 202d 2036 7820 x - 4x x - 6x │ │ │ │ -000c2030: 7820 202d 2031 3278 2078 2078 2020 2d20 x - 12x x x - │ │ │ │ -000c2040: 3678 2078 2020 2b20 207c 0a7c 2035 2020 6x x + |.| 5 │ │ │ │ -000c2050: 2020 2032 2034 2035 2020 2020 2033 2034 2 4 5 3 4 │ │ │ │ -000c2060: 2035 2020 2020 2031 2035 2020 2020 2032 5 1 5 2 │ │ │ │ -000c2070: 2035 2020 2020 2033 2035 2020 2020 2030 5 3 5 0 │ │ │ │ -000c2080: 2036 2020 2020 2020 3020 3120 3620 2020 6 0 1 6 │ │ │ │ -000c2090: 2020 3120 3620 2020 207c 0a7c 2020 2020 1 6 |.| │ │ │ │ +000c1fa0: 2020 2032 2020 2020 207c 0a7c 2078 2020 2 |.| x │ │ │ │ +000c1fb0: 2d20 3678 2078 2078 2020 2d20 3136 7820 - 6x x x - 16x │ │ │ │ +000c1fc0: 7820 7820 202b 2033 7820 7820 202d 2031 x x + 3x x - 1 │ │ │ │ +000c1fd0: 3578 2078 2078 2020 2d20 3636 7820 7820 5x x x - 66x x │ │ │ │ +000c1fe0: 7820 202b 2031 3278 2078 2078 2020 2b20 x + 12x x x + │ │ │ │ +000c1ff0: 3330 7820 7820 2020 207c 0a7c 3120 3520 30x x |.|1 5 │ │ │ │ +000c2000: 2020 2020 3020 3220 3520 2020 2020 2031 0 2 5 1 │ │ │ │ +000c2010: 2032 2035 2020 2020 2032 2035 2020 2020 2 5 2 5 │ │ │ │ +000c2020: 2020 3020 3320 3520 2020 2020 2031 2033 0 3 5 1 3 │ │ │ │ +000c2030: 2035 2020 2020 2020 3220 3320 3520 2020 5 2 3 5 │ │ │ │ +000c2040: 2020 2033 2035 2020 207c 0a7c 2d2d 2d2d 3 5 |.|---- │ │ │ │ +000c2050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c2060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c2070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c2080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c2090: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ 000c20a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c20b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c20c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c20d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c20e0: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ -000c20f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2100: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -000c2110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2130: 2020 2032 2020 2020 207c 0a7c 2078 2020 2 |.| x │ │ │ │ -000c2140: 2d20 3678 2078 2078 2020 2d20 3136 7820 - 6x x x - 16x │ │ │ │ -000c2150: 7820 7820 202b 2033 7820 7820 202d 2031 x x + 3x x - 1 │ │ │ │ -000c2160: 3578 2078 2078 2020 2d20 3636 7820 7820 5x x x - 66x x │ │ │ │ -000c2170: 7820 202b 2031 3278 2078 2078 2020 2b20 x + 12x x x + │ │ │ │ -000c2180: 3330 7820 7820 2020 207c 0a7c 3120 3520 30x x |.|1 5 │ │ │ │ -000c2190: 2020 2020 3020 3220 3520 2020 2020 2031 0 2 5 1 │ │ │ │ -000c21a0: 2032 2035 2020 2020 2032 2035 2020 2020 2 5 2 5 │ │ │ │ -000c21b0: 2020 3020 3320 3520 2020 2020 2031 2033 0 3 5 1 3 │ │ │ │ -000c21c0: 2035 2020 2020 2020 3220 3320 3520 2020 5 2 3 5 │ │ │ │ -000c21d0: 2020 2033 2035 2020 207c 0a7c 2d2d 2d2d 3 5 |.|---- │ │ │ │ -000c21e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c21f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c2200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c2210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c2220: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -000c2230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2260: 2020 2020 3220 2020 2020 2020 2020 3220 2 2 │ │ │ │ -000c2270: 2020 2020 2020 2020 207c 0a7c 7820 202b |.|x + │ │ │ │ -000c2280: 2034 7820 7820 7820 202b 2034 7820 7820 4x x x + 4x x │ │ │ │ -000c2290: 7820 202d 2032 7820 7820 7820 202d 2034 x - 2x x x - 4 │ │ │ │ -000c22a0: 7820 7820 7820 202b 2078 2078 2078 2020 x x x + x x x │ │ │ │ -000c22b0: 2b20 3578 2078 2020 2b20 3278 2078 2020 + 5x x + 2x x │ │ │ │ -000c22c0: 2b20 3278 2020 2020 207c 0a7c 2036 2020 + 2x |.| 6 │ │ │ │ -000c22d0: 2020 2030 2035 2036 2020 2020 2031 2035 0 5 6 1 5 │ │ │ │ -000c22e0: 2036 2020 2020 2032 2035 2036 2020 2020 6 2 5 6 │ │ │ │ -000c22f0: 2033 2035 2036 2020 2020 3420 3520 3620 3 5 6 4 5 6 │ │ │ │ -000c2300: 2020 2020 3520 3620 2020 2020 3020 3620 5 6 0 6 │ │ │ │ +000c20d0: 2020 2020 3220 2020 2020 2020 2020 3220 2 2 │ │ │ │ +000c20e0: 2020 2020 2020 2020 207c 0a7c 7820 202b |.|x + │ │ │ │ +000c20f0: 2034 7820 7820 7820 202b 2034 7820 7820 4x x x + 4x x │ │ │ │ +000c2100: 7820 202d 2032 7820 7820 7820 202d 2034 x - 2x x x - 4 │ │ │ │ +000c2110: 7820 7820 7820 202b 2078 2078 2078 2020 x x x + x x x │ │ │ │ +000c2120: 2b20 3578 2078 2020 2b20 3278 2078 2020 + 5x x + 2x x │ │ │ │ +000c2130: 2b20 3278 2020 2020 207c 0a7c 2036 2020 + 2x |.| 6 │ │ │ │ +000c2140: 2020 2030 2035 2036 2020 2020 2031 2035 0 5 6 1 5 │ │ │ │ +000c2150: 2036 2020 2020 2032 2035 2036 2020 2020 6 2 5 6 │ │ │ │ +000c2160: 2033 2035 2036 2020 2020 3420 3520 3620 3 5 6 4 5 6 │ │ │ │ +000c2170: 2020 2020 3520 3620 2020 2020 3020 3620 5 6 0 6 │ │ │ │ +000c2180: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c2190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c21a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c21b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c21c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c21d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c21e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c21f0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000c2200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2220: 2020 2020 2020 2020 207c 0a7c 2078 2078 |.| x x │ │ │ │ +000c2230: 2020 2b20 3478 2078 2078 2020 2b20 3134 + 4x x x + 14 │ │ │ │ +000c2240: 7820 7820 7820 202d 2038 7820 7820 202b x x x - 8x x + │ │ │ │ +000c2250: 2035 7820 7820 7820 202d 2078 2078 2078 5x x x - x x x │ │ │ │ +000c2260: 2020 2d20 3278 2078 2078 2020 2b20 3278 - 2x x x + 2x │ │ │ │ +000c2270: 2078 2078 2020 2020 207c 0a7c 3120 3220 x x |.|1 2 │ │ │ │ +000c2280: 3620 2020 2020 3020 3320 3620 2020 2020 6 0 3 6 │ │ │ │ +000c2290: 2031 2033 2036 2020 2020 2033 2036 2020 1 3 6 3 6 │ │ │ │ +000c22a0: 2020 2030 2034 2036 2020 2020 3120 3420 0 4 6 1 4 │ │ │ │ +000c22b0: 3620 2020 2020 3220 3420 3620 2020 2020 6 2 4 6 │ │ │ │ +000c22c0: 3320 3420 2020 2020 207c 0a7c 2020 2020 3 4 |.| │ │ │ │ +000c22d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c22e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c22f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c2310: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c2320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2320: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ 000c2330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c2340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2360: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c2370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2380: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000c2390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c23a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c23b0: 2020 2020 2020 2020 207c 0a7c 2078 2078 |.| x x │ │ │ │ -000c23c0: 2020 2b20 3478 2078 2078 2020 2b20 3134 + 4x x x + 14 │ │ │ │ -000c23d0: 7820 7820 7820 202d 2038 7820 7820 202b x x x - 8x x + │ │ │ │ -000c23e0: 2035 7820 7820 7820 202d 2078 2078 2078 5x x x - x x x │ │ │ │ -000c23f0: 2020 2d20 3278 2078 2078 2020 2b20 3278 - 2x x x + 2x │ │ │ │ -000c2400: 2078 2078 2020 2020 207c 0a7c 3120 3220 x x |.|1 2 │ │ │ │ -000c2410: 3620 2020 2020 3020 3320 3620 2020 2020 6 0 3 6 │ │ │ │ -000c2420: 2031 2033 2036 2020 2020 2033 2036 2020 1 3 6 3 6 │ │ │ │ -000c2430: 2020 2030 2034 2036 2020 2020 3120 3420 0 4 6 1 4 │ │ │ │ -000c2440: 3620 2020 2020 3220 3420 3620 2020 2020 6 2 4 6 │ │ │ │ -000c2450: 3320 3420 2020 2020 207c 0a7c 2020 2020 3 4 |.| │ │ │ │ -000c2460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2350: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000c2360: 2020 2020 2020 2020 207c 0a7c 2032 3878 |.| 28x │ │ │ │ +000c2370: 2078 2078 2020 2b20 3130 7820 7820 202d x x + 10x x - │ │ │ │ +000c2380: 2034 7820 7820 7820 202d 2033 3078 2078 4x x x - 30x x │ │ │ │ +000c2390: 2078 2020 2d20 3232 7820 7820 7820 202b x - 22x x x + │ │ │ │ +000c23a0: 2034 7820 7820 7820 202b 2031 3278 2078 4x x x + 12x x │ │ │ │ +000c23b0: 2020 2b20 2020 2020 207c 0a7c 2020 2020 + |.| │ │ │ │ +000c23c0: 3020 3120 3620 2020 2020 2031 2036 2020 0 1 6 1 6 │ │ │ │ +000c23d0: 2020 2030 2032 2036 2020 2020 2020 3020 0 2 6 0 │ │ │ │ +000c23e0: 3320 3620 2020 2020 2031 2033 2036 2020 3 6 1 3 6 │ │ │ │ +000c23f0: 2020 2032 2033 2036 2020 2020 2020 3320 2 3 6 3 │ │ │ │ +000c2400: 3620 2020 2020 2020 207c 0a7c 2020 2020 6 |.| │ │ │ │ +000c2410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2450: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c2460: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 000c2470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2480: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 000c2490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c24a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c24b0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000c24c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c24d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c24e0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -000c24f0: 2020 2020 2020 2020 207c 0a7c 2032 3878 |.| 28x │ │ │ │ -000c2500: 2078 2078 2020 2b20 3130 7820 7820 202d x x + 10x x - │ │ │ │ -000c2510: 2034 7820 7820 7820 202d 2033 3078 2078 4x x x - 30x x │ │ │ │ -000c2520: 2078 2020 2d20 3232 7820 7820 7820 202b x - 22x x x + │ │ │ │ -000c2530: 2034 7820 7820 7820 202b 2031 3278 2078 4x x x + 12x x │ │ │ │ -000c2540: 2020 2b20 2020 2020 207c 0a7c 2020 2020 + |.| │ │ │ │ -000c2550: 3020 3120 3620 2020 2020 2031 2036 2020 0 1 6 1 6 │ │ │ │ -000c2560: 2020 2030 2032 2036 2020 2020 2020 3020 0 2 6 0 │ │ │ │ -000c2570: 3320 3620 2020 2020 2031 2033 2036 2020 3 6 1 3 6 │ │ │ │ -000c2580: 2020 2032 2033 2036 2020 2020 2020 3320 2 3 6 3 │ │ │ │ -000c2590: 3620 2020 2020 2020 207c 0a7c 2020 2020 6 |.| │ │ │ │ -000c25a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c25b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c25c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c25d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c25e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c25f0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000c2600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2610: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000c2620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2630: 2020 2020 2020 2020 207c 0a7c 3878 2078 |.|8x x │ │ │ │ -000c2640: 2078 2020 2d20 3478 2078 2020 2b20 3778 x - 4x x + 7x │ │ │ │ -000c2650: 2078 2078 2020 2b20 3278 2078 2078 2020 x x + 2x x x │ │ │ │ -000c2660: 2b20 3378 2078 2020 2b20 3478 2078 2078 + 3x x + 4x x x │ │ │ │ -000c2670: 2020 2b20 3478 2078 2078 2020 2b20 7820 + 4x x x + x │ │ │ │ -000c2680: 7820 7820 2020 2020 207c 0a7c 2020 3020 x x |.| 0 │ │ │ │ -000c2690: 3120 3620 2020 2020 3120 3620 2020 2020 1 6 1 6 │ │ │ │ -000c26a0: 3020 3220 3620 2020 2020 3120 3220 3620 0 2 6 1 2 6 │ │ │ │ -000c26b0: 2020 2020 3220 3620 2020 2020 3020 3320 2 6 0 3 │ │ │ │ -000c26c0: 3620 2020 2020 3120 3320 3620 2020 2032 6 1 3 6 2 │ │ │ │ -000c26d0: 2033 2036 2020 2020 207c 0a7c 2020 2020 3 6 |.| │ │ │ │ -000c26e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c26f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2720: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c2730: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000c2740: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ -000c2750: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ -000c2760: 2020 2020 2020 2032 2020 2020 2033 2020 2 3 │ │ │ │ -000c2770: 2020 2020 2020 2020 207c 0a7c 2020 2b20 |.| + │ │ │ │ -000c2780: 3132 7820 7820 7820 202d 2078 2078 2020 12x x x - x x │ │ │ │ -000c2790: 2d20 3578 2078 2020 2b20 3131 7820 7820 - 5x x + 11x x │ │ │ │ -000c27a0: 202d 2078 2078 2020 2d20 3131 7820 7820 - x x - 11x x │ │ │ │ -000c27b0: 202d 2034 7820 7820 202b 2032 7820 202b - 4x x + 2x + │ │ │ │ -000c27c0: 2032 3078 2020 2020 207c 0a7c 3520 2020 20x |.|5 │ │ │ │ -000c27d0: 2020 2033 2034 2035 2020 2020 3420 3520 3 4 5 4 5 │ │ │ │ -000c27e0: 2020 2020 3020 3520 2020 2020 2031 2035 0 5 1 5 │ │ │ │ -000c27f0: 2020 2020 3220 3520 2020 2020 2033 2035 2 5 3 5 │ │ │ │ -000c2800: 2020 2020 2034 2035 2020 2020 2035 2020 4 5 5 │ │ │ │ +000c24a0: 2020 2020 2020 2020 207c 0a7c 3878 2078 |.|8x x │ │ │ │ +000c24b0: 2078 2020 2d20 3478 2078 2020 2b20 3778 x - 4x x + 7x │ │ │ │ +000c24c0: 2078 2078 2020 2b20 3278 2078 2078 2020 x x + 2x x x │ │ │ │ +000c24d0: 2b20 3378 2078 2020 2b20 3478 2078 2078 + 3x x + 4x x x │ │ │ │ +000c24e0: 2020 2b20 3478 2078 2078 2020 2b20 7820 + 4x x x + x │ │ │ │ +000c24f0: 7820 7820 2020 2020 207c 0a7c 2020 3020 x x |.| 0 │ │ │ │ +000c2500: 3120 3620 2020 2020 3120 3620 2020 2020 1 6 1 6 │ │ │ │ +000c2510: 3020 3220 3620 2020 2020 3120 3220 3620 0 2 6 1 2 6 │ │ │ │ +000c2520: 2020 2020 3220 3620 2020 2020 3020 3320 2 6 0 3 │ │ │ │ +000c2530: 3620 2020 2020 3120 3320 3620 2020 2032 6 1 3 6 2 │ │ │ │ +000c2540: 2033 2036 2020 2020 207c 0a7c 2020 2020 3 6 |.| │ │ │ │ +000c2550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2590: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c25a0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000c25b0: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ +000c25c0: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ +000c25d0: 2020 2020 2020 2032 2020 2020 2033 2020 2 3 │ │ │ │ +000c25e0: 2020 2020 2020 2020 207c 0a7c 2020 2b20 |.| + │ │ │ │ +000c25f0: 3132 7820 7820 7820 202d 2078 2078 2020 12x x x - x x │ │ │ │ +000c2600: 2d20 3578 2078 2020 2b20 3131 7820 7820 - 5x x + 11x x │ │ │ │ +000c2610: 202d 2078 2078 2020 2d20 3131 7820 7820 - x x - 11x x │ │ │ │ +000c2620: 202d 2034 7820 7820 202b 2032 7820 202b - 4x x + 2x + │ │ │ │ +000c2630: 2032 3078 2020 2020 207c 0a7c 3520 2020 20x |.|5 │ │ │ │ +000c2640: 2020 2033 2034 2035 2020 2020 3420 3520 3 4 5 4 5 │ │ │ │ +000c2650: 2020 2020 3020 3520 2020 2020 2031 2035 0 5 1 5 │ │ │ │ +000c2660: 2020 2020 3220 3520 2020 2020 2033 2035 2 5 3 5 │ │ │ │ +000c2670: 2020 2020 2034 2035 2020 2020 2035 2020 4 5 5 │ │ │ │ +000c2680: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c2690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c26a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c26b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c26c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c26d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c26e0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000c26f0: 3220 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +000c2700: 2032 2020 2020 2020 2032 2020 2020 2033 2 2 3 │ │ │ │ +000c2710: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000c2720: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ +000c2730: 202b 2033 7820 7820 202d 2031 3278 2078 + 3x x - 12x x │ │ │ │ +000c2740: 2020 2b20 3378 2078 2020 2b20 3130 7820 + 3x x + 10x │ │ │ │ +000c2750: 7820 202b 2033 7820 7820 202d 2032 7820 x + 3x x - 2x │ │ │ │ +000c2760: 202d 2031 3878 2078 2020 2b20 3138 7820 - 18x x + 18x │ │ │ │ +000c2770: 7820 7820 2020 2020 207c 0a7c 2034 2035 x x |.| 4 5 │ │ │ │ +000c2780: 2020 2020 2030 2035 2020 2020 2020 3120 0 5 1 │ │ │ │ +000c2790: 3520 2020 2020 3220 3520 2020 2020 2033 5 2 5 3 │ │ │ │ +000c27a0: 2035 2020 2020 2034 2035 2020 2020 2035 5 4 5 5 │ │ │ │ +000c27b0: 2020 2020 2020 3020 3620 2020 2020 2030 0 6 0 │ │ │ │ +000c27c0: 2031 2036 2020 2020 207c 0a7c 2020 2020 1 6 |.| │ │ │ │ +000c27d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c27e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c27f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c2810: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c2820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2860: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c2870: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000c2880: 3220 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ -000c2890: 2032 2020 2020 2020 2032 2020 2020 2033 2 2 3 │ │ │ │ -000c28a0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000c28b0: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ -000c28c0: 202b 2033 7820 7820 202d 2031 3278 2078 + 3x x - 12x x │ │ │ │ -000c28d0: 2020 2b20 3378 2078 2020 2b20 3130 7820 + 3x x + 10x │ │ │ │ -000c28e0: 7820 202b 2033 7820 7820 202d 2032 7820 x + 3x x - 2x │ │ │ │ -000c28f0: 202d 2031 3878 2078 2020 2b20 3138 7820 - 18x x + 18x │ │ │ │ -000c2900: 7820 7820 2020 2020 207c 0a7c 2034 2035 x x |.| 4 5 │ │ │ │ -000c2910: 2020 2020 2030 2035 2020 2020 2020 3120 0 5 1 │ │ │ │ -000c2920: 3520 2020 2020 3220 3520 2020 2020 2033 5 2 5 3 │ │ │ │ -000c2930: 2035 2020 2020 2034 2035 2020 2020 2035 5 4 5 5 │ │ │ │ -000c2940: 2020 2020 2020 3020 3620 2020 2020 2030 0 6 0 │ │ │ │ -000c2950: 2031 2036 2020 2020 207c 0a7c 2020 2020 1 6 |.| │ │ │ │ -000c2960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c29a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c29b0: 3220 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ -000c29c0: 3220 2020 2020 2020 3220 2020 2020 3320 2 2 3 │ │ │ │ -000c29d0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000c29e0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000c29f0: 2020 2020 2020 2020 207c 0a7c 3678 2078 |.|6x x │ │ │ │ -000c2a00: 2020 2b20 3378 2078 2020 2d20 3678 2078 + 3x x - 6x x │ │ │ │ -000c2a10: 2020 2b20 3378 2078 2020 2b20 3278 2020 + 3x x + 2x │ │ │ │ -000c2a20: 2d20 3330 7820 7820 202d 2031 3478 2078 - 30x x - 14x x │ │ │ │ -000c2a30: 2078 2020 2b20 3478 2078 2020 2b20 3378 x + 4x x + 3x │ │ │ │ -000c2a40: 2078 2078 2020 2020 207c 0a7c 2020 3120 x x |.| 1 │ │ │ │ -000c2a50: 3520 2020 2020 3220 3520 2020 2020 3320 5 2 5 3 │ │ │ │ -000c2a60: 3520 2020 2020 3420 3520 2020 2020 3520 5 4 5 5 │ │ │ │ -000c2a70: 2020 2020 2030 2036 2020 2020 2020 3020 0 6 0 │ │ │ │ -000c2a80: 3120 3620 2020 2020 3120 3620 2020 2020 1 6 1 6 │ │ │ │ -000c2a90: 3020 3220 2020 2020 207c 0a7c 2020 2020 0 2 |.| │ │ │ │ +000c2820: 3220 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +000c2830: 3220 2020 2020 2020 3220 2020 2020 3320 2 2 3 │ │ │ │ +000c2840: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000c2850: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000c2860: 2020 2020 2020 2020 207c 0a7c 3678 2078 |.|6x x │ │ │ │ +000c2870: 2020 2b20 3378 2078 2020 2d20 3678 2078 + 3x x - 6x x │ │ │ │ +000c2880: 2020 2b20 3378 2078 2020 2b20 3278 2020 + 3x x + 2x │ │ │ │ +000c2890: 2d20 3330 7820 7820 202d 2031 3478 2078 - 30x x - 14x x │ │ │ │ +000c28a0: 2078 2020 2b20 3478 2078 2020 2b20 3378 x + 4x x + 3x │ │ │ │ +000c28b0: 2078 2078 2020 2020 207c 0a7c 2020 3120 x x |.| 1 │ │ │ │ +000c28c0: 3520 2020 2020 3220 3520 2020 2020 3320 5 2 5 3 │ │ │ │ +000c28d0: 3520 2020 2020 3420 3520 2020 2020 3520 5 4 5 5 │ │ │ │ +000c28e0: 2020 2020 2030 2036 2020 2020 2020 3020 0 6 0 │ │ │ │ +000c28f0: 3120 3620 2020 2020 3120 3620 2020 2020 1 6 1 6 │ │ │ │ +000c2900: 3020 3220 2020 2020 207c 0a7c 2020 2020 0 2 |.| │ │ │ │ +000c2910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2950: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c2960: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000c2970: 2020 3220 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +000c2980: 2020 2032 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000c2990: 2020 2032 2020 2020 2033 2020 2020 2020 2 3 │ │ │ │ +000c29a0: 3220 2020 2020 2020 207c 0a7c 3478 2078 2 |.|4x x │ │ │ │ +000c29b0: 2078 2020 2b20 3678 2078 2020 2d20 3378 x + 6x x - 3x │ │ │ │ +000c29c0: 2078 2020 2d20 3237 7820 7820 202b 2039 x - 27x x + 9 │ │ │ │ +000c29d0: 7820 7820 202b 2032 3778 2078 2020 2b20 x x + 27x x + │ │ │ │ +000c29e0: 7820 7820 202d 2036 7820 202b 2031 3678 x x - 6x + 16x │ │ │ │ +000c29f0: 2078 2020 2020 2020 207c 0a7c 2020 3220 x |.| 2 │ │ │ │ +000c2a00: 3420 3520 2020 2020 3420 3520 2020 2020 4 5 4 5 │ │ │ │ +000c2a10: 3020 3520 2020 2020 2031 2035 2020 2020 0 5 1 5 │ │ │ │ +000c2a20: 2032 2035 2020 2020 2020 3320 3520 2020 2 5 3 5 │ │ │ │ +000c2a30: 2034 2035 2020 2020 2035 2020 2020 2020 4 5 5 │ │ │ │ +000c2a40: 3020 3620 2020 2020 207c 0a7c 2020 2020 0 6 |.| │ │ │ │ +000c2a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2a90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c2aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c2ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c2ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2ae0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c2af0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000c2b00: 2020 3220 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -000c2b10: 2020 2032 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000c2b20: 2020 2032 2020 2020 2033 2020 2020 2020 2 3 │ │ │ │ -000c2b30: 3220 2020 2020 2020 207c 0a7c 3478 2078 2 |.|4x x │ │ │ │ -000c2b40: 2078 2020 2b20 3678 2078 2020 2d20 3378 x + 6x x - 3x │ │ │ │ -000c2b50: 2078 2020 2d20 3237 7820 7820 202b 2039 x - 27x x + 9 │ │ │ │ -000c2b60: 7820 7820 202b 2032 3778 2078 2020 2b20 x x + 27x x + │ │ │ │ -000c2b70: 7820 7820 202d 2036 7820 202b 2031 3678 x x - 6x + 16x │ │ │ │ -000c2b80: 2078 2020 2020 2020 207c 0a7c 2020 3220 x |.| 2 │ │ │ │ -000c2b90: 3420 3520 2020 2020 3420 3520 2020 2020 4 5 4 5 │ │ │ │ -000c2ba0: 3020 3520 2020 2020 2031 2035 2020 2020 0 5 1 5 │ │ │ │ -000c2bb0: 2032 2035 2020 2020 2020 3320 3520 2020 2 5 3 5 │ │ │ │ -000c2bc0: 2034 2035 2020 2020 2035 2020 2020 2020 4 5 5 │ │ │ │ -000c2bd0: 3020 3620 2020 2020 207c 0a7c 2020 2020 0 6 |.| │ │ │ │ +000c2ad0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000c2ae0: 2020 2020 2020 2020 207c 0a7c 2039 7820 |.| 9x │ │ │ │ +000c2af0: 7820 7820 202b 2031 3078 2078 2078 2020 x x + 10x x x │ │ │ │ +000c2b00: 2b20 3130 7820 7820 7820 202b 2031 3078 + 10x x x + 10x │ │ │ │ +000c2b10: 2078 2078 2020 2d20 3678 2078 2078 2020 x x - 6x x x │ │ │ │ +000c2b20: 2d20 3478 2078 2020 2d20 3578 2078 2078 - 4x x - 5x x x │ │ │ │ +000c2b30: 2020 2d20 2020 2020 207c 0a7c 2020 2030 - |.| 0 │ │ │ │ +000c2b40: 2032 2036 2020 2020 2020 3120 3220 3620 2 6 1 2 6 │ │ │ │ +000c2b50: 2020 2020 2030 2033 2036 2020 2020 2020 0 3 6 │ │ │ │ +000c2b60: 3120 3320 3620 2020 2020 3220 3320 3620 1 3 6 2 3 6 │ │ │ │ +000c2b70: 2020 2020 3320 3620 2020 2020 3020 3420 3 6 0 4 │ │ │ │ +000c2b80: 3620 2020 2020 2020 207c 0a7c 2020 2020 6 |.| │ │ │ │ +000c2b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2bd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c2be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c2bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2c20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c2c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2c60: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000c2c70: 2020 2020 2020 2020 207c 0a7c 2039 7820 |.| 9x │ │ │ │ -000c2c80: 7820 7820 202b 2031 3078 2078 2078 2020 x x + 10x x x │ │ │ │ -000c2c90: 2b20 3130 7820 7820 7820 202b 2031 3078 + 10x x x + 10x │ │ │ │ -000c2ca0: 2078 2078 2020 2d20 3678 2078 2078 2020 x x - 6x x x │ │ │ │ -000c2cb0: 2d20 3478 2078 2020 2d20 3578 2078 2078 - 4x x - 5x x x │ │ │ │ -000c2cc0: 2020 2d20 2020 2020 207c 0a7c 2020 2030 - |.| 0 │ │ │ │ -000c2cd0: 2032 2036 2020 2020 2020 3120 3220 3620 2 6 1 2 6 │ │ │ │ -000c2ce0: 2020 2020 2030 2033 2036 2020 2020 2020 0 3 6 │ │ │ │ -000c2cf0: 3120 3320 3620 2020 2020 3220 3320 3620 1 3 6 2 3 6 │ │ │ │ -000c2d00: 2020 2020 3320 3620 2020 2020 3020 3420 3 6 0 4 │ │ │ │ -000c2d10: 3620 2020 2020 2020 207c 0a7c 2020 2020 6 |.| │ │ │ │ -000c2d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2c00: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000c2c10: 2020 2032 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000c2c20: 2020 2020 2020 2020 207c 0a7c 2d20 3139 |.|- 19 │ │ │ │ +000c2c30: 7820 7820 7820 202b 2032 7820 7820 7820 x x x + 2x x x │ │ │ │ +000c2c40: 202d 2035 7820 7820 7820 202d 2032 7820 - 5x x x - 2x │ │ │ │ +000c2c50: 7820 7820 202d 2037 7820 7820 202b 2036 x x - 7x x + 6 │ │ │ │ +000c2c60: 7820 7820 202b 2032 3178 2078 2020 2d20 x x + 21x x - │ │ │ │ +000c2c70: 3378 2078 2020 2020 207c 0a7c 2020 2020 3x x |.| │ │ │ │ +000c2c80: 2030 2034 2035 2020 2020 2031 2034 2035 0 4 5 1 4 5 │ │ │ │ +000c2c90: 2020 2020 2032 2034 2035 2020 2020 2033 2 4 5 3 │ │ │ │ +000c2ca0: 2034 2035 2020 2020 2034 2035 2020 2020 4 5 4 5 │ │ │ │ +000c2cb0: 2030 2035 2020 2020 2020 3120 3520 2020 0 5 1 5 │ │ │ │ +000c2cc0: 2020 3220 2020 2020 207c 0a7c 2d2d 2d2d 2 |.|---- │ │ │ │ +000c2cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c2ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c2cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c2d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c2d10: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 3220 ---------|.| 2 │ │ │ │ +000c2d20: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000c2d30: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ +000c2d40: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 000c2d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2d60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c2d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2d90: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -000c2da0: 2020 2032 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000c2db0: 2020 2020 2020 2020 207c 0a7c 2d20 3139 |.|- 19 │ │ │ │ -000c2dc0: 7820 7820 7820 202b 2032 7820 7820 7820 x x x + 2x x x │ │ │ │ -000c2dd0: 202d 2035 7820 7820 7820 202d 2032 7820 - 5x x x - 2x │ │ │ │ -000c2de0: 7820 7820 202d 2037 7820 7820 202b 2036 x x - 7x x + 6 │ │ │ │ -000c2df0: 7820 7820 202b 2032 3178 2078 2020 2d20 x x + 21x x - │ │ │ │ -000c2e00: 3378 2078 2020 2020 207c 0a7c 2020 2020 3x x |.| │ │ │ │ -000c2e10: 2030 2034 2035 2020 2020 2031 2034 2035 0 4 5 1 4 5 │ │ │ │ -000c2e20: 2020 2020 2032 2034 2035 2020 2020 2033 2 4 5 3 │ │ │ │ -000c2e30: 2034 2035 2020 2020 2034 2035 2020 2020 4 5 4 5 │ │ │ │ -000c2e40: 2030 2035 2020 2020 2020 3120 3520 2020 0 5 1 5 │ │ │ │ -000c2e50: 2020 3220 2020 2020 207c 0a7c 2d2d 2d2d 2 |.|---- │ │ │ │ -000c2e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c2e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c2e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c2e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c2ea0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 3220 ---------|.| 2 │ │ │ │ -000c2eb0: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000c2ec0: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000c2ed0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000c2ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2ef0: 2020 2020 2020 2020 207c 0a7c 2078 2020 |.| x │ │ │ │ -000c2f00: 2d20 3678 2078 2020 2d20 3278 2078 2020 - 6x x - 2x x │ │ │ │ -000c2f10: 2b20 7820 7820 202d 2033 7820 7820 202b + x x - 3x x + │ │ │ │ -000c2f20: 2032 7820 2c20 2020 2020 2020 2020 2020 2x , │ │ │ │ -000c2f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2f40: 2020 2020 2020 2020 207c 0a7c 3120 3620 |.|1 6 │ │ │ │ -000c2f50: 2020 2020 3220 3620 2020 2020 3320 3620 2 6 3 6 │ │ │ │ -000c2f60: 2020 2034 2036 2020 2020 2035 2036 2020 4 6 5 6 │ │ │ │ -000c2f70: 2020 2036 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +000c2d60: 2020 2020 2020 2020 207c 0a7c 2078 2020 |.| x │ │ │ │ +000c2d70: 2d20 3678 2078 2020 2d20 3278 2078 2020 - 6x x - 2x x │ │ │ │ +000c2d80: 2b20 7820 7820 202d 2033 7820 7820 202b + x x - 3x x + │ │ │ │ +000c2d90: 2032 7820 2c20 2020 2020 2020 2020 2020 2x , │ │ │ │ +000c2da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2db0: 2020 2020 2020 2020 207c 0a7c 3120 3620 |.|1 6 │ │ │ │ +000c2dc0: 2020 2020 3220 3620 2020 2020 3320 3620 2 6 3 6 │ │ │ │ +000c2dd0: 2020 2034 2036 2020 2020 2035 2036 2020 4 6 5 6 │ │ │ │ +000c2de0: 2020 2036 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +000c2df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2e00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c2e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2e50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c2e60: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000c2e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2e90: 2032 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +000c2ea0: 2020 2032 2020 2020 207c 0a7c 2020 2b20 2 |.| + │ │ │ │ +000c2eb0: 7820 7820 202b 2032 7820 7820 7820 202d x x + 2x x x - │ │ │ │ +000c2ec0: 2038 7820 7820 7820 202b 2031 3078 2078 8x x x + 10x x │ │ │ │ +000c2ed0: 2078 2020 2b20 7820 7820 7820 202d 2032 x + x x x - 2 │ │ │ │ +000c2ee0: 7820 7820 202b 2034 7820 7820 202b 2034 x x + 4x x + 4 │ │ │ │ +000c2ef0: 7820 7820 2020 2020 207c 0a7c 3620 2020 x x |.|6 │ │ │ │ +000c2f00: 2034 2036 2020 2020 2030 2035 2036 2020 4 6 0 5 6 │ │ │ │ +000c2f10: 2020 2031 2035 2036 2020 2020 2020 3320 1 5 6 3 │ │ │ │ +000c2f20: 3520 3620 2020 2034 2035 2036 2020 2020 5 6 4 5 6 │ │ │ │ +000c2f30: 2035 2036 2020 2020 2030 2036 2020 2020 5 6 0 6 │ │ │ │ +000c2f40: 2031 2036 2020 2020 207c 0a7c 2020 2020 1 6 |.| │ │ │ │ +000c2f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c2f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c2f90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c2fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c2fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c2fc0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 000c2fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c2fe0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c2ff0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c3000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3020: 2032 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -000c3030: 2020 2032 2020 2020 207c 0a7c 2020 2b20 2 |.| + │ │ │ │ -000c3040: 7820 7820 202b 2032 7820 7820 7820 202d x x + 2x x x - │ │ │ │ -000c3050: 2038 7820 7820 7820 202b 2031 3078 2078 8x x x + 10x x │ │ │ │ -000c3060: 2078 2020 2b20 7820 7820 7820 202d 2032 x + x x x - 2 │ │ │ │ -000c3070: 7820 7820 202b 2034 7820 7820 202b 2034 x x + 4x x + 4 │ │ │ │ -000c3080: 7820 7820 2020 2020 207c 0a7c 3620 2020 x x |.|6 │ │ │ │ -000c3090: 2034 2036 2020 2020 2030 2035 2036 2020 4 6 0 5 6 │ │ │ │ -000c30a0: 2020 2031 2035 2036 2020 2020 2020 3320 1 5 6 3 │ │ │ │ -000c30b0: 3520 3620 2020 2034 2035 2036 2020 2020 5 6 4 5 6 │ │ │ │ -000c30c0: 2035 2036 2020 2020 2030 2036 2020 2020 5 6 0 6 │ │ │ │ -000c30d0: 2031 2036 2020 2020 207c 0a7c 2020 2020 1 6 |.| │ │ │ │ +000c2fe0: 2020 2020 2020 2020 207c 0a7c 3131 7820 |.|11x │ │ │ │ +000c2ff0: 7820 7820 202b 2037 7820 7820 7820 202b x x + 7x x x + │ │ │ │ +000c3000: 2032 7820 7820 7820 202d 2038 7820 7820 2x x x - 8x x │ │ │ │ +000c3010: 7820 202b 2078 2078 2020 2b20 3330 7820 x + x x + 30x │ │ │ │ +000c3020: 7820 7820 202b 2032 3778 2078 2078 2020 x x + 27x x x │ │ │ │ +000c3030: 2d20 3478 2020 2020 207c 0a7c 2020 2030 - 4x |.| 0 │ │ │ │ +000c3040: 2034 2036 2020 2020 2031 2034 2036 2020 4 6 1 4 6 │ │ │ │ +000c3050: 2020 2032 2034 2036 2020 2020 2033 2034 2 4 6 3 4 │ │ │ │ +000c3060: 2036 2020 2020 3420 3620 2020 2020 2030 6 4 6 0 │ │ │ │ +000c3070: 2035 2036 2020 2020 2020 3120 3520 3620 5 6 1 5 6 │ │ │ │ +000c3080: 2020 2020 3220 2020 207c 0a7c 2020 2020 2 |.| │ │ │ │ +000c3090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c30a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c30b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c30c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c30d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c30e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c30f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3120: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c3130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3150: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000c3160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3170: 2020 2020 2020 2020 207c 0a7c 3131 7820 |.|11x │ │ │ │ -000c3180: 7820 7820 202b 2037 7820 7820 7820 202b x x + 7x x x + │ │ │ │ -000c3190: 2032 7820 7820 7820 202d 2038 7820 7820 2x x x - 8x x │ │ │ │ -000c31a0: 7820 202b 2078 2078 2020 2b20 3330 7820 x + x x + 30x │ │ │ │ -000c31b0: 7820 7820 202b 2032 3778 2078 2078 2020 x x + 27x x x │ │ │ │ -000c31c0: 2d20 3478 2020 2020 207c 0a7c 2020 2030 - 4x |.| 0 │ │ │ │ -000c31d0: 2034 2036 2020 2020 2031 2034 2036 2020 4 6 1 4 6 │ │ │ │ -000c31e0: 2020 2032 2034 2036 2020 2020 2033 2034 2 4 6 3 4 │ │ │ │ -000c31f0: 2036 2020 2020 3420 3620 2020 2020 2030 6 4 6 0 │ │ │ │ -000c3200: 2035 2036 2020 2020 2020 3120 3520 3620 5 6 1 5 6 │ │ │ │ -000c3210: 2020 2020 3220 2020 207c 0a7c 2020 2020 2 |.| │ │ │ │ -000c3220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3120: 2020 2020 3220 2020 207c 0a7c 202d 2078 2 |.| - x │ │ │ │ +000c3130: 2078 2078 2020 2d20 3278 2078 2078 2020 x x - 2x x x │ │ │ │ +000c3140: 2b20 7820 7820 7820 202b 2034 7820 7820 + x x x + 4x x │ │ │ │ +000c3150: 7820 202b 2035 7820 7820 7820 202b 2078 x + 5x x x + x │ │ │ │ +000c3160: 2078 2078 2020 2b20 3278 2078 2078 2020 x x + 2x x x │ │ │ │ +000c3170: 2b20 3478 2020 2020 207c 0a7c 2020 2020 + 4x |.| │ │ │ │ +000c3180: 3020 3420 3620 2020 2020 3120 3420 3620 0 4 6 1 4 6 │ │ │ │ +000c3190: 2020 2032 2034 2036 2020 2020 2030 2035 2 4 6 0 5 │ │ │ │ +000c31a0: 2036 2020 2020 2032 2035 2036 2020 2020 6 2 5 6 │ │ │ │ +000c31b0: 3320 3520 3620 2020 2020 3420 3520 3620 3 5 6 4 5 6 │ │ │ │ +000c31c0: 2020 2020 3520 2020 207c 0a7c 2020 2020 5 |.| │ │ │ │ +000c31d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c31e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c31f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3210: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ +000c3220: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ 000c3230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3240: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ 000c3250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3260: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c3270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c32a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c32b0: 2020 2020 3220 2020 207c 0a7c 202d 2078 2 |.| - x │ │ │ │ -000c32c0: 2078 2078 2020 2d20 3278 2078 2078 2020 x x - 2x x x │ │ │ │ -000c32d0: 2b20 7820 7820 7820 202b 2034 7820 7820 + x x x + 4x x │ │ │ │ -000c32e0: 7820 202b 2035 7820 7820 7820 202b 2078 x + 5x x x + x │ │ │ │ -000c32f0: 2078 2078 2020 2b20 3278 2078 2078 2020 x x + 2x x x │ │ │ │ -000c3300: 2b20 3478 2020 2020 207c 0a7c 2020 2020 + 4x |.| │ │ │ │ -000c3310: 3020 3420 3620 2020 2020 3120 3420 3620 0 4 6 1 4 6 │ │ │ │ -000c3320: 2020 2032 2034 2036 2020 2020 2030 2035 2 4 6 0 5 │ │ │ │ -000c3330: 2036 2020 2020 2032 2035 2036 2020 2020 6 2 5 6 │ │ │ │ -000c3340: 3320 3520 3620 2020 2020 3420 3520 3620 3 5 6 4 5 6 │ │ │ │ -000c3350: 2020 2020 3520 2020 207c 0a7c 2020 2020 5 |.| │ │ │ │ -000c3360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3260: 2020 2020 2020 2020 207c 0a7c 2078 2020 |.| x │ │ │ │ +000c3270: 2b20 3878 2078 2078 2020 2d20 3238 7820 + 8x x x - 28x │ │ │ │ +000c3280: 7820 202d 2036 7820 7820 7820 202b 2031 x - 6x x x + 1 │ │ │ │ +000c3290: 3278 2078 2078 2020 2d20 3478 2078 2020 2x x x - 4x x │ │ │ │ +000c32a0: 2d20 3678 2078 2078 2020 2b20 3538 7820 - 6x x x + 58x │ │ │ │ +000c32b0: 7820 7820 2020 2020 207c 0a7c 3020 3620 x x |.|0 6 │ │ │ │ +000c32c0: 2020 2020 3020 3120 3620 2020 2020 2031 0 1 6 1 │ │ │ │ +000c32d0: 2036 2020 2020 2030 2032 2036 2020 2020 6 0 2 6 │ │ │ │ +000c32e0: 2020 3120 3220 3620 2020 2020 3220 3620 1 2 6 2 6 │ │ │ │ +000c32f0: 2020 2020 3020 3320 3620 2020 2020 2031 0 3 6 1 │ │ │ │ +000c3300: 2033 2036 2020 2020 207c 0a7c 2020 2020 3 6 |.| │ │ │ │ +000c3310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3350: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c3360: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000c3370: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000c3380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c33a0: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ -000c33b0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000c33c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c33d0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000c33e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c33f0: 2020 2020 2020 2020 207c 0a7c 2078 2020 |.| x │ │ │ │ -000c3400: 2b20 3878 2078 2078 2020 2d20 3238 7820 + 8x x x - 28x │ │ │ │ -000c3410: 7820 202d 2036 7820 7820 7820 202b 2031 x - 6x x x + 1 │ │ │ │ -000c3420: 3278 2078 2078 2020 2d20 3478 2078 2020 2x x x - 4x x │ │ │ │ -000c3430: 2d20 3678 2078 2078 2020 2b20 3538 7820 - 6x x x + 58x │ │ │ │ -000c3440: 7820 7820 2020 2020 207c 0a7c 3020 3620 x x |.|0 6 │ │ │ │ -000c3450: 2020 2020 3020 3120 3620 2020 2020 2031 0 1 6 1 │ │ │ │ -000c3460: 2036 2020 2020 2030 2032 2036 2020 2020 6 0 2 6 │ │ │ │ -000c3470: 2020 3120 3220 3620 2020 2020 3220 3620 1 2 6 2 6 │ │ │ │ -000c3480: 2020 2020 3020 3320 3620 2020 2020 2031 0 3 6 1 │ │ │ │ -000c3490: 2033 2036 2020 2020 207c 0a7c 2020 2020 3 6 |.| │ │ │ │ -000c34a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3390: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000c33a0: 2020 2020 2020 2020 207c 0a7c 202b 2032 |.| + 2 │ │ │ │ +000c33b0: 3078 2078 2020 2d20 3132 7820 7820 7820 0x x - 12x x x │ │ │ │ +000c33c0: 202b 2032 7820 7820 202d 2031 3278 2078 + 2x x - 12x x │ │ │ │ +000c33d0: 2078 2020 2d20 3336 7820 7820 7820 202b x - 36x x x + │ │ │ │ +000c33e0: 2031 3278 2078 2078 2020 2b20 3136 7820 12x x x + 16x │ │ │ │ +000c33f0: 7820 202d 2020 2020 207c 0a7c 2020 2020 x - |.| │ │ │ │ +000c3400: 2020 3120 3620 2020 2020 2031 2032 2036 1 6 1 2 6 │ │ │ │ +000c3410: 2020 2020 2032 2036 2020 2020 2020 3020 2 6 0 │ │ │ │ +000c3420: 3320 3620 2020 2020 2031 2033 2036 2020 3 6 1 3 6 │ │ │ │ +000c3430: 2020 2020 3220 3320 3620 2020 2020 2033 2 3 6 3 │ │ │ │ +000c3440: 2036 2020 2020 2020 207c 0a7c 2020 2020 6 |.| │ │ │ │ +000c3450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3490: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c34a0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 000c34b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c34c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c34d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c34e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c34f0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c3500: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000c3510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3520: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000c3530: 2020 2020 2020 2020 207c 0a7c 202b 2032 |.| + 2 │ │ │ │ -000c3540: 3078 2078 2020 2d20 3132 7820 7820 7820 0x x - 12x x x │ │ │ │ -000c3550: 202b 2032 7820 7820 202d 2031 3278 2078 + 2x x - 12x x │ │ │ │ -000c3560: 2078 2020 2d20 3336 7820 7820 7820 202b x - 36x x x + │ │ │ │ -000c3570: 2031 3278 2078 2078 2020 2b20 3136 7820 12x x x + 16x │ │ │ │ -000c3580: 7820 202d 2020 2020 207c 0a7c 2020 2020 x - |.| │ │ │ │ -000c3590: 2020 3120 3620 2020 2020 2031 2032 2036 1 6 1 2 6 │ │ │ │ -000c35a0: 2020 2020 2032 2036 2020 2020 2020 3020 2 6 0 │ │ │ │ -000c35b0: 3320 3620 2020 2020 2031 2033 2036 2020 3 6 1 3 6 │ │ │ │ -000c35c0: 2020 2020 3220 3320 3620 2020 2020 2033 2 3 6 3 │ │ │ │ -000c35d0: 2036 2020 2020 2020 207c 0a7c 2020 2020 6 |.| │ │ │ │ -000c35e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c34d0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000c34e0: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ +000c34f0: 3130 7820 7820 7820 202b 2034 7820 7820 10x x x + 4x x │ │ │ │ +000c3500: 202b 2031 3478 2078 2078 2020 2d20 3878 + 14x x x - 8x │ │ │ │ +000c3510: 2078 2078 2020 2b20 3132 7820 7820 7820 x x + 12x x x │ │ │ │ +000c3520: 202b 2034 7820 7820 202d 2032 3578 2078 + 4x x - 25x x │ │ │ │ +000c3530: 2078 2020 2d20 2020 207c 0a7c 3620 2020 x - |.|6 │ │ │ │ +000c3540: 2020 2031 2032 2036 2020 2020 2032 2036 1 2 6 2 6 │ │ │ │ +000c3550: 2020 2020 2020 3020 3320 3620 2020 2020 0 3 6 │ │ │ │ +000c3560: 3120 3320 3620 2020 2020 2032 2033 2036 1 3 6 2 3 6 │ │ │ │ +000c3570: 2020 2020 2033 2036 2020 2020 2020 3020 3 6 0 │ │ │ │ +000c3580: 3420 3620 2020 2020 207c 0a7c 2020 2020 4 6 |.| │ │ │ │ +000c3590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c35a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c35b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c35c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c35d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c35e0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ 000c35f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3600: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 000c3610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3620: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c3630: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000c3640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3660: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000c3670: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ -000c3680: 3130 7820 7820 7820 202b 2034 7820 7820 10x x x + 4x x │ │ │ │ -000c3690: 202b 2031 3478 2078 2078 2020 2d20 3878 + 14x x x - 8x │ │ │ │ -000c36a0: 2078 2078 2020 2b20 3132 7820 7820 7820 x x + 12x x x │ │ │ │ -000c36b0: 202b 2034 7820 7820 202d 2032 3578 2078 + 4x x - 25x x │ │ │ │ -000c36c0: 2078 2020 2d20 2020 207c 0a7c 3620 2020 x - |.|6 │ │ │ │ -000c36d0: 2020 2031 2032 2036 2020 2020 2032 2036 1 2 6 2 6 │ │ │ │ -000c36e0: 2020 2020 2020 3020 3320 3620 2020 2020 0 3 6 │ │ │ │ -000c36f0: 3120 3320 3620 2020 2020 2032 2033 2036 1 3 6 2 3 6 │ │ │ │ -000c3700: 2020 2020 2033 2036 2020 2020 2020 3020 3 6 0 │ │ │ │ -000c3710: 3420 3620 2020 2020 207c 0a7c 2020 2020 4 6 |.| │ │ │ │ +000c3620: 2020 2020 2020 2020 207c 0a7c 2b20 3978 |.|+ 9x │ │ │ │ +000c3630: 2078 2078 2020 2b20 3234 7820 7820 202d x x + 24x x - │ │ │ │ +000c3640: 2031 3378 2078 2078 2020 2d20 3232 7820 13x x x - 22x │ │ │ │ +000c3650: 7820 7820 202b 2035 7820 7820 202d 2031 x x + 5x x - 1 │ │ │ │ +000c3660: 3678 2078 2078 2020 2d20 3534 7820 7820 6x x x - 54x x │ │ │ │ +000c3670: 7820 202b 2020 2020 207c 0a7c 2020 2020 x + |.| │ │ │ │ +000c3680: 3020 3120 3620 2020 2020 2031 2036 2020 0 1 6 1 6 │ │ │ │ +000c3690: 2020 2020 3020 3220 3620 2020 2020 2031 0 2 6 1 │ │ │ │ +000c36a0: 2032 2036 2020 2020 2032 2036 2020 2020 2 6 2 6 │ │ │ │ +000c36b0: 2020 3020 3320 3620 2020 2020 2031 2033 0 3 6 1 3 │ │ │ │ +000c36c0: 2036 2020 2020 2020 207c 0a7c 2020 2020 6 |.| │ │ │ │ +000c36d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c36e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c36f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3710: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c3720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3730: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ 000c3740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3760: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c3770: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000c3780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3790: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -000c37a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c37b0: 2020 2020 2020 2020 207c 0a7c 2b20 3978 |.|+ 9x │ │ │ │ -000c37c0: 2078 2078 2020 2b20 3234 7820 7820 202d x x + 24x x - │ │ │ │ -000c37d0: 2031 3378 2078 2078 2020 2d20 3232 7820 13x x x - 22x │ │ │ │ -000c37e0: 7820 7820 202b 2035 7820 7820 202d 2031 x x + 5x x - 1 │ │ │ │ -000c37f0: 3678 2078 2078 2020 2d20 3534 7820 7820 6x x x - 54x x │ │ │ │ -000c3800: 7820 202b 2020 2020 207c 0a7c 2020 2020 x + |.| │ │ │ │ -000c3810: 3020 3120 3620 2020 2020 2031 2036 2020 0 1 6 1 6 │ │ │ │ -000c3820: 2020 2020 3020 3220 3620 2020 2020 2031 0 2 6 1 │ │ │ │ -000c3830: 2032 2036 2020 2020 2032 2036 2020 2020 2 6 2 6 │ │ │ │ -000c3840: 2020 3020 3320 3620 2020 2020 2031 2033 0 3 6 1 3 │ │ │ │ -000c3850: 2036 2020 2020 2020 207c 0a7c 2020 2020 6 |.| │ │ │ │ -000c3860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3760: 2020 2020 2020 2020 207c 0a7c 3578 2078 |.|5x x │ │ │ │ +000c3770: 2078 2020 2b20 3478 2078 2078 2020 2b20 x + 4x x x + │ │ │ │ +000c3780: 3478 2078 2078 2020 2d20 7820 7820 202d 4x x x - x x - │ │ │ │ +000c3790: 2078 2078 2078 2020 2b20 7820 7820 7820 x x x + x x x │ │ │ │ +000c37a0: 202b 2038 7820 7820 7820 202b 2032 7820 + 8x x x + 2x │ │ │ │ +000c37b0: 7820 7820 2020 2020 207c 0a7c 2020 3120 x x |.| 1 │ │ │ │ +000c37c0: 3420 3620 2020 2020 3220 3420 3620 2020 4 6 2 4 6 │ │ │ │ +000c37d0: 2020 3320 3420 3620 2020 2034 2036 2020 3 4 6 4 6 │ │ │ │ +000c37e0: 2020 3020 3520 3620 2020 2031 2035 2036 0 5 6 1 5 6 │ │ │ │ +000c37f0: 2020 2020 2032 2035 2036 2020 2020 2033 2 5 6 3 │ │ │ │ +000c3800: 2035 2036 2020 2020 207c 0a7c 2020 2020 5 6 |.| │ │ │ │ +000c3810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3850: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ +000c3860: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000c3870: 2020 3320 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ +000c3880: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ 000c3890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c38a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c38b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c38c0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000c38d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c38e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c38f0: 2020 2020 2020 2020 207c 0a7c 3578 2078 |.|5x x │ │ │ │ -000c3900: 2078 2020 2b20 3478 2078 2078 2020 2b20 x + 4x x x + │ │ │ │ -000c3910: 3478 2078 2078 2020 2d20 7820 7820 202d 4x x x - x x - │ │ │ │ -000c3920: 2078 2078 2078 2020 2b20 7820 7820 7820 x x x + x x x │ │ │ │ -000c3930: 202b 2038 7820 7820 7820 202b 2032 7820 + 8x x x + 2x │ │ │ │ -000c3940: 7820 7820 2020 2020 207c 0a7c 2020 3120 x x |.| 1 │ │ │ │ -000c3950: 3420 3620 2020 2020 3220 3420 3620 2020 4 6 2 4 6 │ │ │ │ -000c3960: 2020 3320 3420 3620 2020 2034 2036 2020 3 4 6 4 6 │ │ │ │ -000c3970: 2020 3020 3520 3620 2020 2031 2035 2036 0 5 6 1 5 6 │ │ │ │ -000c3980: 2020 2020 2032 2035 2036 2020 2020 2033 2 5 6 3 │ │ │ │ -000c3990: 2035 2036 2020 2020 207c 0a7c 2020 2020 5 6 |.| │ │ │ │ -000c39a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c39b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c38a0: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ +000c38b0: 3231 7820 7820 202b 2078 2078 2020 2b20 21x x + x x + │ │ │ │ +000c38c0: 3578 2020 2d20 3878 2078 2020 2b20 3778 5x - 8x x + 7x │ │ │ │ +000c38d0: 2078 2078 2020 2d20 3332 7820 7820 202d x x - 32x x - │ │ │ │ +000c38e0: 2031 3378 2078 2078 2020 2b20 3238 7820 13x x x + 28x │ │ │ │ +000c38f0: 7820 7820 2020 2020 207c 0a7c 3520 2020 x x |.|5 │ │ │ │ +000c3900: 2020 2033 2035 2020 2020 3420 3520 2020 3 5 4 5 │ │ │ │ +000c3910: 2020 3520 2020 2020 3020 3620 2020 2020 5 0 6 │ │ │ │ +000c3920: 3020 3120 3620 2020 2020 2031 2036 2020 0 1 6 1 6 │ │ │ │ +000c3930: 2020 2020 3020 3220 3620 2020 2020 2031 0 2 6 1 │ │ │ │ +000c3940: 2032 2036 2020 2020 207c 0a7c 2d2d 2d2d 2 6 |.|---- │ │ │ │ +000c3950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c3960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c3970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c3980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c3990: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ +000c39a0: 2020 3220 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ +000c39b0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000c39c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c39d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c39e0: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ -000c39f0: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000c3a00: 2020 3320 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ -000c3a10: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000c39e0: 2020 2020 2020 2020 207c 0a7c 2d20 3478 |.|- 4x │ │ │ │ +000c39f0: 2078 2020 2b20 3278 2078 2020 2b20 3478 x + 2x x + 4x │ │ │ │ +000c3a00: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +000c3a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3a30: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ -000c3a40: 3231 7820 7820 202b 2078 2078 2020 2b20 21x x + x x + │ │ │ │ -000c3a50: 3578 2020 2d20 3878 2078 2020 2b20 3778 5x - 8x x + 7x │ │ │ │ -000c3a60: 2078 2078 2020 2d20 3332 7820 7820 202d x x - 32x x - │ │ │ │ -000c3a70: 2031 3378 2078 2078 2020 2b20 3238 7820 13x x x + 28x │ │ │ │ -000c3a80: 7820 7820 2020 2020 207c 0a7c 3520 2020 x x |.|5 │ │ │ │ -000c3a90: 2020 2033 2035 2020 2020 3420 3520 2020 3 5 4 5 │ │ │ │ -000c3aa0: 2020 3520 2020 2020 3020 3620 2020 2020 5 0 6 │ │ │ │ -000c3ab0: 3020 3120 3620 2020 2020 2031 2036 2020 0 1 6 1 6 │ │ │ │ -000c3ac0: 2020 2020 3020 3220 3620 2020 2020 2031 0 2 6 1 │ │ │ │ -000c3ad0: 2032 2036 2020 2020 207c 0a7c 2d2d 2d2d 2 6 |.|---- │ │ │ │ -000c3ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c3af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c3b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c3b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c3b20: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -000c3b30: 2020 3220 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ -000c3b40: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c3b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3a30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c3a40: 3320 3620 2020 2020 3420 3620 2020 2020 3 6 4 6 │ │ │ │ +000c3a50: 3520 3620 2020 2020 2020 2020 2020 2020 5 6 │ │ │ │ +000c3a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3a80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c3a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3ad0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c3ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3af0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000c3b00: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000c3b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3b20: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ +000c3b30: 202d 2032 3478 2078 2078 2020 2b20 3133 - 24x x x + 13 │ │ │ │ +000c3b40: 7820 7820 7820 202b 2031 3278 2078 2020 x x x + 12x x │ │ │ │ +000c3b50: 2d20 3278 2078 2020 2d20 3278 2078 202c - 2x x - 2x x , │ │ │ │ 000c3b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3b70: 2020 2020 2020 2020 207c 0a7c 2d20 3478 |.|- 4x │ │ │ │ -000c3b80: 2078 2020 2b20 3278 2078 2020 2b20 3478 x + 2x x + 4x │ │ │ │ -000c3b90: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ -000c3ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3b70: 2020 2020 2020 2020 207c 0a7c 2035 2036 |.| 5 6 │ │ │ │ +000c3b80: 2020 2020 2020 3320 3520 3620 2020 2020 3 5 6 │ │ │ │ +000c3b90: 2034 2035 2036 2020 2020 2020 3520 3620 4 5 6 5 6 │ │ │ │ +000c3ba0: 2020 2020 3120 3620 2020 2020 3420 3620 1 6 4 6 │ │ │ │ 000c3bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3bc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c3bd0: 3320 3620 2020 2020 3420 3620 2020 2020 3 6 4 6 │ │ │ │ -000c3be0: 3520 3620 2020 2020 2020 2020 2020 2020 5 6 │ │ │ │ +000c3bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3c10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c3c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3c20: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ +000c3c30: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000c3c40: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 000c3c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3c60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c3c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3c80: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000c3c90: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000c3c60: 2020 2020 2020 2020 207c 0a7c 7820 202d |.|x - │ │ │ │ +000c3c70: 2033 7820 7820 202d 2032 7820 7820 202d 3x x - 2x x - │ │ │ │ +000c3c80: 2032 7820 7820 202d 2078 2078 2020 2d20 2x x - x x - │ │ │ │ +000c3c90: 3278 2078 202c 2020 2020 2020 2020 2020 2x x , │ │ │ │ 000c3ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3cb0: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ -000c3cc0: 202d 2032 3478 2078 2078 2020 2b20 3133 - 24x x x + 13 │ │ │ │ -000c3cd0: 7820 7820 7820 202b 2031 3278 2078 2020 x x x + 12x x │ │ │ │ -000c3ce0: 2d20 3278 2078 2020 2d20 3278 2078 202c - 2x x - 2x x , │ │ │ │ +000c3cb0: 2020 2020 2020 2020 207c 0a7c 2036 2020 |.| 6 │ │ │ │ +000c3cc0: 2020 2030 2036 2020 2020 2031 2036 2020 0 6 1 6 │ │ │ │ +000c3cd0: 2020 2032 2036 2020 2020 3420 3620 2020 2 6 4 6 │ │ │ │ +000c3ce0: 2020 3520 3620 2020 2020 2020 2020 2020 5 6 │ │ │ │ 000c3cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3d00: 2020 2020 2020 2020 207c 0a7c 2035 2036 |.| 5 6 │ │ │ │ -000c3d10: 2020 2020 2020 3320 3520 3620 2020 2020 3 5 6 │ │ │ │ -000c3d20: 2034 2035 2036 2020 2020 2020 3520 3620 4 5 6 5 6 │ │ │ │ -000c3d30: 2020 2020 3120 3620 2020 2020 3420 3620 1 6 4 6 │ │ │ │ +000c3d00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c3d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3d50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c3d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3d60: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ 000c3d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3da0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c3db0: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000c3dc0: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000c3dd0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000c3de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3df0: 2020 2020 2020 2020 207c 0a7c 7820 202d |.|x - │ │ │ │ -000c3e00: 2033 7820 7820 202d 2032 7820 7820 202d 3x x - 2x x - │ │ │ │ -000c3e10: 2032 7820 7820 202d 2078 2078 2020 2d20 2x x - x x - │ │ │ │ -000c3e20: 3278 2078 202c 2020 2020 2020 2020 2020 2x x , │ │ │ │ -000c3e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3e40: 2020 2020 2020 2020 207c 0a7c 2036 2020 |.| 6 │ │ │ │ -000c3e50: 2020 2030 2036 2020 2020 2031 2036 2020 0 6 1 6 │ │ │ │ -000c3e60: 2020 2032 2036 2020 2020 3420 3620 2020 2 6 4 6 │ │ │ │ -000c3e70: 2020 3520 3620 2020 2020 2020 2020 2020 5 6 │ │ │ │ +000c3d90: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000c3da0: 2020 2020 2020 2020 207c 0a7c 2d20 3134 |.|- 14 │ │ │ │ +000c3db0: 7820 7820 7820 202d 2032 3878 2078 2020 x x x - 28x x │ │ │ │ +000c3dc0: 2b20 3236 7820 7820 7820 202b 2036 7820 + 26x x x + 6x │ │ │ │ +000c3dd0: 7820 7820 202d 2034 7820 7820 7820 202d x x - 4x x x - │ │ │ │ +000c3de0: 2036 7820 7820 7820 202b 2038 7820 7820 6x x x + 8x x │ │ │ │ +000c3df0: 202b 2038 7820 7820 787c 0a7c 2020 2020 + 8x x x|.| │ │ │ │ +000c3e00: 2032 2033 2036 2020 2020 2020 3320 3620 2 3 6 3 6 │ │ │ │ +000c3e10: 2020 2020 2030 2034 2036 2020 2020 2031 0 4 6 1 │ │ │ │ +000c3e20: 2034 2036 2020 2020 2032 2034 2036 2020 4 6 2 4 6 │ │ │ │ +000c3e30: 2020 2033 2034 2036 2020 2020 2034 2036 3 4 6 4 6 │ │ │ │ +000c3e40: 2020 2020 2030 2035 207c 0a7c 2020 2020 0 5 |.| │ │ │ │ +000c3e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3e90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c3ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3eb0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 000c3ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c3ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3ee0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c3ef0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000c3f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3f20: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000c3f30: 2020 2020 2020 2020 207c 0a7c 2d20 3134 |.|- 14 │ │ │ │ -000c3f40: 7820 7820 7820 202d 2032 3878 2078 2020 x x x - 28x x │ │ │ │ -000c3f50: 2b20 3236 7820 7820 7820 202b 2036 7820 + 26x x x + 6x │ │ │ │ -000c3f60: 7820 7820 202d 2034 7820 7820 7820 202d x x - 4x x x - │ │ │ │ -000c3f70: 2036 7820 7820 7820 202b 2038 7820 7820 6x x x + 8x x │ │ │ │ -000c3f80: 202b 2038 7820 7820 787c 0a7c 2020 2020 + 8x x x|.| │ │ │ │ -000c3f90: 2032 2033 2036 2020 2020 2020 3320 3620 2 3 6 3 6 │ │ │ │ -000c3fa0: 2020 2020 2030 2034 2036 2020 2020 2031 0 4 6 1 │ │ │ │ -000c3fb0: 2034 2036 2020 2020 2032 2034 2036 2020 4 6 2 4 6 │ │ │ │ -000c3fc0: 2020 2033 2034 2036 2020 2020 2034 2036 3 4 6 4 6 │ │ │ │ -000c3fd0: 2020 2020 2030 2035 207c 0a7c 2020 2020 0 5 |.| │ │ │ │ +000c3ee0: 2020 2020 2020 2020 207c 0a7c 3138 7820 |.|18x │ │ │ │ +000c3ef0: 7820 7820 202b 2032 7820 7820 7820 202b x x + 2x x x + │ │ │ │ +000c3f00: 2034 7820 7820 7820 202d 2034 7820 7820 4x x x - 4x x │ │ │ │ +000c3f10: 202b 2032 3878 2078 2078 2020 2d20 3878 + 28x x x - 8x │ │ │ │ +000c3f20: 2078 2078 2020 2d20 3234 7820 7820 7820 x x - 24x x x │ │ │ │ +000c3f30: 202d 2034 7820 7820 787c 0a7c 2020 2030 - 4x x x|.| 0 │ │ │ │ +000c3f40: 2034 2036 2020 2020 2031 2034 2036 2020 4 6 1 4 6 │ │ │ │ +000c3f50: 2020 2032 2034 2036 2020 2020 2034 2036 2 4 6 4 6 │ │ │ │ +000c3f60: 2020 2020 2020 3120 3520 3620 2020 2020 1 5 6 │ │ │ │ +000c3f70: 3220 3520 3620 2020 2020 2033 2035 2036 2 5 6 3 5 6 │ │ │ │ +000c3f80: 2020 2020 2034 2035 207c 0a7c 2020 2020 4 5 |.| │ │ │ │ +000c3f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3fd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c3fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c3ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c3ff0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 000c4000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4020: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c4030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4040: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000c4050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4070: 2020 2020 2020 2020 207c 0a7c 3138 7820 |.|18x │ │ │ │ -000c4080: 7820 7820 202b 2032 7820 7820 7820 202b x x + 2x x x + │ │ │ │ -000c4090: 2034 7820 7820 7820 202d 2034 7820 7820 4x x x - 4x x │ │ │ │ -000c40a0: 202b 2032 3878 2078 2078 2020 2d20 3878 + 28x x x - 8x │ │ │ │ -000c40b0: 2078 2078 2020 2d20 3234 7820 7820 7820 x x - 24x x x │ │ │ │ -000c40c0: 202d 2034 7820 7820 787c 0a7c 2020 2030 - 4x x x|.| 0 │ │ │ │ -000c40d0: 2034 2036 2020 2020 2031 2034 2036 2020 4 6 1 4 6 │ │ │ │ -000c40e0: 2020 2032 2034 2036 2020 2020 2034 2036 2 4 6 4 6 │ │ │ │ -000c40f0: 2020 2020 2020 3120 3520 3620 2020 2020 1 5 6 │ │ │ │ -000c4100: 3220 3520 3620 2020 2020 2033 2035 2036 2 5 6 3 5 6 │ │ │ │ -000c4110: 2020 2020 2034 2035 207c 0a7c 2020 2020 4 5 |.| │ │ │ │ -000c4120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4020: 2020 2020 2020 2020 207c 0a7c 2038 7820 |.| 8x │ │ │ │ +000c4030: 7820 7820 202b 2033 7820 7820 7820 202b x x + 3x x x + │ │ │ │ +000c4040: 2038 7820 7820 7820 202d 2035 7820 7820 8x x x - 5x x │ │ │ │ +000c4050: 202d 2032 3378 2078 2078 2020 2b20 3278 - 23x x x + 2x │ │ │ │ +000c4060: 2078 2078 2020 2d20 3678 2078 2078 2020 x x - 6x x x │ │ │ │ +000c4070: 2d20 3278 2078 2078 207c 0a7c 2020 2031 - 2x x x |.| 1 │ │ │ │ +000c4080: 2034 2036 2020 2020 2032 2034 2036 2020 4 6 2 4 6 │ │ │ │ +000c4090: 2020 2033 2034 2036 2020 2020 2034 2036 3 4 6 4 6 │ │ │ │ +000c40a0: 2020 2020 2020 3020 3520 3620 2020 2020 0 5 6 │ │ │ │ +000c40b0: 3120 3520 3620 2020 2020 3220 3520 3620 1 5 6 2 5 6 │ │ │ │ +000c40c0: 2020 2020 3320 3520 367c 0a7c 2020 2020 3 5 6|.| │ │ │ │ +000c40d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c40e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c40f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4110: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4120: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ 000c4130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4160: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c4170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4180: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000c4190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c41a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c41b0: 2020 2020 2020 2020 207c 0a7c 2038 7820 |.| 8x │ │ │ │ -000c41c0: 7820 7820 202b 2033 7820 7820 7820 202b x x + 3x x x + │ │ │ │ -000c41d0: 2038 7820 7820 7820 202d 2035 7820 7820 8x x x - 5x x │ │ │ │ -000c41e0: 202d 2032 3378 2078 2078 2020 2b20 3278 - 23x x x + 2x │ │ │ │ -000c41f0: 2078 2078 2020 2d20 3678 2078 2078 2020 x x - 6x x x │ │ │ │ -000c4200: 2d20 3278 2078 2078 207c 0a7c 2020 2031 - 2x x x |.| 1 │ │ │ │ -000c4210: 2034 2036 2020 2020 2032 2034 2036 2020 4 6 2 4 6 │ │ │ │ -000c4220: 2020 2033 2034 2036 2020 2020 2034 2036 3 4 6 4 6 │ │ │ │ -000c4230: 2020 2020 2020 3020 3520 3620 2020 2020 0 5 6 │ │ │ │ -000c4240: 3120 3520 3620 2020 2020 3220 3520 3620 1 5 6 2 5 6 │ │ │ │ -000c4250: 2020 2020 3320 3520 367c 0a7c 2020 2020 3 5 6|.| │ │ │ │ -000c4260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c42a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c42b0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000c42c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c42d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c42e0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -000c42f0: 2020 2020 2020 2020 207c 0a7c 3231 7820 |.|21x │ │ │ │ -000c4300: 7820 7820 202b 2032 3878 2078 2020 2b20 x x + 28x x + │ │ │ │ -000c4310: 3778 2078 2078 2020 2b20 3478 2078 2078 7x x x + 4x x x │ │ │ │ -000c4320: 2020 2d20 3678 2078 2078 2020 2d20 3678 - 6x x x - 6x │ │ │ │ -000c4330: 2078 2078 2020 2d20 7820 7820 202b 2031 x x - x x + 1 │ │ │ │ -000c4340: 3778 2078 2078 2020 2b7c 0a7c 2020 2032 7x x x +|.| 2 │ │ │ │ -000c4350: 2033 2036 2020 2020 2020 3320 3620 2020 3 6 3 6 │ │ │ │ -000c4360: 2020 3020 3420 3620 2020 2020 3120 3420 0 4 6 1 4 │ │ │ │ -000c4370: 3620 2020 2020 3220 3420 3620 2020 2020 6 2 4 6 │ │ │ │ -000c4380: 3320 3420 3620 2020 2034 2036 2020 2020 3 4 6 4 6 │ │ │ │ -000c4390: 2020 3020 3520 3620 207c 0a7c 2020 2020 0 5 6 |.| │ │ │ │ -000c43a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c43b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4150: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000c4160: 2020 2020 2020 2020 207c 0a7c 3231 7820 |.|21x │ │ │ │ +000c4170: 7820 7820 202b 2032 3878 2078 2020 2b20 x x + 28x x + │ │ │ │ +000c4180: 3778 2078 2078 2020 2b20 3478 2078 2078 7x x x + 4x x x │ │ │ │ +000c4190: 2020 2d20 3678 2078 2078 2020 2d20 3678 - 6x x x - 6x │ │ │ │ +000c41a0: 2078 2078 2020 2d20 7820 7820 202b 2031 x x - x x + 1 │ │ │ │ +000c41b0: 3778 2078 2078 2020 2b7c 0a7c 2020 2032 7x x x +|.| 2 │ │ │ │ +000c41c0: 2033 2036 2020 2020 2020 3320 3620 2020 3 6 3 6 │ │ │ │ +000c41d0: 2020 3020 3420 3620 2020 2020 3120 3420 0 4 6 1 4 │ │ │ │ +000c41e0: 3620 2020 2020 3220 3420 3620 2020 2020 6 2 4 6 │ │ │ │ +000c41f0: 3320 3420 3620 2020 2034 2036 2020 2020 3 4 6 4 6 │ │ │ │ +000c4200: 2020 3020 3520 3620 207c 0a7c 2020 2020 0 5 6 |.| │ │ │ │ +000c4210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4250: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4260: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000c4270: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +000c4280: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +000c4290: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000c42a0: 2020 2020 2020 2020 207c 0a7c 2d20 7820 |.|- x │ │ │ │ +000c42b0: 7820 7820 202b 2032 7820 7820 202d 2036 x x + 2x x - 6 │ │ │ │ +000c42c0: 7820 7820 202d 2036 7820 7820 202b 2034 x x - 6x x + 4 │ │ │ │ +000c42d0: 7820 7820 202d 2032 7820 7820 202d 2034 x x - 2x x - 4 │ │ │ │ +000c42e0: 7820 7820 2c20 2020 2020 2020 2020 2020 x x , │ │ │ │ +000c42f0: 2020 2020 2020 2020 207c 0a7c 2020 2034 |.| 4 │ │ │ │ +000c4300: 2035 2036 2020 2020 2035 2036 2020 2020 5 6 5 6 │ │ │ │ +000c4310: 2030 2036 2020 2020 2031 2036 2020 2020 0 6 1 6 │ │ │ │ +000c4320: 2033 2036 2020 2020 2034 2036 2020 2020 3 6 4 6 │ │ │ │ +000c4330: 2035 2036 2020 2020 2020 2020 2020 2020 5 6 │ │ │ │ +000c4340: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4390: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c43a0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000c43b0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ 000c43c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c43d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c43e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c43f0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -000c4400: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -000c4410: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -000c4420: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c4430: 2020 2020 2020 2020 207c 0a7c 2d20 7820 |.|- x │ │ │ │ -000c4440: 7820 7820 202b 2032 7820 7820 202d 2036 x x + 2x x - 6 │ │ │ │ -000c4450: 7820 7820 202d 2036 7820 7820 202b 2034 x x - 6x x + 4 │ │ │ │ -000c4460: 7820 7820 202d 2032 7820 7820 202d 2034 x x - 2x x - 4 │ │ │ │ -000c4470: 7820 7820 2c20 2020 2020 2020 2020 2020 x x , │ │ │ │ -000c4480: 2020 2020 2020 2020 207c 0a7c 2020 2034 |.| 4 │ │ │ │ -000c4490: 2035 2036 2020 2020 2035 2036 2020 2020 5 6 5 6 │ │ │ │ -000c44a0: 2030 2036 2020 2020 2031 2036 2020 2020 0 6 1 6 │ │ │ │ -000c44b0: 2033 2036 2020 2020 2034 2036 2020 2020 3 6 4 6 │ │ │ │ -000c44c0: 2035 2036 2020 2020 2020 2020 2020 2020 5 6 │ │ │ │ -000c44d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c43e0: 2020 2020 2020 2020 207c 0a7c 2d20 3978 |.|- 9x │ │ │ │ +000c43f0: 2078 2020 2b20 3730 7820 7820 7820 202d x + 70x x x - │ │ │ │ +000c4400: 2032 3778 2078 2078 2020 2d20 3336 7820 27x x x - 36x │ │ │ │ +000c4410: 7820 202b 2078 2078 2078 2020 2b20 3478 x + x x x + 4x │ │ │ │ +000c4420: 2078 2078 2020 2d20 3778 2078 2078 2020 x x - 7x x x │ │ │ │ +000c4430: 2d20 3278 2078 2078 207c 0a7c 2020 2020 - 2x x x |.| │ │ │ │ +000c4440: 3220 3620 2020 2020 2031 2033 2036 2020 2 6 1 3 6 │ │ │ │ +000c4450: 2020 2020 3220 3320 3620 2020 2020 2033 2 3 6 3 │ │ │ │ +000c4460: 2036 2020 2020 3020 3420 3620 2020 2020 6 0 4 6 │ │ │ │ +000c4470: 3120 3420 3620 2020 2020 3220 3420 3620 1 4 6 2 4 6 │ │ │ │ +000c4480: 2020 2020 3320 3420 367c 0a7c 2d2d 2d2d 3 4 6|.|---- │ │ │ │ +000c4490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c44a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c44b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c44c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c44d0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ 000c44e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c44f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4520: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c4530: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c4540: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000c4550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4570: 2020 2020 2020 2020 207c 0a7c 2d20 3978 |.|- 9x │ │ │ │ -000c4580: 2078 2020 2b20 3730 7820 7820 7820 202d x + 70x x x - │ │ │ │ -000c4590: 2032 3778 2078 2078 2020 2d20 3336 7820 27x x x - 36x │ │ │ │ -000c45a0: 7820 202b 2078 2078 2078 2020 2b20 3478 x + x x x + 4x │ │ │ │ -000c45b0: 2078 2078 2020 2d20 3778 2078 2078 2020 x x - 7x x x │ │ │ │ -000c45c0: 2d20 3278 2078 2078 207c 0a7c 2020 2020 - 2x x x |.| │ │ │ │ -000c45d0: 3220 3620 2020 2020 2031 2033 2036 2020 2 6 1 3 6 │ │ │ │ -000c45e0: 2020 2020 3220 3320 3620 2020 2020 2033 2 3 6 3 │ │ │ │ -000c45f0: 2036 2020 2020 3020 3420 3620 2020 2020 6 0 4 6 │ │ │ │ -000c4600: 3120 3420 3620 2020 2020 3220 3420 3620 1 4 6 2 4 6 │ │ │ │ -000c4610: 2020 2020 3320 3420 367c 0a7c 2d2d 2d2d 3 4 6|.|---- │ │ │ │ -000c4620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c4630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c4640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c4650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c4660: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -000c4670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4690: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000c46a0: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ -000c46b0: 2020 2020 2020 2032 207c 0a7c 2020 2d20 2 |.| - │ │ │ │ -000c46c0: 3332 7820 7820 7820 202b 2035 7820 7820 32x x x + 5x x │ │ │ │ -000c46d0: 7820 202b 2033 3278 2078 2078 2020 2b20 x + 32x x x + │ │ │ │ -000c46e0: 3778 2078 2078 2020 2d20 3978 2078 2020 7x x x - 9x x │ │ │ │ -000c46f0: 2b20 3478 2078 2020 2b20 3230 7820 7820 + 4x x + 20x x │ │ │ │ -000c4700: 202d 2036 7820 7820 207c 0a7c 3620 2020 - 6x x |.|6 │ │ │ │ -000c4710: 2020 2031 2035 2036 2020 2020 2032 2035 1 5 6 2 5 │ │ │ │ -000c4720: 2036 2020 2020 2020 3320 3520 3620 2020 6 3 5 6 │ │ │ │ -000c4730: 2020 3420 3520 3620 2020 2020 3520 3620 4 5 6 5 6 │ │ │ │ -000c4740: 2020 2020 3020 3620 2020 2020 2031 2036 0 6 1 6 │ │ │ │ -000c4750: 2020 2020 2032 2036 207c 0a7c 2020 2020 2 6 |.| │ │ │ │ -000c4760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c47a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c47b0: 2020 3220 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000c47c0: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000c47d0: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000c47e0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000c47f0: 2020 2020 2020 2020 207c 0a7c 2020 2b20 |.| + │ │ │ │ -000c4800: 3878 2078 2020 2d20 3132 7820 7820 202d 8x x - 12x x - │ │ │ │ -000c4810: 2038 7820 7820 202b 2034 7820 7820 202b 8x x + 4x x + │ │ │ │ -000c4820: 2038 7820 7820 202d 2034 7820 7820 202d 8x x - 4x x - │ │ │ │ -000c4830: 2038 7820 7820 2c20 2020 2020 2020 2020 8x x , │ │ │ │ -000c4840: 2020 2020 2020 2020 207c 0a7c 3620 2020 |.|6 │ │ │ │ -000c4850: 2020 3520 3620 2020 2020 2030 2036 2020 5 6 0 6 │ │ │ │ -000c4860: 2020 2031 2036 2020 2020 2032 2036 2020 1 6 2 6 │ │ │ │ -000c4870: 2020 2033 2036 2020 2020 2034 2036 2020 3 6 4 6 │ │ │ │ -000c4880: 2020 2035 2036 2020 2020 2020 2020 2020 5 6 │ │ │ │ +000c4500: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000c4510: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ +000c4520: 2020 2020 2020 2032 207c 0a7c 2020 2d20 2 |.| - │ │ │ │ +000c4530: 3332 7820 7820 7820 202b 2035 7820 7820 32x x x + 5x x │ │ │ │ +000c4540: 7820 202b 2033 3278 2078 2078 2020 2b20 x + 32x x x + │ │ │ │ +000c4550: 3778 2078 2078 2020 2d20 3978 2078 2020 7x x x - 9x x │ │ │ │ +000c4560: 2b20 3478 2078 2020 2b20 3230 7820 7820 + 4x x + 20x x │ │ │ │ +000c4570: 202d 2036 7820 7820 207c 0a7c 3620 2020 - 6x x |.|6 │ │ │ │ +000c4580: 2020 2031 2035 2036 2020 2020 2032 2035 1 5 6 2 5 │ │ │ │ +000c4590: 2036 2020 2020 2020 3320 3520 3620 2020 6 3 5 6 │ │ │ │ +000c45a0: 2020 3420 3520 3620 2020 2020 3520 3620 4 5 6 5 6 │ │ │ │ +000c45b0: 2020 2020 3020 3620 2020 2020 2031 2036 0 6 1 6 │ │ │ │ +000c45c0: 2020 2020 2032 2036 207c 0a7c 2020 2020 2 6 |.| │ │ │ │ +000c45d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c45e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c45f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4610: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4620: 2020 3220 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ +000c4630: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ +000c4640: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ +000c4650: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000c4660: 2020 2020 2020 2020 207c 0a7c 2020 2b20 |.| + │ │ │ │ +000c4670: 3878 2078 2020 2d20 3132 7820 7820 202d 8x x - 12x x - │ │ │ │ +000c4680: 2038 7820 7820 202b 2034 7820 7820 202b 8x x + 4x x + │ │ │ │ +000c4690: 2038 7820 7820 202d 2034 7820 7820 202d 8x x - 4x x - │ │ │ │ +000c46a0: 2038 7820 7820 2c20 2020 2020 2020 2020 8x x , │ │ │ │ +000c46b0: 2020 2020 2020 2020 207c 0a7c 3620 2020 |.|6 │ │ │ │ +000c46c0: 2020 3520 3620 2020 2020 2030 2036 2020 5 6 0 6 │ │ │ │ +000c46d0: 2020 2031 2036 2020 2020 2032 2036 2020 1 6 2 6 │ │ │ │ +000c46e0: 2020 2033 2036 2020 2020 2034 2036 2020 3 6 4 6 │ │ │ │ +000c46f0: 2020 2035 2036 2020 2020 2020 2020 2020 5 6 │ │ │ │ +000c4700: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4750: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4760: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000c4770: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000c4780: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000c4790: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000c47a0: 2020 2020 2020 2020 207c 0a7c 202d 2031 |.| - 1 │ │ │ │ +000c47b0: 3178 2078 2078 2020 2d20 3278 2078 2020 1x x x - 2x x │ │ │ │ +000c47c0: 2d20 3678 2078 2020 2d20 3478 2078 2020 - 6x x - 4x x │ │ │ │ +000c47d0: 2b20 3478 2078 2020 2b20 3478 2078 2020 + 4x x + 4x x │ │ │ │ +000c47e0: 2d20 3278 2078 2020 2d20 3478 2078 202c - 2x x - 4x x , │ │ │ │ +000c47f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4800: 2020 3420 3520 3620 2020 2020 3520 3620 4 5 6 5 6 │ │ │ │ +000c4810: 2020 2020 3020 3620 2020 2020 3120 3620 0 6 1 6 │ │ │ │ +000c4820: 2020 2020 3220 3620 2020 2020 3320 3620 2 6 3 6 │ │ │ │ +000c4830: 2020 2020 3420 3620 2020 2020 3520 3620 4 6 5 6 │ │ │ │ +000c4840: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4890: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c48a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c48b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c48c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c48d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c48e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c48f0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000c4900: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000c4910: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000c4920: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000c4930: 2020 2020 2020 2020 207c 0a7c 202d 2031 |.| - 1 │ │ │ │ -000c4940: 3178 2078 2078 2020 2d20 3278 2078 2020 1x x x - 2x x │ │ │ │ -000c4950: 2d20 3678 2078 2020 2d20 3478 2078 2020 - 6x x - 4x x │ │ │ │ -000c4960: 2b20 3478 2078 2020 2b20 3478 2078 2020 + 4x x + 4x x │ │ │ │ -000c4970: 2d20 3278 2078 2020 2d20 3478 2078 202c - 2x x - 4x x , │ │ │ │ -000c4980: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c4990: 2020 3420 3520 3620 2020 2020 3520 3620 4 5 6 5 6 │ │ │ │ -000c49a0: 2020 2020 3020 3620 2020 2020 3120 3620 0 6 1 6 │ │ │ │ -000c49b0: 2020 2020 3220 3620 2020 2020 3320 3620 2 6 3 6 │ │ │ │ -000c49c0: 2020 2020 3420 3620 2020 2020 3520 3620 4 6 5 6 │ │ │ │ +000c48c0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000c48d0: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000c48e0: 2020 2020 2020 3220 207c 0a7c 2032 3978 2 |.| 29x │ │ │ │ +000c48f0: 2078 2078 2020 2d20 3133 7820 7820 7820 x x - 13x x x │ │ │ │ +000c4900: 202d 2033 3378 2078 2078 2020 2b20 3978 - 33x x x + 9x │ │ │ │ +000c4910: 2078 2078 2020 2b20 3132 7820 7820 202b x x + 12x x + │ │ │ │ +000c4920: 2031 3478 2078 2020 2d20 3678 2078 2020 14x x - 6x x │ │ │ │ +000c4930: 2b20 3678 2078 2020 2b7c 0a7c 2020 2020 + 6x x +|.| │ │ │ │ +000c4940: 3120 3520 3620 2020 2020 2032 2035 2036 1 5 6 2 5 6 │ │ │ │ +000c4950: 2020 2020 2020 3320 3520 3620 2020 2020 3 5 6 │ │ │ │ +000c4960: 3420 3520 3620 2020 2020 2035 2036 2020 4 5 6 5 6 │ │ │ │ +000c4970: 2020 2020 3020 3620 2020 2020 3120 3620 0 6 1 6 │ │ │ │ +000c4980: 2020 2020 3320 3620 207c 0a7c 2020 2020 3 6 |.| │ │ │ │ +000c4990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c49a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c49b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c49c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c49d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c49e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c49f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4a20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c4a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4a50: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000c4a60: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000c4a70: 2020 2020 2020 3220 207c 0a7c 2032 3978 2 |.| 29x │ │ │ │ -000c4a80: 2078 2078 2020 2d20 3133 7820 7820 7820 x x - 13x x x │ │ │ │ -000c4a90: 202d 2033 3378 2078 2078 2020 2b20 3978 - 33x x x + 9x │ │ │ │ -000c4aa0: 2078 2078 2020 2b20 3132 7820 7820 202b x x + 12x x + │ │ │ │ -000c4ab0: 2031 3478 2078 2020 2d20 3678 2078 2020 14x x - 6x x │ │ │ │ -000c4ac0: 2b20 3678 2078 2020 2b7c 0a7c 2020 2020 + 6x x +|.| │ │ │ │ -000c4ad0: 3120 3520 3620 2020 2020 2032 2035 2036 1 5 6 2 5 6 │ │ │ │ -000c4ae0: 2020 2020 2020 3320 3520 3620 2020 2020 3 5 6 │ │ │ │ -000c4af0: 3420 3520 3620 2020 2020 2035 2036 2020 4 5 6 5 6 │ │ │ │ -000c4b00: 2020 2020 3020 3620 2020 2020 3120 3620 0 6 1 6 │ │ │ │ -000c4b10: 2020 2020 3320 3620 207c 0a7c 2020 2020 3 6 |.| │ │ │ │ -000c4b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4a70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4ac0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4b10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4b20: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000c4b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4b60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c4b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4bb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c4bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4c00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c4c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4c50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c4c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4b50: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000c4b60: 2020 2020 2020 2020 207c 0a7c 202b 2033 |.| + 3 │ │ │ │ +000c4b70: 7820 7820 202d 2032 3578 2078 2078 2020 x x - 25x x x │ │ │ │ +000c4b80: 2d20 3233 7820 7820 7820 202b 2034 7820 - 23x x x + 4x │ │ │ │ +000c4b90: 7820 7820 202b 2032 3778 2078 2078 2020 x x + 27x x x │ │ │ │ +000c4ba0: 2d20 3134 7820 7820 7820 202d 2039 7820 - 14x x x - 9x │ │ │ │ +000c4bb0: 7820 202d 2032 7820 787c 0a7c 2020 2020 x - 2x x|.| │ │ │ │ +000c4bc0: 2034 2036 2020 2020 2020 3020 3520 3620 4 6 0 5 6 │ │ │ │ +000c4bd0: 2020 2020 2031 2035 2036 2020 2020 2032 1 5 6 2 │ │ │ │ +000c4be0: 2035 2036 2020 2020 2020 3320 3520 3620 5 6 3 5 6 │ │ │ │ +000c4bf0: 2020 2020 2034 2035 2036 2020 2020 2035 4 5 6 5 │ │ │ │ +000c4c00: 2036 2020 2020 2030 207c 0a7c 2d2d 2d2d 6 0 |.|---- │ │ │ │ +000c4c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c4c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c4c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c4c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c4c50: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ +000c4c60: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +000c4c70: 2020 2020 3220 2020 2020 3320 2020 2020 2 3 │ │ │ │ 000c4c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4ca0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c4cb0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c4cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4ca0: 2020 2020 2020 2020 207c 0a7c 2d20 3230 |.|- 20 │ │ │ │ +000c4cb0: 7820 7820 202b 2032 7820 7820 202b 2031 x x + 2x x + 1 │ │ │ │ +000c4cc0: 3278 2078 2020 2d20 3478 202c 2020 2020 2x x - 4x , │ │ │ │ 000c4cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4ce0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000c4cf0: 2020 2020 2020 2020 207c 0a7c 202b 2033 |.| + 3 │ │ │ │ -000c4d00: 7820 7820 202d 2032 3578 2078 2078 2020 x x - 25x x x │ │ │ │ -000c4d10: 2d20 3233 7820 7820 7820 202b 2034 7820 - 23x x x + 4x │ │ │ │ -000c4d20: 7820 7820 202b 2032 3778 2078 2078 2020 x x + 27x x x │ │ │ │ -000c4d30: 2d20 3134 7820 7820 7820 202d 2039 7820 - 14x x x - 9x │ │ │ │ -000c4d40: 7820 202d 2032 7820 787c 0a7c 2020 2020 x - 2x x|.| │ │ │ │ -000c4d50: 2034 2036 2020 2020 2020 3020 3520 3620 4 6 0 5 6 │ │ │ │ -000c4d60: 2020 2020 2031 2035 2036 2020 2020 2032 1 5 6 2 │ │ │ │ -000c4d70: 2035 2036 2020 2020 2020 3320 3520 3620 5 6 3 5 6 │ │ │ │ -000c4d80: 2020 2020 2034 2035 2036 2020 2020 2035 4 5 6 5 │ │ │ │ -000c4d90: 2036 2020 2020 2030 207c 0a7c 2d2d 2d2d 6 0 |.|---- │ │ │ │ -000c4da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c4db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c4dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c4dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c4de0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -000c4df0: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -000c4e00: 2020 2020 3220 2020 2020 3320 2020 2020 2 3 │ │ │ │ +000c4ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4cf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4d00: 2033 2036 2020 2020 2034 2036 2020 2020 3 6 4 6 │ │ │ │ +000c4d10: 2020 3520 3620 2020 2020 3620 2020 2020 5 6 6 │ │ │ │ +000c4d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4d40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4d90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4de0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c4e30: 2020 2020 2020 2020 207c 0a7c 2d20 3230 |.|- 20 │ │ │ │ -000c4e40: 7820 7820 202b 2032 7820 7820 202b 2031 x x + 2x x + 1 │ │ │ │ -000c4e50: 3278 2078 2020 2d20 3478 202c 2020 2020 2x x - 4x , │ │ │ │ +000c4e30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c4e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4e80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c4e90: 2033 2036 2020 2020 2034 2036 2020 2020 3 6 4 6 │ │ │ │ -000c4ea0: 2020 3520 3620 2020 2020 3620 2020 2020 5 6 6 │ │ │ │ +000c4e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c4ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4ed0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c4ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -50428,608 +50428,608 @@ │ │ │ │ 000c4fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4fc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c4fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c4ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5010: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c5020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c5020: 2032 2020 2020 2020 2032 2020 2020 2033 2 2 3 │ │ │ │ 000c5030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5060: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c5070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c5060: 2020 2020 2020 2020 207c 0a7c 2033 7820 |.| 3x │ │ │ │ +000c5070: 7820 202d 2032 7820 7820 202b 2034 7820 x - 2x x + 4x │ │ │ │ +000c5080: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 000c5090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c50a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c50b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c50c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c50b0: 2020 2020 2020 2020 207c 0a7c 2020 2034 |.| 4 │ │ │ │ +000c50c0: 2036 2020 2020 2035 2036 2020 2020 2036 6 5 6 6 │ │ │ │ 000c50d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c50e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c50f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5100: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c5110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5150: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c5160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c51a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c51b0: 2032 2020 2020 2020 2032 2020 2020 2033 2 2 3 │ │ │ │ +000c51b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c51c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c51d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c51e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c51f0: 2020 2020 2020 2020 207c 0a7c 2033 7820 |.| 3x │ │ │ │ -000c5200: 7820 202d 2032 7820 7820 202b 2034 7820 x - 2x x + 4x │ │ │ │ -000c5210: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +000c51f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c5200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c5210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5240: 2020 2020 2020 2020 207c 0a7c 2020 2034 |.| 4 │ │ │ │ -000c5250: 2036 2020 2020 2035 2036 2020 2020 2036 6 5 6 6 │ │ │ │ +000c5240: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c5250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5290: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c52a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c52b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c52c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c5290: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ +000c52a0: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ +000c52b0: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000c52c0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 000c52d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c52e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c52f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c52e0: 2020 2020 2020 2020 207c 0a7c 2020 2b20 |.| + │ │ │ │ +000c52f0: 3130 7820 7820 202d 2036 7820 7820 202d 10x x - 6x x - │ │ │ │ +000c5300: 2031 3078 2078 2020 2b20 3378 2078 2020 10x x + 3x x │ │ │ │ +000c5310: 2d20 3278 2078 2020 2020 2020 2020 2020 - 2x x │ │ │ │ 000c5320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5330: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c5340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c5330: 2020 2020 2020 2020 207c 0a7c 3620 2020 |.|6 │ │ │ │ +000c5340: 2020 2031 2036 2020 2020 2032 2036 2020 1 6 2 6 │ │ │ │ +000c5350: 2020 2020 3320 3620 2020 2020 3420 3620 3 6 4 6 │ │ │ │ +000c5360: 2020 2020 3520 3620 2020 2020 2020 2020 5 6 │ │ │ │ 000c5370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5380: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c5390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c53a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c53b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c53c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c53d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c53e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c53f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c5380: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000c5390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c53a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c53b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c53c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c53d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +000c53e0: 2074 696d 6520 6465 7363 7269 6265 206f time describe o │ │ │ │ +000c53f0: 6f20 2020 2020 2020 2020 2020 2020 2020 o │ │ │ │ 000c5400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5420: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ -000c5430: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000c5440: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000c5450: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000c5460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5470: 2020 2020 2020 2020 207c 0a7c 2020 2b20 |.| + │ │ │ │ -000c5480: 3130 7820 7820 202d 2036 7820 7820 202d 10x x - 6x x - │ │ │ │ -000c5490: 2031 3078 2078 2020 2b20 3378 2078 2020 10x x + 3x x │ │ │ │ -000c54a0: 2d20 3278 2078 2020 2020 2020 2020 2020 - 2x x │ │ │ │ +000c5420: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ +000c5430: 7573 6564 2030 2e30 3230 3838 3337 7320 used 0.0208837s │ │ │ │ +000c5440: 2863 7075 293b 2030 2e30 3230 3838 3435 (cpu); 0.0208845 │ │ │ │ +000c5450: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +000c5460: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +000c5470: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c5480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c5490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c54a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c54b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c54c0: 2020 2020 2020 2020 207c 0a7c 3620 2020 |.|6 │ │ │ │ -000c54d0: 2020 2031 2036 2020 2020 2032 2036 2020 1 6 2 6 │ │ │ │ -000c54e0: 2020 2020 3320 3620 2020 2020 3420 3620 3 6 4 6 │ │ │ │ -000c54f0: 2020 2020 3520 3620 2020 2020 2020 2020 5 6 │ │ │ │ +000c54c0: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ +000c54d0: 2072 6174 696f 6e61 6c20 6d61 7020 6465 rational map de │ │ │ │ +000c54e0: 6669 6e65 6420 6279 2066 6f72 6d73 206f fined by forms o │ │ │ │ +000c54f0: 6620 6465 6772 6565 2033 2020 2020 2020 f degree 3 │ │ │ │ 000c5500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5510: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -000c5520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c5530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c5540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c5550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c5560: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -000c5570: 2074 696d 6520 6465 7363 7269 6265 206f time describe o │ │ │ │ -000c5580: 6f20 2020 2020 2020 2020 2020 2020 2020 o │ │ │ │ -000c5590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c55a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c55b0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -000c55c0: 7573 6564 2030 2e30 3138 3538 3632 7320 used 0.0185862s │ │ │ │ -000c55d0: 2863 7075 293b 2030 2e30 3138 3538 3636 (cpu); 0.0185866 │ │ │ │ -000c55e0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -000c55f0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +000c5510: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c5520: 2073 6f75 7263 6520 7661 7269 6574 793a source variety: │ │ │ │ +000c5530: 2050 505e 3620 2020 2020 2020 2020 2020 PP^6 │ │ │ │ +000c5540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c5550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c5560: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c5570: 2074 6172 6765 7420 7661 7269 6574 793a target variety: │ │ │ │ +000c5580: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ +000c5590: 6563 7469 6f6e 206f 6620 7479 7065 2028 ection of type ( │ │ │ │ +000c55a0: 322c 322c 3229 2069 6e20 5050 5e39 2020 2,2,2) in PP^9 │ │ │ │ +000c55b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c55c0: 2064 6f6d 696e 616e 6365 3a20 7472 7565 dominance: true │ │ │ │ +000c55d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c55e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c55f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5600: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c5610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c5610: 2062 6972 6174 696f 6e61 6c69 7479 3a20 birationality: │ │ │ │ +000c5620: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ 000c5630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5650: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -000c5660: 2072 6174 696f 6e61 6c20 6d61 7020 6465 rational map de │ │ │ │ -000c5670: 6669 6e65 6420 6279 2066 6f72 6d73 206f fined by forms o │ │ │ │ -000c5680: 6620 6465 6772 6565 2033 2020 2020 2020 f degree 3 │ │ │ │ +000c5650: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000c5660: 2070 726f 6a65 6374 6976 6520 6465 6772 projective degr │ │ │ │ +000c5670: 6565 733a 207b 312c 2033 2c20 392c 2031 ees: {1, 3, 9, 1 │ │ │ │ +000c5680: 372c 2032 312c 2031 362c 2038 7d20 2020 7, 21, 16, 8} │ │ │ │ 000c5690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c56a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c56b0: 2073 6f75 7263 6520 7661 7269 6574 793a source variety: │ │ │ │ -000c56c0: 2050 505e 3620 2020 2020 2020 2020 2020 PP^6 │ │ │ │ -000c56d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c56b0: 206e 756d 6265 7220 6f66 206d 696e 696d number of minim │ │ │ │ +000c56c0: 616c 2072 6570 7265 7365 6e74 6174 6976 al representativ │ │ │ │ +000c56d0: 6573 3a20 3120 2020 2020 2020 2020 2020 es: 1 │ │ │ │ 000c56e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c56f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c5700: 2074 6172 6765 7420 7661 7269 6574 793a target variety: │ │ │ │ -000c5710: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ -000c5720: 6563 7469 6f6e 206f 6620 7479 7065 2028 ection of type ( │ │ │ │ -000c5730: 322c 322c 3229 2069 6e20 5050 5e39 2020 2,2,2) in PP^9 │ │ │ │ +000c5700: 2064 696d 656e 7369 6f6e 2062 6173 6520 dimension base │ │ │ │ +000c5710: 6c6f 6375 733a 2033 2020 2020 2020 2020 locus: 3 │ │ │ │ +000c5720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c5730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5740: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c5750: 2064 6f6d 696e 616e 6365 3a20 7472 7565 dominance: true │ │ │ │ -000c5760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c5750: 2064 6567 7265 6520 6261 7365 206c 6f63 degree base loc │ │ │ │ +000c5760: 7573 3a20 3130 2020 2020 2020 2020 2020 us: 10 │ │ │ │ 000c5770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5790: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c57a0: 2062 6972 6174 696f 6e61 6c69 7479 3a20 birationality: │ │ │ │ -000c57b0: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +000c57a0: 2063 6f65 6666 6963 6965 6e74 2072 696e coefficient rin │ │ │ │ +000c57b0: 673a 2051 5120 2020 2020 2020 2020 2020 g: QQ │ │ │ │ 000c57c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c57d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c57e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c57f0: 2070 726f 6a65 6374 6976 6520 6465 6772 projective degr │ │ │ │ -000c5800: 6565 733a 207b 312c 2033 2c20 392c 2031 ees: {1, 3, 9, 1 │ │ │ │ -000c5810: 372c 2032 312c 2031 362c 2038 7d20 2020 7, 21, 16, 8} │ │ │ │ -000c5820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5830: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c5840: 206e 756d 6265 7220 6f66 206d 696e 696d number of minim │ │ │ │ -000c5850: 616c 2072 6570 7265 7365 6e74 6174 6976 al representativ │ │ │ │ -000c5860: 6573 3a20 3120 2020 2020 2020 2020 2020 es: 1 │ │ │ │ -000c5870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5880: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c5890: 2064 696d 656e 7369 6f6e 2062 6173 6520 dimension base │ │ │ │ -000c58a0: 6c6f 6375 733a 2033 2020 2020 2020 2020 locus: 3 │ │ │ │ -000c58b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c58c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c58d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c58e0: 2064 6567 7265 6520 6261 7365 206c 6f63 degree base loc │ │ │ │ -000c58f0: 7573 3a20 3130 2020 2020 2020 2020 2020 us: 10 │ │ │ │ -000c5900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5920: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000c5930: 2063 6f65 6666 6963 6965 6e74 2072 696e coefficient rin │ │ │ │ -000c5940: 673a 2051 5120 2020 2020 2020 2020 2020 g: QQ │ │ │ │ -000c5950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c5970: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -000c5980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c5990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c59a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c59b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c59c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ -000c59d0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -000c59e0: 202a 202a 6e6f 7465 2073 7065 6369 616c * *note special │ │ │ │ -000c59f0: 4372 656d 6f6e 6154 7261 6e73 666f 726d CremonaTransform │ │ │ │ -000c5a00: 6174 696f 6e3a 2073 7065 6369 616c 4372 ation: specialCr │ │ │ │ -000c5a10: 656d 6f6e 6154 7261 6e73 666f 726d 6174 emonaTransformat │ │ │ │ -000c5a20: 696f 6e2c 202d 2d0a 2020 2020 7370 6563 ion, --. spec │ │ │ │ -000c5a30: 6961 6c20 4372 656d 6f6e 6120 7472 616e ial Cremona tran │ │ │ │ -000c5a40: 7366 6f72 6d61 7469 6f6e 7320 7768 6f73 sformations whos │ │ │ │ -000c5a50: 6520 6261 7365 206c 6f63 7573 2068 6173 e base locus has │ │ │ │ -000c5a60: 2064 696d 656e 7369 6f6e 2061 7420 6d6f dimension at mo │ │ │ │ -000c5a70: 7374 0a20 2020 2074 6872 6565 0a20 202a st. three. * │ │ │ │ -000c5a80: 202a 6e6f 7465 2073 7065 6369 616c 5175 *note specialQu │ │ │ │ -000c5a90: 6164 7261 7469 6354 7261 6e73 666f 726d adraticTransform │ │ │ │ -000c5aa0: 6174 696f 6e3a 2073 7065 6369 616c 5175 ation: specialQu │ │ │ │ -000c5ab0: 6164 7261 7469 6354 7261 6e73 666f 726d adraticTransform │ │ │ │ -000c5ac0: 6174 696f 6e2c 202d 2d0a 2020 2020 7370 ation, --. sp │ │ │ │ -000c5ad0: 6563 6961 6c20 7175 6164 7261 7469 6320 ecial quadratic │ │ │ │ -000c5ae0: 7472 616e 7366 6f72 6d61 7469 6f6e 7320 transformations │ │ │ │ -000c5af0: 7768 6f73 6520 6261 7365 206c 6f63 7573 whose base locus │ │ │ │ -000c5b00: 2068 6173 2064 696d 656e 7369 6f6e 2074 has dimension t │ │ │ │ -000c5b10: 6872 6565 0a20 202a 202a 6e6f 7465 2071 hree. * *note q │ │ │ │ -000c5b20: 7561 6472 6f51 7561 6472 6963 4372 656d uadroQuadricCrem │ │ │ │ -000c5b30: 6f6e 6154 7261 6e73 666f 726d 6174 696f onaTransformatio │ │ │ │ -000c5b40: 6e3a 0a20 2020 2071 7561 6472 6f51 7561 n:. quadroQua │ │ │ │ -000c5b50: 6472 6963 4372 656d 6f6e 6154 7261 6e73 dricCremonaTrans │ │ │ │ -000c5b60: 666f 726d 6174 696f 6e2c 202d 2d20 7175 formation, -- qu │ │ │ │ -000c5b70: 6164 726f 2d71 7561 6472 6963 2043 7265 adro-quadric Cre │ │ │ │ -000c5b80: 6d6f 6e61 0a20 2020 2074 7261 6e73 666f mona. transfo │ │ │ │ -000c5b90: 726d 6174 696f 6e73 0a0a 5761 7973 2074 rmations..Ways t │ │ │ │ -000c5ba0: 6f20 7573 6520 7370 6563 6961 6c43 7562 o use specialCub │ │ │ │ -000c5bb0: 6963 5472 616e 7366 6f72 6d61 7469 6f6e icTransformation │ │ │ │ -000c5bc0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -000c5bd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000c5be0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -000c5bf0: 7370 6563 6961 6c43 7562 6963 5472 616e specialCubicTran │ │ │ │ -000c5c00: 7366 6f72 6d61 7469 6f6e 2852 696e 672c sformation(Ring, │ │ │ │ -000c5c10: 5a5a 2922 0a20 202a 2022 7370 6563 6961 ZZ)". * "specia │ │ │ │ -000c5c20: 6c43 7562 6963 5472 616e 7366 6f72 6d61 lCubicTransforma │ │ │ │ -000c5c30: 7469 6f6e 285a 5a29 220a 2020 2a20 2273 tion(ZZ)". * "s │ │ │ │ -000c5c40: 7065 6369 616c 4375 6269 6354 7261 6e73 pecialCubicTrans │ │ │ │ -000c5c50: 666f 726d 6174 696f 6e28 5a5a 2c52 696e formation(ZZ,Rin │ │ │ │ -000c5c60: 6729 220a 0a46 6f72 2074 6865 2070 726f g)"..For the pro │ │ │ │ -000c5c70: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -000c5c80: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -000c5c90: 6f62 6a65 6374 202a 6e6f 7465 2073 7065 object *note spe │ │ │ │ -000c5ca0: 6369 616c 4375 6269 6354 7261 6e73 666f cialCubicTransfo │ │ │ │ -000c5cb0: 726d 6174 696f 6e3a 2073 7065 6369 616c rmation: special │ │ │ │ -000c5cc0: 4375 6269 6354 7261 6e73 666f 726d 6174 CubicTransformat │ │ │ │ -000c5cd0: 696f 6e2c 2069 7320 610a 2a6e 6f74 6520 ion, is a.*note │ │ │ │ -000c5ce0: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ -000c5cf0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ -000c5d00: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ -000c5d10: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ -000c5d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c5d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c5d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c5d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c5d60: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -000c5d70: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -000c5d80: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -000c5d90: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -000c5da0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -000c5db0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -000c5dc0: 6163 6b61 6765 732f 4372 656d 6f6e 612f ackages/Cremona/ │ │ │ │ -000c5dd0: 0a64 6f63 756d 656e 7461 7469 6f6e 2e6d .documentation.m │ │ │ │ -000c5de0: 323a 3935 313a 302e 0a1f 0a46 696c 653a 2:951:0....File: │ │ │ │ -000c5df0: 2043 7265 6d6f 6e61 2e69 6e66 6f2c 204e Cremona.info, N │ │ │ │ -000c5e00: 6f64 653a 2073 7065 6369 616c 5175 6164 ode: specialQuad │ │ │ │ -000c5e10: 7261 7469 6354 7261 6e73 666f 726d 6174 raticTransformat │ │ │ │ -000c5e20: 696f 6e2c 204e 6578 743a 2073 7562 7374 ion, Next: subst │ │ │ │ -000c5e30: 6974 7574 655f 6c70 5261 7469 6f6e 616c itute_lpRational │ │ │ │ -000c5e40: 4d61 705f 636d 506f 6c79 6e6f 6d69 616c Map_cmPolynomial │ │ │ │ -000c5e50: 5269 6e67 5f63 6d50 6f6c 796e 6f6d 6961 Ring_cmPolynomia │ │ │ │ -000c5e60: 6c52 696e 675f 7270 2c20 5072 6576 3a20 lRing_rp, Prev: │ │ │ │ -000c5e70: 7370 6563 6961 6c43 7562 6963 5472 616e specialCubicTran │ │ │ │ -000c5e80: 7366 6f72 6d61 7469 6f6e 2c20 5570 3a20 sformation, Up: │ │ │ │ -000c5e90: 546f 700a 0a73 7065 6369 616c 5175 6164 Top..specialQuad │ │ │ │ -000c5ea0: 7261 7469 6354 7261 6e73 666f 726d 6174 raticTransformat │ │ │ │ -000c5eb0: 696f 6e20 2d2d 2073 7065 6369 616c 2071 ion -- special q │ │ │ │ -000c5ec0: 7561 6472 6174 6963 2074 7261 6e73 666f uadratic transfo │ │ │ │ -000c5ed0: 726d 6174 696f 6e73 2077 686f 7365 2062 rmations whose b │ │ │ │ -000c5ee0: 6173 6520 6c6f 6375 7320 6861 7320 6469 ase locus has di │ │ │ │ -000c5ef0: 6d65 6e73 696f 6e20 7468 7265 650a 2a2a mension three.** │ │ │ │ -000c5f00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000c5f10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000c5f20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000c5f30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000c5f40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000c5f50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000c5f60: 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 6167 ******.. * Usag │ │ │ │ -000c5f70: 653a 200a 2020 2020 2020 2020 7370 6563 e: . spec │ │ │ │ -000c5f80: 6961 6c51 7561 6472 6174 6963 5472 616e ialQuadraticTran │ │ │ │ -000c5f90: 7366 6f72 6d61 7469 6f6e 2069 200a 2020 sformation i . │ │ │ │ -000c5fa0: 2020 2020 2020 7370 6563 6961 6c51 7561 specialQua │ │ │ │ -000c5fb0: 6472 6174 6963 5472 616e 7366 6f72 6d61 draticTransforma │ │ │ │ -000c5fc0: 7469 6f6e 2869 2c4b 290a 2020 2a20 496e tion(i,K). * In │ │ │ │ -000c5fd0: 7075 7473 3a0a 2020 2020 2020 2a20 692c puts:. * i, │ │ │ │ -000c5fe0: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ -000c5ff0: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ -000c6000: 295a 5a2c 2c20 616e 2069 6e74 6567 6572 )ZZ,, an integer │ │ │ │ -000c6010: 2062 6574 7765 656e 2031 2061 6e64 2031 between 1 and 1 │ │ │ │ -000c6020: 310a 2020 2020 2020 2a20 4b2c 2061 202a 1. * K, a * │ │ │ │ -000c6030: 6e6f 7465 2072 696e 673a 2028 4d61 6361 note ring: (Maca │ │ │ │ -000c6040: 756c 6179 3244 6f63 2952 696e 672c 2c20 ulay2Doc)Ring,, │ │ │ │ -000c6050: 7468 6520 6772 6f75 6e64 2066 6965 6c64 the ground field │ │ │ │ -000c6060: 2028 6f70 7469 6f6e 616c 2c20 7468 650a (optional, the. │ │ │ │ -000c6070: 2020 2020 2020 2020 6465 6661 756c 7420 default │ │ │ │ -000c6080: 7661 6c75 6520 6973 202a 6e6f 7465 2051 value is *note Q │ │ │ │ -000c6090: 513a 2028 4d61 6361 756c 6179 3244 6f63 Q: (Macaulay2Doc │ │ │ │ -000c60a0: 2951 512c 290a 2020 2a20 4f75 7470 7574 )QQ,). * Output │ │ │ │ -000c60b0: 733a 0a20 2020 2020 202a 2061 202a 6e6f s:. * a *no │ │ │ │ -000c60c0: 7465 2072 6174 696f 6e61 6c20 6d61 703a te rational map: │ │ │ │ -000c60d0: 2052 6174 696f 6e61 6c4d 6170 2c2c 2061 RationalMap,, a │ │ │ │ -000c60e0: 6e20 6578 616d 706c 6520 6f66 2073 7065 n example of spe │ │ │ │ -000c60f0: 6369 616c 2071 7561 6472 6174 6963 0a20 cial quadratic. │ │ │ │ -000c6100: 2020 2020 2020 2062 6972 6174 696f 6e61 birationa │ │ │ │ -000c6110: 6c20 7472 616e 7366 6f72 6d61 7469 6f6e l transformation │ │ │ │ -000c6120: 206f 7665 7220 4b2c 2061 6363 6f72 6469 over K, accordi │ │ │ │ -000c6130: 6e67 2074 6f20 7468 6520 636c 6173 7369 ng to the classi │ │ │ │ -000c6140: 6669 6361 7469 6f6e 2067 6976 656e 0a20 fication given. │ │ │ │ -000c6150: 2020 2020 2020 2069 6e20 5461 626c 6520 in Table │ │ │ │ -000c6160: 3120 6f66 2045 7861 6d70 6c65 7320 6f66 1 of Examples of │ │ │ │ -000c6170: 2073 7065 6369 616c 2071 7561 6472 6174 special quadrat │ │ │ │ -000c6180: 6963 2062 6972 6174 696f 6e61 6c20 7472 ic birational tr │ │ │ │ -000c6190: 616e 7366 6f72 6d61 7469 6f6e 730a 2020 ansformations. │ │ │ │ -000c61a0: 2020 2020 2020 696e 746f 2063 6f6d 706c into compl │ │ │ │ -000c61b0: 6574 6520 696e 7465 7273 6563 7469 6f6e ete intersection │ │ │ │ -000c61c0: 7320 6f66 2071 7561 6472 6963 7320 2873 s of quadrics (s │ │ │ │ -000c61d0: 6565 0a20 2020 2020 2020 2068 7474 7073 ee. https │ │ │ │ -000c61e0: 3a2f 2f77 7777 2e73 6369 656e 6365 6469 ://www.sciencedi │ │ │ │ -000c61f0: 7265 6374 2e63 6f6d 2f73 6369 656e 6365 rect.com/science │ │ │ │ -000c6200: 2f61 7274 6963 6c65 2f70 6969 2f53 3037 /article/pii/S07 │ │ │ │ -000c6210: 3437 3731 3731 3135 3030 3130 3239 3f76 47717115001029?v │ │ │ │ -000c6220: 6961 0a20 2020 2020 2020 2025 3344 6968 ia. %3Dih │ │ │ │ -000c6230: 7562 2029 2e0a 0a44 6573 6372 6970 7469 ub )...Descripti │ │ │ │ -000c6240: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -000c6250: 5468 6520 6669 656c 6420 4b20 6973 2072 The field K is r │ │ │ │ -000c6260: 6571 7569 7265 6420 746f 2062 6520 6c61 equired to be la │ │ │ │ -000c6270: 7267 6520 656e 6f75 6768 2e0a 0a2b 2d2d rge enough...+-- │ │ │ │ -000c6280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c6290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c62a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c62b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c62c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -000c62d0: 203a 2074 696d 6520 7370 6563 6961 6c51 : time specialQ │ │ │ │ -000c62e0: 7561 6472 6174 6963 5472 616e 7366 6f72 uadraticTransfor │ │ │ │ -000c62f0: 6d61 7469 6f6e 2034 2020 2020 2020 2020 mation 4 │ │ │ │ -000c6300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6310: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -000c6320: 2d20 7573 6564 2030 2e30 3733 3538 3831 - used 0.0735881 │ │ │ │ -000c6330: 7320 2863 7075 293b 2030 2e30 3733 3537 s (cpu); 0.07357 │ │ │ │ -000c6340: 3032 7320 2874 6872 6561 6429 3b20 3073 02s (thread); 0s │ │ │ │ -000c6350: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ -000c6360: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c57e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000c57f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c5800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c5810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c5820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c5830: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ +000c5840: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +000c5850: 202a 202a 6e6f 7465 2073 7065 6369 616c * *note special │ │ │ │ +000c5860: 4372 656d 6f6e 6154 7261 6e73 666f 726d CremonaTransform │ │ │ │ +000c5870: 6174 696f 6e3a 2073 7065 6369 616c 4372 ation: specialCr │ │ │ │ +000c5880: 656d 6f6e 6154 7261 6e73 666f 726d 6174 emonaTransformat │ │ │ │ +000c5890: 696f 6e2c 202d 2d0a 2020 2020 7370 6563 ion, --. spec │ │ │ │ +000c58a0: 6961 6c20 4372 656d 6f6e 6120 7472 616e ial Cremona tran │ │ │ │ +000c58b0: 7366 6f72 6d61 7469 6f6e 7320 7768 6f73 sformations whos │ │ │ │ +000c58c0: 6520 6261 7365 206c 6f63 7573 2068 6173 e base locus has │ │ │ │ +000c58d0: 2064 696d 656e 7369 6f6e 2061 7420 6d6f dimension at mo │ │ │ │ +000c58e0: 7374 0a20 2020 2074 6872 6565 0a20 202a st. three. * │ │ │ │ +000c58f0: 202a 6e6f 7465 2073 7065 6369 616c 5175 *note specialQu │ │ │ │ +000c5900: 6164 7261 7469 6354 7261 6e73 666f 726d adraticTransform │ │ │ │ +000c5910: 6174 696f 6e3a 2073 7065 6369 616c 5175 ation: specialQu │ │ │ │ +000c5920: 6164 7261 7469 6354 7261 6e73 666f 726d adraticTransform │ │ │ │ +000c5930: 6174 696f 6e2c 202d 2d0a 2020 2020 7370 ation, --. sp │ │ │ │ +000c5940: 6563 6961 6c20 7175 6164 7261 7469 6320 ecial quadratic │ │ │ │ +000c5950: 7472 616e 7366 6f72 6d61 7469 6f6e 7320 transformations │ │ │ │ +000c5960: 7768 6f73 6520 6261 7365 206c 6f63 7573 whose base locus │ │ │ │ +000c5970: 2068 6173 2064 696d 656e 7369 6f6e 2074 has dimension t │ │ │ │ +000c5980: 6872 6565 0a20 202a 202a 6e6f 7465 2071 hree. * *note q │ │ │ │ +000c5990: 7561 6472 6f51 7561 6472 6963 4372 656d uadroQuadricCrem │ │ │ │ +000c59a0: 6f6e 6154 7261 6e73 666f 726d 6174 696f onaTransformatio │ │ │ │ +000c59b0: 6e3a 0a20 2020 2071 7561 6472 6f51 7561 n:. quadroQua │ │ │ │ +000c59c0: 6472 6963 4372 656d 6f6e 6154 7261 6e73 dricCremonaTrans │ │ │ │ +000c59d0: 666f 726d 6174 696f 6e2c 202d 2d20 7175 formation, -- qu │ │ │ │ +000c59e0: 6164 726f 2d71 7561 6472 6963 2043 7265 adro-quadric Cre │ │ │ │ +000c59f0: 6d6f 6e61 0a20 2020 2074 7261 6e73 666f mona. transfo │ │ │ │ +000c5a00: 726d 6174 696f 6e73 0a0a 5761 7973 2074 rmations..Ways t │ │ │ │ +000c5a10: 6f20 7573 6520 7370 6563 6961 6c43 7562 o use specialCub │ │ │ │ +000c5a20: 6963 5472 616e 7366 6f72 6d61 7469 6f6e icTransformation │ │ │ │ +000c5a30: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +000c5a40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000c5a50: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ +000c5a60: 7370 6563 6961 6c43 7562 6963 5472 616e specialCubicTran │ │ │ │ +000c5a70: 7366 6f72 6d61 7469 6f6e 2852 696e 672c sformation(Ring, │ │ │ │ +000c5a80: 5a5a 2922 0a20 202a 2022 7370 6563 6961 ZZ)". * "specia │ │ │ │ +000c5a90: 6c43 7562 6963 5472 616e 7366 6f72 6d61 lCubicTransforma │ │ │ │ +000c5aa0: 7469 6f6e 285a 5a29 220a 2020 2a20 2273 tion(ZZ)". * "s │ │ │ │ +000c5ab0: 7065 6369 616c 4375 6269 6354 7261 6e73 pecialCubicTrans │ │ │ │ +000c5ac0: 666f 726d 6174 696f 6e28 5a5a 2c52 696e formation(ZZ,Rin │ │ │ │ +000c5ad0: 6729 220a 0a46 6f72 2074 6865 2070 726f g)"..For the pro │ │ │ │ +000c5ae0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +000c5af0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +000c5b00: 6f62 6a65 6374 202a 6e6f 7465 2073 7065 object *note spe │ │ │ │ +000c5b10: 6369 616c 4375 6269 6354 7261 6e73 666f cialCubicTransfo │ │ │ │ +000c5b20: 726d 6174 696f 6e3a 2073 7065 6369 616c rmation: special │ │ │ │ +000c5b30: 4375 6269 6354 7261 6e73 666f 726d 6174 CubicTransformat │ │ │ │ +000c5b40: 696f 6e2c 2069 7320 610a 2a6e 6f74 6520 ion, is a.*note │ │ │ │ +000c5b50: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ +000c5b60: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +000c5b70: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +000c5b80: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ +000c5b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c5ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c5bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c5bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c5bd0: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +000c5be0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +000c5bf0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +000c5c00: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +000c5c10: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +000c5c20: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +000c5c30: 6163 6b61 6765 732f 4372 656d 6f6e 612f ackages/Cremona/ │ │ │ │ +000c5c40: 0a64 6f63 756d 656e 7461 7469 6f6e 2e6d .documentation.m │ │ │ │ +000c5c50: 323a 3935 313a 302e 0a1f 0a46 696c 653a 2:951:0....File: │ │ │ │ +000c5c60: 2043 7265 6d6f 6e61 2e69 6e66 6f2c 204e Cremona.info, N │ │ │ │ +000c5c70: 6f64 653a 2073 7065 6369 616c 5175 6164 ode: specialQuad │ │ │ │ +000c5c80: 7261 7469 6354 7261 6e73 666f 726d 6174 raticTransformat │ │ │ │ +000c5c90: 696f 6e2c 204e 6578 743a 2073 7562 7374 ion, Next: subst │ │ │ │ +000c5ca0: 6974 7574 655f 6c70 5261 7469 6f6e 616c itute_lpRational │ │ │ │ +000c5cb0: 4d61 705f 636d 506f 6c79 6e6f 6d69 616c Map_cmPolynomial │ │ │ │ +000c5cc0: 5269 6e67 5f63 6d50 6f6c 796e 6f6d 6961 Ring_cmPolynomia │ │ │ │ +000c5cd0: 6c52 696e 675f 7270 2c20 5072 6576 3a20 lRing_rp, Prev: │ │ │ │ +000c5ce0: 7370 6563 6961 6c43 7562 6963 5472 616e specialCubicTran │ │ │ │ +000c5cf0: 7366 6f72 6d61 7469 6f6e 2c20 5570 3a20 sformation, Up: │ │ │ │ +000c5d00: 546f 700a 0a73 7065 6369 616c 5175 6164 Top..specialQuad │ │ │ │ +000c5d10: 7261 7469 6354 7261 6e73 666f 726d 6174 raticTransformat │ │ │ │ +000c5d20: 696f 6e20 2d2d 2073 7065 6369 616c 2071 ion -- special q │ │ │ │ +000c5d30: 7561 6472 6174 6963 2074 7261 6e73 666f uadratic transfo │ │ │ │ +000c5d40: 726d 6174 696f 6e73 2077 686f 7365 2062 rmations whose b │ │ │ │ +000c5d50: 6173 6520 6c6f 6375 7320 6861 7320 6469 ase locus has di │ │ │ │ +000c5d60: 6d65 6e73 696f 6e20 7468 7265 650a 2a2a mension three.** │ │ │ │ +000c5d70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000c5d80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000c5d90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000c5da0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000c5db0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000c5dc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000c5dd0: 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 6167 ******.. * Usag │ │ │ │ +000c5de0: 653a 200a 2020 2020 2020 2020 7370 6563 e: . spec │ │ │ │ +000c5df0: 6961 6c51 7561 6472 6174 6963 5472 616e ialQuadraticTran │ │ │ │ +000c5e00: 7366 6f72 6d61 7469 6f6e 2069 200a 2020 sformation i . │ │ │ │ +000c5e10: 2020 2020 2020 7370 6563 6961 6c51 7561 specialQua │ │ │ │ +000c5e20: 6472 6174 6963 5472 616e 7366 6f72 6d61 draticTransforma │ │ │ │ +000c5e30: 7469 6f6e 2869 2c4b 290a 2020 2a20 496e tion(i,K). * In │ │ │ │ +000c5e40: 7075 7473 3a0a 2020 2020 2020 2a20 692c puts:. * i, │ │ │ │ +000c5e50: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ +000c5e60: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ +000c5e70: 295a 5a2c 2c20 616e 2069 6e74 6567 6572 )ZZ,, an integer │ │ │ │ +000c5e80: 2062 6574 7765 656e 2031 2061 6e64 2031 between 1 and 1 │ │ │ │ +000c5e90: 310a 2020 2020 2020 2a20 4b2c 2061 202a 1. * K, a * │ │ │ │ +000c5ea0: 6e6f 7465 2072 696e 673a 2028 4d61 6361 note ring: (Maca │ │ │ │ +000c5eb0: 756c 6179 3244 6f63 2952 696e 672c 2c20 ulay2Doc)Ring,, │ │ │ │ +000c5ec0: 7468 6520 6772 6f75 6e64 2066 6965 6c64 the ground field │ │ │ │ +000c5ed0: 2028 6f70 7469 6f6e 616c 2c20 7468 650a (optional, the. │ │ │ │ +000c5ee0: 2020 2020 2020 2020 6465 6661 756c 7420 default │ │ │ │ +000c5ef0: 7661 6c75 6520 6973 202a 6e6f 7465 2051 value is *note Q │ │ │ │ +000c5f00: 513a 2028 4d61 6361 756c 6179 3244 6f63 Q: (Macaulay2Doc │ │ │ │ +000c5f10: 2951 512c 290a 2020 2a20 4f75 7470 7574 )QQ,). * Output │ │ │ │ +000c5f20: 733a 0a20 2020 2020 202a 2061 202a 6e6f s:. * a *no │ │ │ │ +000c5f30: 7465 2072 6174 696f 6e61 6c20 6d61 703a te rational map: │ │ │ │ +000c5f40: 2052 6174 696f 6e61 6c4d 6170 2c2c 2061 RationalMap,, a │ │ │ │ +000c5f50: 6e20 6578 616d 706c 6520 6f66 2073 7065 n example of spe │ │ │ │ +000c5f60: 6369 616c 2071 7561 6472 6174 6963 0a20 cial quadratic. │ │ │ │ +000c5f70: 2020 2020 2020 2062 6972 6174 696f 6e61 birationa │ │ │ │ +000c5f80: 6c20 7472 616e 7366 6f72 6d61 7469 6f6e l transformation │ │ │ │ +000c5f90: 206f 7665 7220 4b2c 2061 6363 6f72 6469 over K, accordi │ │ │ │ +000c5fa0: 6e67 2074 6f20 7468 6520 636c 6173 7369 ng to the classi │ │ │ │ +000c5fb0: 6669 6361 7469 6f6e 2067 6976 656e 0a20 fication given. │ │ │ │ +000c5fc0: 2020 2020 2020 2069 6e20 5461 626c 6520 in Table │ │ │ │ +000c5fd0: 3120 6f66 2045 7861 6d70 6c65 7320 6f66 1 of Examples of │ │ │ │ +000c5fe0: 2073 7065 6369 616c 2071 7561 6472 6174 special quadrat │ │ │ │ +000c5ff0: 6963 2062 6972 6174 696f 6e61 6c20 7472 ic birational tr │ │ │ │ +000c6000: 616e 7366 6f72 6d61 7469 6f6e 730a 2020 ansformations. │ │ │ │ +000c6010: 2020 2020 2020 696e 746f 2063 6f6d 706c into compl │ │ │ │ +000c6020: 6574 6520 696e 7465 7273 6563 7469 6f6e ete intersection │ │ │ │ +000c6030: 7320 6f66 2071 7561 6472 6963 7320 2873 s of quadrics (s │ │ │ │ +000c6040: 6565 0a20 2020 2020 2020 2068 7474 7073 ee. https │ │ │ │ +000c6050: 3a2f 2f77 7777 2e73 6369 656e 6365 6469 ://www.sciencedi │ │ │ │ +000c6060: 7265 6374 2e63 6f6d 2f73 6369 656e 6365 rect.com/science │ │ │ │ +000c6070: 2f61 7274 6963 6c65 2f70 6969 2f53 3037 /article/pii/S07 │ │ │ │ +000c6080: 3437 3731 3731 3135 3030 3130 3239 3f76 47717115001029?v │ │ │ │ +000c6090: 6961 0a20 2020 2020 2020 2025 3344 6968 ia. %3Dih │ │ │ │ +000c60a0: 7562 2029 2e0a 0a44 6573 6372 6970 7469 ub )...Descripti │ │ │ │ +000c60b0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +000c60c0: 5468 6520 6669 656c 6420 4b20 6973 2072 The field K is r │ │ │ │ +000c60d0: 6571 7569 7265 6420 746f 2062 6520 6c61 equired to be la │ │ │ │ +000c60e0: 7267 6520 656e 6f75 6768 2e0a 0a2b 2d2d rge enough...+-- │ │ │ │ +000c60f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c6100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c6110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c6120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c6130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +000c6140: 203a 2074 696d 6520 7370 6563 6961 6c51 : time specialQ │ │ │ │ +000c6150: 7561 6472 6174 6963 5472 616e 7366 6f72 uadraticTransfor │ │ │ │ +000c6160: 6d61 7469 6f6e 2034 2020 2020 2020 2020 mation 4 │ │ │ │ +000c6170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6180: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +000c6190: 2d20 7573 6564 2030 2e30 3831 3737 3737 - used 0.0817777 │ │ │ │ +000c61a0: 7320 2863 7075 293b 2030 2e30 3831 3537 s (cpu); 0.08157 │ │ │ │ +000c61b0: 3236 7320 2874 6872 6561 6429 3b20 3073 26s (thread); 0s │ │ │ │ +000c61c0: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ +000c61d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c61e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c61f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6220: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000c6230: 203d 202d 2d20 7261 7469 6f6e 616c 206d = -- rational m │ │ │ │ +000c6240: 6170 202d 2d20 2020 2020 2020 2020 2020 ap -- │ │ │ │ +000c6250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6270: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c6280: 2020 2073 6f75 7263 653a 2050 726f 6a28 source: Proj( │ │ │ │ +000c6290: 5151 5b78 202c 2078 202c 2078 202c 2078 QQ[x , x , x , x │ │ │ │ +000c62a0: 202c 2078 202c 2078 202c 2078 202c 2078 , x , x , x , x │ │ │ │ +000c62b0: 202c 2078 205d 2920 2020 2020 2020 2020 , x ]) │ │ │ │ +000c62c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c62d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c62e0: 2020 2020 3020 2020 3120 2020 3220 2020 0 1 2 │ │ │ │ +000c62f0: 3320 2020 3420 2020 3520 2020 3620 2020 3 4 5 6 │ │ │ │ +000c6300: 3720 2020 3820 2020 2020 2020 2020 2020 7 8 │ │ │ │ +000c6310: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c6320: 2020 2074 6172 6765 743a 2073 7562 7661 target: subva │ │ │ │ +000c6330: 7269 6574 7920 6f66 2050 726f 6a28 5151 riety of Proj(QQ │ │ │ │ +000c6340: 5b79 202c 2079 202c 2079 202c 2079 202c [y , y , y , y , │ │ │ │ +000c6350: 2079 202c 2079 202c 2079 202c 2079 202c y , y , y , y , │ │ │ │ +000c6360: 2079 202c 2079 205d 2920 207c 0a7c 2020 y , y ]) |.| │ │ │ │ 000c6370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c63a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c63b0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -000c63c0: 203d 202d 2d20 7261 7469 6f6e 616c 206d = -- rational m │ │ │ │ -000c63d0: 6170 202d 2d20 2020 2020 2020 2020 2020 ap -- │ │ │ │ +000c6390: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ +000c63a0: 2020 3420 2020 3520 2020 3620 2020 3720 4 5 6 7 │ │ │ │ +000c63b0: 2020 3820 2020 3920 2020 207c 0a7c 2020 8 9 |.| │ │ │ │ +000c63c0: 2020 2020 2020 2020 2020 207b 2020 2020 { │ │ │ │ +000c63d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c63e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c63f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6400: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c6410: 2020 2073 6f75 7263 653a 2050 726f 6a28 source: Proj( │ │ │ │ -000c6420: 5151 5b78 202c 2078 202c 2078 202c 2078 QQ[x , x , x , x │ │ │ │ -000c6430: 202c 2078 202c 2078 202c 2078 202c 2078 , x , x , x , x │ │ │ │ -000c6440: 202c 2078 205d 2920 2020 2020 2020 2020 , x ]) │ │ │ │ -000c6450: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c6460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6470: 2020 2020 3020 2020 3120 2020 3220 2020 0 1 2 │ │ │ │ -000c6480: 3320 2020 3420 2020 3520 2020 3620 2020 3 4 5 6 │ │ │ │ -000c6490: 3720 2020 3820 2020 2020 2020 2020 2020 7 8 │ │ │ │ -000c64a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c64b0: 2020 2074 6172 6765 743a 2073 7562 7661 target: subva │ │ │ │ -000c64c0: 7269 6574 7920 6f66 2050 726f 6a28 5151 riety of Proj(QQ │ │ │ │ -000c64d0: 5b79 202c 2079 202c 2079 202c 2079 202c [y , y , y , y , │ │ │ │ -000c64e0: 2079 202c 2079 202c 2079 202c 2079 202c y , y , y , y , │ │ │ │ -000c64f0: 2079 202c 2079 205d 2920 207c 0a7c 2020 y , y ]) |.| │ │ │ │ -000c6500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6410: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000c6420: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000c6430: 2020 2020 3220 2020 2020 2020 2032 2020 2 2 │ │ │ │ +000c6440: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000c6450: 2020 3220 2020 2020 2020 207c 0a7c 2020 2 |.| │ │ │ │ +000c6460: 2020 2020 2020 2020 2020 2020 7920 7920 y y │ │ │ │ +000c6470: 202d 2079 2079 2020 2d20 7920 7920 7920 - y y - y y y │ │ │ │ +000c6480: 202b 2079 2079 2020 2b20 7920 7920 202d + y y + y y - │ │ │ │ +000c6490: 2079 2079 2020 2d20 7920 7920 7920 202b y y - y y y + │ │ │ │ +000c64a0: 2079 2079 2020 2b20 7920 207c 0a7c 2020 y y + y |.| │ │ │ │ +000c64b0: 2020 2020 2020 2020 2020 2020 2030 2031 0 1 │ │ │ │ +000c64c0: 2020 2020 3120 3220 2020 2030 2031 2033 1 2 0 1 3 │ │ │ │ +000c64d0: 2020 2020 3220 3320 2020 2031 2033 2020 2 3 1 3 │ │ │ │ +000c64e0: 2020 3220 3320 2020 2030 2031 2034 2020 2 3 0 1 4 │ │ │ │ +000c64f0: 2020 3120 3420 2020 2031 207c 0a7c 2020 1 4 1 |.| │ │ │ │ +000c6500: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ 000c6510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6520: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ -000c6530: 2020 3420 2020 3520 2020 3620 2020 3720 4 5 6 7 │ │ │ │ -000c6540: 2020 3820 2020 3920 2020 207c 0a7c 2020 8 9 |.| │ │ │ │ -000c6550: 2020 2020 2020 2020 2020 207b 2020 2020 { │ │ │ │ -000c6560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6540: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c6550: 2020 2064 6566 696e 696e 6720 666f 726d defining form │ │ │ │ +000c6560: 733a 207b 2020 2020 2020 2020 2020 2020 s: { │ │ │ │ 000c6570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6590: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c65a0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000c65b0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000c65c0: 2020 2020 3220 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000c65d0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000c65e0: 2020 3220 2020 2020 2020 207c 0a7c 2020 2 |.| │ │ │ │ -000c65f0: 2020 2020 2020 2020 2020 2020 7920 7920 y y │ │ │ │ -000c6600: 202d 2079 2079 2020 2d20 7920 7920 7920 - y y - y y y │ │ │ │ -000c6610: 202b 2079 2079 2020 2b20 7920 7920 202d + y y + y y - │ │ │ │ -000c6620: 2079 2079 2020 2d20 7920 7920 7920 202b y y - y y y + │ │ │ │ -000c6630: 2079 2079 2020 2b20 7920 207c 0a7c 2020 y y + y |.| │ │ │ │ -000c6640: 2020 2020 2020 2020 2020 2020 2030 2031 0 1 │ │ │ │ -000c6650: 2020 2020 3120 3220 2020 2030 2031 2033 1 2 0 1 3 │ │ │ │ -000c6660: 2020 2020 3220 3320 2020 2031 2033 2020 2 3 1 3 │ │ │ │ -000c6670: 2020 3220 3320 2020 2030 2031 2034 2020 2 3 0 1 4 │ │ │ │ -000c6680: 2020 3120 3420 2020 2031 207c 0a7c 2020 1 4 1 |.| │ │ │ │ -000c6690: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ +000c65a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c65b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c65c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c65d0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000c65e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c65f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6600: 2020 2020 7820 7820 202b 2078 2078 2020 x x + x x │ │ │ │ +000c6610: 2d20 7820 7820 202d 2078 2078 2020 2d20 - x x - x x - │ │ │ │ +000c6620: 7820 202d 2078 2078 2020 2b20 7820 7820 x - x x + x x │ │ │ │ +000c6630: 202d 2078 2078 202c 2020 207c 0a7c 2020 - x x , |.| │ │ │ │ +000c6640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6650: 2020 2020 2030 2037 2020 2020 3220 3720 0 7 2 7 │ │ │ │ +000c6660: 2020 2034 2037 2020 2020 3520 3720 2020 4 7 5 7 │ │ │ │ +000c6670: 2037 2020 2020 3320 3820 2020 2036 2038 7 3 8 6 8 │ │ │ │ +000c6680: 2020 2020 3720 3820 2020 207c 0a7c 2020 7 8 |.| │ │ │ │ +000c6690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c66a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c66b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c66c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c66d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c66e0: 2020 2064 6566 696e 696e 6720 666f 726d defining form │ │ │ │ -000c66f0: 733a 207b 2020 2020 2020 2020 2020 2020 s: { │ │ │ │ -000c6700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c66e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c66f0: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ +000c6700: 2d20 7820 7820 202b 2078 2078 202c 2020 - x x + x x , │ │ │ │ 000c6710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6720: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6760: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000c6740: 2020 2020 2035 2036 2020 2020 3420 3720 5 6 4 7 │ │ │ │ +000c6750: 2020 2035 2037 2020 2020 3620 3820 2020 5 7 6 8 │ │ │ │ +000c6760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6770: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6790: 2020 2020 7820 7820 202b 2078 2078 2020 x x + x x │ │ │ │ -000c67a0: 2d20 7820 7820 202d 2078 2078 2020 2d20 - x x - x x - │ │ │ │ -000c67b0: 7820 202d 2078 2078 2020 2b20 7820 7820 x - x x + x x │ │ │ │ -000c67c0: 202d 2078 2078 202c 2020 207c 0a7c 2020 - x x , |.| │ │ │ │ +000c6790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c67a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c67b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c67c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c67d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c67e0: 2020 2020 2030 2037 2020 2020 3220 3720 0 7 2 7 │ │ │ │ -000c67f0: 2020 2034 2037 2020 2020 3520 3720 2020 4 7 5 7 │ │ │ │ -000c6800: 2037 2020 2020 3320 3820 2020 2036 2038 7 3 8 6 8 │ │ │ │ -000c6810: 2020 2020 3720 3820 2020 207c 0a7c 2020 7 8 |.| │ │ │ │ +000c67e0: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ +000c67f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6810: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6830: 2020 2020 2032 2036 2020 2020 3120 3720 2 6 1 7 │ │ │ │ 000c6840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6860: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6880: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ -000c6890: 2d20 7820 7820 202b 2078 2078 202c 2020 - x x + x x , │ │ │ │ +000c6880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c68a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c68b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c68c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c68d0: 2020 2020 2035 2036 2020 2020 3420 3720 5 6 4 7 │ │ │ │ -000c68e0: 2020 2035 2037 2020 2020 3620 3820 2020 5 7 6 8 │ │ │ │ -000c68f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c68d0: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ +000c68e0: 2d20 7820 7820 202b 2078 2078 2020 2b20 - x x + x x + │ │ │ │ +000c68f0: 7820 7820 2c20 2020 2020 2020 2020 2020 x x , │ │ │ │ 000c6900: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6920: 2020 2020 2033 2035 2020 2020 3120 3720 3 5 1 7 │ │ │ │ +000c6930: 2020 2035 2037 2020 2020 3620 3720 2020 5 7 6 7 │ │ │ │ +000c6940: 2036 2038 2020 2020 2020 2020 2020 2020 6 8 │ │ │ │ 000c6950: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6970: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ +000c6970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c69a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c69b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c69c0: 2020 2020 2032 2036 2020 2020 3120 3720 2 6 1 7 │ │ │ │ -000c69d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c69c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c69d0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000c69e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c69f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6a40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c6a10: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ +000c6a20: 2d20 7820 202d 2078 2078 2020 2d20 7820 - x - x x - x │ │ │ │ +000c6a30: 7820 202b 2078 2078 2020 2d20 7820 7820 x + x x - x x │ │ │ │ +000c6a40: 2c20 2020 2020 2020 2020 207c 0a7c 2020 , |.| │ │ │ │ 000c6a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6a60: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ -000c6a70: 2d20 7820 7820 202b 2078 2078 2020 2b20 - x x + x x + │ │ │ │ -000c6a80: 7820 7820 2c20 2020 2020 2020 2020 2020 x x , │ │ │ │ +000c6a60: 2020 2020 2032 2035 2020 2020 3420 3520 2 5 4 5 │ │ │ │ +000c6a70: 2020 2035 2020 2020 3620 3720 2020 2031 5 6 7 1 │ │ │ │ +000c6a80: 2038 2020 2020 3420 3820 2020 2035 2038 8 4 8 5 8 │ │ │ │ 000c6a90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6ab0: 2020 2020 2033 2035 2020 2020 3120 3720 3 5 1 7 │ │ │ │ -000c6ac0: 2020 2035 2037 2020 2020 3620 3720 2020 5 7 6 7 │ │ │ │ -000c6ad0: 2036 2038 2020 2020 2020 2020 2020 2020 6 8 │ │ │ │ +000c6ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6ae0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6b00: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ +000c6b10: 2b20 7820 7820 202b 2078 2078 202c 2020 + x x + x x , │ │ │ │ 000c6b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6b30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6b60: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000c6b50: 2020 2020 2030 2035 2020 2020 3520 3720 0 5 5 7 │ │ │ │ +000c6b60: 2020 2036 2037 2020 2020 3620 3820 2020 6 7 6 8 │ │ │ │ 000c6b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6b80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6ba0: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ -000c6bb0: 2d20 7820 202d 2078 2078 2020 2d20 7820 - x - x x - x │ │ │ │ -000c6bc0: 7820 202b 2078 2078 2020 2d20 7820 7820 x + x x - x x │ │ │ │ -000c6bd0: 2c20 2020 2020 2020 2020 207c 0a7c 2020 , |.| │ │ │ │ +000c6ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6bd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6bf0: 2020 2020 2032 2035 2020 2020 3420 3520 2 5 4 5 │ │ │ │ -000c6c00: 2020 2035 2020 2020 3620 3720 2020 2031 5 6 7 1 │ │ │ │ -000c6c10: 2038 2020 2020 3420 3820 2020 2035 2038 8 4 8 5 8 │ │ │ │ +000c6bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6c10: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000c6c20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6c40: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ +000c6c50: 2d20 7820 7820 202b 2078 2078 2020 2b20 - x x + x x + │ │ │ │ +000c6c60: 7820 202b 2078 2078 202c 2020 2020 2020 x + x x , │ │ │ │ 000c6c70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6c90: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ -000c6ca0: 2b20 7820 7820 202b 2078 2078 202c 2020 + x x + x x , │ │ │ │ -000c6cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6c90: 2020 2020 2033 2034 2020 2020 3020 3620 3 4 0 6 │ │ │ │ +000c6ca0: 2020 2031 2036 2020 2020 3420 3620 2020 1 6 4 6 │ │ │ │ +000c6cb0: 2036 2020 2020 3520 3720 2020 2020 2020 6 5 7 │ │ │ │ 000c6cc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6ce0: 2020 2020 2030 2035 2020 2020 3520 3720 0 5 5 7 │ │ │ │ -000c6cf0: 2020 2036 2037 2020 2020 3620 3820 2020 6 7 6 8 │ │ │ │ +000c6ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6d10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6d40: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ 000c6d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6d60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6da0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c6db0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c6d80: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ +000c6d90: 2b20 7820 7820 202b 2078 2020 2b20 7820 + x x + x + x │ │ │ │ +000c6da0: 7820 202d 2078 2078 2020 2b20 7820 7820 x - x x + x x │ │ │ │ +000c6db0: 2c20 2020 2020 2020 2020 207c 0a7c 2020 , |.| │ │ │ │ 000c6dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6dd0: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ -000c6de0: 2d20 7820 7820 202b 2078 2078 2020 2b20 - x x + x x + │ │ │ │ -000c6df0: 7820 202b 2078 2078 202c 2020 2020 2020 x + x x , │ │ │ │ +000c6dd0: 2020 2020 2032 2034 2020 2020 3120 3520 2 4 1 5 │ │ │ │ +000c6de0: 2020 2034 2035 2020 2020 3520 2020 2036 4 5 5 6 │ │ │ │ +000c6df0: 2037 2020 2020 3420 3820 2020 2035 2038 7 4 8 5 8 │ │ │ │ 000c6e00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6e20: 2020 2020 2033 2034 2020 2020 3020 3620 3 4 0 6 │ │ │ │ -000c6e30: 2020 2031 2036 2020 2020 3420 3620 2020 1 6 4 6 │ │ │ │ -000c6e40: 2036 2020 2020 3520 3720 2020 2020 2020 6 5 7 │ │ │ │ +000c6e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6e50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6e90: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000c6ea0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6ed0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000c6ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6ef0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c6ec0: 2020 2020 7820 7820 202b 2078 2078 2020 x x + x x │ │ │ │ +000c6ed0: 2d20 7820 7820 202d 2078 2078 2020 2d20 - x x - x x - │ │ │ │ +000c6ee0: 7820 202d 2078 2078 2020 2b20 7820 7820 x - x x + x x │ │ │ │ +000c6ef0: 202d 2078 2078 202c 2020 207c 0a7c 2020 - x x , |.| │ │ │ │ 000c6f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6f10: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ -000c6f20: 2b20 7820 7820 202b 2078 2020 2b20 7820 + x x + x + x │ │ │ │ -000c6f30: 7820 202d 2078 2078 2020 2b20 7820 7820 x - x x + x x │ │ │ │ -000c6f40: 2c20 2020 2020 2020 2020 207c 0a7c 2020 , |.| │ │ │ │ +000c6f10: 2020 2020 2030 2032 2020 2020 3320 3720 0 2 3 7 │ │ │ │ +000c6f20: 2020 2034 2037 2020 2020 3520 3720 2020 4 7 5 7 │ │ │ │ +000c6f30: 2037 2020 2020 3020 3820 2020 2036 2038 7 0 8 6 8 │ │ │ │ +000c6f40: 2020 2020 3720 3820 2020 207c 0a7c 2020 7 8 |.| │ │ │ │ 000c6f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6f60: 2020 2020 2032 2034 2020 2020 3120 3520 2 4 1 5 │ │ │ │ -000c6f70: 2020 2034 2035 2020 2020 3520 2020 2036 4 5 5 6 │ │ │ │ -000c6f80: 2037 2020 2020 3420 3820 2020 2035 2038 7 4 8 5 8 │ │ │ │ +000c6f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6f90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c6fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c6fd0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000c6fe0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7020: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000c7000: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ +000c7010: 2b20 7820 7820 202d 2078 2078 2020 2d20 + x x - x x - │ │ │ │ +000c7020: 7820 202d 2078 2078 2020 2020 2020 2020 x - x x │ │ │ │ 000c7030: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c7040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7050: 2020 2020 7820 7820 202b 2078 2078 2020 x x + x x │ │ │ │ -000c7060: 2d20 7820 7820 202d 2078 2078 2020 2d20 - x x - x x - │ │ │ │ -000c7070: 7820 202d 2078 2078 2020 2b20 7820 7820 x - x x + x x │ │ │ │ -000c7080: 202d 2078 2078 202c 2020 207c 0a7c 2020 - x x , |.| │ │ │ │ +000c7050: 2020 2020 2030 2031 2020 2020 3020 3420 0 1 0 4 │ │ │ │ +000c7060: 2020 2033 2036 2020 2020 3420 3620 2020 3 6 4 6 │ │ │ │ +000c7070: 2036 2020 2020 3520 3720 2020 2020 2020 6 5 7 │ │ │ │ +000c7080: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c7090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c70a0: 2020 2020 2030 2032 2020 2020 3320 3720 0 2 3 7 │ │ │ │ -000c70b0: 2020 2034 2037 2020 2020 3520 3720 2020 4 7 5 7 │ │ │ │ -000c70c0: 2037 2020 2020 3020 3820 2020 2036 2038 7 0 8 6 8 │ │ │ │ -000c70d0: 2020 2020 3720 3820 2020 207c 0a7c 2020 7 8 |.| │ │ │ │ +000c70a0: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000c70b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c70c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c70d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c70e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c70f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7120: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c7130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7160: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000c7170: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c7180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7190: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ -000c71a0: 2b20 7820 7820 202d 2078 2078 2020 2d20 + x x - x x - │ │ │ │ -000c71b0: 7820 202d 2078 2078 2020 2020 2020 2020 x - x x │ │ │ │ -000c71c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c71d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c71e0: 2020 2020 2030 2031 2020 2020 3020 3420 0 1 0 4 │ │ │ │ -000c71f0: 2020 2033 2036 2020 2020 3420 3620 2020 3 6 4 6 │ │ │ │ -000c7200: 2036 2020 2020 3520 3720 2020 2020 2020 6 5 7 │ │ │ │ +000c7120: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000c7130: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ +000c7140: 7175 6164 7261 7469 6320 6269 7261 7469 quadratic birati │ │ │ │ +000c7150: 6f6e 616c 206d 6170 2066 726f 6d20 5050 onal map from PP │ │ │ │ +000c7160: 5e38 2074 6f20 6879 7065 7273 7572 6661 ^8 to hypersurfa │ │ │ │ +000c7170: 6365 2069 6e20 5050 5e39 207c 0a7c 2d2d ce in PP^9 |.|-- │ │ │ │ +000c7180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c7190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c71a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c71b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c71c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 6465 -----------|.|de │ │ │ │ +000c71d0: 6669 6e65 6420 6279 2020 2020 2020 2020 fined by │ │ │ │ +000c71e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c71f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c7200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7210: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c7220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7230: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000c7230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7260: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c7270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c72a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c72b0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -000c72c0: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ -000c72d0: 7175 6164 7261 7469 6320 6269 7261 7469 quadratic birati │ │ │ │ -000c72e0: 6f6e 616c 206d 6170 2066 726f 6d20 5050 onal map from PP │ │ │ │ -000c72f0: 5e38 2074 6f20 6879 7065 7273 7572 6661 ^8 to hypersurfa │ │ │ │ -000c7300: 6365 2069 6e20 5050 5e39 207c 0a7c 2d2d ce in PP^9 |.|-- │ │ │ │ -000c7310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c7320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c7330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c7340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c7350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 6465 -----------|.|de │ │ │ │ -000c7360: 6669 6e65 6420 6279 2020 2020 2020 2020 fined by │ │ │ │ -000c7370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c73a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c72b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c72c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c72d0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000c72e0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000c72f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c7300: 2020 2020 2020 2020 2020 207c 0a7c 7920 |.|y │ │ │ │ +000c7310: 7920 202b 2079 2079 2079 2020 2d20 7920 y + y y y - y │ │ │ │ +000c7320: 7920 7920 202d 2079 2079 2020 2b20 7920 y y - y y + y │ │ │ │ +000c7330: 7920 7920 202d 2079 2079 2020 2d20 7920 y y - y y - y │ │ │ │ +000c7340: 7920 7920 202b 2079 2079 2079 2020 2b20 y y + y y y + │ │ │ │ +000c7350: 7920 7920 7920 202b 2020 207c 0a7c 2032 y y y + |.| 2 │ │ │ │ +000c7360: 2035 2020 2020 3020 3420 3520 2020 2033 5 0 4 5 3 │ │ │ │ +000c7370: 2034 2035 2020 2020 3120 3520 2020 2030 4 5 1 5 0 │ │ │ │ +000c7380: 2031 2036 2020 2020 3120 3620 2020 2030 1 6 1 6 0 │ │ │ │ +000c7390: 2032 2036 2020 2020 3120 3320 3620 2020 2 6 1 3 6 │ │ │ │ +000c73a0: 2031 2034 2036 2020 2020 207c 0a7c 2020 1 4 6 |.| │ │ │ │ 000c73b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c73c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c73d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c73e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c73f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c7400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7440: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c7450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7460: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000c7470: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000c7460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c7470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7490: 2020 2020 2020 2020 2020 207c 0a7c 7920 |.|y │ │ │ │ -000c74a0: 7920 202b 2079 2079 2079 2020 2d20 7920 y + y y y - y │ │ │ │ -000c74b0: 7920 7920 202d 2079 2079 2020 2b20 7920 y y - y y + y │ │ │ │ -000c74c0: 7920 7920 202d 2079 2079 2020 2d20 7920 y y - y y - y │ │ │ │ -000c74d0: 7920 7920 202b 2079 2079 2079 2020 2b20 y y + y y y + │ │ │ │ -000c74e0: 7920 7920 7920 202b 2020 207c 0a7c 2032 y y y + |.| 2 │ │ │ │ -000c74f0: 2035 2020 2020 3020 3420 3520 2020 2033 5 0 4 5 3 │ │ │ │ -000c7500: 2034 2035 2020 2020 3120 3520 2020 2030 4 5 1 5 0 │ │ │ │ -000c7510: 2031 2036 2020 2020 3120 3620 2020 2030 1 6 1 6 0 │ │ │ │ -000c7520: 2032 2036 2020 2020 3120 3320 3620 2020 2 6 1 3 6 │ │ │ │ -000c7530: 2031 2034 2036 2020 2020 207c 0a7c 2020 1 4 6 |.| │ │ │ │ +000c7490: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c74a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c74b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c74c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c74d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c74e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c74f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c7500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c7510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c7520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c7530: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c7540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7580: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c7590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c75a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -51191,2314 +51191,2289 @@ │ │ │ │ 000c7f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7f80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c7f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c7fd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c7fd0: 2020 2020 2020 2020 2020 207c 0a7c 2920 |.|) │ │ │ │ 000c7fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c7ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8020: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c8030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8070: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c8020: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +000c8030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2032 -----------|.| 2 │ │ │ │ 000c8080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c80a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c80a0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ 000c80b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c80c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c80d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c80e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c80f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8110: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c8120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8160: 2020 2020 2020 2020 2020 207c 0a7c 2920 |.|) │ │ │ │ -000c8170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c81a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c81b0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -000c81c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c81d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c81e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c81f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2032 -----------|.| 2 │ │ │ │ -000c8210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8230: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000c8240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8250: 2020 2020 2020 2020 2020 207c 0a7c 7920 |.|y │ │ │ │ -000c8260: 7920 202d 2079 2079 2079 2020 2b20 7920 y - y y y + y │ │ │ │ -000c8270: 7920 7920 202d 2079 2079 2079 2020 2d20 y y - y y y - │ │ │ │ -000c8280: 7920 7920 7920 202d 2079 2079 2020 2b20 y y y - y y + │ │ │ │ -000c8290: 7920 7920 7920 202b 2079 2079 2079 2020 y y y + y y y │ │ │ │ -000c82a0: 2d20 7920 7920 7920 202d 207c 0a7c 2031 - y y y - |.| 1 │ │ │ │ -000c82b0: 2037 2020 2020 3120 3220 3720 2020 2032 7 1 2 7 2 │ │ │ │ -000c82c0: 2035 2037 2020 2020 3320 3520 3720 2020 5 7 3 5 7 │ │ │ │ -000c82d0: 2035 2036 2037 2020 2020 3120 3820 2020 5 6 7 1 8 │ │ │ │ -000c82e0: 2031 2032 2038 2020 2020 3120 3520 3820 1 2 8 1 5 8 │ │ │ │ -000c82f0: 2020 2032 2035 2038 2020 207c 0a7c 2d2d 2 5 8 |.|-- │ │ │ │ -000c8300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -000c8350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8360: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000c80c0: 2020 2020 2020 2020 2020 207c 0a7c 7920 |.|y │ │ │ │ +000c80d0: 7920 202d 2079 2079 2079 2020 2b20 7920 y - y y y + y │ │ │ │ +000c80e0: 7920 7920 202d 2079 2079 2079 2020 2d20 y y - y y y - │ │ │ │ +000c80f0: 7920 7920 7920 202d 2079 2079 2020 2b20 y y y - y y + │ │ │ │ +000c8100: 7920 7920 7920 202b 2079 2079 2079 2020 y y y + y y y │ │ │ │ +000c8110: 2d20 7920 7920 7920 202d 207c 0a7c 2031 - y y y - |.| 1 │ │ │ │ +000c8120: 2037 2020 2020 3120 3220 3720 2020 2032 7 1 2 7 2 │ │ │ │ +000c8130: 2035 2037 2020 2020 3320 3520 3720 2020 5 7 3 5 7 │ │ │ │ +000c8140: 2035 2036 2037 2020 2020 3120 3820 2020 5 6 7 1 8 │ │ │ │ +000c8150: 2031 2032 2038 2020 2020 3120 3520 3820 1 2 8 1 5 8 │ │ │ │ +000c8160: 2020 2032 2035 2038 2020 207c 0a7c 2d2d 2 5 8 |.|-- │ │ │ │ +000c8170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c81a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c81b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000c81c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c81d0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000c81e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c81f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c8200: 2020 2020 2020 2020 2020 207c 0a7c 7920 |.|y │ │ │ │ +000c8210: 7920 7920 202d 2079 2079 2079 2020 2b20 y y - y y y + │ │ │ │ +000c8220: 7920 7920 7920 202d 2079 2079 2020 2d20 y y y - y y - │ │ │ │ +000c8230: 7920 7920 7920 202b 2079 2079 2079 2020 y y y + y y y │ │ │ │ +000c8240: 2b20 7920 7920 7920 202d 2079 2079 2079 + y y y - y y y │ │ │ │ +000c8250: 2020 2b20 7920 7920 7920 207c 0a7c 2034 + y y y |.| 4 │ │ │ │ +000c8260: 2036 2038 2020 2020 3120 3720 3820 2020 6 8 1 7 8 │ │ │ │ +000c8270: 2033 2037 2038 2020 2020 3120 3920 2020 3 7 8 1 9 │ │ │ │ +000c8280: 2032 2034 2039 2020 2020 3320 3420 3920 2 4 9 3 4 9 │ │ │ │ +000c8290: 2020 2031 2035 2039 2020 2020 3220 3520 1 5 9 2 5 │ │ │ │ +000c82a0: 3920 2020 2030 2037 2039 207c 0a7c 2d2d 9 0 7 9 |.|-- │ │ │ │ +000c82b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c82c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c82d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c82e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c82f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2d20 -----------|.|- │ │ │ │ +000c8300: 7920 7920 7920 202b 2079 2079 2079 2020 y y y + y y y │ │ │ │ +000c8310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c8320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c8330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c8340: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c8350: 2031 2037 2039 2020 2020 3120 3820 3920 1 7 9 1 8 9 │ │ │ │ +000c8360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8390: 2020 2020 2020 2020 2020 207c 0a7c 7920 |.|y │ │ │ │ -000c83a0: 7920 7920 202d 2079 2079 2079 2020 2b20 y y - y y y + │ │ │ │ -000c83b0: 7920 7920 7920 202d 2079 2079 2020 2d20 y y y - y y - │ │ │ │ -000c83c0: 7920 7920 7920 202b 2079 2079 2079 2020 y y y + y y y │ │ │ │ -000c83d0: 2b20 7920 7920 7920 202d 2079 2079 2079 + y y y - y y y │ │ │ │ -000c83e0: 2020 2b20 7920 7920 7920 207c 0a7c 2034 + y y y |.| 4 │ │ │ │ -000c83f0: 2036 2038 2020 2020 3120 3720 3820 2020 6 8 1 7 8 │ │ │ │ -000c8400: 2033 2037 2038 2020 2020 3120 3920 2020 3 7 8 1 9 │ │ │ │ -000c8410: 2032 2034 2039 2020 2020 3320 3420 3920 2 4 9 3 4 9 │ │ │ │ -000c8420: 2020 2031 2035 2039 2020 2020 3220 3520 1 5 9 2 5 │ │ │ │ -000c8430: 3920 2020 2030 2037 2039 207c 0a7c 2d2d 9 0 7 9 |.|-- │ │ │ │ -000c8440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2d20 -----------|.|- │ │ │ │ -000c8490: 7920 7920 7920 202b 2079 2079 2079 2020 y y y + y y y │ │ │ │ +000c8390: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000c83a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c83b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c83c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c83d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c83e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +000c83f0: 203a 2074 696d 6520 6465 7363 7269 6265 : time describe │ │ │ │ +000c8400: 206f 6f20 2020 2020 2020 2020 2020 2020 oo │ │ │ │ +000c8410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c8420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c8430: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +000c8440: 2d20 7573 6564 2030 2e31 3234 3437 3973 - used 0.124479s │ │ │ │ +000c8450: 2028 6370 7529 3b20 302e 3032 3839 3631 (cpu); 0.028961 │ │ │ │ +000c8460: 3473 2028 7468 7265 6164 293b 2030 7320 4s (thread); 0s │ │ │ │ +000c8470: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +000c8480: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c8490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c84a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c84b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c84c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c84d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c84e0: 2031 2037 2039 2020 2020 3120 3820 3920 1 7 9 1 8 9 │ │ │ │ -000c84f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c84d0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +000c84e0: 203d 2072 6174 696f 6e61 6c20 6d61 7020 = rational map │ │ │ │ +000c84f0: 6465 6669 6e65 6420 6279 2066 6f72 6d73 defined by forms │ │ │ │ +000c8500: 206f 6620 6465 6772 6565 2032 2020 2020 of degree 2 │ │ │ │ 000c8510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8520: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000c8530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -000c8580: 203a 2074 696d 6520 6465 7363 7269 6265 : time describe │ │ │ │ -000c8590: 206f 6f20 2020 2020 2020 2020 2020 2020 oo │ │ │ │ -000c85a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c85b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c85c0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -000c85d0: 2d20 7573 6564 2030 2e31 3039 3331 3173 - used 0.109311s │ │ │ │ -000c85e0: 2028 6370 7529 3b20 302e 3032 3938 3438 (cpu); 0.029848 │ │ │ │ -000c85f0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -000c8600: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +000c8520: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c8530: 2020 2073 6f75 7263 6520 7661 7269 6574 source variet │ │ │ │ +000c8540: 793a 2050 505e 3820 2020 2020 2020 2020 y: PP^8 │ │ │ │ +000c8550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c8560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c8570: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c8580: 2020 2074 6172 6765 7420 7661 7269 6574 target variet │ │ │ │ +000c8590: 793a 2068 7970 6572 7375 7266 6163 6520 y: hypersurface │ │ │ │ +000c85a0: 6f66 2064 6567 7265 6520 3320 696e 2050 of degree 3 in P │ │ │ │ +000c85b0: 505e 3920 2020 2020 2020 2020 2020 2020 P^9 │ │ │ │ +000c85c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c85d0: 2020 2064 6f6d 696e 616e 6365 3a20 7472 dominance: tr │ │ │ │ +000c85e0: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +000c85f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c8600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8610: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c8620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c8620: 2020 2062 6972 6174 696f 6e61 6c69 7479 birationality │ │ │ │ +000c8630: 3a20 7472 7565 2020 2020 2020 2020 2020 : true │ │ │ │ 000c8640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8660: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -000c8670: 203d 2072 6174 696f 6e61 6c20 6d61 7020 = rational map │ │ │ │ -000c8680: 6465 6669 6e65 6420 6279 2066 6f72 6d73 defined by forms │ │ │ │ -000c8690: 206f 6620 6465 6772 6565 2032 2020 2020 of degree 2 │ │ │ │ -000c86a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c8660: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c8670: 2020 2070 726f 6a65 6374 6976 6520 6465 projective de │ │ │ │ +000c8680: 6772 6565 733a 207b 312c 2032 2c20 342c grees: {1, 2, 4, │ │ │ │ +000c8690: 2038 2c20 3136 2c20 3231 2c20 3137 2c20 8, 16, 21, 17, │ │ │ │ +000c86a0: 392c 2033 7d20 2020 2020 2020 2020 2020 9, 3} │ │ │ │ 000c86b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c86c0: 2020 2073 6f75 7263 6520 7661 7269 6574 source variet │ │ │ │ -000c86d0: 793a 2050 505e 3820 2020 2020 2020 2020 y: PP^8 │ │ │ │ -000c86e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c86c0: 2020 206e 756d 6265 7220 6f66 206d 696e number of min │ │ │ │ +000c86d0: 696d 616c 2072 6570 7265 7365 6e74 6174 imal representat │ │ │ │ +000c86e0: 6976 6573 3a20 3120 2020 2020 2020 2020 ives: 1 │ │ │ │ 000c86f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8700: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c8710: 2020 2074 6172 6765 7420 7661 7269 6574 target variet │ │ │ │ -000c8720: 793a 2068 7970 6572 7375 7266 6163 6520 y: hypersurface │ │ │ │ -000c8730: 6f66 2064 6567 7265 6520 3320 696e 2050 of degree 3 in P │ │ │ │ -000c8740: 505e 3920 2020 2020 2020 2020 2020 2020 P^9 │ │ │ │ +000c8710: 2020 2064 696d 656e 7369 6f6e 2062 6173 dimension bas │ │ │ │ +000c8720: 6520 6c6f 6375 733a 2033 2020 2020 2020 e locus: 3 │ │ │ │ +000c8730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c8740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8750: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c8760: 2020 2064 6f6d 696e 616e 6365 3a20 7472 dominance: tr │ │ │ │ -000c8770: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +000c8760: 2020 2064 6567 7265 6520 6261 7365 206c degree base l │ │ │ │ +000c8770: 6f63 7573 3a20 3131 2020 2020 2020 2020 ocus: 11 │ │ │ │ 000c8780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c87a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c87b0: 2020 2062 6972 6174 696f 6e61 6c69 7479 birationality │ │ │ │ -000c87c0: 3a20 7472 7565 2020 2020 2020 2020 2020 : true │ │ │ │ +000c87b0: 2020 2063 6f65 6666 6963 6965 6e74 2072 coefficient r │ │ │ │ +000c87c0: 696e 673a 2051 5120 2020 2020 2020 2020 ing: QQ │ │ │ │ 000c87d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c87e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c87f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c8800: 2020 2070 726f 6a65 6374 6976 6520 6465 projective de │ │ │ │ -000c8810: 6772 6565 733a 207b 312c 2032 2c20 342c grees: {1, 2, 4, │ │ │ │ -000c8820: 2038 2c20 3136 2c20 3231 2c20 3137 2c20 8, 16, 21, 17, │ │ │ │ -000c8830: 392c 2033 7d20 2020 2020 2020 2020 2020 9, 3} │ │ │ │ -000c8840: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c8850: 2020 206e 756d 6265 7220 6f66 206d 696e number of min │ │ │ │ -000c8860: 696d 616c 2072 6570 7265 7365 6e74 6174 imal representat │ │ │ │ -000c8870: 6976 6573 3a20 3120 2020 2020 2020 2020 ives: 1 │ │ │ │ -000c8880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8890: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c88a0: 2020 2064 696d 656e 7369 6f6e 2062 6173 dimension bas │ │ │ │ -000c88b0: 6520 6c6f 6375 733a 2033 2020 2020 2020 e locus: 3 │ │ │ │ -000c88c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c88d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c88e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c88f0: 2020 2064 6567 7265 6520 6261 7365 206c degree base l │ │ │ │ -000c8900: 6f63 7573 3a20 3131 2020 2020 2020 2020 ocus: 11 │ │ │ │ -000c8910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8930: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c8940: 2020 2063 6f65 6666 6963 6965 6e74 2072 coefficient r │ │ │ │ -000c8950: 696e 673a 2051 5120 2020 2020 2020 2020 ing: QQ │ │ │ │ -000c8960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c8980: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000c8990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c89a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c89b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c89c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c89d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ -000c89e0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -000c89f0: 0a20 202a 202a 6e6f 7465 2073 7065 6369 . * *note speci │ │ │ │ -000c8a00: 616c 4372 656d 6f6e 6154 7261 6e73 666f alCremonaTransfo │ │ │ │ -000c8a10: 726d 6174 696f 6e3a 2073 7065 6369 616c rmation: special │ │ │ │ -000c8a20: 4372 656d 6f6e 6154 7261 6e73 666f 726d CremonaTransform │ │ │ │ -000c8a30: 6174 696f 6e2c 202d 2d0a 2020 2020 7370 ation, --. sp │ │ │ │ -000c8a40: 6563 6961 6c20 4372 656d 6f6e 6120 7472 ecial Cremona tr │ │ │ │ -000c8a50: 616e 7366 6f72 6d61 7469 6f6e 7320 7768 ansformations wh │ │ │ │ -000c8a60: 6f73 6520 6261 7365 206c 6f63 7573 2068 ose base locus h │ │ │ │ -000c8a70: 6173 2064 696d 656e 7369 6f6e 2061 7420 as dimension at │ │ │ │ -000c8a80: 6d6f 7374 0a20 2020 2074 6872 6565 0a20 most. three. │ │ │ │ -000c8a90: 202a 202a 6e6f 7465 2073 7065 6369 616c * *note special │ │ │ │ -000c8aa0: 4375 6269 6354 7261 6e73 666f 726d 6174 CubicTransformat │ │ │ │ -000c8ab0: 696f 6e3a 2073 7065 6369 616c 4375 6269 ion: specialCubi │ │ │ │ -000c8ac0: 6354 7261 6e73 666f 726d 6174 696f 6e2c cTransformation, │ │ │ │ -000c8ad0: 202d 2d20 7370 6563 6961 6c0a 2020 2020 -- special. │ │ │ │ -000c8ae0: 6375 6269 6320 7472 616e 7366 6f72 6d61 cubic transforma │ │ │ │ -000c8af0: 7469 6f6e 7320 7768 6f73 6520 6261 7365 tions whose base │ │ │ │ -000c8b00: 206c 6f63 7573 2068 6173 2064 696d 656e locus has dimen │ │ │ │ -000c8b10: 7369 6f6e 2061 7420 6d6f 7374 2074 6872 sion at most thr │ │ │ │ -000c8b20: 6565 0a20 202a 202a 6e6f 7465 2071 7561 ee. * *note qua │ │ │ │ -000c8b30: 6472 6f51 7561 6472 6963 4372 656d 6f6e droQuadricCremon │ │ │ │ -000c8b40: 6154 7261 6e73 666f 726d 6174 696f 6e3a aTransformation: │ │ │ │ -000c8b50: 0a20 2020 2071 7561 6472 6f51 7561 6472 . quadroQuadr │ │ │ │ -000c8b60: 6963 4372 656d 6f6e 6154 7261 6e73 666f icCremonaTransfo │ │ │ │ -000c8b70: 726d 6174 696f 6e2c 202d 2d20 7175 6164 rmation, -- quad │ │ │ │ -000c8b80: 726f 2d71 7561 6472 6963 2043 7265 6d6f ro-quadric Cremo │ │ │ │ -000c8b90: 6e61 0a20 2020 2074 7261 6e73 666f 726d na. transform │ │ │ │ -000c8ba0: 6174 696f 6e73 0a0a 5761 7973 2074 6f20 ations..Ways to │ │ │ │ -000c8bb0: 7573 6520 7370 6563 6961 6c51 7561 6472 use specialQuadr │ │ │ │ -000c8bc0: 6174 6963 5472 616e 7366 6f72 6d61 7469 aticTransformati │ │ │ │ -000c8bd0: 6f6e 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d on:.============ │ │ │ │ -000c8be0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000c8bf0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -000c8c00: 0a20 202a 2022 7370 6563 6961 6c51 7561 . * "specialQua │ │ │ │ -000c8c10: 6472 6174 6963 5472 616e 7366 6f72 6d61 draticTransforma │ │ │ │ -000c8c20: 7469 6f6e 2852 696e 672c 5a5a 2922 0a20 tion(Ring,ZZ)". │ │ │ │ -000c8c30: 202a 2022 7370 6563 6961 6c51 7561 6472 * "specialQuadr │ │ │ │ -000c8c40: 6174 6963 5472 616e 7366 6f72 6d61 7469 aticTransformati │ │ │ │ -000c8c50: 6f6e 285a 5a29 220a 2020 2a20 2273 7065 on(ZZ)". * "spe │ │ │ │ -000c8c60: 6369 616c 5175 6164 7261 7469 6354 7261 cialQuadraticTra │ │ │ │ -000c8c70: 6e73 666f 726d 6174 696f 6e28 5a5a 2c52 nsformation(ZZ,R │ │ │ │ -000c8c80: 696e 6729 220a 0a46 6f72 2074 6865 2070 ing)"..For the p │ │ │ │ -000c8c90: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -000c8ca0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -000c8cb0: 6520 6f62 6a65 6374 202a 6e6f 7465 2073 e object *note s │ │ │ │ -000c8cc0: 7065 6369 616c 5175 6164 7261 7469 6354 pecialQuadraticT │ │ │ │ -000c8cd0: 7261 6e73 666f 726d 6174 696f 6e3a 0a73 ransformation:.s │ │ │ │ -000c8ce0: 7065 6369 616c 5175 6164 7261 7469 6354 pecialQuadraticT │ │ │ │ -000c8cf0: 7261 6e73 666f 726d 6174 696f 6e2c 2069 ransformation, i │ │ │ │ -000c8d00: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ -000c8d10: 2066 756e 6374 696f 6e3a 0a28 4d61 6361 function:.(Maca │ │ │ │ -000c8d20: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -000c8d30: 756e 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d unction,...----- │ │ │ │ -000c8d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c8d80: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -000c8d90: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -000c8da0: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -000c8db0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -000c8dc0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -000c8dd0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -000c8de0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -000c8df0: 732f 4372 656d 6f6e 612f 0a64 6f63 756d s/Cremona/.docum │ │ │ │ -000c8e00: 656e 7461 7469 6f6e 2e6d 323a 3933 353a entation.m2:935: │ │ │ │ -000c8e10: 302e 0a1f 0a46 696c 653a 2043 7265 6d6f 0....File: Cremo │ │ │ │ -000c8e20: 6e61 2e69 6e66 6f2c 204e 6f64 653a 2073 na.info, Node: s │ │ │ │ -000c8e30: 7562 7374 6974 7574 655f 6c70 5261 7469 ubstitute_lpRati │ │ │ │ -000c8e40: 6f6e 616c 4d61 705f 636d 506f 6c79 6e6f onalMap_cmPolyno │ │ │ │ -000c8e50: 6d69 616c 5269 6e67 5f63 6d50 6f6c 796e mialRing_cmPolyn │ │ │ │ -000c8e60: 6f6d 6961 6c52 696e 675f 7270 2c20 4e65 omialRing_rp, Ne │ │ │ │ -000c8e70: 7874 3a20 7375 7065 725f 6c70 5261 7469 xt: super_lpRati │ │ │ │ -000c8e80: 6f6e 616c 4d61 705f 7270 2c20 5072 6576 onalMap_rp, Prev │ │ │ │ -000c8e90: 3a20 7370 6563 6961 6c51 7561 6472 6174 : specialQuadrat │ │ │ │ -000c8ea0: 6963 5472 616e 7366 6f72 6d61 7469 6f6e icTransformation │ │ │ │ -000c8eb0: 2c20 5570 3a20 546f 700a 0a73 7562 7374 , Up: Top..subst │ │ │ │ -000c8ec0: 6974 7574 6528 5261 7469 6f6e 616c 4d61 itute(RationalMa │ │ │ │ -000c8ed0: 702c 506f 6c79 6e6f 6d69 616c 5269 6e67 p,PolynomialRing │ │ │ │ -000c8ee0: 2c50 6f6c 796e 6f6d 6961 6c52 696e 6729 ,PolynomialRing) │ │ │ │ -000c8ef0: 202d 2d20 7375 6273 7469 7475 7465 2074 -- substitute t │ │ │ │ -000c8f00: 6865 2061 6d62 6965 6e74 2070 726f 6a65 he ambient proje │ │ │ │ -000c8f10: 6374 6976 6520 7370 6163 6573 206f 6620 ctive spaces of │ │ │ │ -000c8f20: 736f 7572 6365 2061 6e64 2074 6172 6765 source and targe │ │ │ │ -000c8f30: 740a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a t.************** │ │ │ │ -000c8f40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000c8f50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000c8f60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000c8f70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000c8f80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000c8f90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000c8fa0: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 ********.. * Fu │ │ │ │ -000c8fb0: 6e63 7469 6f6e 3a20 2a6e 6f74 6520 7375 nction: *note su │ │ │ │ -000c8fc0: 6273 7469 7475 7465 3a20 284d 6163 6175 bstitute: (Macau │ │ │ │ -000c8fd0: 6c61 7932 446f 6329 7375 6273 7469 7475 lay2Doc)substitu │ │ │ │ -000c8fe0: 7465 2c0a 2020 2a20 5573 6167 653a 200a te,. * Usage: . │ │ │ │ -000c8ff0: 2020 2020 2020 2020 7375 6228 7068 692c sub(phi, │ │ │ │ -000c9000: 522c 5329 0a20 202a 2049 6e70 7574 733a R,S). * Inputs: │ │ │ │ -000c9010: 0a20 2020 2020 202a 2070 6869 2c20 6120 . * phi, a │ │ │ │ -000c9020: 2a6e 6f74 6520 7261 7469 6f6e 616c 206d *note rational m │ │ │ │ -000c9030: 6170 3a20 5261 7469 6f6e 616c 4d61 702c ap: RationalMap, │ │ │ │ -000c9040: 2c0a 2020 2020 2020 2020 245c 7068 693a ,. $\phi: │ │ │ │ -000c9050: 585c 7375 6273 6574 6571 5c6d 6174 6862 X\subseteq\mathb │ │ │ │ -000c9060: 627b 507d 5e6e 5c64 6173 6872 6967 6874 b{P}^n\dashright │ │ │ │ -000c9070: 6172 726f 7720 595c 7375 6273 6574 6571 arrow Y\subseteq │ │ │ │ -000c9080: 5c6d 6174 6862 627b 507d 5e6d 240a 2020 \mathbb{P}^m$. │ │ │ │ -000c9090: 2020 2020 2a20 522c 2061 202a 6e6f 7465 * R, a *note │ │ │ │ -000c90a0: 2070 6f6c 796e 6f6d 6961 6c20 7269 6e67 polynomial ring │ │ │ │ -000c90b0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -000c90c0: 506f 6c79 6e6f 6d69 616c 5269 6e67 2c2c PolynomialRing,, │ │ │ │ -000c90d0: 2074 6865 0a20 2020 2020 2020 2063 6f6f the. coo │ │ │ │ -000c90e0: 7264 696e 6174 6520 7269 6e67 206f 6620 rdinate ring of │ │ │ │ -000c90f0: 245c 6d61 7468 6262 7b50 7d5e 6e24 0a20 $\mathbb{P}^n$. │ │ │ │ -000c9100: 2020 2020 202a 2053 2c20 6120 2a6e 6f74 * S, a *not │ │ │ │ -000c9110: 6520 706f 6c79 6e6f 6d69 616c 2072 696e e polynomial rin │ │ │ │ -000c9120: 673a 2028 4d61 6361 756c 6179 3244 6f63 g: (Macaulay2Doc │ │ │ │ -000c9130: 2950 6f6c 796e 6f6d 6961 6c52 696e 672c )PolynomialRing, │ │ │ │ -000c9140: 2c20 7468 650a 2020 2020 2020 2020 636f , the. co │ │ │ │ -000c9150: 6f72 6469 6e61 7465 2072 696e 6720 6f66 ordinate ring of │ │ │ │ -000c9160: 2024 5c6d 6174 6862 627b 507d 5e6d 240a $\mathbb{P}^m$. │ │ │ │ -000c9170: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ -000c9180: 2020 202a 2061 202a 6e6f 7465 2072 6174 * a *note rat │ │ │ │ -000c9190: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ -000c91a0: 6e61 6c4d 6170 2c2c 2061 2072 6174 696f nalMap,, a ratio │ │ │ │ -000c91b0: 6e61 6c20 6d61 7020 6973 6f6d 6f72 7068 nal map isomorph │ │ │ │ -000c91c0: 6963 2074 6f20 7468 650a 2020 2020 2020 ic to the. │ │ │ │ -000c91d0: 2020 6f72 6967 696e 616c 206d 6170 2073 original map s │ │ │ │ -000c91e0: 7563 6820 7468 6174 2074 6865 202a 6e6f uch that the *no │ │ │ │ -000c91f0: 7465 2061 6d62 6965 6e74 3a20 284d 6163 te ambient: (Mac │ │ │ │ -000c9200: 6175 6c61 7932 446f 6329 616d 6269 656e aulay2Doc)ambien │ │ │ │ -000c9210: 742c 206f 6620 7468 650a 2020 2020 2020 t, of the. │ │ │ │ -000c9220: 2020 2a6e 6f74 6520 736f 7572 6365 3a20 *note source: │ │ │ │ -000c9230: 736f 7572 6365 5f6c 7052 6174 696f 6e61 source_lpRationa │ │ │ │ -000c9240: 6c4d 6170 5f72 702c 2069 7320 2452 2420 lMap_rp, is $R$ │ │ │ │ -000c9250: 616e 6420 7468 6520 2a6e 6f74 6520 616d and the *note am │ │ │ │ -000c9260: 6269 656e 743a 0a20 2020 2020 2020 2028 bient:. ( │ │ │ │ -000c9270: 4d61 6361 756c 6179 3244 6f63 2961 6d62 Macaulay2Doc)amb │ │ │ │ -000c9280: 6965 6e74 2c20 6f66 2074 6865 202a 6e6f ient, of the *no │ │ │ │ -000c9290: 7465 2074 6172 6765 743a 2074 6172 6765 te target: targe │ │ │ │ -000c92a0: 745f 6c70 5261 7469 6f6e 616c 4d61 705f t_lpRationalMap_ │ │ │ │ -000c92b0: 7270 2c20 6973 0a20 2020 2020 2020 2024 rp, is. $ │ │ │ │ -000c92c0: 5324 0a0a 4465 7363 7269 7074 696f 6e0a S$..Description. │ │ │ │ -000c92d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d ===========..+-- │ │ │ │ -000c92e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c92f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c9300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c9310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c9320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -000c9330: 203a 205a 5a2f 3333 3331 5b76 6172 7328 : ZZ/3331[vars( │ │ │ │ -000c9340: 302e 2e35 295d 3b20 2020 2020 2020 2020 0..5)]; │ │ │ │ +000c87f0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000c8800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ +000c8850: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +000c8860: 0a20 202a 202a 6e6f 7465 2073 7065 6369 . * *note speci │ │ │ │ +000c8870: 616c 4372 656d 6f6e 6154 7261 6e73 666f alCremonaTransfo │ │ │ │ +000c8880: 726d 6174 696f 6e3a 2073 7065 6369 616c rmation: special │ │ │ │ +000c8890: 4372 656d 6f6e 6154 7261 6e73 666f 726d CremonaTransform │ │ │ │ +000c88a0: 6174 696f 6e2c 202d 2d0a 2020 2020 7370 ation, --. sp │ │ │ │ +000c88b0: 6563 6961 6c20 4372 656d 6f6e 6120 7472 ecial Cremona tr │ │ │ │ +000c88c0: 616e 7366 6f72 6d61 7469 6f6e 7320 7768 ansformations wh │ │ │ │ +000c88d0: 6f73 6520 6261 7365 206c 6f63 7573 2068 ose base locus h │ │ │ │ +000c88e0: 6173 2064 696d 656e 7369 6f6e 2061 7420 as dimension at │ │ │ │ +000c88f0: 6d6f 7374 0a20 2020 2074 6872 6565 0a20 most. three. │ │ │ │ +000c8900: 202a 202a 6e6f 7465 2073 7065 6369 616c * *note special │ │ │ │ +000c8910: 4375 6269 6354 7261 6e73 666f 726d 6174 CubicTransformat │ │ │ │ +000c8920: 696f 6e3a 2073 7065 6369 616c 4375 6269 ion: specialCubi │ │ │ │ +000c8930: 6354 7261 6e73 666f 726d 6174 696f 6e2c cTransformation, │ │ │ │ +000c8940: 202d 2d20 7370 6563 6961 6c0a 2020 2020 -- special. │ │ │ │ +000c8950: 6375 6269 6320 7472 616e 7366 6f72 6d61 cubic transforma │ │ │ │ +000c8960: 7469 6f6e 7320 7768 6f73 6520 6261 7365 tions whose base │ │ │ │ +000c8970: 206c 6f63 7573 2068 6173 2064 696d 656e locus has dimen │ │ │ │ +000c8980: 7369 6f6e 2061 7420 6d6f 7374 2074 6872 sion at most thr │ │ │ │ +000c8990: 6565 0a20 202a 202a 6e6f 7465 2071 7561 ee. * *note qua │ │ │ │ +000c89a0: 6472 6f51 7561 6472 6963 4372 656d 6f6e droQuadricCremon │ │ │ │ +000c89b0: 6154 7261 6e73 666f 726d 6174 696f 6e3a aTransformation: │ │ │ │ +000c89c0: 0a20 2020 2071 7561 6472 6f51 7561 6472 . quadroQuadr │ │ │ │ +000c89d0: 6963 4372 656d 6f6e 6154 7261 6e73 666f icCremonaTransfo │ │ │ │ +000c89e0: 726d 6174 696f 6e2c 202d 2d20 7175 6164 rmation, -- quad │ │ │ │ +000c89f0: 726f 2d71 7561 6472 6963 2043 7265 6d6f ro-quadric Cremo │ │ │ │ +000c8a00: 6e61 0a20 2020 2074 7261 6e73 666f 726d na. transform │ │ │ │ +000c8a10: 6174 696f 6e73 0a0a 5761 7973 2074 6f20 ations..Ways to │ │ │ │ +000c8a20: 7573 6520 7370 6563 6961 6c51 7561 6472 use specialQuadr │ │ │ │ +000c8a30: 6174 6963 5472 616e 7366 6f72 6d61 7469 aticTransformati │ │ │ │ +000c8a40: 6f6e 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d on:.============ │ │ │ │ +000c8a50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000c8a60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +000c8a70: 0a20 202a 2022 7370 6563 6961 6c51 7561 . * "specialQua │ │ │ │ +000c8a80: 6472 6174 6963 5472 616e 7366 6f72 6d61 draticTransforma │ │ │ │ +000c8a90: 7469 6f6e 2852 696e 672c 5a5a 2922 0a20 tion(Ring,ZZ)". │ │ │ │ +000c8aa0: 202a 2022 7370 6563 6961 6c51 7561 6472 * "specialQuadr │ │ │ │ +000c8ab0: 6174 6963 5472 616e 7366 6f72 6d61 7469 aticTransformati │ │ │ │ +000c8ac0: 6f6e 285a 5a29 220a 2020 2a20 2273 7065 on(ZZ)". * "spe │ │ │ │ +000c8ad0: 6369 616c 5175 6164 7261 7469 6354 7261 cialQuadraticTra │ │ │ │ +000c8ae0: 6e73 666f 726d 6174 696f 6e28 5a5a 2c52 nsformation(ZZ,R │ │ │ │ +000c8af0: 696e 6729 220a 0a46 6f72 2074 6865 2070 ing)"..For the p │ │ │ │ +000c8b00: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +000c8b10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +000c8b20: 6520 6f62 6a65 6374 202a 6e6f 7465 2073 e object *note s │ │ │ │ +000c8b30: 7065 6369 616c 5175 6164 7261 7469 6354 pecialQuadraticT │ │ │ │ +000c8b40: 7261 6e73 666f 726d 6174 696f 6e3a 0a73 ransformation:.s │ │ │ │ +000c8b50: 7065 6369 616c 5175 6164 7261 7469 6354 pecialQuadraticT │ │ │ │ +000c8b60: 7261 6e73 666f 726d 6174 696f 6e2c 2069 ransformation, i │ │ │ │ +000c8b70: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ +000c8b80: 2066 756e 6374 696f 6e3a 0a28 4d61 6361 function:.(Maca │ │ │ │ +000c8b90: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ +000c8ba0: 756e 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d unction,...----- │ │ │ │ +000c8bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c8bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +000c8c00: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +000c8c10: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +000c8c20: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +000c8c30: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +000c8c40: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +000c8c50: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +000c8c60: 732f 4372 656d 6f6e 612f 0a64 6f63 756d s/Cremona/.docum │ │ │ │ +000c8c70: 656e 7461 7469 6f6e 2e6d 323a 3933 353a entation.m2:935: │ │ │ │ +000c8c80: 302e 0a1f 0a46 696c 653a 2043 7265 6d6f 0....File: Cremo │ │ │ │ +000c8c90: 6e61 2e69 6e66 6f2c 204e 6f64 653a 2073 na.info, Node: s │ │ │ │ +000c8ca0: 7562 7374 6974 7574 655f 6c70 5261 7469 ubstitute_lpRati │ │ │ │ +000c8cb0: 6f6e 616c 4d61 705f 636d 506f 6c79 6e6f onalMap_cmPolyno │ │ │ │ +000c8cc0: 6d69 616c 5269 6e67 5f63 6d50 6f6c 796e mialRing_cmPolyn │ │ │ │ +000c8cd0: 6f6d 6961 6c52 696e 675f 7270 2c20 4e65 omialRing_rp, Ne │ │ │ │ +000c8ce0: 7874 3a20 7375 7065 725f 6c70 5261 7469 xt: super_lpRati │ │ │ │ +000c8cf0: 6f6e 616c 4d61 705f 7270 2c20 5072 6576 onalMap_rp, Prev │ │ │ │ +000c8d00: 3a20 7370 6563 6961 6c51 7561 6472 6174 : specialQuadrat │ │ │ │ +000c8d10: 6963 5472 616e 7366 6f72 6d61 7469 6f6e icTransformation │ │ │ │ +000c8d20: 2c20 5570 3a20 546f 700a 0a73 7562 7374 , Up: Top..subst │ │ │ │ +000c8d30: 6974 7574 6528 5261 7469 6f6e 616c 4d61 itute(RationalMa │ │ │ │ +000c8d40: 702c 506f 6c79 6e6f 6d69 616c 5269 6e67 p,PolynomialRing │ │ │ │ +000c8d50: 2c50 6f6c 796e 6f6d 6961 6c52 696e 6729 ,PolynomialRing) │ │ │ │ +000c8d60: 202d 2d20 7375 6273 7469 7475 7465 2074 -- substitute t │ │ │ │ +000c8d70: 6865 2061 6d62 6965 6e74 2070 726f 6a65 he ambient proje │ │ │ │ +000c8d80: 6374 6976 6520 7370 6163 6573 206f 6620 ctive spaces of │ │ │ │ +000c8d90: 736f 7572 6365 2061 6e64 2074 6172 6765 source and targe │ │ │ │ +000c8da0: 740a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a t.************** │ │ │ │ +000c8db0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000c8dc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000c8dd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000c8de0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000c8df0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000c8e00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000c8e10: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 ********.. * Fu │ │ │ │ +000c8e20: 6e63 7469 6f6e 3a20 2a6e 6f74 6520 7375 nction: *note su │ │ │ │ +000c8e30: 6273 7469 7475 7465 3a20 284d 6163 6175 bstitute: (Macau │ │ │ │ +000c8e40: 6c61 7932 446f 6329 7375 6273 7469 7475 lay2Doc)substitu │ │ │ │ +000c8e50: 7465 2c0a 2020 2a20 5573 6167 653a 200a te,. * Usage: . │ │ │ │ +000c8e60: 2020 2020 2020 2020 7375 6228 7068 692c sub(phi, │ │ │ │ +000c8e70: 522c 5329 0a20 202a 2049 6e70 7574 733a R,S). * Inputs: │ │ │ │ +000c8e80: 0a20 2020 2020 202a 2070 6869 2c20 6120 . * phi, a │ │ │ │ +000c8e90: 2a6e 6f74 6520 7261 7469 6f6e 616c 206d *note rational m │ │ │ │ +000c8ea0: 6170 3a20 5261 7469 6f6e 616c 4d61 702c ap: RationalMap, │ │ │ │ +000c8eb0: 2c0a 2020 2020 2020 2020 245c 7068 693a ,. $\phi: │ │ │ │ +000c8ec0: 585c 7375 6273 6574 6571 5c6d 6174 6862 X\subseteq\mathb │ │ │ │ +000c8ed0: 627b 507d 5e6e 5c64 6173 6872 6967 6874 b{P}^n\dashright │ │ │ │ +000c8ee0: 6172 726f 7720 595c 7375 6273 6574 6571 arrow Y\subseteq │ │ │ │ +000c8ef0: 5c6d 6174 6862 627b 507d 5e6d 240a 2020 \mathbb{P}^m$. │ │ │ │ +000c8f00: 2020 2020 2a20 522c 2061 202a 6e6f 7465 * R, a *note │ │ │ │ +000c8f10: 2070 6f6c 796e 6f6d 6961 6c20 7269 6e67 polynomial ring │ │ │ │ +000c8f20: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +000c8f30: 506f 6c79 6e6f 6d69 616c 5269 6e67 2c2c PolynomialRing,, │ │ │ │ +000c8f40: 2074 6865 0a20 2020 2020 2020 2063 6f6f the. coo │ │ │ │ +000c8f50: 7264 696e 6174 6520 7269 6e67 206f 6620 rdinate ring of │ │ │ │ +000c8f60: 245c 6d61 7468 6262 7b50 7d5e 6e24 0a20 $\mathbb{P}^n$. │ │ │ │ +000c8f70: 2020 2020 202a 2053 2c20 6120 2a6e 6f74 * S, a *not │ │ │ │ +000c8f80: 6520 706f 6c79 6e6f 6d69 616c 2072 696e e polynomial rin │ │ │ │ +000c8f90: 673a 2028 4d61 6361 756c 6179 3244 6f63 g: (Macaulay2Doc │ │ │ │ +000c8fa0: 2950 6f6c 796e 6f6d 6961 6c52 696e 672c )PolynomialRing, │ │ │ │ +000c8fb0: 2c20 7468 650a 2020 2020 2020 2020 636f , the. co │ │ │ │ +000c8fc0: 6f72 6469 6e61 7465 2072 696e 6720 6f66 ordinate ring of │ │ │ │ +000c8fd0: 2024 5c6d 6174 6862 627b 507d 5e6d 240a $\mathbb{P}^m$. │ │ │ │ +000c8fe0: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +000c8ff0: 2020 202a 2061 202a 6e6f 7465 2072 6174 * a *note rat │ │ │ │ +000c9000: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ +000c9010: 6e61 6c4d 6170 2c2c 2061 2072 6174 696f nalMap,, a ratio │ │ │ │ +000c9020: 6e61 6c20 6d61 7020 6973 6f6d 6f72 7068 nal map isomorph │ │ │ │ +000c9030: 6963 2074 6f20 7468 650a 2020 2020 2020 ic to the. │ │ │ │ +000c9040: 2020 6f72 6967 696e 616c 206d 6170 2073 original map s │ │ │ │ +000c9050: 7563 6820 7468 6174 2074 6865 202a 6e6f uch that the *no │ │ │ │ +000c9060: 7465 2061 6d62 6965 6e74 3a20 284d 6163 te ambient: (Mac │ │ │ │ +000c9070: 6175 6c61 7932 446f 6329 616d 6269 656e aulay2Doc)ambien │ │ │ │ +000c9080: 742c 206f 6620 7468 650a 2020 2020 2020 t, of the. │ │ │ │ +000c9090: 2020 2a6e 6f74 6520 736f 7572 6365 3a20 *note source: │ │ │ │ +000c90a0: 736f 7572 6365 5f6c 7052 6174 696f 6e61 source_lpRationa │ │ │ │ +000c90b0: 6c4d 6170 5f72 702c 2069 7320 2452 2420 lMap_rp, is $R$ │ │ │ │ +000c90c0: 616e 6420 7468 6520 2a6e 6f74 6520 616d and the *note am │ │ │ │ +000c90d0: 6269 656e 743a 0a20 2020 2020 2020 2028 bient:. ( │ │ │ │ +000c90e0: 4d61 6361 756c 6179 3244 6f63 2961 6d62 Macaulay2Doc)amb │ │ │ │ +000c90f0: 6965 6e74 2c20 6f66 2074 6865 202a 6e6f ient, of the *no │ │ │ │ +000c9100: 7465 2074 6172 6765 743a 2074 6172 6765 te target: targe │ │ │ │ +000c9110: 745f 6c70 5261 7469 6f6e 616c 4d61 705f t_lpRationalMap_ │ │ │ │ +000c9120: 7270 2c20 6973 0a20 2020 2020 2020 2024 rp, is. $ │ │ │ │ +000c9130: 5324 0a0a 4465 7363 7269 7074 696f 6e0a S$..Description. │ │ │ │ +000c9140: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d ===========..+-- │ │ │ │ +000c9150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +000c91a0: 203a 205a 5a2f 3333 3331 5b76 6172 7328 : ZZ/3331[vars( │ │ │ │ +000c91b0: 302e 2e35 295d 3b20 2020 2020 2020 2020 0..5)]; │ │ │ │ +000c91c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c91d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c91e0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000c91f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +000c9240: 203a 2070 6869 203d 2072 6174 696f 6e61 : phi = rationa │ │ │ │ +000c9250: 6c4d 6170 207b 655e 322d 642a 662c 2063 lMap {e^2-d*f, c │ │ │ │ +000c9260: 2a65 2d62 2a66 2c20 632a 642d 622a 652c *e-b*f, c*d-b*e, │ │ │ │ +000c9270: 2063 5e32 2d61 2a66 2c20 622a 632d 612a c^2-a*f, b*c-a* │ │ │ │ +000c9280: 652c 2062 5e32 2d61 2a64 7d7c 0a7c 2020 e, b^2-a*d}|.| │ │ │ │ +000c9290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c92a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c92b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c92c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c92d0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +000c92e0: 203d 202d 2d20 7261 7469 6f6e 616c 206d = -- rational m │ │ │ │ +000c92f0: 6170 202d 2d20 2020 2020 2020 2020 2020 ap -- │ │ │ │ +000c9300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9320: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c9330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9340: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 000c9350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9370: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000c9380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c9390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c93a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c93b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c93c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -000c93d0: 203a 2070 6869 203d 2072 6174 696f 6e61 : phi = rationa │ │ │ │ -000c93e0: 6c4d 6170 207b 655e 322d 642a 662c 2063 lMap {e^2-d*f, c │ │ │ │ -000c93f0: 2a65 2d62 2a66 2c20 632a 642d 622a 652c *e-b*f, c*d-b*e, │ │ │ │ -000c9400: 2063 5e32 2d61 2a66 2c20 622a 632d 612a c^2-a*f, b*c-a* │ │ │ │ -000c9410: 652c 2062 5e32 2d61 2a64 7d7c 0a7c 2020 e, b^2-a*d}|.| │ │ │ │ +000c9370: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c9380: 2020 2073 6f75 7263 653a 2050 726f 6a28 source: Proj( │ │ │ │ +000c9390: 2d2d 2d2d 5b61 2c20 622c 2063 2c20 642c ----[a, b, c, d, │ │ │ │ +000c93a0: 2065 2c20 665d 2920 2020 2020 2020 2020 e, f]) │ │ │ │ +000c93b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c93c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c93d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c93e0: 3333 3331 2020 2020 2020 2020 2020 2020 3331 │ │ │ │ +000c93f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9410: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9430: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 000c9440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9460: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -000c9470: 203d 202d 2d20 7261 7469 6f6e 616c 206d = -- rational m │ │ │ │ -000c9480: 6170 202d 2d20 2020 2020 2020 2020 2020 ap -- │ │ │ │ -000c9490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9460: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c9470: 2020 2074 6172 6765 743a 2050 726f 6a28 target: Proj( │ │ │ │ +000c9480: 2d2d 2d2d 5b61 2c20 622c 2063 2c20 642c ----[a, b, c, d, │ │ │ │ +000c9490: 2065 2c20 665d 2920 2020 2020 2020 2020 e, f]) │ │ │ │ 000c94a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c94b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c94c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c94d0: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +000c94d0: 3333 3331 2020 2020 2020 2020 2020 2020 3331 │ │ │ │ 000c94e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c94f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9500: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c9510: 2020 2073 6f75 7263 653a 2050 726f 6a28 source: Proj( │ │ │ │ -000c9520: 2d2d 2d2d 5b61 2c20 622c 2063 2c20 642c ----[a, b, c, d, │ │ │ │ -000c9530: 2065 2c20 665d 2920 2020 2020 2020 2020 e, f]) │ │ │ │ +000c9510: 2020 2064 6566 696e 696e 6720 666f 726d defining form │ │ │ │ +000c9520: 733a 207b 2020 2020 2020 2020 2020 2020 s: { │ │ │ │ +000c9530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9550: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9570: 3333 3331 2020 2020 2020 2020 2020 2020 3331 │ │ │ │ +000c9570: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000c9580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c95a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c95b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c95c0: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +000c95c0: 2020 2020 6520 202d 2064 2a66 2c20 2020 e - d*f, │ │ │ │ 000c95d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c95e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c95f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c9600: 2020 2074 6172 6765 743a 2050 726f 6a28 target: Proj( │ │ │ │ -000c9610: 2d2d 2d2d 5b61 2c20 622c 2063 2c20 642c ----[a, b, c, d, │ │ │ │ -000c9620: 2065 2c20 665d 2920 2020 2020 2020 2020 e, f]) │ │ │ │ +000c9600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9640: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9660: 3333 3331 2020 2020 2020 2020 2020 2020 3331 │ │ │ │ +000c9660: 2020 2020 632a 6520 2d20 622a 662c 2020 c*e - b*f, │ │ │ │ 000c9670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9690: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c96a0: 2020 2064 6566 696e 696e 6720 666f 726d defining form │ │ │ │ -000c96b0: 733a 207b 2020 2020 2020 2020 2020 2020 s: { │ │ │ │ +000c96a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c96b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c96c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c96d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c96e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c96f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9700: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000c9700: 2020 2020 632a 6420 2d20 622a 652c 2020 c*d - b*e, │ │ │ │ 000c9710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9730: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9750: 2020 2020 6520 202d 2064 2a66 2c20 2020 e - d*f, │ │ │ │ +000c9750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9780: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c97a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c97a0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000c97b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c97c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c97d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c97e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c97f0: 2020 2020 632a 6520 2d20 622a 662c 2020 c*e - b*f, │ │ │ │ +000c97f0: 2020 2020 6320 202d 2061 2a66 2c20 2020 c - a*f, │ │ │ │ 000c9800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9820: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9870: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9890: 2020 2020 632a 6420 2d20 622a 652c 2020 c*d - b*e, │ │ │ │ +000c9890: 2020 2020 622a 6320 2d20 612a 652c 2020 b*c - a*e, │ │ │ │ 000c98a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c98b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c98c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c98d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c98e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c98f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9910: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9930: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000c9940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9960: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9980: 2020 2020 6320 202d 2061 2a66 2c20 2020 c - a*f, │ │ │ │ +000c9980: 2020 2020 6220 202d 2061 2a64 2020 2020 b - a*d │ │ │ │ 000c9990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c99a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c99b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c99c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c99d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c99d0: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ 000c99e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c99f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9a00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9a20: 2020 2020 622a 6320 2d20 612a 652c 2020 b*c - a*e, │ │ │ │ +000c9a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9a50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c9a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9aa0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c9ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9ac0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000c9ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9af0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c9b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9b10: 2020 2020 6220 202d 2061 2a64 2020 2020 b - a*d │ │ │ │ -000c9b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9a50: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +000c9a60: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ +000c9a70: 7175 6164 7261 7469 6320 7261 7469 6f6e quadratic ration │ │ │ │ +000c9a80: 616c 206d 6170 2066 726f 6d20 5050 5e35 al map from PP^5 │ │ │ │ +000c9a90: 2074 6f20 5050 5e35 2920 2020 2020 2020 to PP^5) │ │ │ │ +000c9aa0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000c9ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +000c9b00: 203a 2052 203d 205a 5a2f 3333 3331 5b78 : R = ZZ/3331[x │ │ │ │ +000c9b10: 5f30 2e2e 785f 355d 2c20 5320 3d20 5a5a _0..x_5], S = ZZ │ │ │ │ +000c9b20: 2f33 3333 315b 795f 302e 2e79 5f35 5d3b /3331[y_0..y_5]; │ │ │ │ 000c9b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9b40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c9b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9b60: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ -000c9b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9b90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c9ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9b40: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000c9b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000c9b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +000c9ba0: 203a 2073 7562 2870 6869 2c52 2c53 2920 : sub(phi,R,S) │ │ │ │ 000c9bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9be0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -000c9bf0: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ -000c9c00: 7175 6164 7261 7469 6320 7261 7469 6f6e quadratic ration │ │ │ │ -000c9c10: 616c 206d 6170 2066 726f 6d20 5050 5e35 al map from PP^5 │ │ │ │ -000c9c20: 2074 6f20 5050 5e35 2920 2020 2020 2020 to PP^5) │ │ │ │ -000c9c30: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000c9c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c9c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c9c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c9c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c9c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -000c9c90: 203a 2052 203d 205a 5a2f 3333 3331 5b78 : R = ZZ/3331[x │ │ │ │ -000c9ca0: 5f30 2e2e 785f 355d 2c20 5320 3d20 5a5a _0..x_5], S = ZZ │ │ │ │ -000c9cb0: 2f33 3333 315b 795f 302e 2e79 5f35 5d3b /3331[y_0..y_5]; │ │ │ │ +000c9be0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c9bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9c30: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +000c9c40: 203d 202d 2d20 7261 7469 6f6e 616c 206d = -- rational m │ │ │ │ +000c9c50: 6170 202d 2d20 2020 2020 2020 2020 2020 ap -- │ │ │ │ +000c9c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9c80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c9c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9ca0: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +000c9cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9cd0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000c9ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c9cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c9d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c9d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000c9d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ -000c9d30: 203a 2073 7562 2870 6869 2c52 2c53 2920 : sub(phi,R,S) │ │ │ │ -000c9d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9cd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c9ce0: 2020 2073 6f75 7263 653a 2050 726f 6a28 source: Proj( │ │ │ │ +000c9cf0: 2d2d 2d2d 5b78 202c 2078 202c 2078 202c ----[x , x , x , │ │ │ │ +000c9d00: 2078 202c 2078 202c 2078 205d 2920 2020 x , x , x ]) │ │ │ │ +000c9d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9d20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c9d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9d40: 3333 3331 2020 3020 2020 3120 2020 3220 3331 0 1 2 │ │ │ │ +000c9d50: 2020 3320 2020 3420 2020 3520 2020 2020 3 4 5 │ │ │ │ 000c9d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9d70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9d90: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 000c9da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9dc0: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ -000c9dd0: 203d 202d 2d20 7261 7469 6f6e 616c 206d = -- rational m │ │ │ │ -000c9de0: 6170 202d 2d20 2020 2020 2020 2020 2020 ap -- │ │ │ │ -000c9df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9dc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000c9dd0: 2020 2074 6172 6765 743a 2050 726f 6a28 target: Proj( │ │ │ │ +000c9de0: 2d2d 2d2d 5b79 202c 2079 202c 2079 202c ----[y , y , y , │ │ │ │ +000c9df0: 2079 202c 2079 202c 2079 205d 2920 2020 y , y , y ]) │ │ │ │ 000c9e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9e10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9e30: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ -000c9e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9e30: 3333 3331 2020 3020 2020 3120 2020 3220 3331 0 1 2 │ │ │ │ +000c9e40: 2020 3320 2020 3420 2020 3520 2020 2020 3 4 5 │ │ │ │ 000c9e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9e60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c9e70: 2020 2073 6f75 7263 653a 2050 726f 6a28 source: Proj( │ │ │ │ -000c9e80: 2d2d 2d2d 5b78 202c 2078 202c 2078 202c ----[x , x , x , │ │ │ │ -000c9e90: 2078 202c 2078 202c 2078 205d 2920 2020 x , x , x ]) │ │ │ │ +000c9e70: 2020 2064 6566 696e 696e 6720 666f 726d defining form │ │ │ │ +000c9e80: 733a 207b 2020 2020 2020 2020 2020 2020 s: { │ │ │ │ +000c9e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9eb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9ed0: 3333 3331 2020 3020 2020 3120 2020 3220 3331 0 1 2 │ │ │ │ -000c9ee0: 2020 3320 2020 3420 2020 3520 2020 2020 3 4 5 │ │ │ │ +000c9ed0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000c9ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9f00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9f20: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +000c9f20: 2020 2020 7820 202d 2078 2078 202c 2020 x - x x , │ │ │ │ 000c9f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9f50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000c9f60: 2020 2074 6172 6765 743a 2050 726f 6a28 target: Proj( │ │ │ │ -000c9f70: 2d2d 2d2d 5b79 202c 2079 202c 2079 202c ----[y , y , y , │ │ │ │ -000c9f80: 2079 202c 2079 202c 2079 205d 2920 2020 y , y , y ]) │ │ │ │ +000c9f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9f70: 2020 2020 2034 2020 2020 3320 3520 2020 4 3 5 │ │ │ │ +000c9f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9fa0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c9fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000c9fc0: 3333 3331 2020 3020 2020 3120 2020 3220 3331 0 1 2 │ │ │ │ -000c9fd0: 2020 3320 2020 3420 2020 3520 2020 2020 3 4 5 │ │ │ │ +000c9fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000c9fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c9ff0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000ca000: 2020 2064 6566 696e 696e 6720 666f 726d defining form │ │ │ │ -000ca010: 733a 207b 2020 2020 2020 2020 2020 2020 s: { │ │ │ │ +000ca000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ca010: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ 000ca020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca040: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca060: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000ca060: 2020 2020 2032 2034 2020 2020 3120 3520 2 4 1 5 │ │ │ │ 000ca070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca090: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca0b0: 2020 2020 7820 202d 2078 2078 202c 2020 x - x x , │ │ │ │ +000ca0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca0e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca100: 2020 2020 2034 2020 2020 3320 3520 2020 4 3 5 │ │ │ │ +000ca100: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ 000ca110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca130: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ca150: 2020 2020 2032 2033 2020 2020 3120 3420 2 3 1 4 │ │ │ │ 000ca160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca180: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca1a0: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ +000ca1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca1d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca1f0: 2020 2020 2032 2034 2020 2020 3120 3520 2 4 1 5 │ │ │ │ +000ca1f0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000ca200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca220: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ca240: 2020 2020 7820 202d 2078 2078 202c 2020 x - x x , │ │ │ │ 000ca250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca270: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca290: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ +000ca290: 2020 2020 2032 2020 2020 3020 3520 2020 2 0 5 │ │ │ │ 000ca2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca2c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca2e0: 2020 2020 2032 2033 2020 2020 3120 3420 2 3 1 4 │ │ │ │ +000ca2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca310: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ca330: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ 000ca340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca360: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca380: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000ca380: 2020 2020 2031 2032 2020 2020 3020 3420 1 2 0 4 │ │ │ │ 000ca390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca3b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca3d0: 2020 2020 7820 202d 2078 2078 202c 2020 x - x x , │ │ │ │ +000ca3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca400: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca420: 2020 2020 2032 2020 2020 3020 3520 2020 2 0 5 │ │ │ │ +000ca420: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000ca430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca450: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ca470: 2020 2020 7820 202d 2078 2078 2020 2020 x - x x │ │ │ │ 000ca480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca4a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca4c0: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ +000ca4c0: 2020 2020 2031 2020 2020 3020 3320 2020 1 0 3 │ │ │ │ 000ca4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca4f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca510: 2020 2020 2031 2032 2020 2020 3020 3420 1 2 0 4 │ │ │ │ +000ca510: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ 000ca520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca540: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000ca550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ca580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca590: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000ca5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca5b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000ca5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca5e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000ca5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca600: 2020 2020 7820 202d 2078 2078 2020 2020 x - x x │ │ │ │ -000ca610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca630: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000ca640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca650: 2020 2020 2031 2020 2020 3020 3320 2020 1 0 3 │ │ │ │ -000ca660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca680: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000ca690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca6a0: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ -000ca6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca6d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000ca6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ca720: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ -000ca730: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ -000ca740: 7175 6164 7261 7469 6320 7261 7469 6f6e quadratic ration │ │ │ │ -000ca750: 616c 206d 6170 2066 726f 6d20 5050 5e35 al map from PP^5 │ │ │ │ -000ca760: 2074 6f20 5050 5e35 2920 2020 2020 2020 to PP^5) │ │ │ │ -000ca770: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000ca780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ca790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ca7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ca7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ca7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ -000ca7d0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -000ca7e0: 0a20 202a 202a 6e6f 7465 2052 6174 696f . * *note Ratio │ │ │ │ -000ca7f0: 6e61 6c4d 6170 202a 2a20 5269 6e67 3a20 nalMap ** Ring: │ │ │ │ -000ca800: 5261 7469 6f6e 616c 4d61 7020 5f73 745f RationalMap _st_ │ │ │ │ -000ca810: 7374 2052 696e 672c 202d 2d20 6368 616e st Ring, -- chan │ │ │ │ -000ca820: 6765 2074 6865 0a20 2020 2063 6f65 6666 ge the. coeff │ │ │ │ -000ca830: 6963 6965 6e74 2072 696e 6720 6f66 2061 icient ring of a │ │ │ │ -000ca840: 2072 6174 696f 6e61 6c20 6d61 700a 0a57 rational map..W │ │ │ │ -000ca850: 6179 7320 746f 2075 7365 2074 6869 7320 ays to use this │ │ │ │ -000ca860: 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d 3d3d method:.======== │ │ │ │ -000ca870: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000ca880: 0a0a 2020 2a20 2a6e 6f74 6520 7375 6273 .. * *note subs │ │ │ │ -000ca890: 7469 7475 7465 2852 6174 696f 6e61 6c4d titute(RationalM │ │ │ │ -000ca8a0: 6170 2c50 6f6c 796e 6f6d 6961 6c52 696e ap,PolynomialRin │ │ │ │ -000ca8b0: 672c 506f 6c79 6e6f 6d69 616c 5269 6e67 g,PolynomialRing │ │ │ │ -000ca8c0: 293a 0a20 2020 2073 7562 7374 6974 7574 ):. substitut │ │ │ │ -000ca8d0: 655f 6c70 5261 7469 6f6e 616c 4d61 705f e_lpRationalMap_ │ │ │ │ -000ca8e0: 636d 506f 6c79 6e6f 6d69 616c 5269 6e67 cmPolynomialRing │ │ │ │ -000ca8f0: 5f63 6d50 6f6c 796e 6f6d 6961 6c52 696e _cmPolynomialRin │ │ │ │ -000ca900: 675f 7270 2c20 2d2d 0a20 2020 2073 7562 g_rp, --. sub │ │ │ │ -000ca910: 7374 6974 7574 6520 7468 6520 616d 6269 stitute the ambi │ │ │ │ -000ca920: 656e 7420 7072 6f6a 6563 7469 7665 2073 ent projective s │ │ │ │ -000ca930: 7061 6365 7320 6f66 2073 6f75 7263 6520 paces of source │ │ │ │ -000ca940: 616e 6420 7461 7267 6574 0a2d 2d2d 2d2d and target.----- │ │ │ │ -000ca950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ca960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ca970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ca980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ca990: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -000ca9a0: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -000ca9b0: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -000ca9c0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -000ca9d0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -000ca9e0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -000ca9f0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -000caa00: 732f 4372 656d 6f6e 612f 0a64 6f63 756d s/Cremona/.docum │ │ │ │ -000caa10: 656e 7461 7469 6f6e 2e6d 323a 3537 313a entation.m2:571: │ │ │ │ -000caa20: 302e 0a1f 0a46 696c 653a 2043 7265 6d6f 0....File: Cremo │ │ │ │ -000caa30: 6e61 2e69 6e66 6f2c 204e 6f64 653a 2073 na.info, Node: s │ │ │ │ -000caa40: 7570 6572 5f6c 7052 6174 696f 6e61 6c4d uper_lpRationalM │ │ │ │ -000caa50: 6170 5f72 702c 204e 6578 743a 2074 6172 ap_rp, Next: tar │ │ │ │ -000caa60: 6765 745f 6c70 5261 7469 6f6e 616c 4d61 get_lpRationalMa │ │ │ │ -000caa70: 705f 7270 2c20 5072 6576 3a20 7375 6273 p_rp, Prev: subs │ │ │ │ -000caa80: 7469 7475 7465 5f6c 7052 6174 696f 6e61 titute_lpRationa │ │ │ │ -000caa90: 6c4d 6170 5f63 6d50 6f6c 796e 6f6d 6961 lMap_cmPolynomia │ │ │ │ -000caaa0: 6c52 696e 675f 636d 506f 6c79 6e6f 6d69 lRing_cmPolynomi │ │ │ │ -000caab0: 616c 5269 6e67 5f72 702c 2055 703a 2054 alRing_rp, Up: T │ │ │ │ -000caac0: 6f70 0a0a 7375 7065 7228 5261 7469 6f6e op..super(Ration │ │ │ │ -000caad0: 616c 4d61 7029 202d 2d20 6765 7420 7468 alMap) -- get th │ │ │ │ -000caae0: 6520 7261 7469 6f6e 616c 206d 6170 2077 e rational map w │ │ │ │ -000caaf0: 686f 7365 2074 6172 6765 7420 6973 2061 hose target is a │ │ │ │ -000cab00: 2070 726f 6a65 6374 6976 6520 7370 6163 projective spac │ │ │ │ -000cab10: 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a e.************** │ │ │ │ -000cab20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000cab30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000cab40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000cab50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -000cab60: 0a20 202a 2046 756e 6374 696f 6e3a 202a . * Function: * │ │ │ │ -000cab70: 6e6f 7465 2073 7570 6572 3a20 284d 6163 note super: (Mac │ │ │ │ -000cab80: 6175 6c61 7932 446f 6329 7375 7065 722c aulay2Doc)super, │ │ │ │ -000cab90: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -000caba0: 2020 2020 2073 7570 6572 2070 6869 0a20 super phi. │ │ │ │ -000cabb0: 2020 2020 2020 2072 6174 696f 6e61 6c4d rationalM │ │ │ │ -000cabc0: 6170 2870 6869 2c44 6f6d 696e 616e 743d ap(phi,Dominant= │ │ │ │ -000cabd0: 3e6e 756c 6c29 0a20 2020 2020 2020 2072 >null). r │ │ │ │ -000cabe0: 6174 696f 6e61 6c4d 6170 2070 6869 0a20 ationalMap phi. │ │ │ │ -000cabf0: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -000cac00: 202a 2070 6869 2c20 6120 2a6e 6f74 6520 * phi, a *note │ │ │ │ -000cac10: 7261 7469 6f6e 616c 206d 6170 3a20 5261 rational map: Ra │ │ │ │ -000cac20: 7469 6f6e 616c 4d61 702c 2c20 7768 6f73 tionalMap,, whos │ │ │ │ -000cac30: 6520 7461 7267 6574 2069 7320 6120 7375 e target is a su │ │ │ │ -000cac40: 6276 6172 6965 7479 0a20 2020 2020 2020 bvariety. │ │ │ │ -000cac50: 2024 595c 7375 6273 6574 5c6d 6174 6862 $Y\subset\mathb │ │ │ │ -000cac60: 627b 507d 5e6e 240a 2020 2a20 4f75 7470 b{P}^n$. * Outp │ │ │ │ -000cac70: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ -000cac80: 6e6f 7465 2072 6174 696f 6e61 6c20 6d61 note rational ma │ │ │ │ -000cac90: 703a 2052 6174 696f 6e61 6c4d 6170 2c2c p: RationalMap,, │ │ │ │ -000caca0: 2074 6865 2063 6f6d 706f 7369 7469 6f6e the composition │ │ │ │ -000cacb0: 206f 6620 7068 6920 7769 7468 2074 6865 of phi with the │ │ │ │ -000cacc0: 0a20 2020 2020 2020 2069 6e63 6c75 7369 . inclusi │ │ │ │ -000cacd0: 6f6e 206f 6620 2459 2420 696e 746f 2024 on of $Y$ into $ │ │ │ │ -000cace0: 5c6d 6174 6862 627b 507d 5e6e 240a 0a44 \mathbb{P}^n$..D │ │ │ │ -000cacf0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -000cad00: 3d3d 3d3d 3d3d 0a0a 536f 2074 6861 742c ======..So that, │ │ │ │ -000cad10: 2066 6f72 2069 6e73 7461 6e63 652c 2069 for instance, i │ │ │ │ -000cad20: 6620 7068 6920 6973 2061 2064 6f6d 696e f phi is a domin │ │ │ │ -000cad30: 616e 7420 6d61 702c 2074 6865 6e20 7468 ant map, then th │ │ │ │ -000cad40: 6520 636f 6465 0a72 6174 696f 6e61 6c4d e code.rationalM │ │ │ │ -000cad50: 6170 2873 7570 6572 2070 6869 2c44 6f6d ap(super phi,Dom │ │ │ │ -000cad60: 696e 616e 743d 3e74 7275 6529 2079 6965 inant=>true) yie │ │ │ │ -000cad70: 6c64 7320 6120 6d61 7020 6973 6f6d 6f72 lds a map isomor │ │ │ │ -000cad80: 7068 6963 2074 6f20 7068 692e 0a0a 2b2d phic to phi...+- │ │ │ │ -000cad90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cada0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cadb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cadc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cadd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000cade0: 3120 3a20 7068 6920 3d20 7370 6563 6961 1 : phi = specia │ │ │ │ -000cadf0: 6c51 7561 6472 6174 6963 5472 616e 7366 lQuadraticTransf │ │ │ │ -000cae00: 6f72 6d61 7469 6f6e 2037 3b20 2020 2020 ormation 7; │ │ │ │ -000cae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cae20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ca590: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +000ca5a0: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ +000ca5b0: 7175 6164 7261 7469 6320 7261 7469 6f6e quadratic ration │ │ │ │ +000ca5c0: 616c 206d 6170 2066 726f 6d20 5050 5e35 al map from PP^5 │ │ │ │ +000ca5d0: 2074 6f20 5050 5e35 2920 2020 2020 2020 to PP^5) │ │ │ │ +000ca5e0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000ca5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ca600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ca610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ca620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ca630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ +000ca640: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +000ca650: 0a20 202a 202a 6e6f 7465 2052 6174 696f . * *note Ratio │ │ │ │ +000ca660: 6e61 6c4d 6170 202a 2a20 5269 6e67 3a20 nalMap ** Ring: │ │ │ │ +000ca670: 5261 7469 6f6e 616c 4d61 7020 5f73 745f RationalMap _st_ │ │ │ │ +000ca680: 7374 2052 696e 672c 202d 2d20 6368 616e st Ring, -- chan │ │ │ │ +000ca690: 6765 2074 6865 0a20 2020 2063 6f65 6666 ge the. coeff │ │ │ │ +000ca6a0: 6963 6965 6e74 2072 696e 6720 6f66 2061 icient ring of a │ │ │ │ +000ca6b0: 2072 6174 696f 6e61 6c20 6d61 700a 0a57 rational map..W │ │ │ │ +000ca6c0: 6179 7320 746f 2075 7365 2074 6869 7320 ays to use this │ │ │ │ +000ca6d0: 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d 3d3d method:.======== │ │ │ │ +000ca6e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000ca6f0: 0a0a 2020 2a20 2a6e 6f74 6520 7375 6273 .. * *note subs │ │ │ │ +000ca700: 7469 7475 7465 2852 6174 696f 6e61 6c4d titute(RationalM │ │ │ │ +000ca710: 6170 2c50 6f6c 796e 6f6d 6961 6c52 696e ap,PolynomialRin │ │ │ │ +000ca720: 672c 506f 6c79 6e6f 6d69 616c 5269 6e67 g,PolynomialRing │ │ │ │ +000ca730: 293a 0a20 2020 2073 7562 7374 6974 7574 ):. substitut │ │ │ │ +000ca740: 655f 6c70 5261 7469 6f6e 616c 4d61 705f e_lpRationalMap_ │ │ │ │ +000ca750: 636d 506f 6c79 6e6f 6d69 616c 5269 6e67 cmPolynomialRing │ │ │ │ +000ca760: 5f63 6d50 6f6c 796e 6f6d 6961 6c52 696e _cmPolynomialRin │ │ │ │ +000ca770: 675f 7270 2c20 2d2d 0a20 2020 2073 7562 g_rp, --. sub │ │ │ │ +000ca780: 7374 6974 7574 6520 7468 6520 616d 6269 stitute the ambi │ │ │ │ +000ca790: 656e 7420 7072 6f6a 6563 7469 7665 2073 ent projective s │ │ │ │ +000ca7a0: 7061 6365 7320 6f66 2073 6f75 7263 6520 paces of source │ │ │ │ +000ca7b0: 616e 6420 7461 7267 6574 0a2d 2d2d 2d2d and target.----- │ │ │ │ +000ca7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ca7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ca7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ca7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ca800: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +000ca810: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +000ca820: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +000ca830: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +000ca840: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +000ca850: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +000ca860: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +000ca870: 732f 4372 656d 6f6e 612f 0a64 6f63 756d s/Cremona/.docum │ │ │ │ +000ca880: 656e 7461 7469 6f6e 2e6d 323a 3537 313a entation.m2:571: │ │ │ │ +000ca890: 302e 0a1f 0a46 696c 653a 2043 7265 6d6f 0....File: Cremo │ │ │ │ +000ca8a0: 6e61 2e69 6e66 6f2c 204e 6f64 653a 2073 na.info, Node: s │ │ │ │ +000ca8b0: 7570 6572 5f6c 7052 6174 696f 6e61 6c4d uper_lpRationalM │ │ │ │ +000ca8c0: 6170 5f72 702c 204e 6578 743a 2074 6172 ap_rp, Next: tar │ │ │ │ +000ca8d0: 6765 745f 6c70 5261 7469 6f6e 616c 4d61 get_lpRationalMa │ │ │ │ +000ca8e0: 705f 7270 2c20 5072 6576 3a20 7375 6273 p_rp, Prev: subs │ │ │ │ +000ca8f0: 7469 7475 7465 5f6c 7052 6174 696f 6e61 titute_lpRationa │ │ │ │ +000ca900: 6c4d 6170 5f63 6d50 6f6c 796e 6f6d 6961 lMap_cmPolynomia │ │ │ │ +000ca910: 6c52 696e 675f 636d 506f 6c79 6e6f 6d69 lRing_cmPolynomi │ │ │ │ +000ca920: 616c 5269 6e67 5f72 702c 2055 703a 2054 alRing_rp, Up: T │ │ │ │ +000ca930: 6f70 0a0a 7375 7065 7228 5261 7469 6f6e op..super(Ration │ │ │ │ +000ca940: 616c 4d61 7029 202d 2d20 6765 7420 7468 alMap) -- get th │ │ │ │ +000ca950: 6520 7261 7469 6f6e 616c 206d 6170 2077 e rational map w │ │ │ │ +000ca960: 686f 7365 2074 6172 6765 7420 6973 2061 hose target is a │ │ │ │ +000ca970: 2070 726f 6a65 6374 6976 6520 7370 6163 projective spac │ │ │ │ +000ca980: 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a e.************** │ │ │ │ +000ca990: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000ca9a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000ca9b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000ca9c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +000ca9d0: 0a20 202a 2046 756e 6374 696f 6e3a 202a . * Function: * │ │ │ │ +000ca9e0: 6e6f 7465 2073 7570 6572 3a20 284d 6163 note super: (Mac │ │ │ │ +000ca9f0: 6175 6c61 7932 446f 6329 7375 7065 722c aulay2Doc)super, │ │ │ │ +000caa00: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +000caa10: 2020 2020 2073 7570 6572 2070 6869 0a20 super phi. │ │ │ │ +000caa20: 2020 2020 2020 2072 6174 696f 6e61 6c4d rationalM │ │ │ │ +000caa30: 6170 2870 6869 2c44 6f6d 696e 616e 743d ap(phi,Dominant= │ │ │ │ +000caa40: 3e6e 756c 6c29 0a20 2020 2020 2020 2072 >null). r │ │ │ │ +000caa50: 6174 696f 6e61 6c4d 6170 2070 6869 0a20 ationalMap phi. │ │ │ │ +000caa60: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +000caa70: 202a 2070 6869 2c20 6120 2a6e 6f74 6520 * phi, a *note │ │ │ │ +000caa80: 7261 7469 6f6e 616c 206d 6170 3a20 5261 rational map: Ra │ │ │ │ +000caa90: 7469 6f6e 616c 4d61 702c 2c20 7768 6f73 tionalMap,, whos │ │ │ │ +000caaa0: 6520 7461 7267 6574 2069 7320 6120 7375 e target is a su │ │ │ │ +000caab0: 6276 6172 6965 7479 0a20 2020 2020 2020 bvariety. │ │ │ │ +000caac0: 2024 595c 7375 6273 6574 5c6d 6174 6862 $Y\subset\mathb │ │ │ │ +000caad0: 627b 507d 5e6e 240a 2020 2a20 4f75 7470 b{P}^n$. * Outp │ │ │ │ +000caae0: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ +000caaf0: 6e6f 7465 2072 6174 696f 6e61 6c20 6d61 note rational ma │ │ │ │ +000cab00: 703a 2052 6174 696f 6e61 6c4d 6170 2c2c p: RationalMap,, │ │ │ │ +000cab10: 2074 6865 2063 6f6d 706f 7369 7469 6f6e the composition │ │ │ │ +000cab20: 206f 6620 7068 6920 7769 7468 2074 6865 of phi with the │ │ │ │ +000cab30: 0a20 2020 2020 2020 2069 6e63 6c75 7369 . inclusi │ │ │ │ +000cab40: 6f6e 206f 6620 2459 2420 696e 746f 2024 on of $Y$ into $ │ │ │ │ +000cab50: 5c6d 6174 6862 627b 507d 5e6e 240a 0a44 \mathbb{P}^n$..D │ │ │ │ +000cab60: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +000cab70: 3d3d 3d3d 3d3d 0a0a 536f 2074 6861 742c ======..So that, │ │ │ │ +000cab80: 2066 6f72 2069 6e73 7461 6e63 652c 2069 for instance, i │ │ │ │ +000cab90: 6620 7068 6920 6973 2061 2064 6f6d 696e f phi is a domin │ │ │ │ +000caba0: 616e 7420 6d61 702c 2074 6865 6e20 7468 ant map, then th │ │ │ │ +000cabb0: 6520 636f 6465 0a72 6174 696f 6e61 6c4d e code.rationalM │ │ │ │ +000cabc0: 6170 2873 7570 6572 2070 6869 2c44 6f6d ap(super phi,Dom │ │ │ │ +000cabd0: 696e 616e 743d 3e74 7275 6529 2079 6965 inant=>true) yie │ │ │ │ +000cabe0: 6c64 7320 6120 6d61 7020 6973 6f6d 6f72 lds a map isomor │ │ │ │ +000cabf0: 7068 6963 2074 6f20 7068 692e 0a0a 2b2d phic to phi...+- │ │ │ │ +000cac00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cac10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cac20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cac30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cac40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000cac50: 3120 3a20 7068 6920 3d20 7370 6563 6961 1 : phi = specia │ │ │ │ +000cac60: 6c51 7561 6472 6174 6963 5472 616e 7366 lQuadraticTransf │ │ │ │ +000cac70: 6f72 6d61 7469 6f6e 2037 3b20 2020 2020 ormation 7; │ │ │ │ +000cac80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cac90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000caca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cacb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cacc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cacd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cace0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000cacf0: 3120 3a20 5261 7469 6f6e 616c 4d61 7020 1 : RationalMap │ │ │ │ +000cad00: 2871 7561 6472 6174 6963 2062 6972 6174 (quadratic birat │ │ │ │ +000cad10: 696f 6e61 6c20 6d61 7020 6672 6f6d 2050 ional map from P │ │ │ │ +000cad20: 505e 3820 746f 2038 2d64 696d 656e 7369 P^8 to 8-dimensi │ │ │ │ +000cad30: 6f6e 616c 2020 2020 2020 2020 7c0a 7c2d onal |.|- │ │ │ │ +000cad40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cad50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cad60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cad70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cad80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c73 ------------|.|s │ │ │ │ +000cad90: 7562 7661 7269 6574 7920 6f66 2050 505e ubvariety of PP^ │ │ │ │ +000cada0: 3130 2920 2020 2020 2020 2020 2020 2020 10) │ │ │ │ +000cadb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cadc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cadd0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000cade0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cadf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cae00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cae10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cae20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000cae30: 3220 3a20 7068 6927 203d 2073 7570 6572 2 : phi' = super │ │ │ │ +000cae40: 2070 6869 3b20 2020 2020 2020 2020 2020 phi; │ │ │ │ 000cae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cae70: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000cae80: 3120 3a20 5261 7469 6f6e 616c 4d61 7020 1 : RationalMap │ │ │ │ -000cae90: 2871 7561 6472 6174 6963 2062 6972 6174 (quadratic birat │ │ │ │ -000caea0: 696f 6e61 6c20 6d61 7020 6672 6f6d 2050 ional map from P │ │ │ │ -000caeb0: 505e 3820 746f 2038 2d64 696d 656e 7369 P^8 to 8-dimensi │ │ │ │ -000caec0: 6f6e 616c 2020 2020 2020 2020 7c0a 7c2d onal |.|- │ │ │ │ -000caed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000caee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000caef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000caf00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000caf10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c73 ------------|.|s │ │ │ │ -000caf20: 7562 7661 7269 6574 7920 6f66 2050 505e ubvariety of PP^ │ │ │ │ -000caf30: 3130 2920 2020 2020 2020 2020 2020 2020 10) │ │ │ │ -000caf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000caf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000caf60: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -000caf70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000caf80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000caf90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cafa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cafb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000cafc0: 3220 3a20 7068 6927 203d 2073 7570 6572 2 : phi' = super │ │ │ │ -000cafd0: 2070 6869 3b20 2020 2020 2020 2020 2020 phi; │ │ │ │ +000cae70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000caea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000caeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000caec0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000caed0: 3220 3a20 5261 7469 6f6e 616c 4d61 7020 2 : RationalMap │ │ │ │ +000caee0: 2871 7561 6472 6174 6963 2072 6174 696f (quadratic ratio │ │ │ │ +000caef0: 6e61 6c20 6d61 7020 6672 6f6d 2050 505e nal map from PP^ │ │ │ │ +000caf00: 3820 746f 2050 505e 3130 2920 2020 2020 8 to PP^10) │ │ │ │ +000caf10: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000caf20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000caf30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000caf40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000caf50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000caf60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000caf70: 3320 3a20 6465 7363 7269 6265 2070 6869 3 : describe phi │ │ │ │ +000caf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000caf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cafa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cafb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cafc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cafd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cafe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000caff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb000: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb000: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000cb010: 3320 3d20 7261 7469 6f6e 616c 206d 6170 3 = rational map │ │ │ │ +000cb020: 2064 6566 696e 6564 2062 7920 666f 726d defined by form │ │ │ │ +000cb030: 7320 6f66 2064 6567 7265 6520 3220 2020 s of degree 2 │ │ │ │ 000cb040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb050: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000cb060: 3220 3a20 5261 7469 6f6e 616c 4d61 7020 2 : RationalMap │ │ │ │ -000cb070: 2871 7561 6472 6174 6963 2072 6174 696f (quadratic ratio │ │ │ │ -000cb080: 6e61 6c20 6d61 7020 6672 6f6d 2050 505e nal map from PP^ │ │ │ │ -000cb090: 3820 746f 2050 505e 3130 2920 2020 2020 8 to PP^10) │ │ │ │ -000cb0a0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -000cb0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cb0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cb0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cb0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cb0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000cb100: 3320 3a20 6465 7363 7269 6265 2070 6869 3 : describe phi │ │ │ │ -000cb110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb050: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cb060: 2020 2020 736f 7572 6365 2076 6172 6965 source varie │ │ │ │ +000cb070: 7479 3a20 5050 5e38 2020 2020 2020 2020 ty: PP^8 │ │ │ │ +000cb080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb0a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cb0b0: 2020 2020 7461 7267 6574 2076 6172 6965 target varie │ │ │ │ +000cb0c0: 7479 3a20 636f 6d70 6c65 7465 2069 6e74 ty: complete int │ │ │ │ +000cb0d0: 6572 7365 6374 696f 6e20 6f66 2074 7970 ersection of typ │ │ │ │ +000cb0e0: 6520 2832 2c32 2920 696e 2050 505e 3130 e (2,2) in PP^10 │ │ │ │ +000cb0f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cb100: 2020 2020 646f 6d69 6e61 6e63 653a 2074 dominance: t │ │ │ │ +000cb110: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ 000cb120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb140: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb150: 2020 2020 6269 7261 7469 6f6e 616c 6974 birationalit │ │ │ │ +000cb160: 793a 2074 7275 6520 2020 2020 2020 2020 y: true │ │ │ │ 000cb170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb190: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000cb1a0: 3320 3d20 7261 7469 6f6e 616c 206d 6170 3 = rational map │ │ │ │ -000cb1b0: 2064 6566 696e 6564 2062 7920 666f 726d defined by form │ │ │ │ -000cb1c0: 7320 6f66 2064 6567 7265 6520 3220 2020 s of degree 2 │ │ │ │ -000cb1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb190: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cb1a0: 2020 2020 7072 6f6a 6563 7469 7665 2064 projective d │ │ │ │ +000cb1b0: 6567 7265 6573 3a20 7b31 2c20 322c 2034 egrees: {1, 2, 4 │ │ │ │ +000cb1c0: 2c20 382c 2031 362c 2032 322c 2032 302c , 8, 16, 22, 20, │ │ │ │ +000cb1d0: 2031 322c 2034 7d20 2020 2020 2020 2020 12, 4} │ │ │ │ 000cb1e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb1f0: 2020 2020 736f 7572 6365 2076 6172 6965 source varie │ │ │ │ -000cb200: 7479 3a20 5050 5e38 2020 2020 2020 2020 ty: PP^8 │ │ │ │ -000cb210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb1f0: 2020 2020 6e75 6d62 6572 206f 6620 6d69 number of mi │ │ │ │ +000cb200: 6e69 6d61 6c20 7265 7072 6573 656e 7461 nimal representa │ │ │ │ +000cb210: 7469 7665 733a 2031 2020 2020 2020 2020 tives: 1 │ │ │ │ 000cb220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb230: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb240: 2020 2020 7461 7267 6574 2076 6172 6965 target varie │ │ │ │ -000cb250: 7479 3a20 636f 6d70 6c65 7465 2069 6e74 ty: complete int │ │ │ │ -000cb260: 6572 7365 6374 696f 6e20 6f66 2074 7970 ersection of typ │ │ │ │ -000cb270: 6520 2832 2c32 2920 696e 2050 505e 3130 e (2,2) in PP^10 │ │ │ │ +000cb240: 2020 2020 6469 6d65 6e73 696f 6e20 6261 dimension ba │ │ │ │ +000cb250: 7365 206c 6f63 7573 3a20 3320 2020 2020 se locus: 3 │ │ │ │ +000cb260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb280: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb290: 2020 2020 646f 6d69 6e61 6e63 653a 2074 dominance: t │ │ │ │ -000cb2a0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +000cb290: 2020 2020 6465 6772 6565 2062 6173 6520 degree base │ │ │ │ +000cb2a0: 6c6f 6375 733a 2031 3020 2020 2020 2020 locus: 10 │ │ │ │ 000cb2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb2d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb2e0: 2020 2020 6269 7261 7469 6f6e 616c 6974 birationalit │ │ │ │ -000cb2f0: 793a 2074 7275 6520 2020 2020 2020 2020 y: true │ │ │ │ +000cb2e0: 2020 2020 636f 6566 6669 6369 656e 7420 coefficient │ │ │ │ +000cb2f0: 7269 6e67 3a20 5151 2020 2020 2020 2020 ring: QQ │ │ │ │ 000cb300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb320: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb330: 2020 2020 7072 6f6a 6563 7469 7665 2064 projective d │ │ │ │ -000cb340: 6567 7265 6573 3a20 7b31 2c20 322c 2034 egrees: {1, 2, 4 │ │ │ │ -000cb350: 2c20 382c 2031 362c 2032 322c 2032 302c , 8, 16, 22, 20, │ │ │ │ -000cb360: 2031 322c 2034 7d20 2020 2020 2020 2020 12, 4} │ │ │ │ -000cb370: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb380: 2020 2020 6e75 6d62 6572 206f 6620 6d69 number of mi │ │ │ │ -000cb390: 6e69 6d61 6c20 7265 7072 6573 656e 7461 nimal representa │ │ │ │ -000cb3a0: 7469 7665 733a 2031 2020 2020 2020 2020 tives: 1 │ │ │ │ +000cb320: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000cb330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cb340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cb350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cb360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cb370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000cb380: 3420 3a20 6465 7363 7269 6265 2070 6869 4 : describe phi │ │ │ │ +000cb390: 2720 2020 2020 2020 2020 2020 2020 2020 ' │ │ │ │ +000cb3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb3c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb3d0: 2020 2020 6469 6d65 6e73 696f 6e20 6261 dimension ba │ │ │ │ -000cb3e0: 7365 206c 6f63 7573 3a20 3320 2020 2020 se locus: 3 │ │ │ │ +000cb3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb410: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb420: 2020 2020 6465 6772 6565 2062 6173 6520 degree base │ │ │ │ -000cb430: 6c6f 6375 733a 2031 3020 2020 2020 2020 locus: 10 │ │ │ │ -000cb440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb410: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000cb420: 3420 3d20 7261 7469 6f6e 616c 206d 6170 4 = rational map │ │ │ │ +000cb430: 2064 6566 696e 6564 2062 7920 666f 726d defined by form │ │ │ │ +000cb440: 7320 6f66 2064 6567 7265 6520 3220 2020 s of degree 2 │ │ │ │ 000cb450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb460: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb470: 2020 2020 636f 6566 6669 6369 656e 7420 coefficient │ │ │ │ -000cb480: 7269 6e67 3a20 5151 2020 2020 2020 2020 ring: QQ │ │ │ │ +000cb470: 2020 2020 736f 7572 6365 2076 6172 6965 source varie │ │ │ │ +000cb480: 7479 3a20 5050 5e38 2020 2020 2020 2020 ty: PP^8 │ │ │ │ 000cb490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb4b0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -000cb4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cb4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cb4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cb4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cb500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000cb510: 3420 3a20 6465 7363 7269 6265 2070 6869 4 : describe phi │ │ │ │ -000cb520: 2720 2020 2020 2020 2020 2020 2020 2020 ' │ │ │ │ -000cb530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb4b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cb4c0: 2020 2020 7461 7267 6574 2076 6172 6965 target varie │ │ │ │ +000cb4d0: 7479 3a20 5050 5e31 3020 2020 2020 2020 ty: PP^10 │ │ │ │ +000cb4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb500: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cb510: 2020 2020 696d 6167 653a 2063 6f6d 706c image: compl │ │ │ │ +000cb520: 6574 6520 696e 7465 7273 6563 7469 6f6e ete intersection │ │ │ │ +000cb530: 206f 6620 7479 7065 2028 322c 3229 2069 of type (2,2) i │ │ │ │ +000cb540: 6e20 5050 5e31 3020 2020 2020 2020 2020 n PP^10 │ │ │ │ 000cb550: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb560: 2020 2020 646f 6d69 6e61 6e63 653a 2066 dominance: f │ │ │ │ +000cb570: 616c 7365 2020 2020 2020 2020 2020 2020 alse │ │ │ │ 000cb580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb5a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000cb5b0: 3420 3d20 7261 7469 6f6e 616c 206d 6170 4 = rational map │ │ │ │ -000cb5c0: 2064 6566 696e 6564 2062 7920 666f 726d defined by form │ │ │ │ -000cb5d0: 7320 6f66 2064 6567 7265 6520 3220 2020 s of degree 2 │ │ │ │ +000cb5a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cb5b0: 2020 2020 6269 7261 7469 6f6e 616c 6974 birationalit │ │ │ │ +000cb5c0: 793a 2066 616c 7365 2020 2020 2020 2020 y: false │ │ │ │ +000cb5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb5f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb600: 2020 2020 736f 7572 6365 2076 6172 6965 source varie │ │ │ │ -000cb610: 7479 3a20 5050 5e38 2020 2020 2020 2020 ty: PP^8 │ │ │ │ +000cb600: 2020 2020 6465 6772 6565 206f 6620 6d61 degree of ma │ │ │ │ +000cb610: 703a 2031 2020 2020 2020 2020 2020 2020 p: 1 │ │ │ │ 000cb620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb640: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb650: 2020 2020 7461 7267 6574 2076 6172 6965 target varie │ │ │ │ -000cb660: 7479 3a20 5050 5e31 3020 2020 2020 2020 ty: PP^10 │ │ │ │ -000cb670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb650: 2020 2020 7072 6f6a 6563 7469 7665 2064 projective d │ │ │ │ +000cb660: 6567 7265 6573 3a20 7b31 2c20 322c 2034 egrees: {1, 2, 4 │ │ │ │ +000cb670: 2c20 382c 2031 362c 2032 322c 2032 302c , 8, 16, 22, 20, │ │ │ │ +000cb680: 2031 322c 2034 7d20 2020 2020 2020 2020 12, 4} │ │ │ │ 000cb690: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb6a0: 2020 2020 696d 6167 653a 2063 6f6d 706c image: compl │ │ │ │ -000cb6b0: 6574 6520 696e 7465 7273 6563 7469 6f6e ete intersection │ │ │ │ -000cb6c0: 206f 6620 7479 7065 2028 322c 3229 2069 of type (2,2) i │ │ │ │ -000cb6d0: 6e20 5050 5e31 3020 2020 2020 2020 2020 n PP^10 │ │ │ │ +000cb6a0: 2020 2020 6e75 6d62 6572 206f 6620 6d69 number of mi │ │ │ │ +000cb6b0: 6e69 6d61 6c20 7265 7072 6573 656e 7461 nimal representa │ │ │ │ +000cb6c0: 7469 7665 733a 2031 2020 2020 2020 2020 tives: 1 │ │ │ │ +000cb6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb6e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb6f0: 2020 2020 646f 6d69 6e61 6e63 653a 2066 dominance: f │ │ │ │ -000cb700: 616c 7365 2020 2020 2020 2020 2020 2020 alse │ │ │ │ +000cb6f0: 2020 2020 6469 6d65 6e73 696f 6e20 6261 dimension ba │ │ │ │ +000cb700: 7365 206c 6f63 7573 3a20 3320 2020 2020 se locus: 3 │ │ │ │ 000cb710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb730: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb740: 2020 2020 6269 7261 7469 6f6e 616c 6974 birationalit │ │ │ │ -000cb750: 793a 2066 616c 7365 2020 2020 2020 2020 y: false │ │ │ │ +000cb740: 2020 2020 6465 6772 6565 2062 6173 6520 degree base │ │ │ │ +000cb750: 6c6f 6375 733a 2031 3020 2020 2020 2020 locus: 10 │ │ │ │ 000cb760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb780: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb790: 2020 2020 6465 6772 6565 206f 6620 6d61 degree of ma │ │ │ │ -000cb7a0: 703a 2031 2020 2020 2020 2020 2020 2020 p: 1 │ │ │ │ +000cb790: 2020 2020 636f 6566 6669 6369 656e 7420 coefficient │ │ │ │ +000cb7a0: 7269 6e67 3a20 5151 2020 2020 2020 2020 ring: QQ │ │ │ │ 000cb7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb7d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb7e0: 2020 2020 7072 6f6a 6563 7469 7665 2064 projective d │ │ │ │ -000cb7f0: 6567 7265 6573 3a20 7b31 2c20 322c 2034 egrees: {1, 2, 4 │ │ │ │ -000cb800: 2c20 382c 2031 362c 2032 322c 2032 302c , 8, 16, 22, 20, │ │ │ │ -000cb810: 2031 322c 2034 7d20 2020 2020 2020 2020 12, 4} │ │ │ │ -000cb820: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb830: 2020 2020 6e75 6d62 6572 206f 6620 6d69 number of mi │ │ │ │ -000cb840: 6e69 6d61 6c20 7265 7072 6573 656e 7461 nimal representa │ │ │ │ -000cb850: 7469 7665 733a 2031 2020 2020 2020 2020 tives: 1 │ │ │ │ +000cb7d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000cb7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cb7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cb800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cb810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cb820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000cb830: 3520 3a20 6465 7363 7269 6265 2072 6174 5 : describe rat │ │ │ │ +000cb840: 696f 6e61 6c4d 6170 2870 6869 272c 446f ionalMap(phi',Do │ │ │ │ +000cb850: 6d69 6e61 6e74 3d3e 7472 7565 2920 2020 minant=>true) │ │ │ │ 000cb860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb870: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb880: 2020 2020 6469 6d65 6e73 696f 6e20 6261 dimension ba │ │ │ │ -000cb890: 7365 206c 6f63 7573 3a20 3320 2020 2020 se locus: 3 │ │ │ │ +000cb880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb8c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb8d0: 2020 2020 6465 6772 6565 2062 6173 6520 degree base │ │ │ │ -000cb8e0: 6c6f 6375 733a 2031 3020 2020 2020 2020 locus: 10 │ │ │ │ -000cb8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cb8c0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000cb8d0: 3520 3d20 7261 7469 6f6e 616c 206d 6170 5 = rational map │ │ │ │ +000cb8e0: 2064 6566 696e 6564 2062 7920 666f 726d defined by form │ │ │ │ +000cb8f0: 7320 6f66 2064 6567 7265 6520 3220 2020 s of degree 2 │ │ │ │ 000cb900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb910: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cb920: 2020 2020 636f 6566 6669 6369 656e 7420 coefficient │ │ │ │ -000cb930: 7269 6e67 3a20 5151 2020 2020 2020 2020 ring: QQ │ │ │ │ +000cb920: 2020 2020 736f 7572 6365 2076 6172 6965 source varie │ │ │ │ +000cb930: 7479 3a20 5050 5e38 2020 2020 2020 2020 ty: PP^8 │ │ │ │ 000cb940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cb960: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -000cb970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cb980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cb990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cb9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cb9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000cb9c0: 3520 3a20 6465 7363 7269 6265 2072 6174 5 : describe rat │ │ │ │ -000cb9d0: 696f 6e61 6c4d 6170 2870 6869 272c 446f ionalMap(phi',Do │ │ │ │ -000cb9e0: 6d69 6e61 6e74 3d3e 7472 7565 2920 2020 minant=>true) │ │ │ │ +000cb960: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cb970: 2020 2020 7461 7267 6574 2076 6172 6965 target varie │ │ │ │ +000cb980: 7479 3a20 636f 6d70 6c65 7465 2069 6e74 ty: complete int │ │ │ │ +000cb990: 6572 7365 6374 696f 6e20 6f66 2074 7970 ersection of typ │ │ │ │ +000cb9a0: 6520 2832 2c32 2920 696e 2050 505e 3130 e (2,2) in PP^10 │ │ │ │ +000cb9b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cb9c0: 2020 2020 646f 6d69 6e61 6e63 653a 2074 dominance: t │ │ │ │ +000cb9d0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +000cb9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cb9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cba00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cba10: 2020 2020 6269 7261 7469 6f6e 616c 6974 birationalit │ │ │ │ +000cba20: 793a 2074 7275 6520 2020 2020 2020 2020 y: true │ │ │ │ 000cba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cba50: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000cba60: 3520 3d20 7261 7469 6f6e 616c 206d 6170 5 = rational map │ │ │ │ -000cba70: 2064 6566 696e 6564 2062 7920 666f 726d defined by form │ │ │ │ -000cba80: 7320 6f66 2064 6567 7265 6520 3220 2020 s of degree 2 │ │ │ │ -000cba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cba50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cba60: 2020 2020 7072 6f6a 6563 7469 7665 2064 projective d │ │ │ │ +000cba70: 6567 7265 6573 3a20 7b31 2c20 322c 2034 egrees: {1, 2, 4 │ │ │ │ +000cba80: 2c20 382c 2031 362c 2032 322c 2032 302c , 8, 16, 22, 20, │ │ │ │ +000cba90: 2031 322c 2034 7d20 2020 2020 2020 2020 12, 4} │ │ │ │ 000cbaa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cbab0: 2020 2020 736f 7572 6365 2076 6172 6965 source varie │ │ │ │ -000cbac0: 7479 3a20 5050 5e38 2020 2020 2020 2020 ty: PP^8 │ │ │ │ -000cbad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cbab0: 2020 2020 6e75 6d62 6572 206f 6620 6d69 number of mi │ │ │ │ +000cbac0: 6e69 6d61 6c20 7265 7072 6573 656e 7461 nimal representa │ │ │ │ +000cbad0: 7469 7665 733a 2031 2020 2020 2020 2020 tives: 1 │ │ │ │ 000cbae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cbaf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cbb00: 2020 2020 7461 7267 6574 2076 6172 6965 target varie │ │ │ │ -000cbb10: 7479 3a20 636f 6d70 6c65 7465 2069 6e74 ty: complete int │ │ │ │ -000cbb20: 6572 7365 6374 696f 6e20 6f66 2074 7970 ersection of typ │ │ │ │ -000cbb30: 6520 2832 2c32 2920 696e 2050 505e 3130 e (2,2) in PP^10 │ │ │ │ +000cbb00: 2020 2020 6469 6d65 6e73 696f 6e20 6261 dimension ba │ │ │ │ +000cbb10: 7365 206c 6f63 7573 3a20 3320 2020 2020 se locus: 3 │ │ │ │ +000cbb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cbb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cbb40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cbb50: 2020 2020 646f 6d69 6e61 6e63 653a 2074 dominance: t │ │ │ │ -000cbb60: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +000cbb50: 2020 2020 6465 6772 6565 2062 6173 6520 degree base │ │ │ │ +000cbb60: 6c6f 6375 733a 2031 3020 2020 2020 2020 locus: 10 │ │ │ │ 000cbb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cbb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cbb90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cbba0: 2020 2020 6269 7261 7469 6f6e 616c 6974 birationalit │ │ │ │ -000cbbb0: 793a 2074 7275 6520 2020 2020 2020 2020 y: true │ │ │ │ +000cbba0: 2020 2020 636f 6566 6669 6369 656e 7420 coefficient │ │ │ │ +000cbbb0: 7269 6e67 3a20 5151 2020 2020 2020 2020 ring: QQ │ │ │ │ 000cbbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cbbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cbbe0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cbbf0: 2020 2020 7072 6f6a 6563 7469 7665 2064 projective d │ │ │ │ -000cbc00: 6567 7265 6573 3a20 7b31 2c20 322c 2034 egrees: {1, 2, 4 │ │ │ │ -000cbc10: 2c20 382c 2031 362c 2032 322c 2032 302c , 8, 16, 22, 20, │ │ │ │ -000cbc20: 2031 322c 2034 7d20 2020 2020 2020 2020 12, 4} │ │ │ │ -000cbc30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cbc40: 2020 2020 6e75 6d62 6572 206f 6620 6d69 number of mi │ │ │ │ -000cbc50: 6e69 6d61 6c20 7265 7072 6573 656e 7461 nimal representa │ │ │ │ -000cbc60: 7469 7665 733a 2031 2020 2020 2020 2020 tives: 1 │ │ │ │ -000cbc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cbc80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cbc90: 2020 2020 6469 6d65 6e73 696f 6e20 6261 dimension ba │ │ │ │ -000cbca0: 7365 206c 6f63 7573 3a20 3320 2020 2020 se locus: 3 │ │ │ │ -000cbcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cbcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cbcd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cbce0: 2020 2020 6465 6772 6565 2062 6173 6520 degree base │ │ │ │ -000cbcf0: 6c6f 6375 733a 2031 3020 2020 2020 2020 locus: 10 │ │ │ │ -000cbd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cbd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cbd20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cbd30: 2020 2020 636f 6566 6669 6369 656e 7420 coefficient │ │ │ │ -000cbd40: 7269 6e67 3a20 5151 2020 2020 2020 2020 ring: QQ │ │ │ │ -000cbd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cbd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cbd70: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -000cbd80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cbd90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cbda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cbdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cbdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ -000cbdd0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -000cbde0: 0a0a 2020 2a20 2a6e 6f74 6520 7461 7267 .. * *note targ │ │ │ │ -000cbdf0: 6574 2852 6174 696f 6e61 6c4d 6170 293a et(RationalMap): │ │ │ │ -000cbe00: 2074 6172 6765 745f 6c70 5261 7469 6f6e target_lpRation │ │ │ │ -000cbe10: 616c 4d61 705f 7270 2c20 2d2d 2063 6f6f alMap_rp, -- coo │ │ │ │ -000cbe20: 7264 696e 6174 6520 7269 6e67 206f 660a rdinate ring of. │ │ │ │ -000cbe30: 2020 2020 7468 6520 7461 7267 6574 2066 the target f │ │ │ │ -000cbe40: 6f72 2061 2072 6174 696f 6e61 6c20 6d61 or a rational ma │ │ │ │ -000cbe50: 700a 2020 2a20 2a6e 6f74 6520 616d 6269 p. * *note ambi │ │ │ │ -000cbe60: 656e 743a 2028 4d61 6361 756c 6179 3244 ent: (Macaulay2D │ │ │ │ -000cbe70: 6f63 2961 6d62 6965 6e74 2c20 2d2d 2061 oc)ambient, -- a │ │ │ │ -000cbe80: 6d62 6965 6e74 2066 7265 6520 6d6f 6475 mbient free modu │ │ │ │ -000cbe90: 6c65 206f 6620 610a 2020 2020 7375 6271 le of a. subq │ │ │ │ -000cbea0: 756f 7469 656e 742c 206f 7220 616d 6269 uotient, or ambi │ │ │ │ -000cbeb0: 656e 7420 7269 6e67 0a20 202a 202a 6e6f ent ring. * *no │ │ │ │ -000cbec0: 7465 2073 7570 6572 3a20 284d 6163 6175 te super: (Macau │ │ │ │ -000cbed0: 6c61 7932 446f 6329 7375 7065 722c 202d lay2Doc)super, - │ │ │ │ -000cbee0: 2d20 6765 7420 7468 6520 616d 6269 656e - get the ambien │ │ │ │ -000cbef0: 7420 6d6f 6475 6c65 0a0a 5761 7973 2074 t module..Ways t │ │ │ │ -000cbf00: 6f20 7573 6520 7468 6973 206d 6574 686f o use this metho │ │ │ │ -000cbf10: 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d d:.============= │ │ │ │ -000cbf20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -000cbf30: 202a 6e6f 7465 2073 7570 6572 2852 6174 *note super(Rat │ │ │ │ -000cbf40: 696f 6e61 6c4d 6170 293a 2073 7570 6572 ionalMap): super │ │ │ │ -000cbf50: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ -000cbf60: 702c 202d 2d20 6765 7420 7468 6520 7261 p, -- get the ra │ │ │ │ -000cbf70: 7469 6f6e 616c 206d 6170 0a20 2020 2077 tional map. w │ │ │ │ -000cbf80: 686f 7365 2074 6172 6765 7420 6973 2061 hose target is a │ │ │ │ -000cbf90: 2070 726f 6a65 6374 6976 6520 7370 6163 projective spac │ │ │ │ -000cbfa0: 650a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d e.-------------- │ │ │ │ -000cbfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cbfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cbfd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cbfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cbff0: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -000cc000: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -000cc010: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -000cc020: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -000cc030: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -000cc040: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -000cc050: 7061 636b 6167 6573 2f43 7265 6d6f 6e61 packages/Cremona │ │ │ │ -000cc060: 2f0a 646f 6375 6d65 6e74 6174 696f 6e2e /.documentation. │ │ │ │ -000cc070: 6d32 3a35 3930 3a30 2e0a 1f0a 4669 6c65 m2:590:0....File │ │ │ │ -000cc080: 3a20 4372 656d 6f6e 612e 696e 666f 2c20 : Cremona.info, │ │ │ │ -000cc090: 4e6f 6465 3a20 7461 7267 6574 5f6c 7052 Node: target_lpR │ │ │ │ -000cc0a0: 6174 696f 6e61 6c4d 6170 5f72 702c 204e ationalMap_rp, N │ │ │ │ -000cc0b0: 6578 743a 2074 6f45 7874 6572 6e61 6c53 ext: toExternalS │ │ │ │ -000cc0c0: 7472 696e 675f 6c70 5261 7469 6f6e 616c tring_lpRational │ │ │ │ -000cc0d0: 4d61 705f 7270 2c20 5072 6576 3a20 7375 Map_rp, Prev: su │ │ │ │ -000cc0e0: 7065 725f 6c70 5261 7469 6f6e 616c 4d61 per_lpRationalMa │ │ │ │ -000cc0f0: 705f 7270 2c20 5570 3a20 546f 700a 0a74 p_rp, Up: Top..t │ │ │ │ -000cc100: 6172 6765 7428 5261 7469 6f6e 616c 4d61 arget(RationalMa │ │ │ │ -000cc110: 7029 202d 2d20 636f 6f72 6469 6e61 7465 p) -- coordinate │ │ │ │ -000cc120: 2072 696e 6720 6f66 2074 6865 2074 6172 ring of the tar │ │ │ │ -000cc130: 6765 7420 666f 7220 6120 7261 7469 6f6e get for a ration │ │ │ │ -000cc140: 616c 206d 6170 0a2a 2a2a 2a2a 2a2a 2a2a al map.********* │ │ │ │ -000cc150: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000cc160: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000cc170: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000cc180: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -000cc190: 2020 2a20 4675 6e63 7469 6f6e 3a20 2a6e * Function: *n │ │ │ │ -000cc1a0: 6f74 6520 7461 7267 6574 3a20 284d 6163 ote target: (Mac │ │ │ │ -000cc1b0: 6175 6c61 7932 446f 6329 7461 7267 6574 aulay2Doc)target │ │ │ │ -000cc1c0: 2c0a 2020 2a20 5573 6167 653a 200a 2020 ,. * Usage: . │ │ │ │ -000cc1d0: 2020 2020 2020 7461 7267 6574 2070 6869 target phi │ │ │ │ -000cc1e0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ -000cc1f0: 2020 202a 2070 6869 2c20 6120 2a6e 6f74 * phi, a *not │ │ │ │ -000cc200: 6520 7261 7469 6f6e 616c 206d 6170 3a20 e rational map: │ │ │ │ -000cc210: 5261 7469 6f6e 616c 4d61 702c 0a20 202a RationalMap,. * │ │ │ │ -000cc220: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -000cc230: 2a20 6120 2a6e 6f74 6520 7269 6e67 3a20 * a *note ring: │ │ │ │ -000cc240: 284d 6163 6175 6c61 7932 446f 6329 5269 (Macaulay2Doc)Ri │ │ │ │ -000cc250: 6e67 2c2c 2074 6865 2063 6f6f 7264 696e ng,, the coordin │ │ │ │ -000cc260: 6174 6520 7269 6e67 206f 6620 7468 6520 ate ring of the │ │ │ │ -000cc270: 7461 7267 6574 206f 660a 2020 2020 2020 target of. │ │ │ │ -000cc280: 2020 7068 690a 0a44 6573 6372 6970 7469 phi..Descripti │ │ │ │ -000cc290: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -000cc2a0: 5468 6973 2069 7320 6571 7569 7661 6c65 This is equivale │ │ │ │ -000cc2b0: 6e74 2074 6f20 736f 7572 6365 206d 6170 nt to source map │ │ │ │ -000cc2c0: 2070 6869 2e0a 0a53 6565 2061 6c73 6f0a phi...See also. │ │ │ │ -000cc2d0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -000cc2e0: 6f74 6520 736f 7572 6365 2852 6174 696f ote source(Ratio │ │ │ │ -000cc2f0: 6e61 6c4d 6170 293a 2073 6f75 7263 655f nalMap): source_ │ │ │ │ -000cc300: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ -000cc310: 2c20 2d2d 2063 6f6f 7264 696e 6174 6520 , -- coordinate │ │ │ │ -000cc320: 7269 6e67 206f 660a 2020 2020 7468 6520 ring of. the │ │ │ │ -000cc330: 736f 7572 6365 2066 6f72 2061 2072 6174 source for a rat │ │ │ │ -000cc340: 696f 6e61 6c20 6d61 700a 0a57 6179 7320 ional map..Ways │ │ │ │ -000cc350: 746f 2075 7365 2074 6869 7320 6d65 7468 to use this meth │ │ │ │ -000cc360: 6f64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d od:.============ │ │ │ │ -000cc370: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -000cc380: 2a20 2a6e 6f74 6520 7461 7267 6574 2852 * *note target(R │ │ │ │ -000cc390: 6174 696f 6e61 6c4d 6170 293a 2074 6172 ationalMap): tar │ │ │ │ -000cc3a0: 6765 745f 6c70 5261 7469 6f6e 616c 4d61 get_lpRationalMa │ │ │ │ -000cc3b0: 705f 7270 2c20 2d2d 2063 6f6f 7264 696e p_rp, -- coordin │ │ │ │ -000cc3c0: 6174 6520 7269 6e67 206f 660a 2020 2020 ate ring of. │ │ │ │ -000cc3d0: 7468 6520 7461 7267 6574 2066 6f72 2061 the target for a │ │ │ │ -000cc3e0: 2072 6174 696f 6e61 6c20 6d61 700a 2d2d rational map.-- │ │ │ │ -000cc3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -000cc440: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -000cc450: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -000cc460: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -000cc470: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -000cc480: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -000cc490: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -000cc4a0: 6167 6573 2f43 7265 6d6f 6e61 2f0a 646f ages/Cremona/.do │ │ │ │ -000cc4b0: 6375 6d65 6e74 6174 696f 6e2e 6d32 3a34 cumentation.m2:4 │ │ │ │ -000cc4c0: 3631 3a30 2e0a 1f0a 4669 6c65 3a20 4372 61:0....File: Cr │ │ │ │ -000cc4d0: 656d 6f6e 612e 696e 666f 2c20 4e6f 6465 emona.info, Node │ │ │ │ -000cc4e0: 3a20 746f 4578 7465 726e 616c 5374 7269 : toExternalStri │ │ │ │ -000cc4f0: 6e67 5f6c 7052 6174 696f 6e61 6c4d 6170 ng_lpRationalMap │ │ │ │ -000cc500: 5f72 702c 204e 6578 743a 2074 6f4d 6170 _rp, Next: toMap │ │ │ │ -000cc510: 2c20 5072 6576 3a20 7461 7267 6574 5f6c , Prev: target_l │ │ │ │ -000cc520: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ -000cc530: 2055 703a 2054 6f70 0a0a 746f 4578 7465 Up: Top..toExte │ │ │ │ -000cc540: 726e 616c 5374 7269 6e67 2852 6174 696f rnalString(Ratio │ │ │ │ -000cc550: 6e61 6c4d 6170 2920 2d2d 2063 6f6e 7665 nalMap) -- conve │ │ │ │ -000cc560: 7274 2074 6f20 6120 7265 6164 6162 6c65 rt to a readable │ │ │ │ -000cc570: 2073 7472 696e 670a 2a2a 2a2a 2a2a 2a2a string.******** │ │ │ │ -000cc580: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000cc590: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000cc5a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000cc5b0: 2a2a 2a2a 2a0a 0a20 202a 2046 756e 6374 *****.. * Funct │ │ │ │ -000cc5c0: 696f 6e3a 202a 6e6f 7465 2074 6f45 7874 ion: *note toExt │ │ │ │ -000cc5d0: 6572 6e61 6c53 7472 696e 673a 2028 4d61 ernalString: (Ma │ │ │ │ -000cc5e0: 6361 756c 6179 3244 6f63 2974 6f45 7874 caulay2Doc)toExt │ │ │ │ -000cc5f0: 6572 6e61 6c53 7472 696e 672c 0a20 202a ernalString,. * │ │ │ │ -000cc600: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -000cc610: 2074 6f45 7874 6572 6e61 6c53 7472 696e toExternalStrin │ │ │ │ -000cc620: 6720 7068 690a 2020 2a20 496e 7075 7473 g phi. * Inputs │ │ │ │ -000cc630: 3a0a 2020 2020 2020 2a20 7068 692c 2061 :. * phi, a │ │ │ │ -000cc640: 202a 6e6f 7465 2072 6174 696f 6e61 6c20 *note rational │ │ │ │ -000cc650: 6d61 703a 2052 6174 696f 6e61 6c4d 6170 map: RationalMap │ │ │ │ -000cc660: 2c0a 2020 2a20 4f75 7470 7574 733a 0a20 ,. * Outputs:. │ │ │ │ -000cc670: 2020 2020 202a 2061 202a 6e6f 7465 2073 * a *note s │ │ │ │ -000cc680: 7472 696e 673a 2028 4d61 6361 756c 6179 tring: (Macaulay │ │ │ │ -000cc690: 3244 6f63 2953 7472 696e 672c 2c20 6120 2Doc)String,, a │ │ │ │ -000cc6a0: 7374 7269 6e67 2072 6570 7265 7365 6e74 string represent │ │ │ │ -000cc6b0: 6174 696f 6e20 6f66 2070 6869 2c0a 2020 ation of phi,. │ │ │ │ -000cc6c0: 2020 2020 2020 7768 6963 6820 6361 6e20 which can │ │ │ │ -000cc6d0: 6265 2075 7365 642c 2069 6e20 636f 6e6a be used, in conj │ │ │ │ -000cc6e0: 756e 6374 696f 6e20 7769 7468 202a 6e6f unction with *no │ │ │ │ -000cc6f0: 7465 2076 616c 7565 3a0a 2020 2020 2020 te value:. │ │ │ │ -000cc700: 2020 284d 6163 6175 6c61 7932 446f 6329 (Macaulay2Doc) │ │ │ │ -000cc710: 7661 6c75 652c 2c20 746f 2072 6561 6420 value,, to read │ │ │ │ -000cc720: 7468 6520 6f62 6a65 6374 2062 6163 6b20 the object back │ │ │ │ -000cc730: 696e 746f 2074 6865 2070 726f 6772 616d into the program │ │ │ │ -000cc740: 206c 6174 6572 0a0a 4465 7363 7269 7074 later..Descript │ │ │ │ -000cc750: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -000cc760: 0a41 6c6c 2069 6e74 6572 6e61 6c20 6461 .All internal da │ │ │ │ -000cc770: 7461 206f 6620 7468 6520 696e 7075 7420 ta of the input │ │ │ │ -000cc780: 6172 6520 696e 636c 7564 6564 2069 6e20 are included in │ │ │ │ -000cc790: 7468 6520 7265 7475 726e 6564 2073 7472 the returned str │ │ │ │ -000cc7a0: 696e 672e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ing...+--------- │ │ │ │ -000cc7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cbbe0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000cbbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cbc00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cbc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cbc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cbc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ +000cbc40: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +000cbc50: 0a0a 2020 2a20 2a6e 6f74 6520 7461 7267 .. * *note targ │ │ │ │ +000cbc60: 6574 2852 6174 696f 6e61 6c4d 6170 293a et(RationalMap): │ │ │ │ +000cbc70: 2074 6172 6765 745f 6c70 5261 7469 6f6e target_lpRation │ │ │ │ +000cbc80: 616c 4d61 705f 7270 2c20 2d2d 2063 6f6f alMap_rp, -- coo │ │ │ │ +000cbc90: 7264 696e 6174 6520 7269 6e67 206f 660a rdinate ring of. │ │ │ │ +000cbca0: 2020 2020 7468 6520 7461 7267 6574 2066 the target f │ │ │ │ +000cbcb0: 6f72 2061 2072 6174 696f 6e61 6c20 6d61 or a rational ma │ │ │ │ +000cbcc0: 700a 2020 2a20 2a6e 6f74 6520 616d 6269 p. * *note ambi │ │ │ │ +000cbcd0: 656e 743a 2028 4d61 6361 756c 6179 3244 ent: (Macaulay2D │ │ │ │ +000cbce0: 6f63 2961 6d62 6965 6e74 2c20 2d2d 2061 oc)ambient, -- a │ │ │ │ +000cbcf0: 6d62 6965 6e74 2066 7265 6520 6d6f 6475 mbient free modu │ │ │ │ +000cbd00: 6c65 206f 6620 610a 2020 2020 7375 6271 le of a. subq │ │ │ │ +000cbd10: 756f 7469 656e 742c 206f 7220 616d 6269 uotient, or ambi │ │ │ │ +000cbd20: 656e 7420 7269 6e67 0a20 202a 202a 6e6f ent ring. * *no │ │ │ │ +000cbd30: 7465 2073 7570 6572 3a20 284d 6163 6175 te super: (Macau │ │ │ │ +000cbd40: 6c61 7932 446f 6329 7375 7065 722c 202d lay2Doc)super, - │ │ │ │ +000cbd50: 2d20 6765 7420 7468 6520 616d 6269 656e - get the ambien │ │ │ │ +000cbd60: 7420 6d6f 6475 6c65 0a0a 5761 7973 2074 t module..Ways t │ │ │ │ +000cbd70: 6f20 7573 6520 7468 6973 206d 6574 686f o use this metho │ │ │ │ +000cbd80: 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d d:.============= │ │ │ │ +000cbd90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +000cbda0: 202a 6e6f 7465 2073 7570 6572 2852 6174 *note super(Rat │ │ │ │ +000cbdb0: 696f 6e61 6c4d 6170 293a 2073 7570 6572 ionalMap): super │ │ │ │ +000cbdc0: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ +000cbdd0: 702c 202d 2d20 6765 7420 7468 6520 7261 p, -- get the ra │ │ │ │ +000cbde0: 7469 6f6e 616c 206d 6170 0a20 2020 2077 tional map. w │ │ │ │ +000cbdf0: 686f 7365 2074 6172 6765 7420 6973 2061 hose target is a │ │ │ │ +000cbe00: 2070 726f 6a65 6374 6976 6520 7370 6163 projective spac │ │ │ │ +000cbe10: 650a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d e.-------------- │ │ │ │ +000cbe20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cbe30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cbe40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cbe50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cbe60: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +000cbe70: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +000cbe80: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +000cbe90: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +000cbea0: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +000cbeb0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +000cbec0: 7061 636b 6167 6573 2f43 7265 6d6f 6e61 packages/Cremona │ │ │ │ +000cbed0: 2f0a 646f 6375 6d65 6e74 6174 696f 6e2e /.documentation. │ │ │ │ +000cbee0: 6d32 3a35 3930 3a30 2e0a 1f0a 4669 6c65 m2:590:0....File │ │ │ │ +000cbef0: 3a20 4372 656d 6f6e 612e 696e 666f 2c20 : Cremona.info, │ │ │ │ +000cbf00: 4e6f 6465 3a20 7461 7267 6574 5f6c 7052 Node: target_lpR │ │ │ │ +000cbf10: 6174 696f 6e61 6c4d 6170 5f72 702c 204e ationalMap_rp, N │ │ │ │ +000cbf20: 6578 743a 2074 6f45 7874 6572 6e61 6c53 ext: toExternalS │ │ │ │ +000cbf30: 7472 696e 675f 6c70 5261 7469 6f6e 616c tring_lpRational │ │ │ │ +000cbf40: 4d61 705f 7270 2c20 5072 6576 3a20 7375 Map_rp, Prev: su │ │ │ │ +000cbf50: 7065 725f 6c70 5261 7469 6f6e 616c 4d61 per_lpRationalMa │ │ │ │ +000cbf60: 705f 7270 2c20 5570 3a20 546f 700a 0a74 p_rp, Up: Top..t │ │ │ │ +000cbf70: 6172 6765 7428 5261 7469 6f6e 616c 4d61 arget(RationalMa │ │ │ │ +000cbf80: 7029 202d 2d20 636f 6f72 6469 6e61 7465 p) -- coordinate │ │ │ │ +000cbf90: 2072 696e 6720 6f66 2074 6865 2074 6172 ring of the tar │ │ │ │ +000cbfa0: 6765 7420 666f 7220 6120 7261 7469 6f6e get for a ration │ │ │ │ +000cbfb0: 616c 206d 6170 0a2a 2a2a 2a2a 2a2a 2a2a al map.********* │ │ │ │ +000cbfc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000cbfd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000cbfe0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000cbff0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +000cc000: 2020 2a20 4675 6e63 7469 6f6e 3a20 2a6e * Function: *n │ │ │ │ +000cc010: 6f74 6520 7461 7267 6574 3a20 284d 6163 ote target: (Mac │ │ │ │ +000cc020: 6175 6c61 7932 446f 6329 7461 7267 6574 aulay2Doc)target │ │ │ │ +000cc030: 2c0a 2020 2a20 5573 6167 653a 200a 2020 ,. * Usage: . │ │ │ │ +000cc040: 2020 2020 2020 7461 7267 6574 2070 6869 target phi │ │ │ │ +000cc050: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +000cc060: 2020 202a 2070 6869 2c20 6120 2a6e 6f74 * phi, a *not │ │ │ │ +000cc070: 6520 7261 7469 6f6e 616c 206d 6170 3a20 e rational map: │ │ │ │ +000cc080: 5261 7469 6f6e 616c 4d61 702c 0a20 202a RationalMap,. * │ │ │ │ +000cc090: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +000cc0a0: 2a20 6120 2a6e 6f74 6520 7269 6e67 3a20 * a *note ring: │ │ │ │ +000cc0b0: 284d 6163 6175 6c61 7932 446f 6329 5269 (Macaulay2Doc)Ri │ │ │ │ +000cc0c0: 6e67 2c2c 2074 6865 2063 6f6f 7264 696e ng,, the coordin │ │ │ │ +000cc0d0: 6174 6520 7269 6e67 206f 6620 7468 6520 ate ring of the │ │ │ │ +000cc0e0: 7461 7267 6574 206f 660a 2020 2020 2020 target of. │ │ │ │ +000cc0f0: 2020 7068 690a 0a44 6573 6372 6970 7469 phi..Descripti │ │ │ │ +000cc100: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +000cc110: 5468 6973 2069 7320 6571 7569 7661 6c65 This is equivale │ │ │ │ +000cc120: 6e74 2074 6f20 736f 7572 6365 206d 6170 nt to source map │ │ │ │ +000cc130: 2070 6869 2e0a 0a53 6565 2061 6c73 6f0a phi...See also. │ │ │ │ +000cc140: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +000cc150: 6f74 6520 736f 7572 6365 2852 6174 696f ote source(Ratio │ │ │ │ +000cc160: 6e61 6c4d 6170 293a 2073 6f75 7263 655f nalMap): source_ │ │ │ │ +000cc170: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ +000cc180: 2c20 2d2d 2063 6f6f 7264 696e 6174 6520 , -- coordinate │ │ │ │ +000cc190: 7269 6e67 206f 660a 2020 2020 7468 6520 ring of. the │ │ │ │ +000cc1a0: 736f 7572 6365 2066 6f72 2061 2072 6174 source for a rat │ │ │ │ +000cc1b0: 696f 6e61 6c20 6d61 700a 0a57 6179 7320 ional map..Ways │ │ │ │ +000cc1c0: 746f 2075 7365 2074 6869 7320 6d65 7468 to use this meth │ │ │ │ +000cc1d0: 6f64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d od:.============ │ │ │ │ +000cc1e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +000cc1f0: 2a20 2a6e 6f74 6520 7461 7267 6574 2852 * *note target(R │ │ │ │ +000cc200: 6174 696f 6e61 6c4d 6170 293a 2074 6172 ationalMap): tar │ │ │ │ +000cc210: 6765 745f 6c70 5261 7469 6f6e 616c 4d61 get_lpRationalMa │ │ │ │ +000cc220: 705f 7270 2c20 2d2d 2063 6f6f 7264 696e p_rp, -- coordin │ │ │ │ +000cc230: 6174 6520 7269 6e67 206f 660a 2020 2020 ate ring of. │ │ │ │ +000cc240: 7468 6520 7461 7267 6574 2066 6f72 2061 the target for a │ │ │ │ +000cc250: 2072 6174 696f 6e61 6c20 6d61 700a 2d2d rational map.-- │ │ │ │ +000cc260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +000cc2b0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +000cc2c0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +000cc2d0: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +000cc2e0: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +000cc2f0: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +000cc300: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +000cc310: 6167 6573 2f43 7265 6d6f 6e61 2f0a 646f ages/Cremona/.do │ │ │ │ +000cc320: 6375 6d65 6e74 6174 696f 6e2e 6d32 3a34 cumentation.m2:4 │ │ │ │ +000cc330: 3631 3a30 2e0a 1f0a 4669 6c65 3a20 4372 61:0....File: Cr │ │ │ │ +000cc340: 656d 6f6e 612e 696e 666f 2c20 4e6f 6465 emona.info, Node │ │ │ │ +000cc350: 3a20 746f 4578 7465 726e 616c 5374 7269 : toExternalStri │ │ │ │ +000cc360: 6e67 5f6c 7052 6174 696f 6e61 6c4d 6170 ng_lpRationalMap │ │ │ │ +000cc370: 5f72 702c 204e 6578 743a 2074 6f4d 6170 _rp, Next: toMap │ │ │ │ +000cc380: 2c20 5072 6576 3a20 7461 7267 6574 5f6c , Prev: target_l │ │ │ │ +000cc390: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ +000cc3a0: 2055 703a 2054 6f70 0a0a 746f 4578 7465 Up: Top..toExte │ │ │ │ +000cc3b0: 726e 616c 5374 7269 6e67 2852 6174 696f rnalString(Ratio │ │ │ │ +000cc3c0: 6e61 6c4d 6170 2920 2d2d 2063 6f6e 7665 nalMap) -- conve │ │ │ │ +000cc3d0: 7274 2074 6f20 6120 7265 6164 6162 6c65 rt to a readable │ │ │ │ +000cc3e0: 2073 7472 696e 670a 2a2a 2a2a 2a2a 2a2a string.******** │ │ │ │ +000cc3f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000cc400: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000cc410: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000cc420: 2a2a 2a2a 2a0a 0a20 202a 2046 756e 6374 *****.. * Funct │ │ │ │ +000cc430: 696f 6e3a 202a 6e6f 7465 2074 6f45 7874 ion: *note toExt │ │ │ │ +000cc440: 6572 6e61 6c53 7472 696e 673a 2028 4d61 ernalString: (Ma │ │ │ │ +000cc450: 6361 756c 6179 3244 6f63 2974 6f45 7874 caulay2Doc)toExt │ │ │ │ +000cc460: 6572 6e61 6c53 7472 696e 672c 0a20 202a ernalString,. * │ │ │ │ +000cc470: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +000cc480: 2074 6f45 7874 6572 6e61 6c53 7472 696e toExternalStrin │ │ │ │ +000cc490: 6720 7068 690a 2020 2a20 496e 7075 7473 g phi. * Inputs │ │ │ │ +000cc4a0: 3a0a 2020 2020 2020 2a20 7068 692c 2061 :. * phi, a │ │ │ │ +000cc4b0: 202a 6e6f 7465 2072 6174 696f 6e61 6c20 *note rational │ │ │ │ +000cc4c0: 6d61 703a 2052 6174 696f 6e61 6c4d 6170 map: RationalMap │ │ │ │ +000cc4d0: 2c0a 2020 2a20 4f75 7470 7574 733a 0a20 ,. * Outputs:. │ │ │ │ +000cc4e0: 2020 2020 202a 2061 202a 6e6f 7465 2073 * a *note s │ │ │ │ +000cc4f0: 7472 696e 673a 2028 4d61 6361 756c 6179 tring: (Macaulay │ │ │ │ +000cc500: 3244 6f63 2953 7472 696e 672c 2c20 6120 2Doc)String,, a │ │ │ │ +000cc510: 7374 7269 6e67 2072 6570 7265 7365 6e74 string represent │ │ │ │ +000cc520: 6174 696f 6e20 6f66 2070 6869 2c0a 2020 ation of phi,. │ │ │ │ +000cc530: 2020 2020 2020 7768 6963 6820 6361 6e20 which can │ │ │ │ +000cc540: 6265 2075 7365 642c 2069 6e20 636f 6e6a be used, in conj │ │ │ │ +000cc550: 756e 6374 696f 6e20 7769 7468 202a 6e6f unction with *no │ │ │ │ +000cc560: 7465 2076 616c 7565 3a0a 2020 2020 2020 te value:. │ │ │ │ +000cc570: 2020 284d 6163 6175 6c61 7932 446f 6329 (Macaulay2Doc) │ │ │ │ +000cc580: 7661 6c75 652c 2c20 746f 2072 6561 6420 value,, to read │ │ │ │ +000cc590: 7468 6520 6f62 6a65 6374 2062 6163 6b20 the object back │ │ │ │ +000cc5a0: 696e 746f 2074 6865 2070 726f 6772 616d into the program │ │ │ │ +000cc5b0: 206c 6174 6572 0a0a 4465 7363 7269 7074 later..Descript │ │ │ │ +000cc5c0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +000cc5d0: 0a41 6c6c 2069 6e74 6572 6e61 6c20 6461 .All internal da │ │ │ │ +000cc5e0: 7461 206f 6620 7468 6520 696e 7075 7420 ta of the input │ │ │ │ +000cc5f0: 6172 6520 696e 636c 7564 6564 2069 6e20 are included in │ │ │ │ +000cc600: 7468 6520 7265 7475 726e 6564 2073 7472 the returned str │ │ │ │ +000cc610: 696e 672e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ing...+--------- │ │ │ │ +000cc620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc660: 2b0a 7c69 3120 3a20 7068 6920 3d20 2873 +.|i1 : phi = (s │ │ │ │ +000cc670: 7065 6369 616c 4375 6269 6354 7261 6e73 pecialCubicTrans │ │ │ │ +000cc680: 666f 726d 6174 696f 6e28 322c 5a5a 2f33 formation(2,ZZ/3 │ │ │ │ +000cc690: 3333 3331 2929 213b 2020 2020 2020 2020 3331))!; │ │ │ │ +000cc6a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cc6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc6f0: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +000cc700: 5261 7469 6f6e 616c 4d61 7020 2863 7562 RationalMap (cub │ │ │ │ +000cc710: 6963 2062 6972 6174 696f 6e61 6c20 6d61 ic birational ma │ │ │ │ +000cc720: 7020 6672 6f6d 2050 505e 3320 746f 2068 p from PP^3 to h │ │ │ │ +000cc730: 7970 6572 7375 7266 6163 6520 696e 2050 ypersurface in P │ │ │ │ +000cc740: 505e 3429 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d P^4)|.+--------- │ │ │ │ +000cc750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc790: 2b0a 7c69 3220 3a20 7374 7220 3d20 746f +.|i2 : str = to │ │ │ │ +000cc7a0: 4578 7465 726e 616c 5374 7269 6e67 2070 ExternalString p │ │ │ │ +000cc7b0: 6869 3b20 2020 2020 2020 2020 2020 2020 hi; │ │ │ │ +000cc7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc7d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 000cc7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc7f0: 2b0a 7c69 3120 3a20 7068 6920 3d20 2873 +.|i1 : phi = (s │ │ │ │ -000cc800: 7065 6369 616c 4375 6269 6354 7261 6e73 pecialCubicTrans │ │ │ │ -000cc810: 666f 726d 6174 696f 6e28 322c 5a5a 2f33 formation(2,ZZ/3 │ │ │ │ -000cc820: 3333 3331 2929 213b 2020 2020 2020 2020 3331))!; │ │ │ │ -000cc830: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cc7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc820: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +000cc830: 2373 7472 2020 2020 2020 2020 2020 2020 #str │ │ │ │ 000cc840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cc850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cc860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cc870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cc880: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ -000cc890: 5261 7469 6f6e 616c 4d61 7020 2863 7562 RationalMap (cub │ │ │ │ -000cc8a0: 6963 2062 6972 6174 696f 6e61 6c20 6d61 ic birational ma │ │ │ │ -000cc8b0: 7020 6672 6f6d 2050 505e 3320 746f 2068 p from PP^3 to h │ │ │ │ -000cc8c0: 7970 6572 7375 7266 6163 6520 696e 2050 ypersurface in P │ │ │ │ -000cc8d0: 505e 3429 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d P^4)|.+--------- │ │ │ │ -000cc8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc870: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000cc880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc8c0: 7c0a 7c6f 3320 3d20 3639 3237 2020 2020 |.|o3 = 6927 │ │ │ │ +000cc8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc900: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 000cc910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc920: 2b0a 7c69 3220 3a20 7374 7220 3d20 746f +.|i2 : str = to │ │ │ │ -000cc930: 4578 7465 726e 616c 5374 7269 6e67 2070 ExternalString p │ │ │ │ -000cc940: 6869 3b20 2020 2020 2020 2020 2020 2020 hi; │ │ │ │ -000cc950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cc960: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -000cc970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cc9b0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ -000cc9c0: 2373 7472 2020 2020 2020 2020 2020 2020 #str │ │ │ │ -000cc9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cc950: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ +000cc960: 7469 6d65 2070 6869 2720 3d20 7661 6c75 time phi' = valu │ │ │ │ +000cc970: 6520 7374 723b 2020 2020 2020 2020 2020 e str; │ │ │ │ +000cc980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cc9a0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +000cc9b0: 302e 3032 3731 3634 3173 2028 6370 7529 0.0271641s (cpu) │ │ │ │ +000cc9c0: 3b20 302e 3032 3731 3632 7320 2874 6872 ; 0.027162s (thr │ │ │ │ +000cc9d0: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 000cc9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cc9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cca00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000cc9f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000cca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cca50: 7c0a 7c6f 3320 3d20 3639 3237 2020 2020 |.|o3 = 6927 │ │ │ │ -000cca60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cca90: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000cca30: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000cca40: 3420 3a20 5261 7469 6f6e 616c 4d61 7020 4 : RationalMap │ │ │ │ +000cca50: 2863 7562 6963 2062 6972 6174 696f 6e61 (cubic birationa │ │ │ │ +000cca60: 6c20 6d61 7020 6672 6f6d 2050 505e 3320 l map from PP^3 │ │ │ │ +000cca70: 746f 2068 7970 6572 7375 7266 6163 6520 to hypersurface │ │ │ │ +000cca80: 696e 2050 505e 3429 7c0a 2b2d 2d2d 2d2d in PP^4)|.+----- │ │ │ │ +000cca90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000ccaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000ccab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000ccac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ccad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ccae0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ -000ccaf0: 7469 6d65 2070 6869 2720 3d20 7661 6c75 time phi' = valu │ │ │ │ -000ccb00: 6520 7374 723b 2020 2020 2020 2020 2020 e str; │ │ │ │ +000ccad0: 2d2d 2d2d 2b0a 7c69 3520 3a20 7469 6d65 ----+.|i5 : time │ │ │ │ +000ccae0: 2064 6573 6372 6962 6520 7068 6927 2020 describe phi' │ │ │ │ +000ccaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ccb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccb30: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000ccb40: 302e 3032 3232 3432 3473 2028 6370 7529 0.0222424s (cpu) │ │ │ │ -000ccb50: 3b20 302e 3032 3232 3431 3473 2028 7468 ; 0.0222414s (th │ │ │ │ -000ccb60: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +000ccb20: 7c0a 7c20 2d2d 2075 7365 6420 302e 3030 |.| -- used 0.00 │ │ │ │ +000ccb30: 3635 3137 3533 7320 2863 7075 293b 2030 651753s (cpu); 0 │ │ │ │ +000ccb40: 2e30 3036 3531 3935 3273 2028 7468 7265 .00651952s (thre │ │ │ │ +000ccb50: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +000ccb60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000ccb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccb80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000ccb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccbc0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000ccbd0: 3420 3a20 5261 7469 6f6e 616c 4d61 7020 4 : RationalMap │ │ │ │ -000ccbe0: 2863 7562 6963 2062 6972 6174 696f 6e61 (cubic birationa │ │ │ │ -000ccbf0: 6c20 6d61 7020 6672 6f6d 2050 505e 3320 l map from PP^3 │ │ │ │ -000ccc00: 746f 2068 7970 6572 7375 7266 6163 6520 to hypersurface │ │ │ │ -000ccc10: 696e 2050 505e 3429 7c0a 2b2d 2d2d 2d2d in PP^4)|.+----- │ │ │ │ -000ccc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ccc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ccc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ccc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ccc60: 2d2d 2d2d 2b0a 7c69 3520 3a20 7469 6d65 ----+.|i5 : time │ │ │ │ -000ccc70: 2064 6573 6372 6962 6520 7068 6927 2020 describe phi' │ │ │ │ -000ccc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cccb0: 7c0a 7c20 2d2d 2075 7365 6420 302e 3030 |.| -- used 0.00 │ │ │ │ -000cccc0: 3531 3837 3237 7320 2863 7075 293b 2030 518727s (cpu); 0 │ │ │ │ -000cccd0: 2e30 3035 3138 3736 3273 2028 7468 7265 .00518762s (thre │ │ │ │ -000ccce0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ -000cccf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000ccd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccd40: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ -000ccd50: 7261 7469 6f6e 616c 206d 6170 2064 6566 rational map def │ │ │ │ -000ccd60: 696e 6564 2062 7920 666f 726d 7320 6f66 ined by forms of │ │ │ │ -000ccd70: 2064 6567 7265 6520 3320 2020 2020 2020 degree 3 │ │ │ │ -000ccd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccd90: 2020 2020 7c0a 7c20 2020 2020 736f 7572 |.| sour │ │ │ │ -000ccda0: 6365 2076 6172 6965 7479 3a20 5050 5e33 ce variety: PP^3 │ │ │ │ +000ccbb0: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ +000ccbc0: 7261 7469 6f6e 616c 206d 6170 2064 6566 rational map def │ │ │ │ +000ccbd0: 696e 6564 2062 7920 666f 726d 7320 6f66 ined by forms of │ │ │ │ +000ccbe0: 2064 6567 7265 6520 3320 2020 2020 2020 degree 3 │ │ │ │ +000ccbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ccc00: 2020 2020 7c0a 7c20 2020 2020 736f 7572 |.| sour │ │ │ │ +000ccc10: 6365 2076 6172 6965 7479 3a20 5050 5e33 ce variety: PP^3 │ │ │ │ +000ccc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ccc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ccc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ccc50: 7c0a 7c20 2020 2020 7461 7267 6574 2076 |.| target v │ │ │ │ +000ccc60: 6172 6965 7479 3a20 736d 6f6f 7468 2071 ariety: smooth q │ │ │ │ +000ccc70: 7561 6472 6963 2068 7970 6572 7375 7266 uadric hypersurf │ │ │ │ +000ccc80: 6163 6520 696e 2050 505e 3420 2020 2020 ace in PP^4 │ │ │ │ +000ccc90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000ccca0: 2020 2020 646f 6d69 6e61 6e63 653a 2074 dominance: t │ │ │ │ +000cccb0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +000cccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ccce0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000cccf0: 6269 7261 7469 6f6e 616c 6974 793a 2074 birationality: t │ │ │ │ +000ccd00: 7275 6520 2874 6865 2069 6e76 6572 7365 rue (the inverse │ │ │ │ +000ccd10: 206d 6170 2069 7320 616c 7265 6164 7920 map is already │ │ │ │ +000ccd20: 6361 6c63 756c 6174 6564 2920 2020 2020 calculated) │ │ │ │ +000ccd30: 2020 2020 7c0a 7c20 2020 2020 7072 6f6a |.| proj │ │ │ │ +000ccd40: 6563 7469 7665 2064 6567 7265 6573 3a20 ective degrees: │ │ │ │ +000ccd50: 7b31 2c20 332c 2034 2c20 327d 2020 2020 {1, 3, 4, 2} │ │ │ │ +000ccd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ccd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ccd80: 7c0a 7c20 2020 2020 6e75 6d62 6572 206f |.| number o │ │ │ │ +000ccd90: 6620 6d69 6e69 6d61 6c20 7265 7072 6573 f minimal repres │ │ │ │ +000ccda0: 656e 7461 7469 7665 733a 2031 2020 2020 entatives: 1 │ │ │ │ 000ccdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccde0: 7c0a 7c20 2020 2020 7461 7267 6574 2076 |.| target v │ │ │ │ -000ccdf0: 6172 6965 7479 3a20 736d 6f6f 7468 2071 ariety: smooth q │ │ │ │ -000cce00: 7561 6472 6963 2068 7970 6572 7375 7266 uadric hypersurf │ │ │ │ -000cce10: 6163 6520 696e 2050 505e 3420 2020 2020 ace in PP^4 │ │ │ │ -000cce20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cce30: 2020 2020 646f 6d69 6e61 6e63 653a 2074 dominance: t │ │ │ │ -000cce40: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +000ccdc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000ccdd0: 2020 2020 6469 6d65 6e73 696f 6e20 6261 dimension ba │ │ │ │ +000ccde0: 7365 206c 6f63 7573 3a20 3120 2020 2020 se locus: 1 │ │ │ │ +000ccdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cce10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000cce20: 6465 6772 6565 2062 6173 6520 6c6f 6375 degree base locu │ │ │ │ +000cce30: 733a 2035 2020 2020 2020 2020 2020 2020 s: 5 │ │ │ │ +000cce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cce50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cce70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000cce80: 6269 7261 7469 6f6e 616c 6974 793a 2074 birationality: t │ │ │ │ -000cce90: 7275 6520 2874 6865 2069 6e76 6572 7365 rue (the inverse │ │ │ │ -000ccea0: 206d 6170 2069 7320 616c 7265 6164 7920 map is already │ │ │ │ -000cceb0: 6361 6c63 756c 6174 6564 2920 2020 2020 calculated) │ │ │ │ -000ccec0: 2020 2020 7c0a 7c20 2020 2020 7072 6f6a |.| proj │ │ │ │ -000cced0: 6563 7469 7665 2064 6567 7265 6573 3a20 ective degrees: │ │ │ │ -000ccee0: 7b31 2c20 332c 2034 2c20 327d 2020 2020 {1, 3, 4, 2} │ │ │ │ -000ccef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccf10: 7c0a 7c20 2020 2020 6e75 6d62 6572 206f |.| number o │ │ │ │ -000ccf20: 6620 6d69 6e69 6d61 6c20 7265 7072 6573 f minimal repres │ │ │ │ -000ccf30: 656e 7461 7469 7665 733a 2031 2020 2020 entatives: 1 │ │ │ │ -000ccf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccf50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000ccf60: 2020 2020 6469 6d65 6e73 696f 6e20 6261 dimension ba │ │ │ │ -000ccf70: 7365 206c 6f63 7573 3a20 3120 2020 2020 se locus: 1 │ │ │ │ -000ccf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccfa0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000ccfb0: 6465 6772 6565 2062 6173 6520 6c6f 6375 degree base locu │ │ │ │ -000ccfc0: 733a 2035 2020 2020 2020 2020 2020 2020 s: 5 │ │ │ │ +000cce60: 2020 2020 7c0a 7c20 2020 2020 636f 6566 |.| coef │ │ │ │ +000cce70: 6669 6369 656e 7420 7269 6e67 3a20 5a5a ficient ring: ZZ │ │ │ │ +000cce80: 2f33 3333 3331 2020 2020 2020 2020 2020 /33331 │ │ │ │ +000cce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ccea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cceb0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +000ccec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cced0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ccee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ccef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000ccf00: 3620 3a20 7469 6d65 2064 6573 6372 6962 6 : time describ │ │ │ │ +000ccf10: 6520 696e 7665 7273 6520 7068 6927 2020 e inverse phi' │ │ │ │ +000ccf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ccf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ccf40: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ +000ccf50: 7365 6420 302e 3030 3532 3233 3934 7320 sed 0.00522394s │ │ │ │ +000ccf60: 2863 7075 293b 2030 2e30 3035 3232 3832 (cpu); 0.0052282 │ │ │ │ +000ccf70: 3773 2028 7468 7265 6164 293b 2030 7320 7s (thread); 0s │ │ │ │ +000ccf80: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +000ccf90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000ccfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ccfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ccfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ccff0: 2020 2020 7c0a 7c20 2020 2020 636f 6566 |.| coef │ │ │ │ -000cd000: 6669 6369 656e 7420 7269 6e67 3a20 5a5a ficient ring: ZZ │ │ │ │ -000cd010: 2f33 3333 3331 2020 2020 2020 2020 2020 /33331 │ │ │ │ -000cd020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd040: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -000cd050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000cd090: 3620 3a20 7469 6d65 2064 6573 6372 6962 6 : time describ │ │ │ │ -000cd0a0: 6520 696e 7665 7273 6520 7068 6927 2020 e inverse phi' │ │ │ │ +000ccfe0: 7c0a 7c6f 3620 3d20 7261 7469 6f6e 616c |.|o6 = rational │ │ │ │ +000ccff0: 206d 6170 2064 6566 696e 6564 2062 7920 map defined by │ │ │ │ +000cd000: 666f 726d 7320 6f66 2064 6567 7265 6520 forms of degree │ │ │ │ +000cd010: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000cd020: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cd030: 2020 2020 736f 7572 6365 2076 6172 6965 source varie │ │ │ │ +000cd040: 7479 3a20 736d 6f6f 7468 2071 7561 6472 ty: smooth quadr │ │ │ │ +000cd050: 6963 2068 7970 6572 7375 7266 6163 6520 ic hypersurface │ │ │ │ +000cd060: 696e 2050 505e 3420 2020 2020 2020 2020 in PP^4 │ │ │ │ +000cd070: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000cd080: 7461 7267 6574 2076 6172 6965 7479 3a20 target variety: │ │ │ │ +000cd090: 5050 5e33 2020 2020 2020 2020 2020 2020 PP^3 │ │ │ │ +000cd0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cd0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd0d0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -000cd0e0: 7365 6420 302e 3030 3432 3934 3338 7320 sed 0.00429438s │ │ │ │ -000cd0f0: 2863 7075 293b 2030 2e30 3034 3239 3530 (cpu); 0.0042950 │ │ │ │ -000cd100: 3473 2028 7468 7265 6164 293b 2030 7320 4s (thread); 0s │ │ │ │ -000cd110: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ -000cd120: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000cd130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd170: 7c0a 7c6f 3620 3d20 7261 7469 6f6e 616c |.|o6 = rational │ │ │ │ -000cd180: 206d 6170 2064 6566 696e 6564 2062 7920 map defined by │ │ │ │ -000cd190: 666f 726d 7320 6f66 2064 6567 7265 6520 forms of degree │ │ │ │ -000cd1a0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000cd1b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cd1c0: 2020 2020 736f 7572 6365 2076 6172 6965 source varie │ │ │ │ -000cd1d0: 7479 3a20 736d 6f6f 7468 2071 7561 6472 ty: smooth quadr │ │ │ │ -000cd1e0: 6963 2068 7970 6572 7375 7266 6163 6520 ic hypersurface │ │ │ │ -000cd1f0: 696e 2050 505e 3420 2020 2020 2020 2020 in PP^4 │ │ │ │ -000cd200: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000cd210: 7461 7267 6574 2076 6172 6965 7479 3a20 target variety: │ │ │ │ -000cd220: 5050 5e33 2020 2020 2020 2020 2020 2020 PP^3 │ │ │ │ +000cd0c0: 2020 2020 7c0a 7c20 2020 2020 646f 6d69 |.| domi │ │ │ │ +000cd0d0: 6e61 6e63 653a 2074 7275 6520 2020 2020 nance: true │ │ │ │ +000cd0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd110: 7c0a 7c20 2020 2020 6269 7261 7469 6f6e |.| biration │ │ │ │ +000cd120: 616c 6974 793a 2074 7275 6520 2874 6865 ality: true (the │ │ │ │ +000cd130: 2069 6e76 6572 7365 206d 6170 2069 7320 inverse map is │ │ │ │ +000cd140: 616c 7265 6164 7920 6361 6c63 756c 6174 already calculat │ │ │ │ +000cd150: 6564 2920 2020 2020 2020 2020 7c0a 7c20 ed) |.| │ │ │ │ +000cd160: 2020 2020 7072 6f6a 6563 7469 7665 2064 projective d │ │ │ │ +000cd170: 6567 7265 6573 3a20 7b32 2c20 342c 2033 egrees: {2, 4, 3 │ │ │ │ +000cd180: 2c20 317d 2020 2020 2020 2020 2020 2020 , 1} │ │ │ │ +000cd190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd1a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000cd1b0: 6e75 6d62 6572 206f 6620 6d69 6e69 6d61 number of minima │ │ │ │ +000cd1c0: 6c20 7265 7072 6573 656e 7461 7469 7665 l representative │ │ │ │ +000cd1d0: 733a 2031 2020 2020 2020 2020 2020 2020 s: 1 │ │ │ │ +000cd1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd1f0: 2020 2020 7c0a 7c20 2020 2020 6469 6d65 |.| dime │ │ │ │ +000cd200: 6e73 696f 6e20 6261 7365 206c 6f63 7573 nsion base locus │ │ │ │ +000cd210: 3a20 3120 2020 2020 2020 2020 2020 2020 : 1 │ │ │ │ +000cd220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cd230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd250: 2020 2020 7c0a 7c20 2020 2020 646f 6d69 |.| domi │ │ │ │ -000cd260: 6e61 6e63 653a 2074 7275 6520 2020 2020 nance: true │ │ │ │ +000cd240: 7c0a 7c20 2020 2020 6465 6772 6565 2062 |.| degree b │ │ │ │ +000cd250: 6173 6520 6c6f 6375 733a 2035 2020 2020 ase locus: 5 │ │ │ │ +000cd260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cd270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd2a0: 7c0a 7c20 2020 2020 6269 7261 7469 6f6e |.| biration │ │ │ │ -000cd2b0: 616c 6974 793a 2074 7275 6520 2874 6865 ality: true (the │ │ │ │ -000cd2c0: 2069 6e76 6572 7365 206d 6170 2069 7320 inverse map is │ │ │ │ -000cd2d0: 616c 7265 6164 7920 6361 6c63 756c 6174 already calculat │ │ │ │ -000cd2e0: 6564 2920 2020 2020 2020 2020 7c0a 7c20 ed) |.| │ │ │ │ -000cd2f0: 2020 2020 7072 6f6a 6563 7469 7665 2064 projective d │ │ │ │ -000cd300: 6567 7265 6573 3a20 7b32 2c20 342c 2033 egrees: {2, 4, 3 │ │ │ │ -000cd310: 2c20 317d 2020 2020 2020 2020 2020 2020 , 1} │ │ │ │ -000cd320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd330: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000cd340: 6e75 6d62 6572 206f 6620 6d69 6e69 6d61 number of minima │ │ │ │ -000cd350: 6c20 7265 7072 6573 656e 7461 7469 7665 l representative │ │ │ │ -000cd360: 733a 2031 2020 2020 2020 2020 2020 2020 s: 1 │ │ │ │ -000cd370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd380: 2020 2020 7c0a 7c20 2020 2020 6469 6d65 |.| dime │ │ │ │ -000cd390: 6e73 696f 6e20 6261 7365 206c 6f63 7573 nsion base locus │ │ │ │ -000cd3a0: 3a20 3120 2020 2020 2020 2020 2020 2020 : 1 │ │ │ │ -000cd3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd3d0: 7c0a 7c20 2020 2020 6465 6772 6565 2062 |.| degree b │ │ │ │ -000cd3e0: 6173 6520 6c6f 6375 733a 2035 2020 2020 ase locus: 5 │ │ │ │ -000cd3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd410: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000cd420: 2020 2020 636f 6566 6669 6369 656e 7420 coefficient │ │ │ │ -000cd430: 7269 6e67 3a20 5a5a 2f33 3333 3331 2020 ring: ZZ/33331 │ │ │ │ -000cd440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd460: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -000cd470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd4b0: 2d2d 2d2d 2b0a 0a57 6179 7320 746f 2075 ----+..Ways to u │ │ │ │ -000cd4c0: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ -000cd4d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000cd4e0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -000cd4f0: 6f74 6520 746f 4578 7465 726e 616c 5374 ote toExternalSt │ │ │ │ -000cd500: 7269 6e67 2852 6174 696f 6e61 6c4d 6170 ring(RationalMap │ │ │ │ -000cd510: 293a 2074 6f45 7874 6572 6e61 6c53 7472 ): toExternalStr │ │ │ │ -000cd520: 696e 675f 6c70 5261 7469 6f6e 616c 4d61 ing_lpRationalMa │ │ │ │ -000cd530: 705f 7270 2c20 2d2d 0a20 2020 2063 6f6e p_rp, --. con │ │ │ │ -000cd540: 7665 7274 2074 6f20 6120 7265 6164 6162 vert to a readab │ │ │ │ -000cd550: 6c65 2073 7472 696e 670a 2d2d 2d2d 2d2d le string.------ │ │ │ │ -000cd560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd5a0: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -000cd5b0: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -000cd5c0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -000cd5d0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -000cd5e0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -000cd5f0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -000cd600: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -000cd610: 2f43 7265 6d6f 6e61 2f0a 646f 6375 6d65 /Cremona/.docume │ │ │ │ -000cd620: 6e74 6174 696f 6e2e 6d32 3a31 3131 393a ntation.m2:1119: │ │ │ │ -000cd630: 302e 0a1f 0a46 696c 653a 2043 7265 6d6f 0....File: Cremo │ │ │ │ -000cd640: 6e61 2e69 6e66 6f2c 204e 6f64 653a 2074 na.info, Node: t │ │ │ │ -000cd650: 6f4d 6170 2c20 5072 6576 3a20 746f 4578 oMap, Prev: toEx │ │ │ │ -000cd660: 7465 726e 616c 5374 7269 6e67 5f6c 7052 ternalString_lpR │ │ │ │ -000cd670: 6174 696f 6e61 6c4d 6170 5f72 702c 2055 ationalMap_rp, U │ │ │ │ -000cd680: 703a 2054 6f70 0a0a 746f 4d61 7020 2d2d p: Top..toMap -- │ │ │ │ -000cd690: 2072 6174 696f 6e61 6c20 6d61 7020 6465 rational map de │ │ │ │ -000cd6a0: 6669 6e65 6420 6279 2061 206c 696e 6561 fined by a linea │ │ │ │ -000cd6b0: 7220 7379 7374 656d 0a2a 2a2a 2a2a 2a2a r system.******* │ │ │ │ -000cd6c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000cd6d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000cd6e0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ -000cd6f0: 7361 6765 3a20 0a20 2020 2020 2020 2074 sage: . t │ │ │ │ -000cd700: 6f4d 6170 2822 6c69 6e65 6172 2073 7973 oMap("linear sys │ │ │ │ -000cd710: 7465 6d22 290a 2020 2a20 496e 7075 7473 tem"). * Inputs │ │ │ │ -000cd720: 3a0a 2020 2020 2020 2a20 6120 2a6e 6f74 :. * a *not │ │ │ │ -000cd730: 6520 6d61 7472 6978 3a20 284d 6163 6175 e matrix: (Macau │ │ │ │ -000cd740: 6c61 7932 446f 6329 4d61 7472 6978 2c2c lay2Doc)Matrix,, │ │ │ │ -000cd750: 206f 7220 6120 2a6e 6f74 6520 6c69 7374 or a *note list │ │ │ │ -000cd760: 3a0a 2020 2020 2020 2020 284d 6163 6175 :. (Macau │ │ │ │ -000cd770: 6c61 7932 446f 6329 4c69 7374 2c2c 2065 lay2Doc)List,, e │ │ │ │ -000cd780: 7463 2e0a 2020 2a20 2a6e 6f74 6520 4f70 tc.. * *note Op │ │ │ │ -000cd790: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ -000cd7a0: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ -000cd7b0: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ -000cd7c0: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ -000cd7d0: 732c 3a0a 2020 2020 2020 2a20 2a6e 6f74 s,:. * *not │ │ │ │ -000cd7e0: 6520 446f 6d69 6e61 6e74 3a20 446f 6d69 e Dominant: Domi │ │ │ │ -000cd7f0: 6e61 6e74 2c20 3d3e 202e 2e2e 2c20 6465 nant, => ..., de │ │ │ │ -000cd800: 6661 756c 7420 7661 6c75 6520 6e75 6c6c fault value null │ │ │ │ -000cd810: 2c20 0a20 202a 204f 7574 7075 7473 3a0a , . * Outputs:. │ │ │ │ -000cd820: 2020 2020 2020 2a20 6120 2a6e 6f74 6520 * a *note │ │ │ │ -000cd830: 7269 6e67 206d 6170 3a20 284d 6163 6175 ring map: (Macau │ │ │ │ -000cd840: 6c61 7932 446f 6329 5269 6e67 4d61 702c lay2Doc)RingMap, │ │ │ │ -000cd850: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -000cd860: 3d3d 3d3d 3d3d 3d3d 3d0a 0a57 6865 6e20 =========..When │ │ │ │ -000cd870: 7468 6520 696e 7075 7420 7265 7072 6573 the input repres │ │ │ │ -000cd880: 656e 7473 2061 206c 6973 7420 6f66 2068 ents a list of h │ │ │ │ -000cd890: 6f6d 6f67 656e 656f 7573 2065 6c65 6d65 omogeneous eleme │ │ │ │ -000cd8a0: 6e74 7320 2446 5f30 2c5c 6c64 6f74 732c nts $F_0,\ldots, │ │ │ │ -000cd8b0: 465f 6d5c 696e 0a52 3d4b 5b74 5f30 2c5c F_m\in.R=K[t_0,\ │ │ │ │ -000cd8c0: 6c64 6f74 732c 745f 6e5d 2f49 2420 6f66 ldots,t_n]/I$ of │ │ │ │ -000cd8d0: 2074 6865 2073 616d 6520 6465 6772 6565 the same degree │ │ │ │ -000cd8e0: 2c20 7468 656e 2074 6865 206d 6574 686f , then the metho │ │ │ │ -000cd8f0: 6420 7265 7475 726e 7320 7468 6520 7269 d returns the ri │ │ │ │ -000cd900: 6e67 206d 6170 0a24 5c70 6869 3a4b 5b78 ng map.$\phi:K[x │ │ │ │ -000cd910: 5f30 2c5c 6c64 6f74 732c 785f 6d5d 205c _0,\ldots,x_m] \ │ │ │ │ -000cd920: 746f 2052 2420 7468 6174 2073 656e 6473 to R$ that sends │ │ │ │ -000cd930: 2024 785f 6924 2069 6e74 6f20 2446 5f69 $x_i$ into $F_i │ │ │ │ -000cd940: 242e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d $...+----------- │ │ │ │ -000cd950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd980: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -000cd990: 5151 5b74 5f30 2c74 5f31 5d3b 2020 2020 QQ[t_0,t_1]; │ │ │ │ +000cd280: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cd290: 2020 2020 636f 6566 6669 6369 656e 7420 coefficient │ │ │ │ +000cd2a0: 7269 6e67 3a20 5a5a 2f33 3333 3331 2020 ring: ZZ/33331 │ │ │ │ +000cd2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd2d0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000cd2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd320: 2d2d 2d2d 2b0a 0a57 6179 7320 746f 2075 ----+..Ways to u │ │ │ │ +000cd330: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ +000cd340: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000cd350: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +000cd360: 6f74 6520 746f 4578 7465 726e 616c 5374 ote toExternalSt │ │ │ │ +000cd370: 7269 6e67 2852 6174 696f 6e61 6c4d 6170 ring(RationalMap │ │ │ │ +000cd380: 293a 2074 6f45 7874 6572 6e61 6c53 7472 ): toExternalStr │ │ │ │ +000cd390: 696e 675f 6c70 5261 7469 6f6e 616c 4d61 ing_lpRationalMa │ │ │ │ +000cd3a0: 705f 7270 2c20 2d2d 0a20 2020 2063 6f6e p_rp, --. con │ │ │ │ +000cd3b0: 7665 7274 2074 6f20 6120 7265 6164 6162 vert to a readab │ │ │ │ +000cd3c0: 6c65 2073 7472 696e 670a 2d2d 2d2d 2d2d le string.------ │ │ │ │ +000cd3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd410: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +000cd420: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +000cd430: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +000cd440: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +000cd450: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +000cd460: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +000cd470: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +000cd480: 2f43 7265 6d6f 6e61 2f0a 646f 6375 6d65 /Cremona/.docume │ │ │ │ +000cd490: 6e74 6174 696f 6e2e 6d32 3a31 3131 393a ntation.m2:1119: │ │ │ │ +000cd4a0: 302e 0a1f 0a46 696c 653a 2043 7265 6d6f 0....File: Cremo │ │ │ │ +000cd4b0: 6e61 2e69 6e66 6f2c 204e 6f64 653a 2074 na.info, Node: t │ │ │ │ +000cd4c0: 6f4d 6170 2c20 5072 6576 3a20 746f 4578 oMap, Prev: toEx │ │ │ │ +000cd4d0: 7465 726e 616c 5374 7269 6e67 5f6c 7052 ternalString_lpR │ │ │ │ +000cd4e0: 6174 696f 6e61 6c4d 6170 5f72 702c 2055 ationalMap_rp, U │ │ │ │ +000cd4f0: 703a 2054 6f70 0a0a 746f 4d61 7020 2d2d p: Top..toMap -- │ │ │ │ +000cd500: 2072 6174 696f 6e61 6c20 6d61 7020 6465 rational map de │ │ │ │ +000cd510: 6669 6e65 6420 6279 2061 206c 696e 6561 fined by a linea │ │ │ │ +000cd520: 7220 7379 7374 656d 0a2a 2a2a 2a2a 2a2a r system.******* │ │ │ │ +000cd530: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000cd540: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000cd550: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ +000cd560: 7361 6765 3a20 0a20 2020 2020 2020 2074 sage: . t │ │ │ │ +000cd570: 6f4d 6170 2822 6c69 6e65 6172 2073 7973 oMap("linear sys │ │ │ │ +000cd580: 7465 6d22 290a 2020 2a20 496e 7075 7473 tem"). * Inputs │ │ │ │ +000cd590: 3a0a 2020 2020 2020 2a20 6120 2a6e 6f74 :. * a *not │ │ │ │ +000cd5a0: 6520 6d61 7472 6978 3a20 284d 6163 6175 e matrix: (Macau │ │ │ │ +000cd5b0: 6c61 7932 446f 6329 4d61 7472 6978 2c2c lay2Doc)Matrix,, │ │ │ │ +000cd5c0: 206f 7220 6120 2a6e 6f74 6520 6c69 7374 or a *note list │ │ │ │ +000cd5d0: 3a0a 2020 2020 2020 2020 284d 6163 6175 :. (Macau │ │ │ │ +000cd5e0: 6c61 7932 446f 6329 4c69 7374 2c2c 2065 lay2Doc)List,, e │ │ │ │ +000cd5f0: 7463 2e0a 2020 2a20 2a6e 6f74 6520 4f70 tc.. * *note Op │ │ │ │ +000cd600: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ +000cd610: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ +000cd620: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ +000cd630: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ +000cd640: 732c 3a0a 2020 2020 2020 2a20 2a6e 6f74 s,:. * *not │ │ │ │ +000cd650: 6520 446f 6d69 6e61 6e74 3a20 446f 6d69 e Dominant: Domi │ │ │ │ +000cd660: 6e61 6e74 2c20 3d3e 202e 2e2e 2c20 6465 nant, => ..., de │ │ │ │ +000cd670: 6661 756c 7420 7661 6c75 6520 6e75 6c6c fault value null │ │ │ │ +000cd680: 2c20 0a20 202a 204f 7574 7075 7473 3a0a , . * Outputs:. │ │ │ │ +000cd690: 2020 2020 2020 2a20 6120 2a6e 6f74 6520 * a *note │ │ │ │ +000cd6a0: 7269 6e67 206d 6170 3a20 284d 6163 6175 ring map: (Macau │ │ │ │ +000cd6b0: 6c61 7932 446f 6329 5269 6e67 4d61 702c lay2Doc)RingMap, │ │ │ │ +000cd6c0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +000cd6d0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a57 6865 6e20 =========..When │ │ │ │ +000cd6e0: 7468 6520 696e 7075 7420 7265 7072 6573 the input repres │ │ │ │ +000cd6f0: 656e 7473 2061 206c 6973 7420 6f66 2068 ents a list of h │ │ │ │ +000cd700: 6f6d 6f67 656e 656f 7573 2065 6c65 6d65 omogeneous eleme │ │ │ │ +000cd710: 6e74 7320 2446 5f30 2c5c 6c64 6f74 732c nts $F_0,\ldots, │ │ │ │ +000cd720: 465f 6d5c 696e 0a52 3d4b 5b74 5f30 2c5c F_m\in.R=K[t_0,\ │ │ │ │ +000cd730: 6c64 6f74 732c 745f 6e5d 2f49 2420 6f66 ldots,t_n]/I$ of │ │ │ │ +000cd740: 2074 6865 2073 616d 6520 6465 6772 6565 the same degree │ │ │ │ +000cd750: 2c20 7468 656e 2074 6865 206d 6574 686f , then the metho │ │ │ │ +000cd760: 6420 7265 7475 726e 7320 7468 6520 7269 d returns the ri │ │ │ │ +000cd770: 6e67 206d 6170 0a24 5c70 6869 3a4b 5b78 ng map.$\phi:K[x │ │ │ │ +000cd780: 5f30 2c5c 6c64 6f74 732c 785f 6d5d 205c _0,\ldots,x_m] \ │ │ │ │ +000cd790: 746f 2052 2420 7468 6174 2073 656e 6473 to R$ that sends │ │ │ │ +000cd7a0: 2024 785f 6924 2069 6e74 6f20 2446 5f69 $x_i$ into $F_i │ │ │ │ +000cd7b0: 242e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d $...+----------- │ │ │ │ +000cd7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd7f0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +000cd800: 5151 5b74 5f30 2c74 5f31 5d3b 2020 2020 QQ[t_0,t_1]; │ │ │ │ +000cd810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd830: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000cd840: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000cd850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cd880: 2d2d 2d2d 2b0a 7c69 3220 3a20 6c69 6e53 ----+.|i2 : linS │ │ │ │ +000cd890: 7973 3d67 656e 7320 2869 6465 616c 2874 ys=gens (ideal(t │ │ │ │ +000cd8a0: 5f30 2c74 5f31 2929 5e35 2020 2020 2020 _0,t_1))^5 │ │ │ │ +000cd8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd8c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000cd8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd910: 7c0a 7c6f 3220 3d20 7c20 745f 305e 3520 |.|o2 = | t_0^5 │ │ │ │ +000cd920: 745f 305e 3474 5f31 2074 5f30 5e33 745f t_0^4t_1 t_0^3t_ │ │ │ │ +000cd930: 315e 3220 745f 305e 3274 5f31 5e33 2074 1^2 t_0^2t_1^3 t │ │ │ │ +000cd940: 5f30 745f 315e 3420 745f 315e 3520 7c20 _0t_1^4 t_1^5 | │ │ │ │ +000cd950: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000cd960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd990: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000cd9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cd9c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000cd9d0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -000cd9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cd9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cda00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cda10: 2d2d 2d2d 2b0a 7c69 3220 3a20 6c69 6e53 ----+.|i2 : linS │ │ │ │ -000cda20: 7973 3d67 656e 7320 2869 6465 616c 2874 ys=gens (ideal(t │ │ │ │ -000cda30: 5f30 2c74 5f31 2929 5e35 2020 2020 2020 _0,t_1))^5 │ │ │ │ -000cda40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cda50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000cda60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cda70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cda80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cda90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cdaa0: 7c0a 7c6f 3220 3d20 7c20 745f 305e 3520 |.|o2 = | t_0^5 │ │ │ │ -000cdab0: 745f 305e 3474 5f31 2074 5f30 5e33 745f t_0^4t_1 t_0^3t_ │ │ │ │ -000cdac0: 315e 3220 745f 305e 3274 5f31 5e33 2074 1^2 t_0^2t_1^3 t │ │ │ │ -000cdad0: 5f30 745f 315e 3420 745f 315e 3520 7c20 _0t_1^4 t_1^5 | │ │ │ │ -000cdae0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000cdaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd9b0: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ +000cd9c0: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ +000cd9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cd9e0: 2020 7c0a 7c6f 3220 3a20 4d61 7472 6978 |.|o2 : Matrix │ │ │ │ +000cd9f0: 2028 5151 5b74 202e 2e74 205d 2920 203c (QQ[t ..t ]) < │ │ │ │ +000cda00: 2d2d 2028 5151 5b74 202e 2e74 205d 2920 -- (QQ[t ..t ]) │ │ │ │ +000cda10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cda20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000cda30: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +000cda40: 3120 2020 2020 2020 2020 2020 2020 3020 1 0 │ │ │ │ +000cda50: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000cda60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000cda70: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000cda80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cda90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cdaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cdab0: 2d2d 2d2d 2b0a 7c69 3320 3a20 7068 693d ----+.|i3 : phi= │ │ │ │ +000cdac0: 746f 4d61 7020 6c69 6e53 7973 2020 2020 toMap linSys │ │ │ │ +000cdad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdaf0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 000cdb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cdb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cdb20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000cdb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cdb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cdb40: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ -000cdb50: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ -000cdb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cdb70: 2020 7c0a 7c6f 3220 3a20 4d61 7472 6978 |.|o2 : Matrix │ │ │ │ -000cdb80: 2028 5151 5b74 202e 2e74 205d 2920 203c (QQ[t ..t ]) < │ │ │ │ -000cdb90: 2d2d 2028 5151 5b74 202e 2e74 205d 2920 -- (QQ[t ..t ]) │ │ │ │ -000cdba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cdbb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000cdbc0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -000cdbd0: 3120 2020 2020 2020 2020 2020 2020 3020 1 0 │ │ │ │ -000cdbe0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -000cdbf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000cdc00: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -000cdc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cdc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cdc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cdc40: 2d2d 2d2d 2b0a 7c69 3320 3a20 7068 693d ----+.|i3 : phi= │ │ │ │ -000cdc50: 746f 4d61 7020 6c69 6e53 7973 2020 2020 toMap linSys │ │ │ │ -000cdc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cdc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cdc80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000cdc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cdca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cdcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cdcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cdcd0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000cdce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cdcf0: 2020 2020 2020 2035 2020 2034 2020 2020 5 4 │ │ │ │ -000cdd00: 2033 2032 2020 2032 2033 2020 2020 2034 3 2 2 3 4 │ │ │ │ -000cdd10: 2020 2035 2020 7c0a 7c6f 3320 3d20 6d61 5 |.|o3 = ma │ │ │ │ -000cdd20: 7020 2851 515b 7420 2e2e 7420 5d2c 2051 p (QQ[t ..t ], Q │ │ │ │ -000cdd30: 515b 7820 2e2e 7820 5d2c 207b 7420 2c20 Q[x ..x ], {t , │ │ │ │ -000cdd40: 7420 7420 2c20 7420 7420 2c20 7420 7420 t t , t t , t t │ │ │ │ -000cdd50: 2c20 7420 7420 2c20 7420 7d29 7c0a 7c20 , t t , t })|.| │ │ │ │ -000cdd60: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000cdd70: 2031 2020 2020 2020 2030 2020 2035 2020 1 0 5 │ │ │ │ -000cdd80: 2020 2030 2020 2030 2031 2020 2030 2031 0 0 1 0 1 │ │ │ │ -000cdd90: 2020 2030 2031 2020 2030 2031 2020 2031 0 1 0 1 1 │ │ │ │ -000cdda0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000cddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cddc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cdde0: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ -000cddf0: 5269 6e67 4d61 7020 5151 5b74 202e 2e74 RingMap QQ[t ..t │ │ │ │ -000cde00: 205d 203c 2d2d 2051 515b 7820 2e2e 7820 ] <-- QQ[x ..x │ │ │ │ -000cde10: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ -000cde20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000cde30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000cde40: 2020 3020 2020 3120 2020 2020 2020 2020 0 1 │ │ │ │ -000cde50: 2030 2020 2035 2020 2020 2020 2020 2020 0 5 │ │ │ │ -000cde60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cde70: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000cdb40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000cdb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdb60: 2020 2020 2020 2035 2020 2034 2020 2020 5 4 │ │ │ │ +000cdb70: 2033 2032 2020 2032 2033 2020 2020 2034 3 2 2 3 4 │ │ │ │ +000cdb80: 2020 2035 2020 7c0a 7c6f 3320 3d20 6d61 5 |.|o3 = ma │ │ │ │ +000cdb90: 7020 2851 515b 7420 2e2e 7420 5d2c 2051 p (QQ[t ..t ], Q │ │ │ │ +000cdba0: 515b 7820 2e2e 7820 5d2c 207b 7420 2c20 Q[x ..x ], {t , │ │ │ │ +000cdbb0: 7420 7420 2c20 7420 7420 2c20 7420 7420 t t , t t , t t │ │ │ │ +000cdbc0: 2c20 7420 7420 2c20 7420 7d29 7c0a 7c20 , t t , t })|.| │ │ │ │ +000cdbd0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +000cdbe0: 2031 2020 2020 2020 2030 2020 2035 2020 1 0 5 │ │ │ │ +000cdbf0: 2020 2030 2020 2030 2031 2020 2030 2031 0 0 1 0 1 │ │ │ │ +000cdc00: 2020 2030 2031 2020 2030 2031 2020 2031 0 1 0 1 1 │ │ │ │ +000cdc10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000cdc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdc50: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ +000cdc60: 5269 6e67 4d61 7020 5151 5b74 202e 2e74 RingMap QQ[t ..t │ │ │ │ +000cdc70: 205d 203c 2d2d 2051 515b 7820 2e2e 7820 ] <-- QQ[x ..x │ │ │ │ +000cdc80: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +000cdc90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000cdca0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000cdcb0: 2020 3020 2020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +000cdcc0: 2030 2020 2035 2020 2020 2020 2020 2020 0 5 │ │ │ │ +000cdcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdce0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000cdcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cdd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cdd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cdd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a49 6620 ----------+..If │ │ │ │ +000cdd30: 6120 706f 7369 7469 7665 2069 6e74 6567 a positive integ │ │ │ │ +000cdd40: 6572 2024 6424 2069 7320 7061 7373 6564 er $d$ is passed │ │ │ │ +000cdd50: 2074 6f20 7468 6520 6f70 7469 6f6e 202a to the option * │ │ │ │ +000cdd60: 6e6f 7465 2044 6f6d 696e 616e 743a 2044 note Dominant: D │ │ │ │ +000cdd70: 6f6d 696e 616e 742c 2c0a 7468 656e 2074 ominant,,.then t │ │ │ │ +000cdd80: 6865 206d 6574 686f 6420 7265 7475 726e he method return │ │ │ │ +000cdd90: 7320 7468 6520 696e 6475 6365 6420 6d61 s the induced ma │ │ │ │ +000cdda0: 7020 6f6e 2024 4b5b 785f 302c 5c6c 646f p on $K[x_0,\ldo │ │ │ │ +000cddb0: 7473 2c78 5f6d 5d2f 4a5f 6424 2c20 7768 ts,x_m]/J_d$, wh │ │ │ │ +000cddc0: 6572 6520 244a 5f64 240a 6973 2074 6865 ere $J_d$.is the │ │ │ │ +000cddd0: 2069 6465 616c 2067 656e 6572 6174 6564 ideal generated │ │ │ │ +000cdde0: 2062 7920 616c 6c20 686f 6d6f 6765 6e65 by all homogene │ │ │ │ +000cddf0: 6f75 7320 656c 656d 656e 7473 206f 6620 ous elements of │ │ │ │ +000cde00: 6465 6772 6565 2024 6424 206f 6620 7468 degree $d$ of th │ │ │ │ +000cde10: 6520 6b65 726e 656c 0a6f 6620 245c 7068 e kernel.of $\ph │ │ │ │ +000cde20: 6924 2028 696e 2074 6869 7320 6361 7365 i$ (in this case │ │ │ │ +000cde30: 202a 6e6f 7465 206b 6572 6e65 6c28 5269 *note kernel(Ri │ │ │ │ +000cde40: 6e67 4d61 702c 5a5a 293a 206b 6572 6e65 ngMap,ZZ): kerne │ │ │ │ +000cde50: 6c5f 6c70 5269 6e67 4d61 705f 636d 5a5a l_lpRingMap_cmZZ │ │ │ │ +000cde60: 5f72 702c 2069 730a 6361 6c6c 6564 292e _rp, is.called). │ │ │ │ +000cde70: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ 000cde80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000cde90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000cdea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cdeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a49 6620 ----------+..If │ │ │ │ -000cdec0: 6120 706f 7369 7469 7665 2069 6e74 6567 a positive integ │ │ │ │ -000cded0: 6572 2024 6424 2069 7320 7061 7373 6564 er $d$ is passed │ │ │ │ -000cdee0: 2074 6f20 7468 6520 6f70 7469 6f6e 202a to the option * │ │ │ │ -000cdef0: 6e6f 7465 2044 6f6d 696e 616e 743a 2044 note Dominant: D │ │ │ │ -000cdf00: 6f6d 696e 616e 742c 2c0a 7468 656e 2074 ominant,,.then t │ │ │ │ -000cdf10: 6865 206d 6574 686f 6420 7265 7475 726e he method return │ │ │ │ -000cdf20: 7320 7468 6520 696e 6475 6365 6420 6d61 s the induced ma │ │ │ │ -000cdf30: 7020 6f6e 2024 4b5b 785f 302c 5c6c 646f p on $K[x_0,\ldo │ │ │ │ -000cdf40: 7473 2c78 5f6d 5d2f 4a5f 6424 2c20 7768 ts,x_m]/J_d$, wh │ │ │ │ -000cdf50: 6572 6520 244a 5f64 240a 6973 2074 6865 ere $J_d$.is the │ │ │ │ -000cdf60: 2069 6465 616c 2067 656e 6572 6174 6564 ideal generated │ │ │ │ -000cdf70: 2062 7920 616c 6c20 686f 6d6f 6765 6e65 by all homogene │ │ │ │ -000cdf80: 6f75 7320 656c 656d 656e 7473 206f 6620 ous elements of │ │ │ │ -000cdf90: 6465 6772 6565 2024 6424 206f 6620 7468 degree $d$ of th │ │ │ │ -000cdfa0: 6520 6b65 726e 656c 0a6f 6620 245c 7068 e kernel.of $\ph │ │ │ │ -000cdfb0: 6924 2028 696e 2074 6869 7320 6361 7365 i$ (in this case │ │ │ │ -000cdfc0: 202a 6e6f 7465 206b 6572 6e65 6c28 5269 *note kernel(Ri │ │ │ │ -000cdfd0: 6e67 4d61 702c 5a5a 293a 206b 6572 6e65 ngMap,ZZ): kerne │ │ │ │ -000cdfe0: 6c5f 6c70 5269 6e67 4d61 705f 636d 5a5a l_lpRingMap_cmZZ │ │ │ │ -000cdff0: 5f72 702c 2069 730a 6361 6c6c 6564 292e _rp, is.called). │ │ │ │ -000ce000: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ -000ce010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cdeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cdec0: 2b0a 7c69 3420 3a20 7068 6927 3d74 6f4d +.|i4 : phi'=toM │ │ │ │ +000cded0: 6170 286c 696e 5379 732c 446f 6d69 6e61 ap(linSys,Domina │ │ │ │ +000cdee0: 6e74 3d3e 3229 2020 2020 2020 2020 2020 nt=>2) │ │ │ │ +000cdef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdf10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000cdf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdf60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000cdf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdfb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000cdfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cdff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce000: 7c0a 7c6f 3420 3d20 6d61 7020 2851 515b |.|o4 = map (QQ[ │ │ │ │ +000ce010: 7420 2e2e 7420 5d2c 202d 2d2d 2d2d 2d2d t ..t ], ------- │ │ │ │ 000ce020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000ce030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000ce040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce050: 2b0a 7c69 3420 3a20 7068 6927 3d74 6f4d +.|i4 : phi'=toM │ │ │ │ -000ce060: 6170 286c 696e 5379 732c 446f 6d69 6e61 ap(linSys,Domina │ │ │ │ -000ce070: 6e74 3d3e 3229 2020 2020 2020 2020 2020 nt=>2) │ │ │ │ +000ce050: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000ce060: 2030 2020 2031 2020 2020 2032 2020 2020 0 1 2 │ │ │ │ +000ce070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ce080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce090: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 000ce0a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000ce0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce0b0: 2020 2020 2020 2020 2028 7820 202d 2078 (x - x │ │ │ │ +000ce0c0: 2078 202c 2078 2078 2020 2d20 7820 7820 x , x x - x x │ │ │ │ +000ce0d0: 2c20 7820 7820 202d 2078 2078 202c 2078 , x x - x x , x │ │ │ │ +000ce0e0: 2078 2020 2d20 7820 7820 2c20 7820 202d x - x x , x - │ │ │ │ 000ce0f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000ce100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce100: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ +000ce110: 3320 3520 2020 3320 3420 2020 2032 2035 3 5 3 4 2 5 │ │ │ │ +000ce120: 2020 2032 2034 2020 2020 3120 3520 2020 2 4 1 5 │ │ │ │ +000ce130: 3120 3420 2020 2030 2035 2020 2033 2020 1 4 0 5 3 │ │ │ │ 000ce140: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000ce150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ce160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ce170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ce180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce190: 7c0a 7c6f 3420 3d20 6d61 7020 2851 515b |.|o4 = map (QQ[ │ │ │ │ -000ce1a0: 7420 2e2e 7420 5d2c 202d 2d2d 2d2d 2d2d t ..t ], ------- │ │ │ │ -000ce1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce190: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000ce1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ce1e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000ce1f0: 2030 2020 2031 2020 2020 2032 2020 2020 0 1 2 │ │ │ │ +000ce1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ce200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ce210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce220: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000ce230: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000ce240: 2020 2020 2020 2020 2028 7820 202d 2078 (x - x │ │ │ │ -000ce250: 2078 202c 2078 2078 2020 2d20 7820 7820 x , x x - x x │ │ │ │ -000ce260: 2c20 7820 7820 202d 2078 2078 202c 2078 , x x - x x , x │ │ │ │ -000ce270: 2078 2020 2d20 7820 7820 2c20 7820 202d x - x x , x - │ │ │ │ +000ce220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce230: 7c0a 7c6f 3420 3a20 5269 6e67 4d61 7020 |.|o4 : RingMap │ │ │ │ +000ce240: 5151 5b74 202e 2e74 205d 203c 2d2d 202d QQ[t ..t ] <-- - │ │ │ │ +000ce250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000ce280: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000ce290: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ -000ce2a0: 3320 3520 2020 3320 3420 2020 2032 2035 3 5 3 4 2 5 │ │ │ │ -000ce2b0: 2020 2032 2034 2020 2020 3120 3520 2020 2 4 1 5 │ │ │ │ -000ce2c0: 3120 3420 2020 2030 2035 2020 2033 2020 1 4 0 5 3 │ │ │ │ +000ce290: 2020 2020 3020 2020 3120 2020 2020 2020 0 1 │ │ │ │ +000ce2a0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000ce2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ce2d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000ce2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce2e0: 2020 2020 2020 2020 2020 2020 2020 2028 ( │ │ │ │ +000ce2f0: 7820 202d 2078 2078 202c 2078 2078 2020 x - x x , x x │ │ │ │ +000ce300: 2d20 7820 7820 2c20 7820 7820 202d 2078 - x x , x x - x │ │ │ │ +000ce310: 2078 202c 2078 2078 2020 2d20 7820 7820 x , x x - x x │ │ │ │ 000ce320: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000ce330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce370: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000ce380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce3c0: 7c0a 7c6f 3420 3a20 5269 6e67 4d61 7020 |.|o4 : RingMap │ │ │ │ -000ce3d0: 5151 5b74 202e 2e74 205d 203c 2d2d 202d QQ[t ..t ] <-- - │ │ │ │ -000ce3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce410: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000ce420: 2020 2020 3020 2020 3120 2020 2020 2020 0 1 │ │ │ │ -000ce430: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000ce340: 2034 2020 2020 3320 3520 2020 3320 3420 4 3 5 3 4 │ │ │ │ +000ce350: 2020 2032 2035 2020 2032 2034 2020 2020 2 5 2 4 │ │ │ │ +000ce360: 3120 3520 2020 3120 3420 2020 2030 2035 1 5 1 4 0 5 │ │ │ │ +000ce370: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +000ce380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce3c0: 7c0a 7c20 5151 5b78 202e 2e78 205d 2020 |.| QQ[x ..x ] │ │ │ │ +000ce3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce410: 7c0a 7c20 2020 2020 3020 2020 3520 2020 |.| 0 5 │ │ │ │ +000ce420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ce440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce460: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000ce470: 2020 2020 2020 2020 2020 2020 2020 2028 ( │ │ │ │ -000ce480: 7820 202d 2078 2078 202c 2078 2078 2020 x - x x , x x │ │ │ │ -000ce490: 2d20 7820 7820 2c20 7820 7820 202d 2078 - x x , x x - x │ │ │ │ -000ce4a0: 2078 202c 2078 2078 2020 2d20 7820 7820 x , x x - x x │ │ │ │ +000ce450: 2020 2020 2020 2020 2020 3520 2020 2020 5 │ │ │ │ +000ce460: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +000ce470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce4a0: 2d2d 2d2d 2d2d 2c20 7b74 202c 2020 2020 ------, {t , │ │ │ │ 000ce4b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000ce4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce4d0: 2034 2020 2020 3320 3520 2020 3320 3420 4 3 5 3 4 │ │ │ │ -000ce4e0: 2020 2032 2035 2020 2032 2034 2020 2020 2 5 2 4 │ │ │ │ -000ce4f0: 3120 3520 2020 3120 3420 2020 2030 2035 1 5 1 4 0 5 │ │ │ │ -000ce500: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ -000ce510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce550: 7c0a 7c20 5151 5b78 202e 2e78 205d 2020 |.| QQ[x ..x ] │ │ │ │ -000ce560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce5a0: 7c0a 7c20 2020 2020 3020 2020 3520 2020 |.| 0 5 │ │ │ │ +000ce4d0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000ce4e0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000ce4f0: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +000ce500: 7c0a 7c20 7820 7820 2c20 7820 7820 202d |.| x x , x x - │ │ │ │ +000ce510: 2078 2078 202c 2078 2078 2020 2d20 7820 x x , x x - x │ │ │ │ +000ce520: 7820 2c20 7820 202d 2078 2078 202c 2078 x , x - x x , x │ │ │ │ +000ce530: 2078 2020 2d20 7820 7820 2c20 7820 202d x - x x , x - │ │ │ │ +000ce540: 2078 2078 2029 2020 2020 2020 2020 2020 x x ) │ │ │ │ +000ce550: 7c0a 7c20 2031 2035 2020 2032 2033 2020 |.| 1 5 2 3 │ │ │ │ +000ce560: 2020 3020 3520 2020 3120 3320 2020 2030 0 5 1 3 0 │ │ │ │ +000ce570: 2034 2020 2032 2020 2020 3020 3420 2020 4 2 0 4 │ │ │ │ +000ce580: 3120 3220 2020 2030 2033 2020 2031 2020 1 2 0 3 1 │ │ │ │ +000ce590: 2020 3020 3220 2020 2020 2020 2020 2020 0 2 │ │ │ │ +000ce5a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000ce5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ce5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ce5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce5e0: 2020 2020 2020 2020 2020 3520 2020 2020 5 │ │ │ │ -000ce5f0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ -000ce600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce630: 2d2d 2d2d 2d2d 2c20 7b74 202c 2020 2020 ------, {t , │ │ │ │ -000ce640: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000ce650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce660: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000ce670: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000ce680: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ -000ce690: 7c0a 7c20 7820 7820 2c20 7820 7820 202d |.| x x , x x - │ │ │ │ -000ce6a0: 2078 2078 202c 2078 2078 2020 2d20 7820 x x , x x - x │ │ │ │ -000ce6b0: 7820 2c20 7820 202d 2078 2078 202c 2078 x , x - x x , x │ │ │ │ -000ce6c0: 2078 2020 2d20 7820 7820 2c20 7820 202d x - x x , x - │ │ │ │ -000ce6d0: 2078 2078 2029 2020 2020 2020 2020 2020 x x ) │ │ │ │ -000ce6e0: 7c0a 7c20 2031 2035 2020 2032 2033 2020 |.| 1 5 2 3 │ │ │ │ -000ce6f0: 2020 3020 3520 2020 3120 3320 2020 2030 0 5 1 3 0 │ │ │ │ -000ce700: 2034 2020 2032 2020 2020 3020 3420 2020 4 2 0 4 │ │ │ │ -000ce710: 3120 3220 2020 2030 2033 2020 2031 2020 1 2 0 3 1 │ │ │ │ -000ce720: 2020 3020 3220 2020 2020 2020 2020 2020 0 2 │ │ │ │ -000ce730: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000ce740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce780: 7c0a 7c20 2020 2020 2020 5151 5b78 202e |.| QQ[x . │ │ │ │ -000ce790: 2e78 205d 2020 2020 2020 2020 2020 2020 .x ] │ │ │ │ -000ce7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce7d0: 7c0a 7c20 2020 2020 2020 2020 2020 3020 |.| 0 │ │ │ │ -000ce7e0: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -000ce7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce820: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ -000ce830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 ------------ │ │ │ │ -000ce870: 7c0a 7c20 2020 3220 2020 2020 2020 2020 |.| 2 │ │ │ │ -000ce880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce890: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000ce5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce5f0: 7c0a 7c20 2020 2020 2020 5151 5b78 202e |.| QQ[x . │ │ │ │ +000ce600: 2e78 205d 2020 2020 2020 2020 2020 2020 .x ] │ │ │ │ +000ce610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce640: 7c0a 7c20 2020 2020 2020 2020 2020 3020 |.| 0 │ │ │ │ +000ce650: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +000ce660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce690: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +000ce6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 ------------ │ │ │ │ +000ce6e0: 7c0a 7c20 2020 3220 2020 2020 2020 2020 |.| 2 │ │ │ │ +000ce6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce700: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000ce710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce720: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000ce730: 7c0a 7c2c 2078 2020 2d20 7820 7820 2c20 |.|, x - x x , │ │ │ │ +000ce740: 7820 7820 202d 2078 2078 202c 2078 2078 x x - x x , x x │ │ │ │ +000ce750: 2020 2d20 7820 7820 2c20 7820 202d 2078 - x x , x - x │ │ │ │ +000ce760: 2078 202c 2078 2078 2020 2d20 7820 7820 x , x x - x x │ │ │ │ +000ce770: 2c20 7820 202d 2078 2078 2029 2020 2020 , x - x x ) │ │ │ │ +000ce780: 7c0a 7c20 2020 3320 2020 2031 2035 2020 |.| 3 1 5 │ │ │ │ +000ce790: 2032 2033 2020 2020 3020 3520 2020 3120 2 3 0 5 1 │ │ │ │ +000ce7a0: 3320 2020 2030 2034 2020 2032 2020 2020 3 0 4 2 │ │ │ │ +000ce7b0: 3020 3420 2020 3120 3220 2020 2030 2033 0 4 1 2 0 3 │ │ │ │ +000ce7c0: 2020 2031 2020 2020 3020 3220 2020 2020 1 0 2 │ │ │ │ +000ce7d0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +000ce7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce820: 7c0a 7c20 3420 2020 2020 3320 3220 2020 |.| 4 3 2 │ │ │ │ +000ce830: 3220 3320 2020 2020 3420 2020 3520 2020 2 3 4 5 │ │ │ │ +000ce840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce870: 7c0a 7c74 2074 202c 2074 2074 202c 2074 |.|t t , t t , t │ │ │ │ +000ce880: 2074 202c 2074 2074 202c 2074 207d 2920 t , t t , t }) │ │ │ │ +000ce890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ce8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce8b0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000ce8c0: 7c0a 7c2c 2078 2020 2d20 7820 7820 2c20 |.|, x - x x , │ │ │ │ -000ce8d0: 7820 7820 202d 2078 2078 202c 2078 2078 x x - x x , x x │ │ │ │ -000ce8e0: 2020 2d20 7820 7820 2c20 7820 202d 2078 - x x , x - x │ │ │ │ -000ce8f0: 2078 202c 2078 2078 2020 2d20 7820 7820 x , x x - x x │ │ │ │ -000ce900: 2c20 7820 202d 2078 2078 2029 2020 2020 , x - x x ) │ │ │ │ -000ce910: 7c0a 7c20 2020 3320 2020 2031 2035 2020 |.| 3 1 5 │ │ │ │ -000ce920: 2032 2033 2020 2020 3020 3520 2020 3120 2 3 0 5 1 │ │ │ │ -000ce930: 3320 2020 2030 2034 2020 2032 2020 2020 3 0 4 2 │ │ │ │ -000ce940: 3020 3420 2020 3120 3220 2020 2030 2033 0 4 1 2 0 3 │ │ │ │ -000ce950: 2020 2031 2020 2020 3020 3220 2020 2020 1 0 2 │ │ │ │ -000ce960: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ -000ce970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ce9b0: 7c0a 7c20 3420 2020 2020 3320 3220 2020 |.| 4 3 2 │ │ │ │ -000ce9c0: 3220 3320 2020 2020 3420 2020 3520 2020 2 3 4 5 │ │ │ │ -000ce9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ce9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cea00: 7c0a 7c74 2074 202c 2074 2074 202c 2074 |.|t t , t t , t │ │ │ │ -000cea10: 2074 202c 2074 2074 202c 2074 207d 2920 t , t t , t }) │ │ │ │ -000cea20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cea50: 7c0a 7c20 3020 3120 2020 3020 3120 2020 |.| 0 1 0 1 │ │ │ │ -000cea60: 3020 3120 2020 3020 3120 2020 3120 2020 0 1 0 1 1 │ │ │ │ -000cea70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cea90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ceaa0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -000ceab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ceac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cead0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ceae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000ceaf0: 2b0a 0a49 6620 7468 6520 696e 7075 7420 +..If the input │ │ │ │ -000ceb00: 6973 2061 2070 6169 7220 636f 6e73 6973 is a pair consis │ │ │ │ -000ceb10: 7469 6e67 206f 6620 6120 686f 6d6f 6765 ting of a homoge │ │ │ │ -000ceb20: 6e65 6f75 7320 6964 6561 6c20 2449 2420 neous ideal $I$ │ │ │ │ -000ceb30: 616e 6420 616e 2069 6e74 6567 6572 0a24 and an integer.$ │ │ │ │ -000ceb40: 7624 2c20 7468 656e 2074 6865 206f 7574 v$, then the out │ │ │ │ -000ceb50: 7075 7420 7769 6c6c 2062 6520 7468 6520 put will be the │ │ │ │ -000ceb60: 6d61 7020 6465 6669 6e65 6420 6279 2074 map defined by t │ │ │ │ -000ceb70: 6865 206c 696e 6561 7220 7379 7374 656d he linear system │ │ │ │ -000ceb80: 206f 660a 6879 7065 7273 7572 6661 6365 of.hypersurface │ │ │ │ -000ceb90: 7320 6f66 2064 6567 7265 6520 2476 2420 s of degree $v$ │ │ │ │ -000ceba0: 7768 6963 6820 636f 6e74 6169 6e20 7468 which contain th │ │ │ │ -000cebb0: 6520 7072 6f6a 6563 7469 7665 2073 7562 e projective sub │ │ │ │ -000cebc0: 7363 6865 6d65 2064 6566 696e 6564 2062 scheme defined b │ │ │ │ -000cebd0: 790a 2449 242e 0a0a 2b2d 2d2d 2d2d 2d2d y.$I$...+------- │ │ │ │ -000cebe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cebf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cec00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cec10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cec20: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 493d ------+.|i5 : I= │ │ │ │ -000cec30: 6b65 726e 656c 2070 6869 2020 2020 2020 kernel phi │ │ │ │ -000cec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cec60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cec70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000ce8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce8c0: 7c0a 7c20 3020 3120 2020 3020 3120 2020 |.| 0 1 0 1 │ │ │ │ +000ce8d0: 3020 3120 2020 3020 3120 2020 3120 2020 0 1 0 1 1 │ │ │ │ +000ce8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ce910: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +000ce920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ce960: 2b0a 0a49 6620 7468 6520 696e 7075 7420 +..If the input │ │ │ │ +000ce970: 6973 2061 2070 6169 7220 636f 6e73 6973 is a pair consis │ │ │ │ +000ce980: 7469 6e67 206f 6620 6120 686f 6d6f 6765 ting of a homoge │ │ │ │ +000ce990: 6e65 6f75 7320 6964 6561 6c20 2449 2420 neous ideal $I$ │ │ │ │ +000ce9a0: 616e 6420 616e 2069 6e74 6567 6572 0a24 and an integer.$ │ │ │ │ +000ce9b0: 7624 2c20 7468 656e 2074 6865 206f 7574 v$, then the out │ │ │ │ +000ce9c0: 7075 7420 7769 6c6c 2062 6520 7468 6520 put will be the │ │ │ │ +000ce9d0: 6d61 7020 6465 6669 6e65 6420 6279 2074 map defined by t │ │ │ │ +000ce9e0: 6865 206c 696e 6561 7220 7379 7374 656d he linear system │ │ │ │ +000ce9f0: 206f 660a 6879 7065 7273 7572 6661 6365 of.hypersurface │ │ │ │ +000cea00: 7320 6f66 2064 6567 7265 6520 2476 2420 s of degree $v$ │ │ │ │ +000cea10: 7768 6963 6820 636f 6e74 6169 6e20 7468 which contain th │ │ │ │ +000cea20: 6520 7072 6f6a 6563 7469 7665 2073 7562 e projective sub │ │ │ │ +000cea30: 7363 6865 6d65 2064 6566 696e 6564 2062 scheme defined b │ │ │ │ +000cea40: 790a 2449 242e 0a0a 2b2d 2d2d 2d2d 2d2d y.$I$...+------- │ │ │ │ +000cea50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cea60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cea70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cea80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cea90: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 493d ------+.|i5 : I= │ │ │ │ +000ceaa0: 6b65 726e 656c 2070 6869 2020 2020 2020 kernel phi │ │ │ │ +000ceab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ceac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ceae0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000ceaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ceb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ceb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ceb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ceb30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000ceb40: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000ceb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ceb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ceb70: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000ceb80: 2020 2020 2020 7c0a 7c6f 3520 3d20 6964 |.|o5 = id │ │ │ │ +000ceb90: 6561 6c20 2878 2020 2d20 7820 7820 2c20 eal (x - x x , │ │ │ │ +000ceba0: 7820 7820 202d 2078 2078 202c 2078 2078 x x - x x , x x │ │ │ │ +000cebb0: 2020 2d20 7820 7820 2c20 7820 7820 202d - x x , x x - │ │ │ │ +000cebc0: 2078 2078 202c 2078 2020 2d20 7820 7820 x x , x - x x │ │ │ │ +000cebd0: 2c20 7820 7820 7c0a 7c20 2020 2020 2020 , x x |.| │ │ │ │ +000cebe0: 2020 2020 2020 3420 2020 2033 2035 2020 4 3 5 │ │ │ │ +000cebf0: 2033 2034 2020 2020 3220 3520 2020 3220 3 4 2 5 2 │ │ │ │ +000cec00: 3420 2020 2031 2035 2020 2031 2034 2020 4 1 5 1 4 │ │ │ │ +000cec10: 2020 3020 3520 2020 3320 2020 2031 2035 0 5 3 1 5 │ │ │ │ +000cec20: 2020 2032 2033 7c0a 7c20 2020 2020 2d2d 2 3|.| -- │ │ │ │ +000cec30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cec40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cec50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cec60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cec70: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 000cec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cec90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ceca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cec90: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000ceca0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ 000cecb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cecc0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000cecd0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000cece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000ced00: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000ced10: 2020 2020 2020 7c0a 7c6f 3520 3d20 6964 |.|o5 = id │ │ │ │ -000ced20: 6561 6c20 2878 2020 2d20 7820 7820 2c20 eal (x - x x , │ │ │ │ -000ced30: 7820 7820 202d 2078 2078 202c 2078 2078 x x - x x , x x │ │ │ │ -000ced40: 2020 2d20 7820 7820 2c20 7820 7820 202d - x x , x x - │ │ │ │ -000ced50: 2078 2078 202c 2078 2020 2d20 7820 7820 x x , x - x x │ │ │ │ -000ced60: 2c20 7820 7820 7c0a 7c20 2020 2020 2020 , x x |.| │ │ │ │ -000ced70: 2020 2020 2020 3420 2020 2033 2035 2020 4 3 5 │ │ │ │ -000ced80: 2033 2034 2020 2020 3220 3520 2020 3220 3 4 2 5 2 │ │ │ │ -000ced90: 3420 2020 2031 2035 2020 2031 2034 2020 4 1 5 1 4 │ │ │ │ -000ceda0: 2020 3020 3520 2020 3320 2020 2031 2035 0 5 3 1 5 │ │ │ │ -000cedb0: 2020 2032 2033 7c0a 7c20 2020 2020 2d2d 2 3|.| -- │ │ │ │ -000cedc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cedd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cede0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cedf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cee00: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ -000cee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cee20: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000cee30: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000cecc0: 2020 2020 2020 7c0a 7c20 2020 2020 2d20 |.| - │ │ │ │ +000cecd0: 7820 7820 2c20 7820 7820 202d 2078 2078 x x , x x - x x │ │ │ │ +000cece0: 202c 2078 2020 2d20 7820 7820 2c20 7820 , x - x x , x │ │ │ │ +000cecf0: 7820 202d 2078 2078 202c 2078 2020 2d20 x - x x , x - │ │ │ │ +000ced00: 7820 7820 2920 2020 2020 2020 2020 2020 x x ) │ │ │ │ +000ced10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000ced20: 2030 2035 2020 2031 2033 2020 2020 3020 0 5 1 3 0 │ │ │ │ +000ced30: 3420 2020 3220 2020 2030 2034 2020 2031 4 2 0 4 1 │ │ │ │ +000ced40: 2032 2020 2020 3020 3320 2020 3120 2020 2 0 3 1 │ │ │ │ +000ced50: 2030 2032 2020 2020 2020 2020 2020 2020 0 2 │ │ │ │ +000ced60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000ced70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ced80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ced90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ceda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cedb0: 2020 2020 2020 7c0a 7c6f 3520 3a20 4964 |.|o5 : Id │ │ │ │ +000cedc0: 6561 6c20 6f66 2051 515b 7820 2e2e 7820 eal of QQ[x ..x │ │ │ │ +000cedd0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +000cede0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cedf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cee00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000cee10: 2020 2020 2020 2020 2020 2030 2020 2035 0 5 │ │ │ │ +000cee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cee50: 2020 2020 2020 7c0a 7c20 2020 2020 2d20 |.| - │ │ │ │ -000cee60: 7820 7820 2c20 7820 7820 202d 2078 2078 x x , x x - x x │ │ │ │ -000cee70: 202c 2078 2020 2d20 7820 7820 2c20 7820 , x - x x , x │ │ │ │ -000cee80: 7820 202d 2078 2078 202c 2078 2020 2d20 x - x x , x - │ │ │ │ -000cee90: 7820 7820 2920 2020 2020 2020 2020 2020 x x ) │ │ │ │ -000ceea0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000ceeb0: 2030 2035 2020 2031 2033 2020 2020 3020 0 5 1 3 0 │ │ │ │ -000ceec0: 3420 2020 3220 2020 2030 2034 2020 2031 4 2 0 4 1 │ │ │ │ -000ceed0: 2032 2020 2020 3020 3320 2020 3120 2020 2 0 3 1 │ │ │ │ -000ceee0: 2030 2032 2020 2020 2020 2020 2020 2020 0 2 │ │ │ │ +000cee50: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000cee60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cee70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cee80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cee90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000ceea0: 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 746f ------+.|i6 : to │ │ │ │ +000ceeb0: 4d61 7028 492c 3229 2020 2020 2020 2020 Map(I,2) │ │ │ │ +000ceec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ceed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000ceee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ceef0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000cef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cef40: 2020 2020 2020 7c0a 7c6f 3520 3a20 4964 |.|o5 : Id │ │ │ │ -000cef50: 6561 6c20 6f66 2051 515b 7820 2e2e 7820 eal of QQ[x ..x │ │ │ │ -000cef60: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +000cef40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000cef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cef60: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 000cef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cef80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cef90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000cefa0: 2020 2020 2020 2020 2020 2030 2020 2035 0 5 │ │ │ │ -000cefb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cefc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cefd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cefe0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -000ceff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf030: 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 746f ------+.|i6 : to │ │ │ │ -000cf040: 4d61 7028 492c 3229 2020 2020 2020 2020 Map(I,2) │ │ │ │ +000cef90: 2020 2020 2020 7c0a 7c6f 3620 3d20 6d61 |.|o6 = ma │ │ │ │ +000cefa0: 7020 2851 515b 7820 2e2e 7820 5d2c 2051 p (QQ[x ..x ], Q │ │ │ │ +000cefb0: 515b 7920 2e2e 7920 5d2c 207b 7820 202d Q[y ..y ], {x - │ │ │ │ +000cefc0: 2078 2078 202c 2078 2078 2020 2d20 7820 x x , x x - x │ │ │ │ +000cefd0: 7820 2c20 7820 7820 202d 2078 2078 202c x , x x - x x , │ │ │ │ +000cefe0: 2078 2078 2020 7c0a 7c20 2020 2020 2020 x x |.| │ │ │ │ +000ceff0: 2020 2020 2020 2030 2020 2035 2020 2020 0 5 │ │ │ │ +000cf000: 2020 2030 2020 2039 2020 2020 2034 2020 0 9 4 │ │ │ │ +000cf010: 2020 3320 3520 2020 3320 3420 2020 2032 3 5 3 4 2 │ │ │ │ +000cf020: 2035 2020 2032 2034 2020 2020 3120 3520 5 2 4 1 5 │ │ │ │ +000cf030: 2020 3120 3420 7c0a 7c20 2020 2020 2020 1 4 |.| │ │ │ │ +000cf040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cf050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cf060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cf070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf080: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000cf090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf080: 2020 2020 2020 7c0a 7c6f 3620 3a20 5269 |.|o6 : Ri │ │ │ │ +000cf090: 6e67 4d61 7020 5151 5b78 202e 2e78 205d ngMap QQ[x ..x ] │ │ │ │ +000cf0a0: 203c 2d2d 2051 515b 7920 2e2e 7920 5d20 <-- QQ[y ..y ] │ │ │ │ 000cf0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cf0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cf0d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000cf0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf0f0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000cf0e0: 2020 2020 2020 2020 2020 3020 2020 3520 0 5 │ │ │ │ +000cf0f0: 2020 2020 2020 2020 2030 2020 2039 2020 0 9 │ │ │ │ 000cf100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cf110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf120: 2020 2020 2020 7c0a 7c6f 3620 3d20 6d61 |.|o6 = ma │ │ │ │ -000cf130: 7020 2851 515b 7820 2e2e 7820 5d2c 2051 p (QQ[x ..x ], Q │ │ │ │ -000cf140: 515b 7920 2e2e 7920 5d2c 207b 7820 202d Q[y ..y ], {x - │ │ │ │ -000cf150: 2078 2078 202c 2078 2078 2020 2d20 7820 x x , x x - x │ │ │ │ -000cf160: 7820 2c20 7820 7820 202d 2078 2078 202c x , x x - x x , │ │ │ │ -000cf170: 2078 2078 2020 7c0a 7c20 2020 2020 2020 x x |.| │ │ │ │ -000cf180: 2020 2020 2020 2030 2020 2035 2020 2020 0 5 │ │ │ │ -000cf190: 2020 2030 2020 2039 2020 2020 2034 2020 0 9 4 │ │ │ │ -000cf1a0: 2020 3320 3520 2020 3320 3420 2020 2032 3 5 3 4 2 │ │ │ │ -000cf1b0: 2035 2020 2032 2034 2020 2020 3120 3520 5 2 4 1 5 │ │ │ │ -000cf1c0: 2020 3120 3420 7c0a 7c20 2020 2020 2020 1 4 |.| │ │ │ │ -000cf1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf210: 2020 2020 2020 7c0a 7c6f 3620 3a20 5269 |.|o6 : Ri │ │ │ │ -000cf220: 6e67 4d61 7020 5151 5b78 202e 2e78 205d ngMap QQ[x ..x ] │ │ │ │ -000cf230: 203c 2d2d 2051 515b 7920 2e2e 7920 5d20 <-- QQ[y ..y ] │ │ │ │ -000cf240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf260: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000cf270: 2020 2020 2020 2020 2020 3020 2020 3520 0 5 │ │ │ │ -000cf280: 2020 2020 2020 2020 2030 2020 2039 2020 0 9 │ │ │ │ -000cf290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf2b0: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ -000cf2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf300: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ -000cf310: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000cf120: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ +000cf130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf170: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +000cf180: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000cf190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf1a0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000cf1b0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000cf1c0: 2020 2020 2020 7c0a 7c2d 2078 2078 202c |.|- x x , │ │ │ │ +000cf1d0: 2078 2020 2d20 7820 7820 2c20 7820 7820 x - x x , x x │ │ │ │ +000cf1e0: 202d 2078 2078 202c 2078 2078 2020 2d20 - x x , x x - │ │ │ │ +000cf1f0: 7820 7820 2c20 7820 202d 2078 2078 202c x x , x - x x , │ │ │ │ +000cf200: 2078 2078 2020 2d20 7820 7820 2c20 7820 x x - x x , x │ │ │ │ +000cf210: 202d 2020 2020 7c0a 7c20 2020 3020 3520 - |.| 0 5 │ │ │ │ +000cf220: 2020 3320 2020 2031 2035 2020 2032 2033 3 1 5 2 3 │ │ │ │ +000cf230: 2020 2020 3020 3520 2020 3120 3320 2020 0 5 1 3 │ │ │ │ +000cf240: 2030 2034 2020 2032 2020 2020 3020 3420 0 4 2 0 4 │ │ │ │ +000cf250: 2020 3120 3220 2020 2030 2033 2020 2031 1 2 0 3 1 │ │ │ │ +000cf260: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ +000cf270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf2b0: 2d2d 2d2d 2d2d 7c0a 7c78 2078 207d 2920 ------|.|x x }) │ │ │ │ +000cf2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf300: 2020 2020 2020 7c0a 7c20 3020 3220 2020 |.| 0 2 │ │ │ │ +000cf310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cf320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf330: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000cf340: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000cf350: 2020 2020 2020 7c0a 7c2d 2078 2078 202c |.|- x x , │ │ │ │ -000cf360: 2078 2020 2d20 7820 7820 2c20 7820 7820 x - x x , x x │ │ │ │ -000cf370: 202d 2078 2078 202c 2078 2078 2020 2d20 - x x , x x - │ │ │ │ -000cf380: 7820 7820 2c20 7820 202d 2078 2078 202c x x , x - x x , │ │ │ │ -000cf390: 2078 2078 2020 2d20 7820 7820 2c20 7820 x x - x x , x │ │ │ │ -000cf3a0: 202d 2020 2020 7c0a 7c20 2020 3020 3520 - |.| 0 5 │ │ │ │ -000cf3b0: 2020 3320 2020 2031 2035 2020 2032 2033 3 1 5 2 3 │ │ │ │ -000cf3c0: 2020 2020 3020 3520 2020 3120 3320 2020 0 5 1 3 │ │ │ │ -000cf3d0: 2030 2034 2020 2032 2020 2020 3020 3420 0 4 2 0 4 │ │ │ │ -000cf3e0: 2020 3120 3220 2020 2030 2033 2020 2031 1 2 0 3 1 │ │ │ │ -000cf3f0: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ -000cf400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf440: 2d2d 2d2d 2d2d 7c0a 7c78 2078 207d 2920 ------|.|x x }) │ │ │ │ -000cf450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf490: 2020 2020 2020 7c0a 7c20 3020 3220 2020 |.| 0 2 │ │ │ │ -000cf4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf4e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -000cf4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf530: 2d2d 2d2d 2d2d 2b0a 0a54 6869 7320 6973 ------+..This is │ │ │ │ -000cf540: 2069 6465 6e74 6963 616c 2074 6f20 746f identical to to │ │ │ │ -000cf550: 4d61 7028 492c 762c 3129 2c20 7768 696c Map(I,v,1), whil │ │ │ │ -000cf560: 6520 7468 6520 6f75 7470 7574 206f 6620 e the output of │ │ │ │ -000cf570: 746f 4d61 7028 492c 762c 6529 2077 696c toMap(I,v,e) wil │ │ │ │ -000cf580: 6c20 6265 2074 6865 0a6d 6170 2064 6566 l be the.map def │ │ │ │ -000cf590: 696e 6564 2062 7920 7468 6520 6c69 6e65 ined by the line │ │ │ │ -000cf5a0: 6172 2073 7973 7465 6d20 6f66 2068 7970 ar system of hyp │ │ │ │ -000cf5b0: 6572 7375 7266 6163 6573 206f 6620 6465 ersurfaces of de │ │ │ │ -000cf5c0: 6772 6565 2024 7624 2068 6176 696e 6720 gree $v$ having │ │ │ │ -000cf5d0: 706f 696e 7473 0a6f 6620 6d75 6c74 6970 points.of multip │ │ │ │ -000cf5e0: 6c69 6369 7479 2024 6524 2061 6c6f 6e67 licity $e$ along │ │ │ │ -000cf5f0: 2074 6865 2070 726f 6a65 6374 6976 6520 the projective │ │ │ │ -000cf600: 7375 6273 6368 656d 6520 6465 6669 6e65 subscheme define │ │ │ │ -000cf610: 6420 6279 2024 4924 2e0a 0a2b 2d2d 2d2d d by $I$...+---- │ │ │ │ -000cf620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf660: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ -000cf670: 2074 6f4d 6170 2849 2c32 2c31 2920 2020 toMap(I,2,1) │ │ │ │ +000cf330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf350: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000cf360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf3a0: 2d2d 2d2d 2d2d 2b0a 0a54 6869 7320 6973 ------+..This is │ │ │ │ +000cf3b0: 2069 6465 6e74 6963 616c 2074 6f20 746f identical to to │ │ │ │ +000cf3c0: 4d61 7028 492c 762c 3129 2c20 7768 696c Map(I,v,1), whil │ │ │ │ +000cf3d0: 6520 7468 6520 6f75 7470 7574 206f 6620 e the output of │ │ │ │ +000cf3e0: 746f 4d61 7028 492c 762c 6529 2077 696c toMap(I,v,e) wil │ │ │ │ +000cf3f0: 6c20 6265 2074 6865 0a6d 6170 2064 6566 l be the.map def │ │ │ │ +000cf400: 696e 6564 2062 7920 7468 6520 6c69 6e65 ined by the line │ │ │ │ +000cf410: 6172 2073 7973 7465 6d20 6f66 2068 7970 ar system of hyp │ │ │ │ +000cf420: 6572 7375 7266 6163 6573 206f 6620 6465 ersurfaces of de │ │ │ │ +000cf430: 6772 6565 2024 7624 2068 6176 696e 6720 gree $v$ having │ │ │ │ +000cf440: 706f 696e 7473 0a6f 6620 6d75 6c74 6970 points.of multip │ │ │ │ +000cf450: 6c69 6369 7479 2024 6524 2061 6c6f 6e67 licity $e$ along │ │ │ │ +000cf460: 2074 6865 2070 726f 6a65 6374 6976 6520 the projective │ │ │ │ +000cf470: 7375 6273 6368 656d 6520 6465 6669 6e65 subscheme define │ │ │ │ +000cf480: 6420 6279 2024 4924 2e0a 0a2b 2d2d 2d2d d by $I$...+---- │ │ │ │ +000cf490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf4d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ +000cf4e0: 2074 6f4d 6170 2849 2c32 2c31 2920 2020 toMap(I,2,1) │ │ │ │ +000cf4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf520: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000cf530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf570: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000cf580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf5a0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000cf5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf5c0: 2020 2020 2020 2020 207c 0a7c 6f37 203d |.|o7 = │ │ │ │ +000cf5d0: 206d 6170 2028 5151 5b78 202e 2e78 205d map (QQ[x ..x ] │ │ │ │ +000cf5e0: 2c20 5151 5b79 202e 2e79 205d 2c20 7b78 , QQ[y ..y ], {x │ │ │ │ +000cf5f0: 2020 2d20 7820 7820 2c20 7820 7820 202d - x x , x x - │ │ │ │ +000cf600: 2078 2078 202c 2078 2078 2020 2d20 7820 x x , x x - x │ │ │ │ +000cf610: 7820 2c20 7820 7820 207c 0a7c 2020 2020 x , x x |.| │ │ │ │ +000cf620: 2020 2020 2020 2020 2020 3020 2020 3520 0 5 │ │ │ │ +000cf630: 2020 2020 2020 3020 2020 3920 2020 2020 0 9 │ │ │ │ +000cf640: 3420 2020 2033 2035 2020 2033 2034 2020 4 3 5 3 4 │ │ │ │ +000cf650: 2020 3220 3520 2020 3220 3420 2020 2031 2 5 2 4 1 │ │ │ │ +000cf660: 2035 2020 2031 2034 207c 0a7c 2020 2020 5 1 4 |.| │ │ │ │ +000cf670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cf680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cf690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cf6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf6b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000cf6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf6b0: 2020 2020 2020 2020 207c 0a7c 6f37 203a |.|o7 : │ │ │ │ +000cf6c0: 2052 696e 674d 6170 2051 515b 7820 2e2e RingMap QQ[x .. │ │ │ │ +000cf6d0: 7820 5d20 3c2d 2d20 5151 5b79 202e 2e79 x ] <-- QQ[y ..y │ │ │ │ +000cf6e0: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 000cf6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cf700: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000cf710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf730: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000cf710: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +000cf720: 2035 2020 2020 2020 2020 2020 3020 2020 5 0 │ │ │ │ +000cf730: 3920 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ 000cf740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf750: 2020 2020 2020 2020 207c 0a7c 6f37 203d |.|o7 = │ │ │ │ -000cf760: 206d 6170 2028 5151 5b78 202e 2e78 205d map (QQ[x ..x ] │ │ │ │ -000cf770: 2c20 5151 5b79 202e 2e79 205d 2c20 7b78 , QQ[y ..y ], {x │ │ │ │ -000cf780: 2020 2d20 7820 7820 2c20 7820 7820 202d - x x , x x - │ │ │ │ -000cf790: 2078 2078 202c 2078 2078 2020 2d20 7820 x x , x x - x │ │ │ │ -000cf7a0: 7820 2c20 7820 7820 207c 0a7c 2020 2020 x , x x |.| │ │ │ │ -000cf7b0: 2020 2020 2020 2020 2020 3020 2020 3520 0 5 │ │ │ │ -000cf7c0: 2020 2020 2020 3020 2020 3920 2020 2020 0 9 │ │ │ │ -000cf7d0: 3420 2020 2033 2035 2020 2033 2034 2020 4 3 5 3 4 │ │ │ │ -000cf7e0: 2020 3220 3520 2020 3220 3420 2020 2031 2 5 2 4 1 │ │ │ │ -000cf7f0: 2035 2020 2031 2034 207c 0a7c 2020 2020 5 1 4 |.| │ │ │ │ -000cf800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf840: 2020 2020 2020 2020 207c 0a7c 6f37 203a |.|o7 : │ │ │ │ -000cf850: 2052 696e 674d 6170 2051 515b 7820 2e2e RingMap QQ[x .. │ │ │ │ -000cf860: 7820 5d20 3c2d 2d20 5151 5b79 202e 2e79 x ] <-- QQ[y ..y │ │ │ │ -000cf870: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ -000cf880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf890: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000cf8a0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000cf8b0: 2035 2020 2020 2020 2020 2020 3020 2020 5 0 │ │ │ │ -000cf8c0: 3920 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ -000cf8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf8e0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ -000cf8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cf930: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -000cf940: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000cf750: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +000cf760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf7a0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ +000cf7b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000cf7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf7d0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000cf7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf7f0: 2020 3220 2020 2020 207c 0a7c 2d20 7820 2 |.|- x │ │ │ │ +000cf800: 7820 2c20 7820 202d 2078 2078 202c 2078 x , x - x x , x │ │ │ │ +000cf810: 2078 2020 2d20 7820 7820 2c20 7820 7820 x - x x , x x │ │ │ │ +000cf820: 202d 2078 2078 202c 2078 2020 2d20 7820 - x x , x - x │ │ │ │ +000cf830: 7820 2c20 7820 7820 202d 2078 2078 202c x , x x - x x , │ │ │ │ +000cf840: 2078 2020 2d20 2020 207c 0a7c 2020 2030 x - |.| 0 │ │ │ │ +000cf850: 2035 2020 2033 2020 2020 3120 3520 2020 5 3 1 5 │ │ │ │ +000cf860: 3220 3320 2020 2030 2035 2020 2031 2033 2 3 0 5 1 3 │ │ │ │ +000cf870: 2020 2020 3020 3420 2020 3220 2020 2030 0 4 2 0 │ │ │ │ +000cf880: 2034 2020 2031 2032 2020 2020 3020 3320 4 1 2 0 3 │ │ │ │ +000cf890: 2020 3120 2020 2020 207c 0a7c 2d2d 2d2d 1 |.|---- │ │ │ │ +000cf8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf8e0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7820 7820 ---------|.|x x │ │ │ │ +000cf8f0: 7d29 2020 2020 2020 2020 2020 2020 2020 }) │ │ │ │ +000cf900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf930: 2020 2020 2020 2020 207c 0a7c 2030 2032 |.| 0 2 │ │ │ │ +000cf940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cf950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf960: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000cf960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cf970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cf980: 2020 3220 2020 2020 207c 0a7c 2d20 7820 2 |.|- x │ │ │ │ -000cf990: 7820 2c20 7820 202d 2078 2078 202c 2078 x , x - x x , x │ │ │ │ -000cf9a0: 2078 2020 2d20 7820 7820 2c20 7820 7820 x - x x , x x │ │ │ │ -000cf9b0: 202d 2078 2078 202c 2078 2020 2d20 7820 - x x , x - x │ │ │ │ -000cf9c0: 7820 2c20 7820 7820 202d 2078 2078 202c x , x x - x x , │ │ │ │ -000cf9d0: 2078 2020 2d20 2020 207c 0a7c 2020 2030 x - |.| 0 │ │ │ │ -000cf9e0: 2035 2020 2033 2020 2020 3120 3520 2020 5 3 1 5 │ │ │ │ -000cf9f0: 3220 3320 2020 2030 2035 2020 2031 2033 2 3 0 5 1 3 │ │ │ │ -000cfa00: 2020 2020 3020 3420 2020 3220 2020 2030 0 4 2 0 │ │ │ │ -000cfa10: 2034 2020 2031 2032 2020 2020 3020 3320 4 1 2 0 3 │ │ │ │ -000cfa20: 2020 3120 2020 2020 207c 0a7c 2d2d 2d2d 1 |.|---- │ │ │ │ -000cfa30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cfa40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cfa50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cfa60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cfa70: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7820 7820 ---------|.|x x │ │ │ │ -000cfa80: 7d29 2020 2020 2020 2020 2020 2020 2020 }) │ │ │ │ -000cfa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cf980: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000cf990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cf9d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ +000cf9e0: 2074 6f4d 6170 2849 2c32 2c32 2920 2020 toMap(I,2,2) │ │ │ │ +000cf9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfa20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000cfa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfa70: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ +000cfa80: 206d 6170 2028 5151 5b78 202e 2e78 205d map (QQ[x ..x ] │ │ │ │ +000cfa90: 2c20 5151 5b5d 2c20 7b7d 2920 2020 2020 , QQ[], {}) │ │ │ │ 000cfaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfac0: 2020 2020 2020 2020 207c 0a7c 2030 2032 |.| 0 2 │ │ │ │ -000cfad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfac0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000cfad0: 2020 2020 2020 2020 2020 3020 2020 3520 0 5 │ │ │ │ 000cfae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfb10: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -000cfb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cfb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cfb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cfb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cfb60: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ -000cfb70: 2074 6f4d 6170 2849 2c32 2c32 2920 2020 toMap(I,2,2) │ │ │ │ -000cfb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfb10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000cfb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfb60: 2020 2020 2020 2020 207c 0a7c 6f38 203a |.|o8 : │ │ │ │ +000cfb70: 2052 696e 674d 6170 2051 515b 7820 2e2e RingMap QQ[x .. │ │ │ │ +000cfb80: 7820 5d20 3c2d 2d20 5151 5b5d 2020 2020 x ] <-- QQ[] │ │ │ │ 000cfb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfbb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000cfbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfbc0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +000cfbd0: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 000cfbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfc00: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ -000cfc10: 206d 6170 2028 5151 5b78 202e 2e78 205d map (QQ[x ..x ] │ │ │ │ -000cfc20: 2c20 5151 5b5d 2c20 7b7d 2920 2020 2020 , QQ[], {}) │ │ │ │ -000cfc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfc50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000cfc60: 2020 2020 2020 2020 2020 3020 2020 3520 0 5 │ │ │ │ +000cfc00: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000cfc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cfc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cfc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cfc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cfc50: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a ---------+.|i9 : │ │ │ │ +000cfc60: 2074 6f4d 6170 2849 2c33 2c32 2920 2020 toMap(I,3,2) │ │ │ │ 000cfc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfca0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000cfcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfcf0: 2020 2020 2020 2020 207c 0a7c 6f38 203a |.|o8 : │ │ │ │ -000cfd00: 2052 696e 674d 6170 2051 515b 7820 2e2e RingMap QQ[x .. │ │ │ │ -000cfd10: 7820 5d20 3c2d 2d20 5151 5b5d 2020 2020 x ] <-- QQ[] │ │ │ │ -000cfd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfd40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000cfd50: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000cfd60: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -000cfd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfd90: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -000cfda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cfdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cfdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cfdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000cfde0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a ---------+.|i9 : │ │ │ │ -000cfdf0: 2074 6f4d 6170 2849 2c33 2c32 2920 2020 toMap(I,3,2) │ │ │ │ +000cfcf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000cfd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfd20: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000cfd30: 2032 2020 2020 3220 2020 2020 2020 2020 2 2 │ │ │ │ +000cfd40: 2020 2020 2020 2032 207c 0a7c 6f39 203d 2 |.|o9 = │ │ │ │ +000cfd50: 206d 6170 2028 5151 5b78 202e 2e78 205d map (QQ[x ..x ] │ │ │ │ +000cfd60: 2c20 5151 5b79 202e 2e79 205d 2c20 7b78 , QQ[y ..y ], {x │ │ │ │ +000cfd70: 2020 2d20 3278 2078 2078 2020 2b20 7820 - 2x x x + x │ │ │ │ +000cfd80: 7820 202b 2078 2078 2020 2d20 7820 7820 x + x x - x x │ │ │ │ +000cfd90: 7820 2c20 7820 7820 207c 0a7c 2020 2020 x , x x |.| │ │ │ │ +000cfda0: 2020 2020 2020 2020 2020 3020 2020 3520 0 5 │ │ │ │ +000cfdb0: 2020 2020 2020 3020 2020 3320 2020 2020 0 3 │ │ │ │ +000cfdc0: 3320 2020 2020 3220 3320 3420 2020 2031 3 2 3 4 1 │ │ │ │ +000cfdd0: 2034 2020 2020 3220 3520 2020 2031 2033 4 2 5 1 3 │ │ │ │ +000cfde0: 2035 2020 2032 2033 207c 0a7c 2020 2020 5 2 3 |.| │ │ │ │ +000cfdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfe00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfe20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfe30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000cfe40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfe50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfe60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfe30: 2020 2020 2020 2020 207c 0a7c 6f39 203a |.|o9 : │ │ │ │ +000cfe40: 2052 696e 674d 6170 2051 515b 7820 2e2e RingMap QQ[x .. │ │ │ │ +000cfe50: 7820 5d20 3c2d 2d20 5151 5b79 202e 2e79 x ] <-- QQ[y ..y │ │ │ │ +000cfe60: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 000cfe70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cfe80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000cfe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cfea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfe90: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +000cfea0: 2035 2020 2020 2020 2020 2020 3020 2020 5 0 │ │ │ │ 000cfeb0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000cfec0: 2032 2020 2020 3220 2020 2020 2020 2020 2 2 │ │ │ │ -000cfed0: 2020 2020 2020 2032 207c 0a7c 6f39 203d 2 |.|o9 = │ │ │ │ -000cfee0: 206d 6170 2028 5151 5b78 202e 2e78 205d map (QQ[x ..x ] │ │ │ │ -000cfef0: 2c20 5151 5b79 202e 2e79 205d 2c20 7b78 , QQ[y ..y ], {x │ │ │ │ -000cff00: 2020 2d20 3278 2078 2078 2020 2b20 7820 - 2x x x + x │ │ │ │ -000cff10: 7820 202b 2078 2078 2020 2d20 7820 7820 x + x x - x x │ │ │ │ -000cff20: 7820 2c20 7820 7820 207c 0a7c 2020 2020 x , x x |.| │ │ │ │ -000cff30: 2020 2020 2020 2020 2020 3020 2020 3520 0 5 │ │ │ │ -000cff40: 2020 2020 2020 3020 2020 3320 2020 2020 0 3 │ │ │ │ -000cff50: 3320 2020 2020 3220 3320 3420 2020 2031 3 2 3 4 1 │ │ │ │ -000cff60: 2034 2020 2020 3220 3520 2020 2031 2033 4 2 5 1 3 │ │ │ │ -000cff70: 2035 2020 2032 2033 207c 0a7c 2020 2020 5 2 3 |.| │ │ │ │ -000cff80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cff90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cffa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cffb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000cffc0: 2020 2020 2020 2020 207c 0a7c 6f39 203a |.|o9 : │ │ │ │ -000cffd0: 2052 696e 674d 6170 2051 515b 7820 2e2e RingMap QQ[x .. │ │ │ │ -000cffe0: 7820 5d20 3c2d 2d20 5151 5b79 202e 2e79 x ] <-- QQ[y ..y │ │ │ │ -000cfff0: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ -000d0000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000d0010: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000d0020: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000d0030: 2035 2020 2020 2020 2020 2020 3020 2020 5 0 │ │ │ │ -000d0040: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000d0050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000d0060: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ -000d0070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d0080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d0090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d00a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d00b0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2032 ---------|.| 2 │ │ │ │ -000d00c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000d00d0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000d00e0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000d00f0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000d0100: 2020 2020 2020 2020 207c 0a7c 2d20 7820 |.|- x │ │ │ │ -000d0110: 7820 202d 2078 2078 2078 2020 2b20 7820 x - x x x + x │ │ │ │ -000d0120: 7820 202b 2078 2078 2078 2020 2d20 7820 x + x x x - x │ │ │ │ -000d0130: 7820 7820 2c20 7820 7820 202d 2078 2078 x x , x x - x x │ │ │ │ -000d0140: 2020 2d20 7820 7820 7820 202b 2078 2078 - x x x + x x │ │ │ │ -000d0150: 2078 2020 2b20 2020 207c 0a7c 2020 2032 x + |.| 2 │ │ │ │ -000d0160: 2034 2020 2020 3120 3320 3420 2020 2030 4 1 3 4 0 │ │ │ │ -000d0170: 2034 2020 2020 3120 3220 3520 2020 2030 4 1 2 5 0 │ │ │ │ -000d0180: 2033 2035 2020 2032 2033 2020 2020 3120 3 5 2 3 1 │ │ │ │ -000d0190: 3320 2020 2031 2032 2034 2020 2020 3020 3 1 2 4 0 │ │ │ │ -000d01a0: 3320 3420 2020 2020 207c 0a7c 2d2d 2d2d 3 4 |.|---- │ │ │ │ -000d01b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d01c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d01d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d01e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d01f0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2032 2020 ---------|.| 2 │ │ │ │ -000d0200: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ -000d0210: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000d0220: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000d0230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000d0240: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ -000d0250: 202d 2078 2078 2078 202c 2078 2020 2d20 - x x x , x - │ │ │ │ -000d0260: 3278 2078 2078 2020 2b20 7820 7820 202b 2x x x + x x + │ │ │ │ -000d0270: 2078 2078 2020 2d20 7820 7820 7820 7d29 x x - x x x }) │ │ │ │ -000d0280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000d0290: 2020 2020 2020 2020 207c 0a7c 2031 2035 |.| 1 5 │ │ │ │ -000d02a0: 2020 2020 3020 3220 3520 2020 3220 2020 0 2 5 2 │ │ │ │ -000d02b0: 2020 3120 3220 3320 2020 2030 2033 2020 1 2 3 0 3 │ │ │ │ -000d02c0: 2020 3120 3420 2020 2030 2032 2034 2020 1 4 0 2 4 │ │ │ │ -000d02d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000d02e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -000d02f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d0300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d0310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d0320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d0330: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ -000d0340: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -000d0350: 202a 202a 6e6f 7465 2072 6174 696f 6e61 * *note rationa │ │ │ │ -000d0360: 6c4d 6170 284d 6174 7269 7829 3a20 7261 lMap(Matrix): ra │ │ │ │ -000d0370: 7469 6f6e 616c 4d61 702c 202d 2d20 6d61 tionalMap, -- ma │ │ │ │ -000d0380: 6b65 7320 6120 7261 7469 6f6e 616c 206d kes a rational m │ │ │ │ -000d0390: 6170 0a20 202a 202a 6e6f 7465 2072 6174 ap. * *note rat │ │ │ │ -000d03a0: 696f 6e61 6c4d 6170 2849 6465 616c 2c5a ionalMap(Ideal,Z │ │ │ │ -000d03b0: 5a2c 5a5a 293a 2072 6174 696f 6e61 6c4d Z,ZZ): rationalM │ │ │ │ -000d03c0: 6170 5f6c 7049 6465 616c 5f63 6d5a 5a5f ap_lpIdeal_cmZZ_ │ │ │ │ -000d03d0: 636d 5a5a 5f72 702c 202d 2d20 6d61 6b65 cmZZ_rp, -- make │ │ │ │ -000d03e0: 730a 2020 2020 6120 7261 7469 6f6e 616c s. a rational │ │ │ │ -000d03f0: 206d 6170 2066 726f 6d20 616e 2069 6465 map from an ide │ │ │ │ -000d0400: 616c 0a0a 5761 7973 2074 6f20 7573 6520 al..Ways to use │ │ │ │ -000d0410: 746f 4d61 703a 0a3d 3d3d 3d3d 3d3d 3d3d toMap:.========= │ │ │ │ -000d0420: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -000d0430: 746f 4d61 7028 4964 6561 6c29 220a 2020 toMap(Ideal)". │ │ │ │ -000d0440: 2a20 2274 6f4d 6170 2849 6465 616c 2c4c * "toMap(Ideal,L │ │ │ │ -000d0450: 6973 7429 220a 2020 2a20 2274 6f4d 6170 ist)". * "toMap │ │ │ │ -000d0460: 2849 6465 616c 2c5a 5a29 220a 2020 2a20 (Ideal,ZZ)". * │ │ │ │ -000d0470: 2274 6f4d 6170 2849 6465 616c 2c5a 5a2c "toMap(Ideal,ZZ, │ │ │ │ -000d0480: 5a5a 2922 0a20 202a 2022 746f 4d61 7028 ZZ)". * "toMap( │ │ │ │ -000d0490: 4c69 7374 2922 0a20 202a 2022 746f 4d61 List)". * "toMa │ │ │ │ -000d04a0: 7028 4d61 7472 6978 2922 0a20 202a 2022 p(Matrix)". * " │ │ │ │ -000d04b0: 746f 4d61 7028 5269 6e67 4d61 7029 220a toMap(RingMap)". │ │ │ │ -000d04c0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -000d04d0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -000d04e0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -000d04f0: 6374 202a 6e6f 7465 2074 6f4d 6170 3a20 ct *note toMap: │ │ │ │ -000d0500: 746f 4d61 702c 2069 7320 6120 2a6e 6f74 toMap, is a *not │ │ │ │ -000d0510: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ -000d0520: 6e20 7769 7468 206f 7074 696f 6e73 3a0a n with options:. │ │ │ │ -000d0530: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ -000d0540: 7468 6f64 4675 6e63 7469 6f6e 5769 7468 thodFunctionWith │ │ │ │ -000d0550: 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d Options,...----- │ │ │ │ -000d0560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d0570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d0580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d0590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000d05a0: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -000d05b0: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -000d05c0: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -000d05d0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -000d05e0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -000d05f0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -000d0600: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -000d0610: 732f 4372 656d 6f6e 612f 0a64 6f63 756d s/Cremona/.docum │ │ │ │ -000d0620: 656e 7461 7469 6f6e 2e6d 323a 3834 363a entation.m2:846: │ │ │ │ -000d0630: 302e 0a1f 0a54 6167 2054 6162 6c65 3a0a 0....Tag Table:. │ │ │ │ -000d0640: 4e6f 6465 3a20 546f 707f 3234 350a 4e6f Node: Top.245.No │ │ │ │ -000d0650: 6465 3a20 6162 7374 7261 6374 5261 7469 de: abstractRati │ │ │ │ -000d0660: 6f6e 616c 4d61 707f 3731 3734 350a 4e6f onalMap.71745.No │ │ │ │ -000d0670: 6465 3a20 6170 7072 6f78 696d 6174 6549 de: approximateI │ │ │ │ -000d0680: 6e76 6572 7365 4d61 707f 3930 3531 320a nverseMap.90512. │ │ │ │ -000d0690: 4e6f 6465 3a20 426c 6f77 5570 5374 7261 Node: BlowUpStra │ │ │ │ -000d06a0: 7465 6779 7f32 3037 3834 360a 4e6f 6465 tegy.207846.Node │ │ │ │ -000d06b0: 3a20 4365 7274 6966 797f 3230 3931 3433 : Certify.209143 │ │ │ │ -000d06c0: 0a4e 6f64 653a 2043 6865 726e 5363 6877 .Node: ChernSchw │ │ │ │ -000d06d0: 6172 747a 4d61 6350 6865 7273 6f6e 7f32 artzMacPherson.2 │ │ │ │ -000d06e0: 3131 3031 330a 4e6f 6465 3a20 436f 6469 11013.Node: Codi │ │ │ │ -000d06f0: 6d42 7349 6e76 7f32 3230 3637 310a 4e6f mBsInv.220671.No │ │ │ │ -000d0700: 6465 3a20 636f 6566 6669 6369 656e 7452 de: coefficientR │ │ │ │ -000d0710: 696e 675f 6c70 5261 7469 6f6e 616c 4d61 ing_lpRationalMa │ │ │ │ -000d0720: 705f 7270 7f32 3233 3637 310a 4e6f 6465 p_rp.223671.Node │ │ │ │ -000d0730: 3a20 636f 6566 6669 6369 656e 7473 5f6c : coefficients_l │ │ │ │ -000d0740: 7052 6174 696f 6e61 6c4d 6170 5f72 707f pRationalMap_rp. │ │ │ │ -000d0750: 3232 3436 3937 0a4e 6f64 653a 2064 6567 224697.Node: deg │ │ │ │ -000d0760: 7265 655f 6c70 5261 7469 6f6e 616c 4d61 ree_lpRationalMa │ │ │ │ -000d0770: 705f 7270 7f32 3238 3435 320a 4e6f 6465 p_rp.228452.Node │ │ │ │ -000d0780: 3a20 6465 6772 6565 4d61 707f 3232 3934 : degreeMap.2294 │ │ │ │ -000d0790: 3736 0a4e 6f64 653a 2064 6567 7265 654d 76.Node: degreeM │ │ │ │ -000d07a0: 6170 5f6c 7052 6174 696f 6e61 6c4d 6170 ap_lpRationalMap │ │ │ │ -000d07b0: 5f72 707f 3238 3133 3533 0a4e 6f64 653a _rp.281353.Node: │ │ │ │ -000d07c0: 2064 6567 7265 6573 5f6c 7052 6174 696f degrees_lpRatio │ │ │ │ -000d07d0: 6e61 6c4d 6170 5f72 707f 3238 3331 3132 nalMap_rp.283112 │ │ │ │ -000d07e0: 0a4e 6f64 653a 2064 6573 6372 6962 655f .Node: describe_ │ │ │ │ -000d07f0: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ -000d0800: 7f32 3834 3138 370a 4e6f 6465 3a20 446f .284187.Node: Do │ │ │ │ -000d0810: 6d69 6e61 6e74 7f32 3838 3633 340a 4e6f minant.288634.No │ │ │ │ -000d0820: 6465 3a20 656e 7472 6965 735f 6c70 5261 de: entries_lpRa │ │ │ │ -000d0830: 7469 6f6e 616c 4d61 705f 7270 7f32 3839 tionalMap_rp.289 │ │ │ │ -000d0840: 3530 330a 4e6f 6465 3a20 4575 6c65 7243 503.Node: EulerC │ │ │ │ -000d0850: 6861 7261 6374 6572 6973 7469 637f 3239 haracteristic.29 │ │ │ │ -000d0860: 3036 3436 0a4e 6f64 653a 2065 7863 6570 0646.Node: excep │ │ │ │ -000d0870: 7469 6f6e 616c 4c6f 6375 737f 3239 3530 tionalLocus.2950 │ │ │ │ -000d0880: 3531 0a4e 6f64 653a 2066 6c61 7474 656e 51.Node: flatten │ │ │ │ -000d0890: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ -000d08a0: 707f 3239 3930 3437 0a4e 6f64 653a 2066 p.299047.Node: f │ │ │ │ -000d08b0: 6f72 6365 496d 6167 657f 3330 3238 3631 orceImage.302861 │ │ │ │ -000d08c0: 0a4e 6f64 653a 2066 6f72 6365 496e 7665 .Node: forceInve │ │ │ │ -000d08d0: 7273 654d 6170 7f33 3036 3032 330a 4e6f rseMap.306023.No │ │ │ │ -000d08e0: 6465 3a20 6772 6170 687f 3330 3735 3530 de: graph.307550 │ │ │ │ -000d08f0: 0a4e 6f64 653a 2067 7261 7068 5f6c 7052 .Node: graph_lpR │ │ │ │ -000d0900: 696e 674d 6170 5f72 707f 3333 3838 3936 ingMap_rp.338896 │ │ │ │ -000d0910: 0a4e 6f64 653a 2069 6465 616c 5f6c 7052 .Node: ideal_lpR │ │ │ │ -000d0920: 6174 696f 6e61 6c4d 6170 5f72 707f 3334 ationalMap_rp.34 │ │ │ │ -000d0930: 3238 3631 0a4e 6f64 653a 2069 6d61 6765 2861.Node: image │ │ │ │ -000d0940: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f63 _lpRationalMap_c │ │ │ │ -000d0950: 6d53 7472 696e 675f 7270 7f33 3539 3339 mString_rp.35939 │ │ │ │ -000d0960: 370a 4e6f 6465 3a20 696d 6167 655f 6c70 7.Node: image_lp │ │ │ │ -000d0970: 5261 7469 6f6e 616c 4d61 705f 636d 5a5a RationalMap_cmZZ │ │ │ │ -000d0980: 5f72 707f 3336 3130 3234 0a4e 6f64 653a _rp.361024.Node: │ │ │ │ -000d0990: 2069 6e76 6572 7365 5f6c 7052 6174 696f inverse_lpRatio │ │ │ │ -000d09a0: 6e61 6c4d 6170 5f72 707f 3336 3236 3335 nalMap_rp.362635 │ │ │ │ -000d09b0: 0a4e 6f64 653a 2069 6e76 6572 7365 4d61 .Node: inverseMa │ │ │ │ -000d09c0: 707f 3433 3737 3639 0a4e 6f64 653a 2069 p.437769.Node: i │ │ │ │ -000d09d0: 6e76 6572 7365 4d61 705f 6c70 5f70 645f nverseMap_lp_pd_ │ │ │ │ -000d09e0: 7064 5f70 645f 636d 5665 7262 6f73 653d pd_pd_cmVerbose= │ │ │ │ -000d09f0: 3e5f 7064 5f70 645f 7064 5f72 707f 3436 >_pd_pd_pd_rp.46 │ │ │ │ -000d0a00: 3139 3835 0a4e 6f64 653a 2069 7342 6972 1985.Node: isBir │ │ │ │ -000d0a10: 6174 696f 6e61 6c7f 3436 3531 3938 0a4e ational.465198.N │ │ │ │ -000d0a20: 6f64 653a 2069 7344 6f6d 696e 616e 747f ode: isDominant. │ │ │ │ -000d0a30: 3437 3430 3537 0a4e 6f64 653a 2069 7349 474057.Node: isI │ │ │ │ -000d0a40: 6e76 6572 7365 4d61 707f 3438 3337 3836 nverseMap.483786 │ │ │ │ -000d0a50: 0a4e 6f64 653a 2069 7349 6e76 6572 7365 .Node: isInverse │ │ │ │ -000d0a60: 4d61 705f 6c70 5261 7469 6f6e 616c 4d61 Map_lpRationalMa │ │ │ │ -000d0a70: 705f 636d 5261 7469 6f6e 616c 4d61 705f p_cmRationalMap_ │ │ │ │ -000d0a80: 7270 7f34 3835 3138 330a 4e6f 6465 3a20 rp.485183.Node: │ │ │ │ -000d0a90: 6973 4973 6f6d 6f72 7068 6973 6d5f 6c70 isIsomorphism_lp │ │ │ │ -000d0aa0: 5261 7469 6f6e 616c 4d61 705f 7270 7f34 RationalMap_rp.4 │ │ │ │ -000d0ab0: 3836 3939 310a 4e6f 6465 3a20 6973 4d6f 86991.Node: isMo │ │ │ │ -000d0ac0: 7270 6869 736d 7f34 3932 3135 300a 4e6f rphism.492150.No │ │ │ │ -000d0ad0: 6465 3a20 6b65 726e 656c 5f6c 7052 696e de: kernel_lpRin │ │ │ │ -000d0ae0: 674d 6170 5f63 6d5a 5a5f 7270 7f34 3936 gMap_cmZZ_rp.496 │ │ │ │ -000d0af0: 3431 300a 4e6f 6465 3a20 6d61 705f 6c70 410.Node: map_lp │ │ │ │ -000d0b00: 5261 7469 6f6e 616c 4d61 705f 7270 7f35 RationalMap_rp.5 │ │ │ │ -000d0b10: 3037 3532 370a 4e6f 6465 3a20 6d61 7472 07527.Node: matr │ │ │ │ -000d0b20: 6978 5f6c 7052 6174 696f 6e61 6c4d 6170 ix_lpRationalMap │ │ │ │ -000d0b30: 5f72 707f 3531 3139 3835 0a4e 6f64 653a _rp.511985.Node: │ │ │ │ -000d0b40: 204e 756d 4465 6772 6565 737f 3531 3335 NumDegrees.5135 │ │ │ │ -000d0b50: 3138 0a4e 6f64 653a 2070 6172 616d 6574 18.Node: paramet │ │ │ │ -000d0b60: 7269 7a65 7f35 3134 3332 370a 4e6f 6465 rize.514327.Node │ │ │ │ -000d0b70: 3a20 7061 7261 6d65 7472 697a 655f 6c70 : parametrize_lp │ │ │ │ -000d0b80: 4964 6561 6c5f 7270 7f35 3135 3539 310a Ideal_rp.515591. │ │ │ │ -000d0b90: 4e6f 6465 3a20 706f 696e 747f 3534 3737 Node: point.5477 │ │ │ │ -000d0ba0: 3239 0a4e 6f64 653a 2070 6f69 6e74 5f6c 29.Node: point_l │ │ │ │ -000d0bb0: 7051 756f 7469 656e 7452 696e 675f 7270 pQuotientRing_rp │ │ │ │ -000d0bc0: 7f35 3438 3735 360a 4e6f 6465 3a20 7072 .548756.Node: pr │ │ │ │ -000d0bd0: 6f6a 6563 7469 7665 4465 6772 6565 737f ojectiveDegrees. │ │ │ │ -000d0be0: 3535 3331 3433 0a4e 6f64 653a 2070 726f 553143.Node: pro │ │ │ │ -000d0bf0: 6a65 6374 6976 6544 6567 7265 6573 5f6c jectiveDegrees_l │ │ │ │ -000d0c00: 7052 6174 696f 6e61 6c4d 6170 5f72 707f pRationalMap_rp. │ │ │ │ -000d0c10: 3536 3639 3839 0a4e 6f64 653a 2071 7561 566989.Node: qua │ │ │ │ -000d0c20: 6472 6f51 7561 6472 6963 4372 656d 6f6e droQuadricCremon │ │ │ │ -000d0c30: 6154 7261 6e73 666f 726d 6174 696f 6e7f aTransformation. │ │ │ │ -000d0c40: 3536 3839 3037 0a4e 6f64 653a 2052 6174 568907.Node: Rat │ │ │ │ -000d0c50: 696f 6e61 6c4d 6170 7f35 3736 3635 380a ionalMap.576658. │ │ │ │ -000d0c60: 4e6f 6465 3a20 7261 7469 6f6e 616c 4d61 Node: rationalMa │ │ │ │ -000d0c70: 707f 3538 3631 3637 0a4e 6f64 653a 2052 p.586167.Node: R │ │ │ │ -000d0c80: 6174 696f 6e61 6c4d 6170 2021 7f36 3033 ationalMap !.603 │ │ │ │ -000d0c90: 3232 310a 4e6f 6465 3a20 5261 7469 6f6e 221.Node: Ration │ │ │ │ -000d0ca0: 616c 4d61 7020 5f73 7420 5261 7469 6f6e alMap _st Ration │ │ │ │ -000d0cb0: 616c 4d61 707f 3631 3030 3536 0a4e 6f64 alMap.610056.Nod │ │ │ │ -000d0cc0: 653a 2052 6174 696f 6e61 6c4d 6170 205f e: RationalMap _ │ │ │ │ -000d0cd0: 7374 5f73 7420 5269 6e67 7f36 3137 3737 st_st Ring.61777 │ │ │ │ -000d0ce0: 300a 4e6f 6465 3a20 5261 7469 6f6e 616c 0.Node: Rational │ │ │ │ -000d0cf0: 4d61 7020 3d3d 2052 6174 696f 6e61 6c4d Map == RationalM │ │ │ │ -000d0d00: 6170 7f36 3235 3633 310a 4e6f 6465 3a20 ap.625631.Node: │ │ │ │ -000d0d10: 5261 7469 6f6e 616c 4d61 7020 5e20 5a5a RationalMap ^ ZZ │ │ │ │ -000d0d20: 7f36 3333 3234 390a 4e6f 6465 3a20 5261 .633249.Node: Ra │ │ │ │ -000d0d30: 7469 6f6e 616c 4d61 7020 5e5f 7374 5f73 tionalMap ^_st_s │ │ │ │ -000d0d40: 7420 4964 6561 6c7f 3633 3431 3534 0a4e t Ideal.634154.N │ │ │ │ -000d0d50: 6f64 653a 2052 6174 696f 6e61 6c4d 6170 ode: RationalMap │ │ │ │ -000d0d60: 205f 7573 5f73 747f 3634 3234 3338 0a4e _us_st.642438.N │ │ │ │ -000d0d70: 6f64 653a 2052 6174 696f 6e61 6c4d 6170 ode: RationalMap │ │ │ │ -000d0d80: 207c 2049 6465 616c 7f36 3433 3732 370a | Ideal.643727. │ │ │ │ -000d0d90: 4e6f 6465 3a20 5261 7469 6f6e 616c 4d61 Node: RationalMa │ │ │ │ -000d0da0: 7020 7c7c 2049 6465 616c 7f36 3536 3733 p || Ideal.65673 │ │ │ │ -000d0db0: 310a 4e6f 6465 3a20 7261 7469 6f6e 616c 1.Node: rational │ │ │ │ -000d0dc0: 4d61 705f 6c70 4964 6561 6c5f 636d 5a5a Map_lpIdeal_cmZZ │ │ │ │ -000d0dd0: 5f63 6d5a 5a5f 7270 7f36 3731 3937 300a _cmZZ_rp.671970. │ │ │ │ -000d0de0: 4e6f 6465 3a20 7261 7469 6f6e 616c 4d61 Node: rationalMa │ │ │ │ -000d0df0: 705f 6c70 506f 6c79 6e6f 6d69 616c 5269 p_lpPolynomialRi │ │ │ │ -000d0e00: 6e67 5f63 6d4c 6973 745f 7270 7f36 3832 ng_cmList_rp.682 │ │ │ │ -000d0e10: 3331 300a 4e6f 6465 3a20 7261 7469 6f6e 310.Node: ration │ │ │ │ -000d0e20: 616c 4d61 705f 6c70 5269 6e67 5f63 6d54 alMap_lpRing_cmT │ │ │ │ -000d0e30: 616c 6c79 5f72 707f 3639 3536 3837 0a4e ally_rp.695687.N │ │ │ │ -000d0e40: 6f64 653a 2073 6567 7265 7f37 3136 3636 ode: segre.71666 │ │ │ │ -000d0e50: 330a 4e6f 6465 3a20 5365 6772 6543 6c61 3.Node: SegreCla │ │ │ │ -000d0e60: 7373 7f37 3333 3033 300a 4e6f 6465 3a20 ss.733030.Node: │ │ │ │ -000d0e70: 736f 7572 6365 5f6c 7052 6174 696f 6e61 source_lpRationa │ │ │ │ -000d0e80: 6c4d 6170 5f72 707f 3735 3335 3839 0a4e lMap_rp.753589.N │ │ │ │ -000d0e90: 6f64 653a 2073 7065 6369 616c 4372 656d ode: specialCrem │ │ │ │ -000d0ea0: 6f6e 6154 7261 6e73 666f 726d 6174 696f onaTransformatio │ │ │ │ -000d0eb0: 6e7f 3735 3436 3732 0a4e 6f64 653a 2073 n.754672.Node: s │ │ │ │ -000d0ec0: 7065 6369 616c 4375 6269 6354 7261 6e73 pecialCubicTrans │ │ │ │ -000d0ed0: 666f 726d 6174 696f 6e7f 3736 3739 3534 formation.767954 │ │ │ │ -000d0ee0: 0a4e 6f64 653a 2073 7065 6369 616c 5175 .Node: specialQu │ │ │ │ -000d0ef0: 6164 7261 7469 6354 7261 6e73 666f 726d adraticTransform │ │ │ │ -000d0f00: 6174 696f 6e7f 3831 3034 3733 0a4e 6f64 ation.810473.Nod │ │ │ │ -000d0f10: 653a 2073 7562 7374 6974 7574 655f 6c70 e: substitute_lp │ │ │ │ -000d0f20: 5261 7469 6f6e 616c 4d61 705f 636d 506f RationalMap_cmPo │ │ │ │ -000d0f30: 6c79 6e6f 6d69 616c 5269 6e67 5f63 6d50 lynomialRing_cmP │ │ │ │ -000d0f40: 6f6c 796e 6f6d 6961 6c52 696e 675f 7270 olynomialRing_rp │ │ │ │ -000d0f50: 7f38 3232 3830 330a 4e6f 6465 3a20 7375 .822803.Node: su │ │ │ │ -000d0f60: 7065 725f 6c70 5261 7469 6f6e 616c 4d61 per_lpRationalMa │ │ │ │ -000d0f70: 705f 7270 7f38 3239 3938 370a 4e6f 6465 p_rp.829987.Node │ │ │ │ -000d0f80: 3a20 7461 7267 6574 5f6c 7052 6174 696f : target_lpRatio │ │ │ │ -000d0f90: 6e61 6c4d 6170 5f72 707f 3833 3537 3036 nalMap_rp.835706 │ │ │ │ -000d0fa0: 0a4e 6f64 653a 2074 6f45 7874 6572 6e61 .Node: toExterna │ │ │ │ -000d0fb0: 6c53 7472 696e 675f 6c70 5261 7469 6f6e lString_lpRation │ │ │ │ -000d0fc0: 616c 4d61 705f 7270 7f38 3336 3830 360a alMap_rp.836806. │ │ │ │ -000d0fd0: 4e6f 6465 3a20 746f 4d61 707f 3834 3132 Node: toMap.8412 │ │ │ │ -000d0fe0: 3637 0a1f 0a45 6e64 2054 6167 2054 6162 67...End Tag Tab │ │ │ │ -000d0ff0: 6c65 0a le. │ │ │ │ +000cfec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cfed0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +000cfee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cfef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cff00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cff10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000cff20: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2032 ---------|.| 2 │ │ │ │ +000cff30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000cff40: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000cff50: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000cff60: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000cff70: 2020 2020 2020 2020 207c 0a7c 2d20 7820 |.|- x │ │ │ │ +000cff80: 7820 202d 2078 2078 2078 2020 2b20 7820 x - x x x + x │ │ │ │ +000cff90: 7820 202b 2078 2078 2078 2020 2d20 7820 x + x x x - x │ │ │ │ +000cffa0: 7820 7820 2c20 7820 7820 202d 2078 2078 x x , x x - x x │ │ │ │ +000cffb0: 2020 2d20 7820 7820 7820 202b 2078 2078 - x x x + x x │ │ │ │ +000cffc0: 2078 2020 2b20 2020 207c 0a7c 2020 2032 x + |.| 2 │ │ │ │ +000cffd0: 2034 2020 2020 3120 3320 3420 2020 2030 4 1 3 4 0 │ │ │ │ +000cffe0: 2034 2020 2020 3120 3220 3520 2020 2030 4 1 2 5 0 │ │ │ │ +000cfff0: 2033 2035 2020 2032 2033 2020 2020 3120 3 5 2 3 1 │ │ │ │ +000d0000: 3320 2020 2031 2032 2034 2020 2020 3020 3 1 2 4 0 │ │ │ │ +000d0010: 3320 3420 2020 2020 207c 0a7c 2d2d 2d2d 3 4 |.|---- │ │ │ │ +000d0020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000d0030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000d0040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000d0050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000d0060: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2032 2020 ---------|.| 2 │ │ │ │ +000d0070: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ +000d0080: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000d0090: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000d00a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000d00b0: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ +000d00c0: 202d 2078 2078 2078 202c 2078 2020 2d20 - x x x , x - │ │ │ │ +000d00d0: 3278 2078 2078 2020 2b20 7820 7820 202b 2x x x + x x + │ │ │ │ +000d00e0: 2078 2078 2020 2d20 7820 7820 7820 7d29 x x - x x x }) │ │ │ │ +000d00f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000d0100: 2020 2020 2020 2020 207c 0a7c 2031 2035 |.| 1 5 │ │ │ │ +000d0110: 2020 2020 3020 3220 3520 2020 3220 2020 0 2 5 2 │ │ │ │ +000d0120: 2020 3120 3220 3320 2020 2030 2033 2020 1 2 3 0 3 │ │ │ │ +000d0130: 2020 3120 3420 2020 2030 2032 2034 2020 1 4 0 2 4 │ │ │ │ +000d0140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000d0150: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000d0160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000d0170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000d0180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000d0190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000d01a0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ +000d01b0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +000d01c0: 202a 202a 6e6f 7465 2072 6174 696f 6e61 * *note rationa │ │ │ │ +000d01d0: 6c4d 6170 284d 6174 7269 7829 3a20 7261 lMap(Matrix): ra │ │ │ │ +000d01e0: 7469 6f6e 616c 4d61 702c 202d 2d20 6d61 tionalMap, -- ma │ │ │ │ +000d01f0: 6b65 7320 6120 7261 7469 6f6e 616c 206d kes a rational m │ │ │ │ +000d0200: 6170 0a20 202a 202a 6e6f 7465 2072 6174 ap. * *note rat │ │ │ │ +000d0210: 696f 6e61 6c4d 6170 2849 6465 616c 2c5a ionalMap(Ideal,Z │ │ │ │ +000d0220: 5a2c 5a5a 293a 2072 6174 696f 6e61 6c4d Z,ZZ): rationalM │ │ │ │ +000d0230: 6170 5f6c 7049 6465 616c 5f63 6d5a 5a5f ap_lpIdeal_cmZZ_ │ │ │ │ +000d0240: 636d 5a5a 5f72 702c 202d 2d20 6d61 6b65 cmZZ_rp, -- make │ │ │ │ +000d0250: 730a 2020 2020 6120 7261 7469 6f6e 616c s. a rational │ │ │ │ +000d0260: 206d 6170 2066 726f 6d20 616e 2069 6465 map from an ide │ │ │ │ +000d0270: 616c 0a0a 5761 7973 2074 6f20 7573 6520 al..Ways to use │ │ │ │ +000d0280: 746f 4d61 703a 0a3d 3d3d 3d3d 3d3d 3d3d toMap:.========= │ │ │ │ +000d0290: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ +000d02a0: 746f 4d61 7028 4964 6561 6c29 220a 2020 toMap(Ideal)". │ │ │ │ +000d02b0: 2a20 2274 6f4d 6170 2849 6465 616c 2c4c * "toMap(Ideal,L │ │ │ │ +000d02c0: 6973 7429 220a 2020 2a20 2274 6f4d 6170 ist)". * "toMap │ │ │ │ +000d02d0: 2849 6465 616c 2c5a 5a29 220a 2020 2a20 (Ideal,ZZ)". * │ │ │ │ +000d02e0: 2274 6f4d 6170 2849 6465 616c 2c5a 5a2c "toMap(Ideal,ZZ, │ │ │ │ +000d02f0: 5a5a 2922 0a20 202a 2022 746f 4d61 7028 ZZ)". * "toMap( │ │ │ │ +000d0300: 4c69 7374 2922 0a20 202a 2022 746f 4d61 List)". * "toMa │ │ │ │ +000d0310: 7028 4d61 7472 6978 2922 0a20 202a 2022 p(Matrix)". * " │ │ │ │ +000d0320: 746f 4d61 7028 5269 6e67 4d61 7029 220a toMap(RingMap)". │ │ │ │ +000d0330: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +000d0340: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +000d0350: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +000d0360: 6374 202a 6e6f 7465 2074 6f4d 6170 3a20 ct *note toMap: │ │ │ │ +000d0370: 746f 4d61 702c 2069 7320 6120 2a6e 6f74 toMap, is a *not │ │ │ │ +000d0380: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ +000d0390: 6e20 7769 7468 206f 7074 696f 6e73 3a0a n with options:. │ │ │ │ +000d03a0: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ +000d03b0: 7468 6f64 4675 6e63 7469 6f6e 5769 7468 thodFunctionWith │ │ │ │ +000d03c0: 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d Options,...----- │ │ │ │ +000d03d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000d03e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000d03f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000d0400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000d0410: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +000d0420: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +000d0430: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +000d0440: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +000d0450: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +000d0460: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +000d0470: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +000d0480: 732f 4372 656d 6f6e 612f 0a64 6f63 756d s/Cremona/.docum │ │ │ │ +000d0490: 656e 7461 7469 6f6e 2e6d 323a 3834 363a entation.m2:846: │ │ │ │ +000d04a0: 302e 0a1f 0a54 6167 2054 6162 6c65 3a0a 0....Tag Table:. │ │ │ │ +000d04b0: 4e6f 6465 3a20 546f 707f 3234 350a 4e6f Node: Top.245.No │ │ │ │ +000d04c0: 6465 3a20 6162 7374 7261 6374 5261 7469 de: abstractRati │ │ │ │ +000d04d0: 6f6e 616c 4d61 707f 3731 3734 350a 4e6f onalMap.71745.No │ │ │ │ +000d04e0: 6465 3a20 6170 7072 6f78 696d 6174 6549 de: approximateI │ │ │ │ +000d04f0: 6e76 6572 7365 4d61 707f 3930 3531 320a nverseMap.90512. │ │ │ │ +000d0500: 4e6f 6465 3a20 426c 6f77 5570 5374 7261 Node: BlowUpStra │ │ │ │ +000d0510: 7465 6779 7f32 3037 3834 360a 4e6f 6465 tegy.207846.Node │ │ │ │ +000d0520: 3a20 4365 7274 6966 797f 3230 3931 3433 : Certify.209143 │ │ │ │ +000d0530: 0a4e 6f64 653a 2043 6865 726e 5363 6877 .Node: ChernSchw │ │ │ │ +000d0540: 6172 747a 4d61 6350 6865 7273 6f6e 7f32 artzMacPherson.2 │ │ │ │ +000d0550: 3131 3031 330a 4e6f 6465 3a20 436f 6469 11013.Node: Codi │ │ │ │ +000d0560: 6d42 7349 6e76 7f32 3230 3637 310a 4e6f mBsInv.220671.No │ │ │ │ +000d0570: 6465 3a20 636f 6566 6669 6369 656e 7452 de: coefficientR │ │ │ │ +000d0580: 696e 675f 6c70 5261 7469 6f6e 616c 4d61 ing_lpRationalMa │ │ │ │ +000d0590: 705f 7270 7f32 3233 3637 310a 4e6f 6465 p_rp.223671.Node │ │ │ │ +000d05a0: 3a20 636f 6566 6669 6369 656e 7473 5f6c : coefficients_l │ │ │ │ +000d05b0: 7052 6174 696f 6e61 6c4d 6170 5f72 707f pRationalMap_rp. │ │ │ │ +000d05c0: 3232 3436 3937 0a4e 6f64 653a 2064 6567 224697.Node: deg │ │ │ │ +000d05d0: 7265 655f 6c70 5261 7469 6f6e 616c 4d61 ree_lpRationalMa │ │ │ │ +000d05e0: 705f 7270 7f32 3238 3435 320a 4e6f 6465 p_rp.228452.Node │ │ │ │ +000d05f0: 3a20 6465 6772 6565 4d61 707f 3232 3934 : degreeMap.2294 │ │ │ │ +000d0600: 3736 0a4e 6f64 653a 2064 6567 7265 654d 76.Node: degreeM │ │ │ │ +000d0610: 6170 5f6c 7052 6174 696f 6e61 6c4d 6170 ap_lpRationalMap │ │ │ │ +000d0620: 5f72 707f 3238 3133 3533 0a4e 6f64 653a _rp.281353.Node: │ │ │ │ +000d0630: 2064 6567 7265 6573 5f6c 7052 6174 696f degrees_lpRatio │ │ │ │ +000d0640: 6e61 6c4d 6170 5f72 707f 3238 3331 3132 nalMap_rp.283112 │ │ │ │ +000d0650: 0a4e 6f64 653a 2064 6573 6372 6962 655f .Node: describe_ │ │ │ │ +000d0660: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ +000d0670: 7f32 3834 3138 370a 4e6f 6465 3a20 446f .284187.Node: Do │ │ │ │ +000d0680: 6d69 6e61 6e74 7f32 3838 3633 340a 4e6f minant.288634.No │ │ │ │ +000d0690: 6465 3a20 656e 7472 6965 735f 6c70 5261 de: entries_lpRa │ │ │ │ +000d06a0: 7469 6f6e 616c 4d61 705f 7270 7f32 3839 tionalMap_rp.289 │ │ │ │ +000d06b0: 3530 330a 4e6f 6465 3a20 4575 6c65 7243 503.Node: EulerC │ │ │ │ +000d06c0: 6861 7261 6374 6572 6973 7469 637f 3239 haracteristic.29 │ │ │ │ +000d06d0: 3036 3436 0a4e 6f64 653a 2065 7863 6570 0646.Node: excep │ │ │ │ +000d06e0: 7469 6f6e 616c 4c6f 6375 737f 3239 3530 tionalLocus.2950 │ │ │ │ +000d06f0: 3531 0a4e 6f64 653a 2066 6c61 7474 656e 51.Node: flatten │ │ │ │ +000d0700: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ +000d0710: 707f 3239 3930 3437 0a4e 6f64 653a 2066 p.299047.Node: f │ │ │ │ +000d0720: 6f72 6365 496d 6167 657f 3330 3238 3631 orceImage.302861 │ │ │ │ +000d0730: 0a4e 6f64 653a 2066 6f72 6365 496e 7665 .Node: forceInve │ │ │ │ +000d0740: 7273 654d 6170 7f33 3036 3032 330a 4e6f rseMap.306023.No │ │ │ │ +000d0750: 6465 3a20 6772 6170 687f 3330 3735 3530 de: graph.307550 │ │ │ │ +000d0760: 0a4e 6f64 653a 2067 7261 7068 5f6c 7052 .Node: graph_lpR │ │ │ │ +000d0770: 696e 674d 6170 5f72 707f 3333 3838 3936 ingMap_rp.338896 │ │ │ │ +000d0780: 0a4e 6f64 653a 2069 6465 616c 5f6c 7052 .Node: ideal_lpR │ │ │ │ +000d0790: 6174 696f 6e61 6c4d 6170 5f72 707f 3334 ationalMap_rp.34 │ │ │ │ +000d07a0: 3238 3631 0a4e 6f64 653a 2069 6d61 6765 2861.Node: image │ │ │ │ +000d07b0: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f63 _lpRationalMap_c │ │ │ │ +000d07c0: 6d53 7472 696e 675f 7270 7f33 3539 3339 mString_rp.35939 │ │ │ │ +000d07d0: 370a 4e6f 6465 3a20 696d 6167 655f 6c70 7.Node: image_lp │ │ │ │ +000d07e0: 5261 7469 6f6e 616c 4d61 705f 636d 5a5a RationalMap_cmZZ │ │ │ │ +000d07f0: 5f72 707f 3336 3130 3234 0a4e 6f64 653a _rp.361024.Node: │ │ │ │ +000d0800: 2069 6e76 6572 7365 5f6c 7052 6174 696f inverse_lpRatio │ │ │ │ +000d0810: 6e61 6c4d 6170 5f72 707f 3336 3236 3335 nalMap_rp.362635 │ │ │ │ +000d0820: 0a4e 6f64 653a 2069 6e76 6572 7365 4d61 .Node: inverseMa │ │ │ │ +000d0830: 707f 3433 3737 3639 0a4e 6f64 653a 2069 p.437769.Node: i │ │ │ │ +000d0840: 6e76 6572 7365 4d61 705f 6c70 5f70 645f nverseMap_lp_pd_ │ │ │ │ +000d0850: 7064 5f70 645f 636d 5665 7262 6f73 653d pd_pd_cmVerbose= │ │ │ │ +000d0860: 3e5f 7064 5f70 645f 7064 5f72 707f 3436 >_pd_pd_pd_rp.46 │ │ │ │ +000d0870: 3139 3835 0a4e 6f64 653a 2069 7342 6972 1985.Node: isBir │ │ │ │ +000d0880: 6174 696f 6e61 6c7f 3436 3531 3938 0a4e ational.465198.N │ │ │ │ +000d0890: 6f64 653a 2069 7344 6f6d 696e 616e 747f ode: isDominant. │ │ │ │ +000d08a0: 3437 3430 3537 0a4e 6f64 653a 2069 7349 474057.Node: isI │ │ │ │ +000d08b0: 6e76 6572 7365 4d61 707f 3438 3337 3836 nverseMap.483786 │ │ │ │ +000d08c0: 0a4e 6f64 653a 2069 7349 6e76 6572 7365 .Node: isInverse │ │ │ │ +000d08d0: 4d61 705f 6c70 5261 7469 6f6e 616c 4d61 Map_lpRationalMa │ │ │ │ +000d08e0: 705f 636d 5261 7469 6f6e 616c 4d61 705f p_cmRationalMap_ │ │ │ │ +000d08f0: 7270 7f34 3835 3138 330a 4e6f 6465 3a20 rp.485183.Node: │ │ │ │ +000d0900: 6973 4973 6f6d 6f72 7068 6973 6d5f 6c70 isIsomorphism_lp │ │ │ │ +000d0910: 5261 7469 6f6e 616c 4d61 705f 7270 7f34 RationalMap_rp.4 │ │ │ │ +000d0920: 3836 3939 310a 4e6f 6465 3a20 6973 4d6f 86991.Node: isMo │ │ │ │ +000d0930: 7270 6869 736d 7f34 3932 3135 300a 4e6f rphism.492150.No │ │ │ │ +000d0940: 6465 3a20 6b65 726e 656c 5f6c 7052 696e de: kernel_lpRin │ │ │ │ +000d0950: 674d 6170 5f63 6d5a 5a5f 7270 7f34 3936 gMap_cmZZ_rp.496 │ │ │ │ +000d0960: 3431 300a 4e6f 6465 3a20 6d61 705f 6c70 410.Node: map_lp │ │ │ │ +000d0970: 5261 7469 6f6e 616c 4d61 705f 7270 7f35 RationalMap_rp.5 │ │ │ │ +000d0980: 3037 3532 370a 4e6f 6465 3a20 6d61 7472 07527.Node: matr │ │ │ │ +000d0990: 6978 5f6c 7052 6174 696f 6e61 6c4d 6170 ix_lpRationalMap │ │ │ │ +000d09a0: 5f72 707f 3531 3139 3835 0a4e 6f64 653a _rp.511985.Node: │ │ │ │ +000d09b0: 204e 756d 4465 6772 6565 737f 3531 3335 NumDegrees.5135 │ │ │ │ +000d09c0: 3138 0a4e 6f64 653a 2070 6172 616d 6574 18.Node: paramet │ │ │ │ +000d09d0: 7269 7a65 7f35 3134 3332 370a 4e6f 6465 rize.514327.Node │ │ │ │ +000d09e0: 3a20 7061 7261 6d65 7472 697a 655f 6c70 : parametrize_lp │ │ │ │ +000d09f0: 4964 6561 6c5f 7270 7f35 3135 3539 310a Ideal_rp.515591. │ │ │ │ +000d0a00: 4e6f 6465 3a20 706f 696e 747f 3534 3737 Node: point.5477 │ │ │ │ +000d0a10: 3239 0a4e 6f64 653a 2070 6f69 6e74 5f6c 29.Node: point_l │ │ │ │ +000d0a20: 7051 756f 7469 656e 7452 696e 675f 7270 pQuotientRing_rp │ │ │ │ +000d0a30: 7f35 3438 3735 360a 4e6f 6465 3a20 7072 .548756.Node: pr │ │ │ │ +000d0a40: 6f6a 6563 7469 7665 4465 6772 6565 737f ojectiveDegrees. │ │ │ │ +000d0a50: 3535 3331 3433 0a4e 6f64 653a 2070 726f 553143.Node: pro │ │ │ │ +000d0a60: 6a65 6374 6976 6544 6567 7265 6573 5f6c jectiveDegrees_l │ │ │ │ +000d0a70: 7052 6174 696f 6e61 6c4d 6170 5f72 707f pRationalMap_rp. │ │ │ │ +000d0a80: 3536 3639 3839 0a4e 6f64 653a 2071 7561 566989.Node: qua │ │ │ │ +000d0a90: 6472 6f51 7561 6472 6963 4372 656d 6f6e droQuadricCremon │ │ │ │ +000d0aa0: 6154 7261 6e73 666f 726d 6174 696f 6e7f aTransformation. │ │ │ │ +000d0ab0: 3536 3839 3037 0a4e 6f64 653a 2052 6174 568907.Node: Rat │ │ │ │ +000d0ac0: 696f 6e61 6c4d 6170 7f35 3736 3635 380a ionalMap.576658. │ │ │ │ +000d0ad0: 4e6f 6465 3a20 7261 7469 6f6e 616c 4d61 Node: rationalMa │ │ │ │ +000d0ae0: 707f 3538 3631 3637 0a4e 6f64 653a 2052 p.586167.Node: R │ │ │ │ +000d0af0: 6174 696f 6e61 6c4d 6170 2021 7f36 3033 ationalMap !.603 │ │ │ │ +000d0b00: 3232 310a 4e6f 6465 3a20 5261 7469 6f6e 221.Node: Ration │ │ │ │ +000d0b10: 616c 4d61 7020 5f73 7420 5261 7469 6f6e alMap _st Ration │ │ │ │ +000d0b20: 616c 4d61 707f 3631 3030 3536 0a4e 6f64 alMap.610056.Nod │ │ │ │ +000d0b30: 653a 2052 6174 696f 6e61 6c4d 6170 205f e: RationalMap _ │ │ │ │ +000d0b40: 7374 5f73 7420 5269 6e67 7f36 3137 3737 st_st Ring.61777 │ │ │ │ +000d0b50: 300a 4e6f 6465 3a20 5261 7469 6f6e 616c 0.Node: Rational │ │ │ │ +000d0b60: 4d61 7020 3d3d 2052 6174 696f 6e61 6c4d Map == RationalM │ │ │ │ +000d0b70: 6170 7f36 3235 3633 310a 4e6f 6465 3a20 ap.625631.Node: │ │ │ │ +000d0b80: 5261 7469 6f6e 616c 4d61 7020 5e20 5a5a RationalMap ^ ZZ │ │ │ │ +000d0b90: 7f36 3333 3234 390a 4e6f 6465 3a20 5261 .633249.Node: Ra │ │ │ │ +000d0ba0: 7469 6f6e 616c 4d61 7020 5e5f 7374 5f73 tionalMap ^_st_s │ │ │ │ +000d0bb0: 7420 4964 6561 6c7f 3633 3431 3534 0a4e t Ideal.634154.N │ │ │ │ +000d0bc0: 6f64 653a 2052 6174 696f 6e61 6c4d 6170 ode: RationalMap │ │ │ │ +000d0bd0: 205f 7573 5f73 747f 3634 3234 3338 0a4e _us_st.642438.N │ │ │ │ +000d0be0: 6f64 653a 2052 6174 696f 6e61 6c4d 6170 ode: RationalMap │ │ │ │ +000d0bf0: 207c 2049 6465 616c 7f36 3433 3732 370a | Ideal.643727. │ │ │ │ +000d0c00: 4e6f 6465 3a20 5261 7469 6f6e 616c 4d61 Node: RationalMa │ │ │ │ +000d0c10: 7020 7c7c 2049 6465 616c 7f36 3536 3733 p || Ideal.65673 │ │ │ │ +000d0c20: 310a 4e6f 6465 3a20 7261 7469 6f6e 616c 1.Node: rational │ │ │ │ +000d0c30: 4d61 705f 6c70 4964 6561 6c5f 636d 5a5a Map_lpIdeal_cmZZ │ │ │ │ +000d0c40: 5f63 6d5a 5a5f 7270 7f36 3731 3937 300a _cmZZ_rp.671970. │ │ │ │ +000d0c50: 4e6f 6465 3a20 7261 7469 6f6e 616c 4d61 Node: rationalMa │ │ │ │ +000d0c60: 705f 6c70 506f 6c79 6e6f 6d69 616c 5269 p_lpPolynomialRi │ │ │ │ +000d0c70: 6e67 5f63 6d4c 6973 745f 7270 7f36 3832 ng_cmList_rp.682 │ │ │ │ +000d0c80: 3331 300a 4e6f 6465 3a20 7261 7469 6f6e 310.Node: ration │ │ │ │ +000d0c90: 616c 4d61 705f 6c70 5269 6e67 5f63 6d54 alMap_lpRing_cmT │ │ │ │ +000d0ca0: 616c 6c79 5f72 707f 3639 3536 3837 0a4e ally_rp.695687.N │ │ │ │ +000d0cb0: 6f64 653a 2073 6567 7265 7f37 3136 3636 ode: segre.71666 │ │ │ │ +000d0cc0: 330a 4e6f 6465 3a20 5365 6772 6543 6c61 3.Node: SegreCla │ │ │ │ +000d0cd0: 7373 7f37 3333 3033 300a 4e6f 6465 3a20 ss.733030.Node: │ │ │ │ +000d0ce0: 736f 7572 6365 5f6c 7052 6174 696f 6e61 source_lpRationa │ │ │ │ +000d0cf0: 6c4d 6170 5f72 707f 3735 3335 3839 0a4e lMap_rp.753589.N │ │ │ │ +000d0d00: 6f64 653a 2073 7065 6369 616c 4372 656d ode: specialCrem │ │ │ │ +000d0d10: 6f6e 6154 7261 6e73 666f 726d 6174 696f onaTransformatio │ │ │ │ +000d0d20: 6e7f 3735 3436 3732 0a4e 6f64 653a 2073 n.754672.Node: s │ │ │ │ +000d0d30: 7065 6369 616c 4375 6269 6354 7261 6e73 pecialCubicTrans │ │ │ │ +000d0d40: 666f 726d 6174 696f 6e7f 3736 3739 3534 formation.767954 │ │ │ │ +000d0d50: 0a4e 6f64 653a 2073 7065 6369 616c 5175 .Node: specialQu │ │ │ │ +000d0d60: 6164 7261 7469 6354 7261 6e73 666f 726d adraticTransform │ │ │ │ +000d0d70: 6174 696f 6e7f 3831 3030 3733 0a4e 6f64 ation.810073.Nod │ │ │ │ +000d0d80: 653a 2073 7562 7374 6974 7574 655f 6c70 e: substitute_lp │ │ │ │ +000d0d90: 5261 7469 6f6e 616c 4d61 705f 636d 506f RationalMap_cmPo │ │ │ │ +000d0da0: 6c79 6e6f 6d69 616c 5269 6e67 5f63 6d50 lynomialRing_cmP │ │ │ │ +000d0db0: 6f6c 796e 6f6d 6961 6c52 696e 675f 7270 olynomialRing_rp │ │ │ │ +000d0dc0: 7f38 3232 3430 330a 4e6f 6465 3a20 7375 .822403.Node: su │ │ │ │ +000d0dd0: 7065 725f 6c70 5261 7469 6f6e 616c 4d61 per_lpRationalMa │ │ │ │ +000d0de0: 705f 7270 7f38 3239 3538 370a 4e6f 6465 p_rp.829587.Node │ │ │ │ +000d0df0: 3a20 7461 7267 6574 5f6c 7052 6174 696f : target_lpRatio │ │ │ │ +000d0e00: 6e61 6c4d 6170 5f72 707f 3833 3533 3036 nalMap_rp.835306 │ │ │ │ +000d0e10: 0a4e 6f64 653a 2074 6f45 7874 6572 6e61 .Node: toExterna │ │ │ │ +000d0e20: 6c53 7472 696e 675f 6c70 5261 7469 6f6e lString_lpRation │ │ │ │ +000d0e30: 616c 4d61 705f 7270 7f38 3336 3430 360a alMap_rp.836406. │ │ │ │ +000d0e40: 4e6f 6465 3a20 746f 4d61 707f 3834 3038 Node: toMap.8408 │ │ │ │ +000d0e50: 3637 0a1f 0a45 6e64 2054 6167 2054 6162 67...End Tag Tab │ │ │ │ +000d0e60: 6c65 0a le. │ │ ├── ./usr/share/info/DGAlgebras.info.gz │ │ │ ├── DGAlgebras.info │ │ │ │ @@ -1231,17 +1231,17 @@ │ │ │ │ 00004ce0: 3a20 4842 203d 2048 4820 4220 2020 2020 : HB = HH B │ │ │ │ 00004cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004d20: 2020 2020 2020 2020 2020 7c0a 7c46 696e |.|Fin │ │ │ │ 00004d30: 6469 6e67 2065 6173 7920 7265 6c61 7469 ding easy relati │ │ │ │ 00004d40: 6f6e 7320 2020 2020 2020 2020 2020 3a20 ons : │ │ │ │ -00004d50: 202d 2d20 7573 6564 2030 2e30 3237 3136 -- used 0.02716 │ │ │ │ -00004d60: 3437 7320 2863 7075 293b 2030 2e30 3235 47s (cpu); 0.025 │ │ │ │ -00004d70: 3731 3539 7320 2020 2020 7c0a 7c20 2020 7159s |.| │ │ │ │ +00004d50: 202d 2d20 7573 6564 2030 2e32 3131 3638 -- used 0.21168 │ │ │ │ +00004d60: 3273 2028 6370 7529 3b20 302e 3034 3737 2s (cpu); 0.0477 │ │ │ │ +00004d70: 3338 3673 2020 2020 2020 7c0a 7c20 2020 386s |.| │ │ │ │ 00004d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004dc0: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ 00004dd0: 3d20 4842 2020 2020 2020 2020 2020 2020 = HB │ │ │ │ 00004de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1495,16 +1495,16 @@ │ │ │ │ 00005d60: 6779 416c 6765 6272 6128 432c 4765 6e44 gyAlgebra(C,GenD │ │ │ │ 00005d70: 6567 7265 654c 696d 6974 3d3e 342c 5265 egreeLimit=>4,Re │ │ │ │ 00005d80: 6c44 6567 7265 654c 696d 6974 3d3e 3429 lDegreeLimit=>4) │ │ │ │ 00005d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005da0: 207c 0a7c 4669 6e64 696e 6720 6561 7379 |.|Finding easy │ │ │ │ 00005db0: 2072 656c 6174 696f 6e73 2020 2020 2020 relations │ │ │ │ 00005dc0: 2020 2020 203a 2020 2d2d 2075 7365 6420 : -- used │ │ │ │ -00005dd0: 302e 3031 3839 3338 3173 2028 6370 7529 0.0189381s (cpu) │ │ │ │ -00005de0: 3b20 302e 3031 3736 3836 3973 2020 2020 ; 0.0176869s │ │ │ │ +00005dd0: 302e 3035 3133 3239 3873 2028 6370 7529 0.0513298s (cpu) │ │ │ │ +00005de0: 3b20 302e 3032 3331 3438 3473 2020 2020 ; 0.0231484s │ │ │ │ 00005df0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00005e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e40: 207c 0a7c 2020 2020 2020 205a 5a20 2020 |.| ZZ │ │ │ │ 00005e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -2723,17 +2723,17 @@ │ │ │ │ 0000aa20: 3720 3a20 484b 5220 3d20 4848 204b 5220 7 : HKR = HH KR │ │ │ │ 0000aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa60: 2020 2020 2020 2020 2020 2020 7c0a 7c46 |.|F │ │ │ │ 0000aa70: 696e 6469 6e67 2065 6173 7920 7265 6c61 inding easy rela │ │ │ │ 0000aa80: 7469 6f6e 7320 2020 2020 2020 2020 2020 tions │ │ │ │ -0000aa90: 3a20 202d 2d20 7573 6564 2030 2e31 3235 : -- used 0.125 │ │ │ │ -0000aaa0: 3530 3473 2028 6370 7529 3b20 302e 3036 504s (cpu); 0.06 │ │ │ │ -0000aab0: 3535 3230 3373 2020 2020 2020 7c0a 7c20 55203s |.| │ │ │ │ +0000aa90: 3a20 202d 2d20 7573 6564 2030 2e31 3631 : -- used 0.161 │ │ │ │ +0000aaa0: 3830 3373 2028 6370 7529 3b20 302e 3036 803s (cpu); 0.06 │ │ │ │ +0000aab0: 3134 3838 3673 2020 2020 2020 7c0a 7c20 14886s |.| │ │ │ │ 0000aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ab00: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 0000ab10: 3720 3d20 484b 5220 2020 2020 2020 2020 7 = HKR │ │ │ │ 0000ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -2838,17 +2838,17 @@ │ │ │ │ 0000b150: 3130 203a 2048 4b52 2720 3d20 4848 206b 10 : HKR' = HH k │ │ │ │ 0000b160: 6f73 7a75 6c43 6f6d 706c 6578 4447 4120 oszulComplexDGA │ │ │ │ 0000b170: 5227 2020 2020 2020 2020 2020 2020 2020 R' │ │ │ │ 0000b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b190: 2020 2020 2020 2020 2020 2020 7c0a 7c46 |.|F │ │ │ │ 0000b1a0: 696e 6469 6e67 2065 6173 7920 7265 6c61 inding easy rela │ │ │ │ 0000b1b0: 7469 6f6e 7320 2020 2020 2020 2020 2020 tions │ │ │ │ -0000b1c0: 3a20 202d 2d20 7573 6564 2030 2e35 3738 : -- used 0.578 │ │ │ │ -0000b1d0: 3038 3973 2028 6370 7529 3b20 302e 3439 089s (cpu); 0.49 │ │ │ │ -0000b1e0: 3632 3933 7320 2020 2020 2020 7c0a 7c20 6293s |.| │ │ │ │ +0000b1c0: 3a20 202d 2d20 7573 6564 2030 2e36 3430 : -- used 0.640 │ │ │ │ +0000b1d0: 3933 7320 2863 7075 293b 2030 2e36 3237 93s (cpu); 0.627 │ │ │ │ +0000b1e0: 3939 3773 2020 2020 2020 2020 7c0a 7c20 997s |.| │ │ │ │ 0000b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b230: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 0000b240: 3130 203d 2048 4b52 2720 2020 2020 2020 10 = HKR' │ │ │ │ 0000b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4569,16 +4569,16 @@ │ │ │ │ 00011d80: 2048 4820 6720 2020 2020 2020 2020 2020 HH g │ │ │ │ 00011d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011dc0: 2020 7c0a 7c46 696e 6469 6e67 2065 6173 |.|Finding eas │ │ │ │ 00011dd0: 7920 7265 6c61 7469 6f6e 7320 2020 2020 y relations │ │ │ │ 00011de0: 2020 2020 2020 3a20 202d 2d20 7573 6564 : -- used │ │ │ │ -00011df0: 2030 2e30 3134 3438 3537 7320 2863 7075 0.0144857s (cpu │ │ │ │ -00011e00: 293b 2030 2e30 3133 3731 3437 7320 2020 ); 0.0137147s │ │ │ │ +00011df0: 2030 2e30 3533 3233 3934 7320 2863 7075 0.0532394s (cpu │ │ │ │ +00011e00: 293b 2030 2e30 3234 3437 3934 7320 2020 ); 0.0244794s │ │ │ │ 00011e10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011e70: 2020 2020 2020 2020 2020 2020 2020 205a Z │ │ │ │ @@ -6296,16 +6296,16 @@ │ │ │ │ 00018970: 6c6f 6779 416c 6765 6272 6128 4129 2020 logyAlgebra(A) │ │ │ │ 00018980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000189a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000189b0: 0a7c 4669 6e64 696e 6720 6561 7379 2072 .|Finding easy r │ │ │ │ 000189c0: 656c 6174 696f 6e73 2020 2020 2020 2020 elations │ │ │ │ 000189d0: 2020 203a 2020 2d2d 2075 7365 6420 302e : -- used 0. │ │ │ │ -000189e0: 3032 3434 3732 3273 2028 6370 7529 3b20 0244722s (cpu); │ │ │ │ -000189f0: 302e 3032 3038 3431 3973 2020 2020 207c 0.0208419s | │ │ │ │ +000189e0: 3033 3436 3831 3473 2028 6370 7529 3b20 0346814s (cpu); │ │ │ │ +000189f0: 302e 3032 3230 3131 7320 2020 2020 207c 0.022011s | │ │ │ │ 00018a00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00018a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00018a50: 0a7c 6f34 203d 2048 4120 2020 2020 2020 .|o4 = HA │ │ │ │ 00018a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -15306,17 +15306,17 @@ │ │ │ │ 0003bc90: 6937 203a 2048 4867 203d 2048 4820 6720 i7 : HHg = HH g │ │ │ │ 0003bca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bcd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0003bce0: 4669 6e64 696e 6720 6561 7379 2072 656c Finding easy rel │ │ │ │ 0003bcf0: 6174 696f 6e73 2020 2020 2020 2020 2020 ations │ │ │ │ -0003bd00: 203a 2020 2d2d 2075 7365 6420 302e 3031 : -- used 0.01 │ │ │ │ -0003bd10: 3430 3731 7320 2863 7075 293b 2030 2e30 4071s (cpu); 0.0 │ │ │ │ -0003bd20: 3133 3239 3634 7320 2020 2020 207c 0a7c 132964s |.| │ │ │ │ +0003bd00: 203a 2020 2d2d 2075 7365 6420 302e 3032 : -- used 0.02 │ │ │ │ +0003bd10: 3934 3331 3573 2028 6370 7529 3b20 302e 94315s (cpu); 0. │ │ │ │ +0003bd20: 3031 3637 3636 3373 2020 2020 207c 0a7c 0167663s |.| │ │ │ │ 0003bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0003bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd90: 2020 2020 2020 2020 205a 5a20 2020 2020 ZZ │ │ │ │ @@ -15749,17 +15749,17 @@ │ │ │ │ 0003d840: 3a20 4841 203d 2068 6f6d 6f6c 6f67 7941 : HA = homologyA │ │ │ │ 0003d850: 6c67 6562 7261 2841 2920 2020 2020 2020 lgebra(A) │ │ │ │ 0003d860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d880: 2020 2020 2020 2020 2020 7c0a 7c46 696e |.|Fin │ │ │ │ 0003d890: 6469 6e67 2065 6173 7920 7265 6c61 7469 ding easy relati │ │ │ │ 0003d8a0: 6f6e 7320 2020 2020 2020 2020 2020 3a20 ons : │ │ │ │ -0003d8b0: 202d 2d20 7573 6564 2030 2e30 3138 3230 -- used 0.01820 │ │ │ │ -0003d8c0: 3131 7320 2863 7075 293b 2030 2e30 3137 11s (cpu); 0.017 │ │ │ │ -0003d8d0: 3431 3432 7320 2020 2020 7c0a 7c20 2020 4142s |.| │ │ │ │ +0003d8b0: 202d 2d20 7573 6564 2030 2e30 3333 3839 -- used 0.03389 │ │ │ │ +0003d8c0: 3573 2028 6370 7529 3b20 302e 3032 3133 5s (cpu); 0.0213 │ │ │ │ +0003d8d0: 3037 3173 2020 2020 2020 7c0a 7c20 2020 071s |.| │ │ │ │ 0003d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d920: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ 0003d930: 3d20 4841 2020 2020 2020 2020 2020 2020 = HA │ │ │ │ 0003d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -15912,16 +15912,16 @@ │ │ │ │ 0003e270: 6f6c 6f67 7941 6c67 6562 7261 2841 2920 ologyAlgebra(A) │ │ │ │ 0003e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e2b0: 7c0a 7c46 696e 6469 6e67 2065 6173 7920 |.|Finding easy │ │ │ │ 0003e2c0: 7265 6c61 7469 6f6e 7320 2020 2020 2020 relations │ │ │ │ 0003e2d0: 2020 2020 3a20 202d 2d20 7573 6564 2030 : -- used 0 │ │ │ │ -0003e2e0: 2e30 3835 3438 3435 7320 2863 7075 293b .0854845s (cpu); │ │ │ │ -0003e2f0: 2030 2e30 3832 3431 3573 2020 2020 2020 0.082415s │ │ │ │ +0003e2e0: 2e32 3139 3530 3473 2028 6370 7529 3b20 .219504s (cpu); │ │ │ │ +0003e2f0: 302e 3131 3631 3533 7320 2020 2020 2020 0.116153s │ │ │ │ 0003e300: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e350: 7c0a 7c6f 3820 3d20 4841 2020 2020 2020 |.|o8 = HA │ │ │ │ 0003e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -16277,16 +16277,16 @@ │ │ │ │ 0003f940: 6d6f 6c6f 6779 416c 6765 6272 6128 4129 mologyAlgebra(A) │ │ │ │ 0003f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f980: 7c0a 7c46 696e 6469 6e67 2065 6173 7920 |.|Finding easy │ │ │ │ 0003f990: 7265 6c61 7469 6f6e 7320 2020 2020 2020 relations │ │ │ │ 0003f9a0: 2020 2020 3a20 202d 2d20 7573 6564 2030 : -- used 0 │ │ │ │ -0003f9b0: 2e30 3533 3136 3473 2028 6370 7529 3b20 .053164s (cpu); │ │ │ │ -0003f9c0: 302e 3035 3137 3833 3973 2020 2020 2020 0.0517839s │ │ │ │ +0003f9b0: 2e31 3033 3934 3273 2028 6370 7529 3b20 .103942s (cpu); │ │ │ │ +0003f9c0: 302e 3037 3639 3732 3473 2020 2020 2020 0.0769724s │ │ │ │ 0003f9d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003f9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fa20: 7c0a 7c6f 3136 203d 2048 4120 2020 2020 |.|o16 = HA │ │ │ │ 0003fa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -16488,17 +16488,17 @@ │ │ │ │ 00040670: 3231 203a 2048 4220 3d20 686f 6d6f 6c6f 21 : HB = homolo │ │ │ │ 00040680: 6779 416c 6765 6272 6128 422c 4765 6e44 gyAlgebra(B,GenD │ │ │ │ 00040690: 6567 7265 654c 696d 6974 3d3e 372c 5265 egreeLimit=>7,Re │ │ │ │ 000406a0: 6c44 6567 7265 654c 696d 6974 3d3e 3134 lDegreeLimit=>14 │ │ │ │ 000406b0: 2920 2020 2020 2020 2020 2020 7c0a 7c46 ) |.|F │ │ │ │ 000406c0: 696e 6469 6e67 2065 6173 7920 7265 6c61 inding easy rela │ │ │ │ 000406d0: 7469 6f6e 7320 2020 2020 2020 2020 2020 tions │ │ │ │ -000406e0: 3a20 202d 2d20 7573 6564 2030 2e30 3138 : -- used 0.018 │ │ │ │ -000406f0: 3231 3773 2028 6370 7529 3b20 302e 3031 217s (cpu); 0.01 │ │ │ │ -00040700: 3734 3432 3173 2020 2020 2020 7c0a 7c20 74421s |.| │ │ │ │ +000406e0: 3a20 202d 2d20 7573 6564 2030 2e30 3334 : -- used 0.034 │ │ │ │ +000406f0: 3231 3039 7320 2863 7075 293b 2030 2e30 2109s (cpu); 0.0 │ │ │ │ +00040700: 3231 3038 3335 7320 2020 2020 7c0a 7c20 210835s |.| │ │ │ │ 00040710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040750: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 00040760: 3231 203d 2048 4220 2020 2020 2020 2020 21 = HB │ │ │ │ 00040770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -17245,16 +17245,16 @@ │ │ │ │ 000435c0: 203d 2048 4828 4b52 2920 2020 2020 2020 = HH(KR) │ │ │ │ 000435d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000435e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000435f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043600: 2020 2020 2020 207c 0a7c 4669 6e64 696e |.|Findin │ │ │ │ 00043610: 6720 6561 7379 2072 656c 6174 696f 6e73 g easy relations │ │ │ │ 00043620: 2020 2020 2020 2020 2020 203a 2020 2d2d : -- │ │ │ │ -00043630: 2075 7365 6420 302e 3031 3734 3730 3873 used 0.0174708s │ │ │ │ -00043640: 2028 6370 7529 3b20 302e 3031 3633 3932 (cpu); 0.016392 │ │ │ │ +00043630: 2075 7365 6420 302e 3137 3635 3534 7320 used 0.176554s │ │ │ │ +00043640: 2863 7075 293b 2030 2e30 3430 3338 3738 (cpu); 0.0403878 │ │ │ │ 00043650: 7320 2020 2020 207c 0a7c 2020 2020 2020 s |.| │ │ │ │ 00043660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000436a0: 2020 2020 2020 207c 0a7c 6f37 203d 2048 |.|o7 = H │ │ │ │ 000436b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -17611,16 +17611,16 @@ │ │ │ │ 00044ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044cc0: 2b0a 7c69 3620 3a20 484b 5220 3d20 4848 +.|i6 : HKR = HH │ │ │ │ 00044cd0: 284b 5229 2020 2020 2020 2020 2020 2020 (KR) │ │ │ │ 00044ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d00: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00044d10: 2d20 7573 6564 2030 2e32 3137 3733 3473 - used 0.217734s │ │ │ │ -00044d20: 2028 6370 7529 3b20 302e 3135 3636 3835 (cpu); 0.156685 │ │ │ │ +00044d10: 2d20 7573 6564 2030 2e33 3037 3431 3673 - used 0.307416s │ │ │ │ +00044d20: 2028 6370 7529 3b20 302e 3137 3233 3031 (cpu); 0.172301 │ │ │ │ 00044d30: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 00044d40: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 00044d50: 2020 2020 2020 7c0a 7c46 696e 6469 6e67 |.|Finding │ │ │ │ 00044d60: 2065 6173 7920 7265 6c61 7469 6f6e 7320 easy relations │ │ │ │ 00044d70: 2020 2020 2020 2020 2020 3a20 2020 2020 : │ │ │ │ 00044d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -22288,16 +22288,16 @@ │ │ │ │ 000570f0: 6d61 7373 6579 5472 6970 6c65 5072 6f64 masseyTripleProd │ │ │ │ 00057100: 7563 7428 4b52 2c7a 312c 7a32 2c7a 3329 uct(KR,z1,z2,z3) │ │ │ │ 00057110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057130: 7c0a 7c46 696e 6469 6e67 2065 6173 7920 |.|Finding easy │ │ │ │ 00057140: 7265 6c61 7469 6f6e 7320 2020 2020 2020 relations │ │ │ │ 00057150: 2020 2020 3a20 202d 2d20 7573 6564 2030 : -- used 0 │ │ │ │ -00057160: 2e35 3430 3639 3973 2028 6370 7529 3b20 .540699s (cpu); │ │ │ │ -00057170: 302e 3437 3031 3332 7320 2020 2020 2020 0.470132s │ │ │ │ +00057160: 2e37 3132 3032 3973 2028 6370 7529 3b20 .712029s (cpu); │ │ │ │ +00057170: 302e 3538 3532 3138 7320 2020 2020 2020 0.585218s │ │ │ │ 00057180: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00057190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000571e0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ @@ -22791,17 +22791,17 @@ │ │ │ │ 00059060: 7c69 3520 3a20 4820 3d20 4848 284b 5229 |i5 : H = HH(KR) │ │ │ │ 00059070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000590a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000590b0: 7c46 696e 6469 6e67 2065 6173 7920 7265 |Finding easy re │ │ │ │ 000590c0: 6c61 7469 6f6e 7320 2020 2020 2020 2020 lations │ │ │ │ -000590d0: 2020 3a20 202d 2d20 7573 6564 2030 2e32 : -- used 0.2 │ │ │ │ -000590e0: 3438 3030 3873 2028 6370 7529 3b20 302e 48008s (cpu); 0. │ │ │ │ -000590f0: 3234 3336 3373 2020 2020 2020 2020 7c0a 24363s |. │ │ │ │ +000590d0: 2020 3a20 202d 2d20 7573 6564 2030 2e31 : -- used 0.1 │ │ │ │ +000590e0: 3737 3139 7320 2863 7075 293b 2030 2e31 7719s (cpu); 0.1 │ │ │ │ +000590f0: 3633 3631 3273 2020 2020 2020 2020 7c0a 63612s |. │ │ │ │ 00059100: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00059110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059140: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00059150: 7c6f 3520 3d20 4820 2020 2020 2020 2020 |o5 = H │ │ │ │ 00059160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -26223,18 +26223,18 @@ │ │ │ │ 000666e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000666f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066700: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2048 -------+.|i4 : H │ │ │ │ 00066710: 4220 3d20 746f 7241 6c67 6562 7261 2852 B = torAlgebra(R │ │ │ │ 00066720: 2c53 2c47 656e 4465 6772 6565 4c69 6d69 ,S,GenDegreeLimi │ │ │ │ 00066730: 743d 3e34 2c52 656c 4465 6772 6565 4c69 t=>4,RelDegreeLi │ │ │ │ 00066740: 6d69 743d 3e38 2920 2020 2020 2020 2020 mit=>8) │ │ │ │ -00066750: 7c0a 7c20 2d2d 2075 7365 6420 302e 3437 |.| -- used 0.47 │ │ │ │ -00066760: 3232 3773 2028 6370 7529 3b20 302e 3430 227s (cpu); 0.40 │ │ │ │ -00066770: 3737 3935 7320 2874 6872 6561 6429 3b20 7795s (thread); │ │ │ │ -00066780: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +00066750: 7c0a 7c20 2d2d 2075 7365 6420 302e 3630 |.| -- used 0.60 │ │ │ │ +00066760: 3233 3536 7320 2863 7075 293b 2030 2e35 2356s (cpu); 0.5 │ │ │ │ +00066770: 3033 3638 3873 2028 7468 7265 6164 293b 03688s (thread); │ │ │ │ +00066780: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 00066790: 2020 2020 2020 2020 207c 0a7c 4669 6e64 |.|Find │ │ │ │ 000667a0: 696e 6720 6561 7379 2072 656c 6174 696f ing easy relatio │ │ │ │ 000667b0: 6e73 2020 2020 2020 2020 2020 203a 2020 ns : │ │ │ │ 000667c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000667d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000667e0: 2020 7c0a 7c6f 3420 3d20 4842 2020 2020 |.|o4 = HB │ │ │ │ 000667f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/EdgeIdeals.info.gz │ │ │ ├── EdgeIdeals.info │ │ │ │ @@ -7842,16 +7842,16 @@ │ │ │ │ 0001ea10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ea20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ea60: 2020 7c0a 7c6f 3420 3d20 4879 7065 7247 |.|o4 = HyperG │ │ │ │ 0001ea70: 7261 7068 7b22 6564 6765 7322 203d 3e20 raph{"edges" => │ │ │ │ -0001ea80: 7b7b 632c 2064 7d2c 207b 622c 2063 7d2c {{c, d}, {b, c}, │ │ │ │ -0001ea90: 207b 612c 2065 7d7d 7d20 2020 2020 2020 {a, e}}} │ │ │ │ +0001ea80: 7b7b 622c 2063 7d2c 207b 612c 2065 7d2c {{b, c}, {a, e}, │ │ │ │ +0001ea90: 207b 632c 2064 7d7d 7d20 2020 2020 2020 {c, d}}} │ │ │ │ 0001eaa0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0001eab0: 2020 2020 2020 2022 7269 6e67 2220 3d3e "ring" => │ │ │ │ 0001eac0: 2053 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 0001ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eae0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001eaf0: 2020 2020 2020 2020 2022 7665 7274 6963 "vertic │ │ │ │ 0001eb00: 6573 2220 3d3e 207b 612c 2062 2c20 632c es" => {a, b, c, │ │ │ │ @@ -21405,62 +21405,62 @@ │ │ │ │ 000539c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000539d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000539e0: 2d2d 2d2b 0a7c 6933 203a 2072 616e 646f ---+.|i3 : rando │ │ │ │ 000539f0: 6d48 7970 6572 4772 6170 6828 522c 7b33 mHyperGraph(R,{3 │ │ │ │ 00053a00: 2c32 2c34 7d29 2020 2020 2020 2020 2020 ,2,4}) │ │ │ │ 00053a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053a30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00053a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053a80: 2020 207c 0a7c 6f33 203d 2048 7970 6572 |.|o3 = Hyper │ │ │ │ -00053a90: 4772 6170 687b 2265 6467 6573 2220 3d3e Graph{"edges" => │ │ │ │ -00053aa0: 207b 7b78 202c 2078 202c 2078 207d 2c20 {{x , x , x }, │ │ │ │ -00053ab0: 7b78 202c 2078 207d 2c20 7b78 202c 2078 {x , x }, {x , x │ │ │ │ -00053ac0: 202c 2078 202c 2078 207d 7d7d 2020 2020 , x , x }}} │ │ │ │ +00053a30: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00053a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00053a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00053a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00053a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00053a80: 2d2d 2d2b 0a7c 6934 203a 2072 616e 646f ---+.|i4 : rando │ │ │ │ +00053a90: 6d48 7970 6572 4772 6170 6828 522c 7b33 mHyperGraph(R,{3 │ │ │ │ +00053aa0: 2c32 2c34 7d29 2020 2020 2020 2020 2020 ,2,4}) │ │ │ │ +00053ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053ad0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053af0: 2020 2020 3320 2020 3420 2020 3520 2020 3 4 5 │ │ │ │ -00053b00: 2020 3120 2020 3420 2020 2020 3120 2020 1 4 1 │ │ │ │ -00053b10: 3220 2020 3320 2020 3520 2020 2020 2020 2 3 5 │ │ │ │ -00053b20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00053b30: 2020 2020 2020 2272 696e 6722 203d 3e20 "ring" => │ │ │ │ -00053b40: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -00053b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053b20: 2020 207c 0a7c 6f34 203d 2048 7970 6572 |.|o4 = Hyper │ │ │ │ +00053b30: 4772 6170 687b 2265 6467 6573 2220 3d3e Graph{"edges" => │ │ │ │ +00053b40: 207b 7b78 202c 2078 202c 2078 207d 2c20 {{x , x , x }, │ │ │ │ +00053b50: 7b78 202c 2078 207d 2c20 7b78 202c 2078 {x , x }, {x , x │ │ │ │ +00053b60: 202c 2078 202c 2078 207d 7d7d 2020 2020 , x , x }}} │ │ │ │ 00053b70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00053b80: 2020 2020 2020 2276 6572 7469 6365 7322 "vertices" │ │ │ │ -00053b90: 203d 3e20 7b78 202c 2078 202c 2078 202c => {x , x , x , │ │ │ │ -00053ba0: 2078 202c 2078 207d 2020 2020 2020 2020 x , x } │ │ │ │ -00053bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053b90: 2020 2020 3220 2020 3320 2020 3520 2020 2 3 5 │ │ │ │ +00053ba0: 2020 3320 2020 3420 2020 2020 3120 2020 3 4 1 │ │ │ │ +00053bb0: 3220 2020 3420 2020 3520 2020 2020 2020 2 4 5 │ │ │ │ 00053bc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00053bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053be0: 2020 2020 2020 3120 2020 3220 2020 3320 1 2 3 │ │ │ │ -00053bf0: 2020 3420 2020 3520 2020 2020 2020 2020 4 5 │ │ │ │ +00053bd0: 2020 2020 2020 2272 696e 6722 203d 3e20 "ring" => │ │ │ │ +00053be0: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00053bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053c10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00053c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053c20: 2020 2020 2020 2276 6572 7469 6365 7322 "vertices" │ │ │ │ +00053c30: 203d 3e20 7b78 202c 2078 202c 2078 202c => {x , x , x , │ │ │ │ +00053c40: 2078 202c 2078 207d 2020 2020 2020 2020 x , x } │ │ │ │ 00053c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053c60: 2020 207c 0a7c 6f33 203a 2048 7970 6572 |.|o3 : Hyper │ │ │ │ -00053c70: 4772 6170 6820 2020 2020 2020 2020 2020 Graph │ │ │ │ -00053c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053c60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00053c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053c80: 2020 2020 2020 3120 2020 3220 2020 3320 1 2 3 │ │ │ │ +00053c90: 2020 3420 2020 3520 2020 2020 2020 2020 4 5 │ │ │ │ 00053ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053cb0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00053cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053d00: 2d2d 2d2b 0a7c 6934 203a 2072 616e 646f ---+.|i4 : rando │ │ │ │ -00053d10: 6d48 7970 6572 4772 6170 6828 522c 7b33 mHyperGraph(R,{3 │ │ │ │ -00053d20: 2c32 2c34 7d29 2020 2020 2020 2020 2020 ,2,4}) │ │ │ │ +00053cb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00053cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053d00: 2020 207c 0a7c 6f34 203a 2048 7970 6572 |.|o4 : Hyper │ │ │ │ +00053d10: 4772 6170 6820 2020 2020 2020 2020 2020 Graph │ │ │ │ +00053d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053d50: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00053d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ ├── ./usr/share/info/EigenSolver.info.gz │ │ │ ├── EigenSolver.info │ │ │ │ @@ -171,16 +171,16 @@ │ │ │ │ 00000aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000ac0: 2b0a 7c69 3320 3a20 656c 6170 7365 6454 +.|i3 : elapsedT │ │ │ │ 00000ad0: 696d 6520 736f 6c73 203d 207a 6572 6f44 ime sols = zeroD │ │ │ │ 00000ae0: 696d 536f 6c76 6520 493b 2020 2020 2020 imSolve I; │ │ │ │ 00000af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00000b10: 7c0a 7c20 2d2d 202e 3232 3138 3234 7320 |.| -- .221824s │ │ │ │ -00000b20: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ +00000b10: 7c0a 7c20 2d2d 202e 3235 3038 3773 2065 |.| -- .25087s e │ │ │ │ +00000b20: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 00000b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000b60: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00000b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ ├── ./usr/share/info/Elimination.info.gz │ │ │ ├── Elimination.info │ │ │ │ @@ -336,18 +336,18 @@ │ │ │ │ 000014f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00001520: 6934 203a 2074 696d 6520 656c 696d 696e i4 : time elimin │ │ │ │ 00001530: 6174 6528 782c 6964 6561 6c28 662c 6729 ate(x,ideal(f,g) │ │ │ │ 00001540: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00001550: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -00001560: 7573 6564 2030 2e30 3032 3733 3032 3573 used 0.00273025s │ │ │ │ -00001570: 2028 6370 7529 3b20 302e 3030 3237 3236 (cpu); 0.002726 │ │ │ │ -00001580: 3673 2028 7468 7265 6164 293b 2030 7320 6s (thread); 0s │ │ │ │ -00001590: 2867 6329 207c 0a7c 2020 2020 2020 2020 (gc) |.| │ │ │ │ +00001560: 7573 6564 2030 2e30 3033 3131 3436 3873 used 0.00311468s │ │ │ │ +00001570: 2028 6370 7529 3b20 302e 3030 3331 3130 (cpu); 0.003110 │ │ │ │ +00001580: 3832 7320 2874 6872 6561 6429 3b20 3073 82s (thread); 0s │ │ │ │ +00001590: 2028 6763 297c 0a7c 2020 2020 2020 2020 (gc)|.| │ │ │ │ 000015a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000015b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000015c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000015d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000015e0: 2020 2020 2020 2020 2020 3220 2020 2032 2 2 │ │ │ │ 000015f0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 00001600: 2020 2020 2020 2020 2032 2020 207c 0a7c 2 |.| │ │ │ │ @@ -366,18 +366,18 @@ │ │ │ │ 000016d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000016e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000016f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00001700: 6935 203a 2074 696d 6520 6964 6561 6c20 i5 : time ideal │ │ │ │ 00001710: 7265 7375 6c74 616e 7428 662c 672c 7829 resultant(f,g,x) │ │ │ │ 00001720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001730: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -00001740: 7573 6564 2030 2e30 3031 3635 3130 3773 used 0.00165107s │ │ │ │ -00001750: 2028 6370 7529 3b20 302e 3030 3136 3531 (cpu); 0.001651 │ │ │ │ -00001760: 3136 7320 2874 6872 6561 6429 3b20 3073 16s (thread); 0s │ │ │ │ -00001770: 2028 6763 297c 0a7c 2020 2020 2020 2020 (gc)|.| │ │ │ │ +00001740: 7573 6564 2030 2e30 3031 3733 3632 3773 used 0.00173627s │ │ │ │ +00001750: 2028 6370 7529 3b20 302e 3030 3137 3336 (cpu); 0.001736 │ │ │ │ +00001760: 3273 2028 7468 7265 6164 293b 2030 7320 2s (thread); 0s │ │ │ │ +00001770: 2867 6329 207c 0a7c 2020 2020 2020 2020 (gc) |.| │ │ │ │ 00001780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000017a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000017b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000017c0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ 000017d0: 2032 2020 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ 000017e0: 2020 2020 2020 2020 2020 2032 207c 0a7c 2 |.| │ │ │ │ @@ -620,17 +620,17 @@ │ │ │ │ 000026b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000026c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000026d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000026e0: 2b0a 7c69 3420 3a20 7469 6d65 2065 6c69 +.|i4 : time eli │ │ │ │ 000026f0: 6d69 6e61 7465 2878 2c69 6465 616c 2866 minate(x,ideal(f │ │ │ │ 00002700: 2c67 2929 2020 2020 2020 2020 2020 2020 ,g)) │ │ │ │ 00002710: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00002720: 2d2d 2075 7365 6420 302e 3030 3236 3033 -- used 0.002603 │ │ │ │ -00002730: 3634 7320 2863 7075 293b 2030 2e30 3032 64s (cpu); 0.002 │ │ │ │ -00002740: 3630 3037 3373 2028 7468 7265 6164 293b 60073s (thread); │ │ │ │ +00002720: 2d2d 2075 7365 6420 302e 3030 3332 3130 -- used 0.003210 │ │ │ │ +00002730: 3238 7320 2863 7075 293b 2030 2e30 3033 28s (cpu); 0.003 │ │ │ │ +00002740: 3230 3639 3373 2028 7468 7265 6164 293b 20693s (thread); │ │ │ │ 00002750: 2030 7320 2867 6329 7c0a 7c20 2020 2020 0s (gc)|.| │ │ │ │ 00002760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002790: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000027a0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 000027b0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ @@ -650,18 +650,18 @@ │ │ │ │ 00002890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028c0: 2b0a 7c69 3520 3a20 7469 6d65 2069 6465 +.|i5 : time ide │ │ │ │ 000028d0: 616c 2072 6573 756c 7461 6e74 2866 2c67 al resultant(f,g │ │ │ │ 000028e0: 2c78 2920 2020 2020 2020 2020 2020 2020 ,x) │ │ │ │ 000028f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00002900: 2d2d 2075 7365 6420 302e 3030 3135 3138 -- used 0.001518 │ │ │ │ -00002910: 3731 7320 2863 7075 293b 2030 2e30 3031 71s (cpu); 0.001 │ │ │ │ -00002920: 3531 3937 3373 2028 7468 7265 6164 293b 51973s (thread); │ │ │ │ -00002930: 2030 7320 2867 6329 7c0a 7c20 2020 2020 0s (gc)|.| │ │ │ │ +00002900: 2d2d 2075 7365 6420 302e 3030 3230 3039 -- used 0.002009 │ │ │ │ +00002910: 3773 2028 6370 7529 3b20 302e 3030 3230 7s (cpu); 0.0020 │ │ │ │ +00002920: 3131 3036 7320 2874 6872 6561 6429 3b20 1106s (thread); │ │ │ │ +00002930: 3073 2028 6763 2920 7c0a 7c20 2020 2020 0s (gc) |.| │ │ │ │ 00002940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002970: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00002980: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ 00002990: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 000029a0: 2020 3220 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ @@ -995,17 +995,17 @@ │ │ │ │ 00003e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003e30: 2d2d 2b0a 7c69 3420 3a20 7469 6d65 2065 --+.|i4 : time e │ │ │ │ 00003e40: 6c69 6d69 6e61 7465 2869 6465 616c 2866 liminate(ideal(f │ │ │ │ 00003e50: 2c67 292c 7829 2020 2020 2020 2020 2020 ,g),x) │ │ │ │ 00003e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003e80: 2020 7c0a 7c20 2d2d 2075 7365 6420 312e |.| -- used 1. │ │ │ │ -00003e90: 3538 3832 3273 2028 6370 7529 3b20 312e 58822s (cpu); 1. │ │ │ │ -00003ea0: 3334 3035 3673 2028 7468 7265 6164 293b 34056s (thread); │ │ │ │ -00003eb0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ +00003e90: 3439 3235 3973 2028 6370 7529 3b20 312e 49259s (cpu); 1. │ │ │ │ +00003ea0: 3332 3737 7320 2874 6872 6561 6429 3b20 3277s (thread); │ │ │ │ +00003eb0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 00003ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003ed0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00003ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003f20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ @@ -1275,17 +1275,17 @@ │ │ │ │ 00004fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004fb0: 2d2d 2b0a 7c69 3520 3a20 7469 6d65 2069 --+.|i5 : time i │ │ │ │ 00004fc0: 6465 616c 2072 6573 756c 7461 6e74 2866 deal resultant(f │ │ │ │ 00004fd0: 2c67 2c78 2920 2020 2020 2020 2020 2020 ,g,x) │ │ │ │ 00004fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005000: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -00005010: 3031 3632 3033 7320 2863 7075 293b 2030 016203s (cpu); 0 │ │ │ │ -00005020: 2e30 3136 3230 3637 7320 2874 6872 6561 .0162067s (threa │ │ │ │ -00005030: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +00005010: 3031 3537 3331 3773 2028 6370 7529 3b20 0157317s (cpu); │ │ │ │ +00005020: 302e 3031 3537 3333 3673 2028 7468 7265 0.0157336s (thre │ │ │ │ +00005030: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00005040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005050: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00005060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000050a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ @@ -1917,16 +1917,16 @@ │ │ │ │ 000077c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000077d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ 000077e0: 3a20 7469 6d65 2065 6c69 6d69 6e61 7465 : time eliminate │ │ │ │ 000077f0: 2869 6465 616c 2866 2c67 292c 7829 2020 (ideal(f,g),x) │ │ │ │ 00007800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007820: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00007830: 2075 7365 6420 312e 3633 3431 3473 2028 used 1.63414s ( │ │ │ │ -00007840: 6370 7529 3b20 312e 3339 3738 3173 2028 cpu); 1.39781s ( │ │ │ │ +00007830: 2075 7365 6420 312e 3632 3439 3873 2028 used 1.62498s ( │ │ │ │ +00007840: 6370 7529 3b20 312e 3435 3334 3373 2028 cpu); 1.45343s ( │ │ │ │ 00007850: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 00007860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007870: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00007880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000078a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000078b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -2197,17 +2197,17 @@ │ │ │ │ 00008940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008950: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ 00008960: 3a20 7469 6d65 2069 6465 616c 2072 6573 : time ideal res │ │ │ │ 00008970: 756c 7461 6e74 2866 2c67 2c78 2920 2020 ultant(f,g,x) │ │ │ │ 00008980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000089a0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -000089b0: 2075 7365 6420 302e 3031 3537 3634 3373 used 0.0157643s │ │ │ │ -000089c0: 2028 6370 7529 3b20 302e 3031 3537 3635 (cpu); 0.015765 │ │ │ │ -000089d0: 3873 2028 7468 7265 6164 293b 2030 7320 8s (thread); 0s │ │ │ │ +000089b0: 2075 7365 6420 302e 3031 3635 3232 3773 used 0.0165227s │ │ │ │ +000089c0: 2028 6370 7529 3b20 302e 3031 3635 3235 (cpu); 0.016525 │ │ │ │ +000089d0: 3173 2028 7468 7265 6164 293b 2030 7320 1s (thread); 0s │ │ │ │ 000089e0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 000089f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00008a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008a40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ ├── ./usr/share/info/EnumerationCurves.info.gz │ │ │ ├── EnumerationCurves.info │ │ │ │ @@ -256,17 +256,17 @@ │ │ │ │ 00000ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001000: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 7469 ------+.|i1 : ti │ │ │ │ 00001010: 6d65 2066 6f72 206e 2066 726f 6d20 3220 me for n from 2 │ │ │ │ 00001020: 746f 2031 3020 6c69 7374 206c 696e 6573 to 10 list lines │ │ │ │ 00001030: 4879 7065 7273 7572 6661 6365 286e 2920 Hypersurface(n) │ │ │ │ 00001040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001050: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00001060: 6420 302e 3032 3831 3532 3773 2028 6370 d 0.0281527s (cp │ │ │ │ -00001070: 7529 3b20 302e 3032 3831 3533 3673 2028 u); 0.0281536s ( │ │ │ │ -00001080: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +00001060: 6420 302e 3033 3332 3938 7320 2863 7075 d 0.033298s (cpu │ │ │ │ +00001070: 293b 2030 2e30 3333 3239 3636 7320 2874 ); 0.0332966s (t │ │ │ │ +00001080: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 00001090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000010a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000010b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000010c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000010d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000010e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000010f0: 2020 2020 2020 7c0a 7c6f 3120 3d20 7b31 |.|o1 = {1 │ │ │ │ @@ -649,16 +649,16 @@ │ │ │ │ 00002880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028a0: 2d2d 2b0a 7c69 3720 3a20 7469 6d65 2066 --+.|i7 : time f │ │ │ │ 000028b0: 6f72 2044 2069 6e20 5420 6c69 7374 2072 or D in T list r │ │ │ │ 000028c0: 6174 696f 6e61 6c43 7572 7665 2832 2c44 ationalCurve(2,D │ │ │ │ 000028d0: 2920 2d20 7261 7469 6f6e 616c 4375 7276 ) - rationalCurv │ │ │ │ 000028e0: 6528 312c 4429 2f38 7c0a 7c20 2d2d 2075 e(1,D)/8|.| -- u │ │ │ │ -000028f0: 7365 6420 302e 3331 3938 3034 7320 2863 sed 0.319804s (c │ │ │ │ -00002900: 7075 293b 2030 2e32 3731 3831 3173 2028 pu); 0.271811s ( │ │ │ │ +000028f0: 7365 6420 302e 3336 3630 3234 7320 2863 sed 0.366024s (c │ │ │ │ +00002900: 7075 293b 2030 2e33 3036 3735 3273 2028 pu); 0.306752s ( │ │ │ │ 00002910: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 00002920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00002930: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00002940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002970: 2020 2020 7c0a 7c6f 3720 3d20 7b36 3039 |.|o7 = {609 │ │ │ │ @@ -685,17 +685,17 @@ │ │ │ │ 00002ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00002af0: 3820 3a20 7469 6d65 2072 6174 696f 6e61 8 : time rationa │ │ │ │ 00002b00: 6c43 7572 7665 2833 2920 2020 2020 2020 lCurve(3) │ │ │ │ 00002b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b20: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00002b30: 6564 2030 2e32 3133 3936 3573 2028 6370 ed 0.213965s (cp │ │ │ │ -00002b40: 7529 3b20 302e 3138 3637 3137 7320 2874 u); 0.186717s (t │ │ │ │ -00002b50: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +00002b30: 6564 2030 2e31 3434 3739 3273 2028 6370 ed 0.144792s (cp │ │ │ │ +00002b40: 7529 3b20 302e 3134 3438 7320 2874 6872 u); 0.1448s (thr │ │ │ │ +00002b50: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00002b60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00002b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00002ba0: 2020 2020 2038 3536 3435 3735 3030 3020 8564575000 │ │ │ │ 00002bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -718,16 +718,16 @@ │ │ │ │ 00002cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00002d00: 0a7c 6939 203a 2074 696d 6520 666f 7220 .|i9 : time for │ │ │ │ 00002d10: 4420 696e 2054 206c 6973 7420 7261 7469 D in T list rati │ │ │ │ 00002d20: 6f6e 616c 4375 7276 6528 332c 4429 2020 onalCurve(3,D) │ │ │ │ 00002d30: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00002d40: 2075 7365 6420 352e 3831 3334 3973 2028 used 5.81349s ( │ │ │ │ -00002d50: 6370 7529 3b20 352e 3039 3031 3773 2028 cpu); 5.09017s ( │ │ │ │ +00002d40: 2075 7365 6420 352e 3133 3332 3573 2028 used 5.13325s ( │ │ │ │ +00002d50: 6370 7529 3b20 342e 3438 3739 3873 2028 cpu); 4.48798s ( │ │ │ │ 00002d60: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 00002d70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00002d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002db0: 7c0a 7c20 2020 2020 2038 3536 3435 3735 |.| 8564575 │ │ │ │ 00002dc0: 3030 3020 2034 3232 3639 3038 3136 2020 000 422690816 │ │ │ │ @@ -761,16 +761,16 @@ │ │ │ │ 00002f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002fb0: 2d2d 2d2b 0a7c 6931 3020 3a20 7469 6d65 ---+.|i10 : time │ │ │ │ 00002fc0: 2072 6174 696f 6e61 6c43 7572 7665 2833 rationalCurve(3 │ │ │ │ 00002fd0: 2920 2d20 7261 7469 6f6e 616c 4375 7276 ) - rationalCurv │ │ │ │ 00002fe0: 6528 3129 2f32 3720 2020 207c 0a7c 202d e(1)/27 |.| - │ │ │ │ -00002ff0: 2d20 7573 6564 2030 2e32 3236 3838 3473 - used 0.226884s │ │ │ │ -00003000: 2028 6370 7529 3b20 302e 3137 3330 3639 (cpu); 0.173069 │ │ │ │ +00002ff0: 2d20 7573 6564 2030 2e31 3337 3630 3673 - used 0.137606s │ │ │ │ +00003000: 2028 6370 7529 3b20 302e 3133 3736 3133 (cpu); 0.137613 │ │ │ │ 00003010: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 00003020: 6763 297c 0a7c 2020 2020 2020 2020 2020 gc)|.| │ │ │ │ 00003030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003050: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ 00003060: 3020 3d20 3331 3732 3036 3337 3520 2020 0 = 317206375 │ │ │ │ 00003070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -799,18 +799,18 @@ │ │ │ │ 000031e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000031f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003200: 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 7469 -----+.|i11 : ti │ │ │ │ 00003210: 6d65 2066 6f72 2044 2069 6e20 5420 6c69 me for D in T li │ │ │ │ 00003220: 7374 2072 6174 696f 6e61 6c43 7572 7665 st rationalCurve │ │ │ │ 00003230: 2833 2c44 2920 2d20 7261 7469 6f6e 616c (3,D) - rational │ │ │ │ 00003240: 4375 7276 6528 312c 4429 2f32 377c 0a7c Curve(1,D)/27|.| │ │ │ │ -00003250: 202d 2d20 7573 6564 2035 2e34 3938 3139 -- used 5.49819 │ │ │ │ -00003260: 7320 2863 7075 293b 2034 2e37 3538 3933 s (cpu); 4.75893 │ │ │ │ -00003270: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00003280: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +00003250: 202d 2d20 7573 6564 2035 2e35 3035 3973 -- used 5.5059s │ │ │ │ +00003260: 2028 6370 7529 3b20 342e 3738 3333 3473 (cpu); 4.78334s │ │ │ │ +00003270: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ +00003280: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ 00003290: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000032a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000032b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000032c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000032d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000032e0: 6f31 3120 3d20 7b33 3137 3230 3633 3735 o11 = {317206375 │ │ │ │ 000032f0: 2c20 3135 3635 3531 3638 2c20 3634 3234 , 15655168, 6424 │ │ │ │ @@ -835,17 +835,17 @@ │ │ │ │ 00003420: 0a0a 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ....+----------- │ │ │ │ 00003430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003450: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a --------+.|i12 : │ │ │ │ 00003460: 2074 696d 6520 7261 7469 6f6e 616c 4375 time rationalCu │ │ │ │ 00003470: 7276 6528 3429 2020 2020 2020 2020 2020 rve(4) │ │ │ │ 00003480: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00003490: 7c20 2d2d 2075 7365 6420 312e 3631 3939 | -- used 1.6199 │ │ │ │ -000034a0: 3473 2028 6370 7529 3b20 312e 3432 3330 4s (cpu); 1.4230 │ │ │ │ -000034b0: 3173 2028 7468 7265 6164 293b 2030 7320 1s (thread); 0s │ │ │ │ +00003490: 7c20 2d2d 2075 7365 6420 312e 3531 3536 | -- used 1.5156 │ │ │ │ +000034a0: 3873 2028 6370 7529 3b20 312e 3336 3735 8s (cpu); 1.3675 │ │ │ │ +000034b0: 3373 2028 7468 7265 6164 293b 2030 7320 3s (thread); 0s │ │ │ │ 000034c0: 2867 6329 7c0a 7c20 2020 2020 2020 2020 (gc)|.| │ │ │ │ 000034d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00003500: 2020 2031 3535 3137 3932 3637 3936 3837 1551792679687 │ │ │ │ 00003510: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 00003520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -866,17 +866,17 @@ │ │ │ │ 00003610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00003640: 7c69 3133 203a 2074 696d 6520 7261 7469 |i13 : time rati │ │ │ │ 00003650: 6f6e 616c 4375 7276 6528 342c 7b34 2c32 onalCurve(4,{4,2 │ │ │ │ 00003660: 7d29 2020 2020 2020 2020 2020 2020 2020 }) │ │ │ │ 00003670: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00003680: 372e 3431 3539 7320 2863 7075 293b 2035 7.4159s (cpu); 5 │ │ │ │ -00003690: 2e38 3137 3632 7320 2874 6872 6561 6429 .81762s (thread) │ │ │ │ -000036a0: 3b20 3073 2028 6763 2920 7c0a 7c20 2020 ; 0s (gc) |.| │ │ │ │ +00003680: 372e 3133 3136 3873 2028 6370 7529 3b20 7.13168s (cpu); │ │ │ │ +00003690: 352e 3836 3639 3773 2028 7468 7265 6164 5.86697s (thread │ │ │ │ +000036a0: 293b 2030 7320 2867 6329 7c0a 7c20 2020 ); 0s (gc)|.| │ │ │ │ 000036b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000036c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000036d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000036e0: 7c0a 7c6f 3133 203d 2033 3838 3339 3134 |.|o13 = 3883914 │ │ │ │ 000036f0: 3038 3420 2020 2020 2020 2020 2020 2020 084 │ │ │ │ 00003700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003710: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ @@ -899,16 +899,16 @@ │ │ │ │ 00003820: 0a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ 00003830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003850: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 -------+.|i14 : │ │ │ │ 00003860: 7469 6d65 2072 6174 696f 6e61 6c43 7572 time rationalCur │ │ │ │ 00003870: 7665 2834 2920 2d20 7261 7469 6f6e 616c ve(4) - rational │ │ │ │ 00003880: 4375 7276 6528 3229 2f38 2020 207c 0a7c Curve(2)/8 |.| │ │ │ │ -00003890: 202d 2d20 7573 6564 2031 2e36 3931 3239 -- used 1.69129 │ │ │ │ -000038a0: 7320 2863 7075 293b 2031 2e34 3638 3637 s (cpu); 1.46867 │ │ │ │ +00003890: 202d 2d20 7573 6564 2031 2e37 3337 3038 -- used 1.73708 │ │ │ │ +000038a0: 7320 2863 7075 293b 2031 2e35 3230 3632 s (cpu); 1.52062 │ │ │ │ 000038b0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 000038c0: 6763 297c 0a7c 2020 2020 2020 2020 2020 gc)|.| │ │ │ │ 000038d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000038e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000038f0: 2020 2020 2020 2020 207c 0a7c 6f31 3420 |.|o14 │ │ │ │ 00003900: 3d20 3234 3234 3637 3533 3030 3030 2020 = 242467530000 │ │ │ │ 00003910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -937,16 +937,16 @@ │ │ │ │ 00003a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003aa0: 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 7469 -----+.|i15 : ti │ │ │ │ 00003ab0: 6d65 2072 6174 696f 6e61 6c43 7572 7665 me rationalCurve │ │ │ │ 00003ac0: 2834 2c7b 342c 327d 2920 2d20 7261 7469 (4,{4,2}) - rati │ │ │ │ 00003ad0: 6f6e 616c 4375 7276 6528 322c 7b34 2c32 onalCurve(2,{4,2 │ │ │ │ 00003ae0: 7d29 2f38 7c0a 7c20 2d2d 2075 7365 6420 })/8|.| -- used │ │ │ │ -00003af0: 372e 3439 3630 3873 2028 6370 7529 3b20 7.49608s (cpu); │ │ │ │ -00003b00: 352e 3936 3437 3973 2028 7468 7265 6164 5.96479s (thread │ │ │ │ +00003af0: 362e 3936 3733 3373 2028 6370 7529 3b20 6.96733s (cpu); │ │ │ │ +00003b00: 352e 3636 3437 3373 2028 7468 7265 6164 5.66473s (thread │ │ │ │ 00003b10: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 00003b20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00003b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003b60: 2020 7c0a 7c6f 3135 203d 2033 3838 3339 |.|o15 = 38839 │ │ │ │ 00003b70: 3032 3532 3820 2020 2020 2020 2020 2020 02528 │ │ │ │ @@ -964,16 +964,16 @@ │ │ │ │ 00003c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00003c60: 7c69 3136 203a 2074 696d 6520 7261 7469 |i16 : time rati │ │ │ │ 00003c70: 6f6e 616c 4375 7276 6528 342c 7b33 2c33 onalCurve(4,{3,3 │ │ │ │ 00003c80: 7d29 202d 2072 6174 696f 6e61 6c43 7572 }) - rationalCur │ │ │ │ 00003c90: 7665 2832 2c7b 332c 337d 292f 387c 0a7c ve(2,{3,3})/8|.| │ │ │ │ -00003ca0: 202d 2d20 7573 6564 2038 2e31 3430 3334 -- used 8.14034 │ │ │ │ -00003cb0: 7320 2863 7075 293b 2036 2e32 3331 3431 s (cpu); 6.23141 │ │ │ │ +00003ca0: 202d 2d20 7573 6564 2036 2e39 3638 3132 -- used 6.96812 │ │ │ │ +00003cb0: 7320 2863 7075 293b 2035 2e37 3332 3435 s (cpu); 5.73245 │ │ │ │ 00003cc0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 00003cd0: 6763 2920 2020 2020 2020 2020 7c0a 7c20 gc) |.| │ │ │ │ 00003ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003d10: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ 00003d20: 3620 3d20 3131 3339 3434 3833 3834 2020 6 = 1139448384 │ │ ├── ./usr/share/info/EquivariantGB.info.gz │ │ │ ├── EquivariantGB.info │ │ │ │ @@ -1917,21 +1917,21 @@ │ │ │ │ 000077c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000077d0: 2020 2020 2020 2020 2020 7c0a 7c33 2020 |.|3 │ │ │ │ 000077e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000077f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007820: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007830: 2020 2d2d 2075 7365 6420 2e30 3031 3933 -- used .00193 │ │ │ │ -00007840: 3339 3520 7365 636f 6e64 7320 2020 2020 395 seconds │ │ │ │ +00007830: 2020 2d2d 2075 7365 6420 2e30 3032 3131 -- used .00211 │ │ │ │ +00007840: 3133 2073 6563 6f6e 6473 2020 2020 2020 13 seconds │ │ │ │ 00007850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007870: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007880: 2020 2d2d 2075 7365 6420 2e30 3030 3537 -- used .00057 │ │ │ │ -00007890: 3637 3631 2073 6563 6f6e 6473 2020 2020 6761 seconds │ │ │ │ +00007880: 2020 2d2d 2075 7365 6420 2e30 3030 3539 -- used .00059 │ │ │ │ +00007890: 3633 3138 2073 6563 6f6e 6473 2020 2020 6318 seconds │ │ │ │ 000078a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000078b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000078c0: 2020 2020 2020 2020 2020 7c0a 7c28 392c |.|(9, │ │ │ │ 000078d0: 2039 2920 2020 2020 2020 2020 2020 2020 9) │ │ │ │ 000078e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000078f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1942,21 +1942,21 @@ │ │ │ │ 00007950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007960: 2020 2020 2020 2020 2020 7c0a 7c34 2020 |.|4 │ │ │ │ 00007970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000079a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000079b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000079c0: 2020 2d2d 2075 7365 6420 2e30 3033 3432 -- used .00342 │ │ │ │ -000079d0: 3637 3820 7365 636f 6e64 7320 2020 2020 678 seconds │ │ │ │ +000079c0: 2020 2d2d 2075 7365 6420 2e30 3033 3834 -- used .00384 │ │ │ │ +000079d0: 3135 3120 7365 636f 6e64 7320 2020 2020 151 seconds │ │ │ │ 000079e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000079f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007a00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007a10: 2020 2d2d 2075 7365 6420 2e30 3034 3337 -- used .00437 │ │ │ │ -00007a20: 3531 3720 7365 636f 6e64 7320 2020 2020 517 seconds │ │ │ │ +00007a10: 2020 2d2d 2075 7365 6420 2e30 3034 3935 -- used .00495 │ │ │ │ +00007a20: 3530 3420 7365 636f 6e64 7320 2020 2020 504 seconds │ │ │ │ 00007a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007a50: 2020 2020 2020 2020 2020 7c0a 7c28 3136 |.|(16 │ │ │ │ 00007a60: 2c20 3236 2920 2020 2020 2020 2020 2020 , 26) │ │ │ │ 00007a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1967,61 +1967,61 @@ │ │ │ │ 00007ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007af0: 2020 2020 2020 2020 2020 7c0a 7c35 2020 |.|5 │ │ │ │ 00007b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007b40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007b50: 2020 2d2d 2075 7365 6420 2e30 3038 3138 -- used .00818 │ │ │ │ -00007b60: 3235 3720 7365 636f 6e64 7320 2020 2020 257 seconds │ │ │ │ +00007b50: 2020 2d2d 2075 7365 6420 2e30 3038 3437 -- used .00847 │ │ │ │ +00007b60: 3036 3120 7365 636f 6e64 7320 2020 2020 061 seconds │ │ │ │ 00007b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007b90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007ba0: 2020 2d2d 2075 7365 6420 2e30 3236 3339 -- used .02639 │ │ │ │ -00007bb0: 3031 2073 6563 6f6e 6473 2020 2020 2020 01 seconds │ │ │ │ +00007ba0: 2020 2d2d 2075 7365 6420 2e30 3237 3334 -- used .02734 │ │ │ │ +00007bb0: 3136 2073 6563 6f6e 6473 2020 2020 2020 16 seconds │ │ │ │ 00007bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007be0: 2020 2020 2020 2020 2020 7c0a 7c28 3235 |.|(25 │ │ │ │ 00007bf0: 2c20 3630 2920 2020 2020 2020 2020 2020 , 60) │ │ │ │ 00007c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c30: 2020 2020 2020 2020 2020 7c0a 7c36 2020 |.|6 │ │ │ │ 00007c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007c90: 2020 2d2d 2075 7365 6420 2e30 3137 3835 -- used .01785 │ │ │ │ -00007ca0: 3333 2073 6563 6f6e 6473 2020 2020 2020 33 seconds │ │ │ │ +00007c90: 2020 2d2d 2075 7365 6420 2e30 3139 3038 -- used .01908 │ │ │ │ +00007ca0: 2073 6563 6f6e 6473 2020 2020 2020 2020 seconds │ │ │ │ 00007cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007cd0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007ce0: 2020 2d2d 2075 7365 6420 2e32 3034 3632 -- used .20462 │ │ │ │ -00007cf0: 3920 7365 636f 6e64 7320 2020 2020 2020 9 seconds │ │ │ │ +00007ce0: 2020 2d2d 2075 7365 6420 2e32 3233 3431 -- used .22341 │ │ │ │ +00007cf0: 3820 7365 636f 6e64 7320 2020 2020 2020 8 seconds │ │ │ │ 00007d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d20: 2020 2020 2020 2020 2020 7c0a 7c28 3336 |.|(36 │ │ │ │ 00007d30: 2c20 3132 3029 2020 2020 2020 2020 2020 , 120) │ │ │ │ 00007d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d70: 2020 2020 2020 2020 2020 7c0a 7c37 2020 |.|7 │ │ │ │ 00007d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007dc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007dd0: 2020 2d2d 2075 7365 6420 2e30 3338 3639 -- used .03869 │ │ │ │ -00007de0: 3338 2073 6563 6f6e 6473 2020 2020 2020 38 seconds │ │ │ │ +00007dd0: 2020 2d2d 2075 7365 6420 2e30 3433 3237 -- used .04327 │ │ │ │ +00007de0: 3835 2073 6563 6f6e 6473 2020 2020 2020 85 seconds │ │ │ │ 00007df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007e20: 2020 2d2d 2075 7365 6420 2e38 3233 3834 -- used .82384 │ │ │ │ -00007e30: 3120 7365 636f 6e64 7320 2020 2020 2020 1 seconds │ │ │ │ +00007e20: 2020 2d2d 2075 7365 6420 2e38 3936 3437 -- used .89647 │ │ │ │ +00007e30: 3720 7365 636f 6e64 7320 2020 2020 2020 7 seconds │ │ │ │ 00007e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e60: 2020 2020 2020 2020 2020 7c0a 7c28 3439 |.|(49 │ │ │ │ 00007e70: 2c20 3231 3729 2020 2020 2020 2020 2020 , 217) │ │ │ │ 00007e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/FastMinors.info.gz │ │ │ ├── FastMinors.info │ │ │ │ @@ -4406,16 +4406,16 @@ │ │ │ │ 00011350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011360: 2d2d 2d2d 2d2d 2b0a 7c69 3238 203a 2074 ------+.|i28 : t │ │ │ │ 00011370: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ 00011380: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ 00011390: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ 000113a0: 6779 3d3e 5261 6e64 6f6d 2929 2020 2020 gy=>Random)) │ │ │ │ 000113b0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -000113c0: 6420 302e 3135 3734 3432 7320 2863 7075 d 0.157442s (cpu │ │ │ │ -000113d0: 293b 2030 2e31 3230 3639 3873 2028 7468 ); 0.120698s (th │ │ │ │ +000113c0: 6420 302e 3232 3334 3634 7320 2863 7075 d 0.223464s (cpu │ │ │ │ +000113d0: 293b 2030 2e31 3538 3631 3773 2028 7468 ); 0.158617s (th │ │ │ │ 000113e0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 000113f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011400: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00011410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4431,16 +4431,16 @@ │ │ │ │ 000114e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000114f0: 2d2d 2d2d 2d2d 2b0a 7c69 3239 203a 2074 ------+.|i29 : t │ │ │ │ 00011500: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ 00011510: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ 00011520: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ 00011530: 6779 3d3e 4c65 7853 6d61 6c6c 6573 7429 gy=>LexSmallest) │ │ │ │ 00011540: 2920 2020 2020 7c0a 7c20 2d2d 2075 7365 ) |.| -- use │ │ │ │ -00011550: 6420 302e 3330 3234 3836 7320 2863 7075 d 0.302486s (cpu │ │ │ │ -00011560: 293b 2030 2e32 3038 3039 3973 2028 7468 ); 0.208099s (th │ │ │ │ +00011550: 6420 302e 3432 3732 3934 7320 2863 7075 d 0.427294s (cpu │ │ │ │ +00011560: 293b 2030 2e32 3739 3936 3773 2028 7468 ); 0.279967s (th │ │ │ │ 00011570: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00011580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011590: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000115a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000115b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000115c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000115d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4456,17 +4456,17 @@ │ │ │ │ 00011670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011680: 2d2d 2d2d 2d2d 2b0a 7c69 3330 203a 2074 ------+.|i30 : t │ │ │ │ 00011690: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ 000116a0: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ 000116b0: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ 000116c0: 6779 3d3e 4c65 7853 6d61 6c6c 6573 7454 gy=>LexSmallestT │ │ │ │ 000116d0: 6572 6d29 2920 7c0a 7c20 2d2d 2075 7365 erm)) |.| -- use │ │ │ │ -000116e0: 6420 302e 3439 3530 3835 7320 2863 7075 d 0.495085s (cpu │ │ │ │ -000116f0: 293b 2030 2e33 3139 3930 3473 2028 7468 ); 0.319904s (th │ │ │ │ -00011700: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +000116e0: 6420 302e 3536 3633 3833 7320 2863 7075 d 0.566383s (cpu │ │ │ │ +000116f0: 293b 2030 2e33 3537 3132 7320 2874 6872 ); 0.35712s (thr │ │ │ │ +00011700: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00011710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011720: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00011730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011770: 2020 2020 2020 7c0a 7c6f 3330 203d 2031 |.|o30 = 1 │ │ │ │ @@ -4481,17 +4481,17 @@ │ │ │ │ 00011800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011810: 2d2d 2d2d 2d2d 2b0a 7c69 3331 203a 2074 ------+.|i31 : t │ │ │ │ 00011820: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ 00011830: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ 00011840: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ 00011850: 6779 3d3e 4c65 784c 6172 6765 7374 2929 gy=>LexLargest)) │ │ │ │ 00011860: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00011870: 6420 302e 3231 3136 3273 2028 6370 7529 d 0.21162s (cpu) │ │ │ │ -00011880: 3b20 302e 3136 3935 3536 7320 2874 6872 ; 0.169556s (thr │ │ │ │ -00011890: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +00011870: 6420 302e 3238 3536 3331 7320 2863 7075 d 0.285631s (cpu │ │ │ │ +00011880: 293b 2030 2e32 3135 3033 3473 2028 7468 ); 0.215034s (th │ │ │ │ +00011890: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 000118a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000118b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000118c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000118d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000118e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000118f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011900: 2020 2020 2020 7c0a 7c6f 3331 203d 2032 |.|o31 = 2 │ │ │ │ @@ -4506,16 +4506,16 @@ │ │ │ │ 00011990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000119a0: 2d2d 2d2d 2d2d 2b0a 7c69 3332 203a 2074 ------+.|i32 : t │ │ │ │ 000119b0: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ 000119c0: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ 000119d0: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ 000119e0: 6779 3d3e 4752 6576 4c65 7853 6d61 6c6c gy=>GRevLexSmall │ │ │ │ 000119f0: 6573 7429 2920 7c0a 7c20 2d2d 2075 7365 est)) |.| -- use │ │ │ │ -00011a00: 6420 302e 3337 3530 3032 7320 2863 7075 d 0.375002s (cpu │ │ │ │ -00011a10: 293b 2030 2e32 3035 3234 3773 2028 7468 ); 0.205247s (th │ │ │ │ +00011a00: 6420 302e 3431 3736 3832 7320 2863 7075 d 0.417682s (cpu │ │ │ │ +00011a10: 293b 2030 2e32 3137 3533 3673 2028 7468 ); 0.217536s (th │ │ │ │ 00011a20: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00011a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011a40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00011a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4528,20 +4528,20 @@ │ │ │ │ 00011af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011b30: 2d2d 2d2d 2d2d 2b0a 7c69 3333 203a 2074 ------+.|i33 : t │ │ │ │ 00011b40: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ 00011b50: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ -00011b60: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ -00011b70: 6779 3d3e 2020 2020 2020 2020 2020 2020 gy=> │ │ │ │ +00011b60: 2036 2c20 4d2c 204a 2c20 2020 2020 2020 6, M, J, │ │ │ │ +00011b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011b80: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00011b90: 6420 302e 3333 3831 3438 7320 2863 7075 d 0.338148s (cpu │ │ │ │ -00011ba0: 293b 2030 2e32 3333 3633 7320 2874 6872 ); 0.23363s (thr │ │ │ │ -00011bb0: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +00011b90: 6420 302e 3336 3933 3931 7320 2863 7075 d 0.369391s (cpu │ │ │ │ +00011ba0: 293b 2030 2e32 3437 3137 3273 2028 7468 ); 0.247172s (th │ │ │ │ +00011bb0: 7265 6164 293b 2030 7320 2020 2020 2020 read); 0s │ │ │ │ 00011bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011bd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00011be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c20: 2020 2020 2020 7c0a 7c6f 3333 203d 2033 |.|o33 = 3 │ │ │ │ @@ -4550,6019 +4550,6019 @@ │ │ │ │ 00011c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c70: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 00011c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011cc0: 2d2d 2d2d 2d2d 7c0a 7c47 5265 764c 6578 ------|.|GRevLex │ │ │ │ -00011cd0: 536d 616c 6c65 7374 5465 726d 2929 2020 SmallestTerm)) │ │ │ │ -00011ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011cc0: 2d2d 2d2d 2d2d 7c0a 7c53 7472 6174 6567 ------|.|Strateg │ │ │ │ +00011cd0: 793d 3e47 5265 764c 6578 536d 616c 6c65 y=>GRevLexSmalle │ │ │ │ +00011ce0: 7374 5465 726d 2929 2020 2020 2020 2020 stTerm)) │ │ │ │ 00011cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011d10: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00011d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011d60: 2d2d 2d2d 2d2d 2b0a 7c69 3334 203a 2074 ------+.|i34 : t │ │ │ │ -00011d70: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ -00011d80: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ -00011d90: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ -00011da0: 6779 3d3e 4752 6576 4c65 784c 6172 6765 gy=>GRevLexLarge │ │ │ │ -00011db0: 7374 2929 2020 7c0a 7c20 2d2d 2075 7365 st)) |.| -- use │ │ │ │ -00011dc0: 6420 302e 3239 3836 3234 7320 2863 7075 d 0.298624s (cpu │ │ │ │ -00011dd0: 293b 2030 2e31 3931 3534 3273 2028 7468 ); 0.191542s (th │ │ │ │ -00011de0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ -00011df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011e00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00011e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011d10: 2020 2020 2020 7c0a 7c28 6763 2920 2020 |.|(gc) │ │ │ │ +00011d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011d60: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00011d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011db0: 2d2d 2d2d 2d2d 2b0a 7c69 3334 203a 2074 ------+.|i34 : t │ │ │ │ +00011dc0: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ +00011dd0: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ +00011de0: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ +00011df0: 6779 3d3e 4752 6576 4c65 784c 6172 6765 gy=>GRevLexLarge │ │ │ │ +00011e00: 7374 2929 2020 7c0a 7c20 2d2d 2075 7365 st)) |.| -- use │ │ │ │ +00011e10: 6420 302e 3338 3838 3737 7320 2863 7075 d 0.388877s (cpu │ │ │ │ +00011e20: 293b 2030 2e32 3532 3534 3973 2028 7468 ); 0.252549s (th │ │ │ │ +00011e30: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00011e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011e50: 2020 2020 2020 7c0a 7c6f 3334 203d 2033 |.|o34 = 3 │ │ │ │ +00011e50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00011e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011ea0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00011eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011ef0: 2d2d 2d2d 2d2d 2b0a 7c69 3335 203a 2074 ------+.|i35 : t │ │ │ │ -00011f00: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ -00011f10: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ -00011f20: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ -00011f30: 6779 3d3e 506f 696e 7473 2929 2020 2020 gy=>Points)) │ │ │ │ -00011f40: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00011f50: 6420 3134 2e39 3935 3573 2028 6370 7529 d 14.9955s (cpu) │ │ │ │ -00011f60: 3b20 3130 2e31 3634 3773 2028 7468 7265 ; 10.1647s (thre │ │ │ │ -00011f70: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ -00011f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011f90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00011fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ea0: 2020 2020 2020 7c0a 7c6f 3334 203d 2033 |.|o34 = 3 │ │ │ │ +00011eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ef0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00011f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011f40: 2d2d 2d2d 2d2d 2b0a 7c69 3335 203a 2074 ------+.|i35 : t │ │ │ │ +00011f50: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ +00011f60: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ +00011f70: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ +00011f80: 6779 3d3e 506f 696e 7473 2929 2020 2020 gy=>Points)) │ │ │ │ +00011f90: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ +00011fa0: 6420 3138 2e37 3735 3173 2028 6370 7529 d 18.7751s (cpu) │ │ │ │ +00011fb0: 3b20 3131 2e39 3736 3973 2028 7468 7265 ; 11.9769s (thre │ │ │ │ +00011fc0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00011fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011fe0: 2020 2020 2020 7c0a 7c6f 3335 203d 2031 |.|o35 = 1 │ │ │ │ +00011fe0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00011ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012030: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00012040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012080: 2d2d 2d2d 2d2d 2b0a 0a49 6e64 6565 642c ------+..Indeed, │ │ │ │ -00012090: 2069 6e20 7468 6973 2065 7861 6d70 6c65 in this example │ │ │ │ -000120a0: 2c20 6576 656e 2063 6f6d 7075 7469 6e67 , even computing │ │ │ │ -000120b0: 2064 6574 6572 6d69 6e61 6e74 7320 6f66 determinants of │ │ │ │ -000120c0: 2031 2c30 3030 2072 616e 646f 6d0a 7375 1,000 random.su │ │ │ │ -000120d0: 626d 6174 7269 6365 7320 6973 206e 6f74 bmatrices is not │ │ │ │ -000120e0: 2074 7970 6963 616c 6c79 2065 6e6f 7567 typically enoug │ │ │ │ -000120f0: 6820 746f 2076 6572 6966 7920 7468 6174 h to verify that │ │ │ │ -00012100: 2024 5628 4a29 2420 6973 2072 6567 756c $V(J)$ is regul │ │ │ │ -00012110: 6172 2069 6e0a 636f 6469 6d65 6e73 696f ar in.codimensio │ │ │ │ -00012120: 6e20 312e 2020 4f6e 2074 6865 206f 7468 n 1. On the oth │ │ │ │ -00012130: 6572 2068 616e 642c 2050 6f69 6e74 7320 er hand, Points │ │ │ │ -00012140: 6973 2061 6c6d 6f73 7420 616c 7761 7973 is almost always │ │ │ │ -00012150: 2071 7569 7465 2065 6666 6563 7469 7665 quite effective │ │ │ │ -00012160: 2061 740a 6669 6e64 696e 6720 7661 6c75 at.finding valu │ │ │ │ -00012170: 6162 6c65 2073 7562 6d61 7472 6963 6573 able submatrices │ │ │ │ -00012180: 2c20 6275 7420 6361 6e20 6265 2071 7569 , but can be qui │ │ │ │ -00012190: 7465 2073 6c6f 772e 2020 496e 2074 6869 te slow. In thi │ │ │ │ -000121a0: 7320 7061 7274 6963 756c 6172 0a65 7861 s particular.exa │ │ │ │ -000121b0: 6d70 6c65 2c20 7765 2063 616e 2073 6565 mple, we can see │ │ │ │ -000121c0: 2074 6861 7420 4c65 7853 6d61 6c6c 6573 that LexSmalles │ │ │ │ -000121d0: 7454 6572 6d20 616c 736f 2070 6572 666f tTerm also perfo │ │ │ │ -000121e0: 726d 7320 7665 7279 2077 656c 6c20 2861 rms very well (a │ │ │ │ -000121f0: 6e64 2064 6f65 7320 6974 0a71 7569 636b nd does it.quick │ │ │ │ -00012200: 6c79 292e 2053 696e 6365 2064 6966 6665 ly). Since diffe │ │ │ │ -00012210: 7265 6e74 2073 7472 6174 6567 6965 7320 rent strategies │ │ │ │ -00012220: 776f 726b 2062 6574 7465 7220 6f72 2077 work better or w │ │ │ │ -00012230: 6f72 7365 206f 6e20 6469 6666 6572 656e orse on differen │ │ │ │ -00012240: 740a 6578 616d 706c 6573 2c20 7468 6520 t.examples, the │ │ │ │ -00012250: 6465 6661 756c 7420 7374 7261 7465 6779 default strategy │ │ │ │ -00012260: 2061 6374 7561 6c6c 7920 6d69 7865 7320 actually mixes │ │ │ │ -00012270: 616e 6420 6d61 7463 6865 7320 7661 7269 and matches vari │ │ │ │ -00012280: 6f75 7320 7374 7261 7465 6769 6573 2e0a ous strategies.. │ │ │ │ -00012290: 5468 6520 6465 6661 756c 7420 7374 7261 The default stra │ │ │ │ -000122a0: 7465 6779 2c20 7768 6963 6820 7765 206e tegy, which we n │ │ │ │ -000122b0: 6f77 2065 6c75 6369 6461 7465 2c0a 0a2b ow elucidate,..+ │ │ │ │ -000122c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000122d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000122e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000122f0: 3336 203a 2070 6565 6b20 5374 7261 7465 36 : peek Strate │ │ │ │ -00012300: 6779 4465 6661 756c 7420 2020 2020 2020 gyDefault │ │ │ │ -00012310: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00012320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012340: 2020 2020 2020 2020 2020 7c0a 7c6f 3336 |.|o36 │ │ │ │ -00012350: 203d 204f 7074 696f 6e54 6162 6c65 7b47 = OptionTable{G │ │ │ │ -00012360: 5265 764c 6578 4c61 7267 6573 7420 3d3e RevLexLargest => │ │ │ │ -00012370: 2030 2020 2020 2020 7d7c 0a7c 2020 2020 0 }|.| │ │ │ │ -00012380: 2020 2020 2020 2020 2020 2020 2020 4752 GR │ │ │ │ -00012390: 6576 4c65 7853 6d61 6c6c 6573 7420 3d3e evLexSmallest => │ │ │ │ -000123a0: 2031 3620 2020 2020 7c0a 7c20 2020 2020 16 |.| │ │ │ │ -000123b0: 2020 2020 2020 2020 2020 2020 2047 5265 GRe │ │ │ │ -000123c0: 764c 6578 536d 616c 6c65 7374 5465 726d vLexSmallestTerm │ │ │ │ -000123d0: 203d 3e20 3136 207c 0a7c 2020 2020 2020 => 16 |.| │ │ │ │ -000123e0: 2020 2020 2020 2020 2020 2020 4c65 784c LexL │ │ │ │ -000123f0: 6172 6765 7374 203d 3e20 3020 2020 2020 argest => 0 │ │ │ │ -00012400: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00012410: 2020 2020 2020 2020 2020 204c 6578 536d LexSm │ │ │ │ -00012420: 616c 6c65 7374 203d 3e20 3136 2020 2020 allest => 16 │ │ │ │ -00012430: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00012440: 2020 2020 2020 2020 2020 4c65 7853 6d61 LexSma │ │ │ │ -00012450: 6c6c 6573 7454 6572 6d20 3d3e 2031 3620 llestTerm => 16 │ │ │ │ -00012460: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00012470: 2020 2020 2020 2020 2050 6f69 6e74 7320 Points │ │ │ │ -00012480: 3d3e 2030 2020 2020 2020 2020 2020 2020 => 0 │ │ │ │ -00012490: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000124a0: 2020 2020 2020 2020 5261 6e64 6f6d 203d Random = │ │ │ │ -000124b0: 3e20 3136 2020 2020 2020 2020 2020 2020 > 16 │ │ │ │ -000124c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000124d0: 2020 2020 2020 2052 616e 646f 6d4e 6f6e RandomNon │ │ │ │ -000124e0: 7a65 726f 203d 3e20 3136 2020 2020 2020 zero => 16 │ │ │ │ -000124f0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00012500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012520: 2b0a 0a73 6179 7320 7468 6174 2077 6520 +..says that we │ │ │ │ -00012530: 7368 6f75 6c64 2075 7365 2047 5265 764c should use GRevL │ │ │ │ -00012540: 6578 536d 616c 6c65 7374 2c20 4752 6576 exSmallest, GRev │ │ │ │ -00012550: 4c65 7853 6d61 6c6c 6573 7454 6572 6d2c LexSmallestTerm, │ │ │ │ -00012560: 204c 6578 536d 616c 6c65 7374 2c0a 4c65 LexSmallest,.Le │ │ │ │ -00012570: 7853 6d61 6c6c 6573 7454 6572 6d2c 2052 xSmallestTerm, R │ │ │ │ -00012580: 616e 646f 6d2c 2052 616e 646f 6d4e 6f6e andom, RandomNon │ │ │ │ -00012590: 7a65 726f 2061 6c6c 2077 6974 6820 6571 zero all with eq │ │ │ │ -000125a0: 7561 6c20 7072 6f62 6162 696c 6974 7920 ual probability │ │ │ │ -000125b0: 286e 6f74 650a 5261 6e64 6f6d 4e6f 6e7a (note.RandomNonz │ │ │ │ -000125c0: 6572 6f2c 2077 6869 6368 2077 6520 6861 ero, which we ha │ │ │ │ -000125d0: 7665 206e 6f74 2079 6574 2064 6973 6375 ve not yet discu │ │ │ │ -000125e0: 7373 6564 2063 686f 6f73 6573 2072 616e ssed chooses ran │ │ │ │ -000125f0: 646f 6d20 7375 626d 6174 7269 6365 7320 dom submatrices │ │ │ │ -00012600: 7768 6572 650a 6e6f 2072 6f77 206f 7220 where.no row or │ │ │ │ -00012610: 636f 6c75 6d6e 2069 7320 7a65 726f 2c20 column is zero, │ │ │ │ -00012620: 7768 6963 6820 6973 2067 6f6f 6420 666f which is good fo │ │ │ │ -00012630: 7220 776f 726b 696e 6720 696e 2073 7061 r working in spa │ │ │ │ -00012640: 7273 6520 6d61 7472 6963 6573 292e 2020 rse matrices). │ │ │ │ -00012650: 466f 720a 696e 7374 616e 6365 2c20 6966 For.instance, if │ │ │ │ -00012660: 2077 6520 7275 6e3a 0a0a 2b2d 2d2d 2d2d we run:..+----- │ │ │ │ -00012670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000126a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000126b0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3337 203a --------+.|i37 : │ │ │ │ -000126c0: 2074 696d 6520 6368 6f6f 7365 476f 6f64 time chooseGood │ │ │ │ -000126d0: 4d69 6e6f 7273 2832 302c 2036 2c20 4d2c Minors(20, 6, M, │ │ │ │ -000126e0: 204a 2c20 5374 7261 7465 6779 3d3e 5374 J, Strategy=>St │ │ │ │ -000126f0: 7261 7465 6779 4465 6661 756c 742c 2020 rategyDefault, │ │ │ │ -00012700: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00012710: 7365 6420 302e 3438 3633 3273 2028 6370 sed 0.48632s (cp │ │ │ │ -00012720: 7529 3b20 302e 3434 3436 3936 7320 2874 u); 0.444696s (t │ │ │ │ -00012730: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ -00012740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012750: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ -00012760: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012770: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ -00012780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012030: 2020 2020 2020 7c0a 7c6f 3335 203d 2031 |.|o35 = 1 │ │ │ │ +00012040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012080: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00012090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000120a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000120b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000120c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000120d0: 2d2d 2d2d 2d2d 2b0a 0a49 6e64 6565 642c ------+..Indeed, │ │ │ │ +000120e0: 2069 6e20 7468 6973 2065 7861 6d70 6c65 in this example │ │ │ │ +000120f0: 2c20 6576 656e 2063 6f6d 7075 7469 6e67 , even computing │ │ │ │ +00012100: 2064 6574 6572 6d69 6e61 6e74 7320 6f66 determinants of │ │ │ │ +00012110: 2031 2c30 3030 2072 616e 646f 6d0a 7375 1,000 random.su │ │ │ │ +00012120: 626d 6174 7269 6365 7320 6973 206e 6f74 bmatrices is not │ │ │ │ +00012130: 2074 7970 6963 616c 6c79 2065 6e6f 7567 typically enoug │ │ │ │ +00012140: 6820 746f 2076 6572 6966 7920 7468 6174 h to verify that │ │ │ │ +00012150: 2024 5628 4a29 2420 6973 2072 6567 756c $V(J)$ is regul │ │ │ │ +00012160: 6172 2069 6e0a 636f 6469 6d65 6e73 696f ar in.codimensio │ │ │ │ +00012170: 6e20 312e 2020 4f6e 2074 6865 206f 7468 n 1. On the oth │ │ │ │ +00012180: 6572 2068 616e 642c 2050 6f69 6e74 7320 er hand, Points │ │ │ │ +00012190: 6973 2061 6c6d 6f73 7420 616c 7761 7973 is almost always │ │ │ │ +000121a0: 2071 7569 7465 2065 6666 6563 7469 7665 quite effective │ │ │ │ +000121b0: 2061 740a 6669 6e64 696e 6720 7661 6c75 at.finding valu │ │ │ │ +000121c0: 6162 6c65 2073 7562 6d61 7472 6963 6573 able submatrices │ │ │ │ +000121d0: 2c20 6275 7420 6361 6e20 6265 2071 7569 , but can be qui │ │ │ │ +000121e0: 7465 2073 6c6f 772e 2020 496e 2074 6869 te slow. In thi │ │ │ │ +000121f0: 7320 7061 7274 6963 756c 6172 0a65 7861 s particular.exa │ │ │ │ +00012200: 6d70 6c65 2c20 7765 2063 616e 2073 6565 mple, we can see │ │ │ │ +00012210: 2074 6861 7420 4c65 7853 6d61 6c6c 6573 that LexSmalles │ │ │ │ +00012220: 7454 6572 6d20 616c 736f 2070 6572 666f tTerm also perfo │ │ │ │ +00012230: 726d 7320 7665 7279 2077 656c 6c20 2861 rms very well (a │ │ │ │ +00012240: 6e64 2064 6f65 7320 6974 0a71 7569 636b nd does it.quick │ │ │ │ +00012250: 6c79 292e 2053 696e 6365 2064 6966 6665 ly). Since diffe │ │ │ │ +00012260: 7265 6e74 2073 7472 6174 6567 6965 7320 rent strategies │ │ │ │ +00012270: 776f 726b 2062 6574 7465 7220 6f72 2077 work better or w │ │ │ │ +00012280: 6f72 7365 206f 6e20 6469 6666 6572 656e orse on differen │ │ │ │ +00012290: 740a 6578 616d 706c 6573 2c20 7468 6520 t.examples, the │ │ │ │ +000122a0: 6465 6661 756c 7420 7374 7261 7465 6779 default strategy │ │ │ │ +000122b0: 2061 6374 7561 6c6c 7920 6d69 7865 7320 actually mixes │ │ │ │ +000122c0: 616e 6420 6d61 7463 6865 7320 7661 7269 and matches vari │ │ │ │ +000122d0: 6f75 7320 7374 7261 7465 6769 6573 2e0a ous strategies.. │ │ │ │ +000122e0: 5468 6520 6465 6661 756c 7420 7374 7261 The default stra │ │ │ │ +000122f0: 7465 6779 2c20 7768 6963 6820 7765 206e tegy, which we n │ │ │ │ +00012300: 6f77 2065 6c75 6369 6461 7465 2c0a 0a2b ow elucidate,..+ │ │ │ │ +00012310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00012340: 3336 203a 2070 6565 6b20 5374 7261 7465 36 : peek Strate │ │ │ │ +00012350: 6779 4465 6661 756c 7420 2020 2020 2020 gyDefault │ │ │ │ +00012360: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00012370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012390: 2020 2020 2020 2020 2020 7c0a 7c6f 3336 |.|o36 │ │ │ │ +000123a0: 203d 204f 7074 696f 6e54 6162 6c65 7b47 = OptionTable{G │ │ │ │ +000123b0: 5265 764c 6578 4c61 7267 6573 7420 3d3e RevLexLargest => │ │ │ │ +000123c0: 2030 2020 2020 2020 7d7c 0a7c 2020 2020 0 }|.| │ │ │ │ +000123d0: 2020 2020 2020 2020 2020 2020 2020 4752 GR │ │ │ │ +000123e0: 6576 4c65 7853 6d61 6c6c 6573 7420 3d3e evLexSmallest => │ │ │ │ +000123f0: 2031 3620 2020 2020 7c0a 7c20 2020 2020 16 |.| │ │ │ │ +00012400: 2020 2020 2020 2020 2020 2020 2047 5265 GRe │ │ │ │ +00012410: 764c 6578 536d 616c 6c65 7374 5465 726d vLexSmallestTerm │ │ │ │ +00012420: 203d 3e20 3136 207c 0a7c 2020 2020 2020 => 16 |.| │ │ │ │ +00012430: 2020 2020 2020 2020 2020 2020 4c65 784c LexL │ │ │ │ +00012440: 6172 6765 7374 203d 3e20 3020 2020 2020 argest => 0 │ │ │ │ +00012450: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00012460: 2020 2020 2020 2020 2020 204c 6578 536d LexSm │ │ │ │ +00012470: 616c 6c65 7374 203d 3e20 3136 2020 2020 allest => 16 │ │ │ │ +00012480: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00012490: 2020 2020 2020 2020 2020 4c65 7853 6d61 LexSma │ │ │ │ +000124a0: 6c6c 6573 7454 6572 6d20 3d3e 2031 3620 llestTerm => 16 │ │ │ │ +000124b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000124c0: 2020 2020 2020 2020 2050 6f69 6e74 7320 Points │ │ │ │ +000124d0: 3d3e 2030 2020 2020 2020 2020 2020 2020 => 0 │ │ │ │ +000124e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000124f0: 2020 2020 2020 2020 5261 6e64 6f6d 203d Random = │ │ │ │ +00012500: 3e20 3136 2020 2020 2020 2020 2020 2020 > 16 │ │ │ │ +00012510: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00012520: 2020 2020 2020 2052 616e 646f 6d4e 6f6e RandomNon │ │ │ │ +00012530: 7a65 726f 203d 3e20 3136 2020 2020 2020 zero => 16 │ │ │ │ +00012540: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00012550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012570: 2b0a 0a73 6179 7320 7468 6174 2077 6520 +..says that we │ │ │ │ +00012580: 7368 6f75 6c64 2075 7365 2047 5265 764c should use GRevL │ │ │ │ +00012590: 6578 536d 616c 6c65 7374 2c20 4752 6576 exSmallest, GRev │ │ │ │ +000125a0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d2c LexSmallestTerm, │ │ │ │ +000125b0: 204c 6578 536d 616c 6c65 7374 2c0a 4c65 LexSmallest,.Le │ │ │ │ +000125c0: 7853 6d61 6c6c 6573 7454 6572 6d2c 2052 xSmallestTerm, R │ │ │ │ +000125d0: 616e 646f 6d2c 2052 616e 646f 6d4e 6f6e andom, RandomNon │ │ │ │ +000125e0: 7a65 726f 2061 6c6c 2077 6974 6820 6571 zero all with eq │ │ │ │ +000125f0: 7561 6c20 7072 6f62 6162 696c 6974 7920 ual probability │ │ │ │ +00012600: 286e 6f74 650a 5261 6e64 6f6d 4e6f 6e7a (note.RandomNonz │ │ │ │ +00012610: 6572 6f2c 2077 6869 6368 2077 6520 6861 ero, which we ha │ │ │ │ +00012620: 7665 206e 6f74 2079 6574 2064 6973 6375 ve not yet discu │ │ │ │ +00012630: 7373 6564 2063 686f 6f73 6573 2072 616e ssed chooses ran │ │ │ │ +00012640: 646f 6d20 7375 626d 6174 7269 6365 7320 dom submatrices │ │ │ │ +00012650: 7768 6572 650a 6e6f 2072 6f77 206f 7220 where.no row or │ │ │ │ +00012660: 636f 6c75 6d6e 2069 7320 7a65 726f 2c20 column is zero, │ │ │ │ +00012670: 7768 6963 6820 6973 2067 6f6f 6420 666f which is good fo │ │ │ │ +00012680: 7220 776f 726b 696e 6720 696e 2073 7061 r working in spa │ │ │ │ +00012690: 7273 6520 6d61 7472 6963 6573 292e 2020 rse matrices). │ │ │ │ +000126a0: 466f 720a 696e 7374 616e 6365 2c20 6966 For.instance, if │ │ │ │ +000126b0: 2077 6520 7275 6e3a 0a0a 2b2d 2d2d 2d2d we run:..+----- │ │ │ │ +000126c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000126d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000126e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000126f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012700: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3337 203a --------+.|i37 : │ │ │ │ +00012710: 2074 696d 6520 6368 6f6f 7365 476f 6f64 time chooseGood │ │ │ │ +00012720: 4d69 6e6f 7273 2832 302c 2036 2c20 4d2c Minors(20, 6, M, │ │ │ │ +00012730: 204a 2c20 5374 7261 7465 6779 3d3e 5374 J, Strategy=>St │ │ │ │ +00012740: 7261 7465 6779 4465 6661 756c 742c 2020 rategyDefault, │ │ │ │ +00012750: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ +00012760: 7365 6420 302e 3436 3937 3933 7320 2863 sed 0.469793s (c │ │ │ │ +00012770: 7075 293b 2030 2e33 3932 3230 3873 2028 pu); 0.392208s ( │ │ │ │ +00012780: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 00012790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000127a0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 000127b0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -000127c0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ -000127d0: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ +000127c0: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +000127d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000127e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000127f0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012800: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012810: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ -00012820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012810: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00012820: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ 00012830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012840: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012850: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012860: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ -00012870: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +00012860: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +00012870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012890: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 000128a0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -000128b0: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ -000128c0: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ +000128b0: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +000128c0: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ 000128d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000128e0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 000128f0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ 00012900: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ 00012910: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ 00012920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012930: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012940: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012950: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ -00012960: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ +00012950: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ +00012960: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ 00012970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012980: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012990: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -000129a0: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ -000129b0: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +000129a0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +000129b0: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ 000129c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000129d0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 000129e0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -000129f0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ -00012a00: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ +000129f0: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00012a00: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ 00012a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a20: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012a30: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012a40: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ -00012a50: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +00012a40: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00012a50: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00012a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a70: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012a80: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012a90: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ -00012aa0: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ +00012a90: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00012aa0: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ 00012ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012ac0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012ad0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012ae0: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ -00012af0: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ +00012ae0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00012af0: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00012b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012b10: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012b20: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ 00012b30: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ 00012b40: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ 00012b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012b60: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012b70: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012b80: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ -00012b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012b80: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00012b90: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ 00012ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012bb0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012bc0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012bd0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ -00012be0: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ +00012bd0: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +00012be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012c00: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012c10: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ 00012c20: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ 00012c30: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00012c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012c50: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012c60: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012c70: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ -00012c80: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +00012c70: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00012c80: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00012c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012ca0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012cb0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012cc0: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ -00012cd0: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ +00012cc0: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00012cd0: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ 00012ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012cf0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012d00: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012d10: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ -00012d20: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ +00012d10: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ +00012d20: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ 00012d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012d40: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012d50: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012d60: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ -00012d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012d60: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00012d70: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ 00012d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012d90: 2020 2020 2020 2020 7c0a 7c63 686f 6f73 |.|choos │ │ │ │ -00012da0: 6547 6f6f 644d 696e 6f72 733a 2066 6f75 eGoodMinors: fou │ │ │ │ -00012db0: 6e64 203d 3230 2c20 6174 7465 6d70 7465 nd =20, attempte │ │ │ │ -00012dc0: 6420 3d20 3230 2020 2020 2020 2020 2020 d = 20 │ │ │ │ +00012d90: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00012da0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00012db0: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +00012dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012de0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00012df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012de0: 2020 2020 2020 2020 7c0a 7c63 686f 6f73 |.|choos │ │ │ │ +00012df0: 6547 6f6f 644d 696e 6f72 733a 2066 6f75 eGoodMinors: fou │ │ │ │ +00012e00: 6e64 203d 3230 2c20 6174 7465 6d70 7465 nd =20, attempte │ │ │ │ +00012e10: 6420 3d20 3230 2020 2020 2020 2020 2020 d = 20 │ │ │ │ 00012e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012e30: 2020 2020 2020 2020 7c0a 7c6f 3337 203a |.|o37 : │ │ │ │ -00012e40: 2049 6465 616c 206f 6620 5320 2020 2020 Ideal of S │ │ │ │ +00012e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00012e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012e80: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ -00012e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012ed0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c56 6572 626f --------|.|Verbo │ │ │ │ -00012ee0: 7365 3d3e 7472 7565 293b 2020 2020 2020 se=>true); │ │ │ │ -00012ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012f20: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -00012f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f70: 2d2d 2d2d 2d2d 2d2d 2b0a 0a77 6520 6361 --------+..we ca │ │ │ │ -00012f80: 6e20 7365 6520 6469 6666 6572 656e 7420 n see different │ │ │ │ -00012f90: 6d69 6e6f 7273 2062 6569 6e67 2063 686f minors being cho │ │ │ │ -00012fa0: 7365 6e20 7669 6120 6469 6666 6572 656e sen via differen │ │ │ │ -00012fb0: 7420 7374 7261 7465 6769 6573 2e0a 0a4e t strategies...N │ │ │ │ -00012fc0: 6f74 652c 2069 6620 6f6e 6520 6173 6b73 ote, if one asks │ │ │ │ -00012fd0: 2063 686f 6f73 6547 6f6f 644d 696e 6f72 chooseGoodMinor │ │ │ │ -00012fe0: 7320 666f 7220 6d6f 7265 2074 6861 6e20 s for more than │ │ │ │ -00012ff0: 6f6e 6520 6d69 6e6f 722c 2074 6865 6e20 one minor, then │ │ │ │ -00013000: 616e 7920 7469 6d65 2061 0a50 6f69 6e74 any time a.Point │ │ │ │ -00013010: 7320 7374 7261 7465 6779 2069 7320 7365 s strategy is se │ │ │ │ -00013020: 6c65 6374 6564 2c20 7468 6520 706f 696e lected, the poin │ │ │ │ -00013030: 7420 6973 2066 6f75 6e64 206f 6e20 244a t is found on $J │ │ │ │ -00013040: 2420 706c 7573 2074 6865 2069 6465 616c $ plus the ideal │ │ │ │ -00013050: 206f 6620 616c 6c0a 6d69 6e6f 7273 2063 of all.minors c │ │ │ │ -00013060: 6f6d 7075 7465 6420 7468 7573 2066 6172 omputed thus far │ │ │ │ -00013070: 2e0a 0a4c 6574 2075 7320 7461 6b65 2061 ...Let us take a │ │ │ │ -00013080: 206c 6f6f 6b20 6174 2073 6f6d 6520 6f74 look at some ot │ │ │ │ -00013090: 6865 7220 6275 696c 742d 696e 2073 7472 her built-in str │ │ │ │ -000130a0: 6174 6567 6965 732e 0a0a 2b2d 2d2d 2d2d ategies...+----- │ │ │ │ -000130b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000130c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000130d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 3820 3a20 -------+.|i38 : │ │ │ │ -000130e0: 7065 656b 2053 7472 6174 6567 7944 6566 peek StrategyDef │ │ │ │ -000130f0: 6175 6c74 4e6f 6e52 616e 646f 6d20 2020 aultNonRandom │ │ │ │ -00013100: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00013110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013130: 2020 2020 207c 0a7c 6f33 3820 3d20 4f70 |.|o38 = Op │ │ │ │ -00013140: 7469 6f6e 5461 626c 657b 4752 6576 4c65 tionTable{GRevLe │ │ │ │ -00013150: 784c 6172 6765 7374 203d 3e20 3020 2020 xLargest => 0 │ │ │ │ -00013160: 2020 207d 7c0a 7c20 2020 2020 2020 2020 }|.| │ │ │ │ -00013170: 2020 2020 2020 2020 2047 5265 764c 6578 GRevLex │ │ │ │ -00013180: 536d 616c 6c65 7374 203d 3e20 3235 2020 Smallest => 25 │ │ │ │ -00013190: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000131a0: 2020 2020 2020 2020 4752 6576 4c65 7853 GRevLexS │ │ │ │ -000131b0: 6d61 6c6c 6573 7454 6572 6d20 3d3e 2032 mallestTerm => 2 │ │ │ │ -000131c0: 3520 7c0a 7c20 2020 2020 2020 2020 2020 5 |.| │ │ │ │ -000131d0: 2020 2020 2020 204c 6578 4c61 7267 6573 LexLarges │ │ │ │ -000131e0: 7420 3d3e 2030 2020 2020 2020 2020 2020 t => 0 │ │ │ │ -000131f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00013200: 2020 2020 2020 4c65 7853 6d61 6c6c 6573 LexSmalles │ │ │ │ -00013210: 7420 3d3e 2032 3520 2020 2020 2020 2020 t => 25 │ │ │ │ -00013220: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00013230: 2020 2020 204c 6578 536d 616c 6c65 7374 LexSmallest │ │ │ │ -00013240: 5465 726d 203d 3e20 3235 2020 2020 207c Term => 25 | │ │ │ │ -00013250: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00013260: 2020 2020 506f 696e 7473 203d 3e20 3020 Points => 0 │ │ │ │ -00013270: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013280: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00013290: 2020 2052 616e 646f 6d20 3d3e 2030 2020 Random => 0 │ │ │ │ -000132a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000132b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000132c0: 2020 5261 6e64 6f6d 4e6f 6e7a 6572 6f20 RandomNonzero │ │ │ │ -000132d0: 3d3e 2030 2020 2020 2020 2020 7c0a 2b2d => 0 |.+- │ │ │ │ -000132e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000132f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -00013310: 3920 3a20 7065 656b 2053 7472 6174 6567 9 : peek Strateg │ │ │ │ -00013320: 7944 6566 6175 6c74 5769 7468 506f 696e yDefaultWithPoin │ │ │ │ -00013330: 7473 2020 2020 2020 2020 7c0a 7c20 2020 ts |.| │ │ │ │ -00013340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013360: 2020 2020 2020 2020 207c 0a7c 6f33 3920 |.|o39 │ │ │ │ -00013370: 3d20 4f70 7469 6f6e 5461 626c 657b 4752 = OptionTable{GR │ │ │ │ -00013380: 6576 4c65 784c 6172 6765 7374 203d 3e20 evLexLargest => │ │ │ │ -00013390: 3020 2020 2020 207d 7c0a 7c20 2020 2020 0 }|.| │ │ │ │ -000133a0: 2020 2020 2020 2020 2020 2020 2047 5265 GRe │ │ │ │ -000133b0: 764c 6578 536d 616c 6c65 7374 203d 3e20 vLexSmallest => │ │ │ │ -000133c0: 3136 2020 2020 207c 0a7c 2020 2020 2020 16 |.| │ │ │ │ -000133d0: 2020 2020 2020 2020 2020 2020 4752 6576 GRev │ │ │ │ -000133e0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ -000133f0: 3d3e 2031 3620 7c0a 7c20 2020 2020 2020 => 16 |.| │ │ │ │ -00013400: 2020 2020 2020 2020 2020 204c 6578 4c61 LexLa │ │ │ │ -00013410: 7267 6573 7420 3d3e 2030 2020 2020 2020 rgest => 0 │ │ │ │ -00013420: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00013430: 2020 2020 2020 2020 2020 4c65 7853 6d61 LexSma │ │ │ │ -00013440: 6c6c 6573 7420 3d3e 2031 3620 2020 2020 llest => 16 │ │ │ │ -00013450: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00013460: 2020 2020 2020 2020 204c 6578 536d 616c LexSmal │ │ │ │ -00013470: 6c65 7374 5465 726d 203d 3e20 3136 2020 lestTerm => 16 │ │ │ │ -00013480: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00013490: 2020 2020 2020 2020 506f 696e 7473 203d Points = │ │ │ │ -000134a0: 3e20 3332 2020 2020 2020 2020 2020 2020 > 32 │ │ │ │ -000134b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000134c0: 2020 2020 2020 2052 616e 646f 6d20 3d3e Random => │ │ │ │ -000134d0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -000134e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000134f0: 2020 2020 2020 5261 6e64 6f6d 4e6f 6e7a RandomNonz │ │ │ │ -00013500: 6572 6f20 3d3e 2030 2020 2020 2020 2020 ero => 0 │ │ │ │ -00013510: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00013520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00013540: 0a7c 6934 3020 3a20 7065 656b 2053 7472 .|i40 : peek Str │ │ │ │ -00013550: 6174 6567 7950 6f69 6e74 7320 2020 2020 ategyPoints │ │ │ │ -00013560: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013570: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00013580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013590: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000135a0: 6f34 3020 3d20 4f70 7469 6f6e 5461 626c o40 = OptionTabl │ │ │ │ -000135b0: 657b 4752 6576 4c65 784c 6172 6765 7374 e{GRevLexLargest │ │ │ │ -000135c0: 203d 3e20 3020 2020 2020 7d20 7c0a 7c20 => 0 } |.| │ │ │ │ +00012e80: 2020 2020 2020 2020 7c0a 7c6f 3337 203a |.|o37 : │ │ │ │ +00012e90: 2049 6465 616c 206f 6620 5320 2020 2020 Ideal of S │ │ │ │ +00012ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012ed0: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +00012ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012f20: 2d2d 2d2d 2d2d 2d2d 7c0a 7c56 6572 626f --------|.|Verbo │ │ │ │ +00012f30: 7365 3d3e 7472 7565 293b 2020 2020 2020 se=>true); │ │ │ │ +00012f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012f70: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00012f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012fc0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a77 6520 6361 --------+..we ca │ │ │ │ +00012fd0: 6e20 7365 6520 6469 6666 6572 656e 7420 n see different │ │ │ │ +00012fe0: 6d69 6e6f 7273 2062 6569 6e67 2063 686f minors being cho │ │ │ │ +00012ff0: 7365 6e20 7669 6120 6469 6666 6572 656e sen via differen │ │ │ │ +00013000: 7420 7374 7261 7465 6769 6573 2e0a 0a4e t strategies...N │ │ │ │ +00013010: 6f74 652c 2069 6620 6f6e 6520 6173 6b73 ote, if one asks │ │ │ │ +00013020: 2063 686f 6f73 6547 6f6f 644d 696e 6f72 chooseGoodMinor │ │ │ │ +00013030: 7320 666f 7220 6d6f 7265 2074 6861 6e20 s for more than │ │ │ │ +00013040: 6f6e 6520 6d69 6e6f 722c 2074 6865 6e20 one minor, then │ │ │ │ +00013050: 616e 7920 7469 6d65 2061 0a50 6f69 6e74 any time a.Point │ │ │ │ +00013060: 7320 7374 7261 7465 6779 2069 7320 7365 s strategy is se │ │ │ │ +00013070: 6c65 6374 6564 2c20 7468 6520 706f 696e lected, the poin │ │ │ │ +00013080: 7420 6973 2066 6f75 6e64 206f 6e20 244a t is found on $J │ │ │ │ +00013090: 2420 706c 7573 2074 6865 2069 6465 616c $ plus the ideal │ │ │ │ +000130a0: 206f 6620 616c 6c0a 6d69 6e6f 7273 2063 of all.minors c │ │ │ │ +000130b0: 6f6d 7075 7465 6420 7468 7573 2066 6172 omputed thus far │ │ │ │ +000130c0: 2e0a 0a4c 6574 2075 7320 7461 6b65 2061 ...Let us take a │ │ │ │ +000130d0: 206c 6f6f 6b20 6174 2073 6f6d 6520 6f74 look at some ot │ │ │ │ +000130e0: 6865 7220 6275 696c 742d 696e 2073 7472 her built-in str │ │ │ │ +000130f0: 6174 6567 6965 732e 0a0a 2b2d 2d2d 2d2d ategies...+----- │ │ │ │ +00013100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013120: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 3820 3a20 -------+.|i38 : │ │ │ │ +00013130: 7065 656b 2053 7472 6174 6567 7944 6566 peek StrategyDef │ │ │ │ +00013140: 6175 6c74 4e6f 6e52 616e 646f 6d20 2020 aultNonRandom │ │ │ │ +00013150: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00013160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013180: 2020 2020 207c 0a7c 6f33 3820 3d20 4f70 |.|o38 = Op │ │ │ │ +00013190: 7469 6f6e 5461 626c 657b 4752 6576 4c65 tionTable{GRevLe │ │ │ │ +000131a0: 784c 6172 6765 7374 203d 3e20 3020 2020 xLargest => 0 │ │ │ │ +000131b0: 2020 207d 7c0a 7c20 2020 2020 2020 2020 }|.| │ │ │ │ +000131c0: 2020 2020 2020 2020 2047 5265 764c 6578 GRevLex │ │ │ │ +000131d0: 536d 616c 6c65 7374 203d 3e20 3235 2020 Smallest => 25 │ │ │ │ +000131e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000131f0: 2020 2020 2020 2020 4752 6576 4c65 7853 GRevLexS │ │ │ │ +00013200: 6d61 6c6c 6573 7454 6572 6d20 3d3e 2032 mallestTerm => 2 │ │ │ │ +00013210: 3520 7c0a 7c20 2020 2020 2020 2020 2020 5 |.| │ │ │ │ +00013220: 2020 2020 2020 204c 6578 4c61 7267 6573 LexLarges │ │ │ │ +00013230: 7420 3d3e 2030 2020 2020 2020 2020 2020 t => 0 │ │ │ │ +00013240: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013250: 2020 2020 2020 4c65 7853 6d61 6c6c 6573 LexSmalles │ │ │ │ +00013260: 7420 3d3e 2032 3520 2020 2020 2020 2020 t => 25 │ │ │ │ +00013270: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013280: 2020 2020 204c 6578 536d 616c 6c65 7374 LexSmallest │ │ │ │ +00013290: 5465 726d 203d 3e20 3235 2020 2020 207c Term => 25 | │ │ │ │ +000132a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000132b0: 2020 2020 506f 696e 7473 203d 3e20 3020 Points => 0 │ │ │ │ +000132c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000132d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000132e0: 2020 2052 616e 646f 6d20 3d3e 2030 2020 Random => 0 │ │ │ │ +000132f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013310: 2020 5261 6e64 6f6d 4e6f 6e7a 6572 6f20 RandomNonzero │ │ │ │ +00013320: 3d3e 2030 2020 2020 2020 2020 7c0a 2b2d => 0 |.+- │ │ │ │ +00013330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +00013360: 3920 3a20 7065 656b 2053 7472 6174 6567 9 : peek Strateg │ │ │ │ +00013370: 7944 6566 6175 6c74 5769 7468 506f 696e yDefaultWithPoin │ │ │ │ +00013380: 7473 2020 2020 2020 2020 7c0a 7c20 2020 ts |.| │ │ │ │ +00013390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000133a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000133b0: 2020 2020 2020 2020 207c 0a7c 6f33 3920 |.|o39 │ │ │ │ +000133c0: 3d20 4f70 7469 6f6e 5461 626c 657b 4752 = OptionTable{GR │ │ │ │ +000133d0: 6576 4c65 784c 6172 6765 7374 203d 3e20 evLexLargest => │ │ │ │ +000133e0: 3020 2020 2020 207d 7c0a 7c20 2020 2020 0 }|.| │ │ │ │ +000133f0: 2020 2020 2020 2020 2020 2020 2047 5265 GRe │ │ │ │ +00013400: 764c 6578 536d 616c 6c65 7374 203d 3e20 vLexSmallest => │ │ │ │ +00013410: 3136 2020 2020 207c 0a7c 2020 2020 2020 16 |.| │ │ │ │ +00013420: 2020 2020 2020 2020 2020 2020 4752 6576 GRev │ │ │ │ +00013430: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00013440: 3d3e 2031 3620 7c0a 7c20 2020 2020 2020 => 16 |.| │ │ │ │ +00013450: 2020 2020 2020 2020 2020 204c 6578 4c61 LexLa │ │ │ │ +00013460: 7267 6573 7420 3d3e 2030 2020 2020 2020 rgest => 0 │ │ │ │ +00013470: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00013480: 2020 2020 2020 2020 2020 4c65 7853 6d61 LexSma │ │ │ │ +00013490: 6c6c 6573 7420 3d3e 2031 3620 2020 2020 llest => 16 │ │ │ │ +000134a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000134b0: 2020 2020 2020 2020 204c 6578 536d 616c LexSmal │ │ │ │ +000134c0: 6c65 7374 5465 726d 203d 3e20 3136 2020 lestTerm => 16 │ │ │ │ +000134d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000134e0: 2020 2020 2020 2020 506f 696e 7473 203d Points = │ │ │ │ +000134f0: 3e20 3332 2020 2020 2020 2020 2020 2020 > 32 │ │ │ │ +00013500: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013510: 2020 2020 2020 2052 616e 646f 6d20 3d3e Random => │ │ │ │ +00013520: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00013530: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013540: 2020 2020 2020 5261 6e64 6f6d 4e6f 6e7a RandomNonz │ │ │ │ +00013550: 6572 6f20 3d3e 2030 2020 2020 2020 2020 ero => 0 │ │ │ │ +00013560: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00013570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00013590: 0a7c 6934 3020 3a20 7065 656b 2053 7472 .|i40 : peek Str │ │ │ │ +000135a0: 6174 6567 7950 6f69 6e74 7320 2020 2020 ategyPoints │ │ │ │ +000135b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000135c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000135d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000135e0: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ -000135f0: 203d 3e20 3020 2020 2020 207c 0a7c 2020 => 0 |.| │ │ │ │ -00013600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013610: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ -00013620: 6572 6d20 3d3e 2030 2020 7c0a 7c20 2020 erm => 0 |.| │ │ │ │ -00013630: 2020 2020 2020 2020 2020 2020 2020 204c L │ │ │ │ -00013640: 6578 4c61 7267 6573 7420 3d3e 2030 2020 exLargest => 0 │ │ │ │ -00013650: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00013660: 2020 2020 2020 2020 2020 2020 2020 4c65 Le │ │ │ │ -00013670: 7853 6d61 6c6c 6573 7420 3d3e 2030 2020 xSmallest => 0 │ │ │ │ -00013680: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00013690: 2020 2020 2020 2020 2020 2020 204c 6578 Lex │ │ │ │ -000136a0: 536d 616c 6c65 7374 5465 726d 203d 3e20 SmallestTerm => │ │ │ │ -000136b0: 3020 2020 2020 207c 0a7c 2020 2020 2020 0 |.| │ │ │ │ -000136c0: 2020 2020 2020 2020 2020 2020 506f 696e Poin │ │ │ │ -000136d0: 7473 203d 3e20 3130 3020 2020 2020 2020 ts => 100 │ │ │ │ -000136e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000136f0: 2020 2020 2020 2020 2020 2052 616e 646f Rando │ │ │ │ -00013700: 6d20 3d3e 2030 2020 2020 2020 2020 2020 m => 0 │ │ │ │ -00013710: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00013720: 2020 2020 2020 2020 2020 5261 6e64 6f6d Random │ │ │ │ -00013730: 4e6f 6e7a 6572 6f20 3d3e 2030 2020 2020 Nonzero => 0 │ │ │ │ -00013740: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00013750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013770: 2d2d 2d2b 0a0a 5374 7261 7465 6779 4465 ---+..StrategyDe │ │ │ │ -00013780: 6661 756c 744e 6f6e 5261 6e64 6f6d 2069 faultNonRandom i │ │ │ │ -00013790: 7320 6c69 6b65 2053 7472 6174 6567 7944 s like StrategyD │ │ │ │ -000137a0: 6566 6175 6c74 2062 7574 2072 656d 6f76 efault but remov │ │ │ │ -000137b0: 6573 2072 616e 646f 6d20 7375 626d 6174 es random submat │ │ │ │ -000137c0: 7269 6365 730a 2877 6869 6368 2063 616e rices.(which can │ │ │ │ -000137d0: 2062 6520 7375 7270 7269 7369 6e67 6c79 be surprisingly │ │ │ │ -000137e0: 2062 656e 6566 6963 6961 6c20 696e 2073 beneficial in s │ │ │ │ -000137f0: 6f6d 6520 6361 7365 7329 2e0a 5374 7261 ome cases)..Stra │ │ │ │ -00013800: 7465 6779 4465 6661 756c 7457 6974 6850 tegyDefaultWithP │ │ │ │ -00013810: 6f69 6e74 7320 7265 6d6f 7665 7320 7261 oints removes ra │ │ │ │ -00013820: 6e64 6f6d 6e65 7373 2062 7574 2061 6464 ndomness but add │ │ │ │ -00013830: 7320 696e 2070 6f69 6e74 7320 696e 7374 s in points inst │ │ │ │ -00013840: 6561 642e 0a0a 4120 7761 726e 696e 6720 ead...A warning │ │ │ │ -00013850: 6f6e 2063 686f 6f73 6547 6f6f 644d 696e on chooseGoodMin │ │ │ │ -00013860: 6f72 733a 2020 5468 6520 7374 7261 7465 ors: The strate │ │ │ │ -00013870: 6769 6573 204c 6578 536d 616c 6c65 7374 gies LexSmallest │ │ │ │ -00013880: 2061 6e64 204c 6578 536d 616c 6c65 7374 and LexSmallest │ │ │ │ -00013890: 5465 726d 0a77 696c 6c20 7665 7279 2066 Term.will very f │ │ │ │ -000138a0: 7265 7175 656e 746c 7920 7265 7065 6174 requently repeat │ │ │ │ -000138b0: 6564 6c79 2063 686f 6f73 6520 7468 6520 edly choose the │ │ │ │ -000138c0: 7361 6d65 2073 7562 6d61 7472 6978 206f same submatrix o │ │ │ │ -000138d0: 6620 7468 6520 6769 7665 6e20 6d61 7472 f the given matr │ │ │ │ -000138e0: 6978 2e0a 4865 6e63 6520 6966 206f 6e65 ix..Hence if one │ │ │ │ -000138f0: 2074 7269 6573 2074 6f20 7275 6e20 6368 tries to run ch │ │ │ │ -00013900: 6f6f 7365 476f 6f64 4d69 6e6f 7273 2061 ooseGoodMinors a │ │ │ │ -00013910: 6e64 2063 686f 6f73 6520 746f 6f20 6d61 nd choose too ma │ │ │ │ -00013920: 6e79 206d 696e 6f72 7320 7769 7468 2073 ny minors with s │ │ │ │ -00013930: 7563 680a 6120 7374 7261 7465 6779 2c20 uch.a strategy, │ │ │ │ -00013940: 6f6e 6520 6361 6e20 6765 7420 696e 746f one can get into │ │ │ │ -00013950: 2061 206c 6f6e 6720 6c6f 6f70 2028 7468 a long loop (th │ │ │ │ -00013960: 6520 6675 6e63 7469 6f6e 2067 6976 6520 e function give │ │ │ │ -00013970: 7570 2065 7665 6e74 7561 6c6c 792c 2062 up eventually, b │ │ │ │ -00013980: 7574 0a6f 6e6c 7920 6166 7465 7220 646f ut.only after do │ │ │ │ -00013990: 696e 6720 7761 7920 746f 6f20 6d75 6368 ing way too much │ │ │ │ -000139a0: 2077 6f72 6b29 2e20 2054 6865 2047 5265 work). The GRe │ │ │ │ -000139b0: 764c 6578 2073 7472 6174 6567 6965 7320 vLex strategies │ │ │ │ -000139c0: 7065 7269 6f64 6963 616c 6c79 0a74 656d periodically.tem │ │ │ │ -000139d0: 706f 7261 7269 6c79 2063 6861 6e67 6520 porarily change │ │ │ │ -000139e0: 7468 6520 756e 6465 726c 7969 6e67 206d the underlying m │ │ │ │ -000139f0: 6174 7269 7820 746f 2061 766f 6964 2074 atrix to avoid t │ │ │ │ -00013a00: 6869 7320 736f 7274 206f 6620 6c6f 6f70 his sort of loop │ │ │ │ -00013a10: 2e0a 0a50 6f69 6e74 733a 204e 6f74 6963 ...Points: Notic │ │ │ │ -00013a20: 6520 7468 6174 2053 7472 6174 6567 7920 e that Strategy │ │ │ │ -00013a30: 3d3e 2053 7472 6174 6567 7950 6f69 6e74 => StrategyPoint │ │ │ │ -00013a40: 7320 616e 6420 5374 7261 7465 6779 203d s and Strategy = │ │ │ │ -00013a50: 3e20 506f 696e 7473 2064 6f20 7468 650a > Points do the. │ │ │ │ -00013a60: 7361 6d65 2074 6869 6e67 2e20 5765 2062 same thing. We b │ │ │ │ -00013a70: 7269 6566 6c79 2064 6573 6372 6962 6520 riefly describe │ │ │ │ -00013a80: 686f 7720 6368 6f6f 7365 476f 6f64 4d69 how chooseGoodMi │ │ │ │ -00013a90: 6e6f 7273 2069 6e74 6572 6163 7473 2077 nors interacts w │ │ │ │ -00013aa0: 6974 6820 506f 696e 7473 2e0a 496e 6465 ith Points..Inde │ │ │ │ -00013ab0: 6564 2050 6f69 6e74 7320 666f 726d 7320 ed Points forms │ │ │ │ -00013ac0: 7468 6520 6964 6561 6c20 6f66 206d 696e the ideal of min │ │ │ │ -00013ad0: 6f72 7320 636f 6d70 7574 6564 2073 6f20 ors computed so │ │ │ │ -00013ae0: 6661 7220 2870 6c75 7320 244a 2429 2c20 far (plus $J$), │ │ │ │ -00013af0: 6669 6e64 7320 610a 706f 696e 7420 7768 finds a.point wh │ │ │ │ -00013b00: 6572 6520 7468 6174 2069 6465 616c 2076 ere that ideal v │ │ │ │ -00013b10: 616e 6973 6865 7320 2877 6869 6368 2063 anishes (which c │ │ │ │ -00013b20: 616e 2062 6520 736c 6f77 292c 2065 7661 an be slow), eva │ │ │ │ -00013b30: 6c75 6174 6573 2074 6865 206d 6174 7269 luates the matri │ │ │ │ -00013b40: 7820 244d 240a 6174 2074 6861 7420 706f x $M$.at that po │ │ │ │ -00013b50: 696e 742c 2061 6e64 2074 6865 6e20 6669 int, and then fi │ │ │ │ -00013b60: 6e61 6c6c 7920 636f 6d70 7574 6573 2074 nally computes t │ │ │ │ -00013b70: 6865 2063 6f72 7265 7370 6f6e 6469 6e67 he corresponding │ │ │ │ -00013b80: 2064 6574 6572 6d69 6e61 6e74 206f 6620 determinant of │ │ │ │ -00013b90: 7468 650a 7375 626d 6174 7269 782e 2020 the.submatrix. │ │ │ │ -00013ba0: 5468 6973 2073 7562 6d61 7472 6978 2077 This submatrix w │ │ │ │ -00013bb0: 696c 6c20 616c 7761 7973 2070 726f 6475 ill always produ │ │ │ │ -00013bc0: 6365 2061 206d 696e 6f72 2077 6869 6368 ce a minor which │ │ │ │ -00013bd0: 2073 6872 696e 6b73 206f 7572 0a76 616e shrinks our.van │ │ │ │ -00013be0: 6973 6869 6e67 206c 6f63 7573 2e0a 0a42 ishing locus...B │ │ │ │ -00013bf0: 7920 6465 6661 756c 742c 2074 6865 2050 y default, the P │ │ │ │ -00013c00: 6f69 6e74 7320 7374 7261 7465 6779 2061 oints strategy a │ │ │ │ -00013c10: 6374 7561 6c6c 7920 6669 6e64 7320 6765 ctually finds ge │ │ │ │ -00013c20: 6f6d 6574 7269 6320 706f 696e 7473 2e20 ometric points. │ │ │ │ -00013c30: 2057 6869 6368 2063 616e 2062 650a 736f Which can be.so │ │ │ │ -00013c40: 6d65 7469 6d65 7320 736c 6f77 6572 2028 metimes slower ( │ │ │ │ -00013c50: 6275 7420 7768 6963 6820 6172 6520 616c but which are al │ │ │ │ -00013c60: 6d6f 7374 2063 6572 7461 696e 2074 6f20 most certain to │ │ │ │ -00013c70: 6578 6973 742c 2061 6e64 2061 7265 206c exist, and are l │ │ │ │ -00013c80: 6573 7320 6c69 6b65 6c79 2074 6f0a 6861 ess likely to.ha │ │ │ │ -00013c90: 6e67 2069 6620 7468 6520 6675 6e63 7469 ng if the functi │ │ │ │ -00013ca0: 6f6e 2068 6173 2074 726f 7562 6c65 2066 on has trouble f │ │ │ │ -00013cb0: 696e 6469 6e67 2061 2070 6f69 6e74 292e inding a point). │ │ │ │ -00013cc0: 2020 466f 7220 696e 7374 616e 6365 2c20 For instance, │ │ │ │ -00013cd0: 7765 2063 616e 0a63 6f6e 7472 6f6c 2074 we can.control t │ │ │ │ -00013ce0: 6861 7420 6173 2066 6f6c 6c6f 7773 2e0a hat as follows.. │ │ │ │ -00013cf0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00013d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00013d40: 0a7c 6934 3120 3a20 7074 7353 7472 6174 .|i41 : ptsStrat │ │ │ │ -00013d50: 4765 6f6d 6574 7269 6320 3d20 6e65 7720 Geometric = new │ │ │ │ -00013d60: 4f70 7469 6f6e 5461 626c 6520 6672 6f6d OptionTable from │ │ │ │ -00013d70: 2028 6f70 7469 6f6e 7320 2020 2020 2020 (options │ │ │ │ -00013d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00013d90: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ -00013da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00013de0: 0a7c 6368 6f6f 7365 476f 6f64 4d69 6e6f .|chooseGoodMino │ │ │ │ -00013df0: 7273 2923 506f 696e 744f 7074 696f 6e73 rs)#PointOptions │ │ │ │ -00013e00: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -00013e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00013e30: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00013e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00013e80: 0a7c 6934 3220 3a20 7074 7353 7472 6174 .|i42 : ptsStrat │ │ │ │ -00013e90: 4765 6f6d 6574 7269 6323 4578 7465 6e64 Geometric#Extend │ │ │ │ -00013ea0: 4669 656c 6420 2d2d 6c6f 6f6b 2061 7420 Field --look at │ │ │ │ -00013eb0: 7468 6520 6465 6661 756c 7420 7661 6c75 the default valu │ │ │ │ -00013ec0: 6520 2020 2020 2020 2020 2020 2020 207c e | │ │ │ │ -00013ed0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00013ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013f10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00013f20: 0a7c 6f34 3220 3d20 7472 7565 2020 2020 .|o42 = true │ │ │ │ +000135e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000135f0: 6f34 3020 3d20 4f70 7469 6f6e 5461 626c o40 = OptionTabl │ │ │ │ +00013600: 657b 4752 6576 4c65 784c 6172 6765 7374 e{GRevLexLargest │ │ │ │ +00013610: 203d 3e20 3020 2020 2020 7d20 7c0a 7c20 => 0 } |.| │ │ │ │ +00013620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013630: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +00013640: 203d 3e20 3020 2020 2020 207c 0a7c 2020 => 0 |.| │ │ │ │ +00013650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013660: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ +00013670: 6572 6d20 3d3e 2030 2020 7c0a 7c20 2020 erm => 0 |.| │ │ │ │ +00013680: 2020 2020 2020 2020 2020 2020 2020 204c L │ │ │ │ +00013690: 6578 4c61 7267 6573 7420 3d3e 2030 2020 exLargest => 0 │ │ │ │ +000136a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000136b0: 2020 2020 2020 2020 2020 2020 2020 4c65 Le │ │ │ │ +000136c0: 7853 6d61 6c6c 6573 7420 3d3e 2030 2020 xSmallest => 0 │ │ │ │ +000136d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000136e0: 2020 2020 2020 2020 2020 2020 204c 6578 Lex │ │ │ │ +000136f0: 536d 616c 6c65 7374 5465 726d 203d 3e20 SmallestTerm => │ │ │ │ +00013700: 3020 2020 2020 207c 0a7c 2020 2020 2020 0 |.| │ │ │ │ +00013710: 2020 2020 2020 2020 2020 2020 506f 696e Poin │ │ │ │ +00013720: 7473 203d 3e20 3130 3020 2020 2020 2020 ts => 100 │ │ │ │ +00013730: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00013740: 2020 2020 2020 2020 2020 2052 616e 646f Rando │ │ │ │ +00013750: 6d20 3d3e 2030 2020 2020 2020 2020 2020 m => 0 │ │ │ │ +00013760: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00013770: 2020 2020 2020 2020 2020 5261 6e64 6f6d Random │ │ │ │ +00013780: 4e6f 6e7a 6572 6f20 3d3e 2030 2020 2020 Nonzero => 0 │ │ │ │ +00013790: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000137a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000137b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000137c0: 2d2d 2d2b 0a0a 5374 7261 7465 6779 4465 ---+..StrategyDe │ │ │ │ +000137d0: 6661 756c 744e 6f6e 5261 6e64 6f6d 2069 faultNonRandom i │ │ │ │ +000137e0: 7320 6c69 6b65 2053 7472 6174 6567 7944 s like StrategyD │ │ │ │ +000137f0: 6566 6175 6c74 2062 7574 2072 656d 6f76 efault but remov │ │ │ │ +00013800: 6573 2072 616e 646f 6d20 7375 626d 6174 es random submat │ │ │ │ +00013810: 7269 6365 730a 2877 6869 6368 2063 616e rices.(which can │ │ │ │ +00013820: 2062 6520 7375 7270 7269 7369 6e67 6c79 be surprisingly │ │ │ │ +00013830: 2062 656e 6566 6963 6961 6c20 696e 2073 beneficial in s │ │ │ │ +00013840: 6f6d 6520 6361 7365 7329 2e0a 5374 7261 ome cases)..Stra │ │ │ │ +00013850: 7465 6779 4465 6661 756c 7457 6974 6850 tegyDefaultWithP │ │ │ │ +00013860: 6f69 6e74 7320 7265 6d6f 7665 7320 7261 oints removes ra │ │ │ │ +00013870: 6e64 6f6d 6e65 7373 2062 7574 2061 6464 ndomness but add │ │ │ │ +00013880: 7320 696e 2070 6f69 6e74 7320 696e 7374 s in points inst │ │ │ │ +00013890: 6561 642e 0a0a 4120 7761 726e 696e 6720 ead...A warning │ │ │ │ +000138a0: 6f6e 2063 686f 6f73 6547 6f6f 644d 696e on chooseGoodMin │ │ │ │ +000138b0: 6f72 733a 2020 5468 6520 7374 7261 7465 ors: The strate │ │ │ │ +000138c0: 6769 6573 204c 6578 536d 616c 6c65 7374 gies LexSmallest │ │ │ │ +000138d0: 2061 6e64 204c 6578 536d 616c 6c65 7374 and LexSmallest │ │ │ │ +000138e0: 5465 726d 0a77 696c 6c20 7665 7279 2066 Term.will very f │ │ │ │ +000138f0: 7265 7175 656e 746c 7920 7265 7065 6174 requently repeat │ │ │ │ +00013900: 6564 6c79 2063 686f 6f73 6520 7468 6520 edly choose the │ │ │ │ +00013910: 7361 6d65 2073 7562 6d61 7472 6978 206f same submatrix o │ │ │ │ +00013920: 6620 7468 6520 6769 7665 6e20 6d61 7472 f the given matr │ │ │ │ +00013930: 6978 2e0a 4865 6e63 6520 6966 206f 6e65 ix..Hence if one │ │ │ │ +00013940: 2074 7269 6573 2074 6f20 7275 6e20 6368 tries to run ch │ │ │ │ +00013950: 6f6f 7365 476f 6f64 4d69 6e6f 7273 2061 ooseGoodMinors a │ │ │ │ +00013960: 6e64 2063 686f 6f73 6520 746f 6f20 6d61 nd choose too ma │ │ │ │ +00013970: 6e79 206d 696e 6f72 7320 7769 7468 2073 ny minors with s │ │ │ │ +00013980: 7563 680a 6120 7374 7261 7465 6779 2c20 uch.a strategy, │ │ │ │ +00013990: 6f6e 6520 6361 6e20 6765 7420 696e 746f one can get into │ │ │ │ +000139a0: 2061 206c 6f6e 6720 6c6f 6f70 2028 7468 a long loop (th │ │ │ │ +000139b0: 6520 6675 6e63 7469 6f6e 2067 6976 6520 e function give │ │ │ │ +000139c0: 7570 2065 7665 6e74 7561 6c6c 792c 2062 up eventually, b │ │ │ │ +000139d0: 7574 0a6f 6e6c 7920 6166 7465 7220 646f ut.only after do │ │ │ │ +000139e0: 696e 6720 7761 7920 746f 6f20 6d75 6368 ing way too much │ │ │ │ +000139f0: 2077 6f72 6b29 2e20 2054 6865 2047 5265 work). The GRe │ │ │ │ +00013a00: 764c 6578 2073 7472 6174 6567 6965 7320 vLex strategies │ │ │ │ +00013a10: 7065 7269 6f64 6963 616c 6c79 0a74 656d periodically.tem │ │ │ │ +00013a20: 706f 7261 7269 6c79 2063 6861 6e67 6520 porarily change │ │ │ │ +00013a30: 7468 6520 756e 6465 726c 7969 6e67 206d the underlying m │ │ │ │ +00013a40: 6174 7269 7820 746f 2061 766f 6964 2074 atrix to avoid t │ │ │ │ +00013a50: 6869 7320 736f 7274 206f 6620 6c6f 6f70 his sort of loop │ │ │ │ +00013a60: 2e0a 0a50 6f69 6e74 733a 204e 6f74 6963 ...Points: Notic │ │ │ │ +00013a70: 6520 7468 6174 2053 7472 6174 6567 7920 e that Strategy │ │ │ │ +00013a80: 3d3e 2053 7472 6174 6567 7950 6f69 6e74 => StrategyPoint │ │ │ │ +00013a90: 7320 616e 6420 5374 7261 7465 6779 203d s and Strategy = │ │ │ │ +00013aa0: 3e20 506f 696e 7473 2064 6f20 7468 650a > Points do the. │ │ │ │ +00013ab0: 7361 6d65 2074 6869 6e67 2e20 5765 2062 same thing. We b │ │ │ │ +00013ac0: 7269 6566 6c79 2064 6573 6372 6962 6520 riefly describe │ │ │ │ +00013ad0: 686f 7720 6368 6f6f 7365 476f 6f64 4d69 how chooseGoodMi │ │ │ │ +00013ae0: 6e6f 7273 2069 6e74 6572 6163 7473 2077 nors interacts w │ │ │ │ +00013af0: 6974 6820 506f 696e 7473 2e0a 496e 6465 ith Points..Inde │ │ │ │ +00013b00: 6564 2050 6f69 6e74 7320 666f 726d 7320 ed Points forms │ │ │ │ +00013b10: 7468 6520 6964 6561 6c20 6f66 206d 696e the ideal of min │ │ │ │ +00013b20: 6f72 7320 636f 6d70 7574 6564 2073 6f20 ors computed so │ │ │ │ +00013b30: 6661 7220 2870 6c75 7320 244a 2429 2c20 far (plus $J$), │ │ │ │ +00013b40: 6669 6e64 7320 610a 706f 696e 7420 7768 finds a.point wh │ │ │ │ +00013b50: 6572 6520 7468 6174 2069 6465 616c 2076 ere that ideal v │ │ │ │ +00013b60: 616e 6973 6865 7320 2877 6869 6368 2063 anishes (which c │ │ │ │ +00013b70: 616e 2062 6520 736c 6f77 292c 2065 7661 an be slow), eva │ │ │ │ +00013b80: 6c75 6174 6573 2074 6865 206d 6174 7269 luates the matri │ │ │ │ +00013b90: 7820 244d 240a 6174 2074 6861 7420 706f x $M$.at that po │ │ │ │ +00013ba0: 696e 742c 2061 6e64 2074 6865 6e20 6669 int, and then fi │ │ │ │ +00013bb0: 6e61 6c6c 7920 636f 6d70 7574 6573 2074 nally computes t │ │ │ │ +00013bc0: 6865 2063 6f72 7265 7370 6f6e 6469 6e67 he corresponding │ │ │ │ +00013bd0: 2064 6574 6572 6d69 6e61 6e74 206f 6620 determinant of │ │ │ │ +00013be0: 7468 650a 7375 626d 6174 7269 782e 2020 the.submatrix. │ │ │ │ +00013bf0: 5468 6973 2073 7562 6d61 7472 6978 2077 This submatrix w │ │ │ │ +00013c00: 696c 6c20 616c 7761 7973 2070 726f 6475 ill always produ │ │ │ │ +00013c10: 6365 2061 206d 696e 6f72 2077 6869 6368 ce a minor which │ │ │ │ +00013c20: 2073 6872 696e 6b73 206f 7572 0a76 616e shrinks our.van │ │ │ │ +00013c30: 6973 6869 6e67 206c 6f63 7573 2e0a 0a42 ishing locus...B │ │ │ │ +00013c40: 7920 6465 6661 756c 742c 2074 6865 2050 y default, the P │ │ │ │ +00013c50: 6f69 6e74 7320 7374 7261 7465 6779 2061 oints strategy a │ │ │ │ +00013c60: 6374 7561 6c6c 7920 6669 6e64 7320 6765 ctually finds ge │ │ │ │ +00013c70: 6f6d 6574 7269 6320 706f 696e 7473 2e20 ometric points. │ │ │ │ +00013c80: 2057 6869 6368 2063 616e 2062 650a 736f Which can be.so │ │ │ │ +00013c90: 6d65 7469 6d65 7320 736c 6f77 6572 2028 metimes slower ( │ │ │ │ +00013ca0: 6275 7420 7768 6963 6820 6172 6520 616c but which are al │ │ │ │ +00013cb0: 6d6f 7374 2063 6572 7461 696e 2074 6f20 most certain to │ │ │ │ +00013cc0: 6578 6973 742c 2061 6e64 2061 7265 206c exist, and are l │ │ │ │ +00013cd0: 6573 7320 6c69 6b65 6c79 2074 6f0a 6861 ess likely to.ha │ │ │ │ +00013ce0: 6e67 2069 6620 7468 6520 6675 6e63 7469 ng if the functi │ │ │ │ +00013cf0: 6f6e 2068 6173 2074 726f 7562 6c65 2066 on has trouble f │ │ │ │ +00013d00: 696e 6469 6e67 2061 2070 6f69 6e74 292e inding a point). │ │ │ │ +00013d10: 2020 466f 7220 696e 7374 616e 6365 2c20 For instance, │ │ │ │ +00013d20: 7765 2063 616e 0a63 6f6e 7472 6f6c 2074 we can.control t │ │ │ │ +00013d30: 6861 7420 6173 2066 6f6c 6c6f 7773 2e0a hat as follows.. │ │ │ │ +00013d40: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00013d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00013d90: 0a7c 6934 3120 3a20 7074 7353 7472 6174 .|i41 : ptsStrat │ │ │ │ +00013da0: 4765 6f6d 6574 7269 6320 3d20 6e65 7720 Geometric = new │ │ │ │ +00013db0: 4f70 7469 6f6e 5461 626c 6520 6672 6f6d OptionTable from │ │ │ │ +00013dc0: 2028 6f70 7469 6f6e 7320 2020 2020 2020 (options │ │ │ │ +00013dd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00013de0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00013df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00013e30: 0a7c 6368 6f6f 7365 476f 6f64 4d69 6e6f .|chooseGoodMino │ │ │ │ +00013e40: 7273 2923 506f 696e 744f 7074 696f 6e73 rs)#PointOptions │ │ │ │ +00013e50: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00013e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013e70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00013e80: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00013e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00013ed0: 0a7c 6934 3220 3a20 7074 7353 7472 6174 .|i42 : ptsStrat │ │ │ │ +00013ee0: 4765 6f6d 6574 7269 6323 4578 7465 6e64 Geometric#Extend │ │ │ │ +00013ef0: 4669 656c 6420 2d2d 6c6f 6f6b 2061 7420 Field --look at │ │ │ │ +00013f00: 7468 6520 6465 6661 756c 7420 7661 6c75 the default valu │ │ │ │ +00013f10: 6520 2020 2020 2020 2020 2020 2020 207c e | │ │ │ │ +00013f20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00013f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013f60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00013f70: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00013f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00013fc0: 0a7c 6934 3320 3a20 7469 6d65 2064 696d .|i43 : time dim │ │ │ │ -00013fd0: 2028 4a20 2b20 6368 6f6f 7365 476f 6f64 (J + chooseGood │ │ │ │ -00013fe0: 4d69 6e6f 7273 2831 2c20 362c 204d 2c20 Minors(1, 6, M, │ │ │ │ -00013ff0: 4a2c 2053 7472 6174 6567 793d 3e50 6f69 J, Strategy=>Poi │ │ │ │ -00014000: 6e74 732c 2020 2020 2020 2020 2020 207c nts, | │ │ │ │ -00014010: 0a7c 202d 2d20 7573 6564 2030 2e34 3935 .| -- used 0.495 │ │ │ │ -00014020: 3035 3773 2028 6370 7529 3b20 302e 3436 057s (cpu); 0.46 │ │ │ │ -00014030: 3132 3637 7320 2874 6872 6561 6429 3b20 1267s (thread); │ │ │ │ -00014040: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ -00014050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014060: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013f70: 0a7c 6f34 3220 3d20 7472 7565 2020 2020 .|o42 = true │ │ │ │ +00013f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00013fc0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00013fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00014010: 0a7c 6934 3320 3a20 7469 6d65 2064 696d .|i43 : time dim │ │ │ │ +00014020: 2028 4a20 2b20 6368 6f6f 7365 476f 6f64 (J + chooseGood │ │ │ │ +00014030: 4d69 6e6f 7273 2831 2c20 362c 204d 2c20 Minors(1, 6, M, │ │ │ │ +00014040: 4a2c 2053 7472 6174 6567 793d 3e50 6f69 J, Strategy=>Poi │ │ │ │ +00014050: 6e74 732c 2020 2020 2020 2020 2020 207c nts, | │ │ │ │ +00014060: 0a7c 202d 2d20 7573 6564 2030 2e37 3735 .| -- used 0.775 │ │ │ │ +00014070: 3430 3473 2028 6370 7529 3b20 302e 3632 404s (cpu); 0.62 │ │ │ │ +00014080: 3738 3135 7320 2874 6872 6561 6429 3b20 7815s (thread); │ │ │ │ +00014090: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 000140a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000140b0: 0a7c 6f34 3320 3d20 3220 2020 2020 2020 .|o43 = 2 │ │ │ │ +000140b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000140c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000140d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000140e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000140f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014100: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ -00014110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00014150: 0a7c 506f 696e 744f 7074 696f 6e73 3d3e .|PointOptions=> │ │ │ │ -00014160: 7074 7353 7472 6174 4765 6f6d 6574 7269 ptsStratGeometri │ │ │ │ -00014170: 6329 2920 2020 2020 2020 2020 2020 2020 c)) │ │ │ │ -00014180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014190: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000141a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -000141b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000141c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000141d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000141e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000141f0: 0a7c 6934 3420 3a20 7074 7353 7472 6174 .|i44 : ptsStrat │ │ │ │ -00014200: 5261 7469 6f6e 616c 203d 2070 7473 5374 Rational = ptsSt │ │ │ │ -00014210: 7261 7447 656f 6d65 7472 6963 2b2b 7b45 ratGeometric++{E │ │ │ │ -00014220: 7874 656e 6446 6965 6c64 3d3e 6661 6c73 xtendField=>fals │ │ │ │ -00014230: 657d 202d 2d63 6861 6e67 6520 2020 207c e} --change | │ │ │ │ -00014240: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014280: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014290: 0a7c 6f34 3420 3d20 4f70 7469 6f6e 5461 .|o44 = OptionTa │ │ │ │ -000142a0: 626c 657b 4465 636f 6d70 6f73 6974 696f ble{Decompositio │ │ │ │ -000142b0: 6e53 7472 6174 6567 7920 3d3e 2044 6563 nStrategy => Dec │ │ │ │ -000142c0: 6f6d 706f 7365 7d20 2020 2020 2020 2020 ompose} │ │ │ │ +00014100: 0a7c 6f34 3320 3d20 3220 2020 2020 2020 .|o43 = 2 │ │ │ │ +00014110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00014150: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00014160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000141a0: 0a7c 506f 696e 744f 7074 696f 6e73 3d3e .|PointOptions=> │ │ │ │ +000141b0: 7074 7353 7472 6174 4765 6f6d 6574 7269 ptsStratGeometri │ │ │ │ +000141c0: 6329 2920 2020 2020 2020 2020 2020 2020 c)) │ │ │ │ +000141d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000141e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000141f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00014240: 0a7c 6934 3420 3a20 7074 7353 7472 6174 .|i44 : ptsStrat │ │ │ │ +00014250: 5261 7469 6f6e 616c 203d 2070 7473 5374 Rational = ptsSt │ │ │ │ +00014260: 7261 7447 656f 6d65 7472 6963 2b2b 7b45 ratGeometric++{E │ │ │ │ +00014270: 7874 656e 6446 6965 6c64 3d3e 6661 6c73 xtendField=>fals │ │ │ │ +00014280: 657d 202d 2d63 6861 6e67 6520 2020 207c e} --change | │ │ │ │ +00014290: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000142a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000142b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000142c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000142d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000142e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000142f0: 2020 2020 4469 6d65 6e73 696f 6e46 756e DimensionFun │ │ │ │ -00014300: 6374 696f 6e20 3d3e 2064 696d 2020 2020 ction => dim │ │ │ │ -00014310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000142e0: 0a7c 6f34 3420 3d20 4f70 7469 6f6e 5461 .|o44 = OptionTa │ │ │ │ +000142f0: 626c 657b 4465 636f 6d70 6f73 6974 696f ble{Decompositio │ │ │ │ +00014300: 6e53 7472 6174 6567 7920 3d3e 2044 6563 nStrategy => Dec │ │ │ │ +00014310: 6f6d 706f 7365 7d20 2020 2020 2020 2020 ompose} │ │ │ │ 00014320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00014330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014340: 2020 2020 4578 7465 6e64 4669 656c 6420 ExtendField │ │ │ │ -00014350: 3d3e 2066 616c 7365 2020 2020 2020 2020 => false │ │ │ │ +00014340: 2020 2020 4469 6d65 6e73 696f 6e46 756e DimensionFun │ │ │ │ +00014350: 6374 696f 6e20 3d3e 2064 696d 2020 2020 ction => dim │ │ │ │ 00014360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00014380: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014390: 2020 2020 486f 6d6f 6765 6e65 6f75 7320 Homogeneous │ │ │ │ +00014390: 2020 2020 4578 7465 6e64 4669 656c 6420 ExtendField │ │ │ │ 000143a0: 3d3e 2066 616c 7365 2020 2020 2020 2020 => false │ │ │ │ 000143b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000143c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000143d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000143e0: 2020 2020 4e75 6d54 6872 6561 6473 546f NumThreadsTo │ │ │ │ -000143f0: 5573 6520 3d3e 2031 2020 2020 2020 2020 Use => 1 │ │ │ │ +000143e0: 2020 2020 486f 6d6f 6765 6e65 6f75 7320 Homogeneous │ │ │ │ +000143f0: 3d3e 2066 616c 7365 2020 2020 2020 2020 => false │ │ │ │ 00014400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00014420: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014430: 2020 2020 506f 696e 7443 6865 636b 4174 PointCheckAt │ │ │ │ -00014440: 7465 6d70 7473 203d 3e20 3020 2020 2020 tempts => 0 │ │ │ │ +00014430: 2020 2020 4e75 6d54 6872 6561 6473 546f NumThreadsTo │ │ │ │ +00014440: 5573 6520 3d3e 2031 2020 2020 2020 2020 Use => 1 │ │ │ │ 00014450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014460: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00014470: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014480: 2020 2020 5265 706c 6163 656d 656e 7420 Replacement │ │ │ │ -00014490: 3d3e 2042 696e 6f6d 6961 6c20 2020 2020 => Binomial │ │ │ │ +00014480: 2020 2020 506f 696e 7443 6865 636b 4174 PointCheckAt │ │ │ │ +00014490: 7465 6d70 7473 203d 3e20 3020 2020 2020 tempts => 0 │ │ │ │ 000144a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000144c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000144d0: 2020 2020 5374 7261 7465 6779 203d 3e20 Strategy => │ │ │ │ -000144e0: 4465 6661 756c 7420 2020 2020 2020 2020 Default │ │ │ │ +000144d0: 2020 2020 5265 706c 6163 656d 656e 7420 Replacement │ │ │ │ +000144e0: 3d3e 2042 696e 6f6d 6961 6c20 2020 2020 => Binomial │ │ │ │ 000144f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00014510: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014520: 2020 2020 5665 7262 6f73 6520 3d3e 2066 Verbose => f │ │ │ │ -00014530: 616c 7365 2020 2020 2020 2020 2020 2020 alse │ │ │ │ +00014520: 2020 2020 5374 7261 7465 6779 203d 3e20 Strategy => │ │ │ │ +00014530: 4465 6661 756c 7420 2020 2020 2020 2020 Default │ │ │ │ 00014540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014550: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00014560: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014570: 2020 2020 5665 7262 6f73 6520 3d3e 2066 Verbose => f │ │ │ │ +00014580: 616c 7365 2020 2020 2020 2020 2020 2020 alse │ │ │ │ 00014590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000145b0: 0a7c 6f34 3420 3a20 4f70 7469 6f6e 5461 .|o44 : OptionTa │ │ │ │ -000145c0: 626c 6520 2020 2020 2020 2020 2020 2020 ble │ │ │ │ +000145b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000145c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014600: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ -00014610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00014650: 0a7c 7468 6174 2076 616c 7565 2020 2020 .|that value │ │ │ │ -00014660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014690: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000146a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -000146b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000146c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000146d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000146e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000146f0: 0a7c 6934 3520 3a20 7074 7353 7472 6174 .|i45 : ptsStrat │ │ │ │ -00014700: 5261 7469 6f6e 616c 2e45 7874 656e 6446 Rational.ExtendF │ │ │ │ -00014710: 6965 6c64 202d 2d6c 6f6f 6b20 6174 206f ield --look at o │ │ │ │ -00014720: 7572 2063 6861 6e67 6564 2076 616c 7565 ur changed value │ │ │ │ -00014730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014740: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014600: 0a7c 6f34 3420 3a20 4f70 7469 6f6e 5461 .|o44 : OptionTa │ │ │ │ +00014610: 626c 6520 2020 2020 2020 2020 2020 2020 ble │ │ │ │ +00014620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014640: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00014650: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00014660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000146a0: 0a7c 7468 6174 2076 616c 7565 2020 2020 .|that value │ │ │ │ +000146b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000146c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000146d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000146e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000146f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00014740: 0a7c 6934 3520 3a20 7074 7353 7472 6174 .|i45 : ptsStrat │ │ │ │ +00014750: 5261 7469 6f6e 616c 2e45 7874 656e 6446 Rational.ExtendF │ │ │ │ +00014760: 6965 6c64 202d 2d6c 6f6f 6b20 6174 206f ield --look at o │ │ │ │ +00014770: 7572 2063 6861 6e67 6564 2076 616c 7565 ur changed value │ │ │ │ 00014780: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014790: 0a7c 6f34 3520 3d20 6661 6c73 6520 2020 .|o45 = false │ │ │ │ +00014790: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000147a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000147e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -000147f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00014830: 0a7c 6934 3620 3a20 7469 6d65 2064 696d .|i46 : time dim │ │ │ │ -00014840: 2028 4a20 2b20 6368 6f6f 7365 476f 6f64 (J + chooseGood │ │ │ │ -00014850: 4d69 6e6f 7273 2831 2c20 362c 204d 2c20 Minors(1, 6, M, │ │ │ │ -00014860: 4a2c 2053 7472 6174 6567 793d 3e50 6f69 J, Strategy=>Poi │ │ │ │ -00014870: 6e74 732c 2020 2020 2020 2020 2020 207c nts, | │ │ │ │ -00014880: 0a7c 202d 2d20 7573 6564 2030 2e35 3132 .| -- used 0.512 │ │ │ │ -00014890: 3132 3773 2028 6370 7529 3b20 302e 3339 127s (cpu); 0.39 │ │ │ │ -000148a0: 3038 3936 7320 2874 6872 6561 6429 3b20 0896s (thread); │ │ │ │ -000148b0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ -000148c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000148d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000148e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000148f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000147e0: 0a7c 6f34 3520 3d20 6661 6c73 6520 2020 .|o45 = false │ │ │ │ +000147f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014820: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00014830: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00014880: 0a7c 6934 3620 3a20 7469 6d65 2064 696d .|i46 : time dim │ │ │ │ +00014890: 2028 4a20 2b20 6368 6f6f 7365 476f 6f64 (J + chooseGood │ │ │ │ +000148a0: 4d69 6e6f 7273 2831 2c20 362c 204d 2c20 Minors(1, 6, M, │ │ │ │ +000148b0: 4a2c 2053 7472 6174 6567 793d 3e50 6f69 J, Strategy=>Poi │ │ │ │ +000148c0: 6e74 732c 2020 2020 2020 2020 2020 207c nts, | │ │ │ │ +000148d0: 0a7c 202d 2d20 7573 6564 2030 2e35 3235 .| -- used 0.525 │ │ │ │ +000148e0: 3839 3573 2028 6370 7529 3b20 302e 3435 895s (cpu); 0.45 │ │ │ │ +000148f0: 3338 3231 7320 2874 6872 6561 6429 3b20 3821s (thread); │ │ │ │ +00014900: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 00014910: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014920: 0a7c 6f34 3620 3d20 3220 2020 2020 2020 .|o46 = 2 │ │ │ │ +00014920: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00014930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014960: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014970: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ -00014980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000149a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000149b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000149c0: 0a7c 506f 696e 744f 7074 696f 6e73 3d3e .|PointOptions=> │ │ │ │ -000149d0: 7074 7353 7472 6174 5261 7469 6f6e 616c ptsStratRational │ │ │ │ -000149e0: 2929 2020 2020 2020 2020 2020 2020 2020 )) │ │ │ │ -000149f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014a00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014a10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00014a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00014a60: 0a0a 4f74 6865 7220 6f70 7469 6f6e 7320 ..Other options │ │ │ │ -00014a70: 6d61 7920 616c 736f 2062 6520 7061 7373 may also be pass │ │ │ │ -00014a80: 6564 2074 6f20 7468 6520 2a6e 6f74 6520 ed to the *note │ │ │ │ -00014a90: 5261 6e64 6f6d 506f 696e 7473 3a20 2852 RandomPoints: (R │ │ │ │ -00014aa0: 616e 646f 6d50 6f69 6e74 7329 546f 702c andomPoints)Top, │ │ │ │ -00014ab0: 0a70 6163 6b61 6765 2076 6961 2074 6865 .package via the │ │ │ │ -00014ac0: 202a 6e6f 7465 2050 6f69 6e74 4f70 7469 *note PointOpti │ │ │ │ -00014ad0: 6f6e 733a 2050 6f69 6e74 4f70 7469 6f6e ons: PointOption │ │ │ │ -00014ae0: 732c 206f 7074 696f 6e2e 0a0a 7265 6775 s, option...regu │ │ │ │ -00014af0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -00014b00: 3a20 2049 7420 6973 2072 6561 736f 6e61 : It is reasona │ │ │ │ -00014b10: 626c 6520 746f 2074 6869 6e6b 2074 6861 ble to think tha │ │ │ │ -00014b20: 7420 796f 7520 7368 6f75 6c64 2066 696e t you should fin │ │ │ │ -00014b30: 6420 6120 6665 770a 6d69 6e6f 7273 2028 d a few.minors ( │ │ │ │ -00014b40: 7769 7468 206f 6e65 2073 7472 6174 6567 with one strateg │ │ │ │ -00014b50: 7920 6f72 2061 6e6f 7468 6572 292c 2061 y or another), a │ │ │ │ -00014b60: 6e64 2073 6565 2069 6620 7065 7268 6170 nd see if perhap │ │ │ │ -00014b70: 7320 7468 6520 6d69 6e6f 7273 2079 6f75 s the minors you │ │ │ │ -00014b80: 2068 6176 650a 636f 6d70 7574 6564 2073 have.computed s │ │ │ │ -00014b90: 6f20 6661 7220 6172 6520 656e 6f75 6768 o far are enough │ │ │ │ -00014ba0: 2074 6f20 7665 7269 6679 206f 7572 2072 to verify our r │ │ │ │ -00014bb0: 696e 6720 6973 2072 6567 756c 6172 2069 ing is regular i │ │ │ │ -00014bc0: 6e20 636f 6469 6d65 6e73 696f 6e20 312e n codimension 1. │ │ │ │ -00014bd0: 0a54 6869 7320 6973 2065 7861 6374 6c79 .This is exactly │ │ │ │ -00014be0: 2077 6861 7420 7265 6775 6c61 7249 6e43 what regularInC │ │ │ │ -00014bf0: 6f64 696d 656e 7369 6f6e 2064 6f65 732e odimension does. │ │ │ │ -00014c00: 2020 4f6e 6520 6361 6e20 636f 6e74 726f One can contro │ │ │ │ -00014c10: 6c20 6174 2061 2066 696e 650a 6c65 7665 l at a fine.leve │ │ │ │ -00014c20: 6c20 686f 7720 6672 6571 7565 6e74 6c79 l how frequently │ │ │ │ -00014c30: 206e 6577 206d 696e 6f72 7320 6172 6520 new minors are │ │ │ │ -00014c40: 636f 6d70 7574 6564 2c20 616e 6420 686f computed, and ho │ │ │ │ -00014c50: 7720 6672 6571 7565 6e74 6c79 2074 6865 w frequently the │ │ │ │ -00014c60: 2064 696d 656e 7369 6f6e 0a6f 6620 7768 dimension.of wh │ │ │ │ -00014c70: 6174 2077 6520 6861 7665 2063 6f6d 7075 at we have compu │ │ │ │ -00014c80: 7465 6420 736f 2066 6172 2069 7320 6368 ted so far is ch │ │ │ │ -00014c90: 6563 6b65 642c 2062 7920 7468 6520 6f70 ecked, by the op │ │ │ │ -00014ca0: 7469 6f6e 2063 6f64 696d 4368 6563 6b46 tion codimCheckF │ │ │ │ -00014cb0: 756e 6374 696f 6e2e 0a46 6f72 206d 6f72 unction..For mor │ │ │ │ -00014cc0: 6520 6f6e 2074 6861 742c 2073 6565 202a e on that, see * │ │ │ │ -00014cd0: 6e6f 7465 2052 6567 756c 6172 496e 436f note RegularInCo │ │ │ │ -00014ce0: 6469 6d65 6e73 696f 6e54 7574 6f72 6961 dimensionTutoria │ │ │ │ -00014cf0: 6c3a 0a52 6567 756c 6172 496e 436f 6469 l:.RegularInCodi │ │ │ │ -00014d00: 6d65 6e73 696f 6e54 7574 6f72 6961 6c2c mensionTutorial, │ │ │ │ -00014d10: 2061 6e64 202a 6e6f 7465 2072 6567 756c and *note regul │ │ │ │ -00014d20: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ -00014d30: 0a72 6567 756c 6172 496e 436f 6469 6d65 .regularInCodime │ │ │ │ -00014d40: 6e73 696f 6e2c 2e20 204c 6574 2075 7320 nsion,. Let us │ │ │ │ -00014d50: 6669 6e69 7368 2072 756e 6e69 6e67 2072 finish running r │ │ │ │ -00014d60: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -00014d70: 696f 6e20 6f6e 206f 7572 0a65 7861 6d70 ion on our.examp │ │ │ │ -00014d80: 6c65 2077 6974 6820 7365 7665 7261 6c20 le with several │ │ │ │ -00014d90: 6469 6666 6572 656e 7420 7374 7261 7465 different strate │ │ │ │ -00014da0: 6769 6573 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d gies...+-------- │ │ │ │ -00014db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014df0: 2d2d 2d2d 2d2b 0a7c 6934 3720 3a20 7469 -----+.|i47 : ti │ │ │ │ -00014e00: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -00014e10: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -00014e20: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -00014e30: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -00014e40: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00014e50: 2033 2e33 3536 3438 7320 2863 7075 293b 3.35648s (cpu); │ │ │ │ -00014e60: 2033 2e30 3333 3873 2028 7468 7265 6164 3.0338s (thread │ │ │ │ -00014e70: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -00014e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014e90: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00014ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014ee0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -00014ef0: 3d3e 5374 7261 7465 6779 4465 6661 756c =>StrategyDefaul │ │ │ │ -00014f00: 7429 2020 2020 2020 2020 2020 2020 2020 t) │ │ │ │ -00014f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014f30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00014f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f80: 2d2d 2d2d 2d2b 0a7c 6934 3820 3a20 7469 -----+.|i48 : ti │ │ │ │ -00014f90: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -00014fa0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -00014fb0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -00014fc0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -00014fd0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00014fe0: 2030 2e37 3238 3039 3973 2028 6370 7529 0.728099s (cpu) │ │ │ │ -00014ff0: 3b20 302e 3633 3631 3438 7320 2874 6872 ; 0.636148s (thr │ │ │ │ -00015000: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ -00015010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015020: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00015030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014970: 0a7c 6f34 3620 3d20 3220 2020 2020 2020 .|o46 = 2 │ │ │ │ +00014980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000149a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000149b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000149c0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +000149d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000149e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000149f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00014a10: 0a7c 506f 696e 744f 7074 696f 6e73 3d3e .|PointOptions=> │ │ │ │ +00014a20: 7074 7353 7472 6174 5261 7469 6f6e 616c ptsStratRational │ │ │ │ +00014a30: 2929 2020 2020 2020 2020 2020 2020 2020 )) │ │ │ │ +00014a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014a50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00014a60: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00014ab0: 0a0a 4f74 6865 7220 6f70 7469 6f6e 7320 ..Other options │ │ │ │ +00014ac0: 6d61 7920 616c 736f 2062 6520 7061 7373 may also be pass │ │ │ │ +00014ad0: 6564 2074 6f20 7468 6520 2a6e 6f74 6520 ed to the *note │ │ │ │ +00014ae0: 5261 6e64 6f6d 506f 696e 7473 3a20 2852 RandomPoints: (R │ │ │ │ +00014af0: 616e 646f 6d50 6f69 6e74 7329 546f 702c andomPoints)Top, │ │ │ │ +00014b00: 0a70 6163 6b61 6765 2076 6961 2074 6865 .package via the │ │ │ │ +00014b10: 202a 6e6f 7465 2050 6f69 6e74 4f70 7469 *note PointOpti │ │ │ │ +00014b20: 6f6e 733a 2050 6f69 6e74 4f70 7469 6f6e ons: PointOption │ │ │ │ +00014b30: 732c 206f 7074 696f 6e2e 0a0a 7265 6775 s, option...regu │ │ │ │ +00014b40: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +00014b50: 3a20 2049 7420 6973 2072 6561 736f 6e61 : It is reasona │ │ │ │ +00014b60: 626c 6520 746f 2074 6869 6e6b 2074 6861 ble to think tha │ │ │ │ +00014b70: 7420 796f 7520 7368 6f75 6c64 2066 696e t you should fin │ │ │ │ +00014b80: 6420 6120 6665 770a 6d69 6e6f 7273 2028 d a few.minors ( │ │ │ │ +00014b90: 7769 7468 206f 6e65 2073 7472 6174 6567 with one strateg │ │ │ │ +00014ba0: 7920 6f72 2061 6e6f 7468 6572 292c 2061 y or another), a │ │ │ │ +00014bb0: 6e64 2073 6565 2069 6620 7065 7268 6170 nd see if perhap │ │ │ │ +00014bc0: 7320 7468 6520 6d69 6e6f 7273 2079 6f75 s the minors you │ │ │ │ +00014bd0: 2068 6176 650a 636f 6d70 7574 6564 2073 have.computed s │ │ │ │ +00014be0: 6f20 6661 7220 6172 6520 656e 6f75 6768 o far are enough │ │ │ │ +00014bf0: 2074 6f20 7665 7269 6679 206f 7572 2072 to verify our r │ │ │ │ +00014c00: 696e 6720 6973 2072 6567 756c 6172 2069 ing is regular i │ │ │ │ +00014c10: 6e20 636f 6469 6d65 6e73 696f 6e20 312e n codimension 1. │ │ │ │ +00014c20: 0a54 6869 7320 6973 2065 7861 6374 6c79 .This is exactly │ │ │ │ +00014c30: 2077 6861 7420 7265 6775 6c61 7249 6e43 what regularInC │ │ │ │ +00014c40: 6f64 696d 656e 7369 6f6e 2064 6f65 732e odimension does. │ │ │ │ +00014c50: 2020 4f6e 6520 6361 6e20 636f 6e74 726f One can contro │ │ │ │ +00014c60: 6c20 6174 2061 2066 696e 650a 6c65 7665 l at a fine.leve │ │ │ │ +00014c70: 6c20 686f 7720 6672 6571 7565 6e74 6c79 l how frequently │ │ │ │ +00014c80: 206e 6577 206d 696e 6f72 7320 6172 6520 new minors are │ │ │ │ +00014c90: 636f 6d70 7574 6564 2c20 616e 6420 686f computed, and ho │ │ │ │ +00014ca0: 7720 6672 6571 7565 6e74 6c79 2074 6865 w frequently the │ │ │ │ +00014cb0: 2064 696d 656e 7369 6f6e 0a6f 6620 7768 dimension.of wh │ │ │ │ +00014cc0: 6174 2077 6520 6861 7665 2063 6f6d 7075 at we have compu │ │ │ │ +00014cd0: 7465 6420 736f 2066 6172 2069 7320 6368 ted so far is ch │ │ │ │ +00014ce0: 6563 6b65 642c 2062 7920 7468 6520 6f70 ecked, by the op │ │ │ │ +00014cf0: 7469 6f6e 2063 6f64 696d 4368 6563 6b46 tion codimCheckF │ │ │ │ +00014d00: 756e 6374 696f 6e2e 0a46 6f72 206d 6f72 unction..For mor │ │ │ │ +00014d10: 6520 6f6e 2074 6861 742c 2073 6565 202a e on that, see * │ │ │ │ +00014d20: 6e6f 7465 2052 6567 756c 6172 496e 436f note RegularInCo │ │ │ │ +00014d30: 6469 6d65 6e73 696f 6e54 7574 6f72 6961 dimensionTutoria │ │ │ │ +00014d40: 6c3a 0a52 6567 756c 6172 496e 436f 6469 l:.RegularInCodi │ │ │ │ +00014d50: 6d65 6e73 696f 6e54 7574 6f72 6961 6c2c mensionTutorial, │ │ │ │ +00014d60: 2061 6e64 202a 6e6f 7465 2072 6567 756c and *note regul │ │ │ │ +00014d70: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00014d80: 0a72 6567 756c 6172 496e 436f 6469 6d65 .regularInCodime │ │ │ │ +00014d90: 6e73 696f 6e2c 2e20 204c 6574 2075 7320 nsion,. Let us │ │ │ │ +00014da0: 6669 6e69 7368 2072 756e 6e69 6e67 2072 finish running r │ │ │ │ +00014db0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00014dc0: 696f 6e20 6f6e 206f 7572 0a65 7861 6d70 ion on our.examp │ │ │ │ +00014dd0: 6c65 2077 6974 6820 7365 7665 7261 6c20 le with several │ │ │ │ +00014de0: 6469 6666 6572 656e 7420 7374 7261 7465 different strate │ │ │ │ +00014df0: 6769 6573 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d gies...+-------- │ │ │ │ +00014e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014e40: 2d2d 2d2d 2d2b 0a7c 6934 3720 3a20 7469 -----+.|i47 : ti │ │ │ │ +00014e50: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +00014e60: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00014e70: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00014e80: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00014e90: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +00014ea0: 2034 2e32 3236 3138 7320 2863 7075 293b 4.22618s (cpu); │ │ │ │ +00014eb0: 2033 2e37 3838 7320 2874 6872 6561 6429 3.788s (thread) │ │ │ │ +00014ec0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00014ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014ee0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00014ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014f30: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +00014f40: 3d3e 5374 7261 7465 6779 4465 6661 756c =>StrategyDefaul │ │ │ │ +00014f50: 7429 2020 2020 2020 2020 2020 2020 2020 t) │ │ │ │ +00014f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014f80: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00014f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014fd0: 2d2d 2d2d 2d2b 0a7c 6934 3820 3a20 7469 -----+.|i48 : ti │ │ │ │ +00014fe0: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +00014ff0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00015000: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015010: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00015020: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +00015030: 2030 2e39 3138 3930 3873 2028 6370 7529 0.918908s (cpu) │ │ │ │ +00015040: 3b20 302e 3739 3032 3673 2028 7468 7265 ; 0.79026s (thre │ │ │ │ +00015050: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00015060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015070: 2020 2020 207c 0a7c 6f34 3820 3d20 7472 |.|o48 = tr │ │ │ │ -00015080: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015070: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000150a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000150b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000150c0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -000150d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000150e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000150f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015110: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -00015120: 3d3e 5374 7261 7465 6779 4465 6661 756c =>StrategyDefaul │ │ │ │ -00015130: 744e 6f6e 5261 6e64 6f6d 2920 2020 2020 tNonRandom) │ │ │ │ -00015140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015160: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00015170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000151a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000151b0: 2d2d 2d2d 2d2b 0a7c 6934 3920 3a20 7469 -----+.|i49 : ti │ │ │ │ -000151c0: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -000151d0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -000151e0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -000151f0: 2c20 5374 7261 7465 6779 3d3e 5261 6e64 , Strategy=>Rand │ │ │ │ -00015200: 6f6d 2920 207c 0a7c 202d 2d20 7573 6564 om) |.| -- used │ │ │ │ -00015210: 2032 2e37 3138 3638 7320 2863 7075 293b 2.71868s (cpu); │ │ │ │ -00015220: 2032 2e35 3237 3135 7320 2874 6872 6561 2.52715s (threa │ │ │ │ -00015230: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ -00015240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015250: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00015260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000152a0: 2d2d 2d2d 2d2b 0a7c 6935 3020 3a20 7469 -----+.|i50 : ti │ │ │ │ -000152b0: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -000152c0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -000152d0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -000152e0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -000152f0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00015300: 2032 2e33 3537 3273 2028 6370 7529 3b20 2.3572s (cpu); │ │ │ │ -00015310: 322e 3030 3434 3673 2028 7468 7265 6164 2.00446s (thread │ │ │ │ -00015320: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -00015330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015340: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00015350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015390: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -000153a0: 3d3e 4c65 7853 6d61 6c6c 6573 7429 2020 =>LexSmallest) │ │ │ │ -000153b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000153c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000153d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000153e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -000153f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015430: 2d2d 2d2d 2d2b 0a7c 6935 3120 3a20 7469 -----+.|i51 : ti │ │ │ │ -00015440: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -00015450: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -00015460: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -00015470: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -00015480: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00015490: 2030 2e38 3734 3735 3173 2028 6370 7529 0.874751s (cpu) │ │ │ │ -000154a0: 3b20 302e 3737 3734 3833 7320 2874 6872 ; 0.777483s (thr │ │ │ │ -000154b0: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ -000154c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000154d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000154e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000154f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000150c0: 2020 2020 207c 0a7c 6f34 3820 3d20 7472 |.|o48 = tr │ │ │ │ +000150d0: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +000150e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000150f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015110: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00015120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015160: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +00015170: 3d3e 5374 7261 7465 6779 4465 6661 756c =>StrategyDefaul │ │ │ │ +00015180: 744e 6f6e 5261 6e64 6f6d 2920 2020 2020 tNonRandom) │ │ │ │ +00015190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000151a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000151b0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000151c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000151d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000151e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000151f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015200: 2d2d 2d2d 2d2b 0a7c 6934 3920 3a20 7469 -----+.|i49 : ti │ │ │ │ +00015210: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +00015220: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00015230: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015240: 2c20 5374 7261 7465 6779 3d3e 5261 6e64 , Strategy=>Rand │ │ │ │ +00015250: 6f6d 2920 207c 0a7c 202d 2d20 7573 6564 om) |.| -- used │ │ │ │ +00015260: 2033 2e36 3730 3535 7320 2863 7075 293b 3.67055s (cpu); │ │ │ │ +00015270: 2033 2e32 3239 3973 2028 7468 7265 6164 3.2299s (thread │ │ │ │ +00015280: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +00015290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000152a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000152b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000152c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000152d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000152e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000152f0: 2d2d 2d2d 2d2b 0a7c 6935 3020 3a20 7469 -----+.|i50 : ti │ │ │ │ +00015300: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +00015310: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00015320: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015330: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00015340: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +00015350: 2032 2e38 3636 3631 7320 2863 7075 293b 2.86661s (cpu); │ │ │ │ +00015360: 2032 2e33 3238 3534 7320 2874 6872 6561 2.32854s (threa │ │ │ │ +00015370: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +00015380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015390: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000153a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000153b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000153c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000153d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000153e0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +000153f0: 3d3e 4c65 7853 6d61 6c6c 6573 7429 2020 =>LexSmallest) │ │ │ │ +00015400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015430: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00015440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015480: 2d2d 2d2d 2d2b 0a7c 6935 3120 3a20 7469 -----+.|i51 : ti │ │ │ │ +00015490: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +000154a0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +000154b0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +000154c0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +000154d0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +000154e0: 2030 2e39 3134 3131 3473 2028 6370 7529 0.914114s (cpu) │ │ │ │ +000154f0: 3b20 302e 3833 3739 3038 7320 2874 6872 ; 0.837908s (thr │ │ │ │ +00015500: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00015510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015520: 2020 2020 207c 0a7c 6f35 3120 3d20 7472 |.|o51 = tr │ │ │ │ -00015530: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015520: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015570: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00015580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000155a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000155b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000155c0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -000155d0: 3d3e 4c65 7853 6d61 6c6c 6573 7454 6572 =>LexSmallestTer │ │ │ │ -000155e0: 6d29 2020 2020 2020 2020 2020 2020 2020 m) │ │ │ │ -000155f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015610: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00015620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015660: 2d2d 2d2d 2d2b 0a7c 6935 3220 3a20 7469 -----+.|i52 : ti │ │ │ │ -00015670: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -00015680: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -00015690: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -000156a0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -000156b0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -000156c0: 2032 2e37 3036 3535 7320 2863 7075 293b 2.70655s (cpu); │ │ │ │ -000156d0: 2032 2e32 3839 3035 7320 2874 6872 6561 2.28905s (threa │ │ │ │ -000156e0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ -000156f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015700: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00015710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015750: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -00015760: 3d3e 4752 6576 4c65 7853 6d61 6c6c 6573 =>GRevLexSmalles │ │ │ │ -00015770: 7429 2020 2020 2020 2020 2020 2020 2020 t) │ │ │ │ -00015780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -000157b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000157c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000157d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000157e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000157f0: 2d2d 2d2d 2d2b 0a7c 6935 3320 3a20 7469 -----+.|i53 : ti │ │ │ │ -00015800: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -00015810: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -00015820: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -00015830: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -00015840: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00015850: 2033 2e31 3037 3673 2028 6370 7529 3b20 3.1076s (cpu); │ │ │ │ -00015860: 322e 3638 3735 3873 2028 7468 7265 6164 2.68758s (thread │ │ │ │ -00015870: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -00015880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015890: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -000158a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158e0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -000158f0: 3d3e 4752 6576 4c65 7853 6d61 6c6c 6573 =>GRevLexSmalles │ │ │ │ -00015900: 7454 6572 6d29 2020 2020 2020 2020 2020 tTerm) │ │ │ │ -00015910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015930: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00015940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015980: 2d2d 2d2d 2d2b 0a7c 6935 3420 3a20 7469 -----+.|i54 : ti │ │ │ │ -00015990: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -000159a0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -000159b0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -000159c0: 2c20 5374 7261 7465 6779 3d3e 506f 696e , Strategy=>Poin │ │ │ │ -000159d0: 7473 2920 207c 0a7c 202d 2d20 7573 6564 ts) |.| -- used │ │ │ │ -000159e0: 2039 2e32 3634 3432 7320 2863 7075 293b 9.26442s (cpu); │ │ │ │ -000159f0: 2037 2e37 3133 3138 7320 2874 6872 6561 7.71318s (threa │ │ │ │ -00015a00: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ -00015a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00015a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015570: 2020 2020 207c 0a7c 6f35 3120 3d20 7472 |.|o51 = tr │ │ │ │ +00015580: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000155a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000155b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000155c0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000155d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000155e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000155f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015610: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +00015620: 3d3e 4c65 7853 6d61 6c6c 6573 7454 6572 =>LexSmallestTer │ │ │ │ +00015630: 6d29 2020 2020 2020 2020 2020 2020 2020 m) │ │ │ │ +00015640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015660: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00015670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000156a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000156b0: 2d2d 2d2d 2d2b 0a7c 6935 3220 3a20 7469 -----+.|i52 : ti │ │ │ │ +000156c0: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +000156d0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +000156e0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +000156f0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00015700: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +00015710: 2033 2e31 3435 3937 7320 2863 7075 293b 3.14597s (cpu); │ │ │ │ +00015720: 2032 2e35 3637 3734 7320 2874 6872 6561 2.56774s (threa │ │ │ │ +00015730: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +00015740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015750: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00015760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000157a0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +000157b0: 3d3e 4752 6576 4c65 7853 6d61 6c6c 6573 =>GRevLexSmalles │ │ │ │ +000157c0: 7429 2020 2020 2020 2020 2020 2020 2020 t) │ │ │ │ +000157d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000157e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000157f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00015800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015840: 2d2d 2d2d 2d2b 0a7c 6935 3320 3a20 7469 -----+.|i53 : ti │ │ │ │ +00015850: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +00015860: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00015870: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015880: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00015890: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +000158a0: 2033 2e37 3339 3038 7320 2863 7075 293b 3.73908s (cpu); │ │ │ │ +000158b0: 2033 2e31 3238 3836 7320 2874 6872 6561 3.12886s (threa │ │ │ │ +000158c0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +000158d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000158e0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000158f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015930: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +00015940: 3d3e 4752 6576 4c65 7853 6d61 6c6c 6573 =>GRevLexSmalles │ │ │ │ +00015950: 7454 6572 6d29 2020 2020 2020 2020 2020 tTerm) │ │ │ │ +00015960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015980: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00015990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000159a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000159b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000159c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000159d0: 2d2d 2d2d 2d2b 0a7c 6935 3420 3a20 7469 -----+.|i54 : ti │ │ │ │ +000159e0: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +000159f0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00015a00: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015a10: 2c20 5374 7261 7465 6779 3d3e 506f 696e , Strategy=>Poin │ │ │ │ +00015a20: 7473 2920 207c 0a7c 202d 2d20 7573 6564 ts) |.| -- used │ │ │ │ +00015a30: 2031 312e 3036 3231 7320 2863 7075 293b 11.0621s (cpu); │ │ │ │ +00015a40: 2038 2e39 3930 3535 7320 2874 6872 6561 8.99055s (threa │ │ │ │ +00015a50: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 00015a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a70: 2020 2020 207c 0a7c 6f35 3420 3d20 7472 |.|o54 = tr │ │ │ │ -00015a80: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015a70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ac0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00015ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015b10: 2d2d 2d2d 2d2b 0a7c 6935 3520 3a20 7469 -----+.|i55 : ti │ │ │ │ -00015b20: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -00015b30: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -00015b40: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -00015b50: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -00015b60: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00015b70: 2037 2e33 3031 3839 7320 2863 7075 293b 7.30189s (cpu); │ │ │ │ -00015b80: 2036 2e30 3639 3473 2028 7468 7265 6164 6.0694s (thread │ │ │ │ -00015b90: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -00015ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015bb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00015bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015ac0: 2020 2020 207c 0a7c 6f35 3420 3d20 7472 |.|o54 = tr │ │ │ │ +00015ad0: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015b10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00015b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015b60: 2d2d 2d2d 2d2b 0a7c 6935 3520 3a20 7469 -----+.|i55 : ti │ │ │ │ +00015b70: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +00015b80: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00015b90: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015ba0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00015bb0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +00015bc0: 2038 2e34 3938 3633 7320 2863 7075 293b 8.49863s (cpu); │ │ │ │ +00015bd0: 2036 2e38 3139 3337 7320 2874 6872 6561 6.81937s (threa │ │ │ │ +00015be0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 00015bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c00: 2020 2020 207c 0a7c 6f35 3520 3d20 7472 |.|o55 = tr │ │ │ │ -00015c10: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015c00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c50: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00015c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ca0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -00015cb0: 3d3e 5374 7261 7465 6779 4465 6661 756c =>StrategyDefaul │ │ │ │ -00015cc0: 7457 6974 6850 6f69 6e74 7329 2020 2020 tWithPoints) │ │ │ │ -00015cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015cf0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00015d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015d40: 2d2d 2d2d 2d2b 0a0a 4966 2072 6567 756c -----+..If regul │ │ │ │ -00015d50: 6172 496e 436f 6469 6d65 6e73 696f 6e20 arInCodimension │ │ │ │ -00015d60: 6f75 7470 7574 7320 6e6f 7468 696e 672c outputs nothing, │ │ │ │ -00015d70: 2074 6865 6e20 6974 2063 6f75 6c64 6e27 then it couldn' │ │ │ │ -00015d80: 7420 7665 7269 6679 2074 6861 7420 7468 t verify that th │ │ │ │ -00015d90: 6520 7269 6e67 0a77 6173 2072 6567 756c e ring.was regul │ │ │ │ -00015da0: 6172 2069 6e20 7468 6174 2063 6f64 696d ar in that codim │ │ │ │ -00015db0: 656e 7369 6f6e 2e20 2057 6520 7365 7420 ension. We set │ │ │ │ -00015dc0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -00015dd0: 2074 6f20 6b65 6570 2069 7420 6672 6f6d to keep it from │ │ │ │ -00015de0: 0a72 756e 6e69 6e67 2074 6f6f 206c 6f6e .running too lon │ │ │ │ -00015df0: 6720 7769 7468 2061 6e20 696e 6566 6665 g with an ineffe │ │ │ │ -00015e00: 6374 6976 6520 7374 7261 7465 6779 2e20 ctive strategy. │ │ │ │ -00015e10: 2041 6761 696e 2c20 6576 656e 2074 686f Again, even tho │ │ │ │ -00015e20: 7567 680a 4752 6576 4c65 7853 6d61 6c6c ugh.GRevLexSmall │ │ │ │ -00015e30: 6573 7420 616e 6420 4752 6576 4c65 7853 est and GRevLexS │ │ │ │ -00015e40: 6d61 6c6c 6573 7454 6572 6d20 6172 6520 mallestTerm are │ │ │ │ -00015e50: 6e6f 7420 6566 6665 6374 6976 6520 696e not effective in │ │ │ │ -00015e60: 2074 6869 7320 7061 7274 6963 756c 6172 this particular │ │ │ │ -00015e70: 0a65 7861 6d70 6c65 2c20 696e 206f 7468 .example, in oth │ │ │ │ -00015e80: 6572 7320 7468 6579 2070 6572 666f 726d ers they perform │ │ │ │ -00015e90: 2062 6574 7465 7220 7468 616e 206f 7468 better than oth │ │ │ │ -00015ea0: 6572 2073 7472 6174 6567 6965 732e 2020 er strategies. │ │ │ │ -00015eb0: 4e6f 7465 2073 696d 696c 6172 0a63 6f6e Note similar.con │ │ │ │ -00015ec0: 7369 6465 7261 7469 6f6e 7320 616c 736f siderations also │ │ │ │ -00015ed0: 2061 7070 6c79 2074 6f20 2a6e 6f74 6520 apply to *note │ │ │ │ -00015ee0: 7072 6f6a 4469 6d3a 2070 726f 6a44 696d projDim: projDim │ │ │ │ -00015ef0: 2c2e 0a0a 5365 6520 616c 736f 0a3d 3d3d ,...See also.=== │ │ │ │ -00015f00: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -00015f10: 2063 686f 6f73 6547 6f6f 644d 696e 6f72 chooseGoodMinor │ │ │ │ -00015f20: 7328 2e2e 2e2c 5374 7261 7465 6779 3d3e s(...,Strategy=> │ │ │ │ -00015f30: 2e2e 2e29 3a20 5374 7261 7465 6779 4465 ...): StrategyDe │ │ │ │ -00015f40: 6661 756c 742c 202d 2d20 7374 7261 7465 fault, -- strate │ │ │ │ -00015f50: 6769 6573 0a20 2020 2066 6f72 2063 686f gies. for cho │ │ │ │ -00015f60: 6f73 696e 6720 7375 626d 6174 7269 6365 osing submatrice │ │ │ │ -00015f70: 730a 2020 2a20 2a6e 6f74 6520 5265 6775 s. * *note Regu │ │ │ │ -00015f80: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -00015f90: 5475 746f 7269 616c 3a20 5265 6775 6c61 Tutorial: Regula │ │ │ │ -00015fa0: 7249 6e43 6f64 696d 656e 7369 6f6e 5475 rInCodimensionTu │ │ │ │ -00015fb0: 746f 7269 616c 2c20 2d2d 2041 0a20 2020 torial, -- A. │ │ │ │ -00015fc0: 2074 7574 6f72 6961 6c20 666f 7220 686f tutorial for ho │ │ │ │ -00015fd0: 7720 746f 2075 7365 2074 6865 2061 6476 w to use the adv │ │ │ │ -00015fe0: 616e 6365 6420 6f70 7469 6f6e 7320 6f66 anced options of │ │ │ │ -00015ff0: 2074 6865 2072 6567 756c 6172 496e 436f the regularInCo │ │ │ │ -00016000: 6469 6d65 6e73 696f 6e0a 2020 2020 6675 dimension. fu │ │ │ │ -00016010: 6e63 7469 6f6e 0a0a 466f 7220 7468 6520 nction..For the │ │ │ │ -00016020: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -00016030: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -00016040: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -00016050: 4661 7374 4d69 6e6f 7273 5374 7261 7465 FastMinorsStrate │ │ │ │ -00016060: 6779 5475 746f 7269 616c 3a20 4661 7374 gyTutorial: Fast │ │ │ │ -00016070: 4d69 6e6f 7273 5374 7261 7465 6779 5475 MinorsStrategyTu │ │ │ │ -00016080: 746f 7269 616c 2c20 6973 2061 0a2a 6e6f torial, is a.*no │ │ │ │ -00016090: 7465 2073 796d 626f 6c3a 2028 4d61 6361 te symbol: (Maca │ │ │ │ -000160a0: 756c 6179 3244 6f63 2953 796d 626f 6c2c ulay2Doc)Symbol, │ │ │ │ -000160b0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ -000160c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000160d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000160e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000160f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016100: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -00016110: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -00016120: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -00016130: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -00016140: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -00016150: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -00016160: 2f70 6163 6b61 6765 732f 4661 7374 4d69 /packages/FastMi │ │ │ │ -00016170: 6e6f 7273 2e0a 6d32 3a31 3532 353a 302e nors..m2:1525:0. │ │ │ │ -00016180: 0a1f 0a46 696c 653a 2046 6173 744d 696e ...File: FastMin │ │ │ │ -00016190: 6f72 732e 696e 666f 2c20 4e6f 6465 3a20 ors.info, Node: │ │ │ │ -000161a0: 6765 7453 7562 6d61 7472 6978 4f66 5261 getSubmatrixOfRa │ │ │ │ -000161b0: 6e6b 2c20 4e65 7874 3a20 6973 436f 6469 nk, Next: isCodi │ │ │ │ -000161c0: 6d41 744c 6561 7374 2c20 5072 6576 3a20 mAtLeast, Prev: │ │ │ │ -000161d0: 4661 7374 4d69 6e6f 7273 5374 7261 7465 FastMinorsStrate │ │ │ │ -000161e0: 6779 5475 746f 7269 616c 2c20 5570 3a20 gyTutorial, Up: │ │ │ │ -000161f0: 546f 700a 0a67 6574 5375 626d 6174 7269 Top..getSubmatri │ │ │ │ -00016200: 784f 6652 616e 6b20 2d2d 2074 7269 6573 xOfRank -- tries │ │ │ │ -00016210: 2074 6f20 6669 6e64 2061 2073 7562 6d61 to find a subma │ │ │ │ -00016220: 7472 6978 206f 6620 7468 6520 6769 7665 trix of the give │ │ │ │ -00016230: 6e20 7261 6e6b 0a2a 2a2a 2a2a 2a2a 2a2a n rank.********* │ │ │ │ -00016240: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00016250: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00016260: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00016270: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ -00016280: 6167 653a 200a 2020 2020 2020 2020 6765 age: . ge │ │ │ │ -00016290: 7453 7562 6d61 7472 6978 4f66 5261 6e6b tSubmatrixOfRank │ │ │ │ -000162a0: 286e 312c 204d 3129 0a20 202a 2049 6e70 (n1, M1). * Inp │ │ │ │ -000162b0: 7574 733a 0a20 2020 2020 202a 206e 312c uts:. * n1, │ │ │ │ -000162c0: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ -000162d0: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ -000162e0: 295a 5a2c 2c20 0a20 2020 2020 202a 204d )ZZ,, . * M │ │ │ │ -000162f0: 312c 2061 202a 6e6f 7465 206d 6174 7269 1, a *note matri │ │ │ │ -00016300: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ -00016310: 294d 6174 7269 782c 2c20 0a20 202a 202a )Matrix,, . * * │ │ │ │ -00016320: 6e6f 7465 204f 7074 696f 6e61 6c20 696e note Optional in │ │ │ │ -00016330: 7075 7473 3a20 284d 6163 6175 6c61 7932 puts: (Macaulay2 │ │ │ │ -00016340: 446f 6329 7573 696e 6720 6675 6e63 7469 Doc)using functi │ │ │ │ -00016350: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ -00016360: 6c20 696e 7075 7473 2c3a 0a20 2020 2020 l inputs,:. │ │ │ │ -00016370: 202a 202a 6e6f 7465 2044 6574 5374 7261 * *note DetStra │ │ │ │ -00016380: 7465 6779 3a20 4465 7453 7472 6174 6567 tegy: DetStrateg │ │ │ │ -00016390: 792c 203d 3e20 2e2e 2e2c 2064 6566 6175 y, => ..., defau │ │ │ │ -000163a0: 6c74 2076 616c 7565 2052 616e 6b2c 2044 lt value Rank, D │ │ │ │ -000163b0: 6574 5374 7261 7465 6779 0a20 2020 2020 etStrategy. │ │ │ │ -000163c0: 2020 2069 7320 6120 7374 7261 7465 6779 is a strategy │ │ │ │ -000163d0: 2066 6f72 2061 6c6c 6f77 696e 6720 7468 for allowing th │ │ │ │ -000163e0: 6520 7573 6572 2074 6f20 6368 6f6f 7365 e user to choose │ │ │ │ -000163f0: 2068 6f77 2064 6574 6572 6d69 6e61 6e74 how determinant │ │ │ │ -00016400: 7320 286f 720a 2020 2020 2020 2020 7261 s (or. ra │ │ │ │ -00016410: 6e6b 292c 2069 7320 636f 6d70 7574 6564 nk), is computed │ │ │ │ -00016420: 0a20 2020 2020 202a 202a 6e6f 7465 204d . * *note M │ │ │ │ -00016430: 6178 4d69 6e6f 7273 3a20 4d61 784d 696e axMinors: MaxMin │ │ │ │ -00016440: 6f72 732c 203d 3e20 2e2e 2e2c 2064 6566 ors, => ..., def │ │ │ │ -00016450: 6175 6c74 2076 616c 7565 206e 756c 6c2c ault value null, │ │ │ │ -00016460: 2061 6e20 6f70 7469 6f6e 2074 6f0a 2020 an option to. │ │ │ │ -00016470: 2020 2020 2020 636f 6e74 726f 6c20 6465 control de │ │ │ │ -00016480: 7074 6820 6f66 2073 6561 7263 680a 2020 pth of search. │ │ │ │ -00016490: 2020 2020 2a20 2a6e 6f74 6520 506f 696e * *note Poin │ │ │ │ -000164a0: 744f 7074 696f 6e73 3a20 506f 696e 744f tOptions: PointO │ │ │ │ -000164b0: 7074 696f 6e73 2c20 3d3e 202e 2e2e 2c20 ptions, => ..., │ │ │ │ -000164c0: 6465 6661 756c 7420 7661 6c75 6520 7b53 default value {S │ │ │ │ -000164d0: 7472 6174 6567 7920 3d3e 0a20 2020 2020 trategy =>. │ │ │ │ -000164e0: 2020 2044 6566 6175 6c74 2c20 486f 6d6f Default, Homo │ │ │ │ -000164f0: 6765 6e65 6f75 7320 3d3e 2066 616c 7365 geneous => false │ │ │ │ -00016500: 2c20 5265 706c 6163 656d 656e 7420 3d3e , Replacement => │ │ │ │ -00016510: 2042 696e 6f6d 6961 6c2c 2045 7874 656e Binomial, Exten │ │ │ │ -00016520: 6446 6965 6c64 203d 3e0a 2020 2020 2020 dField =>. │ │ │ │ -00016530: 2020 7472 7565 2c20 506f 696e 7443 6865 true, PointChe │ │ │ │ -00016540: 636b 4174 7465 6d70 7473 203d 3e20 302c ckAttempts => 0, │ │ │ │ -00016550: 2044 6563 6f6d 706f 7369 7469 6f6e 5374 DecompositionSt │ │ │ │ -00016560: 7261 7465 6779 203d 3e20 4465 636f 6d70 rategy => Decomp │ │ │ │ -00016570: 6f73 652c 0a20 2020 2020 2020 204e 756d ose,. Num │ │ │ │ -00016580: 5468 7265 6164 7354 6f55 7365 203d 3e20 ThreadsToUse => │ │ │ │ -00016590: 312c 2044 696d 656e 7369 6f6e 4675 6e63 1, DimensionFunc │ │ │ │ -000165a0: 7469 6f6e 203d 3e20 6469 6d2c 2056 6572 tion => dim, Ver │ │ │ │ -000165b0: 626f 7365 203d 3e20 6661 6c73 657d 2c0a bose => false},. │ │ │ │ -000165c0: 2020 2020 2020 2020 6f70 7469 6f6e 7320 options │ │ │ │ -000165d0: 746f 2070 6173 7320 746f 2066 756e 6374 to pass to funct │ │ │ │ -000165e0: 696f 6e73 2069 6e20 7468 6520 7061 636b ions in the pack │ │ │ │ -000165f0: 6167 6520 5261 6e64 6f6d 506f 696e 7473 age RandomPoints │ │ │ │ -00016600: 0a20 2020 2020 202a 202a 6e6f 7465 2053 . * *note S │ │ │ │ -00016610: 7472 6174 6567 793a 2053 7472 6174 6567 trategy: Strateg │ │ │ │ -00016620: 7944 6566 6175 6c74 2c20 3d3e 202e 2e2e yDefault, => ... │ │ │ │ -00016630: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -00016640: 6e65 7720 4f70 7469 6f6e 5461 626c 650a new OptionTable. │ │ │ │ -00016650: 2020 2020 2020 2020 6672 6f6d 207b 506f from {Po │ │ │ │ -00016660: 696e 7473 203d 3e20 302c 2052 616e 646f ints => 0, Rando │ │ │ │ -00016670: 6d20 3d3e 2030 2c20 4752 6576 4c65 784c m => 0, GRevLexL │ │ │ │ -00016680: 6172 6765 7374 203d 3e20 302c 204c 6578 argest => 0, Lex │ │ │ │ -00016690: 536d 616c 6c65 7374 5465 726d 203d 3e0a SmallestTerm =>. │ │ │ │ -000166a0: 2020 2020 2020 2020 3235 2c20 4c65 784c 25, LexL │ │ │ │ -000166b0: 6172 6765 7374 203d 3e20 302c 204c 6578 argest => 0, Lex │ │ │ │ -000166c0: 536d 616c 6c65 7374 203d 3e20 3235 2c20 Smallest => 25, │ │ │ │ -000166d0: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ -000166e0: 6572 6d20 3d3e 2032 352c 0a20 2020 2020 erm => 25,. │ │ │ │ -000166f0: 2020 2052 616e 646f 6d4e 6f6e 7a65 726f RandomNonzero │ │ │ │ -00016700: 203d 3e20 302c 2047 5265 764c 6578 536d => 0, GRevLexSm │ │ │ │ -00016710: 616c 6c65 7374 203d 3e20 3235 7d2c 2073 allest => 25}, s │ │ │ │ -00016720: 7472 6174 6567 6965 7320 666f 7220 6368 trategies for ch │ │ │ │ -00016730: 6f6f 7369 6e67 0a20 2020 2020 2020 2073 oosing. s │ │ │ │ -00016740: 7562 6d61 7472 6963 6573 0a20 2020 2020 ubmatrices. │ │ │ │ -00016750: 202a 202a 6e6f 7465 2054 6872 6561 6473 * *note Threads │ │ │ │ -00016760: 3a20 6973 5261 6e6b 4174 4c65 6173 745f : isRankAtLeast_ │ │ │ │ -00016770: 6c70 5f70 645f 7064 5f70 645f 636d 5468 lp_pd_pd_pd_cmTh │ │ │ │ -00016780: 7265 6164 733d 3e5f 7064 5f70 645f 7064 reads=>_pd_pd_pd │ │ │ │ -00016790: 5f72 702c 203d 3e0a 2020 2020 2020 2020 _rp, =>. │ │ │ │ -000167a0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -000167b0: 7565 2031 2c20 616e 206f 7074 696f 6e20 ue 1, an option │ │ │ │ -000167c0: 666f 7220 7661 7269 6f75 7320 6675 6e63 for various func │ │ │ │ -000167d0: 7469 6f6e 730a 2020 2020 2020 2a20 5665 tions. * Ve │ │ │ │ -000167e0: 7262 6f73 6520 3d3e 202e 2e2e 2c20 6465 rbose => ..., de │ │ │ │ -000167f0: 6661 756c 7420 7661 6c75 6520 6661 6c73 fault value fals │ │ │ │ -00016800: 650a 2020 2a20 4f75 7470 7574 733a 0a20 e. * Outputs:. │ │ │ │ -00016810: 2020 2020 202a 2061 202a 6e6f 7465 206c * a *note l │ │ │ │ -00016820: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ -00016830: 6f63 294c 6973 742c 2c20 7468 6520 6669 oc)List,, the fi │ │ │ │ -00016840: 7273 7420 656e 7472 7920 6973 2061 206c rst entry is a l │ │ │ │ -00016850: 6973 7420 6f66 2072 6f77 0a20 2020 2020 ist of row. │ │ │ │ -00016860: 2020 2069 6e64 6963 6573 2c20 7468 6520 indices, the │ │ │ │ -00016870: 7365 636f 6e64 2069 7320 6120 6c69 7374 second is a list │ │ │ │ -00016880: 206f 6620 636f 6c75 6d6e 2069 6e64 6963 of column indic │ │ │ │ -00016890: 6573 0a0a 4465 7363 7269 7074 696f 6e0a es..Description. │ │ │ │ -000168a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ -000168b0: 7320 6675 6e63 7469 6f6e 206c 6f6f 6b73 s function looks │ │ │ │ -000168c0: 2061 7420 7375 626d 6174 7269 6365 7320 at submatrices │ │ │ │ -000168d0: 6f66 2074 6865 2067 6976 656e 206d 6174 of the given mat │ │ │ │ -000168e0: 7269 782c 2061 6e64 2074 7269 6573 2074 rix, and tries t │ │ │ │ -000168f0: 6f20 6669 6e64 206f 6e65 0a6f 6620 7468 o find one.of th │ │ │ │ -00016900: 6520 7370 6563 6966 6965 6420 7261 6e6b e specified rank │ │ │ │ -00016910: 2e20 2049 6620 6974 2073 7563 6365 6564 . If it succeed │ │ │ │ -00016920: 732c 2069 7420 7265 7475 726e 7320 6120 s, it returns a │ │ │ │ -00016930: 6c69 7374 206f 6620 7477 6f20 6c69 7374 list of two list │ │ │ │ -00016940: 732e 2054 6865 0a66 6972 7374 2069 7320 s. The.first is │ │ │ │ -00016950: 7468 6520 6c69 7374 206f 6620 726f 7720 the list of row │ │ │ │ -00016960: 696e 6469 6365 732c 2074 6865 2073 6563 indices, the sec │ │ │ │ -00016970: 6f6e 6420 6973 2074 6865 206c 6973 7420 ond is the list │ │ │ │ -00016980: 6f66 2063 6f6c 756d 6e73 2c20 6f66 2074 of columns, of t │ │ │ │ -00016990: 6865 0a64 6573 6972 6564 2072 616e 6b20 he.desired rank │ │ │ │ -000169a0: 7375 626d 6174 7269 782e 2049 6620 6974 submatrix. If it │ │ │ │ -000169b0: 2066 6169 6c73 2074 6f20 6669 6e64 2073 fails to find s │ │ │ │ -000169c0: 7563 6820 6120 6d61 7472 6978 2c20 7468 uch a matrix, th │ │ │ │ -000169d0: 6520 6675 6e63 7469 6f6e 2072 6574 7572 e function retur │ │ │ │ -000169e0: 6e73 0a6e 756c 6c2e 2020 5468 6520 6f70 ns.null. The op │ │ │ │ -000169f0: 7469 6f6e 204d 6178 4d69 6e6f 7273 2069 tion MaxMinors i │ │ │ │ -00016a00: 7320 7573 6564 2074 6f20 636f 6e74 726f s used to contro │ │ │ │ -00016a10: 6c20 686f 7720 6d61 6e79 206d 696e 6f72 l how many minor │ │ │ │ -00016a20: 7320 746f 2063 6f6e 7369 6465 722e 2020 s to consider. │ │ │ │ -00016a30: 4966 0a6c 6566 7420 6e75 6c6c 2c20 7468 If.left null, th │ │ │ │ -00016a40: 6520 6e75 6d62 6572 2063 6f6e 7369 6465 e number conside │ │ │ │ -00016a50: 7265 6420 6973 2062 6173 6564 206f 6e20 red is based on │ │ │ │ -00016a60: 7468 6520 7369 7a65 206f 6620 7468 6520 the size of the │ │ │ │ -00016a70: 6d61 7472 6978 2e0a 0a2b 2d2d 2d2d 2d2d matrix...+------ │ │ │ │ -00016a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016ab0: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ -00016ac0: 2051 515b 782c 795d 3b20 2020 2020 2020 QQ[x,y]; │ │ │ │ -00016ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016af0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00016b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016b30: 2d2b 0a7c 6932 203a 204d 203d 206d 6174 -+.|i2 : M = mat │ │ │ │ -00016b40: 7269 787b 7b78 2c79 2c32 2c30 2c32 2a78 rix{{x,y,2,0,2*x │ │ │ │ -00016b50: 2b79 7d2c 207b 302c 302c 312c 302c 787d +y}, {0,0,1,0,x} │ │ │ │ -00016b60: 2c20 7b78 2c79 2c30 2c30 2c79 7d7d 3b7c , {x,y,0,0,y}};| │ │ │ │ -00016b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00016b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ba0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00016bb0: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ -00016bc0: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ +00015c50: 2020 2020 207c 0a7c 6f35 3520 3d20 7472 |.|o55 = tr │ │ │ │ +00015c60: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015ca0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00015cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015cf0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +00015d00: 3d3e 5374 7261 7465 6779 4465 6661 756c =>StrategyDefaul │ │ │ │ +00015d10: 7457 6974 6850 6f69 6e74 7329 2020 2020 tWithPoints) │ │ │ │ +00015d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015d40: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00015d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015d90: 2d2d 2d2d 2d2b 0a0a 4966 2072 6567 756c -----+..If regul │ │ │ │ +00015da0: 6172 496e 436f 6469 6d65 6e73 696f 6e20 arInCodimension │ │ │ │ +00015db0: 6f75 7470 7574 7320 6e6f 7468 696e 672c outputs nothing, │ │ │ │ +00015dc0: 2074 6865 6e20 6974 2063 6f75 6c64 6e27 then it couldn' │ │ │ │ +00015dd0: 7420 7665 7269 6679 2074 6861 7420 7468 t verify that th │ │ │ │ +00015de0: 6520 7269 6e67 0a77 6173 2072 6567 756c e ring.was regul │ │ │ │ +00015df0: 6172 2069 6e20 7468 6174 2063 6f64 696d ar in that codim │ │ │ │ +00015e00: 656e 7369 6f6e 2e20 2057 6520 7365 7420 ension. We set │ │ │ │ +00015e10: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015e20: 2074 6f20 6b65 6570 2069 7420 6672 6f6d to keep it from │ │ │ │ +00015e30: 0a72 756e 6e69 6e67 2074 6f6f 206c 6f6e .running too lon │ │ │ │ +00015e40: 6720 7769 7468 2061 6e20 696e 6566 6665 g with an ineffe │ │ │ │ +00015e50: 6374 6976 6520 7374 7261 7465 6779 2e20 ctive strategy. │ │ │ │ +00015e60: 2041 6761 696e 2c20 6576 656e 2074 686f Again, even tho │ │ │ │ +00015e70: 7567 680a 4752 6576 4c65 7853 6d61 6c6c ugh.GRevLexSmall │ │ │ │ +00015e80: 6573 7420 616e 6420 4752 6576 4c65 7853 est and GRevLexS │ │ │ │ +00015e90: 6d61 6c6c 6573 7454 6572 6d20 6172 6520 mallestTerm are │ │ │ │ +00015ea0: 6e6f 7420 6566 6665 6374 6976 6520 696e not effective in │ │ │ │ +00015eb0: 2074 6869 7320 7061 7274 6963 756c 6172 this particular │ │ │ │ +00015ec0: 0a65 7861 6d70 6c65 2c20 696e 206f 7468 .example, in oth │ │ │ │ +00015ed0: 6572 7320 7468 6579 2070 6572 666f 726d ers they perform │ │ │ │ +00015ee0: 2062 6574 7465 7220 7468 616e 206f 7468 better than oth │ │ │ │ +00015ef0: 6572 2073 7472 6174 6567 6965 732e 2020 er strategies. │ │ │ │ +00015f00: 4e6f 7465 2073 696d 696c 6172 0a63 6f6e Note similar.con │ │ │ │ +00015f10: 7369 6465 7261 7469 6f6e 7320 616c 736f siderations also │ │ │ │ +00015f20: 2061 7070 6c79 2074 6f20 2a6e 6f74 6520 apply to *note │ │ │ │ +00015f30: 7072 6f6a 4469 6d3a 2070 726f 6a44 696d projDim: projDim │ │ │ │ +00015f40: 2c2e 0a0a 5365 6520 616c 736f 0a3d 3d3d ,...See also.=== │ │ │ │ +00015f50: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +00015f60: 2063 686f 6f73 6547 6f6f 644d 696e 6f72 chooseGoodMinor │ │ │ │ +00015f70: 7328 2e2e 2e2c 5374 7261 7465 6779 3d3e s(...,Strategy=> │ │ │ │ +00015f80: 2e2e 2e29 3a20 5374 7261 7465 6779 4465 ...): StrategyDe │ │ │ │ +00015f90: 6661 756c 742c 202d 2d20 7374 7261 7465 fault, -- strate │ │ │ │ +00015fa0: 6769 6573 0a20 2020 2066 6f72 2063 686f gies. for cho │ │ │ │ +00015fb0: 6f73 696e 6720 7375 626d 6174 7269 6365 osing submatrice │ │ │ │ +00015fc0: 730a 2020 2a20 2a6e 6f74 6520 5265 6775 s. * *note Regu │ │ │ │ +00015fd0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +00015fe0: 5475 746f 7269 616c 3a20 5265 6775 6c61 Tutorial: Regula │ │ │ │ +00015ff0: 7249 6e43 6f64 696d 656e 7369 6f6e 5475 rInCodimensionTu │ │ │ │ +00016000: 746f 7269 616c 2c20 2d2d 2041 0a20 2020 torial, -- A. │ │ │ │ +00016010: 2074 7574 6f72 6961 6c20 666f 7220 686f tutorial for ho │ │ │ │ +00016020: 7720 746f 2075 7365 2074 6865 2061 6476 w to use the adv │ │ │ │ +00016030: 616e 6365 6420 6f70 7469 6f6e 7320 6f66 anced options of │ │ │ │ +00016040: 2074 6865 2072 6567 756c 6172 496e 436f the regularInCo │ │ │ │ +00016050: 6469 6d65 6e73 696f 6e0a 2020 2020 6675 dimension. fu │ │ │ │ +00016060: 6e63 7469 6f6e 0a0a 466f 7220 7468 6520 nction..For the │ │ │ │ +00016070: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00016080: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00016090: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +000160a0: 4661 7374 4d69 6e6f 7273 5374 7261 7465 FastMinorsStrate │ │ │ │ +000160b0: 6779 5475 746f 7269 616c 3a20 4661 7374 gyTutorial: Fast │ │ │ │ +000160c0: 4d69 6e6f 7273 5374 7261 7465 6779 5475 MinorsStrategyTu │ │ │ │ +000160d0: 746f 7269 616c 2c20 6973 2061 0a2a 6e6f torial, is a.*no │ │ │ │ +000160e0: 7465 2073 796d 626f 6c3a 2028 4d61 6361 te symbol: (Maca │ │ │ │ +000160f0: 756c 6179 3244 6f63 2953 796d 626f 6c2c ulay2Doc)Symbol, │ │ │ │ +00016100: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +00016110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016150: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00016160: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00016170: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +00016180: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +00016190: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +000161a0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +000161b0: 2f70 6163 6b61 6765 732f 4661 7374 4d69 /packages/FastMi │ │ │ │ +000161c0: 6e6f 7273 2e0a 6d32 3a31 3532 353a 302e nors..m2:1525:0. │ │ │ │ +000161d0: 0a1f 0a46 696c 653a 2046 6173 744d 696e ...File: FastMin │ │ │ │ +000161e0: 6f72 732e 696e 666f 2c20 4e6f 6465 3a20 ors.info, Node: │ │ │ │ +000161f0: 6765 7453 7562 6d61 7472 6978 4f66 5261 getSubmatrixOfRa │ │ │ │ +00016200: 6e6b 2c20 4e65 7874 3a20 6973 436f 6469 nk, Next: isCodi │ │ │ │ +00016210: 6d41 744c 6561 7374 2c20 5072 6576 3a20 mAtLeast, Prev: │ │ │ │ +00016220: 4661 7374 4d69 6e6f 7273 5374 7261 7465 FastMinorsStrate │ │ │ │ +00016230: 6779 5475 746f 7269 616c 2c20 5570 3a20 gyTutorial, Up: │ │ │ │ +00016240: 546f 700a 0a67 6574 5375 626d 6174 7269 Top..getSubmatri │ │ │ │ +00016250: 784f 6652 616e 6b20 2d2d 2074 7269 6573 xOfRank -- tries │ │ │ │ +00016260: 2074 6f20 6669 6e64 2061 2073 7562 6d61 to find a subma │ │ │ │ +00016270: 7472 6978 206f 6620 7468 6520 6769 7665 trix of the give │ │ │ │ +00016280: 6e20 7261 6e6b 0a2a 2a2a 2a2a 2a2a 2a2a n rank.********* │ │ │ │ +00016290: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000162a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000162b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000162c0: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ +000162d0: 6167 653a 200a 2020 2020 2020 2020 6765 age: . ge │ │ │ │ +000162e0: 7453 7562 6d61 7472 6978 4f66 5261 6e6b tSubmatrixOfRank │ │ │ │ +000162f0: 286e 312c 204d 3129 0a20 202a 2049 6e70 (n1, M1). * Inp │ │ │ │ +00016300: 7574 733a 0a20 2020 2020 202a 206e 312c uts:. * n1, │ │ │ │ +00016310: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ +00016320: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ +00016330: 295a 5a2c 2c20 0a20 2020 2020 202a 204d )ZZ,, . * M │ │ │ │ +00016340: 312c 2061 202a 6e6f 7465 206d 6174 7269 1, a *note matri │ │ │ │ +00016350: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ +00016360: 294d 6174 7269 782c 2c20 0a20 202a 202a )Matrix,, . * * │ │ │ │ +00016370: 6e6f 7465 204f 7074 696f 6e61 6c20 696e note Optional in │ │ │ │ +00016380: 7075 7473 3a20 284d 6163 6175 6c61 7932 puts: (Macaulay2 │ │ │ │ +00016390: 446f 6329 7573 696e 6720 6675 6e63 7469 Doc)using functi │ │ │ │ +000163a0: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ +000163b0: 6c20 696e 7075 7473 2c3a 0a20 2020 2020 l inputs,:. │ │ │ │ +000163c0: 202a 202a 6e6f 7465 2044 6574 5374 7261 * *note DetStra │ │ │ │ +000163d0: 7465 6779 3a20 4465 7453 7472 6174 6567 tegy: DetStrateg │ │ │ │ +000163e0: 792c 203d 3e20 2e2e 2e2c 2064 6566 6175 y, => ..., defau │ │ │ │ +000163f0: 6c74 2076 616c 7565 2052 616e 6b2c 2044 lt value Rank, D │ │ │ │ +00016400: 6574 5374 7261 7465 6779 0a20 2020 2020 etStrategy. │ │ │ │ +00016410: 2020 2069 7320 6120 7374 7261 7465 6779 is a strategy │ │ │ │ +00016420: 2066 6f72 2061 6c6c 6f77 696e 6720 7468 for allowing th │ │ │ │ +00016430: 6520 7573 6572 2074 6f20 6368 6f6f 7365 e user to choose │ │ │ │ +00016440: 2068 6f77 2064 6574 6572 6d69 6e61 6e74 how determinant │ │ │ │ +00016450: 7320 286f 720a 2020 2020 2020 2020 7261 s (or. ra │ │ │ │ +00016460: 6e6b 292c 2069 7320 636f 6d70 7574 6564 nk), is computed │ │ │ │ +00016470: 0a20 2020 2020 202a 202a 6e6f 7465 204d . * *note M │ │ │ │ +00016480: 6178 4d69 6e6f 7273 3a20 4d61 784d 696e axMinors: MaxMin │ │ │ │ +00016490: 6f72 732c 203d 3e20 2e2e 2e2c 2064 6566 ors, => ..., def │ │ │ │ +000164a0: 6175 6c74 2076 616c 7565 206e 756c 6c2c ault value null, │ │ │ │ +000164b0: 2061 6e20 6f70 7469 6f6e 2074 6f0a 2020 an option to. │ │ │ │ +000164c0: 2020 2020 2020 636f 6e74 726f 6c20 6465 control de │ │ │ │ +000164d0: 7074 6820 6f66 2073 6561 7263 680a 2020 pth of search. │ │ │ │ +000164e0: 2020 2020 2a20 2a6e 6f74 6520 506f 696e * *note Poin │ │ │ │ +000164f0: 744f 7074 696f 6e73 3a20 506f 696e 744f tOptions: PointO │ │ │ │ +00016500: 7074 696f 6e73 2c20 3d3e 202e 2e2e 2c20 ptions, => ..., │ │ │ │ +00016510: 6465 6661 756c 7420 7661 6c75 6520 7b53 default value {S │ │ │ │ +00016520: 7472 6174 6567 7920 3d3e 0a20 2020 2020 trategy =>. │ │ │ │ +00016530: 2020 2044 6566 6175 6c74 2c20 486f 6d6f Default, Homo │ │ │ │ +00016540: 6765 6e65 6f75 7320 3d3e 2066 616c 7365 geneous => false │ │ │ │ +00016550: 2c20 5265 706c 6163 656d 656e 7420 3d3e , Replacement => │ │ │ │ +00016560: 2042 696e 6f6d 6961 6c2c 2045 7874 656e Binomial, Exten │ │ │ │ +00016570: 6446 6965 6c64 203d 3e0a 2020 2020 2020 dField =>. │ │ │ │ +00016580: 2020 7472 7565 2c20 506f 696e 7443 6865 true, PointChe │ │ │ │ +00016590: 636b 4174 7465 6d70 7473 203d 3e20 302c ckAttempts => 0, │ │ │ │ +000165a0: 2044 6563 6f6d 706f 7369 7469 6f6e 5374 DecompositionSt │ │ │ │ +000165b0: 7261 7465 6779 203d 3e20 4465 636f 6d70 rategy => Decomp │ │ │ │ +000165c0: 6f73 652c 0a20 2020 2020 2020 204e 756d ose,. Num │ │ │ │ +000165d0: 5468 7265 6164 7354 6f55 7365 203d 3e20 ThreadsToUse => │ │ │ │ +000165e0: 312c 2044 696d 656e 7369 6f6e 4675 6e63 1, DimensionFunc │ │ │ │ +000165f0: 7469 6f6e 203d 3e20 6469 6d2c 2056 6572 tion => dim, Ver │ │ │ │ +00016600: 626f 7365 203d 3e20 6661 6c73 657d 2c0a bose => false},. │ │ │ │ +00016610: 2020 2020 2020 2020 6f70 7469 6f6e 7320 options │ │ │ │ +00016620: 746f 2070 6173 7320 746f 2066 756e 6374 to pass to funct │ │ │ │ +00016630: 696f 6e73 2069 6e20 7468 6520 7061 636b ions in the pack │ │ │ │ +00016640: 6167 6520 5261 6e64 6f6d 506f 696e 7473 age RandomPoints │ │ │ │ +00016650: 0a20 2020 2020 202a 202a 6e6f 7465 2053 . * *note S │ │ │ │ +00016660: 7472 6174 6567 793a 2053 7472 6174 6567 trategy: Strateg │ │ │ │ +00016670: 7944 6566 6175 6c74 2c20 3d3e 202e 2e2e yDefault, => ... │ │ │ │ +00016680: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +00016690: 6e65 7720 4f70 7469 6f6e 5461 626c 650a new OptionTable. │ │ │ │ +000166a0: 2020 2020 2020 2020 6672 6f6d 207b 506f from {Po │ │ │ │ +000166b0: 696e 7473 203d 3e20 302c 2052 616e 646f ints => 0, Rando │ │ │ │ +000166c0: 6d20 3d3e 2030 2c20 4752 6576 4c65 784c m => 0, GRevLexL │ │ │ │ +000166d0: 6172 6765 7374 203d 3e20 302c 204c 6578 argest => 0, Lex │ │ │ │ +000166e0: 536d 616c 6c65 7374 5465 726d 203d 3e0a SmallestTerm =>. │ │ │ │ +000166f0: 2020 2020 2020 2020 3235 2c20 4c65 784c 25, LexL │ │ │ │ +00016700: 6172 6765 7374 203d 3e20 302c 204c 6578 argest => 0, Lex │ │ │ │ +00016710: 536d 616c 6c65 7374 203d 3e20 3235 2c20 Smallest => 25, │ │ │ │ +00016720: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ +00016730: 6572 6d20 3d3e 2032 352c 0a20 2020 2020 erm => 25,. │ │ │ │ +00016740: 2020 2052 616e 646f 6d4e 6f6e 7a65 726f RandomNonzero │ │ │ │ +00016750: 203d 3e20 302c 2047 5265 764c 6578 536d => 0, GRevLexSm │ │ │ │ +00016760: 616c 6c65 7374 203d 3e20 3235 7d2c 2073 allest => 25}, s │ │ │ │ +00016770: 7472 6174 6567 6965 7320 666f 7220 6368 trategies for ch │ │ │ │ +00016780: 6f6f 7369 6e67 0a20 2020 2020 2020 2073 oosing. s │ │ │ │ +00016790: 7562 6d61 7472 6963 6573 0a20 2020 2020 ubmatrices. │ │ │ │ +000167a0: 202a 202a 6e6f 7465 2054 6872 6561 6473 * *note Threads │ │ │ │ +000167b0: 3a20 6973 5261 6e6b 4174 4c65 6173 745f : isRankAtLeast_ │ │ │ │ +000167c0: 6c70 5f70 645f 7064 5f70 645f 636d 5468 lp_pd_pd_pd_cmTh │ │ │ │ +000167d0: 7265 6164 733d 3e5f 7064 5f70 645f 7064 reads=>_pd_pd_pd │ │ │ │ +000167e0: 5f72 702c 203d 3e0a 2020 2020 2020 2020 _rp, =>. │ │ │ │ +000167f0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +00016800: 7565 2031 2c20 616e 206f 7074 696f 6e20 ue 1, an option │ │ │ │ +00016810: 666f 7220 7661 7269 6f75 7320 6675 6e63 for various func │ │ │ │ +00016820: 7469 6f6e 730a 2020 2020 2020 2a20 5665 tions. * Ve │ │ │ │ +00016830: 7262 6f73 6520 3d3e 202e 2e2e 2c20 6465 rbose => ..., de │ │ │ │ +00016840: 6661 756c 7420 7661 6c75 6520 6661 6c73 fault value fals │ │ │ │ +00016850: 650a 2020 2a20 4f75 7470 7574 733a 0a20 e. * Outputs:. │ │ │ │ +00016860: 2020 2020 202a 2061 202a 6e6f 7465 206c * a *note l │ │ │ │ +00016870: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ +00016880: 6f63 294c 6973 742c 2c20 7468 6520 6669 oc)List,, the fi │ │ │ │ +00016890: 7273 7420 656e 7472 7920 6973 2061 206c rst entry is a l │ │ │ │ +000168a0: 6973 7420 6f66 2072 6f77 0a20 2020 2020 ist of row. │ │ │ │ +000168b0: 2020 2069 6e64 6963 6573 2c20 7468 6520 indices, the │ │ │ │ +000168c0: 7365 636f 6e64 2069 7320 6120 6c69 7374 second is a list │ │ │ │ +000168d0: 206f 6620 636f 6c75 6d6e 2069 6e64 6963 of column indic │ │ │ │ +000168e0: 6573 0a0a 4465 7363 7269 7074 696f 6e0a es..Description. │ │ │ │ +000168f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ +00016900: 7320 6675 6e63 7469 6f6e 206c 6f6f 6b73 s function looks │ │ │ │ +00016910: 2061 7420 7375 626d 6174 7269 6365 7320 at submatrices │ │ │ │ +00016920: 6f66 2074 6865 2067 6976 656e 206d 6174 of the given mat │ │ │ │ +00016930: 7269 782c 2061 6e64 2074 7269 6573 2074 rix, and tries t │ │ │ │ +00016940: 6f20 6669 6e64 206f 6e65 0a6f 6620 7468 o find one.of th │ │ │ │ +00016950: 6520 7370 6563 6966 6965 6420 7261 6e6b e specified rank │ │ │ │ +00016960: 2e20 2049 6620 6974 2073 7563 6365 6564 . If it succeed │ │ │ │ +00016970: 732c 2069 7420 7265 7475 726e 7320 6120 s, it returns a │ │ │ │ +00016980: 6c69 7374 206f 6620 7477 6f20 6c69 7374 list of two list │ │ │ │ +00016990: 732e 2054 6865 0a66 6972 7374 2069 7320 s. The.first is │ │ │ │ +000169a0: 7468 6520 6c69 7374 206f 6620 726f 7720 the list of row │ │ │ │ +000169b0: 696e 6469 6365 732c 2074 6865 2073 6563 indices, the sec │ │ │ │ +000169c0: 6f6e 6420 6973 2074 6865 206c 6973 7420 ond is the list │ │ │ │ +000169d0: 6f66 2063 6f6c 756d 6e73 2c20 6f66 2074 of columns, of t │ │ │ │ +000169e0: 6865 0a64 6573 6972 6564 2072 616e 6b20 he.desired rank │ │ │ │ +000169f0: 7375 626d 6174 7269 782e 2049 6620 6974 submatrix. If it │ │ │ │ +00016a00: 2066 6169 6c73 2074 6f20 6669 6e64 2073 fails to find s │ │ │ │ +00016a10: 7563 6820 6120 6d61 7472 6978 2c20 7468 uch a matrix, th │ │ │ │ +00016a20: 6520 6675 6e63 7469 6f6e 2072 6574 7572 e function retur │ │ │ │ +00016a30: 6e73 0a6e 756c 6c2e 2020 5468 6520 6f70 ns.null. The op │ │ │ │ +00016a40: 7469 6f6e 204d 6178 4d69 6e6f 7273 2069 tion MaxMinors i │ │ │ │ +00016a50: 7320 7573 6564 2074 6f20 636f 6e74 726f s used to contro │ │ │ │ +00016a60: 6c20 686f 7720 6d61 6e79 206d 696e 6f72 l how many minor │ │ │ │ +00016a70: 7320 746f 2063 6f6e 7369 6465 722e 2020 s to consider. │ │ │ │ +00016a80: 4966 0a6c 6566 7420 6e75 6c6c 2c20 7468 If.left null, th │ │ │ │ +00016a90: 6520 6e75 6d62 6572 2063 6f6e 7369 6465 e number conside │ │ │ │ +00016aa0: 7265 6420 6973 2062 6173 6564 206f 6e20 red is based on │ │ │ │ +00016ab0: 7468 6520 7369 7a65 206f 6620 7468 6520 the size of the │ │ │ │ +00016ac0: 6d61 7472 6978 2e0a 0a2b 2d2d 2d2d 2d2d matrix...+------ │ │ │ │ +00016ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b00: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ +00016b10: 2051 515b 782c 795d 3b20 2020 2020 2020 QQ[x,y]; │ │ │ │ +00016b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016b40: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00016b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b80: 2d2b 0a7c 6932 203a 204d 203d 206d 6174 -+.|i2 : M = mat │ │ │ │ +00016b90: 7269 787b 7b78 2c79 2c32 2c30 2c32 2a78 rix{{x,y,2,0,2*x │ │ │ │ +00016ba0: 2b79 7d2c 207b 302c 302c 312c 302c 787d +y}, {0,0,1,0,x} │ │ │ │ +00016bb0: 2c20 7b78 2c79 2c30 2c30 2c79 7d7d 3b7c , {x,y,0,0,y}};| │ │ │ │ +00016bc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00016bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016be0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00016bf0: 203a 204d 6174 7269 7820 5220 203c 2d2d : Matrix R <-- │ │ │ │ -00016c00: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -00016c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c20: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00016c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016c60: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 206c -------+.|i3 : l │ │ │ │ -00016c70: 203d 2067 6574 5375 626d 6174 7269 784f = getSubmatrixO │ │ │ │ -00016c80: 6652 616e 6b28 322c 204d 2920 2020 2020 fRank(2, M) │ │ │ │ -00016c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ca0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00016cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ce0: 2020 207c 0a7c 6f33 203d 207b 7b31 2c20 |.|o3 = {{1, │ │ │ │ -00016cf0: 327d 2c20 7b32 2c20 317d 7d20 2020 2020 2}, {2, 1}} │ │ │ │ +00016be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016bf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00016c00: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +00016c10: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ +00016c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c30: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00016c40: 203a 204d 6174 7269 7820 5220 203c 2d2d : Matrix R <-- │ │ │ │ +00016c50: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00016c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c70: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00016c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016cb0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 206c -------+.|i3 : l │ │ │ │ +00016cc0: 203d 2067 6574 5375 626d 6174 7269 784f = getSubmatrixO │ │ │ │ +00016cd0: 6652 616e 6b28 322c 204d 2920 2020 2020 fRank(2, M) │ │ │ │ +00016ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016cf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00016d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00016d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016d60: 0a7c 6f33 203a 204c 6973 7420 2020 2020 .|o3 : List │ │ │ │ -00016d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d30: 2020 207c 0a7c 6f33 203d 207b 7b31 2c20 |.|o3 = {{1, │ │ │ │ +00016d40: 327d 2c20 7b32 2c20 317d 7d20 2020 2020 2}, {2, 1}} │ │ │ │ +00016d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d90: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00016da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ -00016de0: 203a 2028 4d5e 286c 2330 2929 5f28 6c23 : (M^(l#0))_(l# │ │ │ │ -00016df0: 3129 2020 2020 2020 2020 2020 2020 2020 1) │ │ │ │ -00016e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00016e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e50: 2020 2020 2020 207c 0a7c 6f34 203d 207c |.|o4 = | │ │ │ │ -00016e60: 2031 2030 207c 2020 2020 2020 2020 2020 1 0 | │ │ │ │ +00016d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00016db0: 0a7c 6f33 203a 204c 6973 7420 2020 2020 .|o3 : List │ │ │ │ +00016dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016de0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00016df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +00016e30: 203a 2028 4d5e 286c 2330 2929 5f28 6c23 : (M^(l#0))_(l# │ │ │ │ +00016e40: 3129 2020 2020 2020 2020 2020 2020 2020 1) │ │ │ │ +00016e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00016e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e90: 2020 2020 207c 0a7c 2020 2020 207c 2030 |.| | 0 │ │ │ │ -00016ea0: 2079 207c 2020 2020 2020 2020 2020 2020 y | │ │ │ │ -00016eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ea0: 2020 2020 2020 207c 0a7c 6f34 203d 207c |.|o4 = | │ │ │ │ +00016eb0: 2031 2030 207c 2020 2020 2020 2020 2020 1 0 | │ │ │ │ 00016ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ed0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00016ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ee0: 2020 2020 207c 0a7c 2020 2020 207c 2030 |.| | 0 │ │ │ │ +00016ef0: 2079 207c 2020 2020 2020 2020 2020 2020 y | │ │ │ │ 00016f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00016f20: 2032 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +00016f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016f50: 0a7c 6f34 203a 204d 6174 7269 7820 5220 .|o4 : Matrix R │ │ │ │ -00016f60: 203c 2d2d 2052 2020 2020 2020 2020 2020 <-- R │ │ │ │ -00016f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f80: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00016f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ -00016fd0: 203a 206c 203d 2067 6574 5375 626d 6174 : l = getSubmat │ │ │ │ -00016fe0: 7269 784f 6652 616e 6b28 322c 204d 2920 rixOfRank(2, M) │ │ │ │ -00016ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017000: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00017010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017040: 2020 2020 2020 207c 0a7c 6f35 203d 207b |.|o5 = { │ │ │ │ -00017050: 7b31 2c20 307d 2c20 7b32 2c20 317d 7d20 {1, 0}, {2, 1}} │ │ │ │ +00016f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016f70: 2032 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +00016f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00016fa0: 0a7c 6f34 203a 204d 6174 7269 7820 5220 .|o4 : Matrix R │ │ │ │ +00016fb0: 203c 2d2d 2052 2020 2020 2020 2020 2020 <-- R │ │ │ │ +00016fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016fd0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00016fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ +00017020: 203a 206c 203d 2067 6574 5375 626d 6174 : l = getSubmat │ │ │ │ +00017030: 7269 784f 6652 616e 6b28 322c 204d 2920 rixOfRank(2, M) │ │ │ │ +00017040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017050: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00017060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017080: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00017090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017090: 2020 2020 2020 207c 0a7c 6f35 203d 207b |.|o5 = { │ │ │ │ +000170a0: 7b31 2c20 307d 2c20 7b32 2c20 317d 7d20 {1, 0}, {2, 1}} │ │ │ │ 000170b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170c0: 2020 207c 0a7c 6f35 203a 204c 6973 7420 |.|o5 : List │ │ │ │ -000170d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000170e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000170f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017100: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00017110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00017140: 0a7c 6936 203a 2028 4d5e 286c 2330 2929 .|i6 : (M^(l#0)) │ │ │ │ -00017150: 5f28 6c23 3129 2020 2020 2020 2020 2020 _(l#1) │ │ │ │ -00017160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017170: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00017180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000171a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000171b0: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ -000171c0: 203d 207c 2031 2030 207c 2020 2020 2020 = | 1 0 | │ │ │ │ +00017100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017110: 2020 207c 0a7c 6f35 203a 204c 6973 7420 |.|o5 : List │ │ │ │ +00017120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017150: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00017160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00017190: 0a7c 6936 203a 2028 4d5e 286c 2330 2929 .|i6 : (M^(l#0)) │ │ │ │ +000171a0: 5f28 6c23 3129 2020 2020 2020 2020 2020 _(l#1) │ │ │ │ +000171b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000171c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000171d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000171e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000171f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00017200: 207c 2032 2079 207c 2020 2020 2020 2020 | 2 y | │ │ │ │ -00017210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000171f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017200: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ +00017210: 203d 207c 2031 2030 207c 2020 2020 2020 = | 1 0 | │ │ │ │ 00017220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017230: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00017240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017240: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00017250: 207c 2032 2079 207c 2020 2020 2020 2020 | 2 y | │ │ │ │ 00017260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017270: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00017280: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ +00017270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017280: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00017290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000172a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172b0: 2020 207c 0a7c 6f36 203a 204d 6174 7269 |.|o6 : Matri │ │ │ │ -000172c0: 7820 5220 203c 2d2d 2052 2020 2020 2020 x R <-- R │ │ │ │ -000172d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000172b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000172c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000172d0: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ 000172e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172f0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00017300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00017330: 0a7c 6937 203a 2067 6574 5375 626d 6174 .|i7 : getSubmat │ │ │ │ -00017340: 7269 784f 6652 616e 6b28 332c 204d 2920 rixOfRank(3, M) │ │ │ │ -00017350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017360: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00017370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000173a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ -000173b0: 6520 6f70 7469 6f6e 2053 7472 6174 6567 e option Strateg │ │ │ │ -000173c0: 7920 6973 2075 7365 6420 746f 2075 7365 y is used to use │ │ │ │ -000173d0: 6420 746f 2063 6f6e 7472 6f6c 2068 6f77 d to control how │ │ │ │ -000173e0: 2074 6865 2066 756e 6374 696f 6e20 636f the function co │ │ │ │ -000173f0: 6d70 7574 6573 2074 6865 0a72 616e 6b20 mputes the.rank │ │ │ │ -00017400: 6f66 2074 6865 2073 7562 6d61 7472 6963 of the submatric │ │ │ │ -00017410: 6573 2063 6f6e 7369 6465 7265 642e 2020 es considered. │ │ │ │ -00017420: 5365 6520 2a6e 6f74 650a 6765 7453 7562 See *note.getSub │ │ │ │ -00017430: 6d61 7472 6978 4f66 5261 6e6b 282e 2e2e matrixOfRank(... │ │ │ │ -00017440: 2c53 7472 6174 6567 793d 3e2e 2e2e 293a ,Strategy=>...): │ │ │ │ -00017450: 2053 7472 6174 6567 7944 6566 6175 6c74 StrategyDefault │ │ │ │ -00017460: 2c2e 2049 6e20 7468 6520 6675 7475 7265 ,. In the future │ │ │ │ -00017470: 2c20 7765 2068 6f70 650a 746f 2073 7065 , we hope.to spe │ │ │ │ -00017480: 6564 2075 7020 7468 6520 6675 6e63 7469 ed up the functi │ │ │ │ -00017490: 6f6e 2074 6f20 7573 6520 6d75 6c74 6970 on to use multip │ │ │ │ -000174a0: 6c65 2074 6872 6561 6473 206f 6620 6578 le threads of ex │ │ │ │ -000174b0: 6563 7574 696f 6e2c 2069 6e20 7768 6963 ecution, in whic │ │ │ │ -000174c0: 6820 6361 7365 0a74 6865 2074 6872 6561 h case.the threa │ │ │ │ -000174d0: 6469 6e67 2077 6f75 6c64 2062 6520 636f ding would be co │ │ │ │ -000174e0: 6e74 726f 6c6c 6564 2062 7920 7468 6520 ntrolled by the │ │ │ │ -000174f0: 6f70 7469 6f6e 2054 6872 6561 6473 2e0a option Threads.. │ │ │ │ -00017500: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -00017510: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6973 ==.. * *note is │ │ │ │ -00017520: 5261 6e6b 4174 4c65 6173 743a 2069 7352 RankAtLeast: isR │ │ │ │ -00017530: 616e 6b41 744c 6561 7374 2c20 2d2d 2064 ankAtLeast, -- d │ │ │ │ -00017540: 6574 6572 6d69 6e65 7320 6966 2074 6865 etermines if the │ │ │ │ -00017550: 206d 6174 7269 7820 6861 7320 7261 6e6b matrix has rank │ │ │ │ -00017560: 2061 740a 2020 2020 6c65 6173 7420 6120 at. least a │ │ │ │ -00017570: 6e75 6d62 6572 0a20 202a 202a 6e6f 7465 number. * *note │ │ │ │ -00017580: 2067 6574 5375 626d 6174 7269 784f 6652 getSubmatrixOfR │ │ │ │ -00017590: 616e 6b28 2e2e 2e2c 5374 7261 7465 6779 ank(...,Strategy │ │ │ │ -000175a0: 3d3e 2e2e 2e29 3a20 5374 7261 7465 6779 =>...): Strategy │ │ │ │ -000175b0: 4465 6661 756c 742c 202d 2d20 7374 7261 Default, -- stra │ │ │ │ -000175c0: 7465 6769 6573 0a20 2020 2066 6f72 2063 tegies. for c │ │ │ │ -000175d0: 686f 6f73 696e 6720 7375 626d 6174 7269 hoosing submatri │ │ │ │ -000175e0: 6365 730a 0a57 6179 7320 746f 2075 7365 ces..Ways to use │ │ │ │ -000175f0: 2067 6574 5375 626d 6174 7269 784f 6652 getSubmatrixOfR │ │ │ │ -00017600: 616e 6b3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ank:.=========== │ │ │ │ -00017610: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00017620: 3d3d 3d3d 0a0a 2020 2a20 2267 6574 5375 ====.. * "getSu │ │ │ │ -00017630: 626d 6174 7269 784f 6652 616e 6b28 5a5a bmatrixOfRank(ZZ │ │ │ │ -00017640: 2c4d 6174 7269 7829 220a 0a46 6f72 2074 ,Matrix)"..For t │ │ │ │ -00017650: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +000172f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017300: 2020 207c 0a7c 6f36 203a 204d 6174 7269 |.|o6 : Matri │ │ │ │ +00017310: 7820 5220 203c 2d2d 2052 2020 2020 2020 x R <-- R │ │ │ │ +00017320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017340: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00017350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00017380: 0a7c 6937 203a 2067 6574 5375 626d 6174 .|i7 : getSubmat │ │ │ │ +00017390: 7269 784f 6652 616e 6b28 332c 204d 2920 rixOfRank(3, M) │ │ │ │ +000173a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000173b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000173c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000173d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000173e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000173f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ +00017400: 6520 6f70 7469 6f6e 2053 7472 6174 6567 e option Strateg │ │ │ │ +00017410: 7920 6973 2075 7365 6420 746f 2075 7365 y is used to use │ │ │ │ +00017420: 6420 746f 2063 6f6e 7472 6f6c 2068 6f77 d to control how │ │ │ │ +00017430: 2074 6865 2066 756e 6374 696f 6e20 636f the function co │ │ │ │ +00017440: 6d70 7574 6573 2074 6865 0a72 616e 6b20 mputes the.rank │ │ │ │ +00017450: 6f66 2074 6865 2073 7562 6d61 7472 6963 of the submatric │ │ │ │ +00017460: 6573 2063 6f6e 7369 6465 7265 642e 2020 es considered. │ │ │ │ +00017470: 5365 6520 2a6e 6f74 650a 6765 7453 7562 See *note.getSub │ │ │ │ +00017480: 6d61 7472 6978 4f66 5261 6e6b 282e 2e2e matrixOfRank(... │ │ │ │ +00017490: 2c53 7472 6174 6567 793d 3e2e 2e2e 293a ,Strategy=>...): │ │ │ │ +000174a0: 2053 7472 6174 6567 7944 6566 6175 6c74 StrategyDefault │ │ │ │ +000174b0: 2c2e 2049 6e20 7468 6520 6675 7475 7265 ,. In the future │ │ │ │ +000174c0: 2c20 7765 2068 6f70 650a 746f 2073 7065 , we hope.to spe │ │ │ │ +000174d0: 6564 2075 7020 7468 6520 6675 6e63 7469 ed up the functi │ │ │ │ +000174e0: 6f6e 2074 6f20 7573 6520 6d75 6c74 6970 on to use multip │ │ │ │ +000174f0: 6c65 2074 6872 6561 6473 206f 6620 6578 le threads of ex │ │ │ │ +00017500: 6563 7574 696f 6e2c 2069 6e20 7768 6963 ecution, in whic │ │ │ │ +00017510: 6820 6361 7365 0a74 6865 2074 6872 6561 h case.the threa │ │ │ │ +00017520: 6469 6e67 2077 6f75 6c64 2062 6520 636f ding would be co │ │ │ │ +00017530: 6e74 726f 6c6c 6564 2062 7920 7468 6520 ntrolled by the │ │ │ │ +00017540: 6f70 7469 6f6e 2054 6872 6561 6473 2e0a option Threads.. │ │ │ │ +00017550: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +00017560: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6973 ==.. * *note is │ │ │ │ +00017570: 5261 6e6b 4174 4c65 6173 743a 2069 7352 RankAtLeast: isR │ │ │ │ +00017580: 616e 6b41 744c 6561 7374 2c20 2d2d 2064 ankAtLeast, -- d │ │ │ │ +00017590: 6574 6572 6d69 6e65 7320 6966 2074 6865 etermines if the │ │ │ │ +000175a0: 206d 6174 7269 7820 6861 7320 7261 6e6b matrix has rank │ │ │ │ +000175b0: 2061 740a 2020 2020 6c65 6173 7420 6120 at. least a │ │ │ │ +000175c0: 6e75 6d62 6572 0a20 202a 202a 6e6f 7465 number. * *note │ │ │ │ +000175d0: 2067 6574 5375 626d 6174 7269 784f 6652 getSubmatrixOfR │ │ │ │ +000175e0: 616e 6b28 2e2e 2e2c 5374 7261 7465 6779 ank(...,Strategy │ │ │ │ +000175f0: 3d3e 2e2e 2e29 3a20 5374 7261 7465 6779 =>...): Strategy │ │ │ │ +00017600: 4465 6661 756c 742c 202d 2d20 7374 7261 Default, -- stra │ │ │ │ +00017610: 7465 6769 6573 0a20 2020 2066 6f72 2063 tegies. for c │ │ │ │ +00017620: 686f 6f73 696e 6720 7375 626d 6174 7269 hoosing submatri │ │ │ │ +00017630: 6365 730a 0a57 6179 7320 746f 2075 7365 ces..Ways to use │ │ │ │ +00017640: 2067 6574 5375 626d 6174 7269 784f 6652 getSubmatrixOfR │ │ │ │ +00017650: 616e 6b3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ank:.=========== │ │ │ │ 00017660: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00017670: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -00017680: 7465 2067 6574 5375 626d 6174 7269 784f te getSubmatrixO │ │ │ │ -00017690: 6652 616e 6b3a 2067 6574 5375 626d 6174 fRank: getSubmat │ │ │ │ -000176a0: 7269 784f 6652 616e 6b2c 2069 7320 6120 rixOfRank, is a │ │ │ │ -000176b0: 2a6e 6f74 6520 6d65 7468 6f64 0a66 756e *note method.fun │ │ │ │ -000176c0: 6374 696f 6e20 7769 7468 206f 7074 696f ction with optio │ │ │ │ -000176d0: 6e73 3a20 284d 6163 6175 6c61 7932 446f ns: (Macaulay2Do │ │ │ │ -000176e0: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -000176f0: 5769 7468 4f70 7469 6f6e 732c 2e0a 0a2d WithOptions,...- │ │ │ │ -00017700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00017750: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00017760: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00017770: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -00017780: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -00017790: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -000177a0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -000177b0: 6b61 6765 732f 4661 7374 4d69 6e6f 7273 kages/FastMinors │ │ │ │ -000177c0: 2e0a 6d32 3a31 3737 323a 302e 0a1f 0a46 ..m2:1772:0....F │ │ │ │ -000177d0: 696c 653a 2046 6173 744d 696e 6f72 732e ile: FastMinors. │ │ │ │ -000177e0: 696e 666f 2c20 4e6f 6465 3a20 6973 436f info, Node: isCo │ │ │ │ -000177f0: 6469 6d41 744c 6561 7374 2c20 4e65 7874 dimAtLeast, Next │ │ │ │ -00017800: 3a20 6973 4469 6d41 744d 6f73 742c 2050 : isDimAtMost, P │ │ │ │ -00017810: 7265 763a 2067 6574 5375 626d 6174 7269 rev: getSubmatri │ │ │ │ -00017820: 784f 6652 616e 6b2c 2055 703a 2054 6f70 xOfRank, Up: Top │ │ │ │ -00017830: 0a0a 6973 436f 6469 6d41 744c 6561 7374 ..isCodimAtLeast │ │ │ │ -00017840: 202d 2d20 7265 7475 726e 7320 7472 7565 -- returns true │ │ │ │ -00017850: 2069 6620 7765 2063 616e 2071 7569 636b if we can quick │ │ │ │ -00017860: 6c79 2073 6565 2077 6865 7468 6572 2074 ly see whether t │ │ │ │ -00017870: 6865 2063 6f64 696d 2069 7320 6174 206c he codim is at l │ │ │ │ -00017880: 6561 7374 2061 2067 6976 656e 206e 756d east a given num │ │ │ │ -00017890: 6265 720a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ber.************ │ │ │ │ -000178a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000178b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000178c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000178d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000178e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000178f0: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -00017900: 3a20 0a20 2020 2020 2020 2069 7343 6f64 : . isCod │ │ │ │ -00017910: 696d 4174 4c65 6173 7428 6e2c 2049 290a imAtLeast(n, I). │ │ │ │ -00017920: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -00017930: 2020 2a20 6e2c 2061 6e20 2a6e 6f74 6520 * n, an *note │ │ │ │ -00017940: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ -00017950: 6179 3244 6f63 295a 5a2c 2c20 616e 2069 ay2Doc)ZZ,, an i │ │ │ │ -00017960: 6e74 6567 6572 0a20 2020 2020 202a 2049 nteger. * I │ │ │ │ -00017970: 2c20 616e 202a 6e6f 7465 2069 6465 616c , an *note ideal │ │ │ │ -00017980: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00017990: 4964 6561 6c2c 2c20 616e 2069 6465 616c Ideal,, an ideal │ │ │ │ -000179a0: 2069 6e20 6120 706f 6c79 6e6f 6d69 616c in a polynomial │ │ │ │ -000179b0: 2072 696e 670a 2020 2020 2020 2020 6f76 ring. ov │ │ │ │ -000179c0: 6572 2061 2066 6965 6c64 2c20 6f72 2061 er a field, or a │ │ │ │ -000179d0: 2071 756f 7469 656e 7420 7269 6e67 0a20 quotient ring. │ │ │ │ -000179e0: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ -000179f0: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ -00017a00: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ -00017a10: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ -00017a20: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ -00017a30: 2020 2020 202a 2053 5061 6972 7346 756e * SPairsFun │ │ │ │ -00017a40: 6374 696f 6e20 3d3e 2061 202a 6e6f 7465 ction => a *note │ │ │ │ -00017a50: 2066 756e 6374 696f 6e3a 2028 4d61 6361 function: (Maca │ │ │ │ -00017a60: 756c 6179 3244 6f63 2946 756e 6374 696f ulay2Doc)Functio │ │ │ │ -00017a70: 6e2c 2c20 6465 6661 756c 740a 2020 2020 n,, default. │ │ │ │ -00017a80: 2020 2020 7661 6c75 6520 4675 6e63 7469 value Functi │ │ │ │ -00017a90: 6f6e 436c 6f73 7572 655b 2e2e 2f46 6173 onClosure[../Fas │ │ │ │ -00017aa0: 744d 696e 6f72 732e 6d32 3a32 3131 3a32 tMinors.m2:211:2 │ │ │ │ -00017ab0: 332d 3231 313a 3432 5d2c 2061 2066 756e 3-211:42], a fun │ │ │ │ -00017ac0: 6374 696f 6e20 746f 0a20 2020 2020 2020 ction to. │ │ │ │ -00017ad0: 2063 6f6e 7472 6f6c 2068 6f77 2077 6865 control how whe │ │ │ │ -00017ae0: 6e20 7468 6520 636f 6469 6d65 6e73 696f n the codimensio │ │ │ │ -00017af0: 6e20 6f66 206d 696e 6f72 7320 6973 2063 n of minors is c │ │ │ │ -00017b00: 6f6d 7075 7465 642c 2064 6566 6175 6c74 omputed, default │ │ │ │ -00017b10: 2069 730a 2020 2020 2020 2020 692d 3e63 is. i->c │ │ │ │ -00017b20: 6569 6c69 6e67 2831 2e35 5e69 290a 2020 eiling(1.5^i). │ │ │ │ -00017b30: 2020 2020 2a20 5061 6972 4c69 6d69 7420 * PairLimit │ │ │ │ -00017b40: 3d3e 2061 202a 6e6f 7465 206e 756d 6265 => a *note numbe │ │ │ │ -00017b50: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ -00017b60: 294e 756d 6265 722c 2c20 6465 6661 756c )Number,, defaul │ │ │ │ -00017b70: 7420 7661 6c75 6520 3130 302c 0a20 2020 t value 100,. │ │ │ │ -00017b80: 2020 2020 2074 6865 206d 6178 2076 616c the max val │ │ │ │ -00017b90: 7565 2074 6f20 6265 2070 6c75 6767 6564 ue to be plugged │ │ │ │ -00017ba0: 2069 6e74 6f20 5350 6169 7273 4675 6e63 into SPairsFunc │ │ │ │ -00017bb0: 7469 6f6e 0a20 2020 2020 202a 2056 6572 tion. * Ver │ │ │ │ -00017bc0: 626f 7365 203d 3e20 2e2e 2e2c 2064 6566 bose => ..., def │ │ │ │ -00017bd0: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ -00017be0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -00017bf0: 2020 2020 2a20 7472 7565 2069 6620 7468 * true if th │ │ │ │ -00017c00: 6520 636f 6469 6d65 6e73 696f 6e20 6f66 e codimension of │ │ │ │ -00017c10: 2049 2069 7320 6174 206c 6561 7374 206e I is at least n │ │ │ │ -00017c20: 206f 7220 6e75 6c6c 2069 6620 7468 6520 or null if the │ │ │ │ -00017c30: 6675 6e63 7469 6f6e 0a20 2020 2020 2020 function. │ │ │ │ -00017c40: 2063 616e 6e6f 7420 7465 6c6c 2077 6865 cannot tell whe │ │ │ │ -00017c50: 7468 6572 2074 6865 2063 6f64 696d 656e ther the codimen │ │ │ │ -00017c60: 7369 6f6e 2069 7320 6174 206c 6561 7374 sion is at least │ │ │ │ -00017c70: 206e 0a0a 4465 7363 7269 7074 696f 6e0a n..Description. │ │ │ │ -00017c80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ -00017c90: 7320 636f 6d70 7574 6573 2061 2070 6172 s computes a par │ │ │ │ -00017ca0: 7469 616c 2047 726f 6562 6e65 7220 6261 tial Groebner ba │ │ │ │ -00017cb0: 7369 732c 2074 616b 6573 2074 6865 2069 sis, takes the i │ │ │ │ -00017cc0: 6e69 7469 616c 2074 6572 6d73 2c20 616e nitial terms, an │ │ │ │ -00017cd0: 6420 6368 6563 6b73 0a77 6865 7468 6572 d checks.whether │ │ │ │ -00017ce0: 2074 6861 7420 2870 6172 7469 616c 2920 that (partial) │ │ │ │ -00017cf0: 696e 6974 6961 6c20 6964 6561 6c20 6861 initial ideal ha │ │ │ │ -00017d00: 7320 636f 6469 6d65 6e73 696f 6e20 6174 s codimension at │ │ │ │ -00017d10: 206c 6561 7374 206e 2e20 436f 6e73 6964 least n. Consid │ │ │ │ -00017d20: 6572 2074 6865 0a66 6f6c 6c6f 7769 6e67 er the.following │ │ │ │ -00017d30: 2065 7861 6d70 6c65 2e20 2057 6520 6372 example. We cr │ │ │ │ -00017d40: 6561 7465 2061 6e20 6964 6561 6c20 6f66 eate an ideal of │ │ │ │ -00017d50: 2031 3520 6d69 6e6f 7273 206f 6620 7468 15 minors of th │ │ │ │ -00017d60: 6520 6d61 7472 6978 206d 7944 6966 6620 e matrix myDiff │ │ │ │ -00017d70: 2861 0a6d 6174 7269 7820 636f 6e73 7472 (a.matrix constr │ │ │ │ -00017d80: 7563 7465 6420 696e 2061 2077 6179 2074 ucted in a way t │ │ │ │ -00017d90: 7970 6963 616c 206f 6620 6170 706c 6963 ypical of applic │ │ │ │ -00017da0: 6174 696f 6e73 292e 2020 5765 2077 6f75 ations). We wou │ │ │ │ -00017db0: 6c64 206c 696b 6520 746f 2076 6572 6966 ld like to verif │ │ │ │ -00017dc0: 790a 7468 6174 2074 6865 2063 6f64 696d y.that the codim │ │ │ │ -00017dd0: 656e 7369 6f6e 206f 6620 7468 6973 2069 ension of this i │ │ │ │ -00017de0: 6465 616c 2069 7320 6174 206c 6561 7374 deal is at least │ │ │ │ -00017df0: 2033 2e20 2054 6865 2062 7569 6c74 2d69 3. The built-i │ │ │ │ -00017e00: 6e20 636f 6469 6d20 6675 6e63 7469 6f6e n codim function │ │ │ │ -00017e10: 0a74 7970 6963 616c 6c79 2064 6f65 7320 .typically does │ │ │ │ -00017e20: 6e6f 7420 7465 726d 696e 6174 652e 2048 not terminate. H │ │ │ │ -00017e30: 6f77 6576 6572 2c20 6973 436f 6469 6d41 owever, isCodimA │ │ │ │ -00017e40: 744c 6561 7374 2069 7320 6e6f 726d 616c tLeast is normal │ │ │ │ -00017e50: 6c79 2076 6572 7920 6661 7374 2e0a 0a2b ly very fast...+ │ │ │ │ -00017e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00017eb0: 6931 203a 2052 203d 205a 5a2f 3132 375b i1 : R = ZZ/127[ │ │ │ │ -00017ec0: 785f 3120 2e2e 2078 5f28 3132 295d 3b20 x_1 .. x_(12)]; │ │ │ │ -00017ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ef0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00017f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00017f50: 6932 203a 2050 203d 206d 696e 6f72 7328 i2 : P = minors( │ │ │ │ -00017f60: 332c 6765 6e65 7269 634d 6174 7269 7828 3,genericMatrix( │ │ │ │ -00017f70: 522c 785f 312c 332c 3429 293b 2020 2020 R,x_1,3,4)); │ │ │ │ -00017f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00017fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017670: 3d3d 3d3d 0a0a 2020 2a20 2267 6574 5375 ====.. * "getSu │ │ │ │ +00017680: 626d 6174 7269 784f 6652 616e 6b28 5a5a bmatrixOfRank(ZZ │ │ │ │ +00017690: 2c4d 6174 7269 7829 220a 0a46 6f72 2074 ,Matrix)"..For t │ │ │ │ +000176a0: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +000176b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000176c0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +000176d0: 7465 2067 6574 5375 626d 6174 7269 784f te getSubmatrixO │ │ │ │ +000176e0: 6652 616e 6b3a 2067 6574 5375 626d 6174 fRank: getSubmat │ │ │ │ +000176f0: 7269 784f 6652 616e 6b2c 2069 7320 6120 rixOfRank, is a │ │ │ │ +00017700: 2a6e 6f74 6520 6d65 7468 6f64 0a66 756e *note method.fun │ │ │ │ +00017710: 6374 696f 6e20 7769 7468 206f 7074 696f ction with optio │ │ │ │ +00017720: 6e73 3a20 284d 6163 6175 6c61 7932 446f ns: (Macaulay2Do │ │ │ │ +00017730: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ +00017740: 5769 7468 4f70 7469 6f6e 732c 2e0a 0a2d WithOptions,...- │ │ │ │ +00017750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +000177a0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +000177b0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +000177c0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +000177d0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +000177e0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +000177f0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +00017800: 6b61 6765 732f 4661 7374 4d69 6e6f 7273 kages/FastMinors │ │ │ │ +00017810: 2e0a 6d32 3a31 3737 323a 302e 0a1f 0a46 ..m2:1772:0....F │ │ │ │ +00017820: 696c 653a 2046 6173 744d 696e 6f72 732e ile: FastMinors. │ │ │ │ +00017830: 696e 666f 2c20 4e6f 6465 3a20 6973 436f info, Node: isCo │ │ │ │ +00017840: 6469 6d41 744c 6561 7374 2c20 4e65 7874 dimAtLeast, Next │ │ │ │ +00017850: 3a20 6973 4469 6d41 744d 6f73 742c 2050 : isDimAtMost, P │ │ │ │ +00017860: 7265 763a 2067 6574 5375 626d 6174 7269 rev: getSubmatri │ │ │ │ +00017870: 784f 6652 616e 6b2c 2055 703a 2054 6f70 xOfRank, Up: Top │ │ │ │ +00017880: 0a0a 6973 436f 6469 6d41 744c 6561 7374 ..isCodimAtLeast │ │ │ │ +00017890: 202d 2d20 7265 7475 726e 7320 7472 7565 -- returns true │ │ │ │ +000178a0: 2069 6620 7765 2063 616e 2071 7569 636b if we can quick │ │ │ │ +000178b0: 6c79 2073 6565 2077 6865 7468 6572 2074 ly see whether t │ │ │ │ +000178c0: 6865 2063 6f64 696d 2069 7320 6174 206c he codim is at l │ │ │ │ +000178d0: 6561 7374 2061 2067 6976 656e 206e 756d east a given num │ │ │ │ +000178e0: 6265 720a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ber.************ │ │ │ │ +000178f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00017900: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00017910: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00017920: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00017930: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00017940: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ +00017950: 3a20 0a20 2020 2020 2020 2069 7343 6f64 : . isCod │ │ │ │ +00017960: 696d 4174 4c65 6173 7428 6e2c 2049 290a imAtLeast(n, I). │ │ │ │ +00017970: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +00017980: 2020 2a20 6e2c 2061 6e20 2a6e 6f74 6520 * n, an *note │ │ │ │ +00017990: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ +000179a0: 6179 3244 6f63 295a 5a2c 2c20 616e 2069 ay2Doc)ZZ,, an i │ │ │ │ +000179b0: 6e74 6567 6572 0a20 2020 2020 202a 2049 nteger. * I │ │ │ │ +000179c0: 2c20 616e 202a 6e6f 7465 2069 6465 616c , an *note ideal │ │ │ │ +000179d0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +000179e0: 4964 6561 6c2c 2c20 616e 2069 6465 616c Ideal,, an ideal │ │ │ │ +000179f0: 2069 6e20 6120 706f 6c79 6e6f 6d69 616c in a polynomial │ │ │ │ +00017a00: 2072 696e 670a 2020 2020 2020 2020 6f76 ring. ov │ │ │ │ +00017a10: 6572 2061 2066 6965 6c64 2c20 6f72 2061 er a field, or a │ │ │ │ +00017a20: 2071 756f 7469 656e 7420 7269 6e67 0a20 quotient ring. │ │ │ │ +00017a30: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ +00017a40: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ +00017a50: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ +00017a60: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +00017a70: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ +00017a80: 2020 2020 202a 2053 5061 6972 7346 756e * SPairsFun │ │ │ │ +00017a90: 6374 696f 6e20 3d3e 2061 202a 6e6f 7465 ction => a *note │ │ │ │ +00017aa0: 2066 756e 6374 696f 6e3a 2028 4d61 6361 function: (Maca │ │ │ │ +00017ab0: 756c 6179 3244 6f63 2946 756e 6374 696f ulay2Doc)Functio │ │ │ │ +00017ac0: 6e2c 2c20 6465 6661 756c 740a 2020 2020 n,, default. │ │ │ │ +00017ad0: 2020 2020 7661 6c75 6520 4675 6e63 7469 value Functi │ │ │ │ +00017ae0: 6f6e 436c 6f73 7572 655b 2e2e 2f46 6173 onClosure[../Fas │ │ │ │ +00017af0: 744d 696e 6f72 732e 6d32 3a32 3131 3a32 tMinors.m2:211:2 │ │ │ │ +00017b00: 332d 3231 313a 3432 5d2c 2061 2066 756e 3-211:42], a fun │ │ │ │ +00017b10: 6374 696f 6e20 746f 0a20 2020 2020 2020 ction to. │ │ │ │ +00017b20: 2063 6f6e 7472 6f6c 2068 6f77 2077 6865 control how whe │ │ │ │ +00017b30: 6e20 7468 6520 636f 6469 6d65 6e73 696f n the codimensio │ │ │ │ +00017b40: 6e20 6f66 206d 696e 6f72 7320 6973 2063 n of minors is c │ │ │ │ +00017b50: 6f6d 7075 7465 642c 2064 6566 6175 6c74 omputed, default │ │ │ │ +00017b60: 2069 730a 2020 2020 2020 2020 692d 3e63 is. i->c │ │ │ │ +00017b70: 6569 6c69 6e67 2831 2e35 5e69 290a 2020 eiling(1.5^i). │ │ │ │ +00017b80: 2020 2020 2a20 5061 6972 4c69 6d69 7420 * PairLimit │ │ │ │ +00017b90: 3d3e 2061 202a 6e6f 7465 206e 756d 6265 => a *note numbe │ │ │ │ +00017ba0: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ +00017bb0: 294e 756d 6265 722c 2c20 6465 6661 756c )Number,, defaul │ │ │ │ +00017bc0: 7420 7661 6c75 6520 3130 302c 0a20 2020 t value 100,. │ │ │ │ +00017bd0: 2020 2020 2074 6865 206d 6178 2076 616c the max val │ │ │ │ +00017be0: 7565 2074 6f20 6265 2070 6c75 6767 6564 ue to be plugged │ │ │ │ +00017bf0: 2069 6e74 6f20 5350 6169 7273 4675 6e63 into SPairsFunc │ │ │ │ +00017c00: 7469 6f6e 0a20 2020 2020 202a 2056 6572 tion. * Ver │ │ │ │ +00017c10: 626f 7365 203d 3e20 2e2e 2e2c 2064 6566 bose => ..., def │ │ │ │ +00017c20: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ +00017c30: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +00017c40: 2020 2020 2a20 7472 7565 2069 6620 7468 * true if th │ │ │ │ +00017c50: 6520 636f 6469 6d65 6e73 696f 6e20 6f66 e codimension of │ │ │ │ +00017c60: 2049 2069 7320 6174 206c 6561 7374 206e I is at least n │ │ │ │ +00017c70: 206f 7220 6e75 6c6c 2069 6620 7468 6520 or null if the │ │ │ │ +00017c80: 6675 6e63 7469 6f6e 0a20 2020 2020 2020 function. │ │ │ │ +00017c90: 2063 616e 6e6f 7420 7465 6c6c 2077 6865 cannot tell whe │ │ │ │ +00017ca0: 7468 6572 2074 6865 2063 6f64 696d 656e ther the codimen │ │ │ │ +00017cb0: 7369 6f6e 2069 7320 6174 206c 6561 7374 sion is at least │ │ │ │ +00017cc0: 206e 0a0a 4465 7363 7269 7074 696f 6e0a n..Description. │ │ │ │ +00017cd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ +00017ce0: 7320 636f 6d70 7574 6573 2061 2070 6172 s computes a par │ │ │ │ +00017cf0: 7469 616c 2047 726f 6562 6e65 7220 6261 tial Groebner ba │ │ │ │ +00017d00: 7369 732c 2074 616b 6573 2074 6865 2069 sis, takes the i │ │ │ │ +00017d10: 6e69 7469 616c 2074 6572 6d73 2c20 616e nitial terms, an │ │ │ │ +00017d20: 6420 6368 6563 6b73 0a77 6865 7468 6572 d checks.whether │ │ │ │ +00017d30: 2074 6861 7420 2870 6172 7469 616c 2920 that (partial) │ │ │ │ +00017d40: 696e 6974 6961 6c20 6964 6561 6c20 6861 initial ideal ha │ │ │ │ +00017d50: 7320 636f 6469 6d65 6e73 696f 6e20 6174 s codimension at │ │ │ │ +00017d60: 206c 6561 7374 206e 2e20 436f 6e73 6964 least n. Consid │ │ │ │ +00017d70: 6572 2074 6865 0a66 6f6c 6c6f 7769 6e67 er the.following │ │ │ │ +00017d80: 2065 7861 6d70 6c65 2e20 2057 6520 6372 example. We cr │ │ │ │ +00017d90: 6561 7465 2061 6e20 6964 6561 6c20 6f66 eate an ideal of │ │ │ │ +00017da0: 2031 3520 6d69 6e6f 7273 206f 6620 7468 15 minors of th │ │ │ │ +00017db0: 6520 6d61 7472 6978 206d 7944 6966 6620 e matrix myDiff │ │ │ │ +00017dc0: 2861 0a6d 6174 7269 7820 636f 6e73 7472 (a.matrix constr │ │ │ │ +00017dd0: 7563 7465 6420 696e 2061 2077 6179 2074 ucted in a way t │ │ │ │ +00017de0: 7970 6963 616c 206f 6620 6170 706c 6963 ypical of applic │ │ │ │ +00017df0: 6174 696f 6e73 292e 2020 5765 2077 6f75 ations). We wou │ │ │ │ +00017e00: 6c64 206c 696b 6520 746f 2076 6572 6966 ld like to verif │ │ │ │ +00017e10: 790a 7468 6174 2074 6865 2063 6f64 696d y.that the codim │ │ │ │ +00017e20: 656e 7369 6f6e 206f 6620 7468 6973 2069 ension of this i │ │ │ │ +00017e30: 6465 616c 2069 7320 6174 206c 6561 7374 deal is at least │ │ │ │ +00017e40: 2033 2e20 2054 6865 2062 7569 6c74 2d69 3. The built-i │ │ │ │ +00017e50: 6e20 636f 6469 6d20 6675 6e63 7469 6f6e n codim function │ │ │ │ +00017e60: 0a74 7970 6963 616c 6c79 2064 6f65 7320 .typically does │ │ │ │ +00017e70: 6e6f 7420 7465 726d 696e 6174 652e 2048 not terminate. H │ │ │ │ +00017e80: 6f77 6576 6572 2c20 6973 436f 6469 6d41 owever, isCodimA │ │ │ │ +00017e90: 744c 6561 7374 2069 7320 6e6f 726d 616c tLeast is normal │ │ │ │ +00017ea0: 6c79 2076 6572 7920 6661 7374 2e0a 0a2b ly very fast...+ │ │ │ │ +00017eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00017f00: 6931 203a 2052 203d 205a 5a2f 3132 375b i1 : R = ZZ/127[ │ │ │ │ +00017f10: 785f 3120 2e2e 2078 5f28 3132 295d 3b20 x_1 .. x_(12)]; │ │ │ │ +00017f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017f40: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00017f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00017fa0: 6932 203a 2050 203d 206d 696e 6f72 7328 i2 : P = minors( │ │ │ │ +00017fb0: 332c 6765 6e65 7269 634d 6174 7269 7828 3,genericMatrix( │ │ │ │ +00017fc0: 522c 785f 312c 332c 3429 293b 2020 2020 R,x_1,3,4)); │ │ │ │ 00017fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017fe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00017ff0: 6f32 203a 2049 6465 616c 206f 6620 5220 o2 : Ideal of R │ │ │ │ +00017ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018030: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00018040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00018090: 6933 203a 2043 203d 2072 6573 2028 525e i3 : C = res (R^ │ │ │ │ -000180a0: 312f 2850 5e33 2929 3b20 2020 2020 2020 1/(P^3)); │ │ │ │ -000180b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180d0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -000180e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000180f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00018130: 6934 203a 206d 7944 6966 6620 3d20 432e i4 : myDiff = C. │ │ │ │ -00018140: 6464 5f33 3b20 2020 2020 2020 2020 2020 dd_3; │ │ │ │ -00018150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018170: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00018180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018030: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018040: 6f32 203a 2049 6465 616c 206f 6620 5220 o2 : Ideal of R │ │ │ │ +00018050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018080: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00018090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000180e0: 6933 203a 2043 203d 2072 6573 2028 525e i3 : C = res (R^ │ │ │ │ +000180f0: 312f 2850 5e33 2929 3b20 2020 2020 2020 1/(P^3)); │ │ │ │ +00018100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018120: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00018130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00018180: 6934 203a 206d 7944 6966 6620 3d20 432e i4 : myDiff = C. │ │ │ │ +00018190: 6464 5f33 3b20 2020 2020 2020 2020 2020 dd_3; │ │ │ │ 000181a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000181b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000181c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000181d0: 2020 2020 2020 2020 2020 2020 2033 3020 30 │ │ │ │ -000181e0: 2020 2020 2031 3220 2020 2020 2020 2020 12 │ │ │ │ +000181d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000181e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000181f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018210: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00018220: 6f34 203a 204d 6174 7269 7820 5220 2020 o4 : Matrix R │ │ │ │ -00018230: 3c2d 2d20 5220 2020 2020 2020 2020 2020 <-- R │ │ │ │ +00018220: 2020 2020 2020 2020 2020 2020 2033 3020 30 │ │ │ │ +00018230: 2020 2020 2031 3220 2020 2020 2020 2020 12 │ │ │ │ 00018240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018260: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00018270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000182a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000182b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000182c0: 6935 203a 2072 203d 2072 616e 6b20 6d79 i5 : r = rank my │ │ │ │ -000182d0: 4469 6666 3b20 2020 2020 2020 2020 2020 Diff; │ │ │ │ -000182e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000182f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018300: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00018310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00018360: 6936 203a 204a 203d 2063 686f 6f73 6547 i6 : J = chooseG │ │ │ │ -00018370: 6f6f 644d 696e 6f72 7328 3135 2c20 722c oodMinors(15, r, │ │ │ │ -00018380: 206d 7944 6966 662c 2053 7472 6174 6567 myDiff, Strateg │ │ │ │ -00018390: 793d 3e53 7472 6174 6567 7944 6566 6175 y=>StrategyDefau │ │ │ │ -000183a0: 6c74 4e6f 6e52 616e 646f 6d29 3b7c 0a7c ltNonRandom);|.| │ │ │ │ -000183b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00018400: 6f36 203a 2049 6465 616c 206f 6620 5220 o6 : Ideal of R │ │ │ │ +00018260: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018270: 6f34 203a 204d 6174 7269 7820 5220 2020 o4 : Matrix R │ │ │ │ +00018280: 3c2d 2d20 5220 2020 2020 2020 2020 2020 <-- R │ │ │ │ +00018290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000182a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000182b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000182c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000182d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000182e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000182f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00018310: 6935 203a 2072 203d 2072 616e 6b20 6d79 i5 : r = rank my │ │ │ │ +00018320: 4469 6666 3b20 2020 2020 2020 2020 2020 Diff; │ │ │ │ +00018330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018350: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00018360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000183a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000183b0: 6936 203a 204a 203d 2063 686f 6f73 6547 i6 : J = chooseG │ │ │ │ +000183c0: 6f6f 644d 696e 6f72 7328 3135 2c20 722c oodMinors(15, r, │ │ │ │ +000183d0: 206d 7944 6966 662c 2053 7472 6174 6567 myDiff, Strateg │ │ │ │ +000183e0: 793d 3e53 7472 6174 6567 7944 6566 6175 y=>StrategyDefau │ │ │ │ +000183f0: 6c74 4e6f 6e52 616e 646f 6d29 3b7c 0a7c ltNonRandom);|.| │ │ │ │ +00018400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018440: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00018450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000184a0: 6937 203a 2074 696d 6520 6973 436f 6469 i7 : time isCodi │ │ │ │ -000184b0: 6d41 744c 6561 7374 2833 2c20 4a29 2020 mAtLeast(3, J) │ │ │ │ -000184c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000184d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000184e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000184f0: 202d 2d20 7573 6564 2030 2e30 3034 3030 -- used 0.00400 │ │ │ │ -00018500: 3037 3273 2028 6370 7529 3b20 302e 3030 072s (cpu); 0.00 │ │ │ │ -00018510: 3236 3430 3439 7320 2874 6872 6561 6429 264049s (thread) │ │ │ │ -00018520: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00018440: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018450: 6f36 203a 2049 6465 616c 206f 6620 5220 o6 : Ideal of R │ │ │ │ +00018460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018490: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000184a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000184b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000184c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000184d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000184e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000184f0: 6937 203a 2074 696d 6520 6973 436f 6469 i7 : time isCodi │ │ │ │ +00018500: 6d41 744c 6561 7374 2833 2c20 4a29 2020 mAtLeast(3, J) │ │ │ │ +00018510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018530: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00018540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018540: 202d 2d20 7573 6564 2030 2e30 3033 3939 -- used 0.00399 │ │ │ │ +00018550: 3839 3873 2028 6370 7529 3b20 302e 3030 898s (cpu); 0.00 │ │ │ │ +00018560: 3332 3034 3736 7320 2874 6872 6561 6429 320476s (thread) │ │ │ │ +00018570: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 00018580: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00018590: 6f37 203d 2074 7275 6520 2020 2020 2020 o7 = true │ │ │ │ +00018590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000185a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000185b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000185c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000185d0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -000185e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000185f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00018630: 5468 6520 6675 6e63 7469 6f6e 2077 6f72 The function wor │ │ │ │ -00018640: 6b73 2062 7920 636f 6d70 7574 696e 6720 ks by computing │ │ │ │ -00018650: 6762 2849 2c20 5061 6972 4c69 6d69 743d gb(I, PairLimit= │ │ │ │ -00018660: 3e66 2869 2929 2066 6f72 2073 7563 6365 >f(i)) for succe │ │ │ │ -00018670: 7373 6976 6520 7661 6c75 6573 206f 660a ssive values of. │ │ │ │ -00018680: 692e 2020 4865 7265 2066 2869 2920 6973 i. Here f(i) is │ │ │ │ -00018690: 2061 2066 756e 6374 696f 6e20 7468 6174 a function that │ │ │ │ -000186a0: 2074 616b 6573 2074 2c20 736f 6d65 2061 takes t, some a │ │ │ │ -000186b0: 7070 726f 7869 6d61 7469 6f6e 206f 6620 pproximation of │ │ │ │ -000186c0: 7468 6520 6261 7365 2064 6567 7265 650a the base degree. │ │ │ │ -000186d0: 7661 6c75 6520 6f66 2074 6865 2070 6f6c value of the pol │ │ │ │ -000186e0: 796e 6f6d 6961 6c20 7269 6e67 2028 666f ynomial ring (fo │ │ │ │ -000186f0: 7220 6578 616d 706c 652c 2069 6e20 6120 r example, in a │ │ │ │ -00018700: 7374 616e 6461 7264 2067 7261 6465 6420 standard graded │ │ │ │ -00018710: 706f 6c79 6e6f 6d69 616c 0a72 696e 672c polynomial.ring, │ │ │ │ -00018720: 2074 6869 7320 6973 2070 726f 6261 626c this is probabl │ │ │ │ -00018730: 7920 6578 7065 6374 6564 2074 6f20 6265 y expected to be │ │ │ │ -00018740: 205c 7b31 5c7d 292e 2020 416e 6420 6920 \{1\}). And i │ │ │ │ -00018750: 6973 2061 2063 6f75 6e74 696e 6720 7661 is a counting va │ │ │ │ -00018760: 7269 6162 6c65 2e0a 596f 7520 6361 6e20 riable..You can │ │ │ │ -00018770: 7072 6f76 6964 6520 796f 7572 206f 776e provide your own │ │ │ │ -00018780: 2066 756e 6374 696f 6e20 6279 2063 616c function by cal │ │ │ │ -00018790: 6c69 6e67 2069 7343 6f64 696d 4174 4c65 ling isCodimAtLe │ │ │ │ -000187a0: 6173 7428 6e2c 2049 2c0a 5350 6169 7273 ast(n, I,.SPairs │ │ │ │ -000187b0: 4675 6e63 7469 6f6e 3d3e 2820 2869 2920 Function=>( (i) │ │ │ │ -000187c0: 2d3e 2066 2869 2920 292c 2074 6865 2064 -> f(i) ), the d │ │ │ │ -000187d0: 6566 6175 6c74 2066 756e 6374 696f 6e20 efault function │ │ │ │ -000187e0: 6973 0a53 5061 6972 7346 756e 6374 696f is.SPairsFunctio │ │ │ │ -000187f0: 6e3d 3e69 2d3e 6365 696c 696e 6728 312e n=>i->ceiling(1. │ │ │ │ -00018800: 355e 6929 2020 2050 6572 6861 7073 206d 5^i) Perhaps m │ │ │ │ -00018810: 6f72 6520 636f 6d6d 6f6e 6c79 2068 6f77 ore commonly how │ │ │ │ -00018820: 6576 6572 2c20 7468 6520 7573 6572 206d ever, the user m │ │ │ │ -00018830: 6179 0a77 616e 7420 746f 2069 6e73 7465 ay.want to inste │ │ │ │ -00018840: 6164 2074 656c 6c20 7468 6520 6675 6e63 ad tell the func │ │ │ │ -00018850: 7469 6f6e 2074 6f20 636f 6d70 7574 6520 tion to compute │ │ │ │ -00018860: 666f 7220 6c61 7267 6572 2076 616c 7565 for larger value │ │ │ │ -00018870: 7320 6f66 2069 2e20 2054 6869 7320 6973 s of i. This is │ │ │ │ -00018880: 0a64 6f6e 6520 7669 6120 7468 6520 6f70 .done via the op │ │ │ │ -00018890: 7469 6f6e 2050 6169 724c 696d 6974 2e20 tion PairLimit. │ │ │ │ -000188a0: 2054 6869 7320 6973 2074 6865 206d 6178 This is the max │ │ │ │ -000188b0: 2076 616c 7565 206f 6620 6920 746f 2062 value of i to b │ │ │ │ -000188c0: 6520 706c 7567 6765 6420 696e 746f 0a53 e plugged into.S │ │ │ │ -000188d0: 5061 6972 7346 756e 6374 696f 6e20 6265 PairsFunction be │ │ │ │ -000188e0: 666f 7265 2074 6865 2066 756e 6374 696f fore the functio │ │ │ │ -000188f0: 6e20 6769 7665 7320 7570 2e20 2049 6e20 n gives up. In │ │ │ │ -00018900: 6f74 6865 7220 776f 7264 732c 2050 6169 other words, Pai │ │ │ │ -00018910: 724c 696d 6974 3d3e 3520 7769 6c6c 0a74 rLimit=>5 will.t │ │ │ │ -00018920: 656c 6c20 7468 6520 6675 6e63 7469 6f6e ell the function │ │ │ │ -00018930: 2074 6f20 6368 6563 6b20 636f 6469 6d65 to check codime │ │ │ │ -00018940: 6e73 696f 6e20 3520 7469 6d65 732e 0a0a nsion 5 times... │ │ │ │ -00018950: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00018960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000189a0: 7c69 3820 3a20 4920 3d20 6964 6561 6c28 |i8 : I = ideal( │ │ │ │ -000189b0: 785f 325e 382a 785f 3130 5e33 2d33 2a78 x_2^8*x_10^3-3*x │ │ │ │ -000189c0: 5f31 2a78 5f32 5e37 2a78 5f31 305e 322a _1*x_2^7*x_10^2* │ │ │ │ -000189d0: 785f 3131 2b33 2a78 5f31 5e32 2a78 5f32 x_11+3*x_1^2*x_2 │ │ │ │ -000189e0: 5e36 2a78 5f31 302a 785f 3131 5e32 7c0a ^6*x_10*x_11^2|. │ │ │ │ -000189f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00018a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018a30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000185d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000185e0: 6f37 203d 2074 7275 6520 2020 2020 2020 o7 = true │ │ │ │ +000185f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018620: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00018630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00018680: 5468 6520 6675 6e63 7469 6f6e 2077 6f72 The function wor │ │ │ │ +00018690: 6b73 2062 7920 636f 6d70 7574 696e 6720 ks by computing │ │ │ │ +000186a0: 6762 2849 2c20 5061 6972 4c69 6d69 743d gb(I, PairLimit= │ │ │ │ +000186b0: 3e66 2869 2929 2066 6f72 2073 7563 6365 >f(i)) for succe │ │ │ │ +000186c0: 7373 6976 6520 7661 6c75 6573 206f 660a ssive values of. │ │ │ │ +000186d0: 692e 2020 4865 7265 2066 2869 2920 6973 i. Here f(i) is │ │ │ │ +000186e0: 2061 2066 756e 6374 696f 6e20 7468 6174 a function that │ │ │ │ +000186f0: 2074 616b 6573 2074 2c20 736f 6d65 2061 takes t, some a │ │ │ │ +00018700: 7070 726f 7869 6d61 7469 6f6e 206f 6620 pproximation of │ │ │ │ +00018710: 7468 6520 6261 7365 2064 6567 7265 650a the base degree. │ │ │ │ +00018720: 7661 6c75 6520 6f66 2074 6865 2070 6f6c value of the pol │ │ │ │ +00018730: 796e 6f6d 6961 6c20 7269 6e67 2028 666f ynomial ring (fo │ │ │ │ +00018740: 7220 6578 616d 706c 652c 2069 6e20 6120 r example, in a │ │ │ │ +00018750: 7374 616e 6461 7264 2067 7261 6465 6420 standard graded │ │ │ │ +00018760: 706f 6c79 6e6f 6d69 616c 0a72 696e 672c polynomial.ring, │ │ │ │ +00018770: 2074 6869 7320 6973 2070 726f 6261 626c this is probabl │ │ │ │ +00018780: 7920 6578 7065 6374 6564 2074 6f20 6265 y expected to be │ │ │ │ +00018790: 205c 7b31 5c7d 292e 2020 416e 6420 6920 \{1\}). And i │ │ │ │ +000187a0: 6973 2061 2063 6f75 6e74 696e 6720 7661 is a counting va │ │ │ │ +000187b0: 7269 6162 6c65 2e0a 596f 7520 6361 6e20 riable..You can │ │ │ │ +000187c0: 7072 6f76 6964 6520 796f 7572 206f 776e provide your own │ │ │ │ +000187d0: 2066 756e 6374 696f 6e20 6279 2063 616c function by cal │ │ │ │ +000187e0: 6c69 6e67 2069 7343 6f64 696d 4174 4c65 ling isCodimAtLe │ │ │ │ +000187f0: 6173 7428 6e2c 2049 2c0a 5350 6169 7273 ast(n, I,.SPairs │ │ │ │ +00018800: 4675 6e63 7469 6f6e 3d3e 2820 2869 2920 Function=>( (i) │ │ │ │ +00018810: 2d3e 2066 2869 2920 292c 2074 6865 2064 -> f(i) ), the d │ │ │ │ +00018820: 6566 6175 6c74 2066 756e 6374 696f 6e20 efault function │ │ │ │ +00018830: 6973 0a53 5061 6972 7346 756e 6374 696f is.SPairsFunctio │ │ │ │ +00018840: 6e3d 3e69 2d3e 6365 696c 696e 6728 312e n=>i->ceiling(1. │ │ │ │ +00018850: 355e 6929 2020 2050 6572 6861 7073 206d 5^i) Perhaps m │ │ │ │ +00018860: 6f72 6520 636f 6d6d 6f6e 6c79 2068 6f77 ore commonly how │ │ │ │ +00018870: 6576 6572 2c20 7468 6520 7573 6572 206d ever, the user m │ │ │ │ +00018880: 6179 0a77 616e 7420 746f 2069 6e73 7465 ay.want to inste │ │ │ │ +00018890: 6164 2074 656c 6c20 7468 6520 6675 6e63 ad tell the func │ │ │ │ +000188a0: 7469 6f6e 2074 6f20 636f 6d70 7574 6520 tion to compute │ │ │ │ +000188b0: 666f 7220 6c61 7267 6572 2076 616c 7565 for larger value │ │ │ │ +000188c0: 7320 6f66 2069 2e20 2054 6869 7320 6973 s of i. This is │ │ │ │ +000188d0: 0a64 6f6e 6520 7669 6120 7468 6520 6f70 .done via the op │ │ │ │ +000188e0: 7469 6f6e 2050 6169 724c 696d 6974 2e20 tion PairLimit. │ │ │ │ +000188f0: 2054 6869 7320 6973 2074 6865 206d 6178 This is the max │ │ │ │ +00018900: 2076 616c 7565 206f 6620 6920 746f 2062 value of i to b │ │ │ │ +00018910: 6520 706c 7567 6765 6420 696e 746f 0a53 e plugged into.S │ │ │ │ +00018920: 5061 6972 7346 756e 6374 696f 6e20 6265 PairsFunction be │ │ │ │ +00018930: 666f 7265 2074 6865 2066 756e 6374 696f fore the functio │ │ │ │ +00018940: 6e20 6769 7665 7320 7570 2e20 2049 6e20 n gives up. In │ │ │ │ +00018950: 6f74 6865 7220 776f 7264 732c 2050 6169 other words, Pai │ │ │ │ +00018960: 724c 696d 6974 3d3e 3520 7769 6c6c 0a74 rLimit=>5 will.t │ │ │ │ +00018970: 656c 6c20 7468 6520 6675 6e63 7469 6f6e ell the function │ │ │ │ +00018980: 2074 6f20 6368 6563 6b20 636f 6469 6d65 to check codime │ │ │ │ +00018990: 6e73 696f 6e20 3520 7469 6d65 732e 0a0a nsion 5 times... │ │ │ │ +000189a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000189b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000189c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000189d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000189e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000189f0: 7c69 3820 3a20 4920 3d20 6964 6561 6c28 |i8 : I = ideal( │ │ │ │ +00018a00: 785f 325e 382a 785f 3130 5e33 2d33 2a78 x_2^8*x_10^3-3*x │ │ │ │ +00018a10: 5f31 2a78 5f32 5e37 2a78 5f31 305e 322a _1*x_2^7*x_10^2* │ │ │ │ +00018a20: 785f 3131 2b33 2a78 5f31 5e32 2a78 5f32 x_11+3*x_1^2*x_2 │ │ │ │ +00018a30: 5e36 2a78 5f31 302a 785f 3131 5e32 7c0a ^6*x_10*x_11^2|. │ │ │ │ 00018a40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00018a50: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00018a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00018a90: 7c6f 3820 3a20 4964 6561 6c20 6f66 202d |o8 : Ideal of - │ │ │ │ -00018aa0: 2d2d 5b78 2020 2c20 7820 2c20 7820 2c20 --[x , x , x , │ │ │ │ -00018ab0: 7820 2c20 7820 202c 2078 202c 2078 202c x , x , x , x , │ │ │ │ -00018ac0: 2078 2020 2c20 7820 2c20 7820 2c20 7820 x , x , x , x │ │ │ │ -00018ad0: 2c20 7820 5d20 2020 2020 2020 2020 7c0a , x ] |. │ │ │ │ -00018ae0: 7c20 2020 2020 2020 2020 2020 2020 2031 | 1 │ │ │ │ -00018af0: 3237 2020 3131 2020 2038 2020 2031 2020 27 11 8 1 │ │ │ │ -00018b00: 2039 2020 2031 3220 2020 3620 2020 3520 9 12 6 5 │ │ │ │ -00018b10: 2020 3130 2020 2032 2020 2034 2020 2033 10 2 4 3 │ │ │ │ -00018b20: 2020 2037 2020 2020 2020 2020 2020 7c0a 7 |. │ │ │ │ -00018b30: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018b80: 7c2d 785f 315e 332a 785f 325e 352a 785f |-x_1^3*x_2^5*x_ │ │ │ │ -00018b90: 3131 5e33 2c78 5f35 5e35 2a78 5f36 5e33 11^3,x_5^5*x_6^3 │ │ │ │ -00018ba0: 2a78 5f31 315e 332d 332a 785f 355e 362a *x_11^3-3*x_5^6* │ │ │ │ -00018bb0: 785f 365e 322a 785f 3131 5e32 2a78 5f31 x_6^2*x_11^2*x_1 │ │ │ │ -00018bc0: 322b 332a 785f 355e 372a 785f 362a 7c0a 2+3*x_5^7*x_6*|. │ │ │ │ -00018bd0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018c20: 7c78 5f31 312a 785f 3132 5e32 2d78 5f35 |x_11*x_12^2-x_5 │ │ │ │ -00018c30: 5e38 2a78 5f31 325e 332c 785f 315e 352a ^8*x_12^3,x_1^5* │ │ │ │ -00018c40: 785f 325e 332a 785f 345e 332d 332a 785f x_2^3*x_4^3-3*x_ │ │ │ │ -00018c50: 315e 362a 785f 325e 322a 785f 345e 322a 1^6*x_2^2*x_4^2* │ │ │ │ -00018c60: 785f 352b 332a 785f 315e 372a 785f 7c0a x_5+3*x_1^7*x_|. │ │ │ │ -00018c70: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018cc0: 7c32 2a78 5f34 2a78 5f35 5e32 2d78 5f31 |2*x_4*x_5^2-x_1 │ │ │ │ -00018cd0: 5e38 2a78 5f35 5e33 2c78 5f36 5e38 2a78 ^8*x_5^3,x_6^8*x │ │ │ │ -00018ce0: 5f31 315e 332d 332a 785f 352a 785f 365e _11^3-3*x_5*x_6^ │ │ │ │ -00018cf0: 372a 785f 3131 5e32 2a78 5f31 322b 332a 7*x_11^2*x_12+3* │ │ │ │ -00018d00: 785f 355e 322a 785f 365e 362a 785f 7c0a x_5^2*x_6^6*x_|. │ │ │ │ -00018d10: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018d60: 7c31 312a 785f 3132 5e32 2d78 5f35 5e33 |11*x_12^2-x_5^3 │ │ │ │ -00018d70: 2a78 5f36 5e35 2a78 5f31 325e 332c 785f *x_6^5*x_12^3,x_ │ │ │ │ -00018d80: 385e 332a 785f 3130 5e38 2d33 2a78 5f37 8^3*x_10^8-3*x_7 │ │ │ │ -00018d90: 2a78 5f38 5e32 2a78 5f31 305e 372a 785f *x_8^2*x_10^7*x_ │ │ │ │ -00018da0: 3131 2b33 2a78 5f37 5e32 2a78 5f38 7c0a 11+3*x_7^2*x_8|. │ │ │ │ -00018db0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018e00: 7c2a 785f 3130 5e36 2a78 5f31 315e 322d |*x_10^6*x_11^2- │ │ │ │ -00018e10: 785f 375e 332a 785f 3130 5e35 2a78 5f31 x_7^3*x_10^5*x_1 │ │ │ │ -00018e20: 315e 332c 785f 325e 382a 785f 345e 332d 1^3,x_2^8*x_4^3- │ │ │ │ -00018e30: 332a 785f 312a 785f 325e 372a 785f 345e 3*x_1*x_2^7*x_4^ │ │ │ │ -00018e40: 322a 785f 352b 332a 785f 315e 322a 7c0a 2*x_5+3*x_1^2*|. │ │ │ │ -00018e50: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018ea0: 7c78 5f32 5e36 2a78 5f34 2a78 5f35 5e32 |x_2^6*x_4*x_5^2 │ │ │ │ -00018eb0: 2d78 5f31 5e33 2a78 5f32 5e35 2a78 5f35 -x_1^3*x_2^5*x_5 │ │ │ │ -00018ec0: 5e33 2c2d 785f 365e 332a 785f 3131 5e38 ^3,-x_6^3*x_11^8 │ │ │ │ -00018ed0: 2b33 2a78 5f35 2a78 5f36 5e32 2a78 5f31 +3*x_5*x_6^2*x_1 │ │ │ │ -00018ee0: 315e 372a 785f 3132 2d33 2a78 5f35 7c0a 1^7*x_12-3*x_5|. │ │ │ │ -00018ef0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018f40: 7c5e 322a 785f 362a 785f 3131 5e36 2a78 |^2*x_6*x_11^6*x │ │ │ │ -00018f50: 5f31 325e 322b 785f 355e 332a 785f 3131 _12^2+x_5^3*x_11 │ │ │ │ -00018f60: 5e35 2a78 5f31 325e 332c 2d78 5f36 5e33 ^5*x_12^3,-x_6^3 │ │ │ │ -00018f70: 2a78 5f37 5e33 2a78 5f39 5e35 2b33 2a78 *x_7^3*x_9^5+3*x │ │ │ │ -00018f80: 5f34 2a78 5f36 5e32 2a78 5f37 5e32 7c0a _4*x_6^2*x_7^2|. │ │ │ │ -00018f90: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018fe0: 7c2a 785f 395e 362d 332a 785f 345e 322a |*x_9^6-3*x_4^2* │ │ │ │ -00018ff0: 785f 362a 785f 372a 785f 395e 372b 785f x_6*x_7*x_9^7+x_ │ │ │ │ -00019000: 345e 332a 785f 395e 382c 785f 385e 382a 4^3*x_9^8,x_8^8* │ │ │ │ -00019010: 785f 3130 5e33 2d33 2a78 5f37 2a78 5f38 x_10^3-3*x_7*x_8 │ │ │ │ -00019020: 5e37 2a78 5f31 305e 322a 785f 3131 7c0a ^7*x_10^2*x_11|. │ │ │ │ -00019030: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00019040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00019080: 7c2b 332a 785f 375e 322a 785f 385e 362a |+3*x_7^2*x_8^6* │ │ │ │ -00019090: 785f 3130 2a78 5f31 315e 322d 785f 375e x_10*x_11^2-x_7^ │ │ │ │ -000190a0: 332a 785f 385e 352a 785f 3131 5e33 2c78 3*x_8^5*x_11^3,x │ │ │ │ -000190b0: 5f32 5e35 2a78 5f33 5e33 2a78 5f31 315e _2^5*x_3^3*x_11^ │ │ │ │ -000190c0: 332d 332a 785f 325e 362a 785f 335e 7c0a 3-3*x_2^6*x_3^|. │ │ │ │ -000190d0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -000190e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000190f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00019120: 7c32 2a78 5f31 315e 322a 785f 3132 2b33 |2*x_11^2*x_12+3 │ │ │ │ -00019130: 2a78 5f32 5e37 2a78 5f33 2a78 5f31 312a *x_2^7*x_3*x_11* │ │ │ │ -00019140: 785f 3132 5e32 2d78 5f32 5e38 2a78 5f31 x_12^2-x_2^8*x_1 │ │ │ │ -00019150: 325e 3329 3b20 2020 2020 2020 2020 2020 2^3); │ │ │ │ -00019160: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019170: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00019180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000191a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000191b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000191c0: 7c69 3920 3a20 7469 6d65 2069 7343 6f64 |i9 : time isCod │ │ │ │ -000191d0: 696d 4174 4c65 6173 7428 352c 2049 2c20 imAtLeast(5, I, │ │ │ │ -000191e0: 5061 6972 4c69 6d69 7420 3d3e 2035 2c20 PairLimit => 5, │ │ │ │ -000191f0: 5665 7262 6f73 653d 3e74 7275 6529 2020 Verbose=>true) │ │ │ │ -00019200: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019210: 7c20 2d2d 2075 7365 6420 302e 3030 3234 | -- used 0.0024 │ │ │ │ -00019220: 3531 3235 7320 2863 7075 293b 2030 2e30 5125s (cpu); 0.0 │ │ │ │ -00019230: 3032 3438 3231 3573 2028 7468 7265 6164 0248215s (thread │ │ │ │ -00019240: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +00018a90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00018aa0: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00018ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018ad0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00018ae0: 7c6f 3820 3a20 4964 6561 6c20 6f66 202d |o8 : Ideal of - │ │ │ │ +00018af0: 2d2d 5b78 2020 2c20 7820 2c20 7820 2c20 --[x , x , x , │ │ │ │ +00018b00: 7820 2c20 7820 202c 2078 202c 2078 202c x , x , x , x , │ │ │ │ +00018b10: 2078 2020 2c20 7820 2c20 7820 2c20 7820 x , x , x , x │ │ │ │ +00018b20: 2c20 7820 5d20 2020 2020 2020 2020 7c0a , x ] |. │ │ │ │ +00018b30: 7c20 2020 2020 2020 2020 2020 2020 2031 | 1 │ │ │ │ +00018b40: 3237 2020 3131 2020 2038 2020 2031 2020 27 11 8 1 │ │ │ │ +00018b50: 2039 2020 2031 3220 2020 3620 2020 3520 9 12 6 5 │ │ │ │ +00018b60: 2020 3130 2020 2032 2020 2034 2020 2033 10 2 4 3 │ │ │ │ +00018b70: 2020 2037 2020 2020 2020 2020 2020 7c0a 7 |. │ │ │ │ +00018b80: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018bd0: 7c2d 785f 315e 332a 785f 325e 352a 785f |-x_1^3*x_2^5*x_ │ │ │ │ +00018be0: 3131 5e33 2c78 5f35 5e35 2a78 5f36 5e33 11^3,x_5^5*x_6^3 │ │ │ │ +00018bf0: 2a78 5f31 315e 332d 332a 785f 355e 362a *x_11^3-3*x_5^6* │ │ │ │ +00018c00: 785f 365e 322a 785f 3131 5e32 2a78 5f31 x_6^2*x_11^2*x_1 │ │ │ │ +00018c10: 322b 332a 785f 355e 372a 785f 362a 7c0a 2+3*x_5^7*x_6*|. │ │ │ │ +00018c20: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018c70: 7c78 5f31 312a 785f 3132 5e32 2d78 5f35 |x_11*x_12^2-x_5 │ │ │ │ +00018c80: 5e38 2a78 5f31 325e 332c 785f 315e 352a ^8*x_12^3,x_1^5* │ │ │ │ +00018c90: 785f 325e 332a 785f 345e 332d 332a 785f x_2^3*x_4^3-3*x_ │ │ │ │ +00018ca0: 315e 362a 785f 325e 322a 785f 345e 322a 1^6*x_2^2*x_4^2* │ │ │ │ +00018cb0: 785f 352b 332a 785f 315e 372a 785f 7c0a x_5+3*x_1^7*x_|. │ │ │ │ +00018cc0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018d10: 7c32 2a78 5f34 2a78 5f35 5e32 2d78 5f31 |2*x_4*x_5^2-x_1 │ │ │ │ +00018d20: 5e38 2a78 5f35 5e33 2c78 5f36 5e38 2a78 ^8*x_5^3,x_6^8*x │ │ │ │ +00018d30: 5f31 315e 332d 332a 785f 352a 785f 365e _11^3-3*x_5*x_6^ │ │ │ │ +00018d40: 372a 785f 3131 5e32 2a78 5f31 322b 332a 7*x_11^2*x_12+3* │ │ │ │ +00018d50: 785f 355e 322a 785f 365e 362a 785f 7c0a x_5^2*x_6^6*x_|. │ │ │ │ +00018d60: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018db0: 7c31 312a 785f 3132 5e32 2d78 5f35 5e33 |11*x_12^2-x_5^3 │ │ │ │ +00018dc0: 2a78 5f36 5e35 2a78 5f31 325e 332c 785f *x_6^5*x_12^3,x_ │ │ │ │ +00018dd0: 385e 332a 785f 3130 5e38 2d33 2a78 5f37 8^3*x_10^8-3*x_7 │ │ │ │ +00018de0: 2a78 5f38 5e32 2a78 5f31 305e 372a 785f *x_8^2*x_10^7*x_ │ │ │ │ +00018df0: 3131 2b33 2a78 5f37 5e32 2a78 5f38 7c0a 11+3*x_7^2*x_8|. │ │ │ │ +00018e00: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018e50: 7c2a 785f 3130 5e36 2a78 5f31 315e 322d |*x_10^6*x_11^2- │ │ │ │ +00018e60: 785f 375e 332a 785f 3130 5e35 2a78 5f31 x_7^3*x_10^5*x_1 │ │ │ │ +00018e70: 315e 332c 785f 325e 382a 785f 345e 332d 1^3,x_2^8*x_4^3- │ │ │ │ +00018e80: 332a 785f 312a 785f 325e 372a 785f 345e 3*x_1*x_2^7*x_4^ │ │ │ │ +00018e90: 322a 785f 352b 332a 785f 315e 322a 7c0a 2*x_5+3*x_1^2*|. │ │ │ │ +00018ea0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018ef0: 7c78 5f32 5e36 2a78 5f34 2a78 5f35 5e32 |x_2^6*x_4*x_5^2 │ │ │ │ +00018f00: 2d78 5f31 5e33 2a78 5f32 5e35 2a78 5f35 -x_1^3*x_2^5*x_5 │ │ │ │ +00018f10: 5e33 2c2d 785f 365e 332a 785f 3131 5e38 ^3,-x_6^3*x_11^8 │ │ │ │ +00018f20: 2b33 2a78 5f35 2a78 5f36 5e32 2a78 5f31 +3*x_5*x_6^2*x_1 │ │ │ │ +00018f30: 315e 372a 785f 3132 2d33 2a78 5f35 7c0a 1^7*x_12-3*x_5|. │ │ │ │ +00018f40: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018f90: 7c5e 322a 785f 362a 785f 3131 5e36 2a78 |^2*x_6*x_11^6*x │ │ │ │ +00018fa0: 5f31 325e 322b 785f 355e 332a 785f 3131 _12^2+x_5^3*x_11 │ │ │ │ +00018fb0: 5e35 2a78 5f31 325e 332c 2d78 5f36 5e33 ^5*x_12^3,-x_6^3 │ │ │ │ +00018fc0: 2a78 5f37 5e33 2a78 5f39 5e35 2b33 2a78 *x_7^3*x_9^5+3*x │ │ │ │ +00018fd0: 5f34 2a78 5f36 5e32 2a78 5f37 5e32 7c0a _4*x_6^2*x_7^2|. │ │ │ │ +00018fe0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00019030: 7c2a 785f 395e 362d 332a 785f 345e 322a |*x_9^6-3*x_4^2* │ │ │ │ +00019040: 785f 362a 785f 372a 785f 395e 372b 785f x_6*x_7*x_9^7+x_ │ │ │ │ +00019050: 345e 332a 785f 395e 382c 785f 385e 382a 4^3*x_9^8,x_8^8* │ │ │ │ +00019060: 785f 3130 5e33 2d33 2a78 5f37 2a78 5f38 x_10^3-3*x_7*x_8 │ │ │ │ +00019070: 5e37 2a78 5f31 305e 322a 785f 3131 7c0a ^7*x_10^2*x_11|. │ │ │ │ +00019080: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00019090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000190a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000190b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000190c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +000190d0: 7c2b 332a 785f 375e 322a 785f 385e 362a |+3*x_7^2*x_8^6* │ │ │ │ +000190e0: 785f 3130 2a78 5f31 315e 322d 785f 375e x_10*x_11^2-x_7^ │ │ │ │ +000190f0: 332a 785f 385e 352a 785f 3131 5e33 2c78 3*x_8^5*x_11^3,x │ │ │ │ +00019100: 5f32 5e35 2a78 5f33 5e33 2a78 5f31 315e _2^5*x_3^3*x_11^ │ │ │ │ +00019110: 332d 332a 785f 325e 362a 785f 335e 7c0a 3-3*x_2^6*x_3^|. │ │ │ │ +00019120: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00019130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00019170: 7c32 2a78 5f31 315e 322a 785f 3132 2b33 |2*x_11^2*x_12+3 │ │ │ │ +00019180: 2a78 5f32 5e37 2a78 5f33 2a78 5f31 312a *x_2^7*x_3*x_11* │ │ │ │ +00019190: 785f 3132 5e32 2d78 5f32 5e38 2a78 5f31 x_12^2-x_2^8*x_1 │ │ │ │ +000191a0: 325e 3329 3b20 2020 2020 2020 2020 2020 2^3); │ │ │ │ +000191b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000191c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000191d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000191e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000191f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00019210: 7c69 3920 3a20 7469 6d65 2069 7343 6f64 |i9 : time isCod │ │ │ │ +00019220: 696d 4174 4c65 6173 7428 352c 2049 2c20 imAtLeast(5, I, │ │ │ │ +00019230: 5061 6972 4c69 6d69 7420 3d3e 2035 2c20 PairLimit => 5, │ │ │ │ +00019240: 5665 7262 6f73 653d 3e74 7275 6529 2020 Verbose=>true) │ │ │ │ 00019250: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019260: 7c69 7343 6f64 696d 4174 4c65 6173 743a |isCodimAtLeast: │ │ │ │ -00019270: 2043 6f6d 7075 7469 6e67 2063 6f64 696d Computing codim │ │ │ │ -00019280: 206f 6620 6d6f 6e6f 6d69 616c 7320 6261 of monomials ba │ │ │ │ -00019290: 7365 6420 6f6e 2069 6465 616c 2067 656e sed on ideal gen │ │ │ │ -000192a0: 6572 6174 6f72 732e 2020 2020 2020 7c0a erators. |. │ │ │ │ -000192b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000192c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000192d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000192e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000192f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019300: 7c6f 3920 3d20 7472 7565 2020 2020 2020 |o9 = true │ │ │ │ +00019260: 7c20 2d2d 2075 7365 6420 302e 3030 3032 | -- used 0.0002 │ │ │ │ +00019270: 3135 3034 7320 2863 7075 293b 2030 2e30 1504s (cpu); 0.0 │ │ │ │ +00019280: 3033 3233 3439 3173 2028 7468 7265 6164 0323491s (thread │ │ │ │ +00019290: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +000192a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000192b0: 7c69 7343 6f64 696d 4174 4c65 6173 743a |isCodimAtLeast: │ │ │ │ +000192c0: 2043 6f6d 7075 7469 6e67 2063 6f64 696d Computing codim │ │ │ │ +000192d0: 206f 6620 6d6f 6e6f 6d69 616c 7320 6261 of monomials ba │ │ │ │ +000192e0: 7365 6420 6f6e 2069 6465 616c 2067 656e sed on ideal gen │ │ │ │ +000192f0: 6572 6174 6f72 732e 2020 2020 2020 7c0a erators. |. │ │ │ │ +00019300: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00019310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019340: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019350: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00019360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000193a0: 7c69 3130 203a 2074 696d 6520 6973 436f |i10 : time isCo │ │ │ │ -000193b0: 6469 6d41 744c 6561 7374 2835 2c20 492c dimAtLeast(5, I, │ │ │ │ -000193c0: 2050 6169 724c 696d 6974 203d 3e20 3230 PairLimit => 20 │ │ │ │ -000193d0: 302c 2056 6572 626f 7365 3d3e 6661 6c73 0, Verbose=>fals │ │ │ │ -000193e0: 6529 2020 2020 2020 2020 2020 2020 7c0a e) |. │ │ │ │ -000193f0: 7c20 2d2d 2075 7365 6420 302e 3030 3233 | -- used 0.0023 │ │ │ │ -00019400: 3131 3937 7320 2863 7075 293b 2030 2e30 1197s (cpu); 0.0 │ │ │ │ -00019410: 3032 3331 3031 7320 2874 6872 6561 6429 023101s (thread) │ │ │ │ -00019420: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ -00019430: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019440: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00019450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019350: 7c6f 3920 3d20 7472 7565 2020 2020 2020 |o9 = true │ │ │ │ +00019360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019390: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000193a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000193b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000193c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000193d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000193e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000193f0: 7c69 3130 203a 2074 696d 6520 6973 436f |i10 : time isCo │ │ │ │ +00019400: 6469 6d41 744c 6561 7374 2835 2c20 492c dimAtLeast(5, I, │ │ │ │ +00019410: 2050 6169 724c 696d 6974 203d 3e20 3230 PairLimit => 20 │ │ │ │ +00019420: 302c 2056 6572 626f 7365 3d3e 6661 6c73 0, Verbose=>fals │ │ │ │ +00019430: 6529 2020 2020 2020 2020 2020 2020 7c0a e) |. │ │ │ │ +00019440: 7c20 2d2d 2075 7365 6420 302e 3030 3035 | -- used 0.0005 │ │ │ │ +00019450: 3439 3436 3373 2028 6370 7529 3b20 302e 49463s (cpu); 0. │ │ │ │ +00019460: 3030 3239 3335 3632 7320 2874 6872 6561 00293562s (threa │ │ │ │ +00019470: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 00019480: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019490: 7c6f 3130 203d 2074 7275 6520 2020 2020 |o10 = true │ │ │ │ +00019490: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000194a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000194b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000194c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000194d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000194e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -000194f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00019530: 0a4e 6f74 6963 6520 696e 2074 6865 2066 .Notice in the f │ │ │ │ -00019540: 6972 7374 2063 6173 6520 7468 6520 6675 irst case the fu │ │ │ │ -00019550: 6e63 7469 6f6e 2072 6574 7572 6e65 6420 nction returned │ │ │ │ -00019560: 6e75 6c6c 2c20 6265 6361 7573 6520 7468 null, because th │ │ │ │ -00019570: 6520 6465 7074 6820 6f66 0a73 6561 7263 e depth of.searc │ │ │ │ -00019580: 6820 7761 7320 6e6f 7420 6869 6768 2065 h was not high e │ │ │ │ -00019590: 6e6f 7567 682e 2020 4974 206f 6e6c 7920 nough. It only │ │ │ │ -000195a0: 636f 6d70 7574 6564 2063 6f64 696d 2035 computed codim 5 │ │ │ │ -000195b0: 2074 696d 6573 2e20 2054 6865 2073 6563 times. The sec │ │ │ │ -000195c0: 6f6e 640a 7265 7475 726e 6564 2074 7275 ond.returned tru │ │ │ │ -000195d0: 652c 2062 7574 2069 7420 6469 6420 736f e, but it did so │ │ │ │ -000195e0: 2061 7320 736f 6f6e 2061 7320 7468 6520 as soon as the │ │ │ │ -000195f0: 616e 7377 6572 2077 6173 2066 6f75 6e64 answer was found │ │ │ │ -00019600: 2028 616e 6420 6265 666f 7265 2077 6520 (and before we │ │ │ │ -00019610: 6869 740a 7468 6520 5061 6972 4c69 6d69 hit.the PairLimi │ │ │ │ -00019620: 7420 6c69 6d69 7429 2e0a 0a57 6179 7320 t limit)...Ways │ │ │ │ -00019630: 746f 2075 7365 2069 7343 6f64 696d 4174 to use isCodimAt │ │ │ │ -00019640: 4c65 6173 743a 0a3d 3d3d 3d3d 3d3d 3d3d Least:.========= │ │ │ │ -00019650: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00019660: 3d3d 0a0a 2020 2a20 2269 7343 6f64 696d ==.. * "isCodim │ │ │ │ -00019670: 4174 4c65 6173 7428 5a5a 2c49 6465 616c AtLeast(ZZ,Ideal │ │ │ │ -00019680: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ -00019690: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -000196a0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -000196b0: 626a 6563 7420 2a6e 6f74 6520 6973 436f bject *note isCo │ │ │ │ -000196c0: 6469 6d41 744c 6561 7374 3a20 6973 436f dimAtLeast: isCo │ │ │ │ -000196d0: 6469 6d41 744c 6561 7374 2c20 6973 2061 dimAtLeast, is a │ │ │ │ -000196e0: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ -000196f0: 6e63 7469 6f6e 0a77 6974 6820 6f70 7469 nction.with opti │ │ │ │ -00019700: 6f6e 733a 2028 4d61 6361 756c 6179 3244 ons: (Macaulay2D │ │ │ │ -00019710: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -00019720: 6e57 6974 684f 7074 696f 6e73 2c2e 0a0a nWithOptions,... │ │ │ │ -00019730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -00019780: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -00019790: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -000197a0: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -000197b0: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -000197c0: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -000197d0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -000197e0: 636b 6167 6573 2f46 6173 744d 696e 6f72 ckages/FastMinor │ │ │ │ -000197f0: 732e 0a6d 323a 3232 3436 3a30 2e0a 1f0a s..m2:2246:0.... │ │ │ │ -00019800: 4669 6c65 3a20 4661 7374 4d69 6e6f 7273 File: FastMinors │ │ │ │ -00019810: 2e69 6e66 6f2c 204e 6f64 653a 2069 7344 .info, Node: isD │ │ │ │ -00019820: 696d 4174 4d6f 7374 2c20 4e65 7874 3a20 imAtMost, Next: │ │ │ │ -00019830: 6973 5261 6e6b 4174 4c65 6173 742c 2050 isRankAtLeast, P │ │ │ │ -00019840: 7265 763a 2069 7343 6f64 696d 4174 4c65 rev: isCodimAtLe │ │ │ │ -00019850: 6173 742c 2055 703a 2054 6f70 0a0a 6973 ast, Up: Top..is │ │ │ │ -00019860: 4469 6d41 744d 6f73 7420 2d2d 2072 6574 DimAtMost -- ret │ │ │ │ -00019870: 7572 6e73 2074 7275 6520 6966 2077 6520 urns true if we │ │ │ │ -00019880: 6361 6e20 7175 6963 6b6c 7920 7365 6520 can quickly see │ │ │ │ -00019890: 7768 6574 6865 7220 7468 6520 6469 6d20 whether the dim │ │ │ │ -000198a0: 6973 2061 7420 6d6f 7374 2061 2067 6976 is at most a giv │ │ │ │ -000198b0: 656e 206e 756d 6265 720a 2a2a 2a2a 2a2a en number.****** │ │ │ │ -000198c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000198d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000198e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000198f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019900: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019910: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -00019920: 3a20 0a20 2020 2020 2020 2069 7344 696d : . isDim │ │ │ │ -00019930: 4174 4d6f 7374 286e 2c20 4929 0a20 202a AtMost(n, I). * │ │ │ │ -00019940: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -00019950: 206e 2c20 616e 202a 6e6f 7465 2069 6e74 n, an *note int │ │ │ │ -00019960: 6567 6572 3a20 284d 6163 6175 6c61 7932 eger: (Macaulay2 │ │ │ │ -00019970: 446f 6329 5a5a 2c2c 2061 6e20 696e 7465 Doc)ZZ,, an inte │ │ │ │ -00019980: 6765 720a 2020 2020 2020 2a20 492c 2061 ger. * I, a │ │ │ │ -00019990: 6e20 2a6e 6f74 6520 6964 6561 6c3a 2028 n *note ideal: ( │ │ │ │ -000199a0: 4d61 6361 756c 6179 3244 6f63 2949 6465 Macaulay2Doc)Ide │ │ │ │ -000199b0: 616c 2c2c 2061 6e20 6964 6561 6c20 696e al,, an ideal in │ │ │ │ -000199c0: 2061 2070 6f6c 796e 6f6d 6961 6c20 7269 a polynomial ri │ │ │ │ -000199d0: 6e67 0a20 2020 2020 2020 206f 7665 7220 ng. over │ │ │ │ -000199e0: 6120 6669 656c 642c 206f 7220 6120 7175 a field, or a qu │ │ │ │ -000199f0: 6f74 6965 6e74 2072 696e 6720 6f66 2073 otient ring of s │ │ │ │ -00019a00: 7563 680a 2020 2a20 2a6e 6f74 6520 4f70 uch. * *note Op │ │ │ │ -00019a10: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ -00019a20: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ -00019a30: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ -00019a40: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ -00019a50: 732c 3a0a 2020 2020 2020 2a20 5061 6972 s,:. * Pair │ │ │ │ -00019a60: 4c69 6d69 7420 3d3e 202e 2e2e 2c20 6465 Limit => ..., de │ │ │ │ -00019a70: 6661 756c 7420 7661 6c75 6520 3130 300a fault value 100. │ │ │ │ -00019a80: 2020 2020 2020 2a20 5350 6169 7273 4675 * SPairsFu │ │ │ │ -00019a90: 6e63 7469 6f6e 203d 3e20 2e2e 2e2c 2064 nction => ..., d │ │ │ │ -00019aa0: 6566 6175 6c74 2076 616c 7565 0a20 2020 efault value. │ │ │ │ -00019ab0: 2020 2020 2046 756e 6374 696f 6e43 6c6f FunctionClo │ │ │ │ -00019ac0: 7375 7265 5b2e 2e2f 4661 7374 4d69 6e6f sure[../FastMino │ │ │ │ -00019ad0: 7273 2e6d 323a 3231 313a 3233 2d32 3131 rs.m2:211:23-211 │ │ │ │ -00019ae0: 3a34 325d 0a20 2020 2020 202a 2056 6572 :42]. * Ver │ │ │ │ -00019af0: 626f 7365 203d 3e20 2e2e 2e2c 2064 6566 bose => ..., def │ │ │ │ -00019b00: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ -00019b10: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -00019b20: 2020 2020 2a20 7472 7565 2069 6620 7468 * true if th │ │ │ │ -00019b30: 6520 6469 6d65 6e73 696f 6e20 6f66 2049 e dimension of I │ │ │ │ -00019b40: 2069 7320 6174 206d 6f73 7420 6e20 6f72 is at most n or │ │ │ │ -00019b50: 206e 756c 6c20 6966 2074 6865 2066 756e null if the fun │ │ │ │ -00019b60: 6374 696f 6e20 6361 6e6e 6f74 0a20 2020 ction cannot. │ │ │ │ -00019b70: 2020 2020 2074 656c 6c20 7768 6574 6865 tell whethe │ │ │ │ -00019b80: 7220 7468 6520 6469 6d65 6e73 696f 6e20 r the dimension │ │ │ │ -00019b90: 6973 2061 7420 6d6f 7374 206e 0a0a 4465 is at most n..De │ │ │ │ -00019ba0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -00019bb0: 3d3d 3d3d 3d0a 0a54 6869 7320 7369 6d70 =====..This simp │ │ │ │ -00019bc0: 6c79 2063 616c 6c73 2069 7343 6f64 696d ly calls isCodim │ │ │ │ -00019bd0: 4174 4c65 6173 742c 2070 6173 7369 6e67 AtLeast, passing │ │ │ │ -00019be0: 206f 7074 696f 6e73 2061 7320 6465 7363 options as desc │ │ │ │ -00019bf0: 7269 6265 6420 7468 6572 652e 0a0a 5365 ribed there...Se │ │ │ │ -00019c00: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -00019c10: 0a20 202a 202a 6e6f 7465 2069 7343 6f64 . * *note isCod │ │ │ │ -00019c20: 696d 4174 4c65 6173 743a 2069 7343 6f64 imAtLeast: isCod │ │ │ │ -00019c30: 696d 4174 4c65 6173 742c 202d 2d20 7265 imAtLeast, -- re │ │ │ │ -00019c40: 7475 726e 7320 7472 7565 2069 6620 7765 turns true if we │ │ │ │ -00019c50: 2063 616e 2071 7569 636b 6c79 2073 6565 can quickly see │ │ │ │ -00019c60: 0a20 2020 2077 6865 7468 6572 2074 6865 . whether the │ │ │ │ -00019c70: 2063 6f64 696d 2069 7320 6174 206c 6561 codim is at lea │ │ │ │ -00019c80: 7374 2061 2067 6976 656e 206e 756d 6265 st a given numbe │ │ │ │ -00019c90: 720a 0a57 6179 7320 746f 2075 7365 2069 r..Ways to use i │ │ │ │ -00019ca0: 7344 696d 4174 4d6f 7374 3a0a 3d3d 3d3d sDimAtMost:.==== │ │ │ │ -00019cb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00019cc0: 3d3d 3d3d 0a0a 2020 2a20 2269 7344 696d ====.. * "isDim │ │ │ │ -00019cd0: 4174 4d6f 7374 285a 5a2c 4964 6561 6c29 AtMost(ZZ,Ideal) │ │ │ │ -00019ce0: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ -00019cf0: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -00019d00: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -00019d10: 6a65 6374 202a 6e6f 7465 2069 7344 696d ject *note isDim │ │ │ │ -00019d20: 4174 4d6f 7374 3a20 6973 4469 6d41 744d AtMost: isDimAtM │ │ │ │ -00019d30: 6f73 742c 2069 7320 6120 2a6e 6f74 6520 ost, is a *note │ │ │ │ -00019d40: 6d65 7468 6f64 2066 756e 6374 696f 6e20 method function │ │ │ │ -00019d50: 7769 7468 0a6f 7074 696f 6e73 3a20 284d with.options: (M │ │ │ │ -00019d60: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -00019d70: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ -00019d80: 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d 2d2d tions,...------- │ │ │ │ -00019d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019dd0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -00019de0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -00019df0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -00019e00: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -00019e10: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -00019e20: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -00019e30: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -00019e40: 4661 7374 4d69 6e6f 7273 2e0a 6d32 3a32 FastMinors..m2:2 │ │ │ │ -00019e50: 3237 323a 302e 0a1f 0a46 696c 653a 2046 272:0....File: F │ │ │ │ -00019e60: 6173 744d 696e 6f72 732e 696e 666f 2c20 astMinors.info, │ │ │ │ -00019e70: 4e6f 6465 3a20 6973 5261 6e6b 4174 4c65 Node: isRankAtLe │ │ │ │ -00019e80: 6173 742c 204e 6578 743a 2069 7352 616e ast, Next: isRan │ │ │ │ -00019e90: 6b41 744c 6561 7374 5f6c 705f 7064 5f70 kAtLeast_lp_pd_p │ │ │ │ -00019ea0: 645f 7064 5f63 6d54 6872 6561 6473 3d3e d_pd_cmThreads=> │ │ │ │ -00019eb0: 5f70 645f 7064 5f70 645f 7270 2c20 5072 _pd_pd_pd_rp, Pr │ │ │ │ -00019ec0: 6576 3a20 6973 4469 6d41 744d 6f73 742c ev: isDimAtMost, │ │ │ │ -00019ed0: 2055 703a 2054 6f70 0a0a 6973 5261 6e6b Up: Top..isRank │ │ │ │ -00019ee0: 4174 4c65 6173 7420 2d2d 2064 6574 6572 AtLeast -- deter │ │ │ │ -00019ef0: 6d69 6e65 7320 6966 2074 6865 206d 6174 mines if the mat │ │ │ │ -00019f00: 7269 7820 6861 7320 7261 6e6b 2061 7420 rix has rank at │ │ │ │ -00019f10: 6c65 6173 7420 6120 6e75 6d62 6572 0a2a least a number.* │ │ │ │ -00019f20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019f30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019f40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019f50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019f60: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -00019f70: 0a20 2020 2020 2020 2069 7352 616e 6b41 . isRankA │ │ │ │ -00019f80: 744c 6561 7374 286e 312c 204d 3129 0a20 tLeast(n1, M1). │ │ │ │ -00019f90: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -00019fa0: 202a 206e 312c 2061 6e20 2a6e 6f74 6520 * n1, an *note │ │ │ │ -00019fb0: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ -00019fc0: 6179 3244 6f63 295a 5a2c 2c20 0a20 2020 ay2Doc)ZZ,, . │ │ │ │ -00019fd0: 2020 202a 204d 312c 2061 202a 6e6f 7465 * M1, a *note │ │ │ │ -00019fe0: 206d 6174 7269 783a 2028 4d61 6361 756c matrix: (Macaul │ │ │ │ -00019ff0: 6179 3244 6f63 294d 6174 7269 782c 2c20 ay2Doc)Matrix,, │ │ │ │ -0001a000: 0a20 202a 202a 6e6f 7465 204f 7074 696f . * *note Optio │ │ │ │ -0001a010: 6e61 6c20 696e 7075 7473 3a20 284d 6163 nal inputs: (Mac │ │ │ │ -0001a020: 6175 6c61 7932 446f 6329 7573 696e 6720 aulay2Doc)using │ │ │ │ -0001a030: 6675 6e63 7469 6f6e 7320 7769 7468 206f functions with o │ │ │ │ -0001a040: 7074 696f 6e61 6c20 696e 7075 7473 2c3a ptional inputs,: │ │ │ │ -0001a050: 0a20 2020 2020 202a 202a 6e6f 7465 2044 . * *note D │ │ │ │ -0001a060: 6574 5374 7261 7465 6779 3a20 4465 7453 etStrategy: DetS │ │ │ │ -0001a070: 7472 6174 6567 792c 203d 3e20 2e2e 2e2c trategy, => ..., │ │ │ │ -0001a080: 2064 6566 6175 6c74 2076 616c 7565 2052 default value R │ │ │ │ -0001a090: 616e 6b2c 2044 6574 5374 7261 7465 6779 ank, DetStrategy │ │ │ │ -0001a0a0: 0a20 2020 2020 2020 2069 7320 6120 7374 . is a st │ │ │ │ -0001a0b0: 7261 7465 6779 2066 6f72 2061 6c6c 6f77 rategy for allow │ │ │ │ -0001a0c0: 696e 6720 7468 6520 7573 6572 2074 6f20 ing the user to │ │ │ │ -0001a0d0: 6368 6f6f 7365 2068 6f77 2064 6574 6572 choose how deter │ │ │ │ -0001a0e0: 6d69 6e61 6e74 7320 286f 720a 2020 2020 minants (or. │ │ │ │ -0001a0f0: 2020 2020 7261 6e6b 292c 2069 7320 636f rank), is co │ │ │ │ -0001a100: 6d70 7574 6564 0a20 2020 2020 202a 202a mputed. * * │ │ │ │ -0001a110: 6e6f 7465 204d 6178 4d69 6e6f 7273 3a20 note MaxMinors: │ │ │ │ -0001a120: 4d61 784d 696e 6f72 732c 203d 3e20 2e2e MaxMinors, => .. │ │ │ │ -0001a130: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -0001a140: 206e 756c 6c2c 2061 6e20 6f70 7469 6f6e null, an option │ │ │ │ -0001a150: 2074 6f0a 2020 2020 2020 2020 636f 6e74 to. cont │ │ │ │ -0001a160: 726f 6c20 6465 7074 6820 6f66 2073 6561 rol depth of sea │ │ │ │ -0001a170: 7263 680a 2020 2020 2020 2a20 2a6e 6f74 rch. * *not │ │ │ │ -0001a180: 6520 506f 696e 744f 7074 696f 6e73 3a20 e PointOptions: │ │ │ │ -0001a190: 506f 696e 744f 7074 696f 6e73 2c20 3d3e PointOptions, => │ │ │ │ -0001a1a0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -0001a1b0: 6c75 6520 7b53 7472 6174 6567 7920 3d3e lue {Strategy => │ │ │ │ -0001a1c0: 0a20 2020 2020 2020 2044 6566 6175 6c74 . Default │ │ │ │ -0001a1d0: 2c20 486f 6d6f 6765 6e65 6f75 7320 3d3e , Homogeneous => │ │ │ │ -0001a1e0: 2066 616c 7365 2c20 5265 706c 6163 656d false, Replacem │ │ │ │ -0001a1f0: 656e 7420 3d3e 2042 696e 6f6d 6961 6c2c ent => Binomial, │ │ │ │ -0001a200: 2045 7874 656e 6446 6965 6c64 203d 3e0a ExtendField =>. │ │ │ │ -0001a210: 2020 2020 2020 2020 7472 7565 2c20 506f true, Po │ │ │ │ -0001a220: 696e 7443 6865 636b 4174 7465 6d70 7473 intCheckAttempts │ │ │ │ -0001a230: 203d 3e20 302c 2044 6563 6f6d 706f 7369 => 0, Decomposi │ │ │ │ -0001a240: 7469 6f6e 5374 7261 7465 6779 203d 3e20 tionStrategy => │ │ │ │ -0001a250: 4465 636f 6d70 6f73 652c 0a20 2020 2020 Decompose,. │ │ │ │ -0001a260: 2020 204e 756d 5468 7265 6164 7354 6f55 NumThreadsToU │ │ │ │ -0001a270: 7365 203d 3e20 312c 2044 696d 656e 7369 se => 1, Dimensi │ │ │ │ -0001a280: 6f6e 4675 6e63 7469 6f6e 203d 3e20 6469 onFunction => di │ │ │ │ -0001a290: 6d2c 2056 6572 626f 7365 203d 3e20 6661 m, Verbose => fa │ │ │ │ -0001a2a0: 6c73 657d 2c0a 2020 2020 2020 2020 6f70 lse},. op │ │ │ │ -0001a2b0: 7469 6f6e 7320 746f 2070 6173 7320 746f tions to pass to │ │ │ │ -0001a2c0: 2066 756e 6374 696f 6e73 2069 6e20 7468 functions in th │ │ │ │ -0001a2d0: 6520 7061 636b 6167 6520 5261 6e64 6f6d e package Random │ │ │ │ -0001a2e0: 506f 696e 7473 0a20 2020 2020 202a 202a Points. * * │ │ │ │ -0001a2f0: 6e6f 7465 2053 7472 6174 6567 793a 2053 note Strategy: S │ │ │ │ -0001a300: 7472 6174 6567 7944 6566 6175 6c74 2c20 trategyDefault, │ │ │ │ -0001a310: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ -0001a320: 7661 6c75 6520 6e65 7720 4f70 7469 6f6e value new Option │ │ │ │ -0001a330: 5461 626c 650a 2020 2020 2020 2020 6672 Table. fr │ │ │ │ -0001a340: 6f6d 207b 506f 696e 7473 203d 3e20 302c om {Points => 0, │ │ │ │ -0001a350: 2052 616e 646f 6d20 3d3e 2030 2c20 4752 Random => 0, GR │ │ │ │ -0001a360: 6576 4c65 784c 6172 6765 7374 203d 3e20 evLexLargest => │ │ │ │ -0001a370: 302c 204c 6578 536d 616c 6c65 7374 5465 0, LexSmallestTe │ │ │ │ -0001a380: 726d 203d 3e0a 2020 2020 2020 2020 3235 rm =>. 25 │ │ │ │ -0001a390: 2c20 4c65 784c 6172 6765 7374 203d 3e20 , LexLargest => │ │ │ │ -0001a3a0: 302c 204c 6578 536d 616c 6c65 7374 203d 0, LexSmallest = │ │ │ │ -0001a3b0: 3e20 3235 2c20 4752 6576 4c65 7853 6d61 > 25, GRevLexSma │ │ │ │ -0001a3c0: 6c6c 6573 7454 6572 6d20 3d3e 2032 352c llestTerm => 25, │ │ │ │ -0001a3d0: 0a20 2020 2020 2020 2052 616e 646f 6d4e . RandomN │ │ │ │ -0001a3e0: 6f6e 7a65 726f 203d 3e20 302c 2047 5265 onzero => 0, GRe │ │ │ │ -0001a3f0: 764c 6578 536d 616c 6c65 7374 203d 3e20 vLexSmallest => │ │ │ │ -0001a400: 3235 7d2c 2073 7472 6174 6567 6965 7320 25}, strategies │ │ │ │ -0001a410: 666f 7220 6368 6f6f 7369 6e67 0a20 2020 for choosing. │ │ │ │ -0001a420: 2020 2020 2073 7562 6d61 7472 6963 6573 submatrices │ │ │ │ -0001a430: 0a20 2020 2020 202a 202a 6e6f 7465 2054 . * *note T │ │ │ │ -0001a440: 6872 6561 6473 3a20 6973 5261 6e6b 4174 hreads: isRankAt │ │ │ │ -0001a450: 4c65 6173 745f 6c70 5f70 645f 7064 5f70 Least_lp_pd_pd_p │ │ │ │ -0001a460: 645f 636d 5468 7265 6164 733d 3e5f 7064 d_cmThreads=>_pd │ │ │ │ -0001a470: 5f70 645f 7064 5f72 702c 203d 3e0a 2020 _pd_pd_rp, =>. │ │ │ │ -0001a480: 2020 2020 2020 2e2e 2e2c 2064 6566 6175 ..., defau │ │ │ │ -0001a490: 6c74 2076 616c 7565 2031 2c20 616e 206f lt value 1, an o │ │ │ │ -0001a4a0: 7074 696f 6e20 666f 7220 7661 7269 6f75 ption for variou │ │ │ │ -0001a4b0: 7320 6675 6e63 7469 6f6e 730a 2020 2020 s functions. │ │ │ │ -0001a4c0: 2020 2a20 5665 7262 6f73 6520 3d3e 202e * Verbose => . │ │ │ │ -0001a4d0: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -0001a4e0: 6520 6661 6c73 650a 2020 2a20 4f75 7470 e false. * Outp │ │ │ │ -0001a4f0: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ -0001a500: 6e6f 7465 2042 6f6f 6c65 616e 2076 616c note Boolean val │ │ │ │ -0001a510: 7565 3a20 284d 6163 6175 6c61 7932 446f ue: (Macaulay2Do │ │ │ │ -0001a520: 6329 426f 6f6c 6561 6e2c 2c20 0a0a 4465 c)Boolean,, ..De │ │ │ │ -0001a530: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -0001a540: 3d3d 3d3d 3d0a 0a54 6869 7320 6675 6e63 =====..This func │ │ │ │ -0001a550: 7469 6f6e 2074 7269 6573 2074 6f20 7175 tion tries to qu │ │ │ │ -0001a560: 6963 6b6c 7920 6465 7465 726d 696e 6520 ickly determine │ │ │ │ -0001a570: 7768 6574 6865 7220 7468 6520 6d61 7472 whether the matr │ │ │ │ -0001a580: 6978 2068 6173 2061 2067 6976 656e 2072 ix has a given r │ │ │ │ -0001a590: 616e 6b2e 0a69 7352 616e 6b41 744c 6561 ank..isRankAtLea │ │ │ │ -0001a5a0: 7374 2063 616c 6c73 202a 6e6f 7465 2067 st calls *note g │ │ │ │ -0001a5b0: 6574 5375 626d 6174 7269 784f 6652 616e etSubmatrixOfRan │ │ │ │ -0001a5c0: 6b3a 2067 6574 5375 626d 6174 7269 784f k: getSubmatrixO │ │ │ │ -0001a5d0: 6652 616e 6b2c 2e20 2049 6620 7468 6174 fRank,. If that │ │ │ │ -0001a5e0: 0a66 756e 6374 696f 6e20 6669 6e64 7320 .function finds │ │ │ │ -0001a5f0: 6120 7375 626d 6174 7269 7820 6f66 2061 a submatrix of a │ │ │ │ -0001a600: 2063 6572 7461 696e 2072 616e 6b2c 2074 certain rank, t │ │ │ │ -0001a610: 6869 7320 7265 7475 726e 7320 7472 7565 his returns true │ │ │ │ -0001a620: 2e20 2049 6620 7468 6174 0a66 756e 6374 . If that.funct │ │ │ │ -0001a630: 696f 6e20 6661 696c 7320 746f 2066 696e ion fails to fin │ │ │ │ -0001a640: 6420 6120 7375 626d 6174 7269 7820 6f66 d a submatrix of │ │ │ │ -0001a650: 2061 2063 6572 7461 696e 2072 616e 6b2c a certain rank, │ │ │ │ -0001a660: 2074 6869 7320 7369 6d70 6c79 2063 616c this simply cal │ │ │ │ -0001a670: 6c73 202a 6e6f 7465 0a72 616e 6b3a 2028 ls *note.rank: ( │ │ │ │ -0001a680: 4d61 6361 756c 6179 3244 6f63 2972 616e Macaulay2Doc)ran │ │ │ │ -0001a690: 6b2c 2e20 2054 6f20 636f 6e74 726f 6c20 k,. To control │ │ │ │ -0001a6a0: 7468 6520 6e75 6d62 6572 206f 6620 7469 the number of ti │ │ │ │ -0001a6b0: 6d65 7320 6765 7453 7562 6d61 7472 6978 mes getSubmatrix │ │ │ │ -0001a6c0: 4f66 5261 6e6b 0a63 6f6e 7369 6465 7273 OfRank.considers │ │ │ │ -0001a6d0: 2073 7562 6d61 7472 6963 6573 2c20 7573 submatrices, us │ │ │ │ -0001a6e0: 6520 7468 6520 6f70 7469 6f6e 204d 6178 e the option Max │ │ │ │ -0001a6f0: 4d69 6e6f 7273 2e0a 0a2b 2d2d 2d2d 2d2d Minors...+------ │ │ │ │ -0001a700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a730: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ -0001a740: 2051 515b 782c 795d 3b20 2020 2020 2020 QQ[x,y]; │ │ │ │ -0001a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a770: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -0001a780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a7b0: 2d2b 0a7c 6932 203a 204d 203d 206d 6174 -+.|i2 : M = mat │ │ │ │ -0001a7c0: 7269 787b 7b78 2c79 2c32 2c30 2c32 2a78 rix{{x,y,2,0,2*x │ │ │ │ -0001a7d0: 2b79 7d2c 207b 302c 302c 312c 302c 787d +y}, {0,0,1,0,x} │ │ │ │ -0001a7e0: 2c20 7b78 2c79 2c30 2c30 2c79 7d7d 3b7c , {x,y,0,0,y}};| │ │ │ │ -0001a7f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0001a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a820: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001a830: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ -0001a840: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ +000194e0: 7c6f 3130 203d 2074 7275 6520 2020 2020 |o10 = true │ │ │ │ +000194f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019520: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00019530: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00019540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00019580: 0a4e 6f74 6963 6520 696e 2074 6865 2066 .Notice in the f │ │ │ │ +00019590: 6972 7374 2063 6173 6520 7468 6520 6675 irst case the fu │ │ │ │ +000195a0: 6e63 7469 6f6e 2072 6574 7572 6e65 6420 nction returned │ │ │ │ +000195b0: 6e75 6c6c 2c20 6265 6361 7573 6520 7468 null, because th │ │ │ │ +000195c0: 6520 6465 7074 6820 6f66 0a73 6561 7263 e depth of.searc │ │ │ │ +000195d0: 6820 7761 7320 6e6f 7420 6869 6768 2065 h was not high e │ │ │ │ +000195e0: 6e6f 7567 682e 2020 4974 206f 6e6c 7920 nough. It only │ │ │ │ +000195f0: 636f 6d70 7574 6564 2063 6f64 696d 2035 computed codim 5 │ │ │ │ +00019600: 2074 696d 6573 2e20 2054 6865 2073 6563 times. The sec │ │ │ │ +00019610: 6f6e 640a 7265 7475 726e 6564 2074 7275 ond.returned tru │ │ │ │ +00019620: 652c 2062 7574 2069 7420 6469 6420 736f e, but it did so │ │ │ │ +00019630: 2061 7320 736f 6f6e 2061 7320 7468 6520 as soon as the │ │ │ │ +00019640: 616e 7377 6572 2077 6173 2066 6f75 6e64 answer was found │ │ │ │ +00019650: 2028 616e 6420 6265 666f 7265 2077 6520 (and before we │ │ │ │ +00019660: 6869 740a 7468 6520 5061 6972 4c69 6d69 hit.the PairLimi │ │ │ │ +00019670: 7420 6c69 6d69 7429 2e0a 0a57 6179 7320 t limit)...Ways │ │ │ │ +00019680: 746f 2075 7365 2069 7343 6f64 696d 4174 to use isCodimAt │ │ │ │ +00019690: 4c65 6173 743a 0a3d 3d3d 3d3d 3d3d 3d3d Least:.========= │ │ │ │ +000196a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000196b0: 3d3d 0a0a 2020 2a20 2269 7343 6f64 696d ==.. * "isCodim │ │ │ │ +000196c0: 4174 4c65 6173 7428 5a5a 2c49 6465 616c AtLeast(ZZ,Ideal │ │ │ │ +000196d0: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ +000196e0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +000196f0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +00019700: 626a 6563 7420 2a6e 6f74 6520 6973 436f bject *note isCo │ │ │ │ +00019710: 6469 6d41 744c 6561 7374 3a20 6973 436f dimAtLeast: isCo │ │ │ │ +00019720: 6469 6d41 744c 6561 7374 2c20 6973 2061 dimAtLeast, is a │ │ │ │ +00019730: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ +00019740: 6e63 7469 6f6e 0a77 6974 6820 6f70 7469 nction.with opti │ │ │ │ +00019750: 6f6e 733a 2028 4d61 6361 756c 6179 3244 ons: (Macaulay2D │ │ │ │ +00019760: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +00019770: 6e57 6974 684f 7074 696f 6e73 2c2e 0a0a nWithOptions,... │ │ │ │ +00019780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000197a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000197b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000197c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +000197d0: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +000197e0: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +000197f0: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +00019800: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +00019810: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +00019820: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +00019830: 636b 6167 6573 2f46 6173 744d 696e 6f72 ckages/FastMinor │ │ │ │ +00019840: 732e 0a6d 323a 3232 3436 3a30 2e0a 1f0a s..m2:2246:0.... │ │ │ │ +00019850: 4669 6c65 3a20 4661 7374 4d69 6e6f 7273 File: FastMinors │ │ │ │ +00019860: 2e69 6e66 6f2c 204e 6f64 653a 2069 7344 .info, Node: isD │ │ │ │ +00019870: 696d 4174 4d6f 7374 2c20 4e65 7874 3a20 imAtMost, Next: │ │ │ │ +00019880: 6973 5261 6e6b 4174 4c65 6173 742c 2050 isRankAtLeast, P │ │ │ │ +00019890: 7265 763a 2069 7343 6f64 696d 4174 4c65 rev: isCodimAtLe │ │ │ │ +000198a0: 6173 742c 2055 703a 2054 6f70 0a0a 6973 ast, Up: Top..is │ │ │ │ +000198b0: 4469 6d41 744d 6f73 7420 2d2d 2072 6574 DimAtMost -- ret │ │ │ │ +000198c0: 7572 6e73 2074 7275 6520 6966 2077 6520 urns true if we │ │ │ │ +000198d0: 6361 6e20 7175 6963 6b6c 7920 7365 6520 can quickly see │ │ │ │ +000198e0: 7768 6574 6865 7220 7468 6520 6469 6d20 whether the dim │ │ │ │ +000198f0: 6973 2061 7420 6d6f 7374 2061 2067 6976 is at most a giv │ │ │ │ +00019900: 656e 206e 756d 6265 720a 2a2a 2a2a 2a2a en number.****** │ │ │ │ +00019910: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019920: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019930: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019940: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019950: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019960: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ +00019970: 3a20 0a20 2020 2020 2020 2069 7344 696d : . isDim │ │ │ │ +00019980: 4174 4d6f 7374 286e 2c20 4929 0a20 202a AtMost(n, I). * │ │ │ │ +00019990: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +000199a0: 206e 2c20 616e 202a 6e6f 7465 2069 6e74 n, an *note int │ │ │ │ +000199b0: 6567 6572 3a20 284d 6163 6175 6c61 7932 eger: (Macaulay2 │ │ │ │ +000199c0: 446f 6329 5a5a 2c2c 2061 6e20 696e 7465 Doc)ZZ,, an inte │ │ │ │ +000199d0: 6765 720a 2020 2020 2020 2a20 492c 2061 ger. * I, a │ │ │ │ +000199e0: 6e20 2a6e 6f74 6520 6964 6561 6c3a 2028 n *note ideal: ( │ │ │ │ +000199f0: 4d61 6361 756c 6179 3244 6f63 2949 6465 Macaulay2Doc)Ide │ │ │ │ +00019a00: 616c 2c2c 2061 6e20 6964 6561 6c20 696e al,, an ideal in │ │ │ │ +00019a10: 2061 2070 6f6c 796e 6f6d 6961 6c20 7269 a polynomial ri │ │ │ │ +00019a20: 6e67 0a20 2020 2020 2020 206f 7665 7220 ng. over │ │ │ │ +00019a30: 6120 6669 656c 642c 206f 7220 6120 7175 a field, or a qu │ │ │ │ +00019a40: 6f74 6965 6e74 2072 696e 6720 6f66 2073 otient ring of s │ │ │ │ +00019a50: 7563 680a 2020 2a20 2a6e 6f74 6520 4f70 uch. * *note Op │ │ │ │ +00019a60: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ +00019a70: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ +00019a80: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ +00019a90: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ +00019aa0: 732c 3a0a 2020 2020 2020 2a20 5061 6972 s,:. * Pair │ │ │ │ +00019ab0: 4c69 6d69 7420 3d3e 202e 2e2e 2c20 6465 Limit => ..., de │ │ │ │ +00019ac0: 6661 756c 7420 7661 6c75 6520 3130 300a fault value 100. │ │ │ │ +00019ad0: 2020 2020 2020 2a20 5350 6169 7273 4675 * SPairsFu │ │ │ │ +00019ae0: 6e63 7469 6f6e 203d 3e20 2e2e 2e2c 2064 nction => ..., d │ │ │ │ +00019af0: 6566 6175 6c74 2076 616c 7565 0a20 2020 efault value. │ │ │ │ +00019b00: 2020 2020 2046 756e 6374 696f 6e43 6c6f FunctionClo │ │ │ │ +00019b10: 7375 7265 5b2e 2e2f 4661 7374 4d69 6e6f sure[../FastMino │ │ │ │ +00019b20: 7273 2e6d 323a 3231 313a 3233 2d32 3131 rs.m2:211:23-211 │ │ │ │ +00019b30: 3a34 325d 0a20 2020 2020 202a 2056 6572 :42]. * Ver │ │ │ │ +00019b40: 626f 7365 203d 3e20 2e2e 2e2c 2064 6566 bose => ..., def │ │ │ │ +00019b50: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ +00019b60: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +00019b70: 2020 2020 2a20 7472 7565 2069 6620 7468 * true if th │ │ │ │ +00019b80: 6520 6469 6d65 6e73 696f 6e20 6f66 2049 e dimension of I │ │ │ │ +00019b90: 2069 7320 6174 206d 6f73 7420 6e20 6f72 is at most n or │ │ │ │ +00019ba0: 206e 756c 6c20 6966 2074 6865 2066 756e null if the fun │ │ │ │ +00019bb0: 6374 696f 6e20 6361 6e6e 6f74 0a20 2020 ction cannot. │ │ │ │ +00019bc0: 2020 2020 2074 656c 6c20 7768 6574 6865 tell whethe │ │ │ │ +00019bd0: 7220 7468 6520 6469 6d65 6e73 696f 6e20 r the dimension │ │ │ │ +00019be0: 6973 2061 7420 6d6f 7374 206e 0a0a 4465 is at most n..De │ │ │ │ +00019bf0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +00019c00: 3d3d 3d3d 3d0a 0a54 6869 7320 7369 6d70 =====..This simp │ │ │ │ +00019c10: 6c79 2063 616c 6c73 2069 7343 6f64 696d ly calls isCodim │ │ │ │ +00019c20: 4174 4c65 6173 742c 2070 6173 7369 6e67 AtLeast, passing │ │ │ │ +00019c30: 206f 7074 696f 6e73 2061 7320 6465 7363 options as desc │ │ │ │ +00019c40: 7269 6265 6420 7468 6572 652e 0a0a 5365 ribed there...Se │ │ │ │ +00019c50: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +00019c60: 0a20 202a 202a 6e6f 7465 2069 7343 6f64 . * *note isCod │ │ │ │ +00019c70: 696d 4174 4c65 6173 743a 2069 7343 6f64 imAtLeast: isCod │ │ │ │ +00019c80: 696d 4174 4c65 6173 742c 202d 2d20 7265 imAtLeast, -- re │ │ │ │ +00019c90: 7475 726e 7320 7472 7565 2069 6620 7765 turns true if we │ │ │ │ +00019ca0: 2063 616e 2071 7569 636b 6c79 2073 6565 can quickly see │ │ │ │ +00019cb0: 0a20 2020 2077 6865 7468 6572 2074 6865 . whether the │ │ │ │ +00019cc0: 2063 6f64 696d 2069 7320 6174 206c 6561 codim is at lea │ │ │ │ +00019cd0: 7374 2061 2067 6976 656e 206e 756d 6265 st a given numbe │ │ │ │ +00019ce0: 720a 0a57 6179 7320 746f 2075 7365 2069 r..Ways to use i │ │ │ │ +00019cf0: 7344 696d 4174 4d6f 7374 3a0a 3d3d 3d3d sDimAtMost:.==== │ │ │ │ +00019d00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00019d10: 3d3d 3d3d 0a0a 2020 2a20 2269 7344 696d ====.. * "isDim │ │ │ │ +00019d20: 4174 4d6f 7374 285a 5a2c 4964 6561 6c29 AtMost(ZZ,Ideal) │ │ │ │ +00019d30: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +00019d40: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00019d50: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00019d60: 6a65 6374 202a 6e6f 7465 2069 7344 696d ject *note isDim │ │ │ │ +00019d70: 4174 4d6f 7374 3a20 6973 4469 6d41 744d AtMost: isDimAtM │ │ │ │ +00019d80: 6f73 742c 2069 7320 6120 2a6e 6f74 6520 ost, is a *note │ │ │ │ +00019d90: 6d65 7468 6f64 2066 756e 6374 696f 6e20 method function │ │ │ │ +00019da0: 7769 7468 0a6f 7074 696f 6e73 3a20 284d with.options: (M │ │ │ │ +00019db0: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ +00019dc0: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ +00019dd0: 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d 2d2d tions,...------- │ │ │ │ +00019de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019e20: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +00019e30: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +00019e40: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +00019e50: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +00019e60: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +00019e70: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +00019e80: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +00019e90: 4661 7374 4d69 6e6f 7273 2e0a 6d32 3a32 FastMinors..m2:2 │ │ │ │ +00019ea0: 3237 323a 302e 0a1f 0a46 696c 653a 2046 272:0....File: F │ │ │ │ +00019eb0: 6173 744d 696e 6f72 732e 696e 666f 2c20 astMinors.info, │ │ │ │ +00019ec0: 4e6f 6465 3a20 6973 5261 6e6b 4174 4c65 Node: isRankAtLe │ │ │ │ +00019ed0: 6173 742c 204e 6578 743a 2069 7352 616e ast, Next: isRan │ │ │ │ +00019ee0: 6b41 744c 6561 7374 5f6c 705f 7064 5f70 kAtLeast_lp_pd_p │ │ │ │ +00019ef0: 645f 7064 5f63 6d54 6872 6561 6473 3d3e d_pd_cmThreads=> │ │ │ │ +00019f00: 5f70 645f 7064 5f70 645f 7270 2c20 5072 _pd_pd_pd_rp, Pr │ │ │ │ +00019f10: 6576 3a20 6973 4469 6d41 744d 6f73 742c ev: isDimAtMost, │ │ │ │ +00019f20: 2055 703a 2054 6f70 0a0a 6973 5261 6e6b Up: Top..isRank │ │ │ │ +00019f30: 4174 4c65 6173 7420 2d2d 2064 6574 6572 AtLeast -- deter │ │ │ │ +00019f40: 6d69 6e65 7320 6966 2074 6865 206d 6174 mines if the mat │ │ │ │ +00019f50: 7269 7820 6861 7320 7261 6e6b 2061 7420 rix has rank at │ │ │ │ +00019f60: 6c65 6173 7420 6120 6e75 6d62 6572 0a2a least a number.* │ │ │ │ +00019f70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019f80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019f90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019fa0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019fb0: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ +00019fc0: 0a20 2020 2020 2020 2069 7352 616e 6b41 . isRankA │ │ │ │ +00019fd0: 744c 6561 7374 286e 312c 204d 3129 0a20 tLeast(n1, M1). │ │ │ │ +00019fe0: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +00019ff0: 202a 206e 312c 2061 6e20 2a6e 6f74 6520 * n1, an *note │ │ │ │ +0001a000: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ +0001a010: 6179 3244 6f63 295a 5a2c 2c20 0a20 2020 ay2Doc)ZZ,, . │ │ │ │ +0001a020: 2020 202a 204d 312c 2061 202a 6e6f 7465 * M1, a *note │ │ │ │ +0001a030: 206d 6174 7269 783a 2028 4d61 6361 756c matrix: (Macaul │ │ │ │ +0001a040: 6179 3244 6f63 294d 6174 7269 782c 2c20 ay2Doc)Matrix,, │ │ │ │ +0001a050: 0a20 202a 202a 6e6f 7465 204f 7074 696f . * *note Optio │ │ │ │ +0001a060: 6e61 6c20 696e 7075 7473 3a20 284d 6163 nal inputs: (Mac │ │ │ │ +0001a070: 6175 6c61 7932 446f 6329 7573 696e 6720 aulay2Doc)using │ │ │ │ +0001a080: 6675 6e63 7469 6f6e 7320 7769 7468 206f functions with o │ │ │ │ +0001a090: 7074 696f 6e61 6c20 696e 7075 7473 2c3a ptional inputs,: │ │ │ │ +0001a0a0: 0a20 2020 2020 202a 202a 6e6f 7465 2044 . * *note D │ │ │ │ +0001a0b0: 6574 5374 7261 7465 6779 3a20 4465 7453 etStrategy: DetS │ │ │ │ +0001a0c0: 7472 6174 6567 792c 203d 3e20 2e2e 2e2c trategy, => ..., │ │ │ │ +0001a0d0: 2064 6566 6175 6c74 2076 616c 7565 2052 default value R │ │ │ │ +0001a0e0: 616e 6b2c 2044 6574 5374 7261 7465 6779 ank, DetStrategy │ │ │ │ +0001a0f0: 0a20 2020 2020 2020 2069 7320 6120 7374 . is a st │ │ │ │ +0001a100: 7261 7465 6779 2066 6f72 2061 6c6c 6f77 rategy for allow │ │ │ │ +0001a110: 696e 6720 7468 6520 7573 6572 2074 6f20 ing the user to │ │ │ │ +0001a120: 6368 6f6f 7365 2068 6f77 2064 6574 6572 choose how deter │ │ │ │ +0001a130: 6d69 6e61 6e74 7320 286f 720a 2020 2020 minants (or. │ │ │ │ +0001a140: 2020 2020 7261 6e6b 292c 2069 7320 636f rank), is co │ │ │ │ +0001a150: 6d70 7574 6564 0a20 2020 2020 202a 202a mputed. * * │ │ │ │ +0001a160: 6e6f 7465 204d 6178 4d69 6e6f 7273 3a20 note MaxMinors: │ │ │ │ +0001a170: 4d61 784d 696e 6f72 732c 203d 3e20 2e2e MaxMinors, => .. │ │ │ │ +0001a180: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ +0001a190: 206e 756c 6c2c 2061 6e20 6f70 7469 6f6e null, an option │ │ │ │ +0001a1a0: 2074 6f0a 2020 2020 2020 2020 636f 6e74 to. cont │ │ │ │ +0001a1b0: 726f 6c20 6465 7074 6820 6f66 2073 6561 rol depth of sea │ │ │ │ +0001a1c0: 7263 680a 2020 2020 2020 2a20 2a6e 6f74 rch. * *not │ │ │ │ +0001a1d0: 6520 506f 696e 744f 7074 696f 6e73 3a20 e PointOptions: │ │ │ │ +0001a1e0: 506f 696e 744f 7074 696f 6e73 2c20 3d3e PointOptions, => │ │ │ │ +0001a1f0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +0001a200: 6c75 6520 7b53 7472 6174 6567 7920 3d3e lue {Strategy => │ │ │ │ +0001a210: 0a20 2020 2020 2020 2044 6566 6175 6c74 . Default │ │ │ │ +0001a220: 2c20 486f 6d6f 6765 6e65 6f75 7320 3d3e , Homogeneous => │ │ │ │ +0001a230: 2066 616c 7365 2c20 5265 706c 6163 656d false, Replacem │ │ │ │ +0001a240: 656e 7420 3d3e 2042 696e 6f6d 6961 6c2c ent => Binomial, │ │ │ │ +0001a250: 2045 7874 656e 6446 6965 6c64 203d 3e0a ExtendField =>. │ │ │ │ +0001a260: 2020 2020 2020 2020 7472 7565 2c20 506f true, Po │ │ │ │ +0001a270: 696e 7443 6865 636b 4174 7465 6d70 7473 intCheckAttempts │ │ │ │ +0001a280: 203d 3e20 302c 2044 6563 6f6d 706f 7369 => 0, Decomposi │ │ │ │ +0001a290: 7469 6f6e 5374 7261 7465 6779 203d 3e20 tionStrategy => │ │ │ │ +0001a2a0: 4465 636f 6d70 6f73 652c 0a20 2020 2020 Decompose,. │ │ │ │ +0001a2b0: 2020 204e 756d 5468 7265 6164 7354 6f55 NumThreadsToU │ │ │ │ +0001a2c0: 7365 203d 3e20 312c 2044 696d 656e 7369 se => 1, Dimensi │ │ │ │ +0001a2d0: 6f6e 4675 6e63 7469 6f6e 203d 3e20 6469 onFunction => di │ │ │ │ +0001a2e0: 6d2c 2056 6572 626f 7365 203d 3e20 6661 m, Verbose => fa │ │ │ │ +0001a2f0: 6c73 657d 2c0a 2020 2020 2020 2020 6f70 lse},. op │ │ │ │ +0001a300: 7469 6f6e 7320 746f 2070 6173 7320 746f tions to pass to │ │ │ │ +0001a310: 2066 756e 6374 696f 6e73 2069 6e20 7468 functions in th │ │ │ │ +0001a320: 6520 7061 636b 6167 6520 5261 6e64 6f6d e package Random │ │ │ │ +0001a330: 506f 696e 7473 0a20 2020 2020 202a 202a Points. * * │ │ │ │ +0001a340: 6e6f 7465 2053 7472 6174 6567 793a 2053 note Strategy: S │ │ │ │ +0001a350: 7472 6174 6567 7944 6566 6175 6c74 2c20 trategyDefault, │ │ │ │ +0001a360: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +0001a370: 7661 6c75 6520 6e65 7720 4f70 7469 6f6e value new Option │ │ │ │ +0001a380: 5461 626c 650a 2020 2020 2020 2020 6672 Table. fr │ │ │ │ +0001a390: 6f6d 207b 506f 696e 7473 203d 3e20 302c om {Points => 0, │ │ │ │ +0001a3a0: 2052 616e 646f 6d20 3d3e 2030 2c20 4752 Random => 0, GR │ │ │ │ +0001a3b0: 6576 4c65 784c 6172 6765 7374 203d 3e20 evLexLargest => │ │ │ │ +0001a3c0: 302c 204c 6578 536d 616c 6c65 7374 5465 0, LexSmallestTe │ │ │ │ +0001a3d0: 726d 203d 3e0a 2020 2020 2020 2020 3235 rm =>. 25 │ │ │ │ +0001a3e0: 2c20 4c65 784c 6172 6765 7374 203d 3e20 , LexLargest => │ │ │ │ +0001a3f0: 302c 204c 6578 536d 616c 6c65 7374 203d 0, LexSmallest = │ │ │ │ +0001a400: 3e20 3235 2c20 4752 6576 4c65 7853 6d61 > 25, GRevLexSma │ │ │ │ +0001a410: 6c6c 6573 7454 6572 6d20 3d3e 2032 352c llestTerm => 25, │ │ │ │ +0001a420: 0a20 2020 2020 2020 2052 616e 646f 6d4e . RandomN │ │ │ │ +0001a430: 6f6e 7a65 726f 203d 3e20 302c 2047 5265 onzero => 0, GRe │ │ │ │ +0001a440: 764c 6578 536d 616c 6c65 7374 203d 3e20 vLexSmallest => │ │ │ │ +0001a450: 3235 7d2c 2073 7472 6174 6567 6965 7320 25}, strategies │ │ │ │ +0001a460: 666f 7220 6368 6f6f 7369 6e67 0a20 2020 for choosing. │ │ │ │ +0001a470: 2020 2020 2073 7562 6d61 7472 6963 6573 submatrices │ │ │ │ +0001a480: 0a20 2020 2020 202a 202a 6e6f 7465 2054 . * *note T │ │ │ │ +0001a490: 6872 6561 6473 3a20 6973 5261 6e6b 4174 hreads: isRankAt │ │ │ │ +0001a4a0: 4c65 6173 745f 6c70 5f70 645f 7064 5f70 Least_lp_pd_pd_p │ │ │ │ +0001a4b0: 645f 636d 5468 7265 6164 733d 3e5f 7064 d_cmThreads=>_pd │ │ │ │ +0001a4c0: 5f70 645f 7064 5f72 702c 203d 3e0a 2020 _pd_pd_rp, =>. │ │ │ │ +0001a4d0: 2020 2020 2020 2e2e 2e2c 2064 6566 6175 ..., defau │ │ │ │ +0001a4e0: 6c74 2076 616c 7565 2031 2c20 616e 206f lt value 1, an o │ │ │ │ +0001a4f0: 7074 696f 6e20 666f 7220 7661 7269 6f75 ption for variou │ │ │ │ +0001a500: 7320 6675 6e63 7469 6f6e 730a 2020 2020 s functions. │ │ │ │ +0001a510: 2020 2a20 5665 7262 6f73 6520 3d3e 202e * Verbose => . │ │ │ │ +0001a520: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ +0001a530: 6520 6661 6c73 650a 2020 2a20 4f75 7470 e false. * Outp │ │ │ │ +0001a540: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ +0001a550: 6e6f 7465 2042 6f6f 6c65 616e 2076 616c note Boolean val │ │ │ │ +0001a560: 7565 3a20 284d 6163 6175 6c61 7932 446f ue: (Macaulay2Do │ │ │ │ +0001a570: 6329 426f 6f6c 6561 6e2c 2c20 0a0a 4465 c)Boolean,, ..De │ │ │ │ +0001a580: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +0001a590: 3d3d 3d3d 3d0a 0a54 6869 7320 6675 6e63 =====..This func │ │ │ │ +0001a5a0: 7469 6f6e 2074 7269 6573 2074 6f20 7175 tion tries to qu │ │ │ │ +0001a5b0: 6963 6b6c 7920 6465 7465 726d 696e 6520 ickly determine │ │ │ │ +0001a5c0: 7768 6574 6865 7220 7468 6520 6d61 7472 whether the matr │ │ │ │ +0001a5d0: 6978 2068 6173 2061 2067 6976 656e 2072 ix has a given r │ │ │ │ +0001a5e0: 616e 6b2e 0a69 7352 616e 6b41 744c 6561 ank..isRankAtLea │ │ │ │ +0001a5f0: 7374 2063 616c 6c73 202a 6e6f 7465 2067 st calls *note g │ │ │ │ +0001a600: 6574 5375 626d 6174 7269 784f 6652 616e etSubmatrixOfRan │ │ │ │ +0001a610: 6b3a 2067 6574 5375 626d 6174 7269 784f k: getSubmatrixO │ │ │ │ +0001a620: 6652 616e 6b2c 2e20 2049 6620 7468 6174 fRank,. If that │ │ │ │ +0001a630: 0a66 756e 6374 696f 6e20 6669 6e64 7320 .function finds │ │ │ │ +0001a640: 6120 7375 626d 6174 7269 7820 6f66 2061 a submatrix of a │ │ │ │ +0001a650: 2063 6572 7461 696e 2072 616e 6b2c 2074 certain rank, t │ │ │ │ +0001a660: 6869 7320 7265 7475 726e 7320 7472 7565 his returns true │ │ │ │ +0001a670: 2e20 2049 6620 7468 6174 0a66 756e 6374 . If that.funct │ │ │ │ +0001a680: 696f 6e20 6661 696c 7320 746f 2066 696e ion fails to fin │ │ │ │ +0001a690: 6420 6120 7375 626d 6174 7269 7820 6f66 d a submatrix of │ │ │ │ +0001a6a0: 2061 2063 6572 7461 696e 2072 616e 6b2c a certain rank, │ │ │ │ +0001a6b0: 2074 6869 7320 7369 6d70 6c79 2063 616c this simply cal │ │ │ │ +0001a6c0: 6c73 202a 6e6f 7465 0a72 616e 6b3a 2028 ls *note.rank: ( │ │ │ │ +0001a6d0: 4d61 6361 756c 6179 3244 6f63 2972 616e Macaulay2Doc)ran │ │ │ │ +0001a6e0: 6b2c 2e20 2054 6f20 636f 6e74 726f 6c20 k,. To control │ │ │ │ +0001a6f0: 7468 6520 6e75 6d62 6572 206f 6620 7469 the number of ti │ │ │ │ +0001a700: 6d65 7320 6765 7453 7562 6d61 7472 6978 mes getSubmatrix │ │ │ │ +0001a710: 4f66 5261 6e6b 0a63 6f6e 7369 6465 7273 OfRank.considers │ │ │ │ +0001a720: 2073 7562 6d61 7472 6963 6573 2c20 7573 submatrices, us │ │ │ │ +0001a730: 6520 7468 6520 6f70 7469 6f6e 204d 6178 e the option Max │ │ │ │ +0001a740: 4d69 6e6f 7273 2e0a 0a2b 2d2d 2d2d 2d2d Minors...+------ │ │ │ │ +0001a750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a780: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ +0001a790: 2051 515b 782c 795d 3b20 2020 2020 2020 QQ[x,y]; │ │ │ │ +0001a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a7c0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001a7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a800: 2d2b 0a7c 6932 203a 204d 203d 206d 6174 -+.|i2 : M = mat │ │ │ │ +0001a810: 7269 787b 7b78 2c79 2c32 2c30 2c32 2a78 rix{{x,y,2,0,2*x │ │ │ │ +0001a820: 2b79 7d2c 207b 302c 302c 312c 302c 787d +y}, {0,0,1,0,x} │ │ │ │ +0001a830: 2c20 7b78 2c79 2c30 2c30 2c79 7d7d 3b7c , {x,y,0,0,y}};| │ │ │ │ +0001a840: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a860: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -0001a870: 203a 204d 6174 7269 7820 5220 203c 2d2d : Matrix R <-- │ │ │ │ -0001a880: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -0001a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0001a8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a8e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2072 -------+.|i3 : r │ │ │ │ -0001a8f0: 616e 6b20 4d20 2020 2020 2020 2020 2020 ank M │ │ │ │ -0001a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a920: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a870: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001a880: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +0001a890: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ +0001a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a8b0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0001a8c0: 203a 204d 6174 7269 7820 5220 203c 2d2d : Matrix R <-- │ │ │ │ +0001a8d0: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0001a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a8f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001a900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a930: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2072 -------+.|i3 : r │ │ │ │ +0001a940: 616e 6b20 4d20 2020 2020 2020 2020 2020 ank M │ │ │ │ 0001a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a960: 2020 207c 0a7c 6f33 203d 2032 2020 2020 |.|o3 = 2 │ │ │ │ -0001a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a970: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0001a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9a0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0001a9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001a9e0: 0a7c 6934 203a 2069 7352 616e 6b41 744c .|i4 : isRankAtL │ │ │ │ -0001a9f0: 6561 7374 2832 2c20 4d29 2020 2020 2020 east(2, M) │ │ │ │ -0001aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa50: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ -0001aa60: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +0001a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9b0: 2020 207c 0a7c 6f33 203d 2032 2020 2020 |.|o3 = 2 │ │ │ │ +0001a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9f0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001aa00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aa10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aa20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001aa30: 0a7c 6934 203a 2069 7352 616e 6b41 744c .|i4 : isRankAtL │ │ │ │ +0001aa40: 6561 7374 2832 2c20 4d29 2020 2020 2020 east(2, M) │ │ │ │ +0001aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aa60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa90: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0001aaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aad0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2069 -------+.|i5 : i │ │ │ │ -0001aae0: 7352 616e 6b41 744c 6561 7374 2833 2c20 sRankAtLeast(3, │ │ │ │ -0001aaf0: 4d29 2020 2020 2020 2020 2020 2020 2020 M) │ │ │ │ -0001ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab50: 2020 207c 0a7c 6f35 203d 2066 616c 7365 |.|o5 = false │ │ │ │ -0001ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aaa0: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +0001aab0: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +0001aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aae0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001aaf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ab00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ab10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ab20: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2069 -------+.|i5 : i │ │ │ │ +0001ab30: 7352 616e 6b41 744c 6561 7374 2833 2c20 sRankAtLeast(3, │ │ │ │ +0001ab40: 4d29 2020 2020 2020 2020 2020 2020 2020 M) │ │ │ │ +0001ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ab60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0001ab70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab90: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0001aba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001abb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001abc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001abd0: 0a0a 5468 6520 6f70 7469 6f6e 2054 6872 ..The option Thr │ │ │ │ -0001abe0: 6561 6473 2063 616e 2062 6520 7573 6564 eads can be used │ │ │ │ -0001abf0: 2061 6c6c 6f77 2074 6865 2066 756e 6374 allow the funct │ │ │ │ -0001ac00: 696f 6e20 7573 6520 6d75 6c74 6970 6c65 ion use multiple │ │ │ │ -0001ac10: 2074 6872 6561 6473 206f 660a 6578 6563 threads of.exec │ │ │ │ -0001ac20: 7574 696f 6e2e 2020 4966 2061 6c6c 6f77 ution. If allow │ │ │ │ -0001ac30: 6162 6c65 5468 7265 6164 7320 6973 2061 ableThreads is a │ │ │ │ -0001ac40: 626f 7665 2032 2061 6e64 2054 6872 6561 bove 2 and Threa │ │ │ │ -0001ac50: 6473 2069 7320 7365 7420 6162 6f76 6520 ds is set above │ │ │ │ -0001ac60: 312c 2074 6865 6e0a 7468 6973 2066 756e 1, then.this fun │ │ │ │ -0001ac70: 6374 696f 6e20 7769 6c6c 2074 7279 2074 ction will try t │ │ │ │ -0001ac80: 6f20 7369 6d75 6c74 616e 656f 7573 6c79 o simultaneously │ │ │ │ -0001ac90: 2063 6f6d 7075 7465 2074 6865 2072 616e compute the ran │ │ │ │ -0001aca0: 6b20 6f66 2074 6865 206d 6174 7269 7820 k of the matrix │ │ │ │ -0001acb0: 7768 696c 650a 6c6f 6f6b 696e 6720 666f while.looking fo │ │ │ │ -0001acc0: 7220 6120 7375 626d 6174 7269 7820 6f66 r a submatrix of │ │ │ │ -0001acd0: 2061 2063 6572 7461 696e 2072 616e 6b2e a certain rank. │ │ │ │ -0001ace0: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -0001acf0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2067 ===.. * *note g │ │ │ │ -0001ad00: 6574 5375 626d 6174 7269 784f 6652 616e etSubmatrixOfRan │ │ │ │ -0001ad10: 6b3a 2067 6574 5375 626d 6174 7269 784f k: getSubmatrixO │ │ │ │ -0001ad20: 6652 616e 6b2c 202d 2d20 7472 6965 7320 fRank, -- tries │ │ │ │ -0001ad30: 746f 2066 696e 6420 6120 7375 626d 6174 to find a submat │ │ │ │ -0001ad40: 7269 780a 2020 2020 6f66 2074 6865 2067 rix. of the g │ │ │ │ -0001ad50: 6976 656e 2072 616e 6b0a 2020 2a20 2a6e iven rank. * *n │ │ │ │ -0001ad60: 6f74 6520 6973 5261 6e6b 4174 4c65 6173 ote isRankAtLeas │ │ │ │ -0001ad70: 7428 2e2e 2e2c 5374 7261 7465 6779 3d3e t(...,Strategy=> │ │ │ │ -0001ad80: 2e2e 2e29 3a20 5374 7261 7465 6779 4465 ...): StrategyDe │ │ │ │ -0001ad90: 6661 756c 742c 202d 2d20 7374 7261 7465 fault, -- strate │ │ │ │ -0001ada0: 6769 6573 2066 6f72 0a20 2020 2063 686f gies for. cho │ │ │ │ -0001adb0: 6f73 696e 6720 7375 626d 6174 7269 6365 osing submatrice │ │ │ │ -0001adc0: 730a 0a57 6179 7320 746f 2075 7365 2069 s..Ways to use i │ │ │ │ -0001add0: 7352 616e 6b41 744c 6561 7374 3a0a 3d3d sRankAtLeast:.== │ │ │ │ -0001ade0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001adf0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2269 ========.. * "i │ │ │ │ -0001ae00: 7352 616e 6b41 744c 6561 7374 285a 5a2c sRankAtLeast(ZZ, │ │ │ │ -0001ae10: 4d61 7472 6978 2922 0a0a 466f 7220 7468 Matrix)"..For th │ │ │ │ -0001ae20: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0001ae30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0001ae40: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0001ae50: 6520 6973 5261 6e6b 4174 4c65 6173 743a e isRankAtLeast: │ │ │ │ -0001ae60: 2069 7352 616e 6b41 744c 6561 7374 2c20 isRankAtLeast, │ │ │ │ -0001ae70: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -0001ae80: 6420 6675 6e63 7469 6f6e 2077 6974 680a d function with. │ │ │ │ -0001ae90: 6f70 7469 6f6e 733a 2028 4d61 6361 756c options: (Macaul │ │ │ │ -0001aea0: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ -0001aeb0: 6374 696f 6e57 6974 684f 7074 696f 6e73 ctionWithOptions │ │ │ │ -0001aec0: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ -0001aed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af10: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -0001af20: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -0001af30: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -0001af40: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -0001af50: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -0001af60: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -0001af70: 322f 7061 636b 6167 6573 2f46 6173 744d 2/packages/FastM │ │ │ │ -0001af80: 696e 6f72 732e 0a6d 323a 3137 3331 3a30 inors..m2:1731:0 │ │ │ │ -0001af90: 2e0a 1f0a 4669 6c65 3a20 4661 7374 4d69 ....File: FastMi │ │ │ │ -0001afa0: 6e6f 7273 2e69 6e66 6f2c 204e 6f64 653a nors.info, Node: │ │ │ │ -0001afb0: 2069 7352 616e 6b41 744c 6561 7374 5f6c isRankAtLeast_l │ │ │ │ -0001afc0: 705f 7064 5f70 645f 7064 5f63 6d54 6872 p_pd_pd_pd_cmThr │ │ │ │ -0001afd0: 6561 6473 3d3e 5f70 645f 7064 5f70 645f eads=>_pd_pd_pd_ │ │ │ │ -0001afe0: 7270 2c20 4e65 7874 3a20 4d61 784d 696e rp, Next: MaxMin │ │ │ │ -0001aff0: 6f72 732c 2050 7265 763a 2069 7352 616e ors, Prev: isRan │ │ │ │ -0001b000: 6b41 744c 6561 7374 2c20 5570 3a20 546f kAtLeast, Up: To │ │ │ │ -0001b010: 700a 0a69 7352 616e 6b41 744c 6561 7374 p..isRankAtLeast │ │ │ │ -0001b020: 282e 2e2e 2c54 6872 6561 6473 3d3e 2e2e (...,Threads=>.. │ │ │ │ -0001b030: 2e29 202d 2d20 616e 206f 7074 696f 6e20 .) -- an option │ │ │ │ -0001b040: 666f 7220 7661 7269 6f75 7320 6675 6e63 for various func │ │ │ │ -0001b050: 7469 6f6e 730a 2a2a 2a2a 2a2a 2a2a 2a2a tions.********** │ │ │ │ -0001b060: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001b070: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001b080: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001b090: 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 ********..Descri │ │ │ │ -0001b0a0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -0001b0b0: 3d0a 0a49 6e63 7265 6173 696e 6720 7468 =..Increasing th │ │ │ │ -0001b0c0: 6973 206f 7074 696f 6e20 6d61 7920 7465 is option may te │ │ │ │ -0001b0d0: 6c6c 2076 6172 696f 7573 2066 756e 6374 ll various funct │ │ │ │ -0001b0e0: 696f 6e73 2074 6f20 6d75 6c74 6974 6872 ions to multithr │ │ │ │ -0001b0f0: 6561 6420 7468 6569 720a 6f70 6572 6174 ead their.operat │ │ │ │ -0001b100: 696f 6e73 2e20 2059 6f75 206d 6179 2061 ions. You may a │ │ │ │ -0001b110: 6c73 6f20 7761 6e74 2074 6f20 696e 6372 lso want to incr │ │ │ │ -0001b120: 6561 7365 2061 6c6c 6f77 6162 6c65 5468 ease allowableTh │ │ │ │ -0001b130: 7265 6164 732e 0a0a 5365 6520 616c 736f reads...See also │ │ │ │ -0001b140: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ -0001b150: 6e6f 7465 2069 7352 616e 6b41 744c 6561 note isRankAtLea │ │ │ │ -0001b160: 7374 3a20 6973 5261 6e6b 4174 4c65 6173 st: isRankAtLeas │ │ │ │ -0001b170: 742c 202d 2d20 6465 7465 726d 696e 6573 t, -- determines │ │ │ │ -0001b180: 2069 6620 7468 6520 6d61 7472 6978 2068 if the matrix h │ │ │ │ -0001b190: 6173 2072 616e 6b20 6174 0a20 2020 206c as rank at. l │ │ │ │ -0001b1a0: 6561 7374 2061 206e 756d 6265 720a 2020 east a number. │ │ │ │ -0001b1b0: 2a20 2a6e 6f74 6520 6765 7453 7562 6d61 * *note getSubma │ │ │ │ -0001b1c0: 7472 6978 4f66 5261 6e6b 3a20 6765 7453 trixOfRank: getS │ │ │ │ -0001b1d0: 7562 6d61 7472 6978 4f66 5261 6e6b 2c20 ubmatrixOfRank, │ │ │ │ -0001b1e0: 2d2d 2074 7269 6573 2074 6f20 6669 6e64 -- tries to find │ │ │ │ -0001b1f0: 2061 2073 7562 6d61 7472 6978 0a20 2020 a submatrix. │ │ │ │ -0001b200: 206f 6620 7468 6520 6769 7665 6e20 7261 of the given ra │ │ │ │ -0001b210: 6e6b 0a20 202a 202a 6e6f 7465 2072 6563 nk. * *note rec │ │ │ │ -0001b220: 7572 7369 7665 4d69 6e6f 7273 3a20 7265 ursiveMinors: re │ │ │ │ -0001b230: 6375 7273 6976 654d 696e 6f72 732c 202d cursiveMinors, - │ │ │ │ -0001b240: 2d20 7573 6573 2061 2072 6563 7572 7369 - uses a recursi │ │ │ │ -0001b250: 7665 2063 6f66 6163 746f 720a 2020 2020 ve cofactor. │ │ │ │ -0001b260: 616c 676f 7269 7468 6d20 746f 2063 6f6d algorithm to com │ │ │ │ -0001b270: 7075 7465 2074 6865 2069 6465 616c 206f pute the ideal o │ │ │ │ -0001b280: 6620 6d69 6e6f 7273 206f 6620 6120 6d61 f minors of a ma │ │ │ │ -0001b290: 7472 6978 0a0a 4675 6e63 7469 6f6e 7320 trix..Functions │ │ │ │ -0001b2a0: 7769 7468 206f 7074 696f 6e61 6c20 6172 with optional ar │ │ │ │ -0001b2b0: 6775 6d65 6e74 206e 616d 6564 2054 6872 gument named Thr │ │ │ │ -0001b2c0: 6561 6473 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d eads:.========== │ │ │ │ -0001b2d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001b2e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001b2f0: 3d3d 3d3d 3d0a 0a20 202a 2022 6765 7453 =====.. * "getS │ │ │ │ -0001b300: 7562 6d61 7472 6978 4f66 5261 6e6b 282e ubmatrixOfRank(. │ │ │ │ -0001b310: 2e2e 2c54 6872 6561 6473 3d3e 2e2e 2e29 ..,Threads=>...) │ │ │ │ -0001b320: 220a 2020 2a20 2a6e 6f74 6520 6973 5261 ". * *note isRa │ │ │ │ -0001b330: 6e6b 4174 4c65 6173 7428 2e2e 2e2c 5468 nkAtLeast(...,Th │ │ │ │ -0001b340: 7265 6164 733d 3e2e 2e2e 293a 0a20 2020 reads=>...):. │ │ │ │ -0001b350: 2069 7352 616e 6b41 744c 6561 7374 5f6c isRankAtLeast_l │ │ │ │ -0001b360: 705f 7064 5f70 645f 7064 5f63 6d54 6872 p_pd_pd_pd_cmThr │ │ │ │ -0001b370: 6561 6473 3d3e 5f70 645f 7064 5f70 645f eads=>_pd_pd_pd_ │ │ │ │ -0001b380: 7270 2c20 2d2d 2061 6e20 6f70 7469 6f6e rp, -- an option │ │ │ │ -0001b390: 2066 6f72 2076 6172 696f 7573 0a20 2020 for various. │ │ │ │ -0001b3a0: 2066 756e 6374 696f 6e73 0a20 202a 2022 functions. * " │ │ │ │ -0001b3b0: 7265 6375 7273 6976 654d 696e 6f72 7328 recursiveMinors( │ │ │ │ -0001b3c0: 2e2e 2e2c 5468 7265 6164 733d 3e2e 2e2e ...,Threads=>... │ │ │ │ -0001b3d0: 2922 0a0a 4675 7274 6865 7220 696e 666f )"..Further info │ │ │ │ -0001b3e0: 726d 6174 696f 6e0a 3d3d 3d3d 3d3d 3d3d rmation.======== │ │ │ │ -0001b3f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -0001b400: 2044 6566 6175 6c74 2076 616c 7565 3a20 Default value: │ │ │ │ -0001b410: 310a 2020 2a20 4675 6e63 7469 6f6e 3a20 1. * Function: │ │ │ │ -0001b420: 2a6e 6f74 6520 6973 5261 6e6b 4174 4c65 *note isRankAtLe │ │ │ │ -0001b430: 6173 743a 2069 7352 616e 6b41 744c 6561 ast: isRankAtLea │ │ │ │ -0001b440: 7374 2c20 2d2d 2064 6574 6572 6d69 6e65 st, -- determine │ │ │ │ -0001b450: 7320 6966 2074 6865 206d 6174 7269 780a s if the matrix. │ │ │ │ -0001b460: 2020 2020 6861 7320 7261 6e6b 2061 7420 has rank at │ │ │ │ -0001b470: 6c65 6173 7420 6120 6e75 6d62 6572 0a20 least a number. │ │ │ │ -0001b480: 202a 204f 7074 696f 6e20 6b65 793a 202a * Option key: * │ │ │ │ -0001b490: 6e6f 7465 2054 6872 6561 6473 3a20 284d note Threads: (M │ │ │ │ -0001b4a0: 6163 6175 6c61 7932 446f 6329 5468 7265 acaulay2Doc)Thre │ │ │ │ -0001b4b0: 6164 732c 202d 2d20 616e 206f 7074 696f ads, -- an optio │ │ │ │ -0001b4c0: 6e61 6c20 6172 6775 6d65 6e74 0a2d 2d2d nal argument.--- │ │ │ │ -0001b4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -0001b520: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -0001b530: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -0001b540: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -0001b550: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -0001b560: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -0001b570: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -0001b580: 6765 732f 4661 7374 4d69 6e6f 7273 2e0a ges/FastMinors.. │ │ │ │ -0001b590: 6d32 3a32 3132 303a 302e 0a1f 0a46 696c m2:2120:0....Fil │ │ │ │ -0001b5a0: 653a 2046 6173 744d 696e 6f72 732e 696e e: FastMinors.in │ │ │ │ -0001b5b0: 666f 2c20 4e6f 6465 3a20 4d61 784d 696e fo, Node: MaxMin │ │ │ │ -0001b5c0: 6f72 732c 204e 6578 743a 204d 696e 4469 ors, Next: MinDi │ │ │ │ -0001b5d0: 6d65 6e73 696f 6e2c 2050 7265 763a 2069 mension, Prev: i │ │ │ │ -0001b5e0: 7352 616e 6b41 744c 6561 7374 5f6c 705f sRankAtLeast_lp_ │ │ │ │ -0001b5f0: 7064 5f70 645f 7064 5f63 6d54 6872 6561 pd_pd_pd_cmThrea │ │ │ │ -0001b600: 6473 3d3e 5f70 645f 7064 5f70 645f 7270 ds=>_pd_pd_pd_rp │ │ │ │ -0001b610: 2c20 5570 3a20 546f 700a 0a4d 6178 4d69 , Up: Top..MaxMi │ │ │ │ -0001b620: 6e6f 7273 202d 2d20 616e 206f 7074 696f nors -- an optio │ │ │ │ -0001b630: 6e20 746f 2063 6f6e 7472 6f6c 2064 6570 n to control dep │ │ │ │ -0001b640: 7468 206f 6620 7365 6172 6368 0a2a 2a2a th of search.*** │ │ │ │ -0001b650: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001b660: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001b670: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -0001b680: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -0001b690: 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 6f70 =======..This op │ │ │ │ -0001b6a0: 7469 6f6e 2063 6f6e 7472 6f6c 7320 686f tion controls ho │ │ │ │ -0001b6b0: 7720 6d61 6e79 206d 696e 6f72 7320 7661 w many minors va │ │ │ │ -0001b6c0: 7269 6f75 7320 6675 6e63 7469 6f6e 7320 rious functions │ │ │ │ -0001b6d0: 636f 6e73 6964 6572 2e20 2049 6e63 7265 consider. Incre │ │ │ │ -0001b6e0: 6173 696e 6720 6974 0a77 696c 6c20 6d61 asing it.will ma │ │ │ │ -0001b6f0: 6b65 2063 6572 7461 696e 2066 756e 6374 ke certain funct │ │ │ │ -0001b700: 696f 6e73 2073 6561 7263 6820 6c6f 6e67 ions search long │ │ │ │ -0001b710: 6572 2c20 6275 7420 6d61 7920 6d61 6b65 er, but may make │ │ │ │ -0001b720: 2074 6865 6d20 6769 7665 206d 6f72 6520 them give more │ │ │ │ -0001b730: 7573 6566 756c 0a6f 7574 7075 7473 2e20 useful.outputs. │ │ │ │ -0001b740: 2054 6865 2066 756e 6374 696f 6e73 2070 The functions p │ │ │ │ -0001b750: 726f 6a44 696d 2061 6e64 2072 6567 756c rojDim and regul │ │ │ │ -0001b760: 6172 496e 436f 6469 6d65 6e73 696f 6e20 arInCodimension │ │ │ │ -0001b770: 6361 6e20 616c 736f 2074 616b 6520 696e can also take in │ │ │ │ -0001b780: 206d 6f72 650a 636f 6d70 6c69 6361 7465 more.complicate │ │ │ │ -0001b790: 6420 696e 7075 7473 2e20 2053 6565 2074 d inputs. See t │ │ │ │ -0001b7a0: 6865 6972 2064 6f63 756d 656e 7461 7469 heir documentati │ │ │ │ -0001b7b0: 6f6e 2066 6f72 2064 6574 6169 6c73 2e0a on for details.. │ │ │ │ -0001b7c0: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -0001b7d0: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 7265 ==.. * *note re │ │ │ │ -0001b7e0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -0001b7f0: 6f6e 3a20 7265 6775 6c61 7249 6e43 6f64 on: regularInCod │ │ │ │ -0001b800: 696d 656e 7369 6f6e 2c20 2d2d 2061 7474 imension, -- att │ │ │ │ -0001b810: 656d 7074 7320 746f 2073 686f 7720 7468 empts to show th │ │ │ │ -0001b820: 6174 0a20 2020 2074 6865 2072 696e 6720 at. the ring │ │ │ │ -0001b830: 6973 2072 6567 756c 6172 2069 6e20 636f is regular in co │ │ │ │ -0001b840: 6469 6d65 6e73 696f 6e20 6e0a 2020 2a20 dimension n. * │ │ │ │ -0001b850: 2a6e 6f74 6520 7072 6f6a 4469 6d3a 2070 *note projDim: p │ │ │ │ -0001b860: 726f 6a44 696d 2c20 2d2d 2066 696e 6473 rojDim, -- finds │ │ │ │ -0001b870: 2061 6e20 7570 7065 7220 626f 756e 6420 an upper bound │ │ │ │ -0001b880: 666f 7220 7468 6520 7072 6f6a 6563 7469 for the projecti │ │ │ │ -0001b890: 7665 0a20 2020 2064 696d 656e 7369 6f6e ve. dimension │ │ │ │ -0001b8a0: 206f 6620 6120 6d6f 6475 6c65 0a20 202a of a module. * │ │ │ │ -0001b8b0: 202a 6e6f 7465 2069 7352 616e 6b41 744c *note isRankAtL │ │ │ │ -0001b8c0: 6561 7374 3a20 6973 5261 6e6b 4174 4c65 east: isRankAtLe │ │ │ │ -0001b8d0: 6173 742c 202d 2d20 6465 7465 726d 696e ast, -- determin │ │ │ │ -0001b8e0: 6573 2069 6620 7468 6520 6d61 7472 6978 es if the matrix │ │ │ │ -0001b8f0: 2068 6173 2072 616e 6b20 6174 0a20 2020 has rank at. │ │ │ │ -0001b900: 206c 6561 7374 2061 206e 756d 6265 720a least a number. │ │ │ │ -0001b910: 2020 2a20 2a6e 6f74 6520 6765 7453 7562 * *note getSub │ │ │ │ -0001b920: 6d61 7472 6978 4f66 5261 6e6b 3a20 6765 matrixOfRank: ge │ │ │ │ -0001b930: 7453 7562 6d61 7472 6978 4f66 5261 6e6b tSubmatrixOfRank │ │ │ │ -0001b940: 2c20 2d2d 2074 7269 6573 2074 6f20 6669 , -- tries to fi │ │ │ │ -0001b950: 6e64 2061 2073 7562 6d61 7472 6978 0a20 nd a submatrix. │ │ │ │ -0001b960: 2020 206f 6620 7468 6520 6769 7665 6e20 of the given │ │ │ │ -0001b970: 7261 6e6b 0a0a 4675 6e63 7469 6f6e 7320 rank..Functions │ │ │ │ -0001b980: 7769 7468 206f 7074 696f 6e61 6c20 6172 with optional ar │ │ │ │ -0001b990: 6775 6d65 6e74 206e 616d 6564 204d 6178 gument named Max │ │ │ │ -0001b9a0: 4d69 6e6f 7273 3a0a 3d3d 3d3d 3d3d 3d3d Minors:.======== │ │ │ │ -0001b9b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001b9c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001b9d0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -0001b9e0: 6765 7453 7562 6d61 7472 6978 4f66 5261 getSubmatrixOfRa │ │ │ │ -0001b9f0: 6e6b 282e 2e2e 2c4d 6178 4d69 6e6f 7273 nk(...,MaxMinors │ │ │ │ -0001ba00: 3d3e 2e2e 2e29 220a 2020 2a20 2269 7352 =>...)". * "isR │ │ │ │ -0001ba10: 616e 6b41 744c 6561 7374 282e 2e2e 2c4d ankAtLeast(...,M │ │ │ │ -0001ba20: 6178 4d69 6e6f 7273 3d3e 2e2e 2e29 220a axMinors=>...)". │ │ │ │ -0001ba30: 2020 2a20 2270 726f 6a44 696d 282e 2e2e * "projDim(... │ │ │ │ -0001ba40: 2c4d 6178 4d69 6e6f 7273 3d3e 2e2e 2e29 ,MaxMinors=>...) │ │ │ │ -0001ba50: 220a 2020 2a20 2272 6567 756c 6172 496e ". * "regularIn │ │ │ │ -0001ba60: 436f 6469 6d65 6e73 696f 6e28 2e2e 2e2c Codimension(..., │ │ │ │ -0001ba70: 4d61 784d 696e 6f72 733d 3e2e 2e2e 2922 MaxMinors=>...)" │ │ │ │ -0001ba80: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -0001ba90: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -0001baa0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -0001bab0: 6563 7420 2a6e 6f74 6520 4d61 784d 696e ect *note MaxMin │ │ │ │ -0001bac0: 6f72 733a 204d 6178 4d69 6e6f 7273 2c20 ors: MaxMinors, │ │ │ │ -0001bad0: 6973 2061 202a 6e6f 7465 2073 796d 626f is a *note symbo │ │ │ │ -0001bae0: 6c3a 0a28 4d61 6361 756c 6179 3244 6f63 l:.(Macaulay2Doc │ │ │ │ -0001baf0: 2953 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d )Symbol,...----- │ │ │ │ -0001bb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bb40: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -0001bb50: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -0001bb60: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -0001bb70: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -0001bb80: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -0001bb90: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -0001bba0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -0001bbb0: 732f 4661 7374 4d69 6e6f 7273 2e0a 6d32 s/FastMinors..m2 │ │ │ │ -0001bbc0: 3a32 3133 393a 302e 0a1f 0a46 696c 653a :2139:0....File: │ │ │ │ -0001bbd0: 2046 6173 744d 696e 6f72 732e 696e 666f FastMinors.info │ │ │ │ -0001bbe0: 2c20 4e6f 6465 3a20 4d69 6e44 696d 656e , Node: MinDimen │ │ │ │ -0001bbf0: 7369 6f6e 2c20 4e65 7874 3a20 4d6f 6475 sion, Next: Modu │ │ │ │ -0001bc00: 6c75 732c 2050 7265 763a 204d 6178 4d69 lus, Prev: MaxMi │ │ │ │ -0001bc10: 6e6f 7273 2c20 5570 3a20 546f 700a 0a4d nors, Up: Top..M │ │ │ │ -0001bc20: 696e 4469 6d65 6e73 696f 6e20 2d2d 2061 inDimension -- a │ │ │ │ -0001bc30: 6e20 6f70 7469 6f6e 2066 6f72 2070 726f n option for pro │ │ │ │ -0001bc40: 6a44 696d 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a jDim.*********** │ │ │ │ -0001bc50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001bc60: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 **********..Desc │ │ │ │ -0001bc70: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -0001bc80: 3d3d 3d0a 0a54 6869 7320 6f70 7469 6f6e ===..This option │ │ │ │ -0001bc90: 2069 7320 7573 6564 2074 6f20 7465 6c6c is used to tell │ │ │ │ -0001bca0: 2074 6865 2066 756e 6374 696f 6e20 7072 the function pr │ │ │ │ -0001bcb0: 6f6a 4469 6d20 6e6f 7420 746f 206c 6f6f ojDim not to loo │ │ │ │ -0001bcc0: 6b20 666f 7220 7072 6f6a 6563 7469 7665 k for projective │ │ │ │ -0001bcd0: 0a64 696d 656e 7369 6f6e 2062 656c 6f77 .dimension below │ │ │ │ -0001bce0: 2074 6865 206f 7074 696f 6e20 7661 6c75 the option valu │ │ │ │ -0001bcf0: 652e 0a0a 5365 6520 616c 736f 0a3d 3d3d e...See also.=== │ │ │ │ -0001bd00: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -0001bd10: 2070 726f 6a44 696d 3a20 7072 6f6a 4469 projDim: projDi │ │ │ │ -0001bd20: 6d2c 202d 2d20 6669 6e64 7320 616e 2075 m, -- finds an u │ │ │ │ -0001bd30: 7070 6572 2062 6f75 6e64 2066 6f72 2074 pper bound for t │ │ │ │ -0001bd40: 6865 2070 726f 6a65 6374 6976 650a 2020 he projective. │ │ │ │ -0001bd50: 2020 6469 6d65 6e73 696f 6e20 6f66 2061 dimension of a │ │ │ │ -0001bd60: 206d 6f64 756c 650a 0a46 756e 6374 696f module..Functio │ │ │ │ -0001bd70: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ -0001bd80: 2061 7267 756d 656e 7420 6e61 6d65 6420 argument named │ │ │ │ -0001bd90: 4d69 6e44 696d 656e 7369 6f6e 3a0a 3d3d MinDimension:.== │ │ │ │ -0001bda0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001bdb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001bdc0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001bdd0: 3d3d 0a0a 2020 2a20 2270 726f 6a44 696d ==.. * "projDim │ │ │ │ -0001bde0: 282e 2e2e 2c4d 696e 4469 6d65 6e73 696f (...,MinDimensio │ │ │ │ -0001bdf0: 6e3d 3e2e 2e2e 2922 202d 2d20 7365 6520 n=>...)" -- see │ │ │ │ -0001be00: 2a6e 6f74 6520 7072 6f6a 4469 6d3a 2070 *note projDim: p │ │ │ │ -0001be10: 726f 6a44 696d 2c20 2d2d 2066 696e 6473 rojDim, -- finds │ │ │ │ -0001be20: 2061 6e0a 2020 2020 7570 7065 7220 626f an. upper bo │ │ │ │ -0001be30: 756e 6420 666f 7220 7468 6520 7072 6f6a und for the proj │ │ │ │ -0001be40: 6563 7469 7665 2064 696d 656e 7369 6f6e ective dimension │ │ │ │ -0001be50: 206f 6620 6120 6d6f 6475 6c65 0a0a 466f of a module..Fo │ │ │ │ -0001be60: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -0001be70: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0001be80: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -0001be90: 2a6e 6f74 6520 4d69 6e44 696d 656e 7369 *note MinDimensi │ │ │ │ -0001bea0: 6f6e 3a20 4d69 6e44 696d 656e 7369 6f6e on: MinDimension │ │ │ │ -0001beb0: 2c20 6973 2061 202a 6e6f 7465 2073 796d , is a *note sym │ │ │ │ -0001bec0: 626f 6c3a 0a28 4d61 6361 756c 6179 3244 bol:.(Macaulay2D │ │ │ │ -0001bed0: 6f63 2953 796d 626f 6c2c 2e0a 0a2d 2d2d oc)Symbol,...--- │ │ │ │ -0001bee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -0001bf30: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -0001bf40: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -0001bf50: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -0001bf60: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -0001bf70: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -0001bf80: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -0001bf90: 6765 732f 4661 7374 4d69 6e6f 7273 2e0a ges/FastMinors.. │ │ │ │ -0001bfa0: 6d32 3a32 3039 323a 302e 0a1f 0a46 696c m2:2092:0....Fil │ │ │ │ -0001bfb0: 653a 2046 6173 744d 696e 6f72 732e 696e e: FastMinors.in │ │ │ │ -0001bfc0: 666f 2c20 4e6f 6465 3a20 4d6f 6475 6c75 fo, Node: Modulu │ │ │ │ -0001bfd0: 732c 204e 6578 743a 2050 6f69 6e74 4f70 s, Next: PointOp │ │ │ │ -0001bfe0: 7469 6f6e 732c 2050 7265 763a 204d 696e tions, Prev: Min │ │ │ │ -0001bff0: 4469 6d65 6e73 696f 6e2c 2055 703a 2054 Dimension, Up: T │ │ │ │ -0001c000: 6f70 0a0a 4d6f 6475 6c75 7320 2d2d 2061 op..Modulus -- a │ │ │ │ -0001c010: 6e20 6f70 7469 6f6e 2066 6f72 2072 6567 n option for reg │ │ │ │ -0001c020: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0001c030: 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a n.************** │ │ │ │ -0001c040: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001c050: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -0001c060: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -0001c070: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 206f ========..This o │ │ │ │ -0001c080: 7074 696f 6e20 6973 2075 7365 6420 746f ption is used to │ │ │ │ -0001c090: 2074 656c 6c20 7468 6520 6675 6e63 7469 tell the functi │ │ │ │ -0001c0a0: 6f6e 2074 6f20 646f 2074 6865 2063 6f6d on to do the com │ │ │ │ -0001c0b0: 7075 7461 7469 6f6e 206d 6f64 756c 6f20 putation modulo │ │ │ │ -0001c0c0: 6120 7072 696d 650a 702e 0a0a 5365 6520 a prime.p...See │ │ │ │ -0001c0d0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -0001c0e0: 202a 202a 6e6f 7465 2072 6567 756c 6172 * *note regular │ │ │ │ -0001c0f0: 496e 436f 6469 6d65 6e73 696f 6e3a 2072 InCodimension: r │ │ │ │ -0001c100: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0001c110: 696f 6e2c 202d 2d20 6174 7465 6d70 7473 ion, -- attempts │ │ │ │ -0001c120: 2074 6f20 7368 6f77 2074 6861 740a 2020 to show that. │ │ │ │ -0001c130: 2020 7468 6520 7269 6e67 2069 7320 7265 the ring is re │ │ │ │ -0001c140: 6775 6c61 7220 696e 2063 6f64 696d 656e gular in codimen │ │ │ │ -0001c150: 7369 6f6e 206e 0a0a 4675 6e63 7469 6f6e sion n..Function │ │ │ │ -0001c160: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ -0001c170: 6172 6775 6d65 6e74 206e 616d 6564 204d argument named M │ │ │ │ -0001c180: 6f64 756c 7573 3a0a 3d3d 3d3d 3d3d 3d3d odulus:.======== │ │ │ │ -0001c190: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001c1a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001c1b0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7265 =======.. * "re │ │ │ │ -0001c1c0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -0001c1d0: 6f6e 282e 2e2e 2c4d 6f64 756c 7573 3d3e on(...,Modulus=> │ │ │ │ -0001c1e0: 2e2e 2e29 2220 2d2d 2073 6565 202a 6e6f ...)" -- see *no │ │ │ │ -0001c1f0: 7465 2072 6567 756c 6172 496e 436f 6469 te regularInCodi │ │ │ │ -0001c200: 6d65 6e73 696f 6e3a 0a20 2020 2072 6567 mension:. reg │ │ │ │ -0001c210: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0001c220: 6e2c 202d 2d20 6174 7465 6d70 7473 2074 n, -- attempts t │ │ │ │ -0001c230: 6f20 7368 6f77 2074 6861 7420 7468 6520 o show that the │ │ │ │ -0001c240: 7269 6e67 2069 7320 7265 6775 6c61 7220 ring is regular │ │ │ │ -0001c250: 696e 0a20 2020 2063 6f64 696d 656e 7369 in. codimensi │ │ │ │ -0001c260: 6f6e 206e 0a0a 466f 7220 7468 6520 7072 on n..For the pr │ │ │ │ -0001c270: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -0001c280: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -0001c290: 206f 626a 6563 7420 2a6e 6f74 6520 4d6f object *note Mo │ │ │ │ -0001c2a0: 6475 6c75 733a 204d 6f64 756c 7573 2c20 dulus: Modulus, │ │ │ │ -0001c2b0: 6973 2061 202a 6e6f 7465 2073 796d 626f is a *note symbo │ │ │ │ -0001c2c0: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ -0001c2d0: 2953 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d )Symbol,...----- │ │ │ │ -0001c2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c320: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -0001c330: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -0001c340: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -0001c350: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -0001c360: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -0001c370: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -0001c380: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -0001c390: 732f 4661 7374 4d69 6e6f 7273 2e0a 6d32 s/FastMinors..m2 │ │ │ │ -0001c3a0: 3a32 3130 343a 302e 0a1f 0a46 696c 653a :2104:0....File: │ │ │ │ -0001c3b0: 2046 6173 744d 696e 6f72 732e 696e 666f FastMinors.info │ │ │ │ -0001c3c0: 2c20 4e6f 6465 3a20 506f 696e 744f 7074 , Node: PointOpt │ │ │ │ -0001c3d0: 696f 6e73 2c20 4e65 7874 3a20 7072 6f6a ions, Next: proj │ │ │ │ -0001c3e0: 4469 6d2c 2050 7265 763a 204d 6f64 756c Dim, Prev: Modul │ │ │ │ -0001c3f0: 7573 2c20 5570 3a20 546f 700a 0a50 6f69 us, Up: Top..Poi │ │ │ │ -0001c400: 6e74 4f70 7469 6f6e 7320 2d2d 206f 7074 ntOptions -- opt │ │ │ │ -0001c410: 696f 6e73 2074 6f20 7061 7373 2074 6f20 ions to pass to │ │ │ │ -0001c420: 6675 6e63 7469 6f6e 7320 696e 2074 6865 functions in the │ │ │ │ -0001c430: 2070 6163 6b61 6765 2052 616e 646f 6d50 package RandomP │ │ │ │ -0001c440: 6f69 6e74 730a 2a2a 2a2a 2a2a 2a2a 2a2a oints.********** │ │ │ │ -0001c450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001c460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001c470: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001c480: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -0001c490: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -0001c4a0: 3d3d 3d3d 3d3d 3d0a 0a50 6f69 6e74 4f70 =======..PointOp │ │ │ │ -0001c4b0: 7469 6f6e 7320 6973 2061 6e20 6f70 7469 tions is an opti │ │ │ │ -0001c4c0: 6f6e 2069 6e20 7661 7269 6f75 7320 6675 on in various fu │ │ │ │ -0001c4d0: 6e63 7469 6f6e 7320 696e 2074 6869 7320 nctions in this │ │ │ │ -0001c4e0: 7061 636b 6167 652c 2077 6869 6368 2063 package, which c │ │ │ │ -0001c4f0: 616e 2073 746f 7265 0a6f 7074 696f 6e73 an store.options │ │ │ │ -0001c500: 2074 6f20 6265 2070 6173 7365 6420 746f to be passed to │ │ │ │ -0001c510: 2074 6865 2066 756e 6374 696f 6e20 6669 the function fi │ │ │ │ -0001c520: 6e64 414e 6f6e 5a65 726f 4d69 6e6f 7220 ndANonZeroMinor │ │ │ │ -0001c530: 616e 6420 6f74 6865 7220 6675 6e63 7469 and other functi │ │ │ │ -0001c540: 6f6e 7320 696e 0a52 616e 646f 6d50 6f69 ons in.RandomPoi │ │ │ │ -0001c550: 6e74 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d nts...+--------- │ │ │ │ -0001c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c5a0: 2d2d 2d2d 2b0a 7c69 3120 3a20 286f 7074 ----+.|i1 : (opt │ │ │ │ -0001c5b0: 696f 6e73 2072 6567 756c 6172 496e 436f ions regularInCo │ │ │ │ -0001c5c0: 6469 6d65 6e73 696f 6e29 2350 6f69 6e74 dimension)#Point │ │ │ │ -0001c5d0: 4f70 7469 6f6e 7320 2020 2020 2020 2020 Options │ │ │ │ -0001c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c5f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ab90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aba0: 2020 207c 0a7c 6f35 203d 2066 616c 7365 |.|o5 = false │ │ │ │ +0001abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001abc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001abd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001abe0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001abf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ac00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ac10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001ac20: 0a0a 5468 6520 6f70 7469 6f6e 2054 6872 ..The option Thr │ │ │ │ +0001ac30: 6561 6473 2063 616e 2062 6520 7573 6564 eads can be used │ │ │ │ +0001ac40: 2061 6c6c 6f77 2074 6865 2066 756e 6374 allow the funct │ │ │ │ +0001ac50: 696f 6e20 7573 6520 6d75 6c74 6970 6c65 ion use multiple │ │ │ │ +0001ac60: 2074 6872 6561 6473 206f 660a 6578 6563 threads of.exec │ │ │ │ +0001ac70: 7574 696f 6e2e 2020 4966 2061 6c6c 6f77 ution. If allow │ │ │ │ +0001ac80: 6162 6c65 5468 7265 6164 7320 6973 2061 ableThreads is a │ │ │ │ +0001ac90: 626f 7665 2032 2061 6e64 2054 6872 6561 bove 2 and Threa │ │ │ │ +0001aca0: 6473 2069 7320 7365 7420 6162 6f76 6520 ds is set above │ │ │ │ +0001acb0: 312c 2074 6865 6e0a 7468 6973 2066 756e 1, then.this fun │ │ │ │ +0001acc0: 6374 696f 6e20 7769 6c6c 2074 7279 2074 ction will try t │ │ │ │ +0001acd0: 6f20 7369 6d75 6c74 616e 656f 7573 6c79 o simultaneously │ │ │ │ +0001ace0: 2063 6f6d 7075 7465 2074 6865 2072 616e compute the ran │ │ │ │ +0001acf0: 6b20 6f66 2074 6865 206d 6174 7269 7820 k of the matrix │ │ │ │ +0001ad00: 7768 696c 650a 6c6f 6f6b 696e 6720 666f while.looking fo │ │ │ │ +0001ad10: 7220 6120 7375 626d 6174 7269 7820 6f66 r a submatrix of │ │ │ │ +0001ad20: 2061 2063 6572 7461 696e 2072 616e 6b2e a certain rank. │ │ │ │ +0001ad30: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +0001ad40: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2067 ===.. * *note g │ │ │ │ +0001ad50: 6574 5375 626d 6174 7269 784f 6652 616e etSubmatrixOfRan │ │ │ │ +0001ad60: 6b3a 2067 6574 5375 626d 6174 7269 784f k: getSubmatrixO │ │ │ │ +0001ad70: 6652 616e 6b2c 202d 2d20 7472 6965 7320 fRank, -- tries │ │ │ │ +0001ad80: 746f 2066 696e 6420 6120 7375 626d 6174 to find a submat │ │ │ │ +0001ad90: 7269 780a 2020 2020 6f66 2074 6865 2067 rix. of the g │ │ │ │ +0001ada0: 6976 656e 2072 616e 6b0a 2020 2a20 2a6e iven rank. * *n │ │ │ │ +0001adb0: 6f74 6520 6973 5261 6e6b 4174 4c65 6173 ote isRankAtLeas │ │ │ │ +0001adc0: 7428 2e2e 2e2c 5374 7261 7465 6779 3d3e t(...,Strategy=> │ │ │ │ +0001add0: 2e2e 2e29 3a20 5374 7261 7465 6779 4465 ...): StrategyDe │ │ │ │ +0001ade0: 6661 756c 742c 202d 2d20 7374 7261 7465 fault, -- strate │ │ │ │ +0001adf0: 6769 6573 2066 6f72 0a20 2020 2063 686f gies for. cho │ │ │ │ +0001ae00: 6f73 696e 6720 7375 626d 6174 7269 6365 osing submatrice │ │ │ │ +0001ae10: 730a 0a57 6179 7320 746f 2075 7365 2069 s..Ways to use i │ │ │ │ +0001ae20: 7352 616e 6b41 744c 6561 7374 3a0a 3d3d sRankAtLeast:.== │ │ │ │ +0001ae30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001ae40: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2269 ========.. * "i │ │ │ │ +0001ae50: 7352 616e 6b41 744c 6561 7374 285a 5a2c sRankAtLeast(ZZ, │ │ │ │ +0001ae60: 4d61 7472 6978 2922 0a0a 466f 7220 7468 Matrix)"..For th │ │ │ │ +0001ae70: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +0001ae80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0001ae90: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +0001aea0: 6520 6973 5261 6e6b 4174 4c65 6173 743a e isRankAtLeast: │ │ │ │ +0001aeb0: 2069 7352 616e 6b41 744c 6561 7374 2c20 isRankAtLeast, │ │ │ │ +0001aec0: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ +0001aed0: 6420 6675 6e63 7469 6f6e 2077 6974 680a d function with. │ │ │ │ +0001aee0: 6f70 7469 6f6e 733a 2028 4d61 6361 756c options: (Macaul │ │ │ │ +0001aef0: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ +0001af00: 6374 696f 6e57 6974 684f 7074 696f 6e73 ctionWithOptions │ │ │ │ +0001af10: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ +0001af20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001af30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001af40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001af50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001af60: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +0001af70: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +0001af80: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +0001af90: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +0001afa0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +0001afb0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +0001afc0: 322f 7061 636b 6167 6573 2f46 6173 744d 2/packages/FastM │ │ │ │ +0001afd0: 696e 6f72 732e 0a6d 323a 3137 3331 3a30 inors..m2:1731:0 │ │ │ │ +0001afe0: 2e0a 1f0a 4669 6c65 3a20 4661 7374 4d69 ....File: FastMi │ │ │ │ +0001aff0: 6e6f 7273 2e69 6e66 6f2c 204e 6f64 653a nors.info, Node: │ │ │ │ +0001b000: 2069 7352 616e 6b41 744c 6561 7374 5f6c isRankAtLeast_l │ │ │ │ +0001b010: 705f 7064 5f70 645f 7064 5f63 6d54 6872 p_pd_pd_pd_cmThr │ │ │ │ +0001b020: 6561 6473 3d3e 5f70 645f 7064 5f70 645f eads=>_pd_pd_pd_ │ │ │ │ +0001b030: 7270 2c20 4e65 7874 3a20 4d61 784d 696e rp, Next: MaxMin │ │ │ │ +0001b040: 6f72 732c 2050 7265 763a 2069 7352 616e ors, Prev: isRan │ │ │ │ +0001b050: 6b41 744c 6561 7374 2c20 5570 3a20 546f kAtLeast, Up: To │ │ │ │ +0001b060: 700a 0a69 7352 616e 6b41 744c 6561 7374 p..isRankAtLeast │ │ │ │ +0001b070: 282e 2e2e 2c54 6872 6561 6473 3d3e 2e2e (...,Threads=>.. │ │ │ │ +0001b080: 2e29 202d 2d20 616e 206f 7074 696f 6e20 .) -- an option │ │ │ │ +0001b090: 666f 7220 7661 7269 6f75 7320 6675 6e63 for various func │ │ │ │ +0001b0a0: 7469 6f6e 730a 2a2a 2a2a 2a2a 2a2a 2a2a tions.********** │ │ │ │ +0001b0b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001b0c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001b0d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001b0e0: 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 ********..Descri │ │ │ │ +0001b0f0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +0001b100: 3d0a 0a49 6e63 7265 6173 696e 6720 7468 =..Increasing th │ │ │ │ +0001b110: 6973 206f 7074 696f 6e20 6d61 7920 7465 is option may te │ │ │ │ +0001b120: 6c6c 2076 6172 696f 7573 2066 756e 6374 ll various funct │ │ │ │ +0001b130: 696f 6e73 2074 6f20 6d75 6c74 6974 6872 ions to multithr │ │ │ │ +0001b140: 6561 6420 7468 6569 720a 6f70 6572 6174 ead their.operat │ │ │ │ +0001b150: 696f 6e73 2e20 2059 6f75 206d 6179 2061 ions. You may a │ │ │ │ +0001b160: 6c73 6f20 7761 6e74 2074 6f20 696e 6372 lso want to incr │ │ │ │ +0001b170: 6561 7365 2061 6c6c 6f77 6162 6c65 5468 ease allowableTh │ │ │ │ +0001b180: 7265 6164 732e 0a0a 5365 6520 616c 736f reads...See also │ │ │ │ +0001b190: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +0001b1a0: 6e6f 7465 2069 7352 616e 6b41 744c 6561 note isRankAtLea │ │ │ │ +0001b1b0: 7374 3a20 6973 5261 6e6b 4174 4c65 6173 st: isRankAtLeas │ │ │ │ +0001b1c0: 742c 202d 2d20 6465 7465 726d 696e 6573 t, -- determines │ │ │ │ +0001b1d0: 2069 6620 7468 6520 6d61 7472 6978 2068 if the matrix h │ │ │ │ +0001b1e0: 6173 2072 616e 6b20 6174 0a20 2020 206c as rank at. l │ │ │ │ +0001b1f0: 6561 7374 2061 206e 756d 6265 720a 2020 east a number. │ │ │ │ +0001b200: 2a20 2a6e 6f74 6520 6765 7453 7562 6d61 * *note getSubma │ │ │ │ +0001b210: 7472 6978 4f66 5261 6e6b 3a20 6765 7453 trixOfRank: getS │ │ │ │ +0001b220: 7562 6d61 7472 6978 4f66 5261 6e6b 2c20 ubmatrixOfRank, │ │ │ │ +0001b230: 2d2d 2074 7269 6573 2074 6f20 6669 6e64 -- tries to find │ │ │ │ +0001b240: 2061 2073 7562 6d61 7472 6978 0a20 2020 a submatrix. │ │ │ │ +0001b250: 206f 6620 7468 6520 6769 7665 6e20 7261 of the given ra │ │ │ │ +0001b260: 6e6b 0a20 202a 202a 6e6f 7465 2072 6563 nk. * *note rec │ │ │ │ +0001b270: 7572 7369 7665 4d69 6e6f 7273 3a20 7265 ursiveMinors: re │ │ │ │ +0001b280: 6375 7273 6976 654d 696e 6f72 732c 202d cursiveMinors, - │ │ │ │ +0001b290: 2d20 7573 6573 2061 2072 6563 7572 7369 - uses a recursi │ │ │ │ +0001b2a0: 7665 2063 6f66 6163 746f 720a 2020 2020 ve cofactor. │ │ │ │ +0001b2b0: 616c 676f 7269 7468 6d20 746f 2063 6f6d algorithm to com │ │ │ │ +0001b2c0: 7075 7465 2074 6865 2069 6465 616c 206f pute the ideal o │ │ │ │ +0001b2d0: 6620 6d69 6e6f 7273 206f 6620 6120 6d61 f minors of a ma │ │ │ │ +0001b2e0: 7472 6978 0a0a 4675 6e63 7469 6f6e 7320 trix..Functions │ │ │ │ +0001b2f0: 7769 7468 206f 7074 696f 6e61 6c20 6172 with optional ar │ │ │ │ +0001b300: 6775 6d65 6e74 206e 616d 6564 2054 6872 gument named Thr │ │ │ │ +0001b310: 6561 6473 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d eads:.========== │ │ │ │ +0001b320: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001b330: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001b340: 3d3d 3d3d 3d0a 0a20 202a 2022 6765 7453 =====.. * "getS │ │ │ │ +0001b350: 7562 6d61 7472 6978 4f66 5261 6e6b 282e ubmatrixOfRank(. │ │ │ │ +0001b360: 2e2e 2c54 6872 6561 6473 3d3e 2e2e 2e29 ..,Threads=>...) │ │ │ │ +0001b370: 220a 2020 2a20 2a6e 6f74 6520 6973 5261 ". * *note isRa │ │ │ │ +0001b380: 6e6b 4174 4c65 6173 7428 2e2e 2e2c 5468 nkAtLeast(...,Th │ │ │ │ +0001b390: 7265 6164 733d 3e2e 2e2e 293a 0a20 2020 reads=>...):. │ │ │ │ +0001b3a0: 2069 7352 616e 6b41 744c 6561 7374 5f6c isRankAtLeast_l │ │ │ │ +0001b3b0: 705f 7064 5f70 645f 7064 5f63 6d54 6872 p_pd_pd_pd_cmThr │ │ │ │ +0001b3c0: 6561 6473 3d3e 5f70 645f 7064 5f70 645f eads=>_pd_pd_pd_ │ │ │ │ +0001b3d0: 7270 2c20 2d2d 2061 6e20 6f70 7469 6f6e rp, -- an option │ │ │ │ +0001b3e0: 2066 6f72 2076 6172 696f 7573 0a20 2020 for various. │ │ │ │ +0001b3f0: 2066 756e 6374 696f 6e73 0a20 202a 2022 functions. * " │ │ │ │ +0001b400: 7265 6375 7273 6976 654d 696e 6f72 7328 recursiveMinors( │ │ │ │ +0001b410: 2e2e 2e2c 5468 7265 6164 733d 3e2e 2e2e ...,Threads=>... │ │ │ │ +0001b420: 2922 0a0a 4675 7274 6865 7220 696e 666f )"..Further info │ │ │ │ +0001b430: 726d 6174 696f 6e0a 3d3d 3d3d 3d3d 3d3d rmation.======== │ │ │ │ +0001b440: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +0001b450: 2044 6566 6175 6c74 2076 616c 7565 3a20 Default value: │ │ │ │ +0001b460: 310a 2020 2a20 4675 6e63 7469 6f6e 3a20 1. * Function: │ │ │ │ +0001b470: 2a6e 6f74 6520 6973 5261 6e6b 4174 4c65 *note isRankAtLe │ │ │ │ +0001b480: 6173 743a 2069 7352 616e 6b41 744c 6561 ast: isRankAtLea │ │ │ │ +0001b490: 7374 2c20 2d2d 2064 6574 6572 6d69 6e65 st, -- determine │ │ │ │ +0001b4a0: 7320 6966 2074 6865 206d 6174 7269 780a s if the matrix. │ │ │ │ +0001b4b0: 2020 2020 6861 7320 7261 6e6b 2061 7420 has rank at │ │ │ │ +0001b4c0: 6c65 6173 7420 6120 6e75 6d62 6572 0a20 least a number. │ │ │ │ +0001b4d0: 202a 204f 7074 696f 6e20 6b65 793a 202a * Option key: * │ │ │ │ +0001b4e0: 6e6f 7465 2054 6872 6561 6473 3a20 284d note Threads: (M │ │ │ │ +0001b4f0: 6163 6175 6c61 7932 446f 6329 5468 7265 acaulay2Doc)Thre │ │ │ │ +0001b500: 6164 732c 202d 2d20 616e 206f 7074 696f ads, -- an optio │ │ │ │ +0001b510: 6e61 6c20 6172 6775 6d65 6e74 0a2d 2d2d nal argument.--- │ │ │ │ +0001b520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +0001b570: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +0001b580: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +0001b590: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +0001b5a0: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +0001b5b0: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +0001b5c0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +0001b5d0: 6765 732f 4661 7374 4d69 6e6f 7273 2e0a ges/FastMinors.. │ │ │ │ +0001b5e0: 6d32 3a32 3132 303a 302e 0a1f 0a46 696c m2:2120:0....Fil │ │ │ │ +0001b5f0: 653a 2046 6173 744d 696e 6f72 732e 696e e: FastMinors.in │ │ │ │ +0001b600: 666f 2c20 4e6f 6465 3a20 4d61 784d 696e fo, Node: MaxMin │ │ │ │ +0001b610: 6f72 732c 204e 6578 743a 204d 696e 4469 ors, Next: MinDi │ │ │ │ +0001b620: 6d65 6e73 696f 6e2c 2050 7265 763a 2069 mension, Prev: i │ │ │ │ +0001b630: 7352 616e 6b41 744c 6561 7374 5f6c 705f sRankAtLeast_lp_ │ │ │ │ +0001b640: 7064 5f70 645f 7064 5f63 6d54 6872 6561 pd_pd_pd_cmThrea │ │ │ │ +0001b650: 6473 3d3e 5f70 645f 7064 5f70 645f 7270 ds=>_pd_pd_pd_rp │ │ │ │ +0001b660: 2c20 5570 3a20 546f 700a 0a4d 6178 4d69 , Up: Top..MaxMi │ │ │ │ +0001b670: 6e6f 7273 202d 2d20 616e 206f 7074 696f nors -- an optio │ │ │ │ +0001b680: 6e20 746f 2063 6f6e 7472 6f6c 2064 6570 n to control dep │ │ │ │ +0001b690: 7468 206f 6620 7365 6172 6368 0a2a 2a2a th of search.*** │ │ │ │ +0001b6a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001b6b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001b6c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0001b6d0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0001b6e0: 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 6f70 =======..This op │ │ │ │ +0001b6f0: 7469 6f6e 2063 6f6e 7472 6f6c 7320 686f tion controls ho │ │ │ │ +0001b700: 7720 6d61 6e79 206d 696e 6f72 7320 7661 w many minors va │ │ │ │ +0001b710: 7269 6f75 7320 6675 6e63 7469 6f6e 7320 rious functions │ │ │ │ +0001b720: 636f 6e73 6964 6572 2e20 2049 6e63 7265 consider. Incre │ │ │ │ +0001b730: 6173 696e 6720 6974 0a77 696c 6c20 6d61 asing it.will ma │ │ │ │ +0001b740: 6b65 2063 6572 7461 696e 2066 756e 6374 ke certain funct │ │ │ │ +0001b750: 696f 6e73 2073 6561 7263 6820 6c6f 6e67 ions search long │ │ │ │ +0001b760: 6572 2c20 6275 7420 6d61 7920 6d61 6b65 er, but may make │ │ │ │ +0001b770: 2074 6865 6d20 6769 7665 206d 6f72 6520 them give more │ │ │ │ +0001b780: 7573 6566 756c 0a6f 7574 7075 7473 2e20 useful.outputs. │ │ │ │ +0001b790: 2054 6865 2066 756e 6374 696f 6e73 2070 The functions p │ │ │ │ +0001b7a0: 726f 6a44 696d 2061 6e64 2072 6567 756c rojDim and regul │ │ │ │ +0001b7b0: 6172 496e 436f 6469 6d65 6e73 696f 6e20 arInCodimension │ │ │ │ +0001b7c0: 6361 6e20 616c 736f 2074 616b 6520 696e can also take in │ │ │ │ +0001b7d0: 206d 6f72 650a 636f 6d70 6c69 6361 7465 more.complicate │ │ │ │ +0001b7e0: 6420 696e 7075 7473 2e20 2053 6565 2074 d inputs. See t │ │ │ │ +0001b7f0: 6865 6972 2064 6f63 756d 656e 7461 7469 heir documentati │ │ │ │ +0001b800: 6f6e 2066 6f72 2064 6574 6169 6c73 2e0a on for details.. │ │ │ │ +0001b810: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +0001b820: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 7265 ==.. * *note re │ │ │ │ +0001b830: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +0001b840: 6f6e 3a20 7265 6775 6c61 7249 6e43 6f64 on: regularInCod │ │ │ │ +0001b850: 696d 656e 7369 6f6e 2c20 2d2d 2061 7474 imension, -- att │ │ │ │ +0001b860: 656d 7074 7320 746f 2073 686f 7720 7468 empts to show th │ │ │ │ +0001b870: 6174 0a20 2020 2074 6865 2072 696e 6720 at. the ring │ │ │ │ +0001b880: 6973 2072 6567 756c 6172 2069 6e20 636f is regular in co │ │ │ │ +0001b890: 6469 6d65 6e73 696f 6e20 6e0a 2020 2a20 dimension n. * │ │ │ │ +0001b8a0: 2a6e 6f74 6520 7072 6f6a 4469 6d3a 2070 *note projDim: p │ │ │ │ +0001b8b0: 726f 6a44 696d 2c20 2d2d 2066 696e 6473 rojDim, -- finds │ │ │ │ +0001b8c0: 2061 6e20 7570 7065 7220 626f 756e 6420 an upper bound │ │ │ │ +0001b8d0: 666f 7220 7468 6520 7072 6f6a 6563 7469 for the projecti │ │ │ │ +0001b8e0: 7665 0a20 2020 2064 696d 656e 7369 6f6e ve. dimension │ │ │ │ +0001b8f0: 206f 6620 6120 6d6f 6475 6c65 0a20 202a of a module. * │ │ │ │ +0001b900: 202a 6e6f 7465 2069 7352 616e 6b41 744c *note isRankAtL │ │ │ │ +0001b910: 6561 7374 3a20 6973 5261 6e6b 4174 4c65 east: isRankAtLe │ │ │ │ +0001b920: 6173 742c 202d 2d20 6465 7465 726d 696e ast, -- determin │ │ │ │ +0001b930: 6573 2069 6620 7468 6520 6d61 7472 6978 es if the matrix │ │ │ │ +0001b940: 2068 6173 2072 616e 6b20 6174 0a20 2020 has rank at. │ │ │ │ +0001b950: 206c 6561 7374 2061 206e 756d 6265 720a least a number. │ │ │ │ +0001b960: 2020 2a20 2a6e 6f74 6520 6765 7453 7562 * *note getSub │ │ │ │ +0001b970: 6d61 7472 6978 4f66 5261 6e6b 3a20 6765 matrixOfRank: ge │ │ │ │ +0001b980: 7453 7562 6d61 7472 6978 4f66 5261 6e6b tSubmatrixOfRank │ │ │ │ +0001b990: 2c20 2d2d 2074 7269 6573 2074 6f20 6669 , -- tries to fi │ │ │ │ +0001b9a0: 6e64 2061 2073 7562 6d61 7472 6978 0a20 nd a submatrix. │ │ │ │ +0001b9b0: 2020 206f 6620 7468 6520 6769 7665 6e20 of the given │ │ │ │ +0001b9c0: 7261 6e6b 0a0a 4675 6e63 7469 6f6e 7320 rank..Functions │ │ │ │ +0001b9d0: 7769 7468 206f 7074 696f 6e61 6c20 6172 with optional ar │ │ │ │ +0001b9e0: 6775 6d65 6e74 206e 616d 6564 204d 6178 gument named Max │ │ │ │ +0001b9f0: 4d69 6e6f 7273 3a0a 3d3d 3d3d 3d3d 3d3d Minors:.======== │ │ │ │ +0001ba00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001ba10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001ba20: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ +0001ba30: 6765 7453 7562 6d61 7472 6978 4f66 5261 getSubmatrixOfRa │ │ │ │ +0001ba40: 6e6b 282e 2e2e 2c4d 6178 4d69 6e6f 7273 nk(...,MaxMinors │ │ │ │ +0001ba50: 3d3e 2e2e 2e29 220a 2020 2a20 2269 7352 =>...)". * "isR │ │ │ │ +0001ba60: 616e 6b41 744c 6561 7374 282e 2e2e 2c4d ankAtLeast(...,M │ │ │ │ +0001ba70: 6178 4d69 6e6f 7273 3d3e 2e2e 2e29 220a axMinors=>...)". │ │ │ │ +0001ba80: 2020 2a20 2270 726f 6a44 696d 282e 2e2e * "projDim(... │ │ │ │ +0001ba90: 2c4d 6178 4d69 6e6f 7273 3d3e 2e2e 2e29 ,MaxMinors=>...) │ │ │ │ +0001baa0: 220a 2020 2a20 2272 6567 756c 6172 496e ". * "regularIn │ │ │ │ +0001bab0: 436f 6469 6d65 6e73 696f 6e28 2e2e 2e2c Codimension(..., │ │ │ │ +0001bac0: 4d61 784d 696e 6f72 733d 3e2e 2e2e 2922 MaxMinors=>...)" │ │ │ │ +0001bad0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0001bae0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0001baf0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0001bb00: 6563 7420 2a6e 6f74 6520 4d61 784d 696e ect *note MaxMin │ │ │ │ +0001bb10: 6f72 733a 204d 6178 4d69 6e6f 7273 2c20 ors: MaxMinors, │ │ │ │ +0001bb20: 6973 2061 202a 6e6f 7465 2073 796d 626f is a *note symbo │ │ │ │ +0001bb30: 6c3a 0a28 4d61 6361 756c 6179 3244 6f63 l:.(Macaulay2Doc │ │ │ │ +0001bb40: 2953 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d )Symbol,...----- │ │ │ │ +0001bb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bb90: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +0001bba0: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +0001bbb0: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +0001bbc0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +0001bbd0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +0001bbe0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +0001bbf0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +0001bc00: 732f 4661 7374 4d69 6e6f 7273 2e0a 6d32 s/FastMinors..m2 │ │ │ │ +0001bc10: 3a32 3133 393a 302e 0a1f 0a46 696c 653a :2139:0....File: │ │ │ │ +0001bc20: 2046 6173 744d 696e 6f72 732e 696e 666f FastMinors.info │ │ │ │ +0001bc30: 2c20 4e6f 6465 3a20 4d69 6e44 696d 656e , Node: MinDimen │ │ │ │ +0001bc40: 7369 6f6e 2c20 4e65 7874 3a20 4d6f 6475 sion, Next: Modu │ │ │ │ +0001bc50: 6c75 732c 2050 7265 763a 204d 6178 4d69 lus, Prev: MaxMi │ │ │ │ +0001bc60: 6e6f 7273 2c20 5570 3a20 546f 700a 0a4d nors, Up: Top..M │ │ │ │ +0001bc70: 696e 4469 6d65 6e73 696f 6e20 2d2d 2061 inDimension -- a │ │ │ │ +0001bc80: 6e20 6f70 7469 6f6e 2066 6f72 2070 726f n option for pro │ │ │ │ +0001bc90: 6a44 696d 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a jDim.*********** │ │ │ │ +0001bca0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001bcb0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 **********..Desc │ │ │ │ +0001bcc0: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +0001bcd0: 3d3d 3d0a 0a54 6869 7320 6f70 7469 6f6e ===..This option │ │ │ │ +0001bce0: 2069 7320 7573 6564 2074 6f20 7465 6c6c is used to tell │ │ │ │ +0001bcf0: 2074 6865 2066 756e 6374 696f 6e20 7072 the function pr │ │ │ │ +0001bd00: 6f6a 4469 6d20 6e6f 7420 746f 206c 6f6f ojDim not to loo │ │ │ │ +0001bd10: 6b20 666f 7220 7072 6f6a 6563 7469 7665 k for projective │ │ │ │ +0001bd20: 0a64 696d 656e 7369 6f6e 2062 656c 6f77 .dimension below │ │ │ │ +0001bd30: 2074 6865 206f 7074 696f 6e20 7661 6c75 the option valu │ │ │ │ +0001bd40: 652e 0a0a 5365 6520 616c 736f 0a3d 3d3d e...See also.=== │ │ │ │ +0001bd50: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +0001bd60: 2070 726f 6a44 696d 3a20 7072 6f6a 4469 projDim: projDi │ │ │ │ +0001bd70: 6d2c 202d 2d20 6669 6e64 7320 616e 2075 m, -- finds an u │ │ │ │ +0001bd80: 7070 6572 2062 6f75 6e64 2066 6f72 2074 pper bound for t │ │ │ │ +0001bd90: 6865 2070 726f 6a65 6374 6976 650a 2020 he projective. │ │ │ │ +0001bda0: 2020 6469 6d65 6e73 696f 6e20 6f66 2061 dimension of a │ │ │ │ +0001bdb0: 206d 6f64 756c 650a 0a46 756e 6374 696f module..Functio │ │ │ │ +0001bdc0: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ +0001bdd0: 2061 7267 756d 656e 7420 6e61 6d65 6420 argument named │ │ │ │ +0001bde0: 4d69 6e44 696d 656e 7369 6f6e 3a0a 3d3d MinDimension:.== │ │ │ │ +0001bdf0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001be00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001be10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001be20: 3d3d 0a0a 2020 2a20 2270 726f 6a44 696d ==.. * "projDim │ │ │ │ +0001be30: 282e 2e2e 2c4d 696e 4469 6d65 6e73 696f (...,MinDimensio │ │ │ │ +0001be40: 6e3d 3e2e 2e2e 2922 202d 2d20 7365 6520 n=>...)" -- see │ │ │ │ +0001be50: 2a6e 6f74 6520 7072 6f6a 4469 6d3a 2070 *note projDim: p │ │ │ │ +0001be60: 726f 6a44 696d 2c20 2d2d 2066 696e 6473 rojDim, -- finds │ │ │ │ +0001be70: 2061 6e0a 2020 2020 7570 7065 7220 626f an. upper bo │ │ │ │ +0001be80: 756e 6420 666f 7220 7468 6520 7072 6f6a und for the proj │ │ │ │ +0001be90: 6563 7469 7665 2064 696d 656e 7369 6f6e ective dimension │ │ │ │ +0001bea0: 206f 6620 6120 6d6f 6475 6c65 0a0a 466f of a module..Fo │ │ │ │ +0001beb0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +0001bec0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0001bed0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +0001bee0: 2a6e 6f74 6520 4d69 6e44 696d 656e 7369 *note MinDimensi │ │ │ │ +0001bef0: 6f6e 3a20 4d69 6e44 696d 656e 7369 6f6e on: MinDimension │ │ │ │ +0001bf00: 2c20 6973 2061 202a 6e6f 7465 2073 796d , is a *note sym │ │ │ │ +0001bf10: 626f 6c3a 0a28 4d61 6361 756c 6179 3244 bol:.(Macaulay2D │ │ │ │ +0001bf20: 6f63 2953 796d 626f 6c2c 2e0a 0a2d 2d2d oc)Symbol,...--- │ │ │ │ +0001bf30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bf40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bf50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bf60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bf70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +0001bf80: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +0001bf90: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +0001bfa0: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +0001bfb0: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +0001bfc0: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +0001bfd0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +0001bfe0: 6765 732f 4661 7374 4d69 6e6f 7273 2e0a ges/FastMinors.. │ │ │ │ +0001bff0: 6d32 3a32 3039 323a 302e 0a1f 0a46 696c m2:2092:0....Fil │ │ │ │ +0001c000: 653a 2046 6173 744d 696e 6f72 732e 696e e: FastMinors.in │ │ │ │ +0001c010: 666f 2c20 4e6f 6465 3a20 4d6f 6475 6c75 fo, Node: Modulu │ │ │ │ +0001c020: 732c 204e 6578 743a 2050 6f69 6e74 4f70 s, Next: PointOp │ │ │ │ +0001c030: 7469 6f6e 732c 2050 7265 763a 204d 696e tions, Prev: Min │ │ │ │ +0001c040: 4469 6d65 6e73 696f 6e2c 2055 703a 2054 Dimension, Up: T │ │ │ │ +0001c050: 6f70 0a0a 4d6f 6475 6c75 7320 2d2d 2061 op..Modulus -- a │ │ │ │ +0001c060: 6e20 6f70 7469 6f6e 2066 6f72 2072 6567 n option for reg │ │ │ │ +0001c070: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ +0001c080: 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a n.************** │ │ │ │ +0001c090: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001c0a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +0001c0b0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0001c0c0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 206f ========..This o │ │ │ │ +0001c0d0: 7074 696f 6e20 6973 2075 7365 6420 746f ption is used to │ │ │ │ +0001c0e0: 2074 656c 6c20 7468 6520 6675 6e63 7469 tell the functi │ │ │ │ +0001c0f0: 6f6e 2074 6f20 646f 2074 6865 2063 6f6d on to do the com │ │ │ │ +0001c100: 7075 7461 7469 6f6e 206d 6f64 756c 6f20 putation modulo │ │ │ │ +0001c110: 6120 7072 696d 650a 702e 0a0a 5365 6520 a prime.p...See │ │ │ │ +0001c120: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +0001c130: 202a 202a 6e6f 7465 2072 6567 756c 6172 * *note regular │ │ │ │ +0001c140: 496e 436f 6469 6d65 6e73 696f 6e3a 2072 InCodimension: r │ │ │ │ +0001c150: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +0001c160: 696f 6e2c 202d 2d20 6174 7465 6d70 7473 ion, -- attempts │ │ │ │ +0001c170: 2074 6f20 7368 6f77 2074 6861 740a 2020 to show that. │ │ │ │ +0001c180: 2020 7468 6520 7269 6e67 2069 7320 7265 the ring is re │ │ │ │ +0001c190: 6775 6c61 7220 696e 2063 6f64 696d 656e gular in codimen │ │ │ │ +0001c1a0: 7369 6f6e 206e 0a0a 4675 6e63 7469 6f6e sion n..Function │ │ │ │ +0001c1b0: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ +0001c1c0: 6172 6775 6d65 6e74 206e 616d 6564 204d argument named M │ │ │ │ +0001c1d0: 6f64 756c 7573 3a0a 3d3d 3d3d 3d3d 3d3d odulus:.======== │ │ │ │ +0001c1e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001c1f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001c200: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7265 =======.. * "re │ │ │ │ +0001c210: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +0001c220: 6f6e 282e 2e2e 2c4d 6f64 756c 7573 3d3e on(...,Modulus=> │ │ │ │ +0001c230: 2e2e 2e29 2220 2d2d 2073 6565 202a 6e6f ...)" -- see *no │ │ │ │ +0001c240: 7465 2072 6567 756c 6172 496e 436f 6469 te regularInCodi │ │ │ │ +0001c250: 6d65 6e73 696f 6e3a 0a20 2020 2072 6567 mension:. reg │ │ │ │ +0001c260: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ +0001c270: 6e2c 202d 2d20 6174 7465 6d70 7473 2074 n, -- attempts t │ │ │ │ +0001c280: 6f20 7368 6f77 2074 6861 7420 7468 6520 o show that the │ │ │ │ +0001c290: 7269 6e67 2069 7320 7265 6775 6c61 7220 ring is regular │ │ │ │ +0001c2a0: 696e 0a20 2020 2063 6f64 696d 656e 7369 in. codimensi │ │ │ │ +0001c2b0: 6f6e 206e 0a0a 466f 7220 7468 6520 7072 on n..For the pr │ │ │ │ +0001c2c0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +0001c2d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +0001c2e0: 206f 626a 6563 7420 2a6e 6f74 6520 4d6f object *note Mo │ │ │ │ +0001c2f0: 6475 6c75 733a 204d 6f64 756c 7573 2c20 dulus: Modulus, │ │ │ │ +0001c300: 6973 2061 202a 6e6f 7465 2073 796d 626f is a *note symbo │ │ │ │ +0001c310: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ +0001c320: 2953 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d )Symbol,...----- │ │ │ │ +0001c330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c370: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +0001c380: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +0001c390: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +0001c3a0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +0001c3b0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +0001c3c0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +0001c3d0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +0001c3e0: 732f 4661 7374 4d69 6e6f 7273 2e0a 6d32 s/FastMinors..m2 │ │ │ │ +0001c3f0: 3a32 3130 343a 302e 0a1f 0a46 696c 653a :2104:0....File: │ │ │ │ +0001c400: 2046 6173 744d 696e 6f72 732e 696e 666f FastMinors.info │ │ │ │ +0001c410: 2c20 4e6f 6465 3a20 506f 696e 744f 7074 , Node: PointOpt │ │ │ │ +0001c420: 696f 6e73 2c20 4e65 7874 3a20 7072 6f6a ions, Next: proj │ │ │ │ +0001c430: 4469 6d2c 2050 7265 763a 204d 6f64 756c Dim, Prev: Modul │ │ │ │ +0001c440: 7573 2c20 5570 3a20 546f 700a 0a50 6f69 us, Up: Top..Poi │ │ │ │ +0001c450: 6e74 4f70 7469 6f6e 7320 2d2d 206f 7074 ntOptions -- opt │ │ │ │ +0001c460: 696f 6e73 2074 6f20 7061 7373 2074 6f20 ions to pass to │ │ │ │ +0001c470: 6675 6e63 7469 6f6e 7320 696e 2074 6865 functions in the │ │ │ │ +0001c480: 2070 6163 6b61 6765 2052 616e 646f 6d50 package RandomP │ │ │ │ +0001c490: 6f69 6e74 730a 2a2a 2a2a 2a2a 2a2a 2a2a oints.********** │ │ │ │ +0001c4a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001c4b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001c4c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001c4d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0001c4e0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0001c4f0: 3d3d 3d3d 3d3d 3d0a 0a50 6f69 6e74 4f70 =======..PointOp │ │ │ │ +0001c500: 7469 6f6e 7320 6973 2061 6e20 6f70 7469 tions is an opti │ │ │ │ +0001c510: 6f6e 2069 6e20 7661 7269 6f75 7320 6675 on in various fu │ │ │ │ +0001c520: 6e63 7469 6f6e 7320 696e 2074 6869 7320 nctions in this │ │ │ │ +0001c530: 7061 636b 6167 652c 2077 6869 6368 2063 package, which c │ │ │ │ +0001c540: 616e 2073 746f 7265 0a6f 7074 696f 6e73 an store.options │ │ │ │ +0001c550: 2074 6f20 6265 2070 6173 7365 6420 746f to be passed to │ │ │ │ +0001c560: 2074 6865 2066 756e 6374 696f 6e20 6669 the function fi │ │ │ │ +0001c570: 6e64 414e 6f6e 5a65 726f 4d69 6e6f 7220 ndANonZeroMinor │ │ │ │ +0001c580: 616e 6420 6f74 6865 7220 6675 6e63 7469 and other functi │ │ │ │ +0001c590: 6f6e 7320 696e 0a52 616e 646f 6d50 6f69 ons in.RandomPoi │ │ │ │ +0001c5a0: 6e74 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d nts...+--------- │ │ │ │ +0001c5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c5f0: 2d2d 2d2d 2b0a 7c69 3120 3a20 286f 7074 ----+.|i1 : (opt │ │ │ │ +0001c600: 696f 6e73 2072 6567 756c 6172 496e 436f ions regularInCo │ │ │ │ +0001c610: 6469 6d65 6e73 696f 6e29 2350 6f69 6e74 dimension)#Point │ │ │ │ +0001c620: 4f70 7469 6f6e 7320 2020 2020 2020 2020 Options │ │ │ │ 0001c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c640: 2020 2020 7c0a 7c6f 3120 3d20 7b53 7472 |.|o1 = {Str │ │ │ │ -0001c650: 6174 6567 7920 3d3e 2044 6566 6175 6c74 ategy => Default │ │ │ │ -0001c660: 2c20 486f 6d6f 6765 6e65 6f75 7320 3d3e , Homogeneous => │ │ │ │ -0001c670: 2066 616c 7365 2c20 5265 706c 6163 656d false, Replacem │ │ │ │ -0001c680: 656e 7420 3d3e 2042 696e 6f6d 6961 6c2c ent => Binomial, │ │ │ │ -0001c690: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ -0001c6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c6e0: 2d2d 2d2d 7c0a 7c20 2020 2020 4578 7465 ----|.| Exte │ │ │ │ -0001c6f0: 6e64 4669 656c 6420 3d3e 2074 7275 652c ndField => true, │ │ │ │ -0001c700: 2050 6f69 6e74 4368 6563 6b41 7474 656d PointCheckAttem │ │ │ │ -0001c710: 7074 7320 3d3e 2030 2c20 4465 636f 6d70 pts => 0, Decomp │ │ │ │ -0001c720: 6f73 6974 696f 6e53 7472 6174 6567 7920 ositionStrategy │ │ │ │ -0001c730: 3d3e 2020 7c0a 7c20 2020 2020 2d2d 2d2d => |.| ---- │ │ │ │ -0001c740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c780: 2d2d 2d2d 7c0a 7c20 2020 2020 4465 636f ----|.| Deco │ │ │ │ -0001c790: 6d70 6f73 652c 204e 756d 5468 7265 6164 mpose, NumThread │ │ │ │ -0001c7a0: 7354 6f55 7365 203d 3e20 312c 2044 696d sToUse => 1, Dim │ │ │ │ -0001c7b0: 656e 7369 6f6e 4675 6e63 7469 6f6e 203d ensionFunction = │ │ │ │ -0001c7c0: 3e20 6469 6d2c 2056 6572 626f 7365 203d > dim, Verbose = │ │ │ │ -0001c7d0: 3e20 2020 7c0a 7c20 2020 2020 2d2d 2d2d > |.| ---- │ │ │ │ -0001c7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c820: 2d2d 2d2d 7c0a 7c20 2020 2020 6661 6c73 ----|.| fals │ │ │ │ -0001c830: 657d 2020 2020 2020 2020 2020 2020 2020 e} │ │ │ │ -0001c840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c870: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c640: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c690: 2020 2020 7c0a 7c6f 3120 3d20 7b53 7472 |.|o1 = {Str │ │ │ │ +0001c6a0: 6174 6567 7920 3d3e 2044 6566 6175 6c74 ategy => Default │ │ │ │ +0001c6b0: 2c20 486f 6d6f 6765 6e65 6f75 7320 3d3e , Homogeneous => │ │ │ │ +0001c6c0: 2066 616c 7365 2c20 5265 706c 6163 656d false, Replacem │ │ │ │ +0001c6d0: 656e 7420 3d3e 2042 696e 6f6d 6961 6c2c ent => Binomial, │ │ │ │ +0001c6e0: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ +0001c6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c730: 2d2d 2d2d 7c0a 7c20 2020 2020 4578 7465 ----|.| Exte │ │ │ │ +0001c740: 6e64 4669 656c 6420 3d3e 2074 7275 652c ndField => true, │ │ │ │ +0001c750: 2050 6f69 6e74 4368 6563 6b41 7474 656d PointCheckAttem │ │ │ │ +0001c760: 7074 7320 3d3e 2030 2c20 4465 636f 6d70 pts => 0, Decomp │ │ │ │ +0001c770: 6f73 6974 696f 6e53 7472 6174 6567 7920 ositionStrategy │ │ │ │ +0001c780: 3d3e 2020 7c0a 7c20 2020 2020 2d2d 2d2d => |.| ---- │ │ │ │ +0001c790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c7d0: 2d2d 2d2d 7c0a 7c20 2020 2020 4465 636f ----|.| Deco │ │ │ │ +0001c7e0: 6d70 6f73 652c 204e 756d 5468 7265 6164 mpose, NumThread │ │ │ │ +0001c7f0: 7354 6f55 7365 203d 3e20 312c 2044 696d sToUse => 1, Dim │ │ │ │ +0001c800: 656e 7369 6f6e 4675 6e63 7469 6f6e 203d ensionFunction = │ │ │ │ +0001c810: 3e20 6469 6d2c 2056 6572 626f 7365 203d > dim, Verbose = │ │ │ │ +0001c820: 3e20 2020 7c0a 7c20 2020 2020 2d2d 2d2d > |.| ---- │ │ │ │ +0001c830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c870: 2d2d 2d2d 7c0a 7c20 2020 2020 6661 6c73 ----|.| fals │ │ │ │ +0001c880: 657d 2020 2020 2020 2020 2020 2020 2020 e} │ │ │ │ 0001c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c8c0: 2020 2020 7c0a 7c6f 3120 3a20 4c69 7374 |.|o1 : List │ │ │ │ +0001c8c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0001c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c910: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0001c920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c960: 2d2d 2d2d 2b0a 7c69 3220 3a20 6f70 7469 ----+.|i2 : opti │ │ │ │ -0001c970: 6f6e 7320 6669 6e64 414e 6f6e 5a65 726f ons findANonZero │ │ │ │ -0001c980: 4d69 6e6f 7220 2020 2020 2020 2020 2020 Minor │ │ │ │ -0001c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c9b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c910: 2020 2020 7c0a 7c6f 3120 3a20 4c69 7374 |.|o1 : List │ │ │ │ +0001c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c960: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001c970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c9b0: 2d2d 2d2d 2b0a 7c69 3220 3a20 6f70 7469 ----+.|i2 : opti │ │ │ │ +0001c9c0: 6f6e 7320 6669 6e64 414e 6f6e 5a65 726f ons findANonZero │ │ │ │ +0001c9d0: 4d69 6e6f 7220 2020 2020 2020 2020 2020 Minor │ │ │ │ 0001c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca00: 2020 2020 7c0a 7c6f 3220 3d20 4f70 7469 |.|o2 = Opti │ │ │ │ -0001ca10: 6f6e 5461 626c 657b 4465 636f 6d70 6f73 onTable{Decompos │ │ │ │ -0001ca20: 6974 696f 6e53 7472 6174 6567 7920 3d3e itionStrategy => │ │ │ │ -0001ca30: 206e 756c 6c7d 2020 2020 2020 2020 2020 null} │ │ │ │ +0001ca00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001ca60: 2020 2020 2020 2020 4469 6d65 6e73 696f Dimensio │ │ │ │ -0001ca70: 6e46 756e 6374 696f 6e20 3d3e 2064 696d nFunction => dim │ │ │ │ -0001ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ca50: 2020 2020 7c0a 7c6f 3220 3d20 4f70 7469 |.|o2 = Opti │ │ │ │ +0001ca60: 6f6e 5461 626c 657b 4465 636f 6d70 6f73 onTable{Decompos │ │ │ │ +0001ca70: 6974 696f 6e53 7472 6174 6567 7920 3d3e itionStrategy => │ │ │ │ +0001ca80: 206e 756c 6c7d 2020 2020 2020 2020 2020 null} │ │ │ │ 0001ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001caa0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cab0: 2020 2020 2020 2020 4578 7465 6e64 4669 ExtendFi │ │ │ │ -0001cac0: 656c 6420 3d3e 2074 7275 6520 2020 2020 eld => true │ │ │ │ +0001cab0: 2020 2020 2020 2020 4469 6d65 6e73 696f Dimensio │ │ │ │ +0001cac0: 6e46 756e 6374 696f 6e20 3d3e 2064 696d nFunction => dim │ │ │ │ 0001cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001caf0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cb00: 2020 2020 2020 2020 486f 6d6f 6765 6e65 Homogene │ │ │ │ -0001cb10: 6f75 7320 3d3e 2066 616c 7365 2020 2020 ous => false │ │ │ │ +0001cb00: 2020 2020 2020 2020 4578 7465 6e64 4669 ExtendFi │ │ │ │ +0001cb10: 656c 6420 3d3e 2074 7275 6520 2020 2020 eld => true │ │ │ │ 0001cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cb50: 2020 2020 2020 2020 4d69 6e6f 7250 6f69 MinorPoi │ │ │ │ -0001cb60: 6e74 4174 7465 6d70 7473 203d 3e20 3520 ntAttempts => 5 │ │ │ │ +0001cb50: 2020 2020 2020 2020 486f 6d6f 6765 6e65 Homogene │ │ │ │ +0001cb60: 6f75 7320 3d3e 2066 616c 7365 2020 2020 ous => false │ │ │ │ 0001cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cba0: 2020 2020 2020 2020 4e75 6d54 6872 6561 NumThrea │ │ │ │ -0001cbb0: 6473 546f 5573 6520 3d3e 2031 2020 2020 dsToUse => 1 │ │ │ │ +0001cba0: 2020 2020 2020 2020 4d69 6e6f 7250 6f69 MinorPoi │ │ │ │ +0001cbb0: 6e74 4174 7465 6d70 7473 203d 3e20 3520 ntAttempts => 5 │ │ │ │ 0001cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbe0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cbf0: 2020 2020 2020 2020 506f 696e 7443 6865 PointChe │ │ │ │ -0001cc00: 636b 4174 7465 6d70 7473 203d 3e20 3020 ckAttempts => 0 │ │ │ │ +0001cbf0: 2020 2020 2020 2020 4e75 6d54 6872 6561 NumThrea │ │ │ │ +0001cc00: 6473 546f 5573 6520 3d3e 2031 2020 2020 dsToUse => 1 │ │ │ │ 0001cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cc40: 2020 2020 2020 2020 5265 706c 6163 656d Replacem │ │ │ │ -0001cc50: 656e 7420 3d3e 2042 696e 6f6d 6961 6c20 ent => Binomial │ │ │ │ +0001cc40: 2020 2020 2020 2020 506f 696e 7443 6865 PointChe │ │ │ │ +0001cc50: 636b 4174 7465 6d70 7473 203d 3e20 3020 ckAttempts => 0 │ │ │ │ 0001cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cc90: 2020 2020 2020 2020 5374 7261 7465 6779 Strategy │ │ │ │ -0001cca0: 203d 3e20 4465 6661 756c 7420 2020 2020 => Default │ │ │ │ +0001cc90: 2020 2020 2020 2020 5265 706c 6163 656d Replacem │ │ │ │ +0001cca0: 656e 7420 3d3e 2042 696e 6f6d 6961 6c20 ent => Binomial │ │ │ │ 0001ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ccd0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cce0: 2020 2020 2020 2020 5665 7262 6f73 6520 Verbose │ │ │ │ -0001ccf0: 3d3e 2066 616c 7365 2020 2020 2020 2020 => false │ │ │ │ +0001cce0: 2020 2020 2020 2020 5374 7261 7465 6779 Strategy │ │ │ │ +0001ccf0: 203d 3e20 4465 6661 756c 7420 2020 2020 => Default │ │ │ │ 0001cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cd30: 2020 2020 2020 2020 5665 7262 6f73 6520 Verbose │ │ │ │ +0001cd40: 3d3e 2066 616c 7365 2020 2020 2020 2020 => false │ │ │ │ 0001cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cd70: 2020 2020 7c0a 7c6f 3220 3a20 4f70 7469 |.|o2 : Opti │ │ │ │ -0001cd80: 6f6e 5461 626c 6520 2020 2020 2020 2020 onTable │ │ │ │ +0001cd70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cdc0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0001cdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ce00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ce10: 2d2d 2d2d 2b0a 0a54 6865 2064 6566 6175 ----+..The defau │ │ │ │ -0001ce20: 6c74 2073 6574 7469 6e67 2045 7874 656e lt setting Exten │ │ │ │ -0001ce30: 6446 6965 6c64 203d 3e20 7472 7565 206d dField => true m │ │ │ │ -0001ce40: 6561 6e73 2074 6861 7420 706f 696e 7473 eans that points │ │ │ │ -0001ce50: 2077 686f 7365 2072 6573 6964 7565 2066 whose residue f │ │ │ │ -0001ce60: 6965 6c64 0a61 7265 2066 696e 6974 6520 ield.are finite │ │ │ │ -0001ce70: 6578 7465 6e73 696f 6e73 206f 6620 7468 extensions of th │ │ │ │ -0001ce80: 6520 7072 696d 6520 6669 656c 6420 6172 e prime field ar │ │ │ │ -0001ce90: 6520 7661 6c69 642c 2061 6e64 2061 7265 e valid, and are │ │ │ │ -0001cea0: 2075 7365 6420 746f 2073 7475 6479 2074 used to study t │ │ │ │ -0001ceb0: 6865 0a6d 6174 7269 782e 2020 4675 7274 he.matrix. Furt │ │ │ │ -0001cec0: 6865 726d 6f72 652c 2077 6520 6861 7665 hermore, we have │ │ │ │ -0001ced0: 2073 6574 2048 6f6d 6f67 656e 656f 7573 set Homogeneous │ │ │ │ -0001cee0: 3d3e 6661 6c73 6520 6279 2064 6566 6175 =>false by defau │ │ │ │ -0001cef0: 6c74 2077 6869 6368 206d 6561 6e73 2074 lt which means t │ │ │ │ -0001cf00: 6865 0a6f 7269 6769 6e20 6973 2074 7265 he.origin is tre │ │ │ │ -0001cf10: 6174 6564 2061 7320 6120 7661 6c69 6420 ated as a valid │ │ │ │ -0001cf20: 706f 696e 742e 2020 5365 7474 696e 6720 point. Setting │ │ │ │ -0001cf30: 4578 7465 6e64 4669 656c 643d 3e66 616c ExtendField=>fal │ │ │ │ -0001cf40: 7365 2077 696c 6c20 736f 6d65 7469 6d65 se will sometime │ │ │ │ -0001cf50: 730a 7370 6565 6420 7570 2063 6f6d 7075 s.speed up compu │ │ │ │ -0001cf60: 7461 7469 6f6e 2c20 6275 7420 6361 6e20 tation, but can │ │ │ │ -0001cf70: 616c 736f 206d 6973 7320 736f 6d65 2069 also miss some i │ │ │ │ -0001cf80: 6d70 6f72 7461 6e74 2073 7562 6d61 7472 mportant submatr │ │ │ │ -0001cf90: 6963 6573 2069 6620 7468 6174 0a64 6574 ices if that.det │ │ │ │ -0001cfa0: 6572 6d69 6e61 6e74 2028 706c 7573 2077 erminant (plus w │ │ │ │ -0001cfb0: 6861 7420 6861 7320 616c 7265 6164 7920 hat has already │ │ │ │ -0001cfc0: 6265 656e 2063 6f6d 7075 7465 6429 2064 been computed) d │ │ │ │ -0001cfd0: 6566 696e 6573 2061 2073 6368 656d 6520 efines a scheme │ │ │ │ -0001cfe0: 7769 7468 206e 6f20 6f72 0a72 656c 6174 with no or.relat │ │ │ │ -0001cff0: 6976 656c 7920 6665 7720 7261 7469 6f6e ively few ration │ │ │ │ -0001d000: 616c 2070 6f69 6e74 732e 2020 496e 2073 al points. In s │ │ │ │ -0001d010: 7563 6820 6120 6361 7365 2c20 4578 7465 uch a case, Exte │ │ │ │ -0001d020: 6e64 4669 656c 6420 3d3e 2066 616c 7365 ndField => false │ │ │ │ -0001d030: 2077 696c 6c0a 7479 7069 6361 6c6c 7920 will.typically │ │ │ │ -0001d040: 7375 6273 7461 6e74 6961 6c6c 7920 736c substantially sl │ │ │ │ -0001d050: 6f77 2064 6f77 6e20 636f 6d70 7574 6174 ow down computat │ │ │ │ -0001d060: 696f 6e73 2e0a 0a53 6565 2061 6c73 6f0a ions...See also. │ │ │ │ -0001d070: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -0001d080: 6f74 6520 6669 6e64 414e 6f6e 5a65 726f ote findANonZero │ │ │ │ -0001d090: 4d69 6e6f 723a 2028 5261 6e64 6f6d 506f Minor: (RandomPo │ │ │ │ -0001d0a0: 696e 7473 2966 696e 6441 4e6f 6e5a 6572 ints)findANonZer │ │ │ │ -0001d0b0: 6f4d 696e 6f72 2c20 2d2d 2066 696e 6473 oMinor, -- finds │ │ │ │ -0001d0c0: 2061 0a20 2020 206e 6f6e 2d76 616e 6973 a. non-vanis │ │ │ │ -0001d0d0: 6869 6e67 206d 696e 6f72 2061 7420 736f hing minor at so │ │ │ │ -0001d0e0: 6d65 2072 616e 646f 6d6c 7920 6368 6f73 me randomly chos │ │ │ │ -0001d0f0: 656e 2070 6f69 6e74 0a0a 4675 6e63 7469 en point..Functi │ │ │ │ -0001d100: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ -0001d110: 6c20 6172 6775 6d65 6e74 206e 616d 6564 l argument named │ │ │ │ -0001d120: 2050 6f69 6e74 4f70 7469 6f6e 733a 0a3d PointOptions:.= │ │ │ │ -0001d130: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001d140: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001d150: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001d160: 3d3d 3d0a 0a20 202a 2022 6368 6f6f 7365 ===.. * "choose │ │ │ │ -0001d170: 476f 6f64 4d69 6e6f 7273 282e 2e2e 2c50 GoodMinors(...,P │ │ │ │ -0001d180: 6f69 6e74 4f70 7469 6f6e 733d 3e2e 2e2e ointOptions=>... │ │ │ │ -0001d190: 2922 0a20 202a 2022 6765 7453 7562 6d61 )". * "getSubma │ │ │ │ -0001d1a0: 7472 6978 4f66 5261 6e6b 282e 2e2e 2c50 trixOfRank(...,P │ │ │ │ -0001d1b0: 6f69 6e74 4f70 7469 6f6e 733d 3e2e 2e2e ointOptions=>... │ │ │ │ -0001d1c0: 2922 0a20 202a 2022 6973 5261 6e6b 4174 )". * "isRankAt │ │ │ │ -0001d1d0: 4c65 6173 7428 2e2e 2e2c 506f 696e 744f Least(...,PointO │ │ │ │ -0001d1e0: 7074 696f 6e73 3d3e 2e2e 2e29 220a 2020 ptions=>...)". │ │ │ │ -0001d1f0: 2a20 2270 726f 6a44 696d 282e 2e2e 2c50 * "projDim(...,P │ │ │ │ +0001cdc0: 2020 2020 7c0a 7c6f 3220 3a20 4f70 7469 |.|o2 : Opti │ │ │ │ +0001cdd0: 6f6e 5461 626c 6520 2020 2020 2020 2020 onTable │ │ │ │ +0001cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ce10: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001ce20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce60: 2d2d 2d2d 2b0a 0a54 6865 2064 6566 6175 ----+..The defau │ │ │ │ +0001ce70: 6c74 2073 6574 7469 6e67 2045 7874 656e lt setting Exten │ │ │ │ +0001ce80: 6446 6965 6c64 203d 3e20 7472 7565 206d dField => true m │ │ │ │ +0001ce90: 6561 6e73 2074 6861 7420 706f 696e 7473 eans that points │ │ │ │ +0001cea0: 2077 686f 7365 2072 6573 6964 7565 2066 whose residue f │ │ │ │ +0001ceb0: 6965 6c64 0a61 7265 2066 696e 6974 6520 ield.are finite │ │ │ │ +0001cec0: 6578 7465 6e73 696f 6e73 206f 6620 7468 extensions of th │ │ │ │ +0001ced0: 6520 7072 696d 6520 6669 656c 6420 6172 e prime field ar │ │ │ │ +0001cee0: 6520 7661 6c69 642c 2061 6e64 2061 7265 e valid, and are │ │ │ │ +0001cef0: 2075 7365 6420 746f 2073 7475 6479 2074 used to study t │ │ │ │ +0001cf00: 6865 0a6d 6174 7269 782e 2020 4675 7274 he.matrix. Furt │ │ │ │ +0001cf10: 6865 726d 6f72 652c 2077 6520 6861 7665 hermore, we have │ │ │ │ +0001cf20: 2073 6574 2048 6f6d 6f67 656e 656f 7573 set Homogeneous │ │ │ │ +0001cf30: 3d3e 6661 6c73 6520 6279 2064 6566 6175 =>false by defau │ │ │ │ +0001cf40: 6c74 2077 6869 6368 206d 6561 6e73 2074 lt which means t │ │ │ │ +0001cf50: 6865 0a6f 7269 6769 6e20 6973 2074 7265 he.origin is tre │ │ │ │ +0001cf60: 6174 6564 2061 7320 6120 7661 6c69 6420 ated as a valid │ │ │ │ +0001cf70: 706f 696e 742e 2020 5365 7474 696e 6720 point. Setting │ │ │ │ +0001cf80: 4578 7465 6e64 4669 656c 643d 3e66 616c ExtendField=>fal │ │ │ │ +0001cf90: 7365 2077 696c 6c20 736f 6d65 7469 6d65 se will sometime │ │ │ │ +0001cfa0: 730a 7370 6565 6420 7570 2063 6f6d 7075 s.speed up compu │ │ │ │ +0001cfb0: 7461 7469 6f6e 2c20 6275 7420 6361 6e20 tation, but can │ │ │ │ +0001cfc0: 616c 736f 206d 6973 7320 736f 6d65 2069 also miss some i │ │ │ │ +0001cfd0: 6d70 6f72 7461 6e74 2073 7562 6d61 7472 mportant submatr │ │ │ │ +0001cfe0: 6963 6573 2069 6620 7468 6174 0a64 6574 ices if that.det │ │ │ │ +0001cff0: 6572 6d69 6e61 6e74 2028 706c 7573 2077 erminant (plus w │ │ │ │ +0001d000: 6861 7420 6861 7320 616c 7265 6164 7920 hat has already │ │ │ │ +0001d010: 6265 656e 2063 6f6d 7075 7465 6429 2064 been computed) d │ │ │ │ +0001d020: 6566 696e 6573 2061 2073 6368 656d 6520 efines a scheme │ │ │ │ +0001d030: 7769 7468 206e 6f20 6f72 0a72 656c 6174 with no or.relat │ │ │ │ +0001d040: 6976 656c 7920 6665 7720 7261 7469 6f6e ively few ration │ │ │ │ +0001d050: 616c 2070 6f69 6e74 732e 2020 496e 2073 al points. In s │ │ │ │ +0001d060: 7563 6820 6120 6361 7365 2c20 4578 7465 uch a case, Exte │ │ │ │ +0001d070: 6e64 4669 656c 6420 3d3e 2066 616c 7365 ndField => false │ │ │ │ +0001d080: 2077 696c 6c0a 7479 7069 6361 6c6c 7920 will.typically │ │ │ │ +0001d090: 7375 6273 7461 6e74 6961 6c6c 7920 736c substantially sl │ │ │ │ +0001d0a0: 6f77 2064 6f77 6e20 636f 6d70 7574 6174 ow down computat │ │ │ │ +0001d0b0: 696f 6e73 2e0a 0a53 6565 2061 6c73 6f0a ions...See also. │ │ │ │ +0001d0c0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +0001d0d0: 6f74 6520 6669 6e64 414e 6f6e 5a65 726f ote findANonZero │ │ │ │ +0001d0e0: 4d69 6e6f 723a 2028 5261 6e64 6f6d 506f Minor: (RandomPo │ │ │ │ +0001d0f0: 696e 7473 2966 696e 6441 4e6f 6e5a 6572 ints)findANonZer │ │ │ │ +0001d100: 6f4d 696e 6f72 2c20 2d2d 2066 696e 6473 oMinor, -- finds │ │ │ │ +0001d110: 2061 0a20 2020 206e 6f6e 2d76 616e 6973 a. non-vanis │ │ │ │ +0001d120: 6869 6e67 206d 696e 6f72 2061 7420 736f hing minor at so │ │ │ │ +0001d130: 6d65 2072 616e 646f 6d6c 7920 6368 6f73 me randomly chos │ │ │ │ +0001d140: 656e 2070 6f69 6e74 0a0a 4675 6e63 7469 en point..Functi │ │ │ │ +0001d150: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ +0001d160: 6c20 6172 6775 6d65 6e74 206e 616d 6564 l argument named │ │ │ │ +0001d170: 2050 6f69 6e74 4f70 7469 6f6e 733a 0a3d PointOptions:.= │ │ │ │ +0001d180: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001d190: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001d1a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001d1b0: 3d3d 3d0a 0a20 202a 2022 6368 6f6f 7365 ===.. * "choose │ │ │ │ +0001d1c0: 476f 6f64 4d69 6e6f 7273 282e 2e2e 2c50 GoodMinors(...,P │ │ │ │ +0001d1d0: 6f69 6e74 4f70 7469 6f6e 733d 3e2e 2e2e ointOptions=>... │ │ │ │ +0001d1e0: 2922 0a20 202a 2022 6765 7453 7562 6d61 )". * "getSubma │ │ │ │ +0001d1f0: 7472 6978 4f66 5261 6e6b 282e 2e2e 2c50 trixOfRank(...,P │ │ │ │ 0001d200: 6f69 6e74 4f70 7469 6f6e 733d 3e2e 2e2e ointOptions=>... │ │ │ │ -0001d210: 2922 0a20 202a 2022 7265 6775 6c61 7249 )". * "regularI │ │ │ │ -0001d220: 6e43 6f64 696d 656e 7369 6f6e 282e 2e2e nCodimension(... │ │ │ │ -0001d230: 2c50 6f69 6e74 4f70 7469 6f6e 733d 3e2e ,PointOptions=>. │ │ │ │ -0001d240: 2e2e 2922 0a0a 466f 7220 7468 6520 7072 ..)"..For the pr │ │ │ │ -0001d250: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -0001d260: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -0001d270: 206f 626a 6563 7420 2a6e 6f74 6520 506f object *note Po │ │ │ │ -0001d280: 696e 744f 7074 696f 6e73 3a20 506f 696e intOptions: Poin │ │ │ │ -0001d290: 744f 7074 696f 6e73 2c20 6973 2061 202a tOptions, is a * │ │ │ │ -0001d2a0: 6e6f 7465 2073 796d 626f 6c3a 0a28 4d61 note symbol:.(Ma │ │ │ │ -0001d2b0: 6361 756c 6179 3244 6f63 2953 796d 626f caulay2Doc)Symbo │ │ │ │ -0001d2c0: 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d l,...----------- │ │ │ │ -0001d2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d310: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -0001d320: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -0001d330: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -0001d340: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -0001d350: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -0001d360: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -0001d370: 7932 2f70 6163 6b61 6765 732f 4661 7374 y2/packages/Fast │ │ │ │ -0001d380: 4d69 6e6f 7273 2e0a 6d32 3a31 3739 343a Minors..m2:1794: │ │ │ │ -0001d390: 302e 0a1f 0a46 696c 653a 2046 6173 744d 0....File: FastM │ │ │ │ -0001d3a0: 696e 6f72 732e 696e 666f 2c20 4e6f 6465 inors.info, Node │ │ │ │ -0001d3b0: 3a20 7072 6f6a 4469 6d2c 204e 6578 743a : projDim, Next: │ │ │ │ -0001d3c0: 2072 6563 7572 7369 7665 4d69 6e6f 7273 recursiveMinors │ │ │ │ -0001d3d0: 2c20 5072 6576 3a20 506f 696e 744f 7074 , Prev: PointOpt │ │ │ │ -0001d3e0: 696f 6e73 2c20 5570 3a20 546f 700a 0a70 ions, Up: Top..p │ │ │ │ -0001d3f0: 726f 6a44 696d 202d 2d20 6669 6e64 7320 rojDim -- finds │ │ │ │ -0001d400: 616e 2075 7070 6572 2062 6f75 6e64 2066 an upper bound f │ │ │ │ -0001d410: 6f72 2074 6865 2070 726f 6a65 6374 6976 or the projectiv │ │ │ │ -0001d420: 6520 6469 6d65 6e73 696f 6e20 6f66 2061 e dimension of a │ │ │ │ -0001d430: 206d 6f64 756c 650a 2a2a 2a2a 2a2a 2a2a module.******** │ │ │ │ -0001d440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d470: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d480: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -0001d490: 2020 2020 2020 6e20 3d20 7072 6f6a 4469 n = projDi │ │ │ │ -0001d4a0: 6d28 4e2c 204d 696e 4469 6d65 6e73 696f m(N, MinDimensio │ │ │ │ -0001d4b0: 6e3d 3e64 290a 2020 2a20 496e 7075 7473 n=>d). * Inputs │ │ │ │ -0001d4c0: 3a0a 2020 2020 2020 2a20 4e2c 2061 202a :. * N, a * │ │ │ │ -0001d4d0: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -0001d4e0: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -0001d4f0: 652c 2c20 6120 6d6f 6475 6c65 206f 7665 e,, a module ove │ │ │ │ -0001d500: 7220 6120 706f 6c79 6e6f 6d69 616c 0a20 r a polynomial. │ │ │ │ -0001d510: 2020 2020 2020 2072 696e 670a 2020 2020 ring. │ │ │ │ -0001d520: 2020 2a20 642c 2061 6e20 2a6e 6f74 6520 * d, an *note │ │ │ │ -0001d530: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ -0001d540: 6179 3244 6f63 295a 5a2c 2c20 7468 6520 ay2Doc)ZZ,, the │ │ │ │ -0001d550: 6d69 6e69 6d75 6d20 7072 6f6a 6563 7469 minimum projecti │ │ │ │ -0001d560: 7665 0a20 2020 2020 2020 2064 696d 656e ve. dimen │ │ │ │ -0001d570: 7369 6f6e 206f 6620 7468 6520 6d6f 6475 sion of the modu │ │ │ │ -0001d580: 6c65 0a20 202a 202a 6e6f 7465 204f 7074 le. * *note Opt │ │ │ │ -0001d590: 696f 6e61 6c20 696e 7075 7473 3a20 284d ional inputs: (M │ │ │ │ -0001d5a0: 6163 6175 6c61 7932 446f 6329 7573 696e acaulay2Doc)usin │ │ │ │ -0001d5b0: 6720 6675 6e63 7469 6f6e 7320 7769 7468 g functions with │ │ │ │ -0001d5c0: 206f 7074 696f 6e61 6c20 696e 7075 7473 optional inputs │ │ │ │ -0001d5d0: 2c3a 0a20 2020 2020 202a 204d 696e 4469 ,:. * MinDi │ │ │ │ -0001d5e0: 6d65 6e73 696f 6e20 3d3e 2061 202a 6e6f mension => a *no │ │ │ │ -0001d5f0: 7465 206e 756d 6265 723a 2028 4d61 6361 te number: (Maca │ │ │ │ -0001d600: 756c 6179 3244 6f63 294e 756d 6265 722c ulay2Doc)Number, │ │ │ │ -0001d610: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -0001d620: 302c 0a20 2020 2020 2020 2073 746f 7020 0,. stop │ │ │ │ -0001d630: 6166 7465 7220 7665 7269 6679 696e 6720 after verifying │ │ │ │ -0001d640: 7468 6520 6d6f 6475 6c65 2068 6173 2061 the module has a │ │ │ │ -0001d650: 7420 6d6f 7374 2061 2063 6572 7461 696e t most a certain │ │ │ │ -0001d660: 2070 726f 6a65 6374 6976 650a 2020 2020 projective. │ │ │ │ -0001d670: 2020 2020 6469 6d65 6e73 696f 6e0a 2020 dimension. │ │ │ │ -0001d680: 2020 2020 2a20 2a6e 6f74 6520 506f 696e * *note Poin │ │ │ │ -0001d690: 744f 7074 696f 6e73 3a20 506f 696e 744f tOptions: PointO │ │ │ │ -0001d6a0: 7074 696f 6e73 2c20 3d3e 2061 202a 6e6f ptions, => a *no │ │ │ │ -0001d6b0: 7465 206c 6973 743a 2028 4d61 6361 756c te list: (Macaul │ │ │ │ -0001d6c0: 6179 3244 6f63 294c 6973 742c 2c0a 2020 ay2Doc)List,,. │ │ │ │ -0001d6d0: 2020 2020 2020 6465 6661 756c 7420 7661 default va │ │ │ │ -0001d6e0: 6c75 6520 7b53 7472 6174 6567 7920 3d3e lue {Strategy => │ │ │ │ -0001d6f0: 2044 6566 6175 6c74 2c20 486f 6d6f 6765 Default, Homoge │ │ │ │ -0001d700: 6e65 6f75 7320 3d3e 2066 616c 7365 2c20 neous => false, │ │ │ │ -0001d710: 5265 706c 6163 656d 656e 740a 2020 2020 Replacement. │ │ │ │ -0001d720: 2020 2020 3d3e 2042 696e 6f6d 6961 6c2c => Binomial, │ │ │ │ -0001d730: 2045 7874 656e 6446 6965 6c64 203d 3e20 ExtendField => │ │ │ │ -0001d740: 7472 7565 2c20 506f 696e 7443 6865 636b true, PointCheck │ │ │ │ -0001d750: 4174 7465 6d70 7473 203d 3e20 302c 0a20 Attempts => 0,. │ │ │ │ -0001d760: 2020 2020 2020 2044 6563 6f6d 706f 7369 Decomposi │ │ │ │ -0001d770: 7469 6f6e 5374 7261 7465 6779 203d 3e20 tionStrategy => │ │ │ │ -0001d780: 4465 636f 6d70 6f73 652c 204e 756d 5468 Decompose, NumTh │ │ │ │ -0001d790: 7265 6164 7354 6f55 7365 203d 3e20 312c readsToUse => 1, │ │ │ │ -0001d7a0: 0a20 2020 2020 2020 2044 696d 656e 7369 . Dimensi │ │ │ │ -0001d7b0: 6f6e 4675 6e63 7469 6f6e 203d 3e20 6469 onFunction => di │ │ │ │ -0001d7c0: 6d2c 2056 6572 626f 7365 203d 3e20 6661 m, Verbose => fa │ │ │ │ -0001d7d0: 6c73 657d 2c20 6f70 7469 6f6e 7320 746f lse}, options to │ │ │ │ -0001d7e0: 2062 6520 7061 7373 6564 2074 6f0a 2020 be passed to. │ │ │ │ -0001d7f0: 2020 2020 2020 7468 6520 5261 6e64 6f6d the Random │ │ │ │ -0001d800: 506f 696e 7473 2070 6163 6b61 6765 0a20 Points package. │ │ │ │ -0001d810: 2020 2020 202a 202a 6e6f 7465 204d 6178 * *note Max │ │ │ │ -0001d820: 4d69 6e6f 7273 3a20 4d61 784d 696e 6f72 Minors: MaxMinor │ │ │ │ -0001d830: 732c 203d 3e20 2e2e 2e2c 2064 6566 6175 s, => ..., defau │ │ │ │ -0001d840: 6c74 2076 616c 7565 0a20 2020 2020 2020 lt value. │ │ │ │ -0001d850: 2046 756e 6374 696f 6e43 6c6f 7375 7265 FunctionClosure │ │ │ │ -0001d860: 5b2e 2e2f 4661 7374 4d69 6e6f 7273 2e6d [../FastMinors.m │ │ │ │ -0001d870: 323a 3138 363a 3138 2d31 3836 3a34 355d 2:186:18-186:45] │ │ │ │ -0001d880: 2c20 7573 6564 2074 6f20 636f 6e74 726f , used to contro │ │ │ │ -0001d890: 6c20 686f 770a 2020 2020 2020 2020 6d61 l how. ma │ │ │ │ -0001d8a0: 6e79 206d 696e 6f72 7320 6172 6520 636f ny minors are co │ │ │ │ -0001d8b0: 6d70 7574 6564 206f 6620 7468 6520 6d61 mputed of the ma │ │ │ │ -0001d8c0: 7472 6963 6573 2069 6e20 6120 7072 6f6a trices in a proj │ │ │ │ -0001d8d0: 6563 7469 7665 2072 6573 6f6c 7574 696f ective resolutio │ │ │ │ -0001d8e0: 6e0a 2020 2020 2020 2a20 2a6e 6f74 6520 n. * *note │ │ │ │ -0001d8f0: 4465 7453 7472 6174 6567 793a 2044 6574 DetStrategy: Det │ │ │ │ -0001d900: 5374 7261 7465 6779 2c20 3d3e 202e 2e2e Strategy, => ... │ │ │ │ -0001d910: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -0001d920: 436f 6661 6374 6f72 2c0a 2020 2020 2020 Cofactor,. │ │ │ │ -0001d930: 2020 4465 7453 7472 6174 6567 7920 6973 DetStrategy is │ │ │ │ -0001d940: 2061 2073 7472 6174 6567 7920 666f 7220 a strategy for │ │ │ │ -0001d950: 616c 6c6f 7769 6e67 2074 6865 2075 7365 allowing the use │ │ │ │ -0001d960: 7220 746f 2063 686f 6f73 6520 686f 770a r to choose how. │ │ │ │ -0001d970: 2020 2020 2020 2020 6465 7465 726d 696e determin │ │ │ │ -0001d980: 616e 7473 2028 6f72 2072 616e 6b29 2c20 ants (or rank), │ │ │ │ -0001d990: 6973 2063 6f6d 7075 7465 640a 2020 2020 is computed. │ │ │ │ -0001d9a0: 2020 2a20 2a6e 6f74 6520 5374 7261 7465 * *note Strate │ │ │ │ -0001d9b0: 6779 3a20 5374 7261 7465 6779 4465 6661 gy: StrategyDefa │ │ │ │ -0001d9c0: 756c 742c 203d 3e20 2e2e 2e2c 2064 6566 ult, => ..., def │ │ │ │ -0001d9d0: 6175 6c74 2076 616c 7565 206e 6577 204f ault value new O │ │ │ │ -0001d9e0: 7074 696f 6e54 6162 6c65 0a20 2020 2020 ptionTable. │ │ │ │ -0001d9f0: 2020 2066 726f 6d20 7b50 6f69 6e74 7320 from {Points │ │ │ │ -0001da00: 3d3e 2030 2c20 5261 6e64 6f6d 203d 3e20 => 0, Random => │ │ │ │ -0001da10: 3136 2c20 4752 6576 4c65 784c 6172 6765 16, GRevLexLarge │ │ │ │ -0001da20: 7374 203d 3e20 302c 204c 6578 536d 616c st => 0, LexSmal │ │ │ │ -0001da30: 6c65 7374 5465 726d 0a20 2020 2020 2020 lestTerm. │ │ │ │ -0001da40: 203d 3e20 3136 2c20 4c65 784c 6172 6765 => 16, LexLarge │ │ │ │ -0001da50: 7374 203d 3e20 302c 204c 6578 536d 616c st => 0, LexSmal │ │ │ │ -0001da60: 6c65 7374 203d 3e20 3136 2c20 4752 6576 lest => 16, GRev │ │ │ │ -0001da70: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ -0001da80: 3d3e 2031 362c 0a20 2020 2020 2020 2052 => 16,. R │ │ │ │ -0001da90: 616e 646f 6d4e 6f6e 7a65 726f 203d 3e20 andomNonzero => │ │ │ │ -0001daa0: 3136 2c20 4752 6576 4c65 7853 6d61 6c6c 16, GRevLexSmall │ │ │ │ -0001dab0: 6573 7420 3d3e 2031 367d 2c20 7374 7261 est => 16}, stra │ │ │ │ -0001dac0: 7465 6769 6573 2066 6f72 2063 686f 6f73 tegies for choos │ │ │ │ -0001dad0: 696e 670a 2020 2020 2020 2020 7375 626d ing. subm │ │ │ │ -0001dae0: 6174 7269 6365 730a 2020 2020 2020 2a20 atrices. * │ │ │ │ -0001daf0: 5665 7262 6f73 6520 3d3e 202e 2e2e 2c20 Verbose => ..., │ │ │ │ -0001db00: 6465 6661 756c 7420 7661 6c75 6520 6661 default value fa │ │ │ │ -0001db10: 6c73 650a 2020 2a20 4f75 7470 7574 733a lse. * Outputs: │ │ │ │ -0001db20: 0a20 2020 2020 202a 206e 2c20 616e 202a . * n, an * │ │ │ │ -0001db30: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ -0001db40: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ -0001db50: 2061 6e20 7570 7065 7220 626f 756e 6420 an upper bound │ │ │ │ -0001db60: 666f 7220 7468 650a 2020 2020 2020 2020 for the. │ │ │ │ -0001db70: 7072 6f6a 6563 7469 7665 2064 696d 656e projective dimen │ │ │ │ -0001db80: 7369 6f6e 206f 6620 4e0a 0a44 6573 6372 sion of N..Descr │ │ │ │ -0001db90: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -0001dba0: 3d3d 0a0a 5468 6520 6675 6e63 7469 6f6e ==..The function │ │ │ │ -0001dbb0: 2070 6469 6d20 7265 7475 726e 7320 7468 pdim returns th │ │ │ │ -0001dbc0: 6520 6c65 6e67 7468 206f 6620 6120 7072 e length of a pr │ │ │ │ -0001dbd0: 6f6a 6563 7469 7665 2072 6573 6f6c 7574 ojective resolut │ │ │ │ -0001dbe0: 696f 6e2e 2049 6620 7468 6520 6d6f 6475 ion. If the modu │ │ │ │ -0001dbf0: 6c65 0a70 6173 7365 6420 6973 206e 6f74 le.passed is not │ │ │ │ -0001dc00: 2068 6f6d 6f67 656e 656f 7573 2c20 7468 homogeneous, th │ │ │ │ -0001dc10: 656e 2074 6865 2070 726f 6a65 6374 6976 en the projectiv │ │ │ │ -0001dc20: 6520 7265 736f 6c75 7469 6f6e 206d 6179 e resolution may │ │ │ │ -0001dc30: 206e 6f74 2062 6520 6d69 6e69 6d61 6c0a not be minimal. │ │ │ │ -0001dc40: 616e 6420 736f 2070 6469 6d20 6361 6e20 and so pdim can │ │ │ │ -0001dc50: 6769 7665 2074 6865 2077 726f 6e67 2061 give the wrong a │ │ │ │ -0001dc60: 6e73 7765 722e 2020 5468 6973 2066 756e nswer. This fun │ │ │ │ -0001dc70: 6374 696f 6e20 7072 6f6a 4469 6d20 7472 ction projDim tr │ │ │ │ -0001dc80: 6965 7320 746f 2069 6d70 726f 7665 0a74 ies to improve.t │ │ │ │ -0001dc90: 6869 7320 626f 756e 6420 6279 2063 6f6e his bound by con │ │ │ │ -0001dca0: 7369 6465 7269 6e67 2069 6465 616c 7320 sidering ideals │ │ │ │ -0001dcb0: 6f66 2061 7070 726f 7072 6961 7465 6c79 of appropriately │ │ │ │ -0001dcc0: 2073 697a 6564 206d 696e 6f72 7320 6f66 sized minors of │ │ │ │ -0001dcd0: 2074 6865 0a72 6573 6f6c 7574 696f 6e20 the.resolution │ │ │ │ -0001dce0: 2873 7461 7274 696e 6720 6672 6f6d 2074 (starting from t │ │ │ │ -0001dcf0: 6865 2065 6e64 206f 6620 7468 6520 7265 he end of the re │ │ │ │ -0001dd00: 736f 6c75 7469 6f6e 2061 6e64 2077 6f72 solution and wor │ │ │ │ -0001dd10: 6b69 6e67 2062 6163 6b77 6172 6473 292e king backwards). │ │ │ │ -0001dd20: 0a55 7369 6e67 2074 6865 206f 7074 696f .Using the optio │ │ │ │ -0001dd30: 6e20 4d69 6e44 696d 656e 7369 6f6e 2028 n MinDimension ( │ │ │ │ -0001dd40: 6465 6661 756c 7420 7661 6c75 6520 3029 default value 0) │ │ │ │ -0001dd50: 2067 6976 6573 2061 206c 6f77 6572 2062 gives a lower b │ │ │ │ -0001dd60: 6f75 6e64 206f 6e20 7468 650a 7072 6f6a ound on the.proj │ │ │ │ -0001dd70: 6563 7469 7665 2064 696d 656e 7369 6f6e ective dimension │ │ │ │ -0001dd80: 2c20 696e 6372 6561 7369 6e67 2069 7420 , increasing it │ │ │ │ -0001dd90: 6361 6e20 7468 7573 2069 6d70 726f 7665 can thus improve │ │ │ │ -0001dda0: 2074 6865 2073 7065 6564 206f 6620 636f the speed of co │ │ │ │ -0001ddb0: 6d70 7574 6174 696f 6e2e 0a0a 2b2d 2d2d mputation...+--- │ │ │ │ -0001ddc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ddd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ddf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001de00: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ -0001de10: 2051 515b 782c 795d 3b20 2020 2020 2020 QQ[x,y]; │ │ │ │ -0001de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001de40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001de50: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -0001de60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001de70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001de80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001de90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -0001dea0: 203a 2049 203d 2069 6465 616c 2828 785e : I = ideal((x^ │ │ │ │ -0001deb0: 332b 7929 5e32 2c20 2878 5e32 2b79 5e32 3+y)^2, (x^2+y^2 │ │ │ │ -0001dec0: 295e 322c 2028 782b 795e 3329 5e32 2c20 )^2, (x+y^3)^2, │ │ │ │ -0001ded0: 2878 2a79 295e 3229 3b20 2020 2020 2020 (x*y)^2); │ │ │ │ -0001dee0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df30: 207c 0a7c 6f32 203a 2049 6465 616c 206f |.|o2 : Ideal o │ │ │ │ -0001df40: 6620 5220 2020 2020 2020 2020 2020 2020 f R │ │ │ │ +0001d210: 2922 0a20 202a 2022 6973 5261 6e6b 4174 )". * "isRankAt │ │ │ │ +0001d220: 4c65 6173 7428 2e2e 2e2c 506f 696e 744f Least(...,PointO │ │ │ │ +0001d230: 7074 696f 6e73 3d3e 2e2e 2e29 220a 2020 ptions=>...)". │ │ │ │ +0001d240: 2a20 2270 726f 6a44 696d 282e 2e2e 2c50 * "projDim(...,P │ │ │ │ +0001d250: 6f69 6e74 4f70 7469 6f6e 733d 3e2e 2e2e ointOptions=>... │ │ │ │ +0001d260: 2922 0a20 202a 2022 7265 6775 6c61 7249 )". * "regularI │ │ │ │ +0001d270: 6e43 6f64 696d 656e 7369 6f6e 282e 2e2e nCodimension(... │ │ │ │ +0001d280: 2c50 6f69 6e74 4f70 7469 6f6e 733d 3e2e ,PointOptions=>. │ │ │ │ +0001d290: 2e2e 2922 0a0a 466f 7220 7468 6520 7072 ..)"..For the pr │ │ │ │ +0001d2a0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +0001d2b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +0001d2c0: 206f 626a 6563 7420 2a6e 6f74 6520 506f object *note Po │ │ │ │ +0001d2d0: 696e 744f 7074 696f 6e73 3a20 506f 696e intOptions: Poin │ │ │ │ +0001d2e0: 744f 7074 696f 6e73 2c20 6973 2061 202a tOptions, is a * │ │ │ │ +0001d2f0: 6e6f 7465 2073 796d 626f 6c3a 0a28 4d61 note symbol:.(Ma │ │ │ │ +0001d300: 6361 756c 6179 3244 6f63 2953 796d 626f caulay2Doc)Symbo │ │ │ │ +0001d310: 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d l,...----------- │ │ │ │ +0001d320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d360: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +0001d370: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +0001d380: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +0001d390: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +0001d3a0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +0001d3b0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +0001d3c0: 7932 2f70 6163 6b61 6765 732f 4661 7374 y2/packages/Fast │ │ │ │ +0001d3d0: 4d69 6e6f 7273 2e0a 6d32 3a31 3739 343a Minors..m2:1794: │ │ │ │ +0001d3e0: 302e 0a1f 0a46 696c 653a 2046 6173 744d 0....File: FastM │ │ │ │ +0001d3f0: 696e 6f72 732e 696e 666f 2c20 4e6f 6465 inors.info, Node │ │ │ │ +0001d400: 3a20 7072 6f6a 4469 6d2c 204e 6578 743a : projDim, Next: │ │ │ │ +0001d410: 2072 6563 7572 7369 7665 4d69 6e6f 7273 recursiveMinors │ │ │ │ +0001d420: 2c20 5072 6576 3a20 506f 696e 744f 7074 , Prev: PointOpt │ │ │ │ +0001d430: 696f 6e73 2c20 5570 3a20 546f 700a 0a70 ions, Up: Top..p │ │ │ │ +0001d440: 726f 6a44 696d 202d 2d20 6669 6e64 7320 rojDim -- finds │ │ │ │ +0001d450: 616e 2075 7070 6572 2062 6f75 6e64 2066 an upper bound f │ │ │ │ +0001d460: 6f72 2074 6865 2070 726f 6a65 6374 6976 or the projectiv │ │ │ │ +0001d470: 6520 6469 6d65 6e73 696f 6e20 6f66 2061 e dimension of a │ │ │ │ +0001d480: 206d 6f64 756c 650a 2a2a 2a2a 2a2a 2a2a module.******** │ │ │ │ +0001d490: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d4a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d4b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d4c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d4d0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +0001d4e0: 2020 2020 2020 6e20 3d20 7072 6f6a 4469 n = projDi │ │ │ │ +0001d4f0: 6d28 4e2c 204d 696e 4469 6d65 6e73 696f m(N, MinDimensio │ │ │ │ +0001d500: 6e3d 3e64 290a 2020 2a20 496e 7075 7473 n=>d). * Inputs │ │ │ │ +0001d510: 3a0a 2020 2020 2020 2a20 4e2c 2061 202a :. * N, a * │ │ │ │ +0001d520: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ +0001d530: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ +0001d540: 652c 2c20 6120 6d6f 6475 6c65 206f 7665 e,, a module ove │ │ │ │ +0001d550: 7220 6120 706f 6c79 6e6f 6d69 616c 0a20 r a polynomial. │ │ │ │ +0001d560: 2020 2020 2020 2072 696e 670a 2020 2020 ring. │ │ │ │ +0001d570: 2020 2a20 642c 2061 6e20 2a6e 6f74 6520 * d, an *note │ │ │ │ +0001d580: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ +0001d590: 6179 3244 6f63 295a 5a2c 2c20 7468 6520 ay2Doc)ZZ,, the │ │ │ │ +0001d5a0: 6d69 6e69 6d75 6d20 7072 6f6a 6563 7469 minimum projecti │ │ │ │ +0001d5b0: 7665 0a20 2020 2020 2020 2064 696d 656e ve. dimen │ │ │ │ +0001d5c0: 7369 6f6e 206f 6620 7468 6520 6d6f 6475 sion of the modu │ │ │ │ +0001d5d0: 6c65 0a20 202a 202a 6e6f 7465 204f 7074 le. * *note Opt │ │ │ │ +0001d5e0: 696f 6e61 6c20 696e 7075 7473 3a20 284d ional inputs: (M │ │ │ │ +0001d5f0: 6163 6175 6c61 7932 446f 6329 7573 696e acaulay2Doc)usin │ │ │ │ +0001d600: 6720 6675 6e63 7469 6f6e 7320 7769 7468 g functions with │ │ │ │ +0001d610: 206f 7074 696f 6e61 6c20 696e 7075 7473 optional inputs │ │ │ │ +0001d620: 2c3a 0a20 2020 2020 202a 204d 696e 4469 ,:. * MinDi │ │ │ │ +0001d630: 6d65 6e73 696f 6e20 3d3e 2061 202a 6e6f mension => a *no │ │ │ │ +0001d640: 7465 206e 756d 6265 723a 2028 4d61 6361 te number: (Maca │ │ │ │ +0001d650: 756c 6179 3244 6f63 294e 756d 6265 722c ulay2Doc)Number, │ │ │ │ +0001d660: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +0001d670: 302c 0a20 2020 2020 2020 2073 746f 7020 0,. stop │ │ │ │ +0001d680: 6166 7465 7220 7665 7269 6679 696e 6720 after verifying │ │ │ │ +0001d690: 7468 6520 6d6f 6475 6c65 2068 6173 2061 the module has a │ │ │ │ +0001d6a0: 7420 6d6f 7374 2061 2063 6572 7461 696e t most a certain │ │ │ │ +0001d6b0: 2070 726f 6a65 6374 6976 650a 2020 2020 projective. │ │ │ │ +0001d6c0: 2020 2020 6469 6d65 6e73 696f 6e0a 2020 dimension. │ │ │ │ +0001d6d0: 2020 2020 2a20 2a6e 6f74 6520 506f 696e * *note Poin │ │ │ │ +0001d6e0: 744f 7074 696f 6e73 3a20 506f 696e 744f tOptions: PointO │ │ │ │ +0001d6f0: 7074 696f 6e73 2c20 3d3e 2061 202a 6e6f ptions, => a *no │ │ │ │ +0001d700: 7465 206c 6973 743a 2028 4d61 6361 756c te list: (Macaul │ │ │ │ +0001d710: 6179 3244 6f63 294c 6973 742c 2c0a 2020 ay2Doc)List,,. │ │ │ │ +0001d720: 2020 2020 2020 6465 6661 756c 7420 7661 default va │ │ │ │ +0001d730: 6c75 6520 7b53 7472 6174 6567 7920 3d3e lue {Strategy => │ │ │ │ +0001d740: 2044 6566 6175 6c74 2c20 486f 6d6f 6765 Default, Homoge │ │ │ │ +0001d750: 6e65 6f75 7320 3d3e 2066 616c 7365 2c20 neous => false, │ │ │ │ +0001d760: 5265 706c 6163 656d 656e 740a 2020 2020 Replacement. │ │ │ │ +0001d770: 2020 2020 3d3e 2042 696e 6f6d 6961 6c2c => Binomial, │ │ │ │ +0001d780: 2045 7874 656e 6446 6965 6c64 203d 3e20 ExtendField => │ │ │ │ +0001d790: 7472 7565 2c20 506f 696e 7443 6865 636b true, PointCheck │ │ │ │ +0001d7a0: 4174 7465 6d70 7473 203d 3e20 302c 0a20 Attempts => 0,. │ │ │ │ +0001d7b0: 2020 2020 2020 2044 6563 6f6d 706f 7369 Decomposi │ │ │ │ +0001d7c0: 7469 6f6e 5374 7261 7465 6779 203d 3e20 tionStrategy => │ │ │ │ +0001d7d0: 4465 636f 6d70 6f73 652c 204e 756d 5468 Decompose, NumTh │ │ │ │ +0001d7e0: 7265 6164 7354 6f55 7365 203d 3e20 312c readsToUse => 1, │ │ │ │ +0001d7f0: 0a20 2020 2020 2020 2044 696d 656e 7369 . Dimensi │ │ │ │ +0001d800: 6f6e 4675 6e63 7469 6f6e 203d 3e20 6469 onFunction => di │ │ │ │ +0001d810: 6d2c 2056 6572 626f 7365 203d 3e20 6661 m, Verbose => fa │ │ │ │ +0001d820: 6c73 657d 2c20 6f70 7469 6f6e 7320 746f lse}, options to │ │ │ │ +0001d830: 2062 6520 7061 7373 6564 2074 6f0a 2020 be passed to. │ │ │ │ +0001d840: 2020 2020 2020 7468 6520 5261 6e64 6f6d the Random │ │ │ │ +0001d850: 506f 696e 7473 2070 6163 6b61 6765 0a20 Points package. │ │ │ │ +0001d860: 2020 2020 202a 202a 6e6f 7465 204d 6178 * *note Max │ │ │ │ +0001d870: 4d69 6e6f 7273 3a20 4d61 784d 696e 6f72 Minors: MaxMinor │ │ │ │ +0001d880: 732c 203d 3e20 2e2e 2e2c 2064 6566 6175 s, => ..., defau │ │ │ │ +0001d890: 6c74 2076 616c 7565 0a20 2020 2020 2020 lt value. │ │ │ │ +0001d8a0: 2046 756e 6374 696f 6e43 6c6f 7375 7265 FunctionClosure │ │ │ │ +0001d8b0: 5b2e 2e2f 4661 7374 4d69 6e6f 7273 2e6d [../FastMinors.m │ │ │ │ +0001d8c0: 323a 3138 363a 3138 2d31 3836 3a34 355d 2:186:18-186:45] │ │ │ │ +0001d8d0: 2c20 7573 6564 2074 6f20 636f 6e74 726f , used to contro │ │ │ │ +0001d8e0: 6c20 686f 770a 2020 2020 2020 2020 6d61 l how. ma │ │ │ │ +0001d8f0: 6e79 206d 696e 6f72 7320 6172 6520 636f ny minors are co │ │ │ │ +0001d900: 6d70 7574 6564 206f 6620 7468 6520 6d61 mputed of the ma │ │ │ │ +0001d910: 7472 6963 6573 2069 6e20 6120 7072 6f6a trices in a proj │ │ │ │ +0001d920: 6563 7469 7665 2072 6573 6f6c 7574 696f ective resolutio │ │ │ │ +0001d930: 6e0a 2020 2020 2020 2a20 2a6e 6f74 6520 n. * *note │ │ │ │ +0001d940: 4465 7453 7472 6174 6567 793a 2044 6574 DetStrategy: Det │ │ │ │ +0001d950: 5374 7261 7465 6779 2c20 3d3e 202e 2e2e Strategy, => ... │ │ │ │ +0001d960: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +0001d970: 436f 6661 6374 6f72 2c0a 2020 2020 2020 Cofactor,. │ │ │ │ +0001d980: 2020 4465 7453 7472 6174 6567 7920 6973 DetStrategy is │ │ │ │ +0001d990: 2061 2073 7472 6174 6567 7920 666f 7220 a strategy for │ │ │ │ +0001d9a0: 616c 6c6f 7769 6e67 2074 6865 2075 7365 allowing the use │ │ │ │ +0001d9b0: 7220 746f 2063 686f 6f73 6520 686f 770a r to choose how. │ │ │ │ +0001d9c0: 2020 2020 2020 2020 6465 7465 726d 696e determin │ │ │ │ +0001d9d0: 616e 7473 2028 6f72 2072 616e 6b29 2c20 ants (or rank), │ │ │ │ +0001d9e0: 6973 2063 6f6d 7075 7465 640a 2020 2020 is computed. │ │ │ │ +0001d9f0: 2020 2a20 2a6e 6f74 6520 5374 7261 7465 * *note Strate │ │ │ │ +0001da00: 6779 3a20 5374 7261 7465 6779 4465 6661 gy: StrategyDefa │ │ │ │ +0001da10: 756c 742c 203d 3e20 2e2e 2e2c 2064 6566 ult, => ..., def │ │ │ │ +0001da20: 6175 6c74 2076 616c 7565 206e 6577 204f ault value new O │ │ │ │ +0001da30: 7074 696f 6e54 6162 6c65 0a20 2020 2020 ptionTable. │ │ │ │ +0001da40: 2020 2066 726f 6d20 7b50 6f69 6e74 7320 from {Points │ │ │ │ +0001da50: 3d3e 2030 2c20 5261 6e64 6f6d 203d 3e20 => 0, Random => │ │ │ │ +0001da60: 3136 2c20 4752 6576 4c65 784c 6172 6765 16, GRevLexLarge │ │ │ │ +0001da70: 7374 203d 3e20 302c 204c 6578 536d 616c st => 0, LexSmal │ │ │ │ +0001da80: 6c65 7374 5465 726d 0a20 2020 2020 2020 lestTerm. │ │ │ │ +0001da90: 203d 3e20 3136 2c20 4c65 784c 6172 6765 => 16, LexLarge │ │ │ │ +0001daa0: 7374 203d 3e20 302c 204c 6578 536d 616c st => 0, LexSmal │ │ │ │ +0001dab0: 6c65 7374 203d 3e20 3136 2c20 4752 6576 lest => 16, GRev │ │ │ │ +0001dac0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +0001dad0: 3d3e 2031 362c 0a20 2020 2020 2020 2052 => 16,. R │ │ │ │ +0001dae0: 616e 646f 6d4e 6f6e 7a65 726f 203d 3e20 andomNonzero => │ │ │ │ +0001daf0: 3136 2c20 4752 6576 4c65 7853 6d61 6c6c 16, GRevLexSmall │ │ │ │ +0001db00: 6573 7420 3d3e 2031 367d 2c20 7374 7261 est => 16}, stra │ │ │ │ +0001db10: 7465 6769 6573 2066 6f72 2063 686f 6f73 tegies for choos │ │ │ │ +0001db20: 696e 670a 2020 2020 2020 2020 7375 626d ing. subm │ │ │ │ +0001db30: 6174 7269 6365 730a 2020 2020 2020 2a20 atrices. * │ │ │ │ +0001db40: 5665 7262 6f73 6520 3d3e 202e 2e2e 2c20 Verbose => ..., │ │ │ │ +0001db50: 6465 6661 756c 7420 7661 6c75 6520 6661 default value fa │ │ │ │ +0001db60: 6c73 650a 2020 2a20 4f75 7470 7574 733a lse. * Outputs: │ │ │ │ +0001db70: 0a20 2020 2020 202a 206e 2c20 616e 202a . * n, an * │ │ │ │ +0001db80: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ +0001db90: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ +0001dba0: 2061 6e20 7570 7065 7220 626f 756e 6420 an upper bound │ │ │ │ +0001dbb0: 666f 7220 7468 650a 2020 2020 2020 2020 for the. │ │ │ │ +0001dbc0: 7072 6f6a 6563 7469 7665 2064 696d 656e projective dimen │ │ │ │ +0001dbd0: 7369 6f6e 206f 6620 4e0a 0a44 6573 6372 sion of N..Descr │ │ │ │ +0001dbe0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +0001dbf0: 3d3d 0a0a 5468 6520 6675 6e63 7469 6f6e ==..The function │ │ │ │ +0001dc00: 2070 6469 6d20 7265 7475 726e 7320 7468 pdim returns th │ │ │ │ +0001dc10: 6520 6c65 6e67 7468 206f 6620 6120 7072 e length of a pr │ │ │ │ +0001dc20: 6f6a 6563 7469 7665 2072 6573 6f6c 7574 ojective resolut │ │ │ │ +0001dc30: 696f 6e2e 2049 6620 7468 6520 6d6f 6475 ion. If the modu │ │ │ │ +0001dc40: 6c65 0a70 6173 7365 6420 6973 206e 6f74 le.passed is not │ │ │ │ +0001dc50: 2068 6f6d 6f67 656e 656f 7573 2c20 7468 homogeneous, th │ │ │ │ +0001dc60: 656e 2074 6865 2070 726f 6a65 6374 6976 en the projectiv │ │ │ │ +0001dc70: 6520 7265 736f 6c75 7469 6f6e 206d 6179 e resolution may │ │ │ │ +0001dc80: 206e 6f74 2062 6520 6d69 6e69 6d61 6c0a not be minimal. │ │ │ │ +0001dc90: 616e 6420 736f 2070 6469 6d20 6361 6e20 and so pdim can │ │ │ │ +0001dca0: 6769 7665 2074 6865 2077 726f 6e67 2061 give the wrong a │ │ │ │ +0001dcb0: 6e73 7765 722e 2020 5468 6973 2066 756e nswer. This fun │ │ │ │ +0001dcc0: 6374 696f 6e20 7072 6f6a 4469 6d20 7472 ction projDim tr │ │ │ │ +0001dcd0: 6965 7320 746f 2069 6d70 726f 7665 0a74 ies to improve.t │ │ │ │ +0001dce0: 6869 7320 626f 756e 6420 6279 2063 6f6e his bound by con │ │ │ │ +0001dcf0: 7369 6465 7269 6e67 2069 6465 616c 7320 sidering ideals │ │ │ │ +0001dd00: 6f66 2061 7070 726f 7072 6961 7465 6c79 of appropriately │ │ │ │ +0001dd10: 2073 697a 6564 206d 696e 6f72 7320 6f66 sized minors of │ │ │ │ +0001dd20: 2074 6865 0a72 6573 6f6c 7574 696f 6e20 the.resolution │ │ │ │ +0001dd30: 2873 7461 7274 696e 6720 6672 6f6d 2074 (starting from t │ │ │ │ +0001dd40: 6865 2065 6e64 206f 6620 7468 6520 7265 he end of the re │ │ │ │ +0001dd50: 736f 6c75 7469 6f6e 2061 6e64 2077 6f72 solution and wor │ │ │ │ +0001dd60: 6b69 6e67 2062 6163 6b77 6172 6473 292e king backwards). │ │ │ │ +0001dd70: 0a55 7369 6e67 2074 6865 206f 7074 696f .Using the optio │ │ │ │ +0001dd80: 6e20 4d69 6e44 696d 656e 7369 6f6e 2028 n MinDimension ( │ │ │ │ +0001dd90: 6465 6661 756c 7420 7661 6c75 6520 3029 default value 0) │ │ │ │ +0001dda0: 2067 6976 6573 2061 206c 6f77 6572 2062 gives a lower b │ │ │ │ +0001ddb0: 6f75 6e64 206f 6e20 7468 650a 7072 6f6a ound on the.proj │ │ │ │ +0001ddc0: 6563 7469 7665 2064 696d 656e 7369 6f6e ective dimension │ │ │ │ +0001ddd0: 2c20 696e 6372 6561 7369 6e67 2069 7420 , increasing it │ │ │ │ +0001dde0: 6361 6e20 7468 7573 2069 6d70 726f 7665 can thus improve │ │ │ │ +0001ddf0: 2074 6865 2073 7065 6564 206f 6620 636f the speed of co │ │ │ │ +0001de00: 6d70 7574 6174 696f 6e2e 0a0a 2b2d 2d2d mputation...+--- │ │ │ │ +0001de10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001de20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001de30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001de40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001de50: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ +0001de60: 2051 515b 782c 795d 3b20 2020 2020 2020 QQ[x,y]; │ │ │ │ +0001de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001de90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001dea0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0001deb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ded0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +0001def0: 203a 2049 203d 2069 6465 616c 2828 785e : I = ideal((x^ │ │ │ │ +0001df00: 332b 7929 5e32 2c20 2878 5e32 2b79 5e32 3+y)^2, (x^2+y^2 │ │ │ │ +0001df10: 295e 322c 2028 782b 795e 3329 5e32 2c20 )^2, (x+y^3)^2, │ │ │ │ +0001df20: 2878 2a79 295e 3229 3b20 2020 2020 2020 (x*y)^2); │ │ │ │ +0001df30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df70: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0001df80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001df90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfc0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2070 -------+.|i3 : p │ │ │ │ -0001dfd0: 6469 6d28 6d6f 6475 6c65 2049 2920 2020 dim(module I) │ │ │ │ -0001dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e010: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001df80: 207c 0a7c 6f32 203a 2049 6465 616c 206f |.|o2 : Ideal o │ │ │ │ +0001df90: 6620 5220 2020 2020 2020 2020 2020 2020 f R │ │ │ │ +0001dfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001dfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001dfc0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001dfd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e010: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2070 -------+.|i3 : p │ │ │ │ +0001e020: 6469 6d28 6d6f 6475 6c65 2049 2920 2020 dim(module I) │ │ │ │ 0001e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001e060: 6f33 203d 2032 2020 2020 2020 2020 2020 o3 = 2 │ │ │ │ +0001e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e060: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0a0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001e0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e0f0: 2d2d 2d2b 0a7c 6934 203a 2074 696d 6520 ---+.|i4 : time │ │ │ │ -0001e100: 7072 6f6a 4469 6d28 6d6f 6475 6c65 2049 projDim(module I │ │ │ │ -0001e110: 2c20 5374 7261 7465 6779 3d3e 5374 7261 , Strategy=>Stra │ │ │ │ -0001e120: 7465 6779 5261 6e64 6f6d 2920 2020 2020 tegyRandom) │ │ │ │ -0001e130: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e140: 7c20 2d2d 2075 7365 6420 302e 3233 3735 | -- used 0.2375 │ │ │ │ -0001e150: 3739 7320 2863 7075 293b 2030 2e31 3432 79s (cpu); 0.142 │ │ │ │ -0001e160: 3935 3673 2028 7468 7265 6164 293b 2030 956s (thread); 0 │ │ │ │ -0001e170: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ -0001e180: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1d0: 2020 2020 7c0a 7c6f 3420 3d20 3120 2020 |.|o4 = 1 │ │ │ │ +0001e0a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e0b0: 6f33 203d 2032 2020 2020 2020 2020 2020 o3 = 2 │ │ │ │ +0001e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0f0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001e100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e140: 2d2d 2d2b 0a7c 6934 203a 2074 696d 6520 ---+.|i4 : time │ │ │ │ +0001e150: 7072 6f6a 4469 6d28 6d6f 6475 6c65 2049 projDim(module I │ │ │ │ +0001e160: 2c20 5374 7261 7465 6779 3d3e 5374 7261 , Strategy=>Stra │ │ │ │ +0001e170: 7465 6779 5261 6e64 6f6d 2920 2020 2020 tegyRandom) │ │ │ │ +0001e180: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e190: 7c20 2d2d 2075 7365 6420 302e 3332 3035 | -- used 0.3205 │ │ │ │ +0001e1a0: 3235 7320 2863 7075 293b 2030 2e31 3735 25s (cpu); 0.175 │ │ │ │ +0001e1b0: 3831 3773 2028 7468 7265 6164 293b 2030 817s (thread); 0 │ │ │ │ +0001e1c0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +0001e1d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001e220: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0001e230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e260: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -0001e270: 3a20 7469 6d65 2070 726f 6a44 696d 286d : time projDim(m │ │ │ │ -0001e280: 6f64 756c 6520 492c 2053 7472 6174 6567 odule I, Strateg │ │ │ │ -0001e290: 793d 3e53 7472 6174 6567 7952 616e 646f y=>StrategyRando │ │ │ │ -0001e2a0: 6d2c 204d 696e 4469 6d65 6e73 696f 6e20 m, MinDimension │ │ │ │ -0001e2b0: 3d3e 2031 297c 0a7c 202d 2d20 7573 6564 => 1)|.| -- used │ │ │ │ -0001e2c0: 2030 2e30 3130 3939 3436 7320 2863 7075 0.0109946s (cpu │ │ │ │ -0001e2d0: 293b 2030 2e30 3132 3830 3634 7320 2874 ); 0.0128064s (t │ │ │ │ -0001e2e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ -0001e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e300: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e340: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ -0001e350: 203d 2031 2020 2020 2020 2020 2020 2020 = 1 │ │ │ │ +0001e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e220: 2020 2020 7c0a 7c6f 3420 3d20 3120 2020 |.|o4 = 1 │ │ │ │ +0001e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e260: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001e270: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001e280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ +0001e2c0: 3a20 7469 6d65 2070 726f 6a44 696d 286d : time projDim(m │ │ │ │ +0001e2d0: 6f64 756c 6520 492c 2053 7472 6174 6567 odule I, Strateg │ │ │ │ +0001e2e0: 793d 3e53 7472 6174 6567 7952 616e 646f y=>StrategyRando │ │ │ │ +0001e2f0: 6d2c 204d 696e 4469 6d65 6e73 696f 6e20 m, MinDimension │ │ │ │ +0001e300: 3d3e 2031 297c 0a7c 202d 2d20 7573 6564 => 1)|.| -- used │ │ │ │ +0001e310: 2030 2e30 3133 3631 3934 7320 2863 7075 0.0136194s (cpu │ │ │ │ +0001e320: 293b 2030 2e30 3136 3030 3835 7320 2874 ); 0.0160085s (t │ │ │ │ +0001e330: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +0001e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e350: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e390: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -0001e3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e3e0: 2d2b 0a0a 5468 6520 6f70 7469 6f6e 204d -+..The option M │ │ │ │ -0001e3f0: 6178 4d69 6e6f 7273 2063 616e 2062 6520 axMinors can be │ │ │ │ -0001e400: 7573 6564 2074 6f20 636f 6e74 726f 6c20 used to control │ │ │ │ -0001e410: 686f 7720 6d61 6e79 206d 696e 6f72 7320 how many minors │ │ │ │ -0001e420: 6172 6520 636f 6d70 7574 6564 2061 740a are computed at. │ │ │ │ -0001e430: 6561 6368 2073 7465 702e 2049 6620 7468 each step. If th │ │ │ │ -0001e440: 6973 2069 7320 6e6f 7420 7370 6563 6966 is is not specif │ │ │ │ -0001e450: 6965 642c 2074 6865 206e 756d 6265 7220 ied, the number │ │ │ │ -0001e460: 6f66 206d 696e 6f72 7320 6973 2061 2066 of minors is a f │ │ │ │ -0001e470: 756e 6374 696f 6e20 6f66 2074 6865 0a64 unction of the.d │ │ │ │ -0001e480: 696d 656e 7369 6f6e 2024 6424 206f 6620 imension $d$ of │ │ │ │ -0001e490: 7468 6520 706f 6c79 6e6f 6d69 616c 2072 the polynomial r │ │ │ │ -0001e4a0: 696e 6720 616e 6420 7468 6520 706f 7373 ing and the poss │ │ │ │ -0001e4b0: 6962 6c65 206d 696e 6f72 7320 2463 242e ible minors $c$. │ │ │ │ -0001e4c0: 2053 7065 6369 6669 6361 6c6c 790a 6974 Specifically.it │ │ │ │ -0001e4d0: 2069 7320 3130 202a 2064 202b 2032 202a is 10 * d + 2 * │ │ │ │ -0001e4e0: 206c 6f67 5f31 2e33 2863 292e 204f 7468 log_1.3(c). Oth │ │ │ │ -0001e4f0: 6572 7769 7365 2074 6865 2075 7365 7220 erwise the user │ │ │ │ -0001e500: 6361 6e20 7365 7420 7468 6520 6f70 7469 can set the opti │ │ │ │ -0001e510: 6f6e 204d 6178 4d69 6e6f 7273 0a3d 3e20 on MaxMinors.=> │ │ │ │ -0001e520: 5a5a 2074 6f20 7370 6563 6966 7920 7468 ZZ to specify th │ │ │ │ -0001e530: 6174 2061 2066 6978 6564 2069 6e74 6567 at a fixed integ │ │ │ │ -0001e540: 6572 2069 7320 7573 6564 2066 6f72 2065 er is used for e │ │ │ │ -0001e550: 6163 6820 7374 6570 2e20 2041 6c74 6572 ach step. Alter │ │ │ │ -0001e560: 6e61 7469 7665 6c79 2c0a 7468 6520 7573 natively,.the us │ │ │ │ -0001e570: 6572 2063 616e 2063 6f6e 7472 6f6c 2074 er can control t │ │ │ │ -0001e580: 6865 206e 756d 6265 7220 6f66 206d 696e he number of min │ │ │ │ -0001e590: 6f72 7320 636f 6d70 7574 6564 2061 7420 ors computed at │ │ │ │ -0001e5a0: 6561 6368 2073 7465 7020 6279 2073 6574 each step by set │ │ │ │ -0001e5b0: 7469 6e67 2074 6865 0a6f 7074 696f 6e20 ting the.option │ │ │ │ -0001e5c0: 4d61 784d 696e 6f72 7320 3d3e 204c 6973 MaxMinors => Lis │ │ │ │ -0001e5d0: 742e 2020 496e 2074 6869 7320 6361 7365 t. In this case │ │ │ │ -0001e5e0: 2c20 7468 6520 6c69 7374 2073 7065 6369 , the list speci │ │ │ │ -0001e5f0: 6669 6573 2068 6f77 206d 616e 7920 6d69 fies how many mi │ │ │ │ -0001e600: 6e6f 7273 2074 6f0a 6265 2063 6f6d 7075 nors to.be compu │ │ │ │ -0001e610: 7465 6420 6174 2065 6163 6820 7374 6570 ted at each step │ │ │ │ -0001e620: 2c20 2877 6f72 6b69 6e67 2062 6163 6b77 , (working backw │ │ │ │ -0001e630: 6172 6473 292e 2046 696e 616c 6c79 2c20 ards). Finally, │ │ │ │ -0001e640: 796f 7520 6361 6e20 616c 736f 2073 6574 you can also set │ │ │ │ -0001e650: 0a4d 6178 4d69 6e6f 7273 2074 6f20 6265 .MaxMinors to be │ │ │ │ -0001e660: 2061 2063 7573 746f 6d20 6675 6e63 7469 a custom functi │ │ │ │ -0001e670: 6f6e 206f 6620 7468 6520 6469 6d65 6e73 on of the dimens │ │ │ │ -0001e680: 696f 6e20 2464 2420 6f66 2074 6865 2070 ion $d$ of the p │ │ │ │ -0001e690: 6f6c 796e 6f6d 6961 6c20 7269 6e67 0a61 olynomial ring.a │ │ │ │ -0001e6a0: 6e64 2074 6865 206d 6178 696d 756d 206e nd the maximum n │ │ │ │ -0001e6b0: 756d 6265 7220 6f66 206d 696e 6f72 732e umber of minors. │ │ │ │ -0001e6c0: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -0001e6d0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2070 ===.. * *note p │ │ │ │ -0001e6e0: 6469 6d3a 2028 4d61 6361 756c 6179 3244 dim: (Macaulay2D │ │ │ │ -0001e6f0: 6f63 2970 6469 6d2c 202d 2d20 636f 6d70 oc)pdim, -- comp │ │ │ │ -0001e700: 7574 6520 7468 6520 7072 6f6a 6563 7469 ute the projecti │ │ │ │ -0001e710: 7665 2064 696d 656e 7369 6f6e 0a0a 5761 ve dimension..Wa │ │ │ │ -0001e720: 7973 2074 6f20 7573 6520 7072 6f6a 4469 ys to use projDi │ │ │ │ -0001e730: 6d3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d m:.============= │ │ │ │ -0001e740: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7072 =======.. * "pr │ │ │ │ -0001e750: 6f6a 4469 6d28 4d6f 6475 6c65 2922 0a0a ojDim(Module)".. │ │ │ │ -0001e760: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -0001e770: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -0001e780: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -0001e790: 7420 2a6e 6f74 6520 7072 6f6a 4469 6d3a t *note projDim: │ │ │ │ -0001e7a0: 2070 726f 6a44 696d 2c20 6973 2061 202a projDim, is a * │ │ │ │ -0001e7b0: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ -0001e7c0: 7469 6f6e 2077 6974 6820 6f70 7469 6f6e tion with option │ │ │ │ -0001e7d0: 733a 0a28 4d61 6361 756c 6179 3244 6f63 s:.(Macaulay2Doc │ │ │ │ -0001e7e0: 294d 6574 686f 6446 756e 6374 696f 6e57 )MethodFunctionW │ │ │ │ -0001e7f0: 6974 684f 7074 696f 6e73 2c2e 0a0a 2d2d ithOptions,...-- │ │ │ │ -0001e800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -0001e850: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -0001e860: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -0001e870: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -0001e880: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -0001e890: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -0001e8a0: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -0001e8b0: 6167 6573 2f46 6173 744d 696e 6f72 732e ages/FastMinors. │ │ │ │ -0001e8c0: 0a6d 323a 3230 3739 3a30 2e0a 1f0a 4669 .m2:2079:0....Fi │ │ │ │ -0001e8d0: 6c65 3a20 4661 7374 4d69 6e6f 7273 2e69 le: FastMinors.i │ │ │ │ -0001e8e0: 6e66 6f2c 204e 6f64 653a 2072 6563 7572 nfo, Node: recur │ │ │ │ -0001e8f0: 7369 7665 4d69 6e6f 7273 2c20 4e65 7874 siveMinors, Next │ │ │ │ -0001e900: 3a20 7265 6775 6c61 7249 6e43 6f64 696d : regularInCodim │ │ │ │ -0001e910: 656e 7369 6f6e 2c20 5072 6576 3a20 7072 ension, Prev: pr │ │ │ │ -0001e920: 6f6a 4469 6d2c 2055 703a 2054 6f70 0a0a ojDim, Up: Top.. │ │ │ │ -0001e930: 7265 6375 7273 6976 654d 696e 6f72 7320 recursiveMinors │ │ │ │ -0001e940: 2d2d 2075 7365 7320 6120 7265 6375 7273 -- uses a recurs │ │ │ │ -0001e950: 6976 6520 636f 6661 6374 6f72 2061 6c67 ive cofactor alg │ │ │ │ -0001e960: 6f72 6974 686d 2074 6f20 636f 6d70 7574 orithm to comput │ │ │ │ -0001e970: 6520 7468 6520 6964 6561 6c20 6f66 206d e the ideal of m │ │ │ │ -0001e980: 696e 6f72 7320 6f66 2061 206d 6174 7269 inors of a matri │ │ │ │ -0001e990: 780a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a x.************** │ │ │ │ -0001e9a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001e9b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001e9c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001e9d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001e9e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001e9f0: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -0001ea00: 0a20 2020 2020 2020 2049 203d 2072 6563 . I = rec │ │ │ │ -0001ea10: 7572 7369 7665 4d69 6e6f 7273 286e 2c20 ursiveMinors(n, │ │ │ │ -0001ea20: 4d2c 2054 6872 6561 6473 3d3e 742c 204d M, Threads=>t, M │ │ │ │ -0001ea30: 696e 6f72 7343 6163 6865 3d3e 6229 0a20 inorsCache=>b). │ │ │ │ -0001ea40: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -0001ea50: 202a 206e 2c20 616e 202a 6e6f 7465 2069 * n, an *note i │ │ │ │ -0001ea60: 6e74 6567 6572 3a20 284d 6163 6175 6c61 nteger: (Macaula │ │ │ │ -0001ea70: 7932 446f 6329 5a5a 2c2c 2074 6865 2073 y2Doc)ZZ,, the s │ │ │ │ -0001ea80: 697a 6520 6f66 206d 696e 6f72 7320 746f ize of minors to │ │ │ │ -0001ea90: 2063 6f6d 7075 7465 0a20 2020 2020 202a compute. * │ │ │ │ -0001eaa0: 204d 2c20 6120 2a6e 6f74 6520 6d61 7472 M, a *note matr │ │ │ │ -0001eab0: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ -0001eac0: 6329 4d61 7472 6978 2c2c 200a 2020 2020 c)Matrix,, . │ │ │ │ -0001ead0: 2020 2a20 742c 2061 6e20 2a6e 6f74 6520 * t, an *note │ │ │ │ -0001eae0: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ -0001eaf0: 6179 3244 6f63 295a 5a2c 2c20 616e 206f ay2Doc)ZZ,, an o │ │ │ │ -0001eb00: 7074 696f 6e61 6c20 696e 7075 742c 2077 ptional input, w │ │ │ │ -0001eb10: 6869 6368 0a20 2020 2020 2020 2064 6573 hich. des │ │ │ │ -0001eb20: 6372 6962 6573 2074 6865 206e 756d 6265 cribes the numbe │ │ │ │ -0001eb30: 7220 6f66 2074 6872 6561 6473 2074 6f20 r of threads to │ │ │ │ -0001eb40: 7573 6573 0a20 2020 2020 202a 2062 2c20 uses. * b, │ │ │ │ -0001eb50: 6120 2a6e 6f74 6520 426f 6f6c 6561 6e20 a *note Boolean │ │ │ │ -0001eb60: 7661 6c75 653a 2028 4d61 6361 756c 6179 value: (Macaulay │ │ │ │ -0001eb70: 3244 6f63 2942 6f6f 6c65 616e 2c2c 2061 2Doc)Boolean,, a │ │ │ │ -0001eb80: 6e20 6f70 7469 6f6e 616c 2069 6e70 7574 n optional input │ │ │ │ -0001eb90: 2c0a 2020 2020 2020 2020 7768 6963 6820 ,. which │ │ │ │ -0001eba0: 7361 7973 2077 6865 7468 6572 2074 6f20 says whether to │ │ │ │ -0001ebb0: 6361 6368 6520 696e 2069 6e70 7574 0a20 cache in input. │ │ │ │ -0001ebc0: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ -0001ebd0: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ -0001ebe0: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ -0001ebf0: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ -0001ec00: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ -0001ec10: 2020 2020 202a 204d 696e 6f72 7343 6163 * MinorsCac │ │ │ │ -0001ec20: 6865 203d 3e20 2e2e 2e2c 2064 6566 6175 he => ..., defau │ │ │ │ -0001ec30: 6c74 2076 616c 7565 2074 7275 650a 2020 lt value true. │ │ │ │ -0001ec40: 2020 2020 2a20 2a6e 6f74 6520 5468 7265 * *note Thre │ │ │ │ -0001ec50: 6164 733a 2069 7352 616e 6b41 744c 6561 ads: isRankAtLea │ │ │ │ -0001ec60: 7374 5f6c 705f 7064 5f70 645f 7064 5f63 st_lp_pd_pd_pd_c │ │ │ │ -0001ec70: 6d54 6872 6561 6473 3d3e 5f70 645f 7064 mThreads=>_pd_pd │ │ │ │ -0001ec80: 5f70 645f 7270 2c20 3d3e 0a20 2020 2020 _pd_rp, =>. │ │ │ │ -0001ec90: 2020 202e 2e2e 2c20 6465 6661 756c 7420 ..., default │ │ │ │ -0001eca0: 7661 6c75 6520 302c 2061 6e20 6f70 7469 value 0, an opti │ │ │ │ -0001ecb0: 6f6e 2066 6f72 2076 6172 696f 7573 2066 on for various f │ │ │ │ -0001ecc0: 756e 6374 696f 6e73 0a20 2020 2020 202a unctions. * │ │ │ │ -0001ecd0: 2056 6572 626f 7365 203d 3e20 2e2e 2e2c Verbose => ..., │ │ │ │ -0001ece0: 2064 6566 6175 6c74 2076 616c 7565 2066 default value f │ │ │ │ -0001ecf0: 616c 7365 0a20 202a 204f 7574 7075 7473 alse. * Outputs │ │ │ │ -0001ed00: 3a0a 2020 2020 2020 2a20 492c 2061 6e20 :. * I, an │ │ │ │ -0001ed10: 2a6e 6f74 6520 6964 6561 6c3a 2028 4d61 *note ideal: (Ma │ │ │ │ -0001ed20: 6361 756c 6179 3244 6f63 2949 6465 616c caulay2Doc)Ideal │ │ │ │ -0001ed30: 2c2c 2074 6865 2069 6465 616c 206f 6620 ,, the ideal of │ │ │ │ -0001ed40: 6d69 6e6f 7273 206f 6620 4d0a 0a44 6573 minors of M..Des │ │ │ │ -0001ed50: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0001ed60: 3d3d 3d3d 0a0a 4769 7665 6e20 6120 6d61 ====..Given a ma │ │ │ │ -0001ed70: 7472 6978 2024 4d24 2c20 7468 6973 2063 trix $M$, this c │ │ │ │ -0001ed80: 6f6d 7075 7465 7320 7468 6520 6964 6561 omputes the idea │ │ │ │ -0001ed90: 6c20 6f66 2064 6574 6572 6d69 6e61 6e74 l of determinant │ │ │ │ -0001eda0: 7320 6f66 2073 697a 6520 246e 205c 7469 s of size $n \ti │ │ │ │ -0001edb0: 6d65 730a 6e24 2073 7562 6d61 7472 6963 mes.n$ submatric │ │ │ │ -0001edc0: 6573 2e20 5468 6520 7265 6375 7273 6976 es. The recursiv │ │ │ │ -0001edd0: 654d 696e 6f72 7320 6675 6e63 7469 6f6e eMinors function │ │ │ │ -0001ede0: 2075 7365 7320 6120 7265 6375 7273 6976 uses a recursiv │ │ │ │ -0001edf0: 6520 7374 7261 7465 6779 2c20 6b65 6570 e strategy, keep │ │ │ │ -0001ee00: 696e 670a 7472 6163 6b20 6f66 2074 6865 ing.track of the │ │ │ │ -0001ee10: 2073 6d61 6c6c 6572 206d 696e 6f72 7320 smaller minors │ │ │ │ -0001ee20: 636f 6d70 7574 6564 2073 6f20 6661 722c computed so far, │ │ │ │ -0001ee30: 2075 6e6c 696b 6520 7468 6520 6275 696c unlike the buil │ │ │ │ -0001ee40: 742d 696e 2043 6f66 6163 746f 720a 7374 t-in Cofactor.st │ │ │ │ -0001ee50: 7261 7465 6779 2066 6f72 206d 696e 6f72 rategy for minor │ │ │ │ -0001ee60: 730a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d s..+------------ │ │ │ │ -0001ee70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ee80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ee90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -0001eea0: 2052 203d 2051 515b 782c 795d 3b20 2020 R = QQ[x,y]; │ │ │ │ -0001eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eed0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0001eee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ef00: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -0001ef10: 204d 203d 2072 616e 646f 6d28 525e 7b35 M = random(R^{5 │ │ │ │ -0001ef20: 2c35 2c35 2c35 2c35 2c35 7d2c 2052 5e37 ,5,5,5,5,5}, R^7 │ │ │ │ -0001ef30: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ -0001ef40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001ef80: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ -0001ef90: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ +0001e390: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +0001e3a0: 203d 2031 2020 2020 2020 2020 2020 2020 = 1 │ │ │ │ +0001e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e3e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001e3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e430: 2d2b 0a0a 5468 6520 6f70 7469 6f6e 204d -+..The option M │ │ │ │ +0001e440: 6178 4d69 6e6f 7273 2063 616e 2062 6520 axMinors can be │ │ │ │ +0001e450: 7573 6564 2074 6f20 636f 6e74 726f 6c20 used to control │ │ │ │ +0001e460: 686f 7720 6d61 6e79 206d 696e 6f72 7320 how many minors │ │ │ │ +0001e470: 6172 6520 636f 6d70 7574 6564 2061 740a are computed at. │ │ │ │ +0001e480: 6561 6368 2073 7465 702e 2049 6620 7468 each step. If th │ │ │ │ +0001e490: 6973 2069 7320 6e6f 7420 7370 6563 6966 is is not specif │ │ │ │ +0001e4a0: 6965 642c 2074 6865 206e 756d 6265 7220 ied, the number │ │ │ │ +0001e4b0: 6f66 206d 696e 6f72 7320 6973 2061 2066 of minors is a f │ │ │ │ +0001e4c0: 756e 6374 696f 6e20 6f66 2074 6865 0a64 unction of the.d │ │ │ │ +0001e4d0: 696d 656e 7369 6f6e 2024 6424 206f 6620 imension $d$ of │ │ │ │ +0001e4e0: 7468 6520 706f 6c79 6e6f 6d69 616c 2072 the polynomial r │ │ │ │ +0001e4f0: 696e 6720 616e 6420 7468 6520 706f 7373 ing and the poss │ │ │ │ +0001e500: 6962 6c65 206d 696e 6f72 7320 2463 242e ible minors $c$. │ │ │ │ +0001e510: 2053 7065 6369 6669 6361 6c6c 790a 6974 Specifically.it │ │ │ │ +0001e520: 2069 7320 3130 202a 2064 202b 2032 202a is 10 * d + 2 * │ │ │ │ +0001e530: 206c 6f67 5f31 2e33 2863 292e 204f 7468 log_1.3(c). Oth │ │ │ │ +0001e540: 6572 7769 7365 2074 6865 2075 7365 7220 erwise the user │ │ │ │ +0001e550: 6361 6e20 7365 7420 7468 6520 6f70 7469 can set the opti │ │ │ │ +0001e560: 6f6e 204d 6178 4d69 6e6f 7273 0a3d 3e20 on MaxMinors.=> │ │ │ │ +0001e570: 5a5a 2074 6f20 7370 6563 6966 7920 7468 ZZ to specify th │ │ │ │ +0001e580: 6174 2061 2066 6978 6564 2069 6e74 6567 at a fixed integ │ │ │ │ +0001e590: 6572 2069 7320 7573 6564 2066 6f72 2065 er is used for e │ │ │ │ +0001e5a0: 6163 6820 7374 6570 2e20 2041 6c74 6572 ach step. Alter │ │ │ │ +0001e5b0: 6e61 7469 7665 6c79 2c0a 7468 6520 7573 natively,.the us │ │ │ │ +0001e5c0: 6572 2063 616e 2063 6f6e 7472 6f6c 2074 er can control t │ │ │ │ +0001e5d0: 6865 206e 756d 6265 7220 6f66 206d 696e he number of min │ │ │ │ +0001e5e0: 6f72 7320 636f 6d70 7574 6564 2061 7420 ors computed at │ │ │ │ +0001e5f0: 6561 6368 2073 7465 7020 6279 2073 6574 each step by set │ │ │ │ +0001e600: 7469 6e67 2074 6865 0a6f 7074 696f 6e20 ting the.option │ │ │ │ +0001e610: 4d61 784d 696e 6f72 7320 3d3e 204c 6973 MaxMinors => Lis │ │ │ │ +0001e620: 742e 2020 496e 2074 6869 7320 6361 7365 t. In this case │ │ │ │ +0001e630: 2c20 7468 6520 6c69 7374 2073 7065 6369 , the list speci │ │ │ │ +0001e640: 6669 6573 2068 6f77 206d 616e 7920 6d69 fies how many mi │ │ │ │ +0001e650: 6e6f 7273 2074 6f0a 6265 2063 6f6d 7075 nors to.be compu │ │ │ │ +0001e660: 7465 6420 6174 2065 6163 6820 7374 6570 ted at each step │ │ │ │ +0001e670: 2c20 2877 6f72 6b69 6e67 2062 6163 6b77 , (working backw │ │ │ │ +0001e680: 6172 6473 292e 2046 696e 616c 6c79 2c20 ards). Finally, │ │ │ │ +0001e690: 796f 7520 6361 6e20 616c 736f 2073 6574 you can also set │ │ │ │ +0001e6a0: 0a4d 6178 4d69 6e6f 7273 2074 6f20 6265 .MaxMinors to be │ │ │ │ +0001e6b0: 2061 2063 7573 746f 6d20 6675 6e63 7469 a custom functi │ │ │ │ +0001e6c0: 6f6e 206f 6620 7468 6520 6469 6d65 6e73 on of the dimens │ │ │ │ +0001e6d0: 696f 6e20 2464 2420 6f66 2074 6865 2070 ion $d$ of the p │ │ │ │ +0001e6e0: 6f6c 796e 6f6d 6961 6c20 7269 6e67 0a61 olynomial ring.a │ │ │ │ +0001e6f0: 6e64 2074 6865 206d 6178 696d 756d 206e nd the maximum n │ │ │ │ +0001e700: 756d 6265 7220 6f66 206d 696e 6f72 732e umber of minors. │ │ │ │ +0001e710: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +0001e720: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2070 ===.. * *note p │ │ │ │ +0001e730: 6469 6d3a 2028 4d61 6361 756c 6179 3244 dim: (Macaulay2D │ │ │ │ +0001e740: 6f63 2970 6469 6d2c 202d 2d20 636f 6d70 oc)pdim, -- comp │ │ │ │ +0001e750: 7574 6520 7468 6520 7072 6f6a 6563 7469 ute the projecti │ │ │ │ +0001e760: 7665 2064 696d 656e 7369 6f6e 0a0a 5761 ve dimension..Wa │ │ │ │ +0001e770: 7973 2074 6f20 7573 6520 7072 6f6a 4469 ys to use projDi │ │ │ │ +0001e780: 6d3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d m:.============= │ │ │ │ +0001e790: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7072 =======.. * "pr │ │ │ │ +0001e7a0: 6f6a 4469 6d28 4d6f 6475 6c65 2922 0a0a ojDim(Module)".. │ │ │ │ +0001e7b0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +0001e7c0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +0001e7d0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +0001e7e0: 7420 2a6e 6f74 6520 7072 6f6a 4469 6d3a t *note projDim: │ │ │ │ +0001e7f0: 2070 726f 6a44 696d 2c20 6973 2061 202a projDim, is a * │ │ │ │ +0001e800: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ +0001e810: 7469 6f6e 2077 6974 6820 6f70 7469 6f6e tion with option │ │ │ │ +0001e820: 733a 0a28 4d61 6361 756c 6179 3244 6f63 s:.(Macaulay2Doc │ │ │ │ +0001e830: 294d 6574 686f 6446 756e 6374 696f 6e57 )MethodFunctionW │ │ │ │ +0001e840: 6974 684f 7074 696f 6e73 2c2e 0a0a 2d2d ithOptions,...-- │ │ │ │ +0001e850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +0001e8a0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +0001e8b0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +0001e8c0: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +0001e8d0: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +0001e8e0: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +0001e8f0: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +0001e900: 6167 6573 2f46 6173 744d 696e 6f72 732e ages/FastMinors. │ │ │ │ +0001e910: 0a6d 323a 3230 3739 3a30 2e0a 1f0a 4669 .m2:2079:0....Fi │ │ │ │ +0001e920: 6c65 3a20 4661 7374 4d69 6e6f 7273 2e69 le: FastMinors.i │ │ │ │ +0001e930: 6e66 6f2c 204e 6f64 653a 2072 6563 7572 nfo, Node: recur │ │ │ │ +0001e940: 7369 7665 4d69 6e6f 7273 2c20 4e65 7874 siveMinors, Next │ │ │ │ +0001e950: 3a20 7265 6775 6c61 7249 6e43 6f64 696d : regularInCodim │ │ │ │ +0001e960: 656e 7369 6f6e 2c20 5072 6576 3a20 7072 ension, Prev: pr │ │ │ │ +0001e970: 6f6a 4469 6d2c 2055 703a 2054 6f70 0a0a ojDim, Up: Top.. │ │ │ │ +0001e980: 7265 6375 7273 6976 654d 696e 6f72 7320 recursiveMinors │ │ │ │ +0001e990: 2d2d 2075 7365 7320 6120 7265 6375 7273 -- uses a recurs │ │ │ │ +0001e9a0: 6976 6520 636f 6661 6374 6f72 2061 6c67 ive cofactor alg │ │ │ │ +0001e9b0: 6f72 6974 686d 2074 6f20 636f 6d70 7574 orithm to comput │ │ │ │ +0001e9c0: 6520 7468 6520 6964 6561 6c20 6f66 206d e the ideal of m │ │ │ │ +0001e9d0: 696e 6f72 7320 6f66 2061 206d 6174 7269 inors of a matri │ │ │ │ +0001e9e0: 780a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a x.************** │ │ │ │ +0001e9f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001ea00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001ea10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001ea20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001ea30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001ea40: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ +0001ea50: 0a20 2020 2020 2020 2049 203d 2072 6563 . I = rec │ │ │ │ +0001ea60: 7572 7369 7665 4d69 6e6f 7273 286e 2c20 ursiveMinors(n, │ │ │ │ +0001ea70: 4d2c 2054 6872 6561 6473 3d3e 742c 204d M, Threads=>t, M │ │ │ │ +0001ea80: 696e 6f72 7343 6163 6865 3d3e 6229 0a20 inorsCache=>b). │ │ │ │ +0001ea90: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +0001eaa0: 202a 206e 2c20 616e 202a 6e6f 7465 2069 * n, an *note i │ │ │ │ +0001eab0: 6e74 6567 6572 3a20 284d 6163 6175 6c61 nteger: (Macaula │ │ │ │ +0001eac0: 7932 446f 6329 5a5a 2c2c 2074 6865 2073 y2Doc)ZZ,, the s │ │ │ │ +0001ead0: 697a 6520 6f66 206d 696e 6f72 7320 746f ize of minors to │ │ │ │ +0001eae0: 2063 6f6d 7075 7465 0a20 2020 2020 202a compute. * │ │ │ │ +0001eaf0: 204d 2c20 6120 2a6e 6f74 6520 6d61 7472 M, a *note matr │ │ │ │ +0001eb00: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ +0001eb10: 6329 4d61 7472 6978 2c2c 200a 2020 2020 c)Matrix,, . │ │ │ │ +0001eb20: 2020 2a20 742c 2061 6e20 2a6e 6f74 6520 * t, an *note │ │ │ │ +0001eb30: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ +0001eb40: 6179 3244 6f63 295a 5a2c 2c20 616e 206f ay2Doc)ZZ,, an o │ │ │ │ +0001eb50: 7074 696f 6e61 6c20 696e 7075 742c 2077 ptional input, w │ │ │ │ +0001eb60: 6869 6368 0a20 2020 2020 2020 2064 6573 hich. des │ │ │ │ +0001eb70: 6372 6962 6573 2074 6865 206e 756d 6265 cribes the numbe │ │ │ │ +0001eb80: 7220 6f66 2074 6872 6561 6473 2074 6f20 r of threads to │ │ │ │ +0001eb90: 7573 6573 0a20 2020 2020 202a 2062 2c20 uses. * b, │ │ │ │ +0001eba0: 6120 2a6e 6f74 6520 426f 6f6c 6561 6e20 a *note Boolean │ │ │ │ +0001ebb0: 7661 6c75 653a 2028 4d61 6361 756c 6179 value: (Macaulay │ │ │ │ +0001ebc0: 3244 6f63 2942 6f6f 6c65 616e 2c2c 2061 2Doc)Boolean,, a │ │ │ │ +0001ebd0: 6e20 6f70 7469 6f6e 616c 2069 6e70 7574 n optional input │ │ │ │ +0001ebe0: 2c0a 2020 2020 2020 2020 7768 6963 6820 ,. which │ │ │ │ +0001ebf0: 7361 7973 2077 6865 7468 6572 2074 6f20 says whether to │ │ │ │ +0001ec00: 6361 6368 6520 696e 2069 6e70 7574 0a20 cache in input. │ │ │ │ +0001ec10: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ +0001ec20: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ +0001ec30: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ +0001ec40: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +0001ec50: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ +0001ec60: 2020 2020 202a 204d 696e 6f72 7343 6163 * MinorsCac │ │ │ │ +0001ec70: 6865 203d 3e20 2e2e 2e2c 2064 6566 6175 he => ..., defau │ │ │ │ +0001ec80: 6c74 2076 616c 7565 2074 7275 650a 2020 lt value true. │ │ │ │ +0001ec90: 2020 2020 2a20 2a6e 6f74 6520 5468 7265 * *note Thre │ │ │ │ +0001eca0: 6164 733a 2069 7352 616e 6b41 744c 6561 ads: isRankAtLea │ │ │ │ +0001ecb0: 7374 5f6c 705f 7064 5f70 645f 7064 5f63 st_lp_pd_pd_pd_c │ │ │ │ +0001ecc0: 6d54 6872 6561 6473 3d3e 5f70 645f 7064 mThreads=>_pd_pd │ │ │ │ +0001ecd0: 5f70 645f 7270 2c20 3d3e 0a20 2020 2020 _pd_rp, =>. │ │ │ │ +0001ece0: 2020 202e 2e2e 2c20 6465 6661 756c 7420 ..., default │ │ │ │ +0001ecf0: 7661 6c75 6520 302c 2061 6e20 6f70 7469 value 0, an opti │ │ │ │ +0001ed00: 6f6e 2066 6f72 2076 6172 696f 7573 2066 on for various f │ │ │ │ +0001ed10: 756e 6374 696f 6e73 0a20 2020 2020 202a unctions. * │ │ │ │ +0001ed20: 2056 6572 626f 7365 203d 3e20 2e2e 2e2c Verbose => ..., │ │ │ │ +0001ed30: 2064 6566 6175 6c74 2076 616c 7565 2066 default value f │ │ │ │ +0001ed40: 616c 7365 0a20 202a 204f 7574 7075 7473 alse. * Outputs │ │ │ │ +0001ed50: 3a0a 2020 2020 2020 2a20 492c 2061 6e20 :. * I, an │ │ │ │ +0001ed60: 2a6e 6f74 6520 6964 6561 6c3a 2028 4d61 *note ideal: (Ma │ │ │ │ +0001ed70: 6361 756c 6179 3244 6f63 2949 6465 616c caulay2Doc)Ideal │ │ │ │ +0001ed80: 2c2c 2074 6865 2069 6465 616c 206f 6620 ,, the ideal of │ │ │ │ +0001ed90: 6d69 6e6f 7273 206f 6620 4d0a 0a44 6573 minors of M..Des │ │ │ │ +0001eda0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +0001edb0: 3d3d 3d3d 0a0a 4769 7665 6e20 6120 6d61 ====..Given a ma │ │ │ │ +0001edc0: 7472 6978 2024 4d24 2c20 7468 6973 2063 trix $M$, this c │ │ │ │ +0001edd0: 6f6d 7075 7465 7320 7468 6520 6964 6561 omputes the idea │ │ │ │ +0001ede0: 6c20 6f66 2064 6574 6572 6d69 6e61 6e74 l of determinant │ │ │ │ +0001edf0: 7320 6f66 2073 697a 6520 246e 205c 7469 s of size $n \ti │ │ │ │ +0001ee00: 6d65 730a 6e24 2073 7562 6d61 7472 6963 mes.n$ submatric │ │ │ │ +0001ee10: 6573 2e20 5468 6520 7265 6375 7273 6976 es. The recursiv │ │ │ │ +0001ee20: 654d 696e 6f72 7320 6675 6e63 7469 6f6e eMinors function │ │ │ │ +0001ee30: 2075 7365 7320 6120 7265 6375 7273 6976 uses a recursiv │ │ │ │ +0001ee40: 6520 7374 7261 7465 6779 2c20 6b65 6570 e strategy, keep │ │ │ │ +0001ee50: 696e 670a 7472 6163 6b20 6f66 2074 6865 ing.track of the │ │ │ │ +0001ee60: 2073 6d61 6c6c 6572 206d 696e 6f72 7320 smaller minors │ │ │ │ +0001ee70: 636f 6d70 7574 6564 2073 6f20 6661 722c computed so far, │ │ │ │ +0001ee80: 2075 6e6c 696b 6520 7468 6520 6275 696c unlike the buil │ │ │ │ +0001ee90: 742d 696e 2043 6f66 6163 746f 720a 7374 t-in Cofactor.st │ │ │ │ +0001eea0: 7261 7465 6779 2066 6f72 206d 696e 6f72 rategy for minor │ │ │ │ +0001eeb0: 730a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d s..+------------ │ │ │ │ +0001eec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001eed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001eee0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +0001eef0: 2052 203d 2051 515b 782c 795d 3b20 2020 R = QQ[x,y]; │ │ │ │ +0001ef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ef20: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001ef30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ef40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ef50: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +0001ef60: 204d 203d 2072 616e 646f 6d28 525e 7b35 M = random(R^{5 │ │ │ │ +0001ef70: 2c35 2c35 2c35 2c35 2c35 7d2c 2052 5e37 ,5,5,5,5,5}, R^7 │ │ │ │ +0001ef80: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ +0001ef90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001efb0: 207c 0a7c 6f32 203a 204d 6174 7269 7820 |.|o2 : Matrix │ │ │ │ -0001efc0: 5220 203c 2d2d 2052 2020 2020 2020 2020 R <-- R │ │ │ │ -0001efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001efe0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0001eff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f020: 2d2b 0a7c 6933 203a 2074 696d 6520 4932 -+.|i3 : time I2 │ │ │ │ -0001f030: 203d 2072 6563 7572 7369 7665 4d69 6e6f = recursiveMino │ │ │ │ -0001f040: 7273 2834 2c20 4d2c 2054 6872 6561 6473 rs(4, M, Threads │ │ │ │ -0001f050: 3d3e 3029 3b20 2020 207c 0a7c 202d 2d20 =>0); |.| -- │ │ │ │ -0001f060: 7573 6564 2030 2e34 3933 3631 3373 2028 used 0.493613s ( │ │ │ │ -0001f070: 6370 7529 3b20 302e 3434 3934 3333 7320 cpu); 0.449433s │ │ │ │ -0001f080: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -0001f090: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ -0001f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f0c0: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ -0001f0d0: 2049 6465 616c 206f 6620 5220 2020 2020 Ideal of R │ │ │ │ -0001f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001efc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001efd0: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ +0001efe0: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ +0001eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f000: 207c 0a7c 6f32 203a 204d 6174 7269 7820 |.|o2 : Matrix │ │ │ │ +0001f010: 5220 203c 2d2d 2052 2020 2020 2020 2020 R <-- R │ │ │ │ +0001f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f030: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001f040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f070: 2d2b 0a7c 6933 203a 2074 696d 6520 4932 -+.|i3 : time I2 │ │ │ │ +0001f080: 203d 2072 6563 7572 7369 7665 4d69 6e6f = recursiveMino │ │ │ │ +0001f090: 7273 2834 2c20 4d2c 2054 6872 6561 6473 rs(4, M, Threads │ │ │ │ +0001f0a0: 3d3e 3029 3b20 2020 207c 0a7c 202d 2d20 =>0); |.| -- │ │ │ │ +0001f0b0: 7573 6564 2030 2e35 3639 3337 3273 2028 used 0.569372s ( │ │ │ │ +0001f0c0: 6370 7529 3b20 302e 3439 3635 3335 7320 cpu); 0.496535s │ │ │ │ +0001f0d0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +0001f0e0: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ 0001f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f100: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0001f110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f130: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -0001f140: 2074 696d 6520 4931 203d 206d 696e 6f72 time I1 = minor │ │ │ │ -0001f150: 7328 342c 204d 2c20 5374 7261 7465 6779 s(4, M, Strategy │ │ │ │ -0001f160: 3d3e 436f 6661 6374 6f72 293b 2020 2020 =>Cofactor); │ │ │ │ -0001f170: 207c 0a7c 202d 2d20 7573 6564 2031 2e35 |.| -- used 1.5 │ │ │ │ -0001f180: 3135 3233 7320 2863 7075 293b 2031 2e33 1523s (cpu); 1.3 │ │ │ │ -0001f190: 3130 3336 7320 2874 6872 6561 6429 3b20 1036s (thread); │ │ │ │ -0001f1a0: 3073 2028 6763 2920 207c 0a7c 2020 2020 0s (gc) |.| │ │ │ │ -0001f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1e0: 207c 0a7c 6f34 203a 2049 6465 616c 206f |.|o4 : Ideal o │ │ │ │ -0001f1f0: 6620 5220 2020 2020 2020 2020 2020 2020 f R │ │ │ │ +0001f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f110: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ +0001f120: 2049 6465 616c 206f 6620 5220 2020 2020 Ideal of R │ │ │ │ +0001f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f150: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001f160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f180: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +0001f190: 2074 696d 6520 4931 203d 206d 696e 6f72 time I1 = minor │ │ │ │ +0001f1a0: 7328 342c 204d 2c20 5374 7261 7465 6779 s(4, M, Strategy │ │ │ │ +0001f1b0: 3d3e 436f 6661 6374 6f72 293b 2020 2020 =>Cofactor); │ │ │ │ +0001f1c0: 207c 0a7c 202d 2d20 7573 6564 2031 2e34 |.| -- used 1.4 │ │ │ │ +0001f1d0: 3833 3131 7320 2863 7075 293b 2031 2e33 8311s (cpu); 1.3 │ │ │ │ +0001f1e0: 3432 3273 2028 7468 7265 6164 293b 2030 422s (thread); 0 │ │ │ │ +0001f1f0: 7320 2867 6329 2020 207c 0a7c 2020 2020 s (gc) |.| │ │ │ │ 0001f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f210: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0001f220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f250: 2d2b 0a7c 6935 203a 2049 3120 3d3d 2049 -+.|i5 : I1 == I │ │ │ │ -0001f260: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f280: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2c0: 207c 0a7c 6f35 203d 2074 7275 6520 2020 |.|o5 = true │ │ │ │ -0001f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f230: 207c 0a7c 6f34 203a 2049 6465 616c 206f |.|o4 : Ideal o │ │ │ │ +0001f240: 6620 5220 2020 2020 2020 2020 2020 2020 f R │ │ │ │ +0001f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f260: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001f270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f2a0: 2d2b 0a7c 6935 203a 2049 3120 3d3d 2049 -+.|i5 : I1 == I │ │ │ │ +0001f2b0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f2d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0001f300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f330: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ -0001f340: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -0001f350: 206d 696e 6f72 733a 2028 4d61 6361 756c minors: (Macaul │ │ │ │ -0001f360: 6179 3244 6f63 296d 696e 6f72 735f 6c70 ay2Doc)minors_lp │ │ │ │ -0001f370: 5a5a 5f63 6d4d 6174 7269 785f 7270 2c20 ZZ_cmMatrix_rp, │ │ │ │ -0001f380: 2d2d 2069 6465 616c 2067 656e 6572 6174 -- ideal generat │ │ │ │ -0001f390: 6564 2062 790a 2020 2020 6d69 6e6f 7273 ed by. minors │ │ │ │ -0001f3a0: 0a0a 5761 7973 2074 6f20 7573 6520 7265 ..Ways to use re │ │ │ │ -0001f3b0: 6375 7273 6976 654d 696e 6f72 733a 0a3d cursiveMinors:.= │ │ │ │ -0001f3c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001f3d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -0001f3e0: 2022 7265 6375 7273 6976 654d 696e 6f72 "recursiveMinor │ │ │ │ -0001f3f0: 7328 5a5a 2c4d 6174 7269 7829 220a 0a46 s(ZZ,Matrix)"..F │ │ │ │ -0001f400: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -0001f410: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -0001f420: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -0001f430: 202a 6e6f 7465 2072 6563 7572 7369 7665 *note recursive │ │ │ │ -0001f440: 4d69 6e6f 7273 3a20 7265 6375 7273 6976 Minors: recursiv │ │ │ │ -0001f450: 654d 696e 6f72 732c 2069 7320 6120 2a6e eMinors, is a *n │ │ │ │ -0001f460: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -0001f470: 696f 6e0a 7769 7468 206f 7074 696f 6e73 ion.with options │ │ │ │ -0001f480: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0001f490: 4d65 7468 6f64 4675 6e63 7469 6f6e 5769 MethodFunctionWi │ │ │ │ -0001f4a0: 7468 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d thOptions,...--- │ │ │ │ -0001f4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -0001f500: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -0001f510: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -0001f520: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -0001f530: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -0001f540: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -0001f550: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -0001f560: 6765 732f 4661 7374 4d69 6e6f 7273 2e0a ges/FastMinors.. │ │ │ │ -0001f570: 6d32 3a32 3033 303a 302e 0a1f 0a46 696c m2:2030:0....Fil │ │ │ │ -0001f580: 653a 2046 6173 744d 696e 6f72 732e 696e e: FastMinors.in │ │ │ │ -0001f590: 666f 2c20 4e6f 6465 3a20 7265 6775 6c61 fo, Node: regula │ │ │ │ -0001f5a0: 7249 6e43 6f64 696d 656e 7369 6f6e 2c20 rInCodimension, │ │ │ │ -0001f5b0: 4e65 7874 3a20 5265 6775 6c61 7249 6e43 Next: RegularInC │ │ │ │ -0001f5c0: 6f64 696d 656e 7369 6f6e 5475 746f 7269 odimensionTutori │ │ │ │ -0001f5d0: 616c 2c20 5072 6576 3a20 7265 6375 7273 al, Prev: recurs │ │ │ │ -0001f5e0: 6976 654d 696e 6f72 732c 2055 703a 2054 iveMinors, Up: T │ │ │ │ -0001f5f0: 6f70 0a0a 7265 6775 6c61 7249 6e43 6f64 op..regularInCod │ │ │ │ -0001f600: 696d 656e 7369 6f6e 202d 2d20 6174 7465 imension -- atte │ │ │ │ -0001f610: 6d70 7473 2074 6f20 7368 6f77 2074 6861 mpts to show tha │ │ │ │ -0001f620: 7420 7468 6520 7269 6e67 2069 7320 7265 t the ring is re │ │ │ │ -0001f630: 6775 6c61 7220 696e 2063 6f64 696d 656e gular in codimen │ │ │ │ -0001f640: 7369 6f6e 206e 0a2a 2a2a 2a2a 2a2a 2a2a sion n.********* │ │ │ │ -0001f650: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001f660: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001f670: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001f680: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001f690: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ -0001f6a0: 7361 6765 3a20 0a20 2020 2020 2020 2072 sage: . r │ │ │ │ -0001f6b0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0001f6c0: 696f 6e28 6e2c 2052 290a 2020 2a20 496e ion(n, R). * In │ │ │ │ -0001f6d0: 7075 7473 3a0a 2020 2020 2020 2a20 6e2c puts:. * n, │ │ │ │ -0001f6e0: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ -0001f6f0: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ -0001f700: 295a 5a2c 2c20 0a20 2020 2020 202a 2052 )ZZ,, . * R │ │ │ │ -0001f710: 2c20 6120 2a6e 6f74 6520 7269 6e67 3a20 , a *note ring: │ │ │ │ -0001f720: 284d 6163 6175 6c61 7932 446f 6329 5269 (Macaulay2Doc)Ri │ │ │ │ -0001f730: 6e67 2c2c 200a 2020 2a20 2a6e 6f74 6520 ng,, . * *note │ │ │ │ -0001f740: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ -0001f750: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ -0001f760: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ -0001f770: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ -0001f780: 7574 732c 3a0a 2020 2020 2020 2a20 4d6f uts,:. * Mo │ │ │ │ -0001f790: 6475 6c75 7320 3d3e 2061 202a 6e6f 7465 dulus => a *note │ │ │ │ -0001f7a0: 206e 756d 6265 723a 2028 4d61 6361 756c number: (Macaul │ │ │ │ -0001f7b0: 6179 3244 6f63 294e 756d 6265 722c 2c20 ay2Doc)Number,, │ │ │ │ -0001f7c0: 6465 6661 756c 7420 7661 6c75 6520 302c default value 0, │ │ │ │ -0001f7d0: 2077 6f72 6b0a 2020 2020 2020 2020 6d6f work. mo │ │ │ │ -0001f7e0: 6475 6c6f 2074 6865 2067 6976 656e 2070 dulo the given p │ │ │ │ -0001f7f0: 7269 6d65 206d 6f64 756c 7573 0a20 2020 rime modulus. │ │ │ │ -0001f800: 2020 202a 2050 6169 724c 696d 6974 203d * PairLimit = │ │ │ │ -0001f810: 3e20 6120 2a6e 6f74 6520 6e75 6d62 6572 > a *note number │ │ │ │ -0001f820: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0001f830: 4e75 6d62 6572 2c2c 2064 6566 6175 6c74 Number,, default │ │ │ │ -0001f840: 2076 616c 7565 2031 3030 2c0a 2020 2020 value 100,. │ │ │ │ -0001f850: 2020 2020 7061 7373 6564 2074 6f20 6973 passed to is │ │ │ │ -0001f860: 436f 6469 6d41 744c 6561 7374 0a20 2020 CodimAtLeast. │ │ │ │ -0001f870: 2020 202a 2053 5061 6972 7346 756e 6374 * SPairsFunct │ │ │ │ -0001f880: 696f 6e20 3d3e 2061 202a 6e6f 7465 2066 ion => a *note f │ │ │ │ -0001f890: 756e 6374 696f 6e3a 2028 4d61 6361 756c unction: (Macaul │ │ │ │ -0001f8a0: 6179 3244 6f63 2946 756e 6374 696f 6e2c ay2Doc)Function, │ │ │ │ -0001f8b0: 2c20 6465 6661 756c 740a 2020 2020 2020 , default. │ │ │ │ -0001f8c0: 2020 7661 6c75 6520 4675 6e63 7469 6f6e value Function │ │ │ │ -0001f8d0: 436c 6f73 7572 655b 2e2e 2f46 6173 744d Closure[../FastM │ │ │ │ -0001f8e0: 696e 6f72 732e 6d32 3a31 3639 3a32 332d inors.m2:169:23- │ │ │ │ -0001f8f0: 3136 393a 3432 5d2c 2070 6173 7365 6420 169:42], passed │ │ │ │ -0001f900: 746f 0a20 2020 2020 2020 2069 7343 6f64 to. isCod │ │ │ │ -0001f910: 696d 4174 4c65 6173 740a 2020 2020 2020 imAtLeast. │ │ │ │ -0001f920: 2a20 5573 654f 6e6c 7946 6173 7443 6f64 * UseOnlyFastCod │ │ │ │ -0001f930: 696d 203d 3e20 6120 2a6e 6f74 6520 426f im => a *note Bo │ │ │ │ -0001f940: 6f6c 6561 6e20 7661 6c75 653a 2028 4d61 olean value: (Ma │ │ │ │ -0001f950: 6361 756c 6179 3244 6f63 2942 6f6f 6c65 caulay2Doc)Boole │ │ │ │ -0001f960: 616e 2c2c 0a20 2020 2020 2020 2064 6566 an,,. def │ │ │ │ -0001f970: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ -0001f980: 2c20 7465 6c6c 2074 6865 2066 756e 6374 , tell the funct │ │ │ │ -0001f990: 696f 6e20 6e6f 7420 746f 2075 7365 2074 ion not to use t │ │ │ │ -0001f9a0: 6865 2062 7569 6c74 2069 6e20 6469 6d0a he built in dim. │ │ │ │ -0001f9b0: 2020 2020 2020 2020 636f 6d6d 616e 6420 command │ │ │ │ -0001f9c0: 616e 6420 6f6e 6c79 2075 7365 2069 7343 and only use isC │ │ │ │ -0001f9d0: 6f64 696d 4174 4c65 6173 740a 2020 2020 odimAtLeast. │ │ │ │ -0001f9e0: 2020 2a20 4d69 6e4d 696e 6f72 7346 756e * MinMinorsFun │ │ │ │ -0001f9f0: 6374 696f 6e20 3d3e 2061 202a 6e6f 7465 ction => a *note │ │ │ │ -0001fa00: 2066 756e 6374 696f 6e3a 2028 4d61 6361 function: (Maca │ │ │ │ -0001fa10: 756c 6179 3244 6f63 2946 756e 6374 696f ulay2Doc)Functio │ │ │ │ -0001fa20: 6e2c 2c20 6465 6661 756c 740a 2020 2020 n,, default. │ │ │ │ -0001fa30: 2020 2020 7661 6c75 6520 4675 6e63 7469 value Functi │ │ │ │ -0001fa40: 6f6e 436c 6f73 7572 655b 2e2e 2f46 6173 onClosure[../Fas │ │ │ │ -0001fa50: 744d 696e 6f72 732e 6d32 3a31 3634 3a32 tMinors.m2:164:2 │ │ │ │ -0001fa60: 362d 3136 343a 3430 5d2c 2063 6f6e 7472 6-164:40], contr │ │ │ │ -0001fa70: 6f6c 2068 6f77 206d 616e 790a 2020 2020 ol how many. │ │ │ │ -0001fa80: 2020 2020 6d69 6e6f 7273 2061 7265 2063 minors are c │ │ │ │ -0001fa90: 6f6d 7075 7465 6420 6265 666f 7265 2063 omputed before c │ │ │ │ -0001faa0: 6f6d 7075 7469 6e67 2063 6f64 696d 0a20 omputing codim. │ │ │ │ -0001fab0: 2020 2020 202a 202a 6e6f 7465 204d 6178 * *note Max │ │ │ │ -0001fac0: 4d69 6e6f 7273 3a20 4d61 784d 696e 6f72 Minors: MaxMinor │ │ │ │ -0001fad0: 732c 203d 3e20 6120 2a6e 6f74 6520 6675 s, => a *note fu │ │ │ │ -0001fae0: 6e63 7469 6f6e 3a0a 2020 2020 2020 2020 nction:. │ │ │ │ -0001faf0: 284d 6163 6175 6c61 7932 446f 6329 4675 (Macaulay2Doc)Fu │ │ │ │ -0001fb00: 6e63 7469 6f6e 2c2c 2064 6566 6175 6c74 nction,, default │ │ │ │ -0001fb10: 2076 616c 7565 0a20 2020 2020 2020 2046 value. F │ │ │ │ -0001fb20: 756e 6374 696f 6e43 6c6f 7375 7265 5b2e unctionClosure[. │ │ │ │ -0001fb30: 2e2f 4661 7374 4d69 6e6f 7273 2e6d 323a ./FastMinors.m2: │ │ │ │ -0001fb40: 3135 393a 3138 2d31 3539 3a35 305d 2c20 159:18-159:50], │ │ │ │ -0001fb50: 686f 7720 6d61 6e79 206d 696e 6f72 7320 how many minors │ │ │ │ -0001fb60: 746f 0a20 2020 2020 2020 2063 6f6e 7369 to. consi │ │ │ │ -0001fb70: 6465 7220 6265 666f 7265 2067 6976 696e der before givin │ │ │ │ -0001fb80: 6720 7570 0a20 2020 2020 202a 2043 6f64 g up. * Cod │ │ │ │ -0001fb90: 696d 4368 6563 6b46 756e 6374 696f 6e20 imCheckFunction │ │ │ │ -0001fba0: 3d3e 2061 202a 6e6f 7465 2066 756e 6374 => a *note funct │ │ │ │ -0001fbb0: 696f 6e3a 2028 4d61 6361 756c 6179 3244 ion: (Macaulay2D │ │ │ │ -0001fbc0: 6f63 2946 756e 6374 696f 6e2c 2c0a 2020 oc)Function,,. │ │ │ │ -0001fbd0: 2020 2020 2020 6465 6661 756c 7420 7661 default va │ │ │ │ -0001fbe0: 6c75 6520 4675 6e63 7469 6f6e 436c 6f73 lue FunctionClos │ │ │ │ -0001fbf0: 7572 655b 2e2e 2f46 6173 744d 696e 6f72 ure[../FastMinor │ │ │ │ -0001fc00: 732e 6d32 3a31 3635 3a32 372d 3136 353a s.m2:165:27-165: │ │ │ │ -0001fc10: 3436 5d2c 2063 6f6e 7472 6f6c 0a20 2020 46], control. │ │ │ │ -0001fc20: 2020 2020 2068 6f77 206d 616e 7920 6d69 how many mi │ │ │ │ -0001fc30: 6e6f 7273 2074 6f20 636f 6d70 7574 6520 nors to compute │ │ │ │ -0001fc40: 696e 2062 6574 7765 656e 2063 616c 6c73 in between calls │ │ │ │ -0001fc50: 2074 6f20 636f 6469 6d0a 2020 2020 2020 to codim. │ │ │ │ -0001fc60: 2a20 2a6e 6f74 6520 4465 7453 7472 6174 * *note DetStrat │ │ │ │ -0001fc70: 6567 793a 2044 6574 5374 7261 7465 6779 egy: DetStrategy │ │ │ │ -0001fc80: 2c20 3d3e 202e 2e2e 2c20 6465 6661 756c , => ..., defaul │ │ │ │ -0001fc90: 7420 7661 6c75 6520 436f 6661 6374 6f72 t value Cofactor │ │ │ │ -0001fca0: 2c0a 2020 2020 2020 2020 4465 7453 7472 ,. DetStr │ │ │ │ -0001fcb0: 6174 6567 7920 6973 2061 2073 7472 6174 ategy is a strat │ │ │ │ -0001fcc0: 6567 7920 666f 7220 616c 6c6f 7769 6e67 egy for allowing │ │ │ │ -0001fcd0: 2074 6865 2075 7365 7220 746f 2063 686f the user to cho │ │ │ │ -0001fce0: 6f73 6520 686f 770a 2020 2020 2020 2020 ose how. │ │ │ │ -0001fcf0: 6465 7465 726d 696e 616e 7473 2028 6f72 determinants (or │ │ │ │ -0001fd00: 2072 616e 6b29 2c20 6973 2063 6f6d 7075 rank), is compu │ │ │ │ -0001fd10: 7465 640a 2020 2020 2020 2a20 2a6e 6f74 ted. * *not │ │ │ │ -0001fd20: 6520 506f 696e 744f 7074 696f 6e73 3a20 e PointOptions: │ │ │ │ -0001fd30: 506f 696e 744f 7074 696f 6e73 2c20 3d3e PointOptions, => │ │ │ │ -0001fd40: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -0001fd50: 6c75 6520 7b53 7472 6174 6567 7920 3d3e lue {Strategy => │ │ │ │ -0001fd60: 0a20 2020 2020 2020 2044 6566 6175 6c74 . Default │ │ │ │ -0001fd70: 2c20 486f 6d6f 6765 6e65 6f75 7320 3d3e , Homogeneous => │ │ │ │ -0001fd80: 2066 616c 7365 2c20 5265 706c 6163 656d false, Replacem │ │ │ │ -0001fd90: 656e 7420 3d3e 2042 696e 6f6d 6961 6c2c ent => Binomial, │ │ │ │ -0001fda0: 2045 7874 656e 6446 6965 6c64 203d 3e0a ExtendField =>. │ │ │ │ -0001fdb0: 2020 2020 2020 2020 7472 7565 2c20 506f true, Po │ │ │ │ -0001fdc0: 696e 7443 6865 636b 4174 7465 6d70 7473 intCheckAttempts │ │ │ │ -0001fdd0: 203d 3e20 302c 2044 6563 6f6d 706f 7369 => 0, Decomposi │ │ │ │ -0001fde0: 7469 6f6e 5374 7261 7465 6779 203d 3e20 tionStrategy => │ │ │ │ -0001fdf0: 4465 636f 6d70 6f73 652c 0a20 2020 2020 Decompose,. │ │ │ │ -0001fe00: 2020 204e 756d 5468 7265 6164 7354 6f55 NumThreadsToU │ │ │ │ -0001fe10: 7365 203d 3e20 312c 2044 696d 656e 7369 se => 1, Dimensi │ │ │ │ -0001fe20: 6f6e 4675 6e63 7469 6f6e 203d 3e20 6469 onFunction => di │ │ │ │ -0001fe30: 6d2c 2056 6572 626f 7365 203d 3e20 6661 m, Verbose => fa │ │ │ │ -0001fe40: 6c73 657d 2c0a 2020 2020 2020 2020 6f70 lse},. op │ │ │ │ -0001fe50: 7469 6f6e 7320 746f 2070 6173 7320 746f tions to pass to │ │ │ │ -0001fe60: 2066 756e 6374 696f 6e73 2069 6e20 7468 functions in th │ │ │ │ -0001fe70: 6520 7061 636b 6167 6520 5261 6e64 6f6d e package Random │ │ │ │ -0001fe80: 506f 696e 7473 0a20 2020 2020 202a 202a Points. * * │ │ │ │ -0001fe90: 6e6f 7465 2053 7472 6174 6567 793a 2053 note Strategy: S │ │ │ │ -0001fea0: 7472 6174 6567 7944 6566 6175 6c74 2c20 trategyDefault, │ │ │ │ -0001feb0: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ -0001fec0: 7661 6c75 6520 6e65 7720 4f70 7469 6f6e value new Option │ │ │ │ -0001fed0: 5461 626c 650a 2020 2020 2020 2020 6672 Table. fr │ │ │ │ -0001fee0: 6f6d 207b 506f 696e 7473 203d 3e20 302c om {Points => 0, │ │ │ │ -0001fef0: 2052 616e 646f 6d20 3d3e 2031 362c 2047 Random => 16, G │ │ │ │ -0001ff00: 5265 764c 6578 4c61 7267 6573 7420 3d3e RevLexLargest => │ │ │ │ -0001ff10: 2030 2c20 4c65 7853 6d61 6c6c 6573 7454 0, LexSmallestT │ │ │ │ -0001ff20: 6572 6d0a 2020 2020 2020 2020 3d3e 2031 erm. => 1 │ │ │ │ -0001ff30: 362c 204c 6578 4c61 7267 6573 7420 3d3e 6, LexLargest => │ │ │ │ -0001ff40: 2030 2c20 4c65 7853 6d61 6c6c 6573 7420 0, LexSmallest │ │ │ │ -0001ff50: 3d3e 2031 362c 2047 5265 764c 6578 536d => 16, GRevLexSm │ │ │ │ -0001ff60: 616c 6c65 7374 5465 726d 203d 3e20 3136 allestTerm => 16 │ │ │ │ -0001ff70: 2c0a 2020 2020 2020 2020 5261 6e64 6f6d ,. Random │ │ │ │ -0001ff80: 4e6f 6e7a 6572 6f20 3d3e 2031 362c 2047 Nonzero => 16, G │ │ │ │ -0001ff90: 5265 764c 6578 536d 616c 6c65 7374 203d RevLexSmallest = │ │ │ │ -0001ffa0: 3e20 3136 7d2c 2073 7472 6174 6567 6965 > 16}, strategie │ │ │ │ -0001ffb0: 7320 666f 7220 6368 6f6f 7369 6e67 0a20 s for choosing. │ │ │ │ -0001ffc0: 2020 2020 2020 2073 7562 6d61 7472 6963 submatric │ │ │ │ -0001ffd0: 6573 0a20 2020 2020 202a 2056 6572 626f es. * Verbo │ │ │ │ -0001ffe0: 7365 203d 3e20 2e2e 2e2c 2064 6566 6175 se => ..., defau │ │ │ │ -0001fff0: 6c74 2076 616c 7565 2066 616c 7365 0a20 lt value false. │ │ │ │ -00020000: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -00020010: 2020 2a20 7472 7565 2c20 6966 2074 6865 * true, if the │ │ │ │ -00020020: 2072 696e 6720 6973 2072 6567 756c 6172 ring is regular │ │ │ │ -00020030: 2069 6e20 636f 6469 6d65 6e73 696f 6e20 in codimension │ │ │ │ -00020040: 6e2c 2066 616c 7365 2069 6620 6974 2064 n, false if it d │ │ │ │ -00020050: 6574 6572 6d69 6e65 730a 2020 2020 2020 etermines. │ │ │ │ -00020060: 2020 6974 2069 7320 6e6f 742c 2061 6e64 it is not, and │ │ │ │ -00020070: 206e 756c 6c20 6966 206e 6f20 6465 7465 null if no dete │ │ │ │ -00020080: 726d 696e 6174 696f 6e20 6973 206d 6164 rmination is mad │ │ │ │ -00020090: 650a 0a44 6573 6372 6970 7469 6f6e 0a3d e..Description.= │ │ │ │ -000200a0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 ==========..This │ │ │ │ -000200b0: 2066 756e 6374 696f 6e20 7265 7475 726e function return │ │ │ │ -000200c0: 7320 7472 7565 2069 6620 5220 6973 2072 s true if R is r │ │ │ │ -000200d0: 6567 756c 6172 2069 6e20 636f 6469 6d65 egular in codime │ │ │ │ -000200e0: 6e73 696f 6e20 6e2c 2066 616c 7365 2069 nsion n, false i │ │ │ │ -000200f0: 6620 6974 2069 730a 6e6f 742c 2061 6e64 f it is.not, and │ │ │ │ -00020100: 206e 756c 6c20 6966 2069 7420 6469 6420 null if it did │ │ │ │ -00020110: 6e6f 7420 6d61 6b65 2061 2064 6574 6572 not make a deter │ │ │ │ -00020120: 6d69 6e61 7469 6f6e 2e20 4974 2063 6f6e mination. It con │ │ │ │ -00020130: 7369 6465 7273 2069 6e74 6572 6573 7469 siders interesti │ │ │ │ -00020140: 6e67 0a6d 696e 6f72 7320 6f66 2074 6865 ng.minors of the │ │ │ │ -00020150: 206a 6163 6f62 6961 6e20 6d61 7472 6978 jacobian matrix │ │ │ │ -00020160: 2074 6f20 7472 7920 746f 2076 6572 6966 to try to verif │ │ │ │ -00020170: 7920 7468 6174 2074 6865 2072 696e 6720 y that the ring │ │ │ │ -00020180: 6973 2072 6567 756c 6172 2069 6e0a 636f is regular in.co │ │ │ │ -00020190: 6469 6d65 6e73 696f 6e20 6e2e 2049 7420 dimension n. It │ │ │ │ -000201a0: 6973 2066 7265 7175 656e 746c 7920 6d75 is frequently mu │ │ │ │ -000201b0: 6368 2066 6173 7465 7220 6174 2067 6976 ch faster at giv │ │ │ │ -000201c0: 696e 6720 616e 2061 6666 6972 6d61 7469 ing an affirmati │ │ │ │ -000201d0: 7665 2061 6e73 7765 720a 7468 616e 2063 ve answer.than c │ │ │ │ -000201e0: 6f6d 7075 7469 6e67 2074 6865 2064 696d omputing the dim │ │ │ │ -000201f0: 656e 7369 6f6e 206f 6620 7468 6520 6964 ension of the id │ │ │ │ -00020200: 6561 6c20 6f66 2061 6c6c 206d 696e 6f72 eal of all minor │ │ │ │ -00020210: 7320 6f66 2074 6865 204a 6163 6f62 6961 s of the Jacobia │ │ │ │ -00020220: 6e2e 2057 650a 6265 6769 6e20 7769 7468 n. We.begin with │ │ │ │ -00020230: 2061 2073 696d 706c 6520 6578 616d 706c a simple exampl │ │ │ │ -00020240: 6520 7768 6963 6820 6973 2052 312c 2062 e which is R1, b │ │ │ │ -00020250: 7574 206e 6f74 2052 322e 0a0a 2b2d 2d2d ut not R2...+--- │ │ │ │ -00020260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020280: 2d2b 0a7c 6931 203a 2052 203d 2051 515b -+.|i1 : R = QQ[ │ │ │ │ -00020290: 782c 2079 2c20 7a5d 2f69 6465 616c 2878 x, y, z]/ideal(x │ │ │ │ -000202a0: 2a79 2d7a 5e32 293b 7c0a 2b2d 2d2d 2d2d *y-z^2);|.+----- │ │ │ │ +0001f2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f310: 207c 0a7c 6f35 203d 2074 7275 6520 2020 |.|o5 = true │ │ │ │ +0001f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f340: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001f350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f380: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ +0001f390: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +0001f3a0: 206d 696e 6f72 733a 2028 4d61 6361 756c minors: (Macaul │ │ │ │ +0001f3b0: 6179 3244 6f63 296d 696e 6f72 735f 6c70 ay2Doc)minors_lp │ │ │ │ +0001f3c0: 5a5a 5f63 6d4d 6174 7269 785f 7270 2c20 ZZ_cmMatrix_rp, │ │ │ │ +0001f3d0: 2d2d 2069 6465 616c 2067 656e 6572 6174 -- ideal generat │ │ │ │ +0001f3e0: 6564 2062 790a 2020 2020 6d69 6e6f 7273 ed by. minors │ │ │ │ +0001f3f0: 0a0a 5761 7973 2074 6f20 7573 6520 7265 ..Ways to use re │ │ │ │ +0001f400: 6375 7273 6976 654d 696e 6f72 733a 0a3d cursiveMinors:.= │ │ │ │ +0001f410: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001f420: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +0001f430: 2022 7265 6375 7273 6976 654d 696e 6f72 "recursiveMinor │ │ │ │ +0001f440: 7328 5a5a 2c4d 6174 7269 7829 220a 0a46 s(ZZ,Matrix)"..F │ │ │ │ +0001f450: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +0001f460: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +0001f470: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +0001f480: 202a 6e6f 7465 2072 6563 7572 7369 7665 *note recursive │ │ │ │ +0001f490: 4d69 6e6f 7273 3a20 7265 6375 7273 6976 Minors: recursiv │ │ │ │ +0001f4a0: 654d 696e 6f72 732c 2069 7320 6120 2a6e eMinors, is a *n │ │ │ │ +0001f4b0: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ +0001f4c0: 696f 6e0a 7769 7468 206f 7074 696f 6e73 ion.with options │ │ │ │ +0001f4d0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0001f4e0: 4d65 7468 6f64 4675 6e63 7469 6f6e 5769 MethodFunctionWi │ │ │ │ +0001f4f0: 7468 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d thOptions,...--- │ │ │ │ +0001f500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +0001f550: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +0001f560: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +0001f570: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +0001f580: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +0001f590: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +0001f5a0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +0001f5b0: 6765 732f 4661 7374 4d69 6e6f 7273 2e0a ges/FastMinors.. │ │ │ │ +0001f5c0: 6d32 3a32 3033 303a 302e 0a1f 0a46 696c m2:2030:0....Fil │ │ │ │ +0001f5d0: 653a 2046 6173 744d 696e 6f72 732e 696e e: FastMinors.in │ │ │ │ +0001f5e0: 666f 2c20 4e6f 6465 3a20 7265 6775 6c61 fo, Node: regula │ │ │ │ +0001f5f0: 7249 6e43 6f64 696d 656e 7369 6f6e 2c20 rInCodimension, │ │ │ │ +0001f600: 4e65 7874 3a20 5265 6775 6c61 7249 6e43 Next: RegularInC │ │ │ │ +0001f610: 6f64 696d 656e 7369 6f6e 5475 746f 7269 odimensionTutori │ │ │ │ +0001f620: 616c 2c20 5072 6576 3a20 7265 6375 7273 al, Prev: recurs │ │ │ │ +0001f630: 6976 654d 696e 6f72 732c 2055 703a 2054 iveMinors, Up: T │ │ │ │ +0001f640: 6f70 0a0a 7265 6775 6c61 7249 6e43 6f64 op..regularInCod │ │ │ │ +0001f650: 696d 656e 7369 6f6e 202d 2d20 6174 7465 imension -- atte │ │ │ │ +0001f660: 6d70 7473 2074 6f20 7368 6f77 2074 6861 mpts to show tha │ │ │ │ +0001f670: 7420 7468 6520 7269 6e67 2069 7320 7265 t the ring is re │ │ │ │ +0001f680: 6775 6c61 7220 696e 2063 6f64 696d 656e gular in codimen │ │ │ │ +0001f690: 7369 6f6e 206e 0a2a 2a2a 2a2a 2a2a 2a2a sion n.********* │ │ │ │ +0001f6a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001f6b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001f6c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001f6d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001f6e0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ +0001f6f0: 7361 6765 3a20 0a20 2020 2020 2020 2072 sage: . r │ │ │ │ +0001f700: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +0001f710: 696f 6e28 6e2c 2052 290a 2020 2a20 496e ion(n, R). * In │ │ │ │ +0001f720: 7075 7473 3a0a 2020 2020 2020 2a20 6e2c puts:. * n, │ │ │ │ +0001f730: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ +0001f740: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ +0001f750: 295a 5a2c 2c20 0a20 2020 2020 202a 2052 )ZZ,, . * R │ │ │ │ +0001f760: 2c20 6120 2a6e 6f74 6520 7269 6e67 3a20 , a *note ring: │ │ │ │ +0001f770: 284d 6163 6175 6c61 7932 446f 6329 5269 (Macaulay2Doc)Ri │ │ │ │ +0001f780: 6e67 2c2c 200a 2020 2a20 2a6e 6f74 6520 ng,, . * *note │ │ │ │ +0001f790: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ +0001f7a0: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ +0001f7b0: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ +0001f7c0: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ +0001f7d0: 7574 732c 3a0a 2020 2020 2020 2a20 4d6f uts,:. * Mo │ │ │ │ +0001f7e0: 6475 6c75 7320 3d3e 2061 202a 6e6f 7465 dulus => a *note │ │ │ │ +0001f7f0: 206e 756d 6265 723a 2028 4d61 6361 756c number: (Macaul │ │ │ │ +0001f800: 6179 3244 6f63 294e 756d 6265 722c 2c20 ay2Doc)Number,, │ │ │ │ +0001f810: 6465 6661 756c 7420 7661 6c75 6520 302c default value 0, │ │ │ │ +0001f820: 2077 6f72 6b0a 2020 2020 2020 2020 6d6f work. mo │ │ │ │ +0001f830: 6475 6c6f 2074 6865 2067 6976 656e 2070 dulo the given p │ │ │ │ +0001f840: 7269 6d65 206d 6f64 756c 7573 0a20 2020 rime modulus. │ │ │ │ +0001f850: 2020 202a 2050 6169 724c 696d 6974 203d * PairLimit = │ │ │ │ +0001f860: 3e20 6120 2a6e 6f74 6520 6e75 6d62 6572 > a *note number │ │ │ │ +0001f870: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0001f880: 4e75 6d62 6572 2c2c 2064 6566 6175 6c74 Number,, default │ │ │ │ +0001f890: 2076 616c 7565 2031 3030 2c0a 2020 2020 value 100,. │ │ │ │ +0001f8a0: 2020 2020 7061 7373 6564 2074 6f20 6973 passed to is │ │ │ │ +0001f8b0: 436f 6469 6d41 744c 6561 7374 0a20 2020 CodimAtLeast. │ │ │ │ +0001f8c0: 2020 202a 2053 5061 6972 7346 756e 6374 * SPairsFunct │ │ │ │ +0001f8d0: 696f 6e20 3d3e 2061 202a 6e6f 7465 2066 ion => a *note f │ │ │ │ +0001f8e0: 756e 6374 696f 6e3a 2028 4d61 6361 756c unction: (Macaul │ │ │ │ +0001f8f0: 6179 3244 6f63 2946 756e 6374 696f 6e2c ay2Doc)Function, │ │ │ │ +0001f900: 2c20 6465 6661 756c 740a 2020 2020 2020 , default. │ │ │ │ +0001f910: 2020 7661 6c75 6520 4675 6e63 7469 6f6e value Function │ │ │ │ +0001f920: 436c 6f73 7572 655b 2e2e 2f46 6173 744d Closure[../FastM │ │ │ │ +0001f930: 696e 6f72 732e 6d32 3a31 3639 3a32 332d inors.m2:169:23- │ │ │ │ +0001f940: 3136 393a 3432 5d2c 2070 6173 7365 6420 169:42], passed │ │ │ │ +0001f950: 746f 0a20 2020 2020 2020 2069 7343 6f64 to. isCod │ │ │ │ +0001f960: 696d 4174 4c65 6173 740a 2020 2020 2020 imAtLeast. │ │ │ │ +0001f970: 2a20 5573 654f 6e6c 7946 6173 7443 6f64 * UseOnlyFastCod │ │ │ │ +0001f980: 696d 203d 3e20 6120 2a6e 6f74 6520 426f im => a *note Bo │ │ │ │ +0001f990: 6f6c 6561 6e20 7661 6c75 653a 2028 4d61 olean value: (Ma │ │ │ │ +0001f9a0: 6361 756c 6179 3244 6f63 2942 6f6f 6c65 caulay2Doc)Boole │ │ │ │ +0001f9b0: 616e 2c2c 0a20 2020 2020 2020 2064 6566 an,,. def │ │ │ │ +0001f9c0: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ +0001f9d0: 2c20 7465 6c6c 2074 6865 2066 756e 6374 , tell the funct │ │ │ │ +0001f9e0: 696f 6e20 6e6f 7420 746f 2075 7365 2074 ion not to use t │ │ │ │ +0001f9f0: 6865 2062 7569 6c74 2069 6e20 6469 6d0a he built in dim. │ │ │ │ +0001fa00: 2020 2020 2020 2020 636f 6d6d 616e 6420 command │ │ │ │ +0001fa10: 616e 6420 6f6e 6c79 2075 7365 2069 7343 and only use isC │ │ │ │ +0001fa20: 6f64 696d 4174 4c65 6173 740a 2020 2020 odimAtLeast. │ │ │ │ +0001fa30: 2020 2a20 4d69 6e4d 696e 6f72 7346 756e * MinMinorsFun │ │ │ │ +0001fa40: 6374 696f 6e20 3d3e 2061 202a 6e6f 7465 ction => a *note │ │ │ │ +0001fa50: 2066 756e 6374 696f 6e3a 2028 4d61 6361 function: (Maca │ │ │ │ +0001fa60: 756c 6179 3244 6f63 2946 756e 6374 696f ulay2Doc)Functio │ │ │ │ +0001fa70: 6e2c 2c20 6465 6661 756c 740a 2020 2020 n,, default. │ │ │ │ +0001fa80: 2020 2020 7661 6c75 6520 4675 6e63 7469 value Functi │ │ │ │ +0001fa90: 6f6e 436c 6f73 7572 655b 2e2e 2f46 6173 onClosure[../Fas │ │ │ │ +0001faa0: 744d 696e 6f72 732e 6d32 3a31 3634 3a32 tMinors.m2:164:2 │ │ │ │ +0001fab0: 362d 3136 343a 3430 5d2c 2063 6f6e 7472 6-164:40], contr │ │ │ │ +0001fac0: 6f6c 2068 6f77 206d 616e 790a 2020 2020 ol how many. │ │ │ │ +0001fad0: 2020 2020 6d69 6e6f 7273 2061 7265 2063 minors are c │ │ │ │ +0001fae0: 6f6d 7075 7465 6420 6265 666f 7265 2063 omputed before c │ │ │ │ +0001faf0: 6f6d 7075 7469 6e67 2063 6f64 696d 0a20 omputing codim. │ │ │ │ +0001fb00: 2020 2020 202a 202a 6e6f 7465 204d 6178 * *note Max │ │ │ │ +0001fb10: 4d69 6e6f 7273 3a20 4d61 784d 696e 6f72 Minors: MaxMinor │ │ │ │ +0001fb20: 732c 203d 3e20 6120 2a6e 6f74 6520 6675 s, => a *note fu │ │ │ │ +0001fb30: 6e63 7469 6f6e 3a0a 2020 2020 2020 2020 nction:. │ │ │ │ +0001fb40: 284d 6163 6175 6c61 7932 446f 6329 4675 (Macaulay2Doc)Fu │ │ │ │ +0001fb50: 6e63 7469 6f6e 2c2c 2064 6566 6175 6c74 nction,, default │ │ │ │ +0001fb60: 2076 616c 7565 0a20 2020 2020 2020 2046 value. F │ │ │ │ +0001fb70: 756e 6374 696f 6e43 6c6f 7375 7265 5b2e unctionClosure[. │ │ │ │ +0001fb80: 2e2f 4661 7374 4d69 6e6f 7273 2e6d 323a ./FastMinors.m2: │ │ │ │ +0001fb90: 3135 393a 3138 2d31 3539 3a35 305d 2c20 159:18-159:50], │ │ │ │ +0001fba0: 686f 7720 6d61 6e79 206d 696e 6f72 7320 how many minors │ │ │ │ +0001fbb0: 746f 0a20 2020 2020 2020 2063 6f6e 7369 to. consi │ │ │ │ +0001fbc0: 6465 7220 6265 666f 7265 2067 6976 696e der before givin │ │ │ │ +0001fbd0: 6720 7570 0a20 2020 2020 202a 2043 6f64 g up. * Cod │ │ │ │ +0001fbe0: 696d 4368 6563 6b46 756e 6374 696f 6e20 imCheckFunction │ │ │ │ +0001fbf0: 3d3e 2061 202a 6e6f 7465 2066 756e 6374 => a *note funct │ │ │ │ +0001fc00: 696f 6e3a 2028 4d61 6361 756c 6179 3244 ion: (Macaulay2D │ │ │ │ +0001fc10: 6f63 2946 756e 6374 696f 6e2c 2c0a 2020 oc)Function,,. │ │ │ │ +0001fc20: 2020 2020 2020 6465 6661 756c 7420 7661 default va │ │ │ │ +0001fc30: 6c75 6520 4675 6e63 7469 6f6e 436c 6f73 lue FunctionClos │ │ │ │ +0001fc40: 7572 655b 2e2e 2f46 6173 744d 696e 6f72 ure[../FastMinor │ │ │ │ +0001fc50: 732e 6d32 3a31 3635 3a32 372d 3136 353a s.m2:165:27-165: │ │ │ │ +0001fc60: 3436 5d2c 2063 6f6e 7472 6f6c 0a20 2020 46], control. │ │ │ │ +0001fc70: 2020 2020 2068 6f77 206d 616e 7920 6d69 how many mi │ │ │ │ +0001fc80: 6e6f 7273 2074 6f20 636f 6d70 7574 6520 nors to compute │ │ │ │ +0001fc90: 696e 2062 6574 7765 656e 2063 616c 6c73 in between calls │ │ │ │ +0001fca0: 2074 6f20 636f 6469 6d0a 2020 2020 2020 to codim. │ │ │ │ +0001fcb0: 2a20 2a6e 6f74 6520 4465 7453 7472 6174 * *note DetStrat │ │ │ │ +0001fcc0: 6567 793a 2044 6574 5374 7261 7465 6779 egy: DetStrategy │ │ │ │ +0001fcd0: 2c20 3d3e 202e 2e2e 2c20 6465 6661 756c , => ..., defaul │ │ │ │ +0001fce0: 7420 7661 6c75 6520 436f 6661 6374 6f72 t value Cofactor │ │ │ │ +0001fcf0: 2c0a 2020 2020 2020 2020 4465 7453 7472 ,. DetStr │ │ │ │ +0001fd00: 6174 6567 7920 6973 2061 2073 7472 6174 ategy is a strat │ │ │ │ +0001fd10: 6567 7920 666f 7220 616c 6c6f 7769 6e67 egy for allowing │ │ │ │ +0001fd20: 2074 6865 2075 7365 7220 746f 2063 686f the user to cho │ │ │ │ +0001fd30: 6f73 6520 686f 770a 2020 2020 2020 2020 ose how. │ │ │ │ +0001fd40: 6465 7465 726d 696e 616e 7473 2028 6f72 determinants (or │ │ │ │ +0001fd50: 2072 616e 6b29 2c20 6973 2063 6f6d 7075 rank), is compu │ │ │ │ +0001fd60: 7465 640a 2020 2020 2020 2a20 2a6e 6f74 ted. * *not │ │ │ │ +0001fd70: 6520 506f 696e 744f 7074 696f 6e73 3a20 e PointOptions: │ │ │ │ +0001fd80: 506f 696e 744f 7074 696f 6e73 2c20 3d3e PointOptions, => │ │ │ │ +0001fd90: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +0001fda0: 6c75 6520 7b53 7472 6174 6567 7920 3d3e lue {Strategy => │ │ │ │ +0001fdb0: 0a20 2020 2020 2020 2044 6566 6175 6c74 . Default │ │ │ │ +0001fdc0: 2c20 486f 6d6f 6765 6e65 6f75 7320 3d3e , Homogeneous => │ │ │ │ +0001fdd0: 2066 616c 7365 2c20 5265 706c 6163 656d false, Replacem │ │ │ │ +0001fde0: 656e 7420 3d3e 2042 696e 6f6d 6961 6c2c ent => Binomial, │ │ │ │ +0001fdf0: 2045 7874 656e 6446 6965 6c64 203d 3e0a ExtendField =>. │ │ │ │ +0001fe00: 2020 2020 2020 2020 7472 7565 2c20 506f true, Po │ │ │ │ +0001fe10: 696e 7443 6865 636b 4174 7465 6d70 7473 intCheckAttempts │ │ │ │ +0001fe20: 203d 3e20 302c 2044 6563 6f6d 706f 7369 => 0, Decomposi │ │ │ │ +0001fe30: 7469 6f6e 5374 7261 7465 6779 203d 3e20 tionStrategy => │ │ │ │ +0001fe40: 4465 636f 6d70 6f73 652c 0a20 2020 2020 Decompose,. │ │ │ │ +0001fe50: 2020 204e 756d 5468 7265 6164 7354 6f55 NumThreadsToU │ │ │ │ +0001fe60: 7365 203d 3e20 312c 2044 696d 656e 7369 se => 1, Dimensi │ │ │ │ +0001fe70: 6f6e 4675 6e63 7469 6f6e 203d 3e20 6469 onFunction => di │ │ │ │ +0001fe80: 6d2c 2056 6572 626f 7365 203d 3e20 6661 m, Verbose => fa │ │ │ │ +0001fe90: 6c73 657d 2c0a 2020 2020 2020 2020 6f70 lse},. op │ │ │ │ +0001fea0: 7469 6f6e 7320 746f 2070 6173 7320 746f tions to pass to │ │ │ │ +0001feb0: 2066 756e 6374 696f 6e73 2069 6e20 7468 functions in th │ │ │ │ +0001fec0: 6520 7061 636b 6167 6520 5261 6e64 6f6d e package Random │ │ │ │ +0001fed0: 506f 696e 7473 0a20 2020 2020 202a 202a Points. * * │ │ │ │ +0001fee0: 6e6f 7465 2053 7472 6174 6567 793a 2053 note Strategy: S │ │ │ │ +0001fef0: 7472 6174 6567 7944 6566 6175 6c74 2c20 trategyDefault, │ │ │ │ +0001ff00: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +0001ff10: 7661 6c75 6520 6e65 7720 4f70 7469 6f6e value new Option │ │ │ │ +0001ff20: 5461 626c 650a 2020 2020 2020 2020 6672 Table. fr │ │ │ │ +0001ff30: 6f6d 207b 506f 696e 7473 203d 3e20 302c om {Points => 0, │ │ │ │ +0001ff40: 2052 616e 646f 6d20 3d3e 2031 362c 2047 Random => 16, G │ │ │ │ +0001ff50: 5265 764c 6578 4c61 7267 6573 7420 3d3e RevLexLargest => │ │ │ │ +0001ff60: 2030 2c20 4c65 7853 6d61 6c6c 6573 7454 0, LexSmallestT │ │ │ │ +0001ff70: 6572 6d0a 2020 2020 2020 2020 3d3e 2031 erm. => 1 │ │ │ │ +0001ff80: 362c 204c 6578 4c61 7267 6573 7420 3d3e 6, LexLargest => │ │ │ │ +0001ff90: 2030 2c20 4c65 7853 6d61 6c6c 6573 7420 0, LexSmallest │ │ │ │ +0001ffa0: 3d3e 2031 362c 2047 5265 764c 6578 536d => 16, GRevLexSm │ │ │ │ +0001ffb0: 616c 6c65 7374 5465 726d 203d 3e20 3136 allestTerm => 16 │ │ │ │ +0001ffc0: 2c0a 2020 2020 2020 2020 5261 6e64 6f6d ,. Random │ │ │ │ +0001ffd0: 4e6f 6e7a 6572 6f20 3d3e 2031 362c 2047 Nonzero => 16, G │ │ │ │ +0001ffe0: 5265 764c 6578 536d 616c 6c65 7374 203d RevLexSmallest = │ │ │ │ +0001fff0: 3e20 3136 7d2c 2073 7472 6174 6567 6965 > 16}, strategie │ │ │ │ +00020000: 7320 666f 7220 6368 6f6f 7369 6e67 0a20 s for choosing. │ │ │ │ +00020010: 2020 2020 2020 2073 7562 6d61 7472 6963 submatric │ │ │ │ +00020020: 6573 0a20 2020 2020 202a 2056 6572 626f es. * Verbo │ │ │ │ +00020030: 7365 203d 3e20 2e2e 2e2c 2064 6566 6175 se => ..., defau │ │ │ │ +00020040: 6c74 2076 616c 7565 2066 616c 7365 0a20 lt value false. │ │ │ │ +00020050: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +00020060: 2020 2a20 7472 7565 2c20 6966 2074 6865 * true, if the │ │ │ │ +00020070: 2072 696e 6720 6973 2072 6567 756c 6172 ring is regular │ │ │ │ +00020080: 2069 6e20 636f 6469 6d65 6e73 696f 6e20 in codimension │ │ │ │ +00020090: 6e2c 2066 616c 7365 2069 6620 6974 2064 n, false if it d │ │ │ │ +000200a0: 6574 6572 6d69 6e65 730a 2020 2020 2020 etermines. │ │ │ │ +000200b0: 2020 6974 2069 7320 6e6f 742c 2061 6e64 it is not, and │ │ │ │ +000200c0: 206e 756c 6c20 6966 206e 6f20 6465 7465 null if no dete │ │ │ │ +000200d0: 726d 696e 6174 696f 6e20 6973 206d 6164 rmination is mad │ │ │ │ +000200e0: 650a 0a44 6573 6372 6970 7469 6f6e 0a3d e..Description.= │ │ │ │ +000200f0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 ==========..This │ │ │ │ +00020100: 2066 756e 6374 696f 6e20 7265 7475 726e function return │ │ │ │ +00020110: 7320 7472 7565 2069 6620 5220 6973 2072 s true if R is r │ │ │ │ +00020120: 6567 756c 6172 2069 6e20 636f 6469 6d65 egular in codime │ │ │ │ +00020130: 6e73 696f 6e20 6e2c 2066 616c 7365 2069 nsion n, false i │ │ │ │ +00020140: 6620 6974 2069 730a 6e6f 742c 2061 6e64 f it is.not, and │ │ │ │ +00020150: 206e 756c 6c20 6966 2069 7420 6469 6420 null if it did │ │ │ │ +00020160: 6e6f 7420 6d61 6b65 2061 2064 6574 6572 not make a deter │ │ │ │ +00020170: 6d69 6e61 7469 6f6e 2e20 4974 2063 6f6e mination. It con │ │ │ │ +00020180: 7369 6465 7273 2069 6e74 6572 6573 7469 siders interesti │ │ │ │ +00020190: 6e67 0a6d 696e 6f72 7320 6f66 2074 6865 ng.minors of the │ │ │ │ +000201a0: 206a 6163 6f62 6961 6e20 6d61 7472 6978 jacobian matrix │ │ │ │ +000201b0: 2074 6f20 7472 7920 746f 2076 6572 6966 to try to verif │ │ │ │ +000201c0: 7920 7468 6174 2074 6865 2072 696e 6720 y that the ring │ │ │ │ +000201d0: 6973 2072 6567 756c 6172 2069 6e0a 636f is regular in.co │ │ │ │ +000201e0: 6469 6d65 6e73 696f 6e20 6e2e 2049 7420 dimension n. It │ │ │ │ +000201f0: 6973 2066 7265 7175 656e 746c 7920 6d75 is frequently mu │ │ │ │ +00020200: 6368 2066 6173 7465 7220 6174 2067 6976 ch faster at giv │ │ │ │ +00020210: 696e 6720 616e 2061 6666 6972 6d61 7469 ing an affirmati │ │ │ │ +00020220: 7665 2061 6e73 7765 720a 7468 616e 2063 ve answer.than c │ │ │ │ +00020230: 6f6d 7075 7469 6e67 2074 6865 2064 696d omputing the dim │ │ │ │ +00020240: 656e 7369 6f6e 206f 6620 7468 6520 6964 ension of the id │ │ │ │ +00020250: 6561 6c20 6f66 2061 6c6c 206d 696e 6f72 eal of all minor │ │ │ │ +00020260: 7320 6f66 2074 6865 204a 6163 6f62 6961 s of the Jacobia │ │ │ │ +00020270: 6e2e 2057 650a 6265 6769 6e20 7769 7468 n. We.begin with │ │ │ │ +00020280: 2061 2073 696d 706c 6520 6578 616d 706c a simple exampl │ │ │ │ +00020290: 6520 7768 6963 6820 6973 2052 312c 2062 e which is R1, b │ │ │ │ +000202a0: 7574 206e 6f74 2052 322e 0a0a 2b2d 2d2d ut not R2...+--- │ │ │ │ 000202b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000202c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000202d0: 0a7c 6932 203a 2072 6567 756c 6172 496e .|i2 : regularIn │ │ │ │ -000202e0: 436f 6469 6d65 6e73 696f 6e28 312c 2052 Codimension(1, R │ │ │ │ -000202f0: 2920 2020 2020 7c0a 7c20 2020 2020 2020 ) |.| │ │ │ │ -00020300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020310: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020320: 6f32 203d 2074 7275 6520 2020 2020 2020 o2 = true │ │ │ │ -00020330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020340: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00020350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -00020370: 203a 2072 6567 756c 6172 496e 436f 6469 : regularInCodi │ │ │ │ -00020380: 6d65 6e73 696f 6e28 322c 2052 2920 2020 mension(2, R) │ │ │ │ -00020390: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000202c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000202d0: 2d2b 0a7c 6931 203a 2052 203d 2051 515b -+.|i1 : R = QQ[ │ │ │ │ +000202e0: 782c 2079 2c20 7a5d 2f69 6465 616c 2878 x, y, z]/ideal(x │ │ │ │ +000202f0: 2a79 2d7a 5e32 293b 7c0a 2b2d 2d2d 2d2d *y-z^2);|.+----- │ │ │ │ +00020300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00020320: 0a7c 6932 203a 2072 6567 756c 6172 496e .|i2 : regularIn │ │ │ │ +00020330: 436f 6469 6d65 6e73 696f 6e28 312c 2052 Codimension(1, R │ │ │ │ +00020340: 2920 2020 2020 7c0a 7c20 2020 2020 2020 ) |.| │ │ │ │ +00020350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020370: 6f32 203d 2074 7275 6520 2020 2020 2020 o2 = true │ │ │ │ +00020380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020390: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 000203a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000203b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4e65 7874 ---------+..Next │ │ │ │ -000203c0: 2077 6520 636f 6e73 6964 6572 2061 206d we consider a m │ │ │ │ -000203d0: 6f72 6520 696e 7465 7265 7374 696e 6720 ore interesting │ │ │ │ -000203e0: 6578 616d 706c 6520 7468 6174 2069 7320 example that is │ │ │ │ -000203f0: 5231 2062 7574 206e 6f74 2052 322c 2061 R1 but not R2, a │ │ │ │ -00020400: 6e64 0a68 6967 686c 6967 6874 2074 6865 nd.highlight the │ │ │ │ -00020410: 2073 7065 6564 2064 6966 6665 7265 6e63 speed differenc │ │ │ │ -00020420: 6573 2e20 204e 6f74 6520 7468 6174 2072 es. Note that r │ │ │ │ -00020430: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -00020440: 696f 6e28 322c 2052 2920 7265 7475 726e ion(2, R) return │ │ │ │ -00020450: 730a 6e6f 7468 696e 672c 2061 7320 7468 s.nothing, as th │ │ │ │ -00020460: 6520 6675 6e63 7469 6f6e 2064 6964 206e e function did n │ │ │ │ -00020470: 6f74 2064 6574 6572 6d69 6e65 2077 6865 ot determine whe │ │ │ │ -00020480: 7468 6572 2074 6865 2072 696e 6720 7761 ther the ring wa │ │ │ │ -00020490: 7320 7265 6775 6c61 7220 696e 0a63 6f64 s regular in.cod │ │ │ │ -000204a0: 696d 656e 7369 6f6e 206e 2e0a 0a2b 2d2d imension n...+-- │ │ │ │ -000204b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ -00020500: 203a 2054 203d 205a 5a2f 3130 315b 7831 : T = ZZ/101[x1 │ │ │ │ -00020510: 2c78 322c 7833 2c78 342c 7835 2c78 362c ,x2,x3,x4,x5,x6, │ │ │ │ -00020520: 7837 5d3b 2020 2020 2020 2020 2020 2020 x7]; │ │ │ │ -00020530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020540: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00020550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ -000205a0: 203a 2049 203d 2020 6964 6561 6c28 7835 : I = ideal(x5 │ │ │ │ -000205b0: 2a78 362d 7834 2a78 372c 7831 2a78 362d *x6-x4*x7,x1*x6- │ │ │ │ -000205c0: 7832 2a78 372c 7835 5e32 2d78 312a 7837 x2*x7,x5^2-x1*x7 │ │ │ │ -000205d0: 2c78 342a 7835 2d78 322a 7837 2c78 345e ,x4*x5-x2*x7,x4^ │ │ │ │ -000205e0: 322d 7832 2a78 362c 7831 2a7c 0a7c 2020 2-x2*x6,x1*|.| │ │ │ │ -000205f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020630: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ -00020640: 203a 2049 6465 616c 206f 6620 5420 2020 : Ideal of T │ │ │ │ +000203b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +000203c0: 203a 2072 6567 756c 6172 496e 436f 6469 : regularInCodi │ │ │ │ +000203d0: 6d65 6e73 696f 6e28 322c 2052 2920 2020 mension(2, R) │ │ │ │ +000203e0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000203f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020400: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4e65 7874 ---------+..Next │ │ │ │ +00020410: 2077 6520 636f 6e73 6964 6572 2061 206d we consider a m │ │ │ │ +00020420: 6f72 6520 696e 7465 7265 7374 696e 6720 ore interesting │ │ │ │ +00020430: 6578 616d 706c 6520 7468 6174 2069 7320 example that is │ │ │ │ +00020440: 5231 2062 7574 206e 6f74 2052 322c 2061 R1 but not R2, a │ │ │ │ +00020450: 6e64 0a68 6967 686c 6967 6874 2074 6865 nd.highlight the │ │ │ │ +00020460: 2073 7065 6564 2064 6966 6665 7265 6e63 speed differenc │ │ │ │ +00020470: 6573 2e20 204e 6f74 6520 7468 6174 2072 es. Note that r │ │ │ │ +00020480: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00020490: 696f 6e28 322c 2052 2920 7265 7475 726e ion(2, R) return │ │ │ │ +000204a0: 730a 6e6f 7468 696e 672c 2061 7320 7468 s.nothing, as th │ │ │ │ +000204b0: 6520 6675 6e63 7469 6f6e 2064 6964 206e e function did n │ │ │ │ +000204c0: 6f74 2064 6574 6572 6d69 6e65 2077 6865 ot determine whe │ │ │ │ +000204d0: 7468 6572 2074 6865 2072 696e 6720 7761 ther the ring wa │ │ │ │ +000204e0: 7320 7265 6775 6c61 7220 696e 0a63 6f64 s regular in.cod │ │ │ │ +000204f0: 696d 656e 7369 6f6e 206e 2e0a 0a2b 2d2d imension n...+-- │ │ │ │ +00020500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +00020550: 203a 2054 203d 205a 5a2f 3130 315b 7831 : T = ZZ/101[x1 │ │ │ │ +00020560: 2c78 322c 7833 2c78 342c 7835 2c78 362c ,x2,x3,x4,x5,x6, │ │ │ │ +00020570: 7837 5d3b 2020 2020 2020 2020 2020 2020 x7]; │ │ │ │ +00020580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020590: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000205a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000205b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000205c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000205d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000205e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ +000205f0: 203a 2049 203d 2020 6964 6561 6c28 7835 : I = ideal(x5 │ │ │ │ +00020600: 2a78 362d 7834 2a78 372c 7831 2a78 362d *x6-x4*x7,x1*x6- │ │ │ │ +00020610: 7832 2a78 372c 7835 5e32 2d78 312a 7837 x2*x7,x5^2-x1*x7 │ │ │ │ +00020620: 2c78 342a 7835 2d78 322a 7837 2c78 345e ,x4*x5-x2*x7,x4^ │ │ │ │ +00020630: 322d 7832 2a78 362c 7831 2a7c 0a7c 2020 2-x2*x6,x1*|.| │ │ │ │ +00020640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020680: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -00020690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000206a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000206b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000206c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000206d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7834 -----------|.|x4 │ │ │ │ -000206e0: 2d78 322a 7835 2c78 322a 7833 5e33 2a78 -x2*x5,x2*x3^3*x │ │ │ │ -000206f0: 352b 332a 7832 2a78 335e 322a 7837 2b38 5+3*x2*x3^2*x7+8 │ │ │ │ -00020700: 2a78 325e 322a 7835 2b33 2a78 332a 7834 *x2^2*x5+3*x3*x4 │ │ │ │ -00020710: 2a78 372d 382a 7834 2a78 372b 7836 2a78 *x7-8*x4*x7+x6*x │ │ │ │ -00020720: 372c 7831 2a78 335e 332a 207c 0a7c 2d2d 7,x1*x3^3* |.|-- │ │ │ │ -00020730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7835 -----------|.|x5 │ │ │ │ -00020780: 2b33 2a78 312a 7833 5e32 2a78 372b 382a +3*x1*x3^2*x7+8* │ │ │ │ -00020790: 7831 2a78 322a 7835 2b33 2a78 332a 7835 x1*x2*x5+3*x3*x5 │ │ │ │ -000207a0: 2a78 372d 382a 7835 2a78 372b 7837 5e32 *x7-8*x5*x7+x7^2 │ │ │ │ -000207b0: 2c78 322a 7833 5e33 2a78 342b 332a 7832 ,x2*x3^3*x4+3*x2 │ │ │ │ -000207c0: 2a78 335e 322a 7836 2b38 2a7c 0a7c 2d2d *x3^2*x6+8*|.|-- │ │ │ │ -000207d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000207e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000207f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7832 -----------|.|x2 │ │ │ │ -00020820: 5e32 2a78 342b 332a 7833 2a78 342a 7836 ^2*x4+3*x3*x4*x6 │ │ │ │ -00020830: 2d38 2a78 342a 7836 2b78 365e 322c 7832 -8*x4*x6+x6^2,x2 │ │ │ │ -00020840: 5e32 2a78 335e 332b 332a 7832 2a78 335e ^2*x3^3+3*x2*x3^ │ │ │ │ -00020850: 322a 7834 2b38 2a78 325e 332b 332a 7832 2*x4+8*x2^3+3*x2 │ │ │ │ -00020860: 2a78 332a 7836 2d38 2a78 327c 0a7c 2d2d *x3*x6-8*x2|.|-- │ │ │ │ -00020870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000208a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000208b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 -----------|.|*x │ │ │ │ -000208c0: 362b 7834 2a78 362c 7831 2a78 322a 7833 6+x4*x6,x1*x2*x3 │ │ │ │ -000208d0: 5e33 2b33 2a78 322a 7833 5e32 2a78 352b ^3+3*x2*x3^2*x5+ │ │ │ │ -000208e0: 382a 7831 2a78 325e 322b 332a 7832 2a78 8*x1*x2^2+3*x2*x │ │ │ │ -000208f0: 332a 7837 2d38 2a78 322a 7837 2b78 342a 3*x7-8*x2*x7+x4* │ │ │ │ -00020900: 7837 2c78 315e 322a 7833 5e7c 0a7c 2d2d x7,x1^2*x3^|.|-- │ │ │ │ -00020910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 332b -----------|.|3+ │ │ │ │ -00020960: 332a 7831 2a78 335e 322a 7835 2b38 2a78 3*x1*x3^2*x5+8*x │ │ │ │ -00020970: 315e 322a 7832 2b33 2a78 312a 7833 2a78 1^2*x2+3*x1*x3*x │ │ │ │ -00020980: 372d 382a 7831 2a78 372b 7835 2a78 3729 7-8*x1*x7+x5*x7) │ │ │ │ -00020990: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -000209a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000209b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 -----------+.|i6 │ │ │ │ -00020a00: 203a 2053 203d 2054 2f49 3b20 2020 2020 : S = T/I; │ │ │ │ -00020a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a40: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00020a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ -00020aa0: 203a 2064 696d 2053 2020 2020 2020 2020 : dim S │ │ │ │ -00020ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ae0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00020af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020680: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +00020690: 203a 2049 6465 616c 206f 6620 5420 2020 : Ideal of T │ │ │ │ +000206a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000206b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000206c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000206d0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +000206e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000206f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7834 -----------|.|x4 │ │ │ │ +00020730: 2d78 322a 7835 2c78 322a 7833 5e33 2a78 -x2*x5,x2*x3^3*x │ │ │ │ +00020740: 352b 332a 7832 2a78 335e 322a 7837 2b38 5+3*x2*x3^2*x7+8 │ │ │ │ +00020750: 2a78 325e 322a 7835 2b33 2a78 332a 7834 *x2^2*x5+3*x3*x4 │ │ │ │ +00020760: 2a78 372d 382a 7834 2a78 372b 7836 2a78 *x7-8*x4*x7+x6*x │ │ │ │ +00020770: 372c 7831 2a78 335e 332a 207c 0a7c 2d2d 7,x1*x3^3* |.|-- │ │ │ │ +00020780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000207a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000207b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000207c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7835 -----------|.|x5 │ │ │ │ +000207d0: 2b33 2a78 312a 7833 5e32 2a78 372b 382a +3*x1*x3^2*x7+8* │ │ │ │ +000207e0: 7831 2a78 322a 7835 2b33 2a78 332a 7835 x1*x2*x5+3*x3*x5 │ │ │ │ +000207f0: 2a78 372d 382a 7835 2a78 372b 7837 5e32 *x7-8*x5*x7+x7^2 │ │ │ │ +00020800: 2c78 322a 7833 5e33 2a78 342b 332a 7832 ,x2*x3^3*x4+3*x2 │ │ │ │ +00020810: 2a78 335e 322a 7836 2b38 2a7c 0a7c 2d2d *x3^2*x6+8*|.|-- │ │ │ │ +00020820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7832 -----------|.|x2 │ │ │ │ +00020870: 5e32 2a78 342b 332a 7833 2a78 342a 7836 ^2*x4+3*x3*x4*x6 │ │ │ │ +00020880: 2d38 2a78 342a 7836 2b78 365e 322c 7832 -8*x4*x6+x6^2,x2 │ │ │ │ +00020890: 5e32 2a78 335e 332b 332a 7832 2a78 335e ^2*x3^3+3*x2*x3^ │ │ │ │ +000208a0: 322a 7834 2b38 2a78 325e 332b 332a 7832 2*x4+8*x2^3+3*x2 │ │ │ │ +000208b0: 2a78 332a 7836 2d38 2a78 327c 0a7c 2d2d *x3*x6-8*x2|.|-- │ │ │ │ +000208c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000208d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000208e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000208f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 -----------|.|*x │ │ │ │ +00020910: 362b 7834 2a78 362c 7831 2a78 322a 7833 6+x4*x6,x1*x2*x3 │ │ │ │ +00020920: 5e33 2b33 2a78 322a 7833 5e32 2a78 352b ^3+3*x2*x3^2*x5+ │ │ │ │ +00020930: 382a 7831 2a78 325e 322b 332a 7832 2a78 8*x1*x2^2+3*x2*x │ │ │ │ +00020940: 332a 7837 2d38 2a78 322a 7837 2b78 342a 3*x7-8*x2*x7+x4* │ │ │ │ +00020950: 7837 2c78 315e 322a 7833 5e7c 0a7c 2d2d x7,x1^2*x3^|.|-- │ │ │ │ +00020960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000209a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 332b -----------|.|3+ │ │ │ │ +000209b0: 332a 7831 2a78 335e 322a 7835 2b38 2a78 3*x1*x3^2*x5+8*x │ │ │ │ +000209c0: 315e 322a 7832 2b33 2a78 312a 7833 2a78 1^2*x2+3*x1*x3*x │ │ │ │ +000209d0: 372d 382a 7831 2a78 372b 7835 2a78 3729 7-8*x1*x7+x5*x7) │ │ │ │ +000209e0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +000209f0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00020a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 -----------+.|i6 │ │ │ │ +00020a50: 203a 2053 203d 2054 2f49 3b20 2020 2020 : S = T/I; │ │ │ │ +00020a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020a90: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00020aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ +00020af0: 203a 2064 696d 2053 2020 2020 2020 2020 : dim S │ │ │ │ 00020b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b30: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ -00020b40: 203d 2033 2020 2020 2020 2020 2020 2020 = 3 │ │ │ │ +00020b30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00020b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b80: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00020b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 -----------+.|i8 │ │ │ │ -00020be0: 203a 2074 696d 6520 7265 6775 6c61 7249 : time regularI │ │ │ │ -00020bf0: 6e43 6f64 696d 656e 7369 6f6e 2831 2c20 nCodimension(1, │ │ │ │ -00020c00: 5329 2020 2020 2020 2020 2020 2020 2020 S) │ │ │ │ -00020c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c20: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00020c30: 2d20 7573 6564 2030 2e36 3731 3938 7320 - used 0.67198s │ │ │ │ -00020c40: 2863 7075 293b 2030 2e35 3531 3738 3673 (cpu); 0.551786s │ │ │ │ -00020c50: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00020c60: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ -00020c70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00020c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020cc0: 2020 2020 2020 2020 2020 207c 0a7c 6f38 |.|o8 │ │ │ │ -00020cd0: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +00020b80: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ +00020b90: 203d 2033 2020 2020 2020 2020 2020 2020 = 3 │ │ │ │ +00020ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020bd0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00020be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 -----------+.|i8 │ │ │ │ +00020c30: 203a 2074 696d 6520 7265 6775 6c61 7249 : time regularI │ │ │ │ +00020c40: 6e43 6f64 696d 656e 7369 6f6e 2831 2c20 nCodimension(1, │ │ │ │ +00020c50: 5329 2020 2020 2020 2020 2020 2020 2020 S) │ │ │ │ +00020c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020c70: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +00020c80: 2d20 7573 6564 2030 2e38 3035 3573 2028 - used 0.8055s ( │ │ │ │ +00020c90: 6370 7529 3b20 302e 3630 3633 3832 7320 cpu); 0.606382s │ │ │ │ +00020ca0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +00020cb0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00020cc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00020cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020d10: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00020d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 -----------+.|i9 │ │ │ │ -00020d70: 203a 2074 696d 6520 7265 6775 6c61 7249 : time regularI │ │ │ │ -00020d80: 6e43 6f64 696d 656e 7369 6f6e 2832 2c20 nCodimension(2, │ │ │ │ -00020d90: 5329 2020 2020 2020 2020 2020 2020 2020 S) │ │ │ │ -00020da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020db0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00020dc0: 2d20 7573 6564 2036 2e34 3832 3536 7320 - used 6.48256s │ │ │ │ -00020dd0: 2863 7075 293b 2034 2e39 3330 3132 7320 (cpu); 4.93012s │ │ │ │ -00020de0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -00020df0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00020e00: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00020e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ -00020e60: 6572 6520 6172 6520 6e75 6d65 726f 7573 ere are numerous │ │ │ │ -00020e70: 2065 7861 6d70 6c65 7320 7768 6572 6520 examples where │ │ │ │ -00020e80: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00020e90: 7369 6f6e 2069 7320 7365 7665 7261 6c20 sion is several │ │ │ │ -00020ea0: 6f72 6465 7273 206f 660a 6d61 676e 6974 orders of.magnit │ │ │ │ -00020eb0: 7564 6520 6661 7374 6572 2074 6861 7420 ude faster that │ │ │ │ -00020ec0: 6361 6c6c 7320 6f66 2064 696d 2073 696e calls of dim sin │ │ │ │ -00020ed0: 6775 6c61 724c 6f63 7573 2e0a 0a54 6865 gularLocus...The │ │ │ │ -00020ee0: 2066 6f6c 6c6f 7769 6e67 2069 7320 6120 following is a │ │ │ │ -00020ef0: 2870 7275 6e65 6429 2061 6666 696e 6520 (pruned) affine │ │ │ │ -00020f00: 6368 6172 7420 6f6e 2061 6e20 4162 656c chart on an Abel │ │ │ │ -00020f10: 6961 6e20 7375 7266 6163 6520 6f62 7461 ian surface obta │ │ │ │ -00020f20: 696e 6564 2061 7320 610a 7072 6f64 7563 ined as a.produc │ │ │ │ -00020f30: 7420 6f66 2074 776f 2065 6c6c 6970 7469 t of two ellipti │ │ │ │ -00020f40: 6320 6375 7276 6573 2e20 2049 7420 6973 c curves. It is │ │ │ │ -00020f50: 206e 6f6e 7369 6e67 756c 6172 2c20 6173 nonsingular, as │ │ │ │ -00020f60: 206f 7572 2066 756e 6374 696f 6e20 7665 our function ve │ │ │ │ -00020f70: 7269 6669 6573 2e0a 4966 206f 6e65 2064 rifies..If one d │ │ │ │ -00020f80: 6f65 7320 6e6f 7420 7072 756e 6520 6974 oes not prune it │ │ │ │ -00020f90: 2c20 7468 656e 2074 6865 2064 696d 2073 , then the dim s │ │ │ │ -00020fa0: 696e 6775 6c61 724c 6f63 7573 2063 616c ingularLocus cal │ │ │ │ -00020fb0: 6c20 7461 6b65 7320 616e 2065 6e6f 726d l takes an enorm │ │ │ │ -00020fc0: 6f75 730a 616d 6f75 6e74 206f 6620 7469 ous.amount of ti │ │ │ │ -00020fd0: 6d65 2c20 6f74 6865 7277 6973 6520 7468 me, otherwise th │ │ │ │ -00020fe0: 6520 7275 6e6e 696e 6720 7469 6d65 7320 e running times │ │ │ │ -00020ff0: 6f66 2064 696d 2073 696e 6775 6c61 724c of dim singularL │ │ │ │ -00021000: 6f63 7573 2061 6e64 206f 7572 0a66 756e ocus and our.fun │ │ │ │ -00021010: 6374 696f 6e20 6172 6520 6672 6571 7565 ction are freque │ │ │ │ -00021020: 6e74 6c79 2061 626f 7574 2074 6865 2073 ntly about the s │ │ │ │ -00021030: 616d 652e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ame...+--------- │ │ │ │ -00021040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021080: 2d2d 2d2d 2b0a 7c69 3130 203a 2052 203d ----+.|i10 : R = │ │ │ │ -00021090: 2051 515b 632c 2066 2c20 672c 2068 5d2f QQ[c, f, g, h]/ │ │ │ │ -000210a0: 6964 6561 6c28 675e 332b 685e 332b 312c ideal(g^3+h^3+1, │ │ │ │ -000210b0: 662a 675e 332b 662a 685e 332b 662c 632a f*g^3+f*h^3+f,c* │ │ │ │ -000210c0: 675e 332b 632a 685e 332b 632c 665e 322a g^3+c*h^3+c,f^2* │ │ │ │ -000210d0: 675e 332b 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d g^3+|.|--------- │ │ │ │ -000210e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000210f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021120: 2d2d 2d2d 7c0a 7c66 5e32 2a68 5e33 2b66 ----|.|f^2*h^3+f │ │ │ │ -00021130: 5e32 2c63 2a66 2a67 5e33 2b63 2a66 2a68 ^2,c*f*g^3+c*f*h │ │ │ │ -00021140: 5e33 2b63 2a66 2c63 5e32 2a67 5e33 2b63 ^3+c*f,c^2*g^3+c │ │ │ │ -00021150: 5e32 2a68 5e33 2b63 5e32 2c66 5e33 2a67 ^2*h^3+c^2,f^3*g │ │ │ │ -00021160: 5e33 2b66 5e33 2a68 5e33 2b66 5e33 2c63 ^3+f^3*h^3+f^3,c │ │ │ │ -00021170: 2a66 5e32 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d *f^2|.|--------- │ │ │ │ -00021180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000211a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000211b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000211c0: 2d2d 2d2d 7c0a 7c2a 675e 332b 632a 665e ----|.|*g^3+c*f^ │ │ │ │ -000211d0: 322a 685e 332b 632a 665e 322c 635e 322a 2*h^3+c*f^2,c^2* │ │ │ │ -000211e0: 662a 675e 332b 635e 322a 662a 685e 332b f*g^3+c^2*f*h^3+ │ │ │ │ -000211f0: 635e 322a 662c 635e 332d 665e 322d 632c c^2*f,c^3-f^2-c, │ │ │ │ -00021200: 635e 332a 682d 665e 322a 682d 632a 682c c^3*h-f^2*h-c*h, │ │ │ │ -00021210: 635e 332a 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d c^3*|.|--------- │ │ │ │ -00021220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021260: 2d2d 2d2d 7c0a 7c67 2d66 5e32 2a67 2d63 ----|.|g-f^2*g-c │ │ │ │ -00021270: 2a67 2c63 5e33 2a68 5e32 2d66 5e32 2a68 *g,c^3*h^2-f^2*h │ │ │ │ -00021280: 5e32 2d63 2a68 5e32 2c63 5e33 2a67 2a68 ^2-c*h^2,c^3*g*h │ │ │ │ -00021290: 2d66 5e32 2a67 2a68 2d63 2a67 2a68 2c63 -f^2*g*h-c*g*h,c │ │ │ │ -000212a0: 5e33 2a67 5e32 2d66 5e32 2a67 5e32 2d63 ^3*g^2-f^2*g^2-c │ │ │ │ -000212b0: 2a67 5e32 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d *g^2|.|--------- │ │ │ │ -000212c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000212d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000212e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000212f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021300: 2d2d 2d2d 7c0a 7c2c 635e 332a 685e 332d ----|.|,c^3*h^3- │ │ │ │ -00021310: 665e 322a 685e 332d 632a 685e 332c 635e f^2*h^3-c*h^3,c^ │ │ │ │ -00021320: 332a 672a 685e 322d 665e 322a 672a 685e 3*g*h^2-f^2*g*h^ │ │ │ │ -00021330: 322d 632a 672a 685e 322c 635e 332a 675e 2-c*g*h^2,c^3*g^ │ │ │ │ -00021340: 322a 682d 665e 322a 675e 322a 682d 632a 2*h-f^2*g^2*h-c* │ │ │ │ -00021350: 675e 322a 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d g^2*|.|--------- │ │ │ │ -00021360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000213a0: 2d2d 2d2d 7c0a 7c68 2c63 5e33 2a67 5e33 ----|.|h,c^3*g^3 │ │ │ │ -000213b0: 2b66 5e32 2a68 5e33 2b63 2a68 5e33 2b66 +f^2*h^3+c*h^3+f │ │ │ │ -000213c0: 5e32 2b63 293b 2020 2020 2020 2020 2020 ^2+c); │ │ │ │ -000213d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00021400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021440: 2d2d 2d2d 2b0a 7c69 3131 203a 2064 696d ----+.|i11 : dim │ │ │ │ -00021450: 2852 2920 2020 2020 2020 2020 2020 2020 (R) │ │ │ │ -00021460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021490: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000214a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020d10: 2020 2020 2020 2020 2020 207c 0a7c 6f38 |.|o8 │ │ │ │ +00020d20: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +00020d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020d60: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00020d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 -----------+.|i9 │ │ │ │ +00020dc0: 203a 2074 696d 6520 7265 6775 6c61 7249 : time regularI │ │ │ │ +00020dd0: 6e43 6f64 696d 656e 7369 6f6e 2832 2c20 nCodimension(2, │ │ │ │ +00020de0: 5329 2020 2020 2020 2020 2020 2020 2020 S) │ │ │ │ +00020df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020e00: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +00020e10: 2d20 7573 6564 2037 2e35 3138 3435 7320 - used 7.51845s │ │ │ │ +00020e20: 2863 7075 293b 2035 2e34 3530 3637 7320 (cpu); 5.45067s │ │ │ │ +00020e30: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +00020e40: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00020e50: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00020e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ +00020eb0: 6572 6520 6172 6520 6e75 6d65 726f 7573 ere are numerous │ │ │ │ +00020ec0: 2065 7861 6d70 6c65 7320 7768 6572 6520 examples where │ │ │ │ +00020ed0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +00020ee0: 7369 6f6e 2069 7320 7365 7665 7261 6c20 sion is several │ │ │ │ +00020ef0: 6f72 6465 7273 206f 660a 6d61 676e 6974 orders of.magnit │ │ │ │ +00020f00: 7564 6520 6661 7374 6572 2074 6861 7420 ude faster that │ │ │ │ +00020f10: 6361 6c6c 7320 6f66 2064 696d 2073 696e calls of dim sin │ │ │ │ +00020f20: 6775 6c61 724c 6f63 7573 2e0a 0a54 6865 gularLocus...The │ │ │ │ +00020f30: 2066 6f6c 6c6f 7769 6e67 2069 7320 6120 following is a │ │ │ │ +00020f40: 2870 7275 6e65 6429 2061 6666 696e 6520 (pruned) affine │ │ │ │ +00020f50: 6368 6172 7420 6f6e 2061 6e20 4162 656c chart on an Abel │ │ │ │ +00020f60: 6961 6e20 7375 7266 6163 6520 6f62 7461 ian surface obta │ │ │ │ +00020f70: 696e 6564 2061 7320 610a 7072 6f64 7563 ined as a.produc │ │ │ │ +00020f80: 7420 6f66 2074 776f 2065 6c6c 6970 7469 t of two ellipti │ │ │ │ +00020f90: 6320 6375 7276 6573 2e20 2049 7420 6973 c curves. It is │ │ │ │ +00020fa0: 206e 6f6e 7369 6e67 756c 6172 2c20 6173 nonsingular, as │ │ │ │ +00020fb0: 206f 7572 2066 756e 6374 696f 6e20 7665 our function ve │ │ │ │ +00020fc0: 7269 6669 6573 2e0a 4966 206f 6e65 2064 rifies..If one d │ │ │ │ +00020fd0: 6f65 7320 6e6f 7420 7072 756e 6520 6974 oes not prune it │ │ │ │ +00020fe0: 2c20 7468 656e 2074 6865 2064 696d 2073 , then the dim s │ │ │ │ +00020ff0: 696e 6775 6c61 724c 6f63 7573 2063 616c ingularLocus cal │ │ │ │ +00021000: 6c20 7461 6b65 7320 616e 2065 6e6f 726d l takes an enorm │ │ │ │ +00021010: 6f75 730a 616d 6f75 6e74 206f 6620 7469 ous.amount of ti │ │ │ │ +00021020: 6d65 2c20 6f74 6865 7277 6973 6520 7468 me, otherwise th │ │ │ │ +00021030: 6520 7275 6e6e 696e 6720 7469 6d65 7320 e running times │ │ │ │ +00021040: 6f66 2064 696d 2073 696e 6775 6c61 724c of dim singularL │ │ │ │ +00021050: 6f63 7573 2061 6e64 206f 7572 0a66 756e ocus and our.fun │ │ │ │ +00021060: 6374 696f 6e20 6172 6520 6672 6571 7565 ction are freque │ │ │ │ +00021070: 6e74 6c79 2061 626f 7574 2074 6865 2073 ntly about the s │ │ │ │ +00021080: 616d 652e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ame...+--------- │ │ │ │ +00021090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210d0: 2d2d 2d2d 2b0a 7c69 3130 203a 2052 203d ----+.|i10 : R = │ │ │ │ +000210e0: 2051 515b 632c 2066 2c20 672c 2068 5d2f QQ[c, f, g, h]/ │ │ │ │ +000210f0: 6964 6561 6c28 675e 332b 685e 332b 312c ideal(g^3+h^3+1, │ │ │ │ +00021100: 662a 675e 332b 662a 685e 332b 662c 632a f*g^3+f*h^3+f,c* │ │ │ │ +00021110: 675e 332b 632a 685e 332b 632c 665e 322a g^3+c*h^3+c,f^2* │ │ │ │ +00021120: 675e 332b 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d g^3+|.|--------- │ │ │ │ +00021130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021170: 2d2d 2d2d 7c0a 7c66 5e32 2a68 5e33 2b66 ----|.|f^2*h^3+f │ │ │ │ +00021180: 5e32 2c63 2a66 2a67 5e33 2b63 2a66 2a68 ^2,c*f*g^3+c*f*h │ │ │ │ +00021190: 5e33 2b63 2a66 2c63 5e32 2a67 5e33 2b63 ^3+c*f,c^2*g^3+c │ │ │ │ +000211a0: 5e32 2a68 5e33 2b63 5e32 2c66 5e33 2a67 ^2*h^3+c^2,f^3*g │ │ │ │ +000211b0: 5e33 2b66 5e33 2a68 5e33 2b66 5e33 2c63 ^3+f^3*h^3+f^3,c │ │ │ │ +000211c0: 2a66 5e32 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d *f^2|.|--------- │ │ │ │ +000211d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000211e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000211f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021210: 2d2d 2d2d 7c0a 7c2a 675e 332b 632a 665e ----|.|*g^3+c*f^ │ │ │ │ +00021220: 322a 685e 332b 632a 665e 322c 635e 322a 2*h^3+c*f^2,c^2* │ │ │ │ +00021230: 662a 675e 332b 635e 322a 662a 685e 332b f*g^3+c^2*f*h^3+ │ │ │ │ +00021240: 635e 322a 662c 635e 332d 665e 322d 632c c^2*f,c^3-f^2-c, │ │ │ │ +00021250: 635e 332a 682d 665e 322a 682d 632a 682c c^3*h-f^2*h-c*h, │ │ │ │ +00021260: 635e 332a 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d c^3*|.|--------- │ │ │ │ +00021270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000212a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000212b0: 2d2d 2d2d 7c0a 7c67 2d66 5e32 2a67 2d63 ----|.|g-f^2*g-c │ │ │ │ +000212c0: 2a67 2c63 5e33 2a68 5e32 2d66 5e32 2a68 *g,c^3*h^2-f^2*h │ │ │ │ +000212d0: 5e32 2d63 2a68 5e32 2c63 5e33 2a67 2a68 ^2-c*h^2,c^3*g*h │ │ │ │ +000212e0: 2d66 5e32 2a67 2a68 2d63 2a67 2a68 2c63 -f^2*g*h-c*g*h,c │ │ │ │ +000212f0: 5e33 2a67 5e32 2d66 5e32 2a67 5e32 2d63 ^3*g^2-f^2*g^2-c │ │ │ │ +00021300: 2a67 5e32 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d *g^2|.|--------- │ │ │ │ +00021310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021350: 2d2d 2d2d 7c0a 7c2c 635e 332a 685e 332d ----|.|,c^3*h^3- │ │ │ │ +00021360: 665e 322a 685e 332d 632a 685e 332c 635e f^2*h^3-c*h^3,c^ │ │ │ │ +00021370: 332a 672a 685e 322d 665e 322a 672a 685e 3*g*h^2-f^2*g*h^ │ │ │ │ +00021380: 322d 632a 672a 685e 322c 635e 332a 675e 2-c*g*h^2,c^3*g^ │ │ │ │ +00021390: 322a 682d 665e 322a 675e 322a 682d 632a 2*h-f^2*g^2*h-c* │ │ │ │ +000213a0: 675e 322a 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d g^2*|.|--------- │ │ │ │ +000213b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000213c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000213d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000213e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000213f0: 2d2d 2d2d 7c0a 7c68 2c63 5e33 2a67 5e33 ----|.|h,c^3*g^3 │ │ │ │ +00021400: 2b66 5e32 2a68 5e33 2b63 2a68 5e33 2b66 +f^2*h^3+c*h^3+f │ │ │ │ +00021410: 5e32 2b63 293b 2020 2020 2020 2020 2020 ^2+c); │ │ │ │ +00021420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021440: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00021450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021490: 2d2d 2d2d 2b0a 7c69 3131 203a 2064 696d ----+.|i11 : dim │ │ │ │ +000214a0: 2852 2920 2020 2020 2020 2020 2020 2020 (R) │ │ │ │ 000214b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000214c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000214d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214e0: 2020 2020 7c0a 7c6f 3131 203d 2032 2020 |.|o11 = 2 │ │ │ │ +000214e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000214f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021530: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00021540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021580: 2d2d 2d2d 2b0a 7c69 3132 203a 2074 696d ----+.|i12 : tim │ │ │ │ -00021590: 6520 2864 696d 2073 696e 6775 6c61 724c e (dim singularL │ │ │ │ -000215a0: 6f63 7573 2028 5229 2920 2020 2020 2020 ocus (R)) │ │ │ │ -000215b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215d0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000215e0: 302e 3032 3030 3237 7320 2863 7075 293b 0.020027s (cpu); │ │ │ │ -000215f0: 2030 2e30 3139 3831 3534 7320 2874 6872 0.0198154s (thr │ │ │ │ -00021600: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +00021530: 2020 2020 7c0a 7c6f 3131 203d 2032 2020 |.|o11 = 2 │ │ │ │ +00021540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021580: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00021590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000215a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000215b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000215c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000215d0: 2d2d 2d2d 2b0a 7c69 3132 203a 2074 696d ----+.|i12 : tim │ │ │ │ +000215e0: 6520 2864 696d 2073 696e 6775 6c61 724c e (dim singularL │ │ │ │ +000215f0: 6f63 7573 2028 5229 2920 2020 2020 2020 ocus (R)) │ │ │ │ +00021600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021620: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00021630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021620: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +00021630: 302e 3031 3939 3938 3973 2028 6370 7529 0.0199989s (cpu) │ │ │ │ +00021640: 3b20 302e 3032 3138 3334 3373 2028 7468 ; 0.0218343s (th │ │ │ │ +00021650: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00021660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021670: 2020 2020 7c0a 7c6f 3132 203d 202d 3120 |.|o12 = -1 │ │ │ │ +00021670: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00021680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000216a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000216b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000216c0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -000216d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000216e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000216f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021710: 2d2d 2d2d 2b0a 7c69 3133 203a 2074 696d ----+.|i13 : tim │ │ │ │ -00021720: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ -00021730: 656e 7369 6f6e 2832 2c20 5229 2020 2020 ension(2, R) │ │ │ │ -00021740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021760: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00021770: 302e 3139 3230 3136 7320 2863 7075 293b 0.192016s (cpu); │ │ │ │ -00021780: 2030 2e31 3630 3834 3973 2028 7468 7265 0.160849s (thre │ │ │ │ -00021790: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +000216c0: 2020 2020 7c0a 7c6f 3132 203d 202d 3120 |.|o12 = -1 │ │ │ │ +000216d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000216e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000216f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021710: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00021720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021760: 2d2d 2d2d 2b0a 7c69 3133 203a 2074 696d ----+.|i13 : tim │ │ │ │ +00021770: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ +00021780: 656e 7369 6f6e 2832 2c20 5229 2020 2020 ension(2, R) │ │ │ │ +00021790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000217a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000217c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000217b0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +000217c0: 302e 3231 3930 3835 7320 2863 7075 293b 0.219085s (cpu); │ │ │ │ +000217d0: 2030 2e31 3533 3634 3673 2028 7468 7265 0.153646s (thre │ │ │ │ +000217e0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 000217f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021800: 2020 2020 7c0a 7c6f 3133 203d 2074 7275 |.|o13 = tru │ │ │ │ -00021810: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00021800: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00021810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021850: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00021860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000218a0: 2d2d 2d2d 2b0a 7c69 3134 203a 2074 696d ----+.|i14 : tim │ │ │ │ -000218b0: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ -000218c0: 656e 7369 6f6e 2832 2c20 5229 2020 2020 ension(2, R) │ │ │ │ -000218d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000218e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000218f0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00021900: 302e 3930 3935 3338 7320 2863 7075 293b 0.909538s (cpu); │ │ │ │ -00021910: 2030 2e36 3030 3332 3473 2028 7468 7265 0.600324s (thre │ │ │ │ -00021920: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +00021850: 2020 2020 7c0a 7c6f 3133 203d 2074 7275 |.|o13 = tru │ │ │ │ +00021860: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00021870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000218a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000218b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000218c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000218d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000218e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000218f0: 2d2d 2d2d 2b0a 7c69 3134 203a 2074 696d ----+.|i14 : tim │ │ │ │ +00021900: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ +00021910: 656e 7369 6f6e 2832 2c20 5229 2020 2020 ension(2, R) │ │ │ │ +00021920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021940: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00021950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021940: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +00021950: 312e 3132 3332 3673 2028 6370 7529 3b20 1.12326s (cpu); │ │ │ │ +00021960: 302e 3733 3130 3835 7320 2874 6872 6561 0.731085s (threa │ │ │ │ +00021970: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 00021980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021990: 2020 2020 7c0a 7c6f 3134 203d 2074 7275 |.|o14 = tru │ │ │ │ -000219a0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00021990: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000219a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000219b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000219c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000219d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000219e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -000219f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021a30: 2d2d 2d2d 2b0a 7c69 3135 203a 2074 696d ----+.|i15 : tim │ │ │ │ -00021a40: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ -00021a50: 656e 7369 6f6e 2832 2c20 5229 2020 2020 ension(2, R) │ │ │ │ -00021a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a80: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00021a90: 312e 3332 3839 7320 2863 7075 293b 2030 1.3289s (cpu); 0 │ │ │ │ -00021aa0: 2e38 3939 3039 3473 2028 7468 7265 6164 .899094s (thread │ │ │ │ -00021ab0: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +000219e0: 2020 2020 7c0a 7c6f 3134 203d 2074 7275 |.|o14 = tru │ │ │ │ +000219f0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00021a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021a30: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00021a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021a80: 2d2d 2d2d 2b0a 7c69 3135 203a 2074 696d ----+.|i15 : tim │ │ │ │ +00021a90: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ +00021aa0: 656e 7369 6f6e 2832 2c20 5229 2020 2020 ension(2, R) │ │ │ │ +00021ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ad0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00021ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021ad0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +00021ae0: 312e 3536 3531 3873 2028 6370 7529 3b20 1.56518s (cpu); │ │ │ │ +00021af0: 312e 3032 3234 3473 2028 7468 7265 6164 1.02244s (thread │ │ │ │ +00021b00: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 00021b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b20: 2020 2020 7c0a 7c6f 3135 203d 2074 7275 |.|o15 = tru │ │ │ │ -00021b30: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00021b20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00021b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b70: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00021b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021bc0: 2d2d 2d2d 2b0a 0a54 6865 2066 756e 6374 ----+..The funct │ │ │ │ -00021bd0: 696f 6e20 776f 726b 7320 6279 2063 686f ion works by cho │ │ │ │ -00021be0: 6f73 696e 6720 696e 7465 7265 7374 696e osing interestin │ │ │ │ -00021bf0: 6720 6c6f 6f6b 696e 6720 7375 626d 6174 g looking submat │ │ │ │ -00021c00: 7269 6365 732c 2063 6f6d 7075 7469 6e67 rices, computing │ │ │ │ -00021c10: 2074 6865 6972 0a64 6574 6572 6d69 6e61 their.determina │ │ │ │ -00021c20: 6e74 732c 2061 6e64 2070 6572 696f 6469 nts, and periodi │ │ │ │ -00021c30: 6361 6c6c 7920 2862 6173 6564 206f 6e20 cally (based on │ │ │ │ -00021c40: 6120 6c6f 6761 7269 7468 6d69 6320 6772 a logarithmic gr │ │ │ │ -00021c50: 6f77 7468 2073 6574 7469 6e67 292c 0a63 owth setting),.c │ │ │ │ -00021c60: 6f6d 7075 7469 6e67 2074 6865 2064 696d omputing the dim │ │ │ │ -00021c70: 656e 7369 6f6e 206f 6620 6120 7375 6269 ension of a subi │ │ │ │ -00021c80: 6465 616c 206f 6620 7468 6520 4a61 636f deal of the Jaco │ │ │ │ -00021c90: 6269 616e 2e20 5468 6520 6f70 7469 6f6e bian. The option │ │ │ │ -00021ca0: 2056 6572 626f 7365 2063 616e 0a62 6520 Verbose can.be │ │ │ │ -00021cb0: 7573 6564 2074 6f20 7365 6520 7468 6973 used to see this │ │ │ │ -00021cc0: 2069 6e20 6163 7469 6f6e 2e0a 0a2b 2d2d in action...+-- │ │ │ │ -00021cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00021d20: 3620 3a20 7469 6d65 2072 6567 756c 6172 6 : time regular │ │ │ │ -00021d30: 496e 436f 6469 6d65 6e73 696f 6e28 322c InCodimension(2, │ │ │ │ -00021d40: 2053 2c20 5665 7262 6f73 653d 3e74 7275 S, Verbose=>tru │ │ │ │ -00021d50: 6529 2020 2020 2020 2020 2020 2020 2020 e) │ │ │ │ -00021d60: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00021d70: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00021d80: 6f6e 3a20 7269 6e67 2064 696d 656e 7369 on: ring dimensi │ │ │ │ -00021d90: 6f6e 203d 332c 2074 6865 7265 2061 7265 on =3, there are │ │ │ │ -00021da0: 2031 3733 3235 2070 6f73 7369 626c 6520 17325 possible │ │ │ │ -00021db0: 3420 6279 2034 206d 696e 6f7c 0a7c 7265 4 by 4 mino|.|re │ │ │ │ +00021b70: 2020 2020 7c0a 7c6f 3135 203d 2074 7275 |.|o15 = tru │ │ │ │ +00021b80: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00021b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021bc0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00021bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021c10: 2d2d 2d2d 2b0a 0a54 6865 2066 756e 6374 ----+..The funct │ │ │ │ +00021c20: 696f 6e20 776f 726b 7320 6279 2063 686f ion works by cho │ │ │ │ +00021c30: 6f73 696e 6720 696e 7465 7265 7374 696e osing interestin │ │ │ │ +00021c40: 6720 6c6f 6f6b 696e 6720 7375 626d 6174 g looking submat │ │ │ │ +00021c50: 7269 6365 732c 2063 6f6d 7075 7469 6e67 rices, computing │ │ │ │ +00021c60: 2074 6865 6972 0a64 6574 6572 6d69 6e61 their.determina │ │ │ │ +00021c70: 6e74 732c 2061 6e64 2070 6572 696f 6469 nts, and periodi │ │ │ │ +00021c80: 6361 6c6c 7920 2862 6173 6564 206f 6e20 cally (based on │ │ │ │ +00021c90: 6120 6c6f 6761 7269 7468 6d69 6320 6772 a logarithmic gr │ │ │ │ +00021ca0: 6f77 7468 2073 6574 7469 6e67 292c 0a63 owth setting),.c │ │ │ │ +00021cb0: 6f6d 7075 7469 6e67 2074 6865 2064 696d omputing the dim │ │ │ │ +00021cc0: 656e 7369 6f6e 206f 6620 6120 7375 6269 ension of a subi │ │ │ │ +00021cd0: 6465 616c 206f 6620 7468 6520 4a61 636f deal of the Jaco │ │ │ │ +00021ce0: 6269 616e 2e20 5468 6520 6f70 7469 6f6e bian. The option │ │ │ │ +00021cf0: 2056 6572 626f 7365 2063 616e 0a62 6520 Verbose can.be │ │ │ │ +00021d00: 7573 6564 2074 6f20 7365 6520 7468 6973 used to see this │ │ │ │ +00021d10: 2069 6e20 6163 7469 6f6e 2e0a 0a2b 2d2d in action...+-- │ │ │ │ +00021d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00021d70: 3620 3a20 7469 6d65 2072 6567 756c 6172 6 : time regular │ │ │ │ +00021d80: 496e 436f 6469 6d65 6e73 696f 6e28 322c InCodimension(2, │ │ │ │ +00021d90: 2053 2c20 5665 7262 6f73 653d 3e74 7275 S, Verbose=>tru │ │ │ │ +00021da0: 6529 2020 2020 2020 2020 2020 2020 2020 e) │ │ │ │ +00021db0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00021dc0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00021dd0: 6f6e 3a20 4162 6f75 7420 746f 2065 6e74 on: About to ent │ │ │ │ -00021de0: 6572 206c 6f6f 7020 2020 2020 2020 2020 er loop │ │ │ │ -00021df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ -00021e10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00021e20: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00021e30: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00021dd0: 6f6e 3a20 7269 6e67 2064 696d 656e 7369 on: ring dimensi │ │ │ │ +00021de0: 6f6e 203d 332c 2074 6865 7265 2061 7265 on =3, there are │ │ │ │ +00021df0: 2031 3733 3235 2070 6f73 7369 626c 6520 17325 possible │ │ │ │ +00021e00: 3420 6279 2034 206d 696e 6f7c 0a7c 7265 4 by 4 mino|.|re │ │ │ │ +00021e10: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00021e20: 6f6e 3a20 4162 6f75 7420 746f 2065 6e74 on: About to ent │ │ │ │ +00021e30: 6572 206c 6f6f 7020 2020 2020 2020 2020 er loop │ │ │ │ 00021e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021e50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00021e60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00021e70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00021e80: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00021e70: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00021e80: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00021e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ea0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00021eb0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00021ec0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00021ed0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00021ec0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00021ed0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00021ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ef0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00021f00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00021f10: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00021f20: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00021f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021f40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00021f50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00021f60: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00021f70: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00021f60: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00021f70: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00021f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021f90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00021fa0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00021fb0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00021fc0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00021fc0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00021fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021fe0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00021ff0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022000: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022010: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00022000: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00022010: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00022020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022030: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022040: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022050: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00022060: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00022050: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00022060: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00022070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022080: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022090: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000220a0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 000220b0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000220c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000220d0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -000220e0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000220f0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00022100: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00022110: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00022120: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +000220d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000220e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +000220f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022100: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00022110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022120: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00022130: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022140: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00022150: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00022160: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00022170: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022140: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00022150: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00022160: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00022170: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00022180: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022190: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -000221a0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000221b0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -000221c0: 3d20 3220 2020 2020 2020 207c 0a7c 696e = 2 |.|in │ │ │ │ -000221d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000221e0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000221f0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ -00022200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022210: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022190: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +000221a0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000221b0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +000221c0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000221d0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +000221e0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +000221f0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00022200: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00022210: 3d20 3220 2020 2020 2020 207c 0a7c 696e = 2 |.|in │ │ │ │ 00022220: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022230: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00022240: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00022230: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00022240: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00022250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022260: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00022270: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022280: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00022290: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -000222a0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -000222b0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00022260: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022270: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00022280: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00022290: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000222a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000222b0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 000222c0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000222d0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -000222e0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -000222f0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00022300: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000222d0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +000222e0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +000222f0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00022300: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00022310: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022320: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00022330: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00022340: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00022350: 3d20 3220 2020 2020 2020 207c 0a7c 696e = 2 |.|in │ │ │ │ -00022360: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022370: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00022380: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ -00022390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022320: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00022330: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00022340: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00022350: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022360: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00022370: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00022380: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00022390: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +000223a0: 3d20 3220 2020 2020 2020 207c 0a7c 696e = 2 |.|in │ │ │ │ 000223b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000223c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000223d0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000223c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000223d0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000223e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022400: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022410: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00022420: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00022430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022440: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022450: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022460: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00022470: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00022460: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00022470: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00022480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022490: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -000224a0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000224b0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -000224c0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -000224d0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -000224e0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00022490: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000224a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +000224b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000224c0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000224d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000224e0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 000224f0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022500: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00022510: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00022520: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00022530: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022500: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00022510: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00022520: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00022530: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00022540: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022550: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00022560: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00022570: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00022580: 3d20 3220 2020 2020 2020 207c 0a7c 696e = 2 |.|in │ │ │ │ -00022590: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000225a0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000225b0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ -000225c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022550: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00022560: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00022570: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00022580: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022590: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +000225a0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +000225b0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +000225c0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +000225d0: 3d20 3220 2020 2020 2020 207c 0a7c 696e = 2 |.|in │ │ │ │ 000225e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000225f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022600: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000225f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022600: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00022610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022620: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022630: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022640: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022650: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00022650: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00022660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022670: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022680: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022690: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000226a0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00022690: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000226a0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000226b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000226c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000226d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000226e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000226f0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000226e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000226f0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00022700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022710: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022720: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022730: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00022740: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00022750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022760: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00022770: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022780: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00022790: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -000227a0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -000227b0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00022760: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022770: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00022780: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00022790: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000227a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000227b0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 000227c0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000227d0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -000227e0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -000227f0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00022800: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000227d0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +000227e0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +000227f0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00022800: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00022810: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022820: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00022830: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00022840: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00022850: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00022860: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022870: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00022880: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ -00022890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022820: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00022830: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00022840: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00022850: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022860: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00022870: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00022880: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00022890: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +000228a0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 000228b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000228c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000228d0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000228c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000228d0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000228e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000228f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022900: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022910: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00022920: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00022930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022940: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022950: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022960: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022970: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00022960: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022970: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00022980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022990: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000229a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000229b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000229c0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000229b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000229c0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000229d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000229f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022a00: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00022a10: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00022a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022a30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022a40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022a50: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022a60: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00022a50: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022a60: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00022a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a80: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00022a90: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022aa0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00022ab0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00022ac0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00022ad0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00022a80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022a90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00022aa0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00022ab0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00022ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022ad0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00022ae0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022af0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00022b00: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00022b10: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00022b20: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022af0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00022b00: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00022b10: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00022b20: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00022b30: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022b40: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00022b50: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00022b60: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00022b70: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00022b80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022b90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022ba0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ -00022bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022bc0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022b40: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00022b50: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00022b60: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00022b70: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022b80: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00022b90: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00022ba0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00022bb0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00022bc0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00022bd0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022be0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00022bf0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00022be0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00022bf0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00022c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022c20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022c30: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00022c40: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00022c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022c70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022c80: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00022c90: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00022c80: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00022c90: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00022ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022cb0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022cc0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022cd0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022ce0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00022cd0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022ce0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00022cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022d10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022d20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00022d30: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00022d20: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00022d30: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00022d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022d60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022d70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00022d80: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00022d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022da0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022db0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022dc0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00022dd0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00022dc0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022dd0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00022de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022df0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022e00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022e10: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022e20: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00022e10: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00022e20: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00022e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e40: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00022e50: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022e60: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00022e70: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00022e80: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00022e90: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00022e40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022e50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00022e60: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00022e70: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00022e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e90: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00022ea0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022eb0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00022ec0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00022ed0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00022ee0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022eb0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00022ec0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00022ed0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00022ee0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00022ef0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022f00: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00022f10: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00022f20: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00022f30: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00022f40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022f50: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00022f60: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ -00022f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022f00: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00022f10: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00022f20: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00022f30: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022f40: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00022f50: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00022f60: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00022f70: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00022f80: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00022f90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022fa0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00022fb0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00022fa0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022fb0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00022fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022fd0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022fe0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022ff0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023000: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00022ff0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023000: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00023010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023020: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023030: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023040: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00023050: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023070: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023080: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023090: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000230a0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +000230a0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000230b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000230c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000230d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000230e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000230f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000230e0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000230f0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00023100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023110: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023120: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023130: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00023140: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00023150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023160: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023170: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023180: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023190: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00023180: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023190: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000231a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000231b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000231c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000231d0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000231e0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000231d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000231e0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000231f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023200: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023210: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023220: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00023230: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023250: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023260: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023270: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00023280: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000232a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000232b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000232c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000232d0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000232c0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000232d0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000232e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000232f0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00023300: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00023310: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00023320: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00023330: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00023340: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +000232f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00023300: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00023310: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023320: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00023330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023340: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00023350: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00023360: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00023370: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00023380: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00023390: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00023360: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00023370: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00023380: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00023390: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 000233a0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000233b0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -000233c0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000233d0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -000233e0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -000233f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023400: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023410: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ -00023420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023430: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000233b0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +000233c0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000233d0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +000233e0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000233f0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00023400: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00023410: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00023420: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00023430: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00023440: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023450: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00023460: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00023470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023480: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023490: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000234a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000234b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +000234a0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000234b0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000234c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000234d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000234e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000234f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023500: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000234f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023500: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00023510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023520: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023530: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023540: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023550: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00023550: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00023560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023570: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023580: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023590: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 000235a0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000235b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000235c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000235d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000235e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000235f0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000235e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000235f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00023600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023610: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023620: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023630: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023640: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00023630: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023640: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00023650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023660: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023670: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023680: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023690: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00023690: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000236a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000236b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000236c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000236d0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000236e0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000236d0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000236e0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000236f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023700: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023710: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023720: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023730: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00023720: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023730: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00023740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023750: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023760: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023770: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023780: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00023770: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023780: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00023790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000237a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000237b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000237c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000237d0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000237c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000237d0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000237e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000237f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023800: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023810: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023820: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00023820: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00023830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023840: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023850: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023860: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023870: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00023860: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023870: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00023880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023890: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -000238a0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000238b0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -000238c0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -000238d0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -000238e0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00023890: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000238a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +000238b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000238c0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +000238d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000238e0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 000238f0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00023900: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00023910: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00023920: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00023930: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00023900: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00023910: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00023920: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00023930: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00023940: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00023950: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00023960: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00023970: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00023980: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00023990: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000239a0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000239b0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ -000239c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00023950: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00023960: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00023970: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00023980: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00023990: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +000239a0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +000239b0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +000239c0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +000239d0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 000239e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000239f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023a00: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000239f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023a00: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00023a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023a30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023a40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00023a50: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023a80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023a90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00023aa0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ac0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023ad0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023ae0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023af0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00023ae0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023af0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023b20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023b30: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023b40: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00023b40: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00023b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023b70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023b80: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023b90: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00023b80: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023b90: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00023ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023bb0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023bc0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023bd0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023be0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00023bd0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023be0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023c10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023c20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00023c30: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00023c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023c60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023c70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023c80: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00023c70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023c80: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00023c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ca0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023cb0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023cc0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023cd0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00023cc0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023cd0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00023ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023cf0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023d00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023d10: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023d20: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00023d10: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023d20: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00023d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023d50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023d60: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023d70: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00023d70: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00023d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023da0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023db0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00023dc0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00023dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023de0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023df0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023e00: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023e10: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00023e00: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023e10: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00023e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023e40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023e50: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023e60: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00023e50: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023e60: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00023e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023e90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023ea0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023eb0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00023ea0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023eb0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00023ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ed0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023ee0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023ef0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00023f00: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023f30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023f40: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023f50: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00023f40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023f50: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023f80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023f90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023fa0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00023f90: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023fa0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00023fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023fc0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00023fd0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00023fe0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00023ff0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00024000: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00024010: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00023fc0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00023fd0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00023fe0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023ff0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00024000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024010: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00024020: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00024030: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00024040: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00024050: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00024060: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00024030: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00024040: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00024050: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00024060: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00024070: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00024080: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00024090: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000240a0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -000240b0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -000240c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000240d0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000240e0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ -000240f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024100: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00024080: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00024090: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000240a0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +000240b0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000240c0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +000240d0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +000240e0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +000240f0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00024100: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00024110: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024120: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024130: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024120: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00024130: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00024140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024150: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024160: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024170: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024180: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00024170: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024180: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000241a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000241b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000241c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000241d0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000241d0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000241e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000241f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024200: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024210: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024220: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024210: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00024220: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024240: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024250: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024260: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024270: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024260: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024270: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024290: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000242a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000242b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000242c0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000242b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000242c0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000242d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000242e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000242f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024300: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024310: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00024310: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00024320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024330: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024340: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024350: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024360: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00024360: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024380: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024390: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000243a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000243b0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000243a0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000243b0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000243c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000243d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000243e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000243f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024400: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00024400: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024420: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024430: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024440: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024450: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024440: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024450: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024470: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024480: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024490: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000244a0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00024490: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000244a0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000244b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000244c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000244d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000244e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000244f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000244f0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024510: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024520: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024530: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024540: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024530: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024540: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024560: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024570: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024580: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00024590: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000245a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000245b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000245c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000245d0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000245e0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000245d0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000245e0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000245f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024600: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024610: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024620: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00024630: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024650: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024660: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024670: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024680: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024670: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024680: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000246a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000246b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000246c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000246d0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000246c0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000246d0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000246e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000246f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024700: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024710: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024720: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024720: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024740: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024750: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024760: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024770: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00024760: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024770: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024790: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000247a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000247b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 000247c0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000247d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000247e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000247f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024800: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024810: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024800: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00024810: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024830: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024840: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024850: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024860: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024850: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024860: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024880: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024890: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000248a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 000248b0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000248c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248d0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -000248e0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000248f0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00024900: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00024910: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00024920: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +000248d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000248e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +000248f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00024900: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024920: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00024930: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00024940: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00024950: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00024960: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00024970: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00024940: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00024950: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00024960: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00024970: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00024980: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00024990: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -000249a0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000249b0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -000249c0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -000249d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000249e0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000249f0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ -00024a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00024990: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +000249a0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000249b0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +000249c0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000249d0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +000249e0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +000249f0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00024a00: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00024a10: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00024a20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024a30: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024a40: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024a30: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00024a40: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00024a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024a60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024a70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024a80: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00024a90: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ab0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024ac0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024ad0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00024ae0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024b00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024b10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024b20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024b30: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00024b20: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024b30: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024b50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024b60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024b70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024b80: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00024b70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00024b80: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ba0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024bb0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024bc0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024bd0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00024bc0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024bd0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024bf0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024c00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024c10: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00024c20: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024c40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024c50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024c60: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00024c70: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024c90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024ca0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024cb0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024cc0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024cb0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00024cc0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ce0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024cf0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024d00: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024d10: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00024d00: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00024d10: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00024d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024d30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024d40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024d50: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024d60: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00024d50: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00024d60: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024d80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024d90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024da0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024db0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024db0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024dd0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024de0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024df0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024e00: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00024df0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024e00: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024e30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024e40: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024e50: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00024e40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00024e50: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00024e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024e80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024e90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024ea0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00024e90: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024ea0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ec0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024ed0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024ee0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024ef0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024ee0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00024ef0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00024f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024f20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024f30: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024f40: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00024f30: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024f40: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024f70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024f80: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024f90: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00024f80: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00024f90: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024fb0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024fc0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024fd0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024fe0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00024fd0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024fe0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025000: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025010: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025020: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025030: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00025020: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025030: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00025040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025050: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025060: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025070: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025080: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025070: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025080: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000250b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000250c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000250d0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000250c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000250d0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000250e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025100: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00025110: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025120: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00025120: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025140: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025150: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025160: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025170: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025160: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025170: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025190: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000251a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000251b0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000251c0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000251b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000251c0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000251d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000251f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00025200: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025210: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00025210: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025230: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025240: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025250: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025260: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00025250: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025260: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025280: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025290: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000252a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000252b0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000252a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000252b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000252c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000252d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000252e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000252f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025300: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000252f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025300: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025320: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025330: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00025340: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025350: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00025350: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00025360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025370: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025380: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025390: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000253a0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025390: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000253a0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000253b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000253c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000253d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000253e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000253f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000253e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000253f0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00025400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025410: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025420: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025430: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025440: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00025430: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025440: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025460: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00025470: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00025480: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00025490: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -000254a0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -000254b0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00025460: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00025470: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00025480: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025490: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000254a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000254b0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 000254c0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000254d0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -000254e0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -000254f0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00025500: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000254d0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +000254e0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +000254f0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00025500: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00025510: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00025520: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00025530: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00025540: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00025550: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00025560: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025570: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025580: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ -00025590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000255a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00025520: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00025530: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00025540: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00025550: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00025560: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00025570: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00025580: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00025590: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +000255a0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 000255b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000255c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000255d0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000255c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000255d0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000255e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000255f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025600: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025610: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025620: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00025610: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025620: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00025630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025640: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025650: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025660: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025670: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025660: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025670: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00025680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025690: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000256a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000256b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000256c0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000256b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000256c0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000256d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000256e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000256f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025700: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025710: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00025700: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025710: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00025720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025730: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025740: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025750: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025760: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00025750: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025760: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025780: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025790: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000257a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000257b0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000257a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000257b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000257c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000257d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000257e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000257f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025800: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000257f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025800: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025820: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025830: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025840: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025850: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00025840: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025850: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00025860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025870: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025880: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025890: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000258a0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00025890: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000258a0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000258b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000258c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000258d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000258e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 000258f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025910: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025920: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025930: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025940: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025930: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025940: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025960: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025970: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00025980: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025990: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00025990: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000259a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000259b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000259c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000259d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 000259e0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000259f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025a00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025a10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00025a20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00025a30: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00025a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025a50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025a60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025a70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025a80: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00025a70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025a80: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00025a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025aa0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025ab0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025ac0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025ad0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00025ac0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025ad0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025af0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025b00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025b10: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025b20: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025b10: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025b20: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00025b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025b40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025b50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025b60: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025b70: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00025b60: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025b70: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00025b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025b90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025ba0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025bb0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025bc0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00025bb0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025bc0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025be0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025bf0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025c00: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025c10: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00025c00: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025c10: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00025c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025c30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025c40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025c50: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025c60: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025c50: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025c60: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025c80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025c90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025ca0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025cb0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00025ca0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025cb0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00025cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025cd0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025ce0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025cf0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025d00: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00025cf0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025d00: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025d20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025d30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00025d40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025d50: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00025d50: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00025d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025d70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025d80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025d90: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025da0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00025d90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025da0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00025db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025dc0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025dd0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025de0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025df0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00025de0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025df0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00025e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025e10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025e20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025e30: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025e40: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00025e30: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025e40: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00025e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025e60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025e70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025e80: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025e90: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00025e80: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025e90: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00025ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025eb0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025ec0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025ed0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025ee0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025ed0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025ee0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025f00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025f10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025f20: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025f30: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00025f20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025f30: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00025f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025f50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025f60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025f70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025f80: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025f70: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025f80: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00025f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025fa0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025fb0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025fc0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025fd0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00025fc0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025fd0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00025fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025ff0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026000: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026010: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026020: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00026020: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026040: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026050: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026060: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026070: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026060: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026070: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00026080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026090: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000260a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000260b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000260c0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000260b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000260c0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000260d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000260e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000260f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026100: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00026110: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00026120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026130: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026140: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026150: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026160: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026150: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026160: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00026170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026180: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026190: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000261a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000261b0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000261a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000261b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000261c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000261d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000261e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000261f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026200: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000261f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026200: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026220: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026230: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026240: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026250: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026240: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026250: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00026260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026270: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026280: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026290: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000262a0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000262a0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000262b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000262c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000262d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000262e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 000262f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00026300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026310: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00026320: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00026330: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00026340: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00026350: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00026360: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00026310: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00026320: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00026330: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026340: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00026350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026360: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00026370: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00026380: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00026390: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -000263a0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -000263b0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00026380: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00026390: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +000263a0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +000263b0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 000263c0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000263d0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -000263e0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000263f0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00026400: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00026410: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026420: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026430: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ -00026440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026450: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000263d0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +000263e0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000263f0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00026400: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00026410: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00026420: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00026430: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00026440: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00026450: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00026460: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026470: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026480: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026480: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00026490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000264a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000264b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000264c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000264d0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000264c0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000264d0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000264e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000264f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026500: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026510: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00026520: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026540: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026550: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026560: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026570: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026560: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026570: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026590: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000265a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000265b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000265c0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000265c0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000265d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000265e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000265f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026600: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026610: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026610: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00026620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026630: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026640: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026650: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026660: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026650: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026660: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026680: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026690: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000266a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000266b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +000266a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000266b0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000266c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000266d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000266e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000266f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026700: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000266f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026700: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026720: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026730: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026740: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026750: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00026740: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026750: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00026760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026770: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026780: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026790: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000267a0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00026790: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000267a0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000267b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000267c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000267d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000267e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 000267f0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00026800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026810: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026820: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026830: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026840: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00026840: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00026850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026860: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026870: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026880: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026890: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00026880: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026890: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000268a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000268b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000268c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000268d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000268e0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000268d0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000268e0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000268f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026900: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026910: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026920: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026930: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026920: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026930: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00026940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026950: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026960: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026970: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026980: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00026970: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026980: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000269a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000269b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000269c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000269d0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000269c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000269d0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000269e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000269f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026a00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026a10: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026a20: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00026a10: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026a20: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00026a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026a40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026a50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026a60: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026a70: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026a60: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026a70: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00026a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026a90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026aa0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026ab0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026ac0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00026ab0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026ac0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026ae0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026af0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026b00: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00026b10: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00026b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026b40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026b50: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026b60: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026b60: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00026b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026b90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026ba0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026bb0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026ba0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026bb0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026bd0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026be0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026bf0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026c00: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00026bf0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026c00: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026c20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026c30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026c40: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026c50: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00026c40: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026c50: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00026c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026c70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026c80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026c90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026ca0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026c90: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026ca0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00026cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026cc0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026cd0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026ce0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026cf0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00026ce0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026cf0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026d20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026d30: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026d40: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026d30: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026d40: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00026d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026d70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026d80: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026d90: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026d80: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026d90: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026db0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026dc0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026dd0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026de0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00026dd0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026de0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026e00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026e10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026e20: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026e30: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026e20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026e30: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00026e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026e50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026e60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026e70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026e80: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026e70: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026e80: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026ea0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026eb0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026ec0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026ed0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00026ec0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026ed0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026ef0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026f00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026f10: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026f20: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026f10: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026f20: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00026f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026f50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026f60: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026f70: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00026f70: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026fa0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026fb0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026fc0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026fb0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026fc0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00026fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026fe0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026ff0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027000: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027010: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027010: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027030: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027040: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027050: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027060: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00027060: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00027070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027080: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027090: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000270a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000270b0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000270a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000270b0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000270c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000270d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000270e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000270f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027100: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000270f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00027100: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027120: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027130: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027140: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027150: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00027150: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027170: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027180: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027190: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000271a0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000271a0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000271b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000271c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000271d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000271e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000271f0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000271e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000271f0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027210: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027220: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027230: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00027240: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027260: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027270: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027280: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027290: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027290: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000272a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000272b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000272c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000272d0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000272e0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000272d0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000272e0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000272f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027300: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027310: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027320: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027330: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027320: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00027330: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027350: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027360: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027370: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00027380: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00027390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000273a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000273b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000273c0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000273d0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000273c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000273d0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000273e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000273f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027400: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027410: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00027420: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027440: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027450: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027460: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027470: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00027470: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027490: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000274a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000274b0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000274c0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000274b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000274c0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000274d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000274e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000274f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027500: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00027510: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027530: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027540: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027550: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027560: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00027550: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027560: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027580: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027590: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000275a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000275b0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000275a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000275b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000275c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000275d0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -000275e0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000275f0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00027600: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00027610: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00027620: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +000275d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000275e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +000275f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027600: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027620: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00027630: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00027640: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00027650: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00027660: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00027670: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00027640: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00027650: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00027660: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00027670: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00027680: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00027690: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -000276a0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000276b0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -000276c0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -000276d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000276e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000276f0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ -00027700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027710: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00027690: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +000276a0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000276b0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +000276c0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000276d0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +000276e0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +000276f0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00027700: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00027710: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00027720: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027730: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00027740: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027760: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027770: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027780: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00027790: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000277a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000277b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000277c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000277d0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000277e0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000277d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000277e0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000277f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027800: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027810: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027820: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027830: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00027820: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027830: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027850: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027860: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027870: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027880: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00027870: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00027880: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000278a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000278b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000278c0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000278d0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +000278d0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000278e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000278f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027900: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027910: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027920: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00027920: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00027930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027940: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027950: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027960: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027970: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00027960: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00027970: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027990: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000279a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000279b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000279c0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000279b0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000279c0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000279d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000279e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000279f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027a00: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027a10: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00027a00: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00027a10: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00027a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027a40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027a50: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00027a60: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027a90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027aa0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027ab0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027ab0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027ad0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027ae0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027af0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027b00: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00027af0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027b00: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00027b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027b20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027b30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027b40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027b50: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00027b50: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027b70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027b80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027b90: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027ba0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00027b90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00027ba0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00027bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027bc0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027bd0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027be0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00027bf0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027c10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027c20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027c30: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027c40: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00027c30: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027c40: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027c60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027c70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027c80: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027c90: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00027c80: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00027c90: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00027ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027cb0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027cc0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027cd0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027ce0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00027cd0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00027ce0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027d00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027d10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027d20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027d30: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00027d20: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027d30: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027d50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027d60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027d70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027d80: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027d70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00027d80: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027da0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027db0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027dc0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00027dd0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00027de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027df0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027e00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027e10: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027e20: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00027e10: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027e20: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00027e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027e40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027e50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027e60: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027e70: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00027e70: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00027e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027e90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027ea0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027eb0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00027ec0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027ee0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027ef0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027f00: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027f10: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027f00: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00027f10: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027f30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027f40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027f50: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027f60: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00027f50: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027f60: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00027f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027f80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027f90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027fa0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027fb0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00027fa0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00027fb0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027fd0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027fe0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027ff0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028000: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00027ff0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028000: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028020: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028030: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028040: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00028050: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028070: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028080: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028090: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000280a0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028090: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000280a0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000280b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000280c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000280d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000280e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000280f0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000280e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000280f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028110: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028120: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028130: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028140: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00028130: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028140: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028160: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028170: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028180: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00028190: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000281a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000281b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000281c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000281d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000281e0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000281d0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000281e0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000281f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028200: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028210: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028220: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028230: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028220: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028230: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028250: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028260: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028270: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00028280: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000282a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000282b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000282c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000282d0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000282d0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000282e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000282f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028300: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028310: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028320: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00028310: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028320: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00028330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028340: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028350: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028360: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028370: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00028360: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028370: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028390: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000283a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000283b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000283c0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000283c0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000283d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000283e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000283f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028400: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00028410: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028430: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028440: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028450: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028460: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00028450: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028460: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028480: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028490: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000284a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000284b0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000284a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000284b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000284c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000284d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000284e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000284f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028500: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000284f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028500: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028520: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028530: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028540: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028550: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028540: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028550: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028570: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028580: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028590: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 000285a0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000285b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000285c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000285d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000285e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 000285f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028610: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028620: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028630: 723a 2043 6820 2d2d 2075 7365 6420 362e r: Ch -- used 6. │ │ │ │ -00028640: 3539 3837 3173 2028 6370 7529 3b20 352e 59871s (cpu); 5. │ │ │ │ -00028650: 3032 3137 3673 2028 7468 7265 6164 293b 02176s (thread); │ │ │ │ -00028660: 2030 7320 2867 6329 2020 207c 0a7c 6f6f 0s (gc) |.|oo │ │ │ │ -00028670: 7369 6e67 2047 5265 764c 6578 536d 616c sing GRevLexSmal │ │ │ │ -00028680: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ -00028690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000286a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000286b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ -000286c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000286d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000286e0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00028630: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028640: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028660: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00028670: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00028680: 723a 2043 6820 2d2d 2075 7365 6420 372e r: Ch -- used 7. │ │ │ │ +00028690: 3839 3439 7320 2863 7075 293b 2035 2e37 8949s (cpu); 5.7 │ │ │ │ +000286a0: 3738 7320 2874 6872 6561 6429 3b20 3073 78s (thread); 0s │ │ │ │ +000286b0: 2028 6763 2920 2020 2020 207c 0a7c 6f6f (gc) |.|oo │ │ │ │ +000286c0: 7369 6e67 2047 5265 764c 6578 536d 616c sing GRevLexSmal │ │ │ │ +000286d0: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ +000286e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000286f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028700: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028710: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028720: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028730: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00028720: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028730: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028750: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028760: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028770: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028780: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00028770: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028780: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00028790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000287a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000287b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000287c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 000287d0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000287e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000287f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028800: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028810: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028820: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028810: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028820: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00028830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028840: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028850: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028860: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028870: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00028860: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028870: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028890: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000288a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000288b0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000288c0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000288b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000288c0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000288d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000288e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000288f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028900: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028910: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00028900: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028910: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028930: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028940: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028950: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00028960: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00028970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028980: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028990: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000289a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000289b0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000289a0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000289b0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000289c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000289d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000289e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000289f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028a00: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000289f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028a00: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028a30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028a40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028a50: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00028a40: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028a50: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028a80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028a90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028aa0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00028aa0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ac0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028ad0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028ae0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028af0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028ae0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028af0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00028b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028b20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028b30: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028b40: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00028b30: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028b40: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028b70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028b80: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028b90: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00028b90: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00028ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028bb0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028bc0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028bd0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028be0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00028bd0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028be0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028c10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028c20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028c30: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00028c20: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028c30: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00028c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028c60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028c70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028c80: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028c70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028c80: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ca0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028cb0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028cc0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028cd0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00028cd0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028cf0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028d00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028d10: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028d20: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00028d10: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028d20: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00028d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028d50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028d60: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028d70: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00028d70: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00028d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028da0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028db0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00028dc0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028de0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028df0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028e00: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028e10: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00028e00: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028e10: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e30: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00028e40: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00028e50: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00028e60: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00028e70: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00028e80: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00028e30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00028e40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00028e50: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028e60: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00028e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e80: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00028e90: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00028ea0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00028eb0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00028ec0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00028ed0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00028ea0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00028eb0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00028ec0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00028ed0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00028ee0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00028ef0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00028f00: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00028f10: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00028f20: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00028f30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028f40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028f50: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ -00028f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00028ef0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00028f00: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00028f10: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00028f20: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00028f30: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00028f40: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00028f50: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00028f60: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00028f70: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00028f80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028f90: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028fa0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00028f90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028fa0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00028fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028fc0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028fd0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028fe0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028ff0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00028fe0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028ff0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00029000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029010: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00029020: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00029030: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00029040: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00029050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029060: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00029070: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00029080: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00029090: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000290a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000290b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000290c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000290d0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000290e0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000290d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000290e0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000290f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029100: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00029110: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00029120: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00029130: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00029120: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00029130: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00029140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029150: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00029160: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00029170: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00029180: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00029170: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00029180: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00029190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000291a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000291b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000291c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 000291d0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000291e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000291f0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00029200: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00029210: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00029220: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00029230: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00029240: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +000291f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00029200: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00029210: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00029220: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00029230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029240: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00029250: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00029260: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00029270: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00029280: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00029290: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00029260: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00029270: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00029280: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00029290: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 000292a0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000292b0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -000292c0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000292d0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -000292e0: 3d20 3120 2020 2020 2020 207c 0a7c 7265 = 1 |.|re │ │ │ │ +000292b0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +000292c0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000292d0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +000292e0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 000292f0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00029300: 6f6e 3a20 204c 6f6f 7020 636f 6d70 6c65 on: Loop comple │ │ │ │ -00029310: 7465 642c 2073 7562 6d61 7472 6963 6573 ted, submatrices │ │ │ │ -00029320: 2063 6f6e 7369 6465 7265 6420 3d20 3332 considered = 32 │ │ │ │ -00029330: 382c 2061 6e64 2063 6f6d 707c 0a7c 2d2d 8, and comp|.|-- │ │ │ │ -00029340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7273 -----------|.|rs │ │ │ │ -00029390: 2c20 7765 2077 696c 6c20 636f 6d70 7574 , we will comput │ │ │ │ -000293a0: 6520 7570 2074 6f20 3332 372e 3539 3920 e up to 327.599 │ │ │ │ -000293b0: 6f66 2074 6865 6d2e 2020 2020 2020 2020 of them. │ │ │ │ -000293c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000293e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029300: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00029310: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00029320: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00029330: 3d20 3120 2020 2020 2020 207c 0a7c 7265 = 1 |.|re │ │ │ │ +00029340: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00029350: 6f6e 3a20 204c 6f6f 7020 636f 6d70 6c65 on: Loop comple │ │ │ │ +00029360: 7465 642c 2073 7562 6d61 7472 6963 6573 ted, submatrices │ │ │ │ +00029370: 2063 6f6e 7369 6465 7265 6420 3d20 3332 considered = 32 │ │ │ │ +00029380: 382c 2061 6e64 2063 6f6d 707c 0a7c 2d2d 8, and comp|.|-- │ │ │ │ +00029390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000293a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000293b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000293c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000293d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7273 -----------|.|rs │ │ │ │ +000293e0: 2c20 7765 2077 696c 6c20 636f 6d70 7574 , we will comput │ │ │ │ +000293f0: 6520 7570 2074 6f20 3332 372e 3539 3920 e up to 327.599 │ │ │ │ +00029400: 6f66 2074 6865 6d2e 2020 2020 2020 2020 of them. │ │ │ │ 00029410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029470: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ @@ -10601,22 +10601,22 @@ │ │ │ │ 00029680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000296b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000296f0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -00029700: 6964 6572 6564 3a20 392c 2061 6e64 2063 idered: 9, and c │ │ │ │ -00029710: 6f6d 7075 7465 6420 3d20 3920 2020 2020 omputed = 9 │ │ │ │ +000296f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00029700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029740: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00029750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029740: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +00029750: 6964 6572 6564 3a20 392c 2061 6e64 2063 idered: 9, and c │ │ │ │ +00029760: 6f6d 7075 7465 6420 3d20 3920 2020 2020 omputed = 9 │ │ │ │ 00029770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029790: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000297a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000297b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000297c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000297d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10626,22 +10626,22 @@ │ │ │ │ 00029810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029830: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029880: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -00029890: 6964 6572 6564 3a20 3131 2c20 616e 6420 idered: 11, and │ │ │ │ -000298a0: 636f 6d70 7574 6564 203d 2031 3020 2020 computed = 10 │ │ │ │ +00029880: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00029890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000298a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000298b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000298c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000298d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000298e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000298f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000298d0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +000298e0: 6964 6572 6564 3a20 3131 2c20 616e 6420 idered: 11, and │ │ │ │ +000298f0: 636f 6d70 7574 6564 203d 2031 3020 2020 computed = 10 │ │ │ │ 00029900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029920: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10661,22 +10661,22 @@ │ │ │ │ 00029a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029a60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ab0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -00029ac0: 6964 6572 6564 3a20 3135 2c20 616e 6420 idered: 15, and │ │ │ │ -00029ad0: 636f 6d70 7574 6564 203d 2031 3320 2020 computed = 13 │ │ │ │ +00029ab0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00029ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029b00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00029b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029b00: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +00029b10: 6964 6572 6564 3a20 3135 2c20 616e 6420 idered: 15, and │ │ │ │ +00029b20: 636f 6d70 7574 6564 203d 2031 3320 2020 computed = 13 │ │ │ │ 00029b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10706,22 +10706,22 @@ │ │ │ │ 00029d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d80: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -00029d90: 6964 6572 6564 3a20 3231 2c20 616e 6420 idered: 21, and │ │ │ │ -00029da0: 636f 6d70 7574 6564 203d 2031 3820 2020 computed = 18 │ │ │ │ +00029d80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00029d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029dd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00029de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029dd0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +00029de0: 6964 6572 6564 3a20 3231 2c20 616e 6420 idered: 21, and │ │ │ │ +00029df0: 636f 6d70 7574 6564 203d 2031 3820 2020 computed = 18 │ │ │ │ 00029e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10756,22 +10756,22 @@ │ │ │ │ 0002a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a050: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0a0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002a0b0: 6964 6572 6564 3a20 3238 2c20 616e 6420 idered: 28, and │ │ │ │ -0002a0c0: 636f 6d70 7574 6564 203d 2032 3320 2020 computed = 23 │ │ │ │ +0002a0a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a0f0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002a100: 6964 6572 6564 3a20 3238 2c20 616e 6420 idered: 28, and │ │ │ │ +0002a110: 636f 6d70 7574 6564 203d 2032 3320 2020 computed = 23 │ │ │ │ 0002a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a140: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10816,22 +10816,22 @@ │ │ │ │ 0002a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a410: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a460: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002a470: 6964 6572 6564 3a20 3337 2c20 616e 6420 idered: 37, and │ │ │ │ -0002a480: 636f 6d70 7574 6564 203d 2033 3020 2020 computed = 30 │ │ │ │ +0002a460: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a4b0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002a4c0: 6964 6572 6564 3a20 3337 2c20 616e 6420 idered: 37, and │ │ │ │ +0002a4d0: 636f 6d70 7574 6564 203d 2033 3020 2020 computed = 30 │ │ │ │ 0002a4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a500: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10891,22 +10891,22 @@ │ │ │ │ 0002a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a8c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a910: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002a920: 6964 6572 6564 3a20 3439 2c20 616e 6420 idered: 49, and │ │ │ │ -0002a930: 636f 6d70 7574 6564 203d 2033 3620 2020 computed = 36 │ │ │ │ +0002a910: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a960: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a960: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002a970: 6964 6572 6564 3a20 3439 2c20 616e 6420 idered: 49, and │ │ │ │ +0002a980: 636f 6d70 7574 6564 203d 2033 3620 2020 computed = 36 │ │ │ │ 0002a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a9b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10981,22 +10981,22 @@ │ │ │ │ 0002ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ae60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aeb0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002aec0: 6964 6572 6564 3a20 3634 2c20 616e 6420 idered: 64, and │ │ │ │ -0002aed0: 636f 6d70 7574 6564 203d 2034 3420 2020 computed = 44 │ │ │ │ +0002aeb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002af00: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002af10: 6964 6572 6564 3a20 3634 2c20 616e 6420 idered: 64, and │ │ │ │ +0002af20: 636f 6d70 7574 6564 203d 2034 3420 2020 computed = 44 │ │ │ │ 0002af30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -11096,22 +11096,22 @@ │ │ │ │ 0002b570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b590: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5e0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002b5f0: 6964 6572 6564 3a20 3834 2c20 616e 6420 idered: 84, and │ │ │ │ -0002b600: 636f 6d70 7574 6564 203d 2035 3620 2020 computed = 56 │ │ │ │ +0002b5e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b630: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002b640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b630: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002b640: 6964 6572 6564 3a20 3834 2c20 616e 6420 idered: 84, and │ │ │ │ +0002b650: 636f 6d70 7574 6564 203d 2035 3620 2020 computed = 56 │ │ │ │ 0002b660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b680: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -11241,22 +11241,22 @@ │ │ │ │ 0002be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bea0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bef0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002bf00: 6964 6572 6564 3a20 3131 302c 2061 6e64 idered: 110, and │ │ │ │ -0002bf10: 2063 6f6d 7075 7465 6420 3d20 3639 2020 computed = 69 │ │ │ │ +0002bef0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf40: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002bf50: 6964 6572 6564 3a20 3131 302c 2061 6e64 idered: 110, and │ │ │ │ +0002bf60: 2063 6f6d 7075 7465 6420 3d20 3639 2020 computed = 69 │ │ │ │ 0002bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -11426,22 +11426,22 @@ │ │ │ │ 0002ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca80: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002ca90: 6964 6572 6564 3a20 3134 342c 2061 6e64 idered: 144, and │ │ │ │ -0002caa0: 2063 6f6d 7075 7465 6420 3d20 3833 2020 computed = 83 │ │ │ │ +0002ca80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cad0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cad0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002cae0: 6964 6572 6564 3a20 3134 342c 2061 6e64 idered: 144, and │ │ │ │ +0002caf0: 2063 6f6d 7075 7465 6420 3d20 3833 2020 computed = 83 │ │ │ │ 0002cb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -11661,22 +11661,22 @@ │ │ │ │ 0002d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d8e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d930: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002d940: 6964 6572 6564 3a20 3138 382c 2061 6e64 idered: 188, and │ │ │ │ -0002d950: 2063 6f6d 7075 7465 6420 3d20 3130 3520 computed = 105 │ │ │ │ +0002d930: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d980: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d980: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002d990: 6964 6572 6564 3a20 3138 382c 2061 6e64 idered: 188, and │ │ │ │ +0002d9a0: 2063 6f6d 7075 7465 6420 3d20 3130 3520 computed = 105 │ │ │ │ 0002d9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d9d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002d9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002da00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -11961,22 +11961,22 @@ │ │ │ │ 0002eb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eba0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ebf0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002ec00: 6964 6572 6564 3a20 3234 352c 2061 6e64 idered: 245, and │ │ │ │ -0002ec10: 2063 6f6d 7075 7465 6420 3d20 3133 3520 computed = 135 │ │ │ │ +0002ebf0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ec40: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002ec50: 6964 6572 6564 3a20 3234 352c 2061 6e64 idered: 245, and │ │ │ │ +0002ec60: 2063 6f6d 7075 7465 6420 3d20 3133 3520 computed = 135 │ │ │ │ 0002ec70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ec90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002eca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ecb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ecc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12351,22 +12351,22 @@ │ │ │ │ 000303e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000303f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030400: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00030410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030450: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -00030460: 6964 6572 6564 3a20 3331 392c 2061 6e64 idered: 319, and │ │ │ │ -00030470: 2063 6f6d 7075 7465 6420 3d20 3137 3520 computed = 175 │ │ │ │ +00030450: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00030460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000304a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000304b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000304c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000304a0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +000304b0: 6964 6572 6564 3a20 3331 392c 2061 6e64 idered: 319, and │ │ │ │ +000304c0: 2063 6f6d 7075 7465 6420 3d20 3137 3520 computed = 175 │ │ │ │ 000304d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000304e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000304f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00030500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12411,357 +12411,357 @@ │ │ │ │ 000307a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000307d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030810: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -00030820: 6964 6572 6564 3a20 3332 382c 2061 6e64 idered: 328, and │ │ │ │ -00030830: 2063 6f6d 7075 7465 6420 3d20 3138 3020 computed = 180 │ │ │ │ +00030810: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00030820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030860: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00030870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030860: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +00030870: 6964 6572 6564 3a20 3332 382c 2061 6e64 idered: 328, and │ │ │ │ +00030880: 2063 6f6d 7075 7465 6420 3d20 3138 3020 computed = 180 │ │ │ │ 00030890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000308a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000308b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000308c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000308d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000308e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000308f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030900: 2020 2020 2020 2020 2020 207c 0a7c 7574 |.|ut │ │ │ │ -00030910: 6564 203d 2031 3830 2e20 2073 696e 6775 ed = 180. singu │ │ │ │ -00030920: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ -00030930: 696f 6e20 6170 7065 6172 7320 746f 2062 ion appears to b │ │ │ │ -00030940: 6520 3d20 3120 2020 2020 2020 2020 2020 e = 1 │ │ │ │ -00030950: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00030960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000309a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ -000309b0: 6520 6d61 7869 6d75 6d20 6e75 6d62 6572 e maximum number │ │ │ │ -000309c0: 206f 6620 6d69 6e6f 7273 2063 6f6e 7369 of minors consi │ │ │ │ -000309d0: 6465 7265 6420 6361 6e20 6265 2063 6f6e dered can be con │ │ │ │ -000309e0: 7472 6f6c 6c65 6420 6279 2074 6865 206f trolled by the o │ │ │ │ -000309f0: 7074 696f 6e0a 4d61 784d 696e 6f72 732e ption.MaxMinors. │ │ │ │ -00030a00: 2020 416c 7465 726e 6174 6976 656c 792c Alternatively, │ │ │ │ -00030a10: 2069 7420 6361 6e20 6265 2063 6f6e 7472 it can be contr │ │ │ │ -00030a20: 6f6c 6c65 6420 696e 2061 206d 6f72 6520 olled in a more │ │ │ │ -00030a30: 7072 6563 6973 6520 7761 7920 6279 0a70 precise way by.p │ │ │ │ -00030a40: 6173 7369 6e67 2061 2066 756e 6374 696f assing a functio │ │ │ │ -00030a50: 6e20 746f 2074 6865 206f 7074 696f 6e20 n to the option │ │ │ │ -00030a60: 4d61 784d 696e 6f72 732e 2020 5468 6973 MaxMinors. This │ │ │ │ -00030a70: 2066 756e 6374 696f 6e20 7368 6f75 6c64 function should │ │ │ │ -00030a80: 2068 6176 6520 7477 6f0a 696e 7075 7473 have two.inputs │ │ │ │ -00030a90: 3b20 7468 6520 6669 7273 7420 6973 206d ; the first is m │ │ │ │ -00030aa0: 696e 696d 756d 206e 756d 6265 7220 6f66 inimum number of │ │ │ │ -00030ab0: 206d 696e 6f72 7320 6e65 6564 6564 2074 minors needed t │ │ │ │ -00030ac0: 6f20 6465 7465 726d 696e 6520 7768 6574 o determine whet │ │ │ │ -00030ad0: 6865 7220 7468 650a 7269 6e67 2069 7320 her the.ring is │ │ │ │ -00030ae0: 7265 6775 6c61 7220 696e 2063 6f64 696d regular in codim │ │ │ │ -00030af0: 656e 7369 6f6e 206e 2c20 616e 6420 7468 ension n, and th │ │ │ │ -00030b00: 6520 7365 636f 6e64 2069 7320 7468 6520 e second is the │ │ │ │ -00030b10: 746f 7461 6c20 6e75 6d62 6572 206f 6620 total number of │ │ │ │ -00030b20: 6d69 6e6f 7273 0a61 7661 696c 6162 6c65 minors.available │ │ │ │ -00030b30: 2069 6e20 7468 6520 4a61 636f 6269 616e in the Jacobian │ │ │ │ -00030b40: 2e20 5468 6520 6675 6e63 7469 6f6e 2072 . The function r │ │ │ │ -00030b50: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -00030b60: 696f 6e20 646f 6573 206e 6f74 2072 6563 ion does not rec │ │ │ │ -00030b70: 6f6d 7075 7465 0a64 6574 6572 6d69 6e61 ompute.determina │ │ │ │ -00030b80: 6e74 732c 2073 6f20 4d61 784d 696e 6f72 nts, so MaxMinor │ │ │ │ -00030b90: 7320 6f72 2069 7320 6f6e 6c79 2061 6e20 s or is only an │ │ │ │ -00030ba0: 7570 7065 7220 626f 756e 6420 6f6e 2074 upper bound on t │ │ │ │ -00030bb0: 6865 206e 756d 6265 7220 6f66 206d 696e he number of min │ │ │ │ -00030bc0: 6f72 730a 636f 6d70 7574 6564 2e0a 0a2b ors.computed...+ │ │ │ │ -00030bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00030c20: 6931 3720 3a20 7469 6d65 2072 6567 756c i17 : time regul │ │ │ │ -00030c30: 6172 496e 436f 6469 6d65 6e73 696f 6e28 arInCodimension( │ │ │ │ -00030c40: 322c 2053 2c20 5665 7262 6f73 653d 3e74 2, S, Verbose=>t │ │ │ │ -00030c50: 7275 652c 204d 6178 4d69 6e6f 7273 3d3e rue, MaxMinors=> │ │ │ │ -00030c60: 3330 2920 2020 2020 2020 2020 207c 0a7c 30) |.| │ │ │ │ -00030c70: 202d 2d20 7573 6564 2031 2e32 3930 3232 -- used 1.29022 │ │ │ │ -00030c80: 7320 2863 7075 293b 2030 2e39 3936 3437 s (cpu); 0.99647 │ │ │ │ -00030c90: 3673 2028 7468 7265 6164 293b 2030 7320 6s (thread); 0s │ │ │ │ -00030ca0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ -00030cb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00030cc0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00030cd0: 7369 6f6e 3a20 7269 6e67 2064 696d 656e sion: ring dimen │ │ │ │ -00030ce0: 7369 6f6e 203d 332c 2074 6865 7265 2061 sion =3, there a │ │ │ │ -00030cf0: 7265 2031 3733 3235 2070 6f73 7369 626c re 17325 possibl │ │ │ │ -00030d00: 6520 3420 6279 2034 206d 696e 6f7c 0a7c e 4 by 4 mino|.| │ │ │ │ +00030900: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00030910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030950: 2020 2020 2020 2020 2020 207c 0a7c 7574 |.|ut │ │ │ │ +00030960: 6564 203d 2031 3830 2e20 2073 696e 6775 ed = 180. singu │ │ │ │ +00030970: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ +00030980: 696f 6e20 6170 7065 6172 7320 746f 2062 ion appears to b │ │ │ │ +00030990: 6520 3d20 3120 2020 2020 2020 2020 2020 e = 1 │ │ │ │ +000309a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000309b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000309c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000309d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000309e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000309f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ +00030a00: 6520 6d61 7869 6d75 6d20 6e75 6d62 6572 e maximum number │ │ │ │ +00030a10: 206f 6620 6d69 6e6f 7273 2063 6f6e 7369 of minors consi │ │ │ │ +00030a20: 6465 7265 6420 6361 6e20 6265 2063 6f6e dered can be con │ │ │ │ +00030a30: 7472 6f6c 6c65 6420 6279 2074 6865 206f trolled by the o │ │ │ │ +00030a40: 7074 696f 6e0a 4d61 784d 696e 6f72 732e ption.MaxMinors. │ │ │ │ +00030a50: 2020 416c 7465 726e 6174 6976 656c 792c Alternatively, │ │ │ │ +00030a60: 2069 7420 6361 6e20 6265 2063 6f6e 7472 it can be contr │ │ │ │ +00030a70: 6f6c 6c65 6420 696e 2061 206d 6f72 6520 olled in a more │ │ │ │ +00030a80: 7072 6563 6973 6520 7761 7920 6279 0a70 precise way by.p │ │ │ │ +00030a90: 6173 7369 6e67 2061 2066 756e 6374 696f assing a functio │ │ │ │ +00030aa0: 6e20 746f 2074 6865 206f 7074 696f 6e20 n to the option │ │ │ │ +00030ab0: 4d61 784d 696e 6f72 732e 2020 5468 6973 MaxMinors. This │ │ │ │ +00030ac0: 2066 756e 6374 696f 6e20 7368 6f75 6c64 function should │ │ │ │ +00030ad0: 2068 6176 6520 7477 6f0a 696e 7075 7473 have two.inputs │ │ │ │ +00030ae0: 3b20 7468 6520 6669 7273 7420 6973 206d ; the first is m │ │ │ │ +00030af0: 696e 696d 756d 206e 756d 6265 7220 6f66 inimum number of │ │ │ │ +00030b00: 206d 696e 6f72 7320 6e65 6564 6564 2074 minors needed t │ │ │ │ +00030b10: 6f20 6465 7465 726d 696e 6520 7768 6574 o determine whet │ │ │ │ +00030b20: 6865 7220 7468 650a 7269 6e67 2069 7320 her the.ring is │ │ │ │ +00030b30: 7265 6775 6c61 7220 696e 2063 6f64 696d regular in codim │ │ │ │ +00030b40: 656e 7369 6f6e 206e 2c20 616e 6420 7468 ension n, and th │ │ │ │ +00030b50: 6520 7365 636f 6e64 2069 7320 7468 6520 e second is the │ │ │ │ +00030b60: 746f 7461 6c20 6e75 6d62 6572 206f 6620 total number of │ │ │ │ +00030b70: 6d69 6e6f 7273 0a61 7661 696c 6162 6c65 minors.available │ │ │ │ +00030b80: 2069 6e20 7468 6520 4a61 636f 6269 616e in the Jacobian │ │ │ │ +00030b90: 2e20 5468 6520 6675 6e63 7469 6f6e 2072 . The function r │ │ │ │ +00030ba0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00030bb0: 696f 6e20 646f 6573 206e 6f74 2072 6563 ion does not rec │ │ │ │ +00030bc0: 6f6d 7075 7465 0a64 6574 6572 6d69 6e61 ompute.determina │ │ │ │ +00030bd0: 6e74 732c 2073 6f20 4d61 784d 696e 6f72 nts, so MaxMinor │ │ │ │ +00030be0: 7320 6f72 2069 7320 6f6e 6c79 2061 6e20 s or is only an │ │ │ │ +00030bf0: 7570 7065 7220 626f 756e 6420 6f6e 2074 upper bound on t │ │ │ │ +00030c00: 6865 206e 756d 6265 7220 6f66 206d 696e he number of min │ │ │ │ +00030c10: 6f72 730a 636f 6d70 7574 6564 2e0a 0a2b ors.computed...+ │ │ │ │ +00030c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00030c70: 6931 3720 3a20 7469 6d65 2072 6567 756c i17 : time regul │ │ │ │ +00030c80: 6172 496e 436f 6469 6d65 6e73 696f 6e28 arInCodimension( │ │ │ │ +00030c90: 322c 2053 2c20 5665 7262 6f73 653d 3e74 2, S, Verbose=>t │ │ │ │ +00030ca0: 7275 652c 204d 6178 4d69 6e6f 7273 3d3e rue, MaxMinors=> │ │ │ │ +00030cb0: 3330 2920 2020 2020 2020 2020 207c 0a7c 30) |.| │ │ │ │ +00030cc0: 202d 2d20 7573 6564 2031 2e35 3936 3039 -- used 1.59609 │ │ │ │ +00030cd0: 7320 2863 7075 293b 2031 2e31 3933 3732 s (cpu); 1.19372 │ │ │ │ +00030ce0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00030cf0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +00030d00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030d10: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00030d20: 7369 6f6e 3a20 4162 6f75 7420 746f 2065 sion: About to e │ │ │ │ -00030d30: 6e74 6572 206c 6f6f 7020 2020 2020 2020 nter loop │ │ │ │ -00030d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030d50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00030d60: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00030d70: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00030d80: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ +00030d20: 7369 6f6e 3a20 7269 6e67 2064 696d 656e sion: ring dimen │ │ │ │ +00030d30: 7369 6f6e 203d 332c 2074 6865 7265 2061 sion =3, there a │ │ │ │ +00030d40: 7265 2031 3733 3235 2070 6f73 7369 626c re 17325 possibl │ │ │ │ +00030d50: 6520 3420 6279 2034 206d 696e 6f7c 0a7c e 4 by 4 mino|.| │ │ │ │ +00030d60: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +00030d70: 7369 6f6e 3a20 4162 6f75 7420 746f 2065 sion: About to e │ │ │ │ +00030d80: 6e74 6572 206c 6f6f 7020 2020 2020 2020 nter loop │ │ │ │ 00030d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030da0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030db0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00030dc0: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ 00030dd0: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ 00030de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030df0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030e00: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00030e10: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00030e20: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +00030e10: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +00030e20: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ 00030e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030e40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030e50: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00030e60: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ 00030e70: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ 00030e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030e90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030ea0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00030eb0: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00030ec0: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ +00030eb0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ +00030ec0: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ 00030ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ee0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030ef0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00030f00: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -00030f10: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +00030f00: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +00030f10: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ 00030f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030f40: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00030f50: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00030f60: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ +00030f50: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +00030f60: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ 00030f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030f80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030f90: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00030fa0: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -00030fb0: 6e64 6f6d 2020 2020 2020 2020 2020 2020 ndom │ │ │ │ +00030fa0: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +00030fb0: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ 00030fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030fd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030fe0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00030ff0: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -00031000: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +00031000: 6e64 6f6d 2020 2020 2020 2020 2020 2020 ndom │ │ │ │ 00031010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031020: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00031030: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031040: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ -00031050: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ -00031060: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ -00031070: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ +00031030: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ +00031040: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +00031050: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +00031060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031070: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031080: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031090: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ -000310a0: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ -000310b0: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ -000310c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031090: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ +000310a0: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ +000310b0: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ +000310c0: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ 000310d0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000310e0: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ -000310f0: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ -00031100: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ -00031110: 2c20 3d20 3220 2020 2020 2020 207c 0a7c , = 2 |.| │ │ │ │ -00031120: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031130: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -00031140: 6e64 6f6d 2020 2020 2020 2020 2020 2020 ndom │ │ │ │ -00031150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031160: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000310e0: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ +000310f0: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ +00031100: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ +00031110: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031120: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +00031130: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ +00031140: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ +00031150: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ +00031160: 2c20 3d20 3220 2020 2020 2020 207c 0a7c , = 2 |.| │ │ │ │ 00031170: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031180: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00031190: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +00031180: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +00031190: 6e64 6f6d 2020 2020 2020 2020 2020 2020 ndom │ │ │ │ 000311a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000311b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000311c0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000311d0: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ -000311e0: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ -000311f0: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ -00031200: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ +000311c0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ +000311d0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ +000311e0: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +000311f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031200: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031210: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031220: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ -00031230: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ -00031240: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ -00031250: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031220: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ +00031230: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ +00031240: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ +00031250: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ 00031260: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031270: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ -00031280: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ -00031290: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ -000312a0: 2c20 3d20 3220 2020 2020 2020 207c 0a7c , = 2 |.| │ │ │ │ -000312b0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -000312c0: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -000312d0: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ -000312e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000312f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031270: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ +00031280: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ +00031290: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ +000312a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000312b0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +000312c0: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ +000312d0: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ +000312e0: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ +000312f0: 2c20 3d20 3220 2020 2020 2020 207c 0a7c , = 2 |.| │ │ │ │ 00031300: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00031310: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00031320: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ +00031320: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ 00031330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031340: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031350: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00031360: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ 00031370: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ 00031380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031390: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000313a0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -000313b0: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -000313c0: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +000313b0: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +000313c0: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ 000313d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000313e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000313f0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031400: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ -00031410: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ -00031420: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ -00031430: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ +000313f0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ +00031400: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +00031410: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +00031420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031430: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031440: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031450: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ -00031460: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ -00031470: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ -00031480: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031450: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ +00031460: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ +00031470: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ +00031480: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ 00031490: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000314a0: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ -000314b0: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ -000314c0: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ -000314d0: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ -000314e0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -000314f0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00031500: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ -00031510: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -00031520: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000314a0: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ +000314b0: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ +000314c0: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ +000314d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000314e0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +000314f0: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ +00031500: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ +00031510: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ +00031520: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ 00031530: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031540: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00031550: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ -00031560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031540: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ +00031550: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ +00031560: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ 00031570: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031580: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031590: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -000315a0: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +00031590: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +000315a0: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ 000315b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000315c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000315d0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -000315e0: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -000315f0: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ +000315e0: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +000315f0: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ 00031600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031610: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031620: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00031630: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00031640: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ +00031640: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ 00031650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031660: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031670: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031680: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -00031690: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +00031680: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +00031690: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ 000316a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000316b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000316c0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000316d0: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ -000316e0: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ -000316f0: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ -00031700: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ +000316c0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ +000316d0: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +000316e0: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +000316f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031700: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031710: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031720: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ -00031730: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ -00031740: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ -00031750: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031720: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ +00031730: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ +00031740: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ +00031750: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ 00031760: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031770: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ -00031780: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ -00031790: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ -000317a0: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ -000317b0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -000317c0: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -000317d0: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ -000317e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000317f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031770: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ +00031780: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ +00031790: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ +000317a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000317b0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +000317c0: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ +000317d0: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ +000317e0: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ +000317f0: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ 00031800: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031810: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00031820: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ +00031810: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +00031820: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ 00031830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031840: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031850: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031860: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00031870: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +00031860: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +00031870: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ 00031880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031890: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000318a0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 000318b0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -000318c0: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ -000318d0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ +000318c0: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +000318d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000318e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000318f0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00031900: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ 00031910: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ 00031920: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ 00031930: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031940: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00031950: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00031960: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ -00031970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031960: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ +00031970: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ 00031980: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031990: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 000319a0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ 000319b0: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ 000319c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000319d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000319e0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000319f0: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ -00031a00: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ -00031a10: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ -00031a20: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ +000319e0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ +000319f0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ +00031a00: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +00031a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031a20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031a30: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031a40: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ -00031a50: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ -00031a60: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ -00031a70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031a40: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ +00031a50: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ +00031a60: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ +00031a70: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ 00031a80: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031a90: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ -00031aa0: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ -00031ab0: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ -00031ac0: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ -00031ad0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031ae0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00031af0: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ -00031b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031b10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031a90: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ +00031aa0: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ +00031ab0: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ +00031ac0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031ad0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +00031ae0: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ +00031af0: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ +00031b00: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ +00031b10: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ 00031b20: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00031b30: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00031b40: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ -00031b50: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ +00031b40: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +00031b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031b60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00031b70: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031b80: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ -00031b90: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ -00031ba0: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ -00031bb0: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ +00031b70: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ +00031b80: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ +00031b90: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ +00031ba0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ +00031bb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031bc0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031bd0: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ -00031be0: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ -00031bf0: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ -00031c00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031bd0: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ +00031be0: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ +00031bf0: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ +00031c00: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ 00031c10: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031c20: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ -00031c30: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ -00031c40: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ -00031c50: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ +00031c20: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ +00031c30: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ +00031c40: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ +00031c50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031c60: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031c70: 7369 6f6e 3a20 204c 6f6f 7020 636f 6d70 sion: Loop comp │ │ │ │ -00031c80: 6c65 7465 642c 2073 7562 6d61 7472 6963 leted, submatric │ │ │ │ -00031c90: 6573 2063 6f6e 7369 6465 7265 6420 3d20 es considered = │ │ │ │ -00031ca0: 3330 2c20 616e 6420 636f 6d70 757c 0a7c 30, and compu|.| │ │ │ │ -00031cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -00031d00: 7273 2c20 7765 2077 696c 6c20 636f 6d70 rs, we will comp │ │ │ │ -00031d10: 7574 6520 7570 2074 6f20 3330 206f 6620 ute up to 30 of │ │ │ │ -00031d20: 7468 656d 2e20 2020 2020 2020 2020 2020 them. │ │ │ │ -00031d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00031d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031c70: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ +00031c80: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ +00031c90: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ +00031ca0: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ +00031cb0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +00031cc0: 7369 6f6e 3a20 204c 6f6f 7020 636f 6d70 sion: Loop comp │ │ │ │ +00031cd0: 6c65 7465 642c 2073 7562 6d61 7472 6963 leted, submatric │ │ │ │ +00031ce0: 6573 2063 6f6e 7369 6465 7265 6420 3d20 es considered = │ │ │ │ +00031cf0: 3330 2c20 616e 6420 636f 6d70 757c 0a7c 30, and compu|.| │ │ │ │ +00031d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00031d50: 7273 2c20 7765 2077 696c 6c20 636f 6d70 rs, we will comp │ │ │ │ +00031d60: 7574 6520 7570 2074 6f20 3330 206f 6620 ute up to 30 of │ │ │ │ +00031d70: 7468 656d 2e20 2020 2020 2020 2020 2020 them. │ │ │ │ 00031d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031d90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031de0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ @@ -12801,21 +12801,21 @@ │ │ │ │ 00032000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032010: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00032020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032060: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032070: 6e73 6964 6572 6564 3a20 392c 2061 6e64 nsidered: 9, and │ │ │ │ -00032080: 2063 6f6d 7075 7465 6420 3d20 3720 2020 computed = 7 │ │ │ │ +00032070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000320a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000320b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000320c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000320d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000320c0: 6e73 6964 6572 6564 3a20 392c 2061 6e64 nsidered: 9, and │ │ │ │ +000320d0: 2063 6f6d 7075 7465 6420 3d20 3720 2020 computed = 7 │ │ │ │ 000320e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000320f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032100: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00032110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12826,21 +12826,21 @@ │ │ │ │ 00032190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000321a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000321b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000321c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000321d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000321e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000321f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032200: 6e73 6964 6572 6564 3a20 3131 2c20 616e nsidered: 11, an │ │ │ │ -00032210: 6420 636f 6d70 7574 6564 203d 2039 2020 d computed = 9 │ │ │ │ +00032200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032240: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032250: 6e73 6964 6572 6564 3a20 3131 2c20 616e nsidered: 11, an │ │ │ │ +00032260: 6420 636f 6d70 7574 6564 203d 2039 2020 d computed = 9 │ │ │ │ 00032270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032290: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000322a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000322b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000322c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000322d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12861,21 +12861,21 @@ │ │ │ │ 000323c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000323d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000323e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000323f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032420: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032430: 6e73 6964 6572 6564 3a20 3135 2c20 616e nsidered: 15, an │ │ │ │ -00032440: 6420 636f 6d70 7574 6564 203d 2031 3120 d computed = 11 │ │ │ │ +00032430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032470: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032480: 6e73 6964 6572 6564 3a20 3135 2c20 616e nsidered: 15, an │ │ │ │ +00032490: 6420 636f 6d70 7574 6564 203d 2031 3120 d computed = 11 │ │ │ │ 000324a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000324d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12906,21 +12906,21 @@ │ │ │ │ 00032690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000326a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000326b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000326c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000326d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000326e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000326f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032700: 6e73 6964 6572 6564 3a20 3231 2c20 616e nsidered: 21, an │ │ │ │ -00032710: 6420 636f 6d70 7574 6564 203d 2031 3620 d computed = 16 │ │ │ │ +00032700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032740: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032750: 6e73 6964 6572 6564 3a20 3231 2c20 616e nsidered: 21, an │ │ │ │ +00032760: 6420 636f 6d70 7574 6564 203d 2031 3620 d computed = 16 │ │ │ │ 00032770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032790: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000327a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000327b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000327c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000327d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12956,21 +12956,21 @@ │ │ │ │ 000329b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000329c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000329d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000329e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000329f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032a10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032a20: 6e73 6964 6572 6564 3a20 3238 2c20 616e nsidered: 28, an │ │ │ │ -00032a30: 6420 636f 6d70 7574 6564 203d 2032 3220 d computed = 22 │ │ │ │ +00032a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032a60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032a70: 6e73 6964 6572 6564 3a20 3238 2c20 616e nsidered: 28, an │ │ │ │ +00032a80: 6420 636f 6d70 7574 6564 203d 2032 3220 d computed = 22 │ │ │ │ 00032a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032ab0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00032ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12981,4040 +12981,4044 @@ │ │ │ │ 00032b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00032b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032ba0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032bb0: 6e73 6964 6572 6564 3a20 3330 2c20 616e nsidered: 30, an │ │ │ │ -00032bc0: 6420 636f 6d70 7574 6564 203d 2032 3320 d computed = 23 │ │ │ │ +00032bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032bf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032c00: 6e73 6964 6572 6564 3a20 3330 2c20 616e nsidered: 30, an │ │ │ │ +00032c10: 6420 636f 6d70 7574 6564 203d 2032 3320 d computed = 23 │ │ │ │ 00032c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00032c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032ca0: 7465 6420 3d20 3233 2e20 2073 696e 6775 ted = 23. singu │ │ │ │ -00032cb0: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ -00032cc0: 696f 6e20 6170 7065 6172 7320 746f 2062 ion appears to b │ │ │ │ -00032cd0: 6520 3d20 3120 2020 2020 2020 2020 2020 e = 1 │ │ │ │ -00032ce0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00032cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00032d40: 5468 6973 2066 756e 6374 696f 6e20 6861 This function ha │ │ │ │ -00032d50: 7320 6d61 6e79 206f 7074 696f 6e73 2077 s many options w │ │ │ │ -00032d60: 6869 6368 2061 6c6c 6f77 2079 6f75 2074 hich allow you t │ │ │ │ -00032d70: 6f20 6669 6e65 2074 756e 6520 7468 6520 o fine tune the │ │ │ │ -00032d80: 7374 7261 7465 6779 2075 7365 640a 746f strategy used.to │ │ │ │ -00032d90: 2066 696e 6420 696e 7465 7265 7374 696e find interestin │ │ │ │ -00032da0: 6720 6d69 6e6f 7273 2e20 596f 7520 6361 g minors. You ca │ │ │ │ -00032db0: 6e20 7061 7373 2069 7420 6120 4861 7368 n pass it a Hash │ │ │ │ -00032dc0: 5461 626c 6520 7370 6563 6966 7969 6e67 Table specifying │ │ │ │ -00032dd0: 2074 6865 2073 7472 6174 6567 790a 7669 the strategy.vi │ │ │ │ -00032de0: 6120 7468 6520 6f70 7469 6f6e 2053 7472 a the option Str │ │ │ │ -00032df0: 6174 6567 792e 2020 5365 6520 2a6e 6f74 ategy. See *not │ │ │ │ -00032e00: 6520 4c65 7853 6d61 6c6c 6573 743a 2053 e LexSmallest: S │ │ │ │ -00032e10: 7472 6174 6567 7944 6566 6175 6c74 2c20 trategyDefault, │ │ │ │ -00032e20: 666f 7220 686f 7720 746f 0a63 6f6e 7374 for how to.const │ │ │ │ -00032e30: 7275 6374 2074 6869 7320 4861 7368 5461 ruct this HashTa │ │ │ │ -00032e40: 626c 652e 2054 6865 2064 6566 6175 6c74 ble. The default │ │ │ │ -00032e50: 2073 7472 6174 6567 7920 6973 2053 7472 strategy is Str │ │ │ │ -00032e60: 6174 6567 7944 6566 6175 6c74 2c20 7768 ategyDefault, wh │ │ │ │ -00032e70: 6963 6820 7365 656d 730a 746f 2077 6f72 ich seems.to wor │ │ │ │ -00032e80: 6b20 7765 6c6c 206f 6e20 7468 6520 6578 k well on the ex │ │ │ │ -00032e90: 616d 706c 6573 2077 6520 6861 7665 2065 amples we have e │ │ │ │ -00032ea0: 7870 6c6f 7265 642e 2020 486f 7765 7665 xplored. Howeve │ │ │ │ -00032eb0: 722c 2063 6175 7469 6f6e 206d 7573 7420 r, caution must │ │ │ │ -00032ec0: 6265 0a65 7865 7263 6973 6564 2c20 6265 be.exercised, be │ │ │ │ -00032ed0: 6361 7573 652c 2065 7665 6e20 696e 2074 cause, even in t │ │ │ │ -00032ee0: 6865 2065 7861 6d70 6c65 7320 6162 6f76 he examples abov │ │ │ │ -00032ef0: 652c 2063 6572 7461 696e 2073 7472 6174 e, certain strat │ │ │ │ -00032f00: 6567 6965 7320 776f 726b 2077 656c 6c0a egies work well. │ │ │ │ -00032f10: 7768 696c 6520 6f74 6865 7273 2064 6f20 while others do │ │ │ │ -00032f20: 6e6f 742e 2020 496e 2074 6865 2041 6265 not. In the Abe │ │ │ │ -00032f30: 6c69 616e 2073 7572 6661 6365 2065 7861 lian surface exa │ │ │ │ -00032f40: 6d70 6c65 2c20 4c65 7853 6d61 6c6c 6573 mple, LexSmalles │ │ │ │ -00032f50: 7420 776f 726b 7320 7665 7279 0a77 656c t works very.wel │ │ │ │ -00032f60: 6c2c 2077 6869 6c65 204c 6578 536d 616c l, while LexSmal │ │ │ │ -00032f70: 6c65 7374 5465 726d 2064 6f65 7320 6e6f lestTerm does no │ │ │ │ -00032f80: 7420 6576 656e 2074 7970 6963 616c 6c79 t even typically │ │ │ │ -00032f90: 2063 6f72 7265 6374 6c79 2069 6465 6e74 correctly ident │ │ │ │ -00032fa0: 6966 7920 7468 6520 7269 6e67 0a61 7320 ify the ring.as │ │ │ │ -00032fb0: 6e6f 6e73 696e 6775 6c61 7220 2874 6869 nonsingular (thi │ │ │ │ -00032fc0: 7320 6973 2062 6563 6175 7365 2074 6865 s is because the │ │ │ │ -00032fd0: 7265 2061 7265 2061 2073 6d61 6c6c 206e re are a small n │ │ │ │ -00032fe0: 756d 6265 7220 6f66 2065 6e74 7269 6573 umber of entries │ │ │ │ -00032ff0: 2077 6974 680a 6e6f 6e7a 6572 6f20 636f with.nonzero co │ │ │ │ -00033000: 6e73 7461 6e74 2074 6572 6d73 2c20 7768 nstant terms, wh │ │ │ │ -00033010: 6963 6820 6172 6520 7365 6c65 6374 6564 ich are selected │ │ │ │ -00033020: 2072 6570 6561 7465 646c 7929 2e20 486f repeatedly). Ho │ │ │ │ -00033030: 7765 7665 722c 2069 6e20 6f75 7220 6669 wever, in our fi │ │ │ │ -00033040: 7273 740a 6578 616d 706c 652c 2074 6865 rst.example, the │ │ │ │ -00033050: 204c 6578 536d 616c 6c65 7374 5465 726d LexSmallestTerm │ │ │ │ -00033060: 2069 7320 6d75 6368 2066 6173 7465 722c is much faster, │ │ │ │ -00033070: 2061 6e64 2052 616e 646f 6d20 646f 6573 and Random does │ │ │ │ -00033080: 206e 6f74 2070 6572 666f 726d 2077 656c not perform wel │ │ │ │ -00033090: 6c0a 6174 2061 6c6c 2e0a 0a2b 2d2d 2d2d l.at all...+---- │ │ │ │ -000330a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000330b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000330c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000330d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000330e0: 3138 203a 2053 7472 6174 6567 7943 7572 18 : StrategyCur │ │ │ │ -000330f0: 7265 6e74 2352 616e 646f 6d20 3d20 303b rent#Random = 0; │ │ │ │ -00033100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00033120: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00033130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033160: 2d2d 2b0a 7c69 3139 203a 2053 7472 6174 --+.|i19 : Strat │ │ │ │ -00033170: 6567 7943 7572 7265 6e74 234c 6578 536d egyCurrent#LexSm │ │ │ │ -00033180: 616c 6c65 7374 203d 2031 3030 3b20 2020 allest = 100; │ │ │ │ -00033190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000331a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -000331b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000331c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000331d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000331e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a --------+.|i20 : │ │ │ │ -000331f0: 2053 7472 6174 6567 7943 7572 7265 6e74 StrategyCurrent │ │ │ │ -00033200: 234c 6578 536d 616c 6c65 7374 5465 726d #LexSmallestTerm │ │ │ │ -00033210: 203d 2030 3b20 2020 2020 2020 2020 2020 = 0; │ │ │ │ -00033220: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00033230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00033270: 7c69 3231 203a 2074 696d 6520 7265 6775 |i21 : time regu │ │ │ │ -00033280: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -00033290: 2832 2c20 522c 2053 7472 6174 6567 793d (2, R, Strategy= │ │ │ │ -000332a0: 3e53 7472 6174 6567 7943 7572 7265 6e74 >StrategyCurrent │ │ │ │ -000332b0: 297c 0a7c 202d 2d20 7573 6564 2030 2e33 )|.| -- used 0.3 │ │ │ │ -000332c0: 3136 3532 7320 2863 7075 293b 2030 2e32 1652s (cpu); 0.2 │ │ │ │ -000332d0: 3231 3838 3973 2028 7468 7265 6164 293b 21889s (thread); │ │ │ │ -000332e0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ -000332f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00033300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033330: 2020 2020 2020 207c 0a7c 6f32 3120 3d20 |.|o21 = │ │ │ │ -00033340: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +00032ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032ce0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032cf0: 7465 6420 3d20 3233 2e20 2073 696e 6775 ted = 23. singu │ │ │ │ +00032d00: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ +00032d10: 696f 6e20 6170 7065 6172 7320 746f 2062 ion appears to b │ │ │ │ +00032d20: 6520 3d20 3120 2020 2020 2020 2020 2020 e = 1 │ │ │ │ +00032d30: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00032d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00032d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00032d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00032d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00032d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00032d90: 5468 6973 2066 756e 6374 696f 6e20 6861 This function ha │ │ │ │ +00032da0: 7320 6d61 6e79 206f 7074 696f 6e73 2077 s many options w │ │ │ │ +00032db0: 6869 6368 2061 6c6c 6f77 2079 6f75 2074 hich allow you t │ │ │ │ +00032dc0: 6f20 6669 6e65 2074 756e 6520 7468 6520 o fine tune the │ │ │ │ +00032dd0: 7374 7261 7465 6779 2075 7365 640a 746f strategy used.to │ │ │ │ +00032de0: 2066 696e 6420 696e 7465 7265 7374 696e find interestin │ │ │ │ +00032df0: 6720 6d69 6e6f 7273 2e20 596f 7520 6361 g minors. You ca │ │ │ │ +00032e00: 6e20 7061 7373 2069 7420 6120 4861 7368 n pass it a Hash │ │ │ │ +00032e10: 5461 626c 6520 7370 6563 6966 7969 6e67 Table specifying │ │ │ │ +00032e20: 2074 6865 2073 7472 6174 6567 790a 7669 the strategy.vi │ │ │ │ +00032e30: 6120 7468 6520 6f70 7469 6f6e 2053 7472 a the option Str │ │ │ │ +00032e40: 6174 6567 792e 2020 5365 6520 2a6e 6f74 ategy. See *not │ │ │ │ +00032e50: 6520 4c65 7853 6d61 6c6c 6573 743a 2053 e LexSmallest: S │ │ │ │ +00032e60: 7472 6174 6567 7944 6566 6175 6c74 2c20 trategyDefault, │ │ │ │ +00032e70: 666f 7220 686f 7720 746f 0a63 6f6e 7374 for how to.const │ │ │ │ +00032e80: 7275 6374 2074 6869 7320 4861 7368 5461 ruct this HashTa │ │ │ │ +00032e90: 626c 652e 2054 6865 2064 6566 6175 6c74 ble. The default │ │ │ │ +00032ea0: 2073 7472 6174 6567 7920 6973 2053 7472 strategy is Str │ │ │ │ +00032eb0: 6174 6567 7944 6566 6175 6c74 2c20 7768 ategyDefault, wh │ │ │ │ +00032ec0: 6963 6820 7365 656d 730a 746f 2077 6f72 ich seems.to wor │ │ │ │ +00032ed0: 6b20 7765 6c6c 206f 6e20 7468 6520 6578 k well on the ex │ │ │ │ +00032ee0: 616d 706c 6573 2077 6520 6861 7665 2065 amples we have e │ │ │ │ +00032ef0: 7870 6c6f 7265 642e 2020 486f 7765 7665 xplored. Howeve │ │ │ │ +00032f00: 722c 2063 6175 7469 6f6e 206d 7573 7420 r, caution must │ │ │ │ +00032f10: 6265 0a65 7865 7263 6973 6564 2c20 6265 be.exercised, be │ │ │ │ +00032f20: 6361 7573 652c 2065 7665 6e20 696e 2074 cause, even in t │ │ │ │ +00032f30: 6865 2065 7861 6d70 6c65 7320 6162 6f76 he examples abov │ │ │ │ +00032f40: 652c 2063 6572 7461 696e 2073 7472 6174 e, certain strat │ │ │ │ +00032f50: 6567 6965 7320 776f 726b 2077 656c 6c0a egies work well. │ │ │ │ +00032f60: 7768 696c 6520 6f74 6865 7273 2064 6f20 while others do │ │ │ │ +00032f70: 6e6f 742e 2020 496e 2074 6865 2041 6265 not. In the Abe │ │ │ │ +00032f80: 6c69 616e 2073 7572 6661 6365 2065 7861 lian surface exa │ │ │ │ +00032f90: 6d70 6c65 2c20 4c65 7853 6d61 6c6c 6573 mple, LexSmalles │ │ │ │ +00032fa0: 7420 776f 726b 7320 7665 7279 0a77 656c t works very.wel │ │ │ │ +00032fb0: 6c2c 2077 6869 6c65 204c 6578 536d 616c l, while LexSmal │ │ │ │ +00032fc0: 6c65 7374 5465 726d 2064 6f65 7320 6e6f lestTerm does no │ │ │ │ +00032fd0: 7420 6576 656e 2074 7970 6963 616c 6c79 t even typically │ │ │ │ +00032fe0: 2063 6f72 7265 6374 6c79 2069 6465 6e74 correctly ident │ │ │ │ +00032ff0: 6966 7920 7468 6520 7269 6e67 0a61 7320 ify the ring.as │ │ │ │ +00033000: 6e6f 6e73 696e 6775 6c61 7220 2874 6869 nonsingular (thi │ │ │ │ +00033010: 7320 6973 2062 6563 6175 7365 2074 6865 s is because the │ │ │ │ +00033020: 7265 2061 7265 2061 2073 6d61 6c6c 206e re are a small n │ │ │ │ +00033030: 756d 6265 7220 6f66 2065 6e74 7269 6573 umber of entries │ │ │ │ +00033040: 2077 6974 680a 6e6f 6e7a 6572 6f20 636f with.nonzero co │ │ │ │ +00033050: 6e73 7461 6e74 2074 6572 6d73 2c20 7768 nstant terms, wh │ │ │ │ +00033060: 6963 6820 6172 6520 7365 6c65 6374 6564 ich are selected │ │ │ │ +00033070: 2072 6570 6561 7465 646c 7929 2e20 486f repeatedly). Ho │ │ │ │ +00033080: 7765 7665 722c 2069 6e20 6f75 7220 6669 wever, in our fi │ │ │ │ +00033090: 7273 740a 6578 616d 706c 652c 2074 6865 rst.example, the │ │ │ │ +000330a0: 204c 6578 536d 616c 6c65 7374 5465 726d LexSmallestTerm │ │ │ │ +000330b0: 2069 7320 6d75 6368 2066 6173 7465 722c is much faster, │ │ │ │ +000330c0: 2061 6e64 2052 616e 646f 6d20 646f 6573 and Random does │ │ │ │ +000330d0: 206e 6f74 2070 6572 666f 726d 2077 656c not perform wel │ │ │ │ +000330e0: 6c0a 6174 2061 6c6c 2e0a 0a2b 2d2d 2d2d l.at all...+---- │ │ │ │ +000330f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00033130: 3138 203a 2053 7472 6174 6567 7943 7572 18 : StrategyCur │ │ │ │ +00033140: 7265 6e74 2352 616e 646f 6d20 3d20 303b rent#Random = 0; │ │ │ │ +00033150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033160: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00033170: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00033180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000331a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000331b0: 2d2d 2b0a 7c69 3139 203a 2053 7472 6174 --+.|i19 : Strat │ │ │ │ +000331c0: 6567 7943 7572 7265 6e74 234c 6578 536d egyCurrent#LexSm │ │ │ │ +000331d0: 616c 6c65 7374 203d 2031 3030 3b20 2020 allest = 100; │ │ │ │ +000331e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000331f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00033200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033230: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a --------+.|i20 : │ │ │ │ +00033240: 2053 7472 6174 6567 7943 7572 7265 6e74 StrategyCurrent │ │ │ │ +00033250: 234c 6578 536d 616c 6c65 7374 5465 726d #LexSmallestTerm │ │ │ │ +00033260: 203d 2030 3b20 2020 2020 2020 2020 2020 = 0; │ │ │ │ +00033270: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00033280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000332a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000332b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000332c0: 7c69 3231 203a 2074 696d 6520 7265 6775 |i21 : time regu │ │ │ │ +000332d0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +000332e0: 2832 2c20 522c 2053 7472 6174 6567 793d (2, R, Strategy= │ │ │ │ +000332f0: 3e53 7472 6174 6567 7943 7572 7265 6e74 >StrategyCurrent │ │ │ │ +00033300: 297c 0a7c 202d 2d20 7573 6564 2030 2e33 )|.| -- used 0.3 │ │ │ │ +00033310: 3732 3336 3373 2028 6370 7529 3b20 302e 72363s (cpu); 0. │ │ │ │ +00033320: 3234 3433 3439 7320 2874 6872 6561 6429 244349s (thread) │ │ │ │ +00033330: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00033340: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00033350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033370: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -00033380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000333a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000333b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000333c0: 6932 3220 3a20 7469 6d65 2072 6567 756c i22 : time regul │ │ │ │ -000333d0: 6172 496e 436f 6469 6d65 6e73 696f 6e28 arInCodimension( │ │ │ │ -000333e0: 322c 2052 2c20 5374 7261 7465 6779 3d3e 2, R, Strategy=> │ │ │ │ -000333f0: 5374 7261 7465 6779 4375 7272 656e 7429 StrategyCurrent) │ │ │ │ -00033400: 7c0a 7c20 2d2d 2075 7365 6420 302e 3132 |.| -- used 0.12 │ │ │ │ -00033410: 3134 3132 7320 2863 7075 293b 2030 2e30 1412s (cpu); 0.0 │ │ │ │ -00033420: 3732 3931 3431 7320 2874 6872 6561 6429 729141s (thread) │ │ │ │ -00033430: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ -00033440: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00033450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033480: 2020 2020 2020 7c0a 7c6f 3232 203d 2074 |.|o22 = t │ │ │ │ -00033490: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +00033370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033380: 2020 2020 2020 207c 0a7c 6f32 3120 3d20 |.|o21 = │ │ │ │ +00033390: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +000333a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000333b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000333c0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000333d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000333e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000333f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00033410: 6932 3220 3a20 7469 6d65 2072 6567 756c i22 : time regul │ │ │ │ +00033420: 6172 496e 436f 6469 6d65 6e73 696f 6e28 arInCodimension( │ │ │ │ +00033430: 322c 2052 2c20 5374 7261 7465 6779 3d3e 2, R, Strategy=> │ │ │ │ +00033440: 5374 7261 7465 6779 4375 7272 656e 7429 StrategyCurrent) │ │ │ │ +00033450: 7c0a 7c20 2d2d 2075 7365 6420 302e 3135 |.| -- used 0.15 │ │ │ │ +00033460: 3939 3933 7320 2863 7075 293b 2030 2e30 9993s (cpu); 0.0 │ │ │ │ +00033470: 3834 3639 3335 7320 2874 6872 6561 6429 846935s (thread) │ │ │ │ +00033480: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00033490: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 000334a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000334b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000334c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -000334d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000334e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000334f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00033510: 3233 203a 2074 696d 6520 7265 6775 6c61 23 : time regula │ │ │ │ -00033520: 7249 6e43 6f64 696d 656e 7369 6f6e 2831 rInCodimension(1 │ │ │ │ -00033530: 2c20 532c 2053 7472 6174 6567 793d 3e53 , S, Strategy=>S │ │ │ │ -00033540: 7472 6174 6567 7943 7572 7265 6e74 297c trategyCurrent)| │ │ │ │ -00033550: 0a7c 202d 2d20 7573 6564 2030 2e33 3630 .| -- used 0.360 │ │ │ │ -00033560: 3535 7320 2863 7075 293b 2030 2e32 3639 55s (cpu); 0.269 │ │ │ │ -00033570: 3031 3673 2028 7468 7265 6164 293b 2030 016s (thread); 0 │ │ │ │ -00033580: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ -00033590: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000335a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000335b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000335c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000335d0: 2020 2020 207c 0a7c 6f32 3320 3d20 7472 |.|o23 = tr │ │ │ │ -000335e0: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +000334c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000334d0: 2020 2020 2020 7c0a 7c6f 3232 203d 2074 |.|o22 = t │ │ │ │ +000334e0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +000334f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033510: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00033520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00033560: 3233 203a 2074 696d 6520 7265 6775 6c61 23 : time regula │ │ │ │ +00033570: 7249 6e43 6f64 696d 656e 7369 6f6e 2831 rInCodimension(1 │ │ │ │ +00033580: 2c20 532c 2053 7472 6174 6567 793d 3e53 , S, Strategy=>S │ │ │ │ +00033590: 7472 6174 6567 7943 7572 7265 6e74 297c trategyCurrent)| │ │ │ │ +000335a0: 0a7c 202d 2d20 7573 6564 2030 2e34 3430 .| -- used 0.440 │ │ │ │ +000335b0: 3635 3173 2028 6370 7529 3b20 302e 3331 651s (cpu); 0.31 │ │ │ │ +000335c0: 3836 3935 7320 2874 6872 6561 6429 3b20 8695s (thread); │ │ │ │ +000335d0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +000335e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000335f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033610: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -00033620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00033660: 3420 3a20 7469 6d65 2072 6567 756c 6172 4 : time regular │ │ │ │ -00033670: 496e 436f 6469 6d65 6e73 696f 6e28 312c InCodimension(1, │ │ │ │ -00033680: 2053 2c20 5374 7261 7465 6779 3d3e 5374 S, Strategy=>St │ │ │ │ -00033690: 7261 7465 6779 4375 7272 656e 7429 7c0a rategyCurrent)|. │ │ │ │ -000336a0: 7c20 2d2d 2075 7365 6420 312e 3631 3534 | -- used 1.6154 │ │ │ │ -000336b0: 3773 2028 6370 7529 3b20 312e 3230 3539 7s (cpu); 1.2059 │ │ │ │ -000336c0: 3473 2028 7468 7265 6164 293b 2030 7320 4s (thread); 0s │ │ │ │ -000336d0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ -000336e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000336f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033720: 2020 2020 7c0a 7c6f 3234 203d 2074 7275 |.|o24 = tru │ │ │ │ -00033730: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00033610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033620: 2020 2020 207c 0a7c 6f32 3320 3d20 7472 |.|o23 = tr │ │ │ │ +00033630: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00033640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033660: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00033670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000336a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +000336b0: 3420 3a20 7469 6d65 2072 6567 756c 6172 4 : time regular │ │ │ │ +000336c0: 496e 436f 6469 6d65 6e73 696f 6e28 312c InCodimension(1, │ │ │ │ +000336d0: 2053 2c20 5374 7261 7465 6779 3d3e 5374 S, Strategy=>St │ │ │ │ +000336e0: 7261 7465 6779 4375 7272 656e 7429 7c0a rategyCurrent)|. │ │ │ │ +000336f0: 7c20 2d2d 2075 7365 6420 322e 3130 3835 | -- used 2.1085 │ │ │ │ +00033700: 3873 2028 6370 7529 3b20 312e 3530 3233 8s (cpu); 1.5023 │ │ │ │ +00033710: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ +00033720: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +00033730: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00033740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033760: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00033770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000337a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3235 ----------+.|i25 │ │ │ │ -000337b0: 203a 2053 7472 6174 6567 7943 7572 7265 : StrategyCurre │ │ │ │ -000337c0: 6e74 234c 6578 536d 616c 6c65 7374 203d nt#LexSmallest = │ │ │ │ -000337d0: 2030 3b20 2020 2020 2020 2020 2020 2020 0; │ │ │ │ -000337e0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -000337f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033830: 2b0a 7c69 3236 203a 2053 7472 6174 6567 +.|i26 : Strateg │ │ │ │ -00033840: 7943 7572 7265 6e74 234c 6578 536d 616c yCurrent#LexSmal │ │ │ │ -00033850: 6c65 7374 5465 726d 203d 2031 3030 3b20 lestTerm = 100; │ │ │ │ -00033860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033870: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00033880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000338a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000338b0: 2d2d 2d2d 2d2d 2b0a 7c69 3237 203a 2074 ------+.|i27 : t │ │ │ │ -000338c0: 696d 6520 7265 6775 6c61 7249 6e43 6f64 ime regularInCod │ │ │ │ -000338d0: 696d 656e 7369 6f6e 2832 2c20 522c 2053 imension(2, R, S │ │ │ │ -000338e0: 7472 6174 6567 793d 3e53 7472 6174 6567 trategy=>Strateg │ │ │ │ -000338f0: 7943 7572 7265 6e74 297c 0a7c 202d 2d20 yCurrent)|.| -- │ │ │ │ -00033900: 7573 6564 2032 2e31 3638 3339 7320 2863 used 2.16839s (c │ │ │ │ -00033910: 7075 293b 2031 2e35 3836 3834 7320 2874 pu); 1.58684s (t │ │ │ │ -00033920: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ -00033930: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00033940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00033980: 0a7c 6932 3820 3a20 7469 6d65 2072 6567 .|i28 : time reg │ │ │ │ -00033990: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -000339a0: 6e28 322c 2052 2c20 5374 7261 7465 6779 n(2, R, Strategy │ │ │ │ -000339b0: 3d3e 5374 7261 7465 6779 4375 7272 656e =>StrategyCurren │ │ │ │ -000339c0: 7429 7c0a 7c20 2d2d 2075 7365 6420 322e t)|.| -- used 2. │ │ │ │ -000339d0: 3234 3937 3673 2028 6370 7529 3b20 312e 24976s (cpu); 1. │ │ │ │ -000339e0: 3630 3638 3973 2028 7468 7265 6164 293b 60689s (thread); │ │ │ │ -000339f0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ -00033a00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00033a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a40: 2020 2020 2020 2020 7c0a 7c6f 3238 203d |.|o28 = │ │ │ │ -00033a50: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +00033760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033770: 2020 2020 7c0a 7c6f 3234 203d 2074 7275 |.|o24 = tru │ │ │ │ +00033780: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00033790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000337a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000337b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000337c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000337d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000337e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000337f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3235 ----------+.|i25 │ │ │ │ +00033800: 203a 2053 7472 6174 6567 7943 7572 7265 : StrategyCurre │ │ │ │ +00033810: 6e74 234c 6578 536d 616c 6c65 7374 203d nt#LexSmallest = │ │ │ │ +00033820: 2030 3b20 2020 2020 2020 2020 2020 2020 0; │ │ │ │ +00033830: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00033840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033880: 2b0a 7c69 3236 203a 2053 7472 6174 6567 +.|i26 : Strateg │ │ │ │ +00033890: 7943 7572 7265 6e74 234c 6578 536d 616c yCurrent#LexSmal │ │ │ │ +000338a0: 6c65 7374 5465 726d 203d 2031 3030 3b20 lestTerm = 100; │ │ │ │ +000338b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000338c0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000338d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000338e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000338f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033900: 2d2d 2d2d 2d2d 2b0a 7c69 3237 203a 2074 ------+.|i27 : t │ │ │ │ +00033910: 696d 6520 7265 6775 6c61 7249 6e43 6f64 ime regularInCod │ │ │ │ +00033920: 696d 656e 7369 6f6e 2832 2c20 522c 2053 imension(2, R, S │ │ │ │ +00033930: 7472 6174 6567 793d 3e53 7472 6174 6567 trategy=>Strateg │ │ │ │ +00033940: 7943 7572 7265 6e74 297c 0a7c 202d 2d20 yCurrent)|.| -- │ │ │ │ +00033950: 7573 6564 2032 2e37 3133 3534 7320 2863 used 2.71354s (c │ │ │ │ +00033960: 7075 293b 2031 2e38 3532 3537 7320 2874 pu); 1.85257s (t │ │ │ │ +00033970: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +00033980: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00033990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000339a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000339b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000339c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000339d0: 0a7c 6932 3820 3a20 7469 6d65 2072 6567 .|i28 : time reg │ │ │ │ +000339e0: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ +000339f0: 6e28 322c 2052 2c20 5374 7261 7465 6779 n(2, R, Strategy │ │ │ │ +00033a00: 3d3e 5374 7261 7465 6779 4375 7272 656e =>StrategyCurren │ │ │ │ +00033a10: 7429 7c0a 7c20 2d2d 2075 7365 6420 322e t)|.| -- used 2. │ │ │ │ +00033a20: 3732 3231 3373 2028 6370 7529 3b20 312e 72213s (cpu); 1. │ │ │ │ +00033a30: 3830 3533 7320 2874 6872 6561 6429 3b20 8053s (thread); │ │ │ │ +00033a40: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +00033a50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00033a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a80: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00033a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00033ad0: 7c69 3239 203a 2074 696d 6520 7265 6775 |i29 : time regu │ │ │ │ -00033ae0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -00033af0: 2831 2c20 532c 2053 7472 6174 6567 793d (1, S, Strategy= │ │ │ │ -00033b00: 3e53 7472 6174 6567 7943 7572 7265 6e74 >StrategyCurrent │ │ │ │ -00033b10: 297c 0a7c 202d 2d20 7573 6564 2030 2e34 )|.| -- used 0.4 │ │ │ │ -00033b20: 3139 3532 3873 2028 6370 7529 3b20 302e 19528s (cpu); 0. │ │ │ │ -00033b30: 3333 3536 3738 7320 2874 6872 6561 6429 335678s (thread) │ │ │ │ -00033b40: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ -00033b50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00033b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033b90: 2020 2020 2020 207c 0a7c 6f32 3920 3d20 |.|o29 = │ │ │ │ -00033ba0: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +00033a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033a90: 2020 2020 2020 2020 7c0a 7c6f 3238 203d |.|o28 = │ │ │ │ +00033aa0: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +00033ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033ad0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00033ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00033b20: 7c69 3239 203a 2074 696d 6520 7265 6775 |i29 : time regu │ │ │ │ +00033b30: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +00033b40: 2831 2c20 532c 2053 7472 6174 6567 793d (1, S, Strategy= │ │ │ │ +00033b50: 3e53 7472 6174 6567 7943 7572 7265 6e74 >StrategyCurrent │ │ │ │ +00033b60: 297c 0a7c 202d 2d20 7573 6564 2030 2e35 )|.| -- used 0.5 │ │ │ │ +00033b70: 3030 3132 3773 2028 6370 7529 3b20 302e 00127s (cpu); 0. │ │ │ │ +00033b80: 3336 3332 3833 7320 2874 6872 6561 6429 363283s (thread) │ │ │ │ +00033b90: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00033ba0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00033bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033bd0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -00033be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00033c20: 6933 3020 3a20 7469 6d65 2072 6567 756c i30 : time regul │ │ │ │ -00033c30: 6172 496e 436f 6469 6d65 6e73 696f 6e28 arInCodimension( │ │ │ │ -00033c40: 312c 2053 2c20 5374 7261 7465 6779 3d3e 1, S, Strategy=> │ │ │ │ -00033c50: 5374 7261 7465 6779 4375 7272 656e 7429 StrategyCurrent) │ │ │ │ -00033c60: 7c0a 7c20 2d2d 2075 7365 6420 302e 3638 |.| -- used 0.68 │ │ │ │ -00033c70: 3136 7320 2863 7075 293b 2030 2e35 3435 16s (cpu); 0.545 │ │ │ │ -00033c80: 3533 3473 2028 7468 7265 6164 293b 2030 534s (thread); 0 │ │ │ │ -00033c90: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ -00033ca0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00033cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033ce0: 2020 2020 2020 7c0a 7c6f 3330 203d 2074 |.|o30 = t │ │ │ │ -00033cf0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +00033bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033be0: 2020 2020 2020 207c 0a7c 6f32 3920 3d20 |.|o29 = │ │ │ │ +00033bf0: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +00033c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033c20: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00033c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00033c70: 6933 3020 3a20 7469 6d65 2072 6567 756c i30 : time regul │ │ │ │ +00033c80: 6172 496e 436f 6469 6d65 6e73 696f 6e28 arInCodimension( │ │ │ │ +00033c90: 312c 2053 2c20 5374 7261 7465 6779 3d3e 1, S, Strategy=> │ │ │ │ +00033ca0: 5374 7261 7465 6779 4375 7272 656e 7429 StrategyCurrent) │ │ │ │ +00033cb0: 7c0a 7c20 2d2d 2075 7365 6420 302e 3836 |.| -- used 0.86 │ │ │ │ +00033cc0: 3633 3536 7320 2863 7075 293b 2030 2e36 6356s (cpu); 0.6 │ │ │ │ +00033cd0: 3531 3338 7320 2874 6872 6561 6429 3b20 5138s (thread); │ │ │ │ +00033ce0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +00033cf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00033d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033d20: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00033d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00033d70: 3331 203a 2074 696d 6520 7265 6775 6c61 31 : time regula │ │ │ │ -00033d80: 7249 6e43 6f64 696d 656e 7369 6f6e 2831 rInCodimension(1 │ │ │ │ -00033d90: 2c20 532c 2053 7472 6174 6567 793d 3e53 , S, Strategy=>S │ │ │ │ -00033da0: 7472 6174 6567 7952 616e 646f 6d29 207c trategyRandom) | │ │ │ │ -00033db0: 0a7c 202d 2d20 7573 6564 2030 2e39 3930 .| -- used 0.990 │ │ │ │ -00033dc0: 3137 3373 2028 6370 7529 3b20 302e 3831 173s (cpu); 0.81 │ │ │ │ -00033dd0: 3535 3538 7320 2874 6872 6561 6429 3b20 5558s (thread); │ │ │ │ -00033de0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ -00033df0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00033e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e30: 2020 2020 207c 0a7c 6f33 3120 3d20 7472 |.|o31 = tr │ │ │ │ -00033e40: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00033d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033d30: 2020 2020 2020 7c0a 7c6f 3330 203d 2074 |.|o30 = t │ │ │ │ +00033d40: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +00033d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033d70: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00033d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00033dc0: 3331 203a 2074 696d 6520 7265 6775 6c61 31 : time regula │ │ │ │ +00033dd0: 7249 6e43 6f64 696d 656e 7369 6f6e 2831 rInCodimension(1 │ │ │ │ +00033de0: 2c20 532c 2053 7472 6174 6567 793d 3e53 , S, Strategy=>S │ │ │ │ +00033df0: 7472 6174 6567 7952 616e 646f 6d29 207c trategyRandom) | │ │ │ │ +00033e00: 0a7c 202d 2d20 7573 6564 2031 2e32 3439 .| -- used 1.249 │ │ │ │ +00033e10: 3833 7320 2863 7075 293b 2030 2e39 3631 83s (cpu); 0.961 │ │ │ │ +00033e20: 3539 3273 2028 7468 7265 6164 293b 2030 592s (thread); 0 │ │ │ │ +00033e30: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +00033e40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00033e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e70: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -00033e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -00033ec0: 3220 3a20 7469 6d65 2072 6567 756c 6172 2 : time regular │ │ │ │ -00033ed0: 496e 436f 6469 6d65 6e73 696f 6e28 312c InCodimension(1, │ │ │ │ -00033ee0: 2053 2c20 5374 7261 7465 6779 3d3e 5374 S, Strategy=>St │ │ │ │ -00033ef0: 7261 7465 6779 5261 6e64 6f6d 2920 7c0a rategyRandom) |. │ │ │ │ -00033f00: 7c20 2d2d 2075 7365 6420 312e 3638 3130 | -- used 1.6810 │ │ │ │ -00033f10: 3373 2028 6370 7529 3b20 312e 3331 3931 3s (cpu); 1.3191 │ │ │ │ -00033f20: 3873 2028 7468 7265 6164 293b 2030 7320 8s (thread); 0s │ │ │ │ -00033f30: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ -00033f40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00033f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033f80: 2020 2020 7c0a 7c6f 3332 203d 2074 7275 |.|o32 = tru │ │ │ │ -00033f90: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00033e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033e80: 2020 2020 207c 0a7c 6f33 3120 3d20 7472 |.|o31 = tr │ │ │ │ +00033e90: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00033ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033ec0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00033ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +00033f10: 3220 3a20 7469 6d65 2072 6567 756c 6172 2 : time regular │ │ │ │ +00033f20: 496e 436f 6469 6d65 6e73 696f 6e28 312c InCodimension(1, │ │ │ │ +00033f30: 2053 2c20 5374 7261 7465 6779 3d3e 5374 S, Strategy=>St │ │ │ │ +00033f40: 7261 7465 6779 5261 6e64 6f6d 2920 7c0a rategyRandom) |. │ │ │ │ +00033f50: 7c20 2d2d 2075 7365 6420 312e 3935 3330 | -- used 1.9530 │ │ │ │ +00033f60: 3573 2028 6370 7529 3b20 312e 3531 3334 5s (cpu); 1.5134 │ │ │ │ +00033f70: 3573 2028 7468 7265 6164 293b 2030 7320 5s (thread); 0s │ │ │ │ +00033f80: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +00033f90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00033fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033fc0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00033fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034000: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 6865 ----------+..The │ │ │ │ -00034010: 206d 696e 696d 756d 206e 756d 6265 7220 minimum number │ │ │ │ -00034020: 6f66 206d 696e 6f72 7320 636f 6d70 7574 of minors comput │ │ │ │ -00034030: 6564 2062 6566 6f72 6520 6368 6563 6b69 ed before checki │ │ │ │ -00034040: 6e67 2074 6865 2063 6f64 696d 656e 7369 ng the codimensi │ │ │ │ -00034050: 6f6e 2063 616e 2061 6c73 6f0a 6265 2063 on can also.be c │ │ │ │ -00034060: 6f6e 7472 6f6c 6c65 6420 6279 2061 6e20 ontrolled by an │ │ │ │ -00034070: 6f70 7469 6f6e 204d 696e 4d69 6e6f 7273 option MinMinors │ │ │ │ -00034080: 4675 6e63 7469 6f6e 2e20 2054 6869 7320 Function. This │ │ │ │ -00034090: 6973 2073 686f 756c 6420 6265 2061 2066 is should be a f │ │ │ │ -000340a0: 756e 6374 696f 6e20 6f66 0a61 2073 696e unction of.a sin │ │ │ │ -000340b0: 676c 6520 7661 7269 6162 6c65 2c20 7468 gle variable, th │ │ │ │ -000340c0: 6520 6e75 6d62 6572 206f 6620 6d69 6e6f e number of mino │ │ │ │ -000340d0: 7273 2063 6f6d 7075 7465 642e 2020 4669 rs computed. Fi │ │ │ │ -000340e0: 6e61 6c6c 792c 2076 6961 2074 6865 206f nally, via the o │ │ │ │ -000340f0: 7074 696f 6e0a 436f 6469 6d43 6865 636b ption.CodimCheck │ │ │ │ -00034100: 4675 6e63 7469 6f6e 2c20 796f 7520 6361 Function, you ca │ │ │ │ -00034110: 6e20 7061 7373 2074 6865 2072 6567 756c n pass the regul │ │ │ │ -00034120: 6172 496e 436f 6469 6d65 6e73 696f 6e20 arInCodimension │ │ │ │ -00034130: 6120 6675 6e63 7469 6f6e 2077 6869 6368 a function which │ │ │ │ -00034140: 0a63 6f6e 7472 6f6c 7320 686f 7720 6672 .controls how fr │ │ │ │ -00034150: 6571 7565 6e74 6c79 2074 6865 2063 6f64 equently the cod │ │ │ │ -00034160: 696d 656e 7369 6f6e 206f 6620 7468 6520 imension of the │ │ │ │ -00034170: 7061 7274 6961 6c20 4a61 636f 6269 616e partial Jacobian │ │ │ │ -00034180: 2069 6465 616c 2069 730a 636f 6d70 7574 ideal is.comput │ │ │ │ -00034190: 6564 2e20 2042 7920 6465 6661 756c 7420 ed. By default │ │ │ │ -000341a0: 7468 6973 2069 7320 7468 6520 666c 6f6f this is the floo │ │ │ │ -000341b0: 7220 6f66 2031 2e33 5e6b 2e20 4669 6e61 r of 1.3^k. Fina │ │ │ │ -000341c0: 6c6c 792c 2070 6173 7369 6e67 2074 6865 lly, passing the │ │ │ │ -000341d0: 206f 7074 696f 6e0a 4d6f 6475 6c75 7320 option.Modulus │ │ │ │ -000341e0: 3d3e 2070 2077 696c 6c20 646f 2074 6865 => p will do the │ │ │ │ -000341f0: 2063 6f6d 7075 7461 7469 6f6e 2061 6674 computation aft │ │ │ │ -00034200: 6572 2063 6861 6e67 696e 6720 7468 6520 er changing the │ │ │ │ -00034210: 636f 6566 6669 6369 656e 7420 7269 6e67 coefficient ring │ │ │ │ -00034220: 2074 6f0a 5a5a 2f70 2e0a 0a54 6865 206f to.ZZ/p...The o │ │ │ │ -00034230: 7074 696f 6e73 2050 6169 724c 696d 6974 ptions PairLimit │ │ │ │ -00034240: 2061 6e64 2053 5061 6972 7346 756e 6374 and SPairsFunct │ │ │ │ -00034250: 696f 6e20 6172 6520 7061 7373 6564 2064 ion are passed d │ │ │ │ -00034260: 6972 6563 746c 7920 746f 2069 7343 6f64 irectly to isCod │ │ │ │ -00034270: 696d 4174 4c65 6173 742e 0a59 6f75 2063 imAtLeast..You c │ │ │ │ -00034280: 616e 2074 7572 6e20 6f66 6620 696e 7465 an turn off inte │ │ │ │ -00034290: 726e 616c 2063 616c 6c73 2074 6f20 636f rnal calls to co │ │ │ │ -000342a0: 6469 6d2f 6469 6d2c 2061 6e64 206f 6e6c dim/dim, and onl │ │ │ │ -000342b0: 7920 7573 6520 6973 436f 6469 6d41 744c y use isCodimAtL │ │ │ │ -000342c0: 6561 7374 2062 790a 7365 7474 696e 6720 east by.setting │ │ │ │ -000342d0: 5573 654f 6e6c 7946 6173 7443 6f64 696d UseOnlyFastCodim │ │ │ │ -000342e0: 203d 3e20 7472 7565 2e0a 0a53 6565 2061 => true...See a │ │ │ │ -000342f0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -00034300: 2a20 2a6e 6f74 6520 6973 436f 6469 6d41 * *note isCodimA │ │ │ │ -00034310: 744c 6561 7374 3a20 6973 436f 6469 6d41 tLeast: isCodimA │ │ │ │ -00034320: 744c 6561 7374 2c20 2d2d 2072 6574 7572 tLeast, -- retur │ │ │ │ -00034330: 6e73 2074 7275 6520 6966 2077 6520 6361 ns true if we ca │ │ │ │ -00034340: 6e20 7175 6963 6b6c 7920 7365 650a 2020 n quickly see. │ │ │ │ -00034350: 2020 7768 6574 6865 7220 7468 6520 636f whether the co │ │ │ │ -00034360: 6469 6d20 6973 2061 7420 6c65 6173 7420 dim is at least │ │ │ │ -00034370: 6120 6769 7665 6e20 6e75 6d62 6572 0a0a a given number.. │ │ │ │ -00034380: 5761 7973 2074 6f20 7573 6520 7265 6775 Ways to use regu │ │ │ │ -00034390: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -000343a0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -000343b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000343c0: 3d3d 3d0a 0a20 202a 2022 7265 6775 6c61 ===.. * "regula │ │ │ │ -000343d0: 7249 6e43 6f64 696d 656e 7369 6f6e 285a rInCodimension(Z │ │ │ │ -000343e0: 5a2c 5269 6e67 2922 0a0a 466f 7220 7468 Z,Ring)"..For th │ │ │ │ -000343f0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -00034400: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00034410: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -00034420: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ -00034430: 656e 7369 6f6e 3a20 7265 6775 6c61 7249 ension: regularI │ │ │ │ -00034440: 6e43 6f64 696d 656e 7369 6f6e 2c20 6973 nCodimension, is │ │ │ │ -00034450: 2061 202a 6e6f 7465 206d 6574 686f 640a a *note method. │ │ │ │ -00034460: 6675 6e63 7469 6f6e 2077 6974 6820 6f70 function with op │ │ │ │ -00034470: 7469 6f6e 733a 2028 4d61 6361 756c 6179 tions: (Macaulay │ │ │ │ -00034480: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ -00034490: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ -000344a0: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -000344b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000344c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000344d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000344e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000344f0: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00034500: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00034510: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00034520: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00034530: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -00034540: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -00034550: 7061 636b 6167 6573 2f46 6173 744d 696e packages/FastMin │ │ │ │ -00034560: 6f72 732e 0a6d 323a 3139 3036 3a30 2e0a ors..m2:1906:0.. │ │ │ │ -00034570: 1f0a 4669 6c65 3a20 4661 7374 4d69 6e6f ..File: FastMino │ │ │ │ -00034580: 7273 2e69 6e66 6f2c 204e 6f64 653a 2052 rs.info, Node: R │ │ │ │ -00034590: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -000345a0: 696f 6e54 7574 6f72 6961 6c2c 204e 6578 ionTutorial, Nex │ │ │ │ -000345b0: 743a 2072 656f 7264 6572 506f 6c79 6e6f t: reorderPolyno │ │ │ │ -000345c0: 6d69 616c 5269 6e67 2c20 5072 6576 3a20 mialRing, Prev: │ │ │ │ -000345d0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000345e0: 7369 6f6e 2c20 5570 3a20 546f 700a 0a52 sion, Up: Top..R │ │ │ │ -000345f0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -00034600: 696f 6e54 7574 6f72 6961 6c20 2d2d 2041 ionTutorial -- A │ │ │ │ -00034610: 2074 7574 6f72 6961 6c20 666f 7220 686f tutorial for ho │ │ │ │ -00034620: 7720 746f 2075 7365 2074 6865 2061 6476 w to use the adv │ │ │ │ -00034630: 616e 6365 6420 6f70 7469 6f6e 7320 6f66 anced options of │ │ │ │ -00034640: 2074 6865 2072 6567 756c 6172 496e 436f the regularInCo │ │ │ │ -00034650: 6469 6d65 6e73 696f 6e20 6675 6e63 7469 dimension functi │ │ │ │ -00034660: 6f6e 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a on.************* │ │ │ │ -00034670: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00034680: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00034690: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000346a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000346b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00033fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033fd0: 2020 2020 7c0a 7c6f 3332 203d 2074 7275 |.|o32 = tru │ │ │ │ +00033fe0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00033ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034010: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00034020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034050: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 6865 ----------+..The │ │ │ │ +00034060: 206d 696e 696d 756d 206e 756d 6265 7220 minimum number │ │ │ │ +00034070: 6f66 206d 696e 6f72 7320 636f 6d70 7574 of minors comput │ │ │ │ +00034080: 6564 2062 6566 6f72 6520 6368 6563 6b69 ed before checki │ │ │ │ +00034090: 6e67 2074 6865 2063 6f64 696d 656e 7369 ng the codimensi │ │ │ │ +000340a0: 6f6e 2063 616e 2061 6c73 6f0a 6265 2063 on can also.be c │ │ │ │ +000340b0: 6f6e 7472 6f6c 6c65 6420 6279 2061 6e20 ontrolled by an │ │ │ │ +000340c0: 6f70 7469 6f6e 204d 696e 4d69 6e6f 7273 option MinMinors │ │ │ │ +000340d0: 4675 6e63 7469 6f6e 2e20 2054 6869 7320 Function. This │ │ │ │ +000340e0: 6973 2073 686f 756c 6420 6265 2061 2066 is should be a f │ │ │ │ +000340f0: 756e 6374 696f 6e20 6f66 0a61 2073 696e unction of.a sin │ │ │ │ +00034100: 676c 6520 7661 7269 6162 6c65 2c20 7468 gle variable, th │ │ │ │ +00034110: 6520 6e75 6d62 6572 206f 6620 6d69 6e6f e number of mino │ │ │ │ +00034120: 7273 2063 6f6d 7075 7465 642e 2020 4669 rs computed. Fi │ │ │ │ +00034130: 6e61 6c6c 792c 2076 6961 2074 6865 206f nally, via the o │ │ │ │ +00034140: 7074 696f 6e0a 436f 6469 6d43 6865 636b ption.CodimCheck │ │ │ │ +00034150: 4675 6e63 7469 6f6e 2c20 796f 7520 6361 Function, you ca │ │ │ │ +00034160: 6e20 7061 7373 2074 6865 2072 6567 756c n pass the regul │ │ │ │ +00034170: 6172 496e 436f 6469 6d65 6e73 696f 6e20 arInCodimension │ │ │ │ +00034180: 6120 6675 6e63 7469 6f6e 2077 6869 6368 a function which │ │ │ │ +00034190: 0a63 6f6e 7472 6f6c 7320 686f 7720 6672 .controls how fr │ │ │ │ +000341a0: 6571 7565 6e74 6c79 2074 6865 2063 6f64 equently the cod │ │ │ │ +000341b0: 696d 656e 7369 6f6e 206f 6620 7468 6520 imension of the │ │ │ │ +000341c0: 7061 7274 6961 6c20 4a61 636f 6269 616e partial Jacobian │ │ │ │ +000341d0: 2069 6465 616c 2069 730a 636f 6d70 7574 ideal is.comput │ │ │ │ +000341e0: 6564 2e20 2042 7920 6465 6661 756c 7420 ed. By default │ │ │ │ +000341f0: 7468 6973 2069 7320 7468 6520 666c 6f6f this is the floo │ │ │ │ +00034200: 7220 6f66 2031 2e33 5e6b 2e20 4669 6e61 r of 1.3^k. Fina │ │ │ │ +00034210: 6c6c 792c 2070 6173 7369 6e67 2074 6865 lly, passing the │ │ │ │ +00034220: 206f 7074 696f 6e0a 4d6f 6475 6c75 7320 option.Modulus │ │ │ │ +00034230: 3d3e 2070 2077 696c 6c20 646f 2074 6865 => p will do the │ │ │ │ +00034240: 2063 6f6d 7075 7461 7469 6f6e 2061 6674 computation aft │ │ │ │ +00034250: 6572 2063 6861 6e67 696e 6720 7468 6520 er changing the │ │ │ │ +00034260: 636f 6566 6669 6369 656e 7420 7269 6e67 coefficient ring │ │ │ │ +00034270: 2074 6f0a 5a5a 2f70 2e0a 0a54 6865 206f to.ZZ/p...The o │ │ │ │ +00034280: 7074 696f 6e73 2050 6169 724c 696d 6974 ptions PairLimit │ │ │ │ +00034290: 2061 6e64 2053 5061 6972 7346 756e 6374 and SPairsFunct │ │ │ │ +000342a0: 696f 6e20 6172 6520 7061 7373 6564 2064 ion are passed d │ │ │ │ +000342b0: 6972 6563 746c 7920 746f 2069 7343 6f64 irectly to isCod │ │ │ │ +000342c0: 696d 4174 4c65 6173 742e 0a59 6f75 2063 imAtLeast..You c │ │ │ │ +000342d0: 616e 2074 7572 6e20 6f66 6620 696e 7465 an turn off inte │ │ │ │ +000342e0: 726e 616c 2063 616c 6c73 2074 6f20 636f rnal calls to co │ │ │ │ +000342f0: 6469 6d2f 6469 6d2c 2061 6e64 206f 6e6c dim/dim, and onl │ │ │ │ +00034300: 7920 7573 6520 6973 436f 6469 6d41 744c y use isCodimAtL │ │ │ │ +00034310: 6561 7374 2062 790a 7365 7474 696e 6720 east by.setting │ │ │ │ +00034320: 5573 654f 6e6c 7946 6173 7443 6f64 696d UseOnlyFastCodim │ │ │ │ +00034330: 203d 3e20 7472 7565 2e0a 0a53 6565 2061 => true...See a │ │ │ │ +00034340: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ +00034350: 2a20 2a6e 6f74 6520 6973 436f 6469 6d41 * *note isCodimA │ │ │ │ +00034360: 744c 6561 7374 3a20 6973 436f 6469 6d41 tLeast: isCodimA │ │ │ │ +00034370: 744c 6561 7374 2c20 2d2d 2072 6574 7572 tLeast, -- retur │ │ │ │ +00034380: 6e73 2074 7275 6520 6966 2077 6520 6361 ns true if we ca │ │ │ │ +00034390: 6e20 7175 6963 6b6c 7920 7365 650a 2020 n quickly see. │ │ │ │ +000343a0: 2020 7768 6574 6865 7220 7468 6520 636f whether the co │ │ │ │ +000343b0: 6469 6d20 6973 2061 7420 6c65 6173 7420 dim is at least │ │ │ │ +000343c0: 6120 6769 7665 6e20 6e75 6d62 6572 0a0a a given number.. │ │ │ │ +000343d0: 5761 7973 2074 6f20 7573 6520 7265 6775 Ways to use regu │ │ │ │ +000343e0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +000343f0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +00034400: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00034410: 3d3d 3d0a 0a20 202a 2022 7265 6775 6c61 ===.. * "regula │ │ │ │ +00034420: 7249 6e43 6f64 696d 656e 7369 6f6e 285a rInCodimension(Z │ │ │ │ +00034430: 5a2c 5269 6e67 2922 0a0a 466f 7220 7468 Z,Ring)"..For th │ │ │ │ +00034440: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +00034450: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00034460: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +00034470: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ +00034480: 656e 7369 6f6e 3a20 7265 6775 6c61 7249 ension: regularI │ │ │ │ +00034490: 6e43 6f64 696d 656e 7369 6f6e 2c20 6973 nCodimension, is │ │ │ │ +000344a0: 2061 202a 6e6f 7465 206d 6574 686f 640a a *note method. │ │ │ │ +000344b0: 6675 6e63 7469 6f6e 2077 6974 6820 6f70 function with op │ │ │ │ +000344c0: 7469 6f6e 733a 2028 4d61 6361 756c 6179 tions: (Macaulay │ │ │ │ +000344d0: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ +000344e0: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ +000344f0: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ +00034500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034540: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +00034550: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +00034560: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +00034570: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +00034580: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +00034590: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +000345a0: 7061 636b 6167 6573 2f46 6173 744d 696e packages/FastMin │ │ │ │ +000345b0: 6f72 732e 0a6d 323a 3139 3036 3a30 2e0a ors..m2:1906:0.. │ │ │ │ +000345c0: 1f0a 4669 6c65 3a20 4661 7374 4d69 6e6f ..File: FastMino │ │ │ │ +000345d0: 7273 2e69 6e66 6f2c 204e 6f64 653a 2052 rs.info, Node: R │ │ │ │ +000345e0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +000345f0: 696f 6e54 7574 6f72 6961 6c2c 204e 6578 ionTutorial, Nex │ │ │ │ +00034600: 743a 2072 656f 7264 6572 506f 6c79 6e6f t: reorderPolyno │ │ │ │ +00034610: 6d69 616c 5269 6e67 2c20 5072 6576 3a20 mialRing, Prev: │ │ │ │ +00034620: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +00034630: 7369 6f6e 2c20 5570 3a20 546f 700a 0a52 sion, Up: Top..R │ │ │ │ +00034640: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00034650: 696f 6e54 7574 6f72 6961 6c20 2d2d 2041 ionTutorial -- A │ │ │ │ +00034660: 2074 7574 6f72 6961 6c20 666f 7220 686f tutorial for ho │ │ │ │ +00034670: 7720 746f 2075 7365 2074 6865 2061 6476 w to use the adv │ │ │ │ +00034680: 616e 6365 6420 6f70 7469 6f6e 7320 6f66 anced options of │ │ │ │ +00034690: 2074 6865 2072 6567 756c 6172 496e 436f the regularInCo │ │ │ │ +000346a0: 6469 6d65 6e73 696f 6e20 6675 6e63 7469 dimension functi │ │ │ │ +000346b0: 6f6e 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a on.************* │ │ │ │ 000346c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000346d0: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ -000346e0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -000346f0: 0a49 6e20 7468 6973 2074 7574 6f72 6961 .In this tutoria │ │ │ │ -00034700: 6c20 7765 2065 7870 6c6f 7265 2074 6865 l we explore the │ │ │ │ -00034710: 2064 6966 6665 7265 6e74 206f 7074 696f different optio │ │ │ │ -00034720: 6e73 206f 6620 5265 6775 6c61 7249 6e43 ns of RegularInC │ │ │ │ -00034730: 6f64 696d 656e 7369 6f6e 2028 616e 640a odimension (and. │ │ │ │ -00034740: 7265 6c61 7465 6420 6675 6e63 7469 6f6e related function │ │ │ │ -00034750: 7329 206f 6e20 736f 6d65 2063 6f6e 6520 s) on some cone │ │ │ │ -00034760: 7369 6e67 756c 6172 6974 6965 732e 2020 singularities. │ │ │ │ -00034770: 466f 7220 7468 6520 6d6f 7374 2070 6172 For the most par │ │ │ │ -00034780: 7420 7765 2077 696c 6c20 6e6f 740a 7461 t we will not.ta │ │ │ │ -00034790: 6c6b 2061 626f 7574 2074 6865 2053 7472 lk about the Str │ │ │ │ -000347a0: 6174 6567 7920 6f70 7469 6f6e 2c20 7765 ategy option, we │ │ │ │ -000347b0: 2068 6176 6520 6120 7365 7061 7261 7465 have a separate │ │ │ │ -000347c0: 2074 7574 6f72 6961 6c20 666f 7220 7468 tutorial for th │ │ │ │ -000347d0: 6174 202a 6e6f 7465 0a46 6173 744d 696e at *note.FastMin │ │ │ │ -000347e0: 6f72 7353 7472 6174 6567 7954 7574 6f72 orsStrategyTutor │ │ │ │ -000347f0: 6961 6c3a 2046 6173 744d 696e 6f72 7353 ial: FastMinorsS │ │ │ │ -00034800: 7472 6174 6567 7954 7574 6f72 6961 6c2c trategyTutorial, │ │ │ │ -00034810: 2e0a 0a57 6520 6265 6769 6e20 7769 7468 ...We begin with │ │ │ │ -00034820: 2074 6865 2066 6f6c 6c6f 7769 6e67 2069 the following i │ │ │ │ -00034830: 6465 616c 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d deal...+-------- │ │ │ │ -00034840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034880: 2d2d 2d2d 2d2b 0a7c 6931 203a 2053 203d -----+.|i1 : S = │ │ │ │ -00034890: 205a 5a2f 3130 335b 785f 312e 2e78 5f39 ZZ/103[x_1..x_9 │ │ │ │ -000348a0: 5d3b 2020 2020 2020 2020 2020 2020 2020 ]; │ │ │ │ -000348b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000348c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000348d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -000348e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000348f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034920: 2d2d 2d2d 2d2b 0a7c 6932 203a 204a 203d -----+.|i2 : J = │ │ │ │ -00034930: 2069 6465 616c 2878 5f36 2a78 5f38 2d78 ideal(x_6*x_8-x │ │ │ │ -00034940: 5f35 2a78 5f39 2c78 5f33 2a78 5f38 2d78 _5*x_9,x_3*x_8-x │ │ │ │ -00034950: 5f32 2a78 5f39 2c78 5f36 2a78 5f37 2d78 _2*x_9,x_6*x_7-x │ │ │ │ -00034960: 5f34 2a78 5f39 2c78 5f35 2a78 5f37 2d78 _4*x_9,x_5*x_7-x │ │ │ │ -00034970: 5f34 2a78 5f7c 0a7c 2020 2020 2020 2020 _4*x_|.| │ │ │ │ -00034980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000349a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000349b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000349c0: 2020 2020 207c 0a7c 6f32 203a 2049 6465 |.|o2 : Ide │ │ │ │ -000349d0: 616c 206f 6620 5320 2020 2020 2020 2020 al of S │ │ │ │ +000346d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000346e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000346f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00034700: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00034710: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00034720: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ +00034730: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +00034740: 0a49 6e20 7468 6973 2074 7574 6f72 6961 .In this tutoria │ │ │ │ +00034750: 6c20 7765 2065 7870 6c6f 7265 2074 6865 l we explore the │ │ │ │ +00034760: 2064 6966 6665 7265 6e74 206f 7074 696f different optio │ │ │ │ +00034770: 6e73 206f 6620 5265 6775 6c61 7249 6e43 ns of RegularInC │ │ │ │ +00034780: 6f64 696d 656e 7369 6f6e 2028 616e 640a odimension (and. │ │ │ │ +00034790: 7265 6c61 7465 6420 6675 6e63 7469 6f6e related function │ │ │ │ +000347a0: 7329 206f 6e20 736f 6d65 2063 6f6e 6520 s) on some cone │ │ │ │ +000347b0: 7369 6e67 756c 6172 6974 6965 732e 2020 singularities. │ │ │ │ +000347c0: 466f 7220 7468 6520 6d6f 7374 2070 6172 For the most par │ │ │ │ +000347d0: 7420 7765 2077 696c 6c20 6e6f 740a 7461 t we will not.ta │ │ │ │ +000347e0: 6c6b 2061 626f 7574 2074 6865 2053 7472 lk about the Str │ │ │ │ +000347f0: 6174 6567 7920 6f70 7469 6f6e 2c20 7765 ategy option, we │ │ │ │ +00034800: 2068 6176 6520 6120 7365 7061 7261 7465 have a separate │ │ │ │ +00034810: 2074 7574 6f72 6961 6c20 666f 7220 7468 tutorial for th │ │ │ │ +00034820: 6174 202a 6e6f 7465 0a46 6173 744d 696e at *note.FastMin │ │ │ │ +00034830: 6f72 7353 7472 6174 6567 7954 7574 6f72 orsStrategyTutor │ │ │ │ +00034840: 6961 6c3a 2046 6173 744d 696e 6f72 7353 ial: FastMinorsS │ │ │ │ +00034850: 7472 6174 6567 7954 7574 6f72 6961 6c2c trategyTutorial, │ │ │ │ +00034860: 2e0a 0a57 6520 6265 6769 6e20 7769 7468 ...We begin with │ │ │ │ +00034870: 2074 6865 2066 6f6c 6c6f 7769 6e67 2069 the following i │ │ │ │ +00034880: 6465 616c 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d deal...+-------- │ │ │ │ +00034890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000348a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000348b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000348c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000348d0: 2d2d 2d2d 2d2b 0a7c 6931 203a 2053 203d -----+.|i1 : S = │ │ │ │ +000348e0: 205a 5a2f 3130 335b 785f 312e 2e78 5f39 ZZ/103[x_1..x_9 │ │ │ │ +000348f0: 5d3b 2020 2020 2020 2020 2020 2020 2020 ]; │ │ │ │ +00034900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034920: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00034930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034970: 2d2d 2d2d 2d2b 0a7c 6932 203a 204a 203d -----+.|i2 : J = │ │ │ │ +00034980: 2069 6465 616c 2878 5f36 2a78 5f38 2d78 ideal(x_6*x_8-x │ │ │ │ +00034990: 5f35 2a78 5f39 2c78 5f33 2a78 5f38 2d78 _5*x_9,x_3*x_8-x │ │ │ │ +000349a0: 5f32 2a78 5f39 2c78 5f36 2a78 5f37 2d78 _2*x_9,x_6*x_7-x │ │ │ │ +000349b0: 5f34 2a78 5f39 2c78 5f35 2a78 5f37 2d78 _4*x_9,x_5*x_7-x │ │ │ │ +000349c0: 5f34 2a78 5f7c 0a7c 2020 2020 2020 2020 _4*x_|.| │ │ │ │ +000349d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000349e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000349f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034a10: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00034a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034a60: 2d2d 2d2d 2d7c 0a7c 382c 785f 332a 785f -----|.|8,x_3*x_ │ │ │ │ -00034a70: 372d 785f 312a 785f 392c 785f 322a 785f 7-x_1*x_9,x_2*x_ │ │ │ │ -00034a80: 372d 785f 312a 785f 382c 785f 332a 785f 7-x_1*x_8,x_3*x_ │ │ │ │ -00034a90: 352d 785f 322a 785f 362c 785f 332a 785f 5-x_2*x_6,x_3*x_ │ │ │ │ -00034aa0: 342d 785f 312a 785f 362c 785f 322a 785f 4-x_1*x_6,x_2*x_ │ │ │ │ -00034ab0: 342d 785f 317c 0a7c 2d2d 2d2d 2d2d 2d2d 4-x_1|.|-------- │ │ │ │ -00034ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034b00: 2d2d 2d2d 2d7c 0a7c 2a78 5f35 2c78 5f33 -----|.|*x_5,x_3 │ │ │ │ -00034b10: 5e33 2d78 5f36 5e33 2d78 5f39 5e33 2c78 ^3-x_6^3-x_9^3,x │ │ │ │ -00034b20: 5f32 2a78 5f33 5e32 2d78 5f35 2a78 5f36 _2*x_3^2-x_5*x_6 │ │ │ │ -00034b30: 5e32 2d78 5f38 2a78 5f39 5e32 2c78 5f31 ^2-x_8*x_9^2,x_1 │ │ │ │ -00034b40: 2a78 5f33 5e32 2d78 5f34 2a78 5f36 5e32 *x_3^2-x_4*x_6^2 │ │ │ │ -00034b50: 2d78 5f37 2a7c 0a7c 2d2d 2d2d 2d2d 2d2d -x_7*|.|-------- │ │ │ │ -00034b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034ba0: 2d2d 2d2d 2d7c 0a7c 785f 395e 322c 785f -----|.|x_9^2,x_ │ │ │ │ -00034bb0: 325e 322a 785f 332d 785f 355e 322a 785f 2^2*x_3-x_5^2*x_ │ │ │ │ -00034bc0: 362d 785f 385e 322a 785f 392c 785f 312a 6-x_8^2*x_9,x_1* │ │ │ │ -00034bd0: 785f 322a 785f 332d 785f 342a 785f 352a x_2*x_3-x_4*x_5* │ │ │ │ -00034be0: 785f 362d 785f 372a 785f 382a 785f 392c x_6-x_7*x_8*x_9, │ │ │ │ -00034bf0: 785f 315e 327c 0a7c 2d2d 2d2d 2d2d 2d2d x_1^2|.|-------- │ │ │ │ -00034c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034c40: 2d2d 2d2d 2d7c 0a7c 2a78 5f33 2d78 5f34 -----|.|*x_3-x_4 │ │ │ │ -00034c50: 5e32 2a78 5f36 2d78 5f37 5e32 2a78 5f39 ^2*x_6-x_7^2*x_9 │ │ │ │ -00034c60: 2c78 5f32 5e33 2d78 5f35 5e33 2d78 5f38 ,x_2^3-x_5^3-x_8 │ │ │ │ -00034c70: 5e33 2c78 5f31 2a78 5f32 5e32 2d78 5f34 ^3,x_1*x_2^2-x_4 │ │ │ │ -00034c80: 2a78 5f35 5e32 2d78 5f37 2a78 5f38 5e32 *x_5^2-x_7*x_8^2 │ │ │ │ -00034c90: 2c78 5f31 5e7c 0a7c 2d2d 2d2d 2d2d 2d2d ,x_1^|.|-------- │ │ │ │ -00034ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034ce0: 2d2d 2d2d 2d7c 0a7c 322a 785f 322d 785f -----|.|2*x_2-x_ │ │ │ │ -00034cf0: 345e 322a 785f 352d 785f 375e 322a 785f 4^2*x_5-x_7^2*x_ │ │ │ │ -00034d00: 382c 785f 315e 332d 785f 345e 332d 785f 8,x_1^3-x_4^3-x_ │ │ │ │ -00034d10: 375e 3329 3b20 2020 2020 2020 2020 2020 7^3); │ │ │ │ -00034d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034d30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00034d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034d80: 2d2d 2d2d 2d2b 0a7c 6933 203a 2064 696d -----+.|i3 : dim │ │ │ │ -00034d90: 2028 532f 4a29 2020 2020 2020 2020 2020 (S/J) │ │ │ │ -00034da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034dd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00034de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034a10: 2020 2020 207c 0a7c 6f32 203a 2049 6465 |.|o2 : Ide │ │ │ │ +00034a20: 616c 206f 6620 5320 2020 2020 2020 2020 al of S │ │ │ │ +00034a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034a60: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00034a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034ab0: 2d2d 2d2d 2d7c 0a7c 382c 785f 332a 785f -----|.|8,x_3*x_ │ │ │ │ +00034ac0: 372d 785f 312a 785f 392c 785f 322a 785f 7-x_1*x_9,x_2*x_ │ │ │ │ +00034ad0: 372d 785f 312a 785f 382c 785f 332a 785f 7-x_1*x_8,x_3*x_ │ │ │ │ +00034ae0: 352d 785f 322a 785f 362c 785f 332a 785f 5-x_2*x_6,x_3*x_ │ │ │ │ +00034af0: 342d 785f 312a 785f 362c 785f 322a 785f 4-x_1*x_6,x_2*x_ │ │ │ │ +00034b00: 342d 785f 317c 0a7c 2d2d 2d2d 2d2d 2d2d 4-x_1|.|-------- │ │ │ │ +00034b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034b50: 2d2d 2d2d 2d7c 0a7c 2a78 5f35 2c78 5f33 -----|.|*x_5,x_3 │ │ │ │ +00034b60: 5e33 2d78 5f36 5e33 2d78 5f39 5e33 2c78 ^3-x_6^3-x_9^3,x │ │ │ │ +00034b70: 5f32 2a78 5f33 5e32 2d78 5f35 2a78 5f36 _2*x_3^2-x_5*x_6 │ │ │ │ +00034b80: 5e32 2d78 5f38 2a78 5f39 5e32 2c78 5f31 ^2-x_8*x_9^2,x_1 │ │ │ │ +00034b90: 2a78 5f33 5e32 2d78 5f34 2a78 5f36 5e32 *x_3^2-x_4*x_6^2 │ │ │ │ +00034ba0: 2d78 5f37 2a7c 0a7c 2d2d 2d2d 2d2d 2d2d -x_7*|.|-------- │ │ │ │ +00034bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034bf0: 2d2d 2d2d 2d7c 0a7c 785f 395e 322c 785f -----|.|x_9^2,x_ │ │ │ │ +00034c00: 325e 322a 785f 332d 785f 355e 322a 785f 2^2*x_3-x_5^2*x_ │ │ │ │ +00034c10: 362d 785f 385e 322a 785f 392c 785f 312a 6-x_8^2*x_9,x_1* │ │ │ │ +00034c20: 785f 322a 785f 332d 785f 342a 785f 352a x_2*x_3-x_4*x_5* │ │ │ │ +00034c30: 785f 362d 785f 372a 785f 382a 785f 392c x_6-x_7*x_8*x_9, │ │ │ │ +00034c40: 785f 315e 327c 0a7c 2d2d 2d2d 2d2d 2d2d x_1^2|.|-------- │ │ │ │ +00034c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034c90: 2d2d 2d2d 2d7c 0a7c 2a78 5f33 2d78 5f34 -----|.|*x_3-x_4 │ │ │ │ +00034ca0: 5e32 2a78 5f36 2d78 5f37 5e32 2a78 5f39 ^2*x_6-x_7^2*x_9 │ │ │ │ +00034cb0: 2c78 5f32 5e33 2d78 5f35 5e33 2d78 5f38 ,x_2^3-x_5^3-x_8 │ │ │ │ +00034cc0: 5e33 2c78 5f31 2a78 5f32 5e32 2d78 5f34 ^3,x_1*x_2^2-x_4 │ │ │ │ +00034cd0: 2a78 5f35 5e32 2d78 5f37 2a78 5f38 5e32 *x_5^2-x_7*x_8^2 │ │ │ │ +00034ce0: 2c78 5f31 5e7c 0a7c 2d2d 2d2d 2d2d 2d2d ,x_1^|.|-------- │ │ │ │ +00034cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034d30: 2d2d 2d2d 2d7c 0a7c 322a 785f 322d 785f -----|.|2*x_2-x_ │ │ │ │ +00034d40: 345e 322a 785f 352d 785f 375e 322a 785f 4^2*x_5-x_7^2*x_ │ │ │ │ +00034d50: 382c 785f 315e 332d 785f 345e 332d 785f 8,x_1^3-x_4^3-x_ │ │ │ │ +00034d60: 375e 3329 3b20 2020 2020 2020 2020 2020 7^3); │ │ │ │ +00034d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034d80: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00034d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034dd0: 2d2d 2d2d 2d2b 0a7c 6933 203a 2064 696d -----+.|i3 : dim │ │ │ │ +00034de0: 2028 532f 4a29 2020 2020 2020 2020 2020 (S/J) │ │ │ │ 00034df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034e20: 2020 2020 207c 0a7c 6f33 203d 2034 2020 |.|o3 = 4 │ │ │ │ +00034e20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00034e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034e70: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00034e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034ec0: 2d2d 2d2d 2d2b 0a0a 4974 2069 7320 7468 -----+..It is th │ │ │ │ -00034ed0: 6520 636f 6e65 206f 7665 7220 2450 5e32 e cone over $P^2 │ │ │ │ -00034ee0: 205c 7469 6d65 7320 4524 2077 6865 7265 \times E$ where │ │ │ │ -00034ef0: 2024 4524 2069 7320 616e 2065 6c6c 6970 $E$ is an ellip │ │ │ │ -00034f00: 7469 6320 6375 7276 652e 2020 5765 2068 tic curve. We h │ │ │ │ -00034f10: 6176 650a 656d 6265 6464 6564 2069 7420 ave.embedded it │ │ │ │ -00034f20: 7769 7468 2061 2053 6567 7265 2065 6d62 with a Segre emb │ │ │ │ -00034f30: 6564 6469 6e67 2069 6e73 6964 6520 2450 edding inside $P │ │ │ │ -00034f40: 5e38 242e 2020 496e 2070 6172 7469 6375 ^8$. In particu │ │ │ │ -00034f50: 6c61 722c 2074 6869 7320 6578 616d 706c lar, this exampl │ │ │ │ -00034f60: 650a 6973 2065 7665 6e20 7265 6775 6c61 e.is even regula │ │ │ │ -00034f70: 7220 696e 2063 6f64 696d 656e 7369 6f6e r in codimension │ │ │ │ -00034f80: 2033 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 3...+---------- │ │ │ │ -00034f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ -00034fc0: 203a 2074 696d 6520 7265 6775 6c61 7249 : time regularI │ │ │ │ -00034fd0: 6e43 6f64 696d 656e 7369 6f6e 2831 2c20 nCodimension(1, │ │ │ │ -00034fe0: 532f 4a29 2020 2020 2020 2020 2020 2020 S/J) │ │ │ │ -00034ff0: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -00035000: 2e38 3533 3931 3673 2028 6370 7529 3b20 .853916s (cpu); │ │ │ │ -00035010: 302e 3630 3134 3339 7320 2874 6872 6561 0.601439s (threa │ │ │ │ -00035020: 6429 3b20 3073 2028 6763 297c 0a7c 2020 d); 0s (gc)|.| │ │ │ │ -00035030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035060: 2020 207c 0a7c 6f34 203d 2074 7275 6520 |.|o4 = true │ │ │ │ -00035070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034e70: 2020 2020 207c 0a7c 6f33 203d 2034 2020 |.|o3 = 4 │ │ │ │ +00034e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034ec0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00034ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034f10: 2d2d 2d2d 2d2b 0a0a 4974 2069 7320 7468 -----+..It is th │ │ │ │ +00034f20: 6520 636f 6e65 206f 7665 7220 2450 5e32 e cone over $P^2 │ │ │ │ +00034f30: 205c 7469 6d65 7320 4524 2077 6865 7265 \times E$ where │ │ │ │ +00034f40: 2024 4524 2069 7320 616e 2065 6c6c 6970 $E$ is an ellip │ │ │ │ +00034f50: 7469 6320 6375 7276 652e 2020 5765 2068 tic curve. We h │ │ │ │ +00034f60: 6176 650a 656d 6265 6464 6564 2069 7420 ave.embedded it │ │ │ │ +00034f70: 7769 7468 2061 2053 6567 7265 2065 6d62 with a Segre emb │ │ │ │ +00034f80: 6564 6469 6e67 2069 6e73 6964 6520 2450 edding inside $P │ │ │ │ +00034f90: 5e38 242e 2020 496e 2070 6172 7469 6375 ^8$. In particu │ │ │ │ +00034fa0: 6c61 722c 2074 6869 7320 6578 616d 706c lar, this exampl │ │ │ │ +00034fb0: 650a 6973 2065 7665 6e20 7265 6775 6c61 e.is even regula │ │ │ │ +00034fc0: 7220 696e 2063 6f64 696d 656e 7369 6f6e r in codimension │ │ │ │ +00034fd0: 2033 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 3...+---------- │ │ │ │ +00034fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00035000: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +00035010: 2074 696d 6520 7265 6775 6c61 7249 6e43 time regularInC │ │ │ │ +00035020: 6f64 696d 656e 7369 6f6e 2831 2c20 532f odimension(1, S/ │ │ │ │ +00035030: 4a29 2020 2020 2020 2020 2020 2020 207c J) | │ │ │ │ +00035040: 0a7c 202d 2d20 7573 6564 2031 2e31 3638 .| -- used 1.168 │ │ │ │ +00035050: 3973 2028 6370 7529 3b20 302e 3737 3030 9s (cpu); 0.7700 │ │ │ │ +00035060: 3037 7320 2874 6872 6561 6429 3b20 3073 07s (thread); 0s │ │ │ │ +00035070: 2028 6763 297c 0a7c 2020 2020 2020 2020 (gc)|.| │ │ │ │ 00035080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035090: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000350a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000350b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000350c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000350d0: 2d2d 2d2b 0a7c 6935 203a 2074 696d 6520 ---+.|i5 : time │ │ │ │ -000350e0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000350f0: 7369 6f6e 2832 2c20 532f 4a29 2020 2020 sion(2, S/J) │ │ │ │ -00035100: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00035110: 2d20 7573 6564 2031 312e 3134 3838 7320 - used 11.1488s │ │ │ │ -00035120: 2863 7075 293b 2038 2e33 3431 3973 2028 (cpu); 8.3419s ( │ │ │ │ -00035130: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ -00035140: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00035150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5765 -----------+..We │ │ │ │ -00035180: 2074 7279 2074 6f20 7665 7269 6679 2074 try to verify t │ │ │ │ -00035190: 6861 7420 2453 2f4a 2420 6973 2072 6567 hat $S/J$ is reg │ │ │ │ -000351a0: 756c 6172 2069 6e20 636f 6469 6d65 6e73 ular in codimens │ │ │ │ -000351b0: 696f 6e20 3120 6f72 2032 2062 7920 636f ion 1 or 2 by co │ │ │ │ -000351c0: 6d70 7574 696e 6720 7468 650a 6964 6561 mputing the.idea │ │ │ │ -000351d0: 6c20 6d61 6465 2075 7020 6f66 2061 2073 l made up of a s │ │ │ │ -000351e0: 6d61 6c6c 206e 756d 6265 7220 6f66 206d mall number of m │ │ │ │ -000351f0: 696e 6f72 7320 6f66 2074 6865 204a 6163 inors of the Jac │ │ │ │ -00035200: 6f62 6961 6e20 6d61 7472 6978 2e20 496e obian matrix. In │ │ │ │ -00035210: 2074 6869 730a 6578 616d 706c 652c 2069 this.example, i │ │ │ │ -00035220: 6e73 7465 6164 206f 6620 636f 6d70 7574 nstead of comput │ │ │ │ -00035230: 696e 6720 616c 6c20 7265 6c65 7661 6e74 ing all relevant │ │ │ │ -00035240: 2031 3436 3531 3238 206d 696e 6f72 7320 1465128 minors │ │ │ │ -00035250: 746f 2063 6f6d 7075 7465 2074 6865 0a73 to compute the.s │ │ │ │ -00035260: 696e 6775 6c61 7220 6c6f 6375 732c 2061 ingular locus, a │ │ │ │ -00035270: 6e64 2074 6865 6e20 7472 7969 6e67 2074 nd then trying t │ │ │ │ -00035280: 6f20 636f 6d70 7574 6520 7468 6520 6469 o compute the di │ │ │ │ -00035290: 6d65 6e73 696f 6e20 6f66 2074 6865 2069 mension of the i │ │ │ │ -000352a0: 6465 616c 2074 6865 790a 6765 6e65 7261 deal they.genera │ │ │ │ -000352b0: 7465 2c20 7765 2069 6e73 7465 6164 2063 te, we instead c │ │ │ │ -000352c0: 6f6d 7075 7465 2061 2066 6577 206f 6620 ompute a few of │ │ │ │ -000352d0: 7468 656d 2e20 2072 6567 756c 6172 496e them. regularIn │ │ │ │ -000352e0: 436f 6469 6d65 6e73 696f 6e20 7265 7475 Codimension retu │ │ │ │ -000352f0: 726e 7320 7472 7565 0a69 6620 6974 2076 rns true.if it v │ │ │ │ -00035300: 6572 6966 6965 6420 7468 6174 2074 6865 erified that the │ │ │ │ -00035310: 2072 696e 6720 6973 2072 6567 756c 6172 ring is regular │ │ │ │ -00035320: 2069 6e20 636f 6469 6d20 3120 6f72 2032 in codim 1 or 2 │ │ │ │ -00035330: 2028 7265 7370 6563 7469 7665 6c79 2920 (respectively) │ │ │ │ -00035340: 616e 6420 6e75 6c6c 0a69 6620 6e6f 742e and null.if not. │ │ │ │ -00035350: 2020 4265 6361 7573 6520 6f66 2074 6865 Because of the │ │ │ │ -00035360: 2072 616e 646f 6d6e 6573 7320 7468 6174 randomness that │ │ │ │ -00035370: 2065 7869 7374 7320 696e 2074 6572 6d73 exists in terms │ │ │ │ -00035380: 206f 6620 7365 6c65 6374 696e 6720 6d69 of selecting mi │ │ │ │ -00035390: 6e6f 7273 2c0a 7468 6520 6578 6563 7574 nors,.the execut │ │ │ │ -000353a0: 696f 6e20 7469 6d65 2063 616e 2061 6374 ion time can act │ │ │ │ -000353b0: 7561 6c6c 7920 7661 7279 2071 7569 7465 ually vary quite │ │ │ │ -000353c0: 2061 2062 6974 2e20 2020 4c65 7427 7320 a bit. Let's │ │ │ │ -000353d0: 7461 6b65 2061 206c 6f6f 6b20 6174 2077 take a look at w │ │ │ │ -000353e0: 6861 740a 6973 206f 6363 7572 7269 6e67 hat.is occurring │ │ │ │ -000353f0: 2062 7920 7573 696e 6720 7468 6520 5665 by using the Ve │ │ │ │ -00035400: 7262 6f73 6520 6f70 7469 6f6e 2e20 2057 rbose option. W │ │ │ │ -00035410: 6520 676f 2074 6872 6f75 6768 2074 6865 e go through the │ │ │ │ -00035420: 206f 7574 7075 7420 616e 6420 6578 706c output and expl │ │ │ │ -00035430: 6169 6e0a 7768 6174 2065 6163 6820 6c69 ain.what each li │ │ │ │ -00035440: 6e65 2069 7320 7465 6c6c 696e 6720 7573 ne is telling us │ │ │ │ -00035450: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ -00035460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000354a0: 2d2b 0a7c 6936 203a 2074 696d 6520 7265 -+.|i6 : time re │ │ │ │ -000354b0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000354c0: 6f6e 2831 2c20 532f 4a2c 2056 6572 626f on(1, S/J, Verbo │ │ │ │ -000354d0: 7365 3d3e 7472 7565 2920 2020 2020 2020 se=>true) │ │ │ │ -000354e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000354f0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035500: 696d 656e 7369 6f6e 3a20 7269 6e67 2064 imension: ring d │ │ │ │ -00035510: 696d 656e 7369 6f6e 203d 342c 2074 6865 imension =4, the │ │ │ │ -00035520: 7265 2061 7265 2031 3436 3531 3238 2070 re are 1465128 p │ │ │ │ -00035530: 6f73 7369 626c 6520 3520 6279 2035 206d ossible 5 by 5 m │ │ │ │ -00035540: 697c 0a7c 7265 6775 6c61 7249 6e43 6f64 i|.|regularInCod │ │ │ │ -00035550: 696d 656e 7369 6f6e 3a20 4162 6f75 7420 imension: About │ │ │ │ -00035560: 746f 2065 6e74 6572 206c 6f6f 7020 2020 to enter loop │ │ │ │ -00035570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035590: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000355a0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000355b0: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -000355c0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -000355d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000355e0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000355f0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035600: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ -00035610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035630: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035640: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035650: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00035660: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00035670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035680: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035690: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000356a0: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ -000356b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000356c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000356d0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000356e0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000356f0: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ -00035700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035720: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035730: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035740: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00035750: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ -00035760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035770: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035780: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035790: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -000357a0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -000357b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000357c0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -000357d0: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -000357e0: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -000357f0: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00035800: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00035810: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00035820: 696d 656e 7369 6f6e 3a20 2069 7343 6f64 imension: isCod │ │ │ │ -00035830: 696d 4174 4c65 6173 7420 6661 696c 6564 imAtLeast failed │ │ │ │ -00035840: 2c20 636f 6d70 7574 696e 6720 636f 6469 , computing codi │ │ │ │ -00035850: 6d2e 2020 2020 2020 2020 2020 2020 2020 m. │ │ │ │ -00035860: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035870: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -00035880: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -00035890: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -000358a0: 7574 6564 2c20 3d20 3320 2020 2020 2020 uted, = 3 │ │ │ │ -000358b0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000358c0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000358d0: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -000358e0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -000358f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035900: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035910: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035920: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ -00035930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035950: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035960: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035970: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ -00035980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000359a0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000359b0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000359c0: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -000359d0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -000359e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000359f0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035a00: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -00035a10: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -00035a20: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00035a30: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00035a40: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00035a50: 696d 656e 7369 6f6e 3a20 2069 7343 6f64 imension: isCod │ │ │ │ -00035a60: 696d 4174 4c65 6173 7420 6661 696c 6564 imAtLeast failed │ │ │ │ -00035a70: 2c20 636f 6d70 7574 696e 6720 636f 6469 , computing codi │ │ │ │ -00035a80: 6d2e 2020 2020 2020 2020 2020 2020 2020 m. │ │ │ │ -00035a90: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035aa0: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -00035ab0: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -00035ac0: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -00035ad0: 7574 6564 2c20 3d20 3320 2020 2020 2020 uted, = 3 │ │ │ │ -00035ae0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035af0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035b00: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ -00035b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035b30: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035b40: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035b50: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -00035b60: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -00035b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035b80: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035b90: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035ba0: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ -00035bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035bd0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035be0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035bf0: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00035c00: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ -00035c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035c20: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035c30: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -00035c40: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -00035c50: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00035c60: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00035c70: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00035c80: 696d 656e 7369 6f6e 3a20 2069 7343 6f64 imension: isCod │ │ │ │ -00035c90: 696d 4174 4c65 6173 7420 6661 696c 6564 imAtLeast failed │ │ │ │ -00035ca0: 2c20 636f 6d70 7574 696e 6720 636f 6469 , computing codi │ │ │ │ -00035cb0: 6d2e 2020 2020 2020 2020 2020 2020 2020 m. │ │ │ │ -00035cc0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035cd0: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -00035ce0: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -00035cf0: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -00035d00: 7574 6564 2c20 3d20 3320 2020 2020 2020 uted, = 3 │ │ │ │ -00035d10: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035d20: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035d30: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ -00035d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035d60: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035d70: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035d80: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ -00035d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035db0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035dc0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035dd0: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ -00035de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035e00: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035e10: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035e20: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00035e30: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00035e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035e50: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035e60: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035e70: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -00035e80: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -00035e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035ea0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035eb0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035ec0: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ -00035ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035ef0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035f00: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -00035f10: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -00035f20: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00035f30: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00035f40: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00035f50: 696d 656e 7369 6f6e 3a20 2069 7343 6f64 imension: isCod │ │ │ │ -00035f60: 696d 4174 4c65 6173 7420 6661 696c 6564 imAtLeast failed │ │ │ │ -00035f70: 2c20 636f 6d70 7574 696e 6720 636f 6469 , computing codi │ │ │ │ -00035f80: 6d2e 2020 2020 2020 2020 2020 2020 2020 m. │ │ │ │ -00035f90: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035fa0: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -00035fb0: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -00035fc0: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -00035fd0: 7574 6564 2c20 3d20 3320 2020 2020 2020 uted, = 3 │ │ │ │ -00035fe0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035ff0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036000: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ -00036010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036030: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036040: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036050: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00036060: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ -00036070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036080: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036090: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000360a0: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ -000360b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000360c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000360d0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000360e0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000360f0: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -00036100: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -00036110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036120: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036130: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036140: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00036150: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00036160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036170: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036180: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036190: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ -000361a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000361b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000361c0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000361d0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000361e0: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -000361f0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -00036200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036210: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00036220: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -00036230: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -00036240: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00036250: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00036260: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00036270: 696d 656e 7369 6f6e 3a20 2069 7343 6f64 imension: isCod │ │ │ │ -00036280: 696d 4174 4c65 6173 7420 6661 696c 6564 imAtLeast failed │ │ │ │ -00036290: 2c20 636f 6d70 7574 696e 6720 636f 6469 , computing codi │ │ │ │ -000362a0: 6d2e 2020 2020 2020 2020 2020 2020 2020 m. │ │ │ │ -000362b0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -000362c0: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -000362d0: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -000362e0: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -000362f0: 7574 6564 2c20 3d20 3320 2020 2020 2020 uted, = 3 │ │ │ │ -00036300: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036310: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036320: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00036330: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00036340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036350: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036360: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036370: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ -00036380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000363a0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000363b0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000363c0: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ -000363d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000363e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000363f0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036400: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036410: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ -00036420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036440: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036450: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036460: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ -00036470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036490: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000364a0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000364b0: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -000364c0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -000364d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000364e0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000364f0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036500: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ -00036510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036530: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036540: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036550: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00036560: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ -00036570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036580: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036590: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000365a0: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -000365b0: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ -000365c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000365d0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -000365e0: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -000365f0: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -00036600: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00036610: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00036620: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00036630: 696d 656e 7369 6f6e 3a20 2069 7343 6f64 imension: isCod │ │ │ │ -00036640: 696d 4174 4c65 6173 7420 6661 696c 6564 imAtLeast failed │ │ │ │ -00036650: 2c20 636f 6d70 7574 696e 6720 636f 6469 , computing codi │ │ │ │ -00036660: 6d2e 2020 2020 2020 2020 2020 2020 2020 m. │ │ │ │ -00036670: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00036680: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -00036690: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -000366a0: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -000366b0: 7574 6564 2c20 3d20 3320 2020 2020 2020 uted, = 3 │ │ │ │ -000366c0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000366d0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000366e0: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ -000366f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036710: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036720: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036730: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -00036740: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -00036750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036760: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036770: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036780: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -00036790: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -000367a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000367b0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000367c0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000367d0: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ -000367e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000367f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036800: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036810: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036820: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ -00036830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036850: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036860: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036870: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00036880: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00036890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000368a0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000368b0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000368c0: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ -000368d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000368e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000368f0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036900: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036910: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00036920: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ -00036930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036940: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036950: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036960: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ -00036970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036990: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000369a0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000369b0: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -000369c0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -000369d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000369e0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000369f0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036a00: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ -00036a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036a30: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036a40: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036a50: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ -00036a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036a80: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00036a90: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -00036aa0: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -00036ab0: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00036ac0: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00036ad0: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00036ae0: 696d 656e 7369 6f6e 3a20 2073 696e 6775 imension: singu │ │ │ │ -00036af0: 6c61 724c 6f63 7573 2064 696d 656e 7369 larLocus dimensi │ │ │ │ -00036b00: 6f6e 2076 6572 6966 6965 6420 6279 2069 on verified by i │ │ │ │ -00036b10: 7343 6f64 696d 4174 4c65 6173 7420 2020 sCodimAtLeast │ │ │ │ -00036b20: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00036b30: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -00036b40: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -00036b50: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -00036b60: 7574 6564 2c20 3d20 3220 2020 2020 2020 uted, = 2 │ │ │ │ -00036b70: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00036b80: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -00036b90: 636f 6d70 6c65 7465 642c 2073 7562 6d61 completed, subma │ │ │ │ -00036ba0: 7472 6963 6573 2063 6f6e 7369 6465 7265 trices considere │ │ │ │ -00036bb0: 6420 3d20 3439 2c20 616e 6420 636f 6d70 d = 49, and comp │ │ │ │ -00036bc0: 757c 0a7c 6420 3d20 3339 2e20 2073 696e u|.|d = 39. sin │ │ │ │ -00036bd0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00036be0: 6e73 696f 6e20 6170 7065 6172 7320 746f nsion appears to │ │ │ │ -00036bf0: 2062 6520 3d20 3220 2020 2020 2020 2020 be = 2 │ │ │ │ -00036c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00036c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c60: 207c 0a7c 6f36 203d 2074 7275 6520 2020 |.|o6 = true │ │ │ │ +00035090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000350a0: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +000350b0: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +000350c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000350d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000350e0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000350f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00035100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00035110: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2074 -------+.|i5 : t │ │ │ │ +00035120: 696d 6520 7265 6775 6c61 7249 6e43 6f64 ime regularInCod │ │ │ │ +00035130: 696d 656e 7369 6f6e 2832 2c20 532f 4a29 imension(2, S/J) │ │ │ │ +00035140: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00035150: 202d 2d20 7573 6564 2031 322e 3739 3534 -- used 12.7954 │ │ │ │ +00035160: 7320 2863 7075 293b 2038 2e38 3139 3834 s (cpu); 8.81984 │ │ │ │ +00035170: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00035180: 6763 297c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d gc)|.+---------- │ │ │ │ +00035190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000351a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000351b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5765 2074 ---------+..We t │ │ │ │ +000351c0: 7279 2074 6f20 7665 7269 6679 2074 6861 ry to verify tha │ │ │ │ +000351d0: 7420 2453 2f4a 2420 6973 2072 6567 756c t $S/J$ is regul │ │ │ │ +000351e0: 6172 2069 6e20 636f 6469 6d65 6e73 696f ar in codimensio │ │ │ │ +000351f0: 6e20 3120 6f72 2032 2062 7920 636f 6d70 n 1 or 2 by comp │ │ │ │ +00035200: 7574 696e 6720 7468 650a 6964 6561 6c20 uting the.ideal │ │ │ │ +00035210: 6d61 6465 2075 7020 6f66 2061 2073 6d61 made up of a sma │ │ │ │ +00035220: 6c6c 206e 756d 6265 7220 6f66 206d 696e ll number of min │ │ │ │ +00035230: 6f72 7320 6f66 2074 6865 204a 6163 6f62 ors of the Jacob │ │ │ │ +00035240: 6961 6e20 6d61 7472 6978 2e20 496e 2074 ian matrix. In t │ │ │ │ +00035250: 6869 730a 6578 616d 706c 652c 2069 6e73 his.example, ins │ │ │ │ +00035260: 7465 6164 206f 6620 636f 6d70 7574 696e tead of computin │ │ │ │ +00035270: 6720 616c 6c20 7265 6c65 7661 6e74 2031 g all relevant 1 │ │ │ │ +00035280: 3436 3531 3238 206d 696e 6f72 7320 746f 465128 minors to │ │ │ │ +00035290: 2063 6f6d 7075 7465 2074 6865 0a73 696e compute the.sin │ │ │ │ +000352a0: 6775 6c61 7220 6c6f 6375 732c 2061 6e64 gular locus, and │ │ │ │ +000352b0: 2074 6865 6e20 7472 7969 6e67 2074 6f20 then trying to │ │ │ │ +000352c0: 636f 6d70 7574 6520 7468 6520 6469 6d65 compute the dime │ │ │ │ +000352d0: 6e73 696f 6e20 6f66 2074 6865 2069 6465 nsion of the ide │ │ │ │ +000352e0: 616c 2074 6865 790a 6765 6e65 7261 7465 al they.generate │ │ │ │ +000352f0: 2c20 7765 2069 6e73 7465 6164 2063 6f6d , we instead com │ │ │ │ +00035300: 7075 7465 2061 2066 6577 206f 6620 7468 pute a few of th │ │ │ │ +00035310: 656d 2e20 2072 6567 756c 6172 496e 436f em. regularInCo │ │ │ │ +00035320: 6469 6d65 6e73 696f 6e20 7265 7475 726e dimension return │ │ │ │ +00035330: 7320 7472 7565 0a69 6620 6974 2076 6572 s true.if it ver │ │ │ │ +00035340: 6966 6965 6420 7468 6174 2074 6865 2072 ified that the r │ │ │ │ +00035350: 696e 6720 6973 2072 6567 756c 6172 2069 ing is regular i │ │ │ │ +00035360: 6e20 636f 6469 6d20 3120 6f72 2032 2028 n codim 1 or 2 ( │ │ │ │ +00035370: 7265 7370 6563 7469 7665 6c79 2920 616e respectively) an │ │ │ │ +00035380: 6420 6e75 6c6c 0a69 6620 6e6f 742e 2020 d null.if not. │ │ │ │ +00035390: 4265 6361 7573 6520 6f66 2074 6865 2072 Because of the r │ │ │ │ +000353a0: 616e 646f 6d6e 6573 7320 7468 6174 2065 andomness that e │ │ │ │ +000353b0: 7869 7374 7320 696e 2074 6572 6d73 206f xists in terms o │ │ │ │ +000353c0: 6620 7365 6c65 6374 696e 6720 6d69 6e6f f selecting mino │ │ │ │ +000353d0: 7273 2c0a 7468 6520 6578 6563 7574 696f rs,.the executio │ │ │ │ +000353e0: 6e20 7469 6d65 2063 616e 2061 6374 7561 n time can actua │ │ │ │ +000353f0: 6c6c 7920 7661 7279 2071 7569 7465 2061 lly vary quite a │ │ │ │ +00035400: 2062 6974 2e20 2020 4c65 7427 7320 7461 bit. Let's ta │ │ │ │ +00035410: 6b65 2061 206c 6f6f 6b20 6174 2077 6861 ke a look at wha │ │ │ │ +00035420: 740a 6973 206f 6363 7572 7269 6e67 2062 t.is occurring b │ │ │ │ +00035430: 7920 7573 696e 6720 7468 6520 5665 7262 y using the Verb │ │ │ │ +00035440: 6f73 6520 6f70 7469 6f6e 2e20 2057 6520 ose option. We │ │ │ │ +00035450: 676f 2074 6872 6f75 6768 2074 6865 206f go through the o │ │ │ │ +00035460: 7574 7075 7420 616e 6420 6578 706c 6169 utput and explai │ │ │ │ +00035470: 6e0a 7768 6174 2065 6163 6820 6c69 6e65 n.what each line │ │ │ │ +00035480: 2069 7320 7465 6c6c 696e 6720 7573 2e0a is telling us.. │ │ │ │ +00035490: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000354a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000354b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000354c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000354d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000354e0: 0a7c 6936 203a 2074 696d 6520 7265 6775 .|i6 : time regu │ │ │ │ +000354f0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +00035500: 2831 2c20 532f 4a2c 2056 6572 626f 7365 (1, S/J, Verbose │ │ │ │ +00035510: 3d3e 7472 7565 2920 2020 2020 2020 2020 =>true) │ │ │ │ +00035520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035530: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00035540: 656e 7369 6f6e 3a20 7269 6e67 2064 696d ension: ring dim │ │ │ │ +00035550: 656e 7369 6f6e 203d 342c 2074 6865 7265 ension =4, there │ │ │ │ +00035560: 2061 7265 2031 3436 3531 3238 2070 6f73 are 1465128 pos │ │ │ │ +00035570: 7369 626c 6520 3520 6279 2035 206d 697c sible 5 by 5 mi| │ │ │ │ +00035580: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00035590: 656e 7369 6f6e 3a20 4162 6f75 7420 746f ension: About to │ │ │ │ +000355a0: 2065 6e74 6572 206c 6f6f 7020 2020 2020 enter loop │ │ │ │ +000355b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000355c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000355d0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000355e0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000355f0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00035600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035610: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035620: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035630: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035640: 5261 6e64 6f6d 2020 2020 2020 2020 2020 Random │ │ │ │ +00035650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035670: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035680: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035690: 4752 6576 4c65 7853 6d61 6c6c 6573 7420 GRevLexSmallest │ │ │ │ +000356a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000356b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000356c0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000356d0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000356e0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000356f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035710: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035720: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035730: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00035740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035760: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035770: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035780: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ +00035790: 6572 6d20 2020 2020 2020 2020 2020 2020 erm │ │ │ │ +000357a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000357b0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000357c0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000357d0: 4752 6576 4c65 7853 6d61 6c6c 6573 7420 GRevLexSmallest │ │ │ │ +000357e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000357f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035800: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00035810: 656e 7369 6f6e 3a20 204c 6f6f 7020 7374 ension: Loop st │ │ │ │ +00035820: 6570 2c20 6162 6f75 7420 746f 2063 6f6d ep, about to com │ │ │ │ +00035830: 7075 7465 2064 696d 656e 7369 6f6e 2e20 pute dimension. │ │ │ │ +00035840: 2053 7562 6d61 7472 6963 6573 2063 6f7c Submatrices co| │ │ │ │ +00035850: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00035860: 656e 7369 6f6e 3a20 2069 7343 6f64 696d ension: isCodim │ │ │ │ +00035870: 4174 4c65 6173 7420 6661 696c 6564 2c20 AtLeast failed, │ │ │ │ +00035880: 636f 6d70 7574 696e 6720 636f 6469 6d2e computing codim. │ │ │ │ +00035890: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000358a0: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +000358b0: 656e 7369 6f6e 3a20 2070 6172 7469 616c ension: partial │ │ │ │ +000358c0: 2073 696e 6775 6c61 7220 6c6f 6375 7320 singular locus │ │ │ │ +000358d0: 6469 6d65 6e73 696f 6e20 636f 6d70 7574 dimension comput │ │ │ │ +000358e0: 6564 2c20 3d20 3320 2020 2020 2020 207c ed, = 3 | │ │ │ │ +000358f0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035900: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035910: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00035920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035940: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035950: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035960: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00035970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035990: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000359a0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000359b0: 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 RandomNonZero │ │ │ │ +000359c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000359d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000359e0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000359f0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035a00: 4752 6576 4c65 7853 6d61 6c6c 6573 7420 GRevLexSmallest │ │ │ │ +00035a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035a20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035a30: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00035a40: 656e 7369 6f6e 3a20 204c 6f6f 7020 7374 ension: Loop st │ │ │ │ +00035a50: 6570 2c20 6162 6f75 7420 746f 2063 6f6d ep, about to com │ │ │ │ +00035a60: 7075 7465 2064 696d 656e 7369 6f6e 2e20 pute dimension. │ │ │ │ +00035a70: 2053 7562 6d61 7472 6963 6573 2063 6f7c Submatrices co| │ │ │ │ +00035a80: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00035a90: 656e 7369 6f6e 3a20 2069 7343 6f64 696d ension: isCodim │ │ │ │ +00035aa0: 4174 4c65 6173 7420 6661 696c 6564 2c20 AtLeast failed, │ │ │ │ +00035ab0: 636f 6d70 7574 696e 6720 636f 6469 6d2e computing codim. │ │ │ │ +00035ac0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035ad0: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00035ae0: 656e 7369 6f6e 3a20 2070 6172 7469 616c ension: partial │ │ │ │ +00035af0: 2073 696e 6775 6c61 7220 6c6f 6375 7320 singular locus │ │ │ │ +00035b00: 6469 6d65 6e73 696f 6e20 636f 6d70 7574 dimension comput │ │ │ │ +00035b10: 6564 2c20 3d20 3320 2020 2020 2020 207c ed, = 3 | │ │ │ │ +00035b20: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035b30: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035b40: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00035b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035b60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035b70: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035b80: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035b90: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00035ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035bb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035bc0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035bd0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035be0: 5261 6e64 6f6d 2020 2020 2020 2020 2020 Random │ │ │ │ +00035bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035c00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035c10: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035c20: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035c30: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ +00035c40: 6572 6d20 2020 2020 2020 2020 2020 2020 erm │ │ │ │ +00035c50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035c60: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00035c70: 656e 7369 6f6e 3a20 204c 6f6f 7020 7374 ension: Loop st │ │ │ │ +00035c80: 6570 2c20 6162 6f75 7420 746f 2063 6f6d ep, about to com │ │ │ │ +00035c90: 7075 7465 2064 696d 656e 7369 6f6e 2e20 pute dimension. │ │ │ │ +00035ca0: 2053 7562 6d61 7472 6963 6573 2063 6f7c Submatrices co| │ │ │ │ +00035cb0: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00035cc0: 656e 7369 6f6e 3a20 2069 7343 6f64 696d ension: isCodim │ │ │ │ +00035cd0: 4174 4c65 6173 7420 6661 696c 6564 2c20 AtLeast failed, │ │ │ │ +00035ce0: 636f 6d70 7574 696e 6720 636f 6469 6d2e computing codim. │ │ │ │ +00035cf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035d00: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00035d10: 656e 7369 6f6e 3a20 2070 6172 7469 616c ension: partial │ │ │ │ +00035d20: 2073 696e 6775 6c61 7220 6c6f 6375 7320 singular locus │ │ │ │ +00035d30: 6469 6d65 6e73 696f 6e20 636f 6d70 7574 dimension comput │ │ │ │ +00035d40: 6564 2c20 3d20 3320 2020 2020 2020 207c ed, = 3 | │ │ │ │ +00035d50: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035d60: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035d70: 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 RandomNonZero │ │ │ │ +00035d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035d90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035da0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035db0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035dc0: 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 RandomNonZero │ │ │ │ +00035dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035df0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035e00: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035e10: 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 RandomNonZero │ │ │ │ +00035e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035e40: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035e50: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035e60: 4752 6576 4c65 7853 6d61 6c6c 6573 7420 GRevLexSmallest │ │ │ │ +00035e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035e80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035e90: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035ea0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035eb0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00035ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035ed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035ee0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00035ef0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00035f00: 5261 6e64 6f6d 2020 2020 2020 2020 2020 Random │ │ │ │ +00035f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035f20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035f30: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00035f40: 656e 7369 6f6e 3a20 204c 6f6f 7020 7374 ension: Loop st │ │ │ │ +00035f50: 6570 2c20 6162 6f75 7420 746f 2063 6f6d ep, about to com │ │ │ │ +00035f60: 7075 7465 2064 696d 656e 7369 6f6e 2e20 pute dimension. │ │ │ │ +00035f70: 2053 7562 6d61 7472 6963 6573 2063 6f7c Submatrices co| │ │ │ │ +00035f80: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00035f90: 656e 7369 6f6e 3a20 2069 7343 6f64 696d ension: isCodim │ │ │ │ +00035fa0: 4174 4c65 6173 7420 6661 696c 6564 2c20 AtLeast failed, │ │ │ │ +00035fb0: 636f 6d70 7574 696e 6720 636f 6469 6d2e computing codim. │ │ │ │ +00035fc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035fd0: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00035fe0: 656e 7369 6f6e 3a20 2070 6172 7469 616c ension: partial │ │ │ │ +00035ff0: 2073 696e 6775 6c61 7220 6c6f 6375 7320 singular locus │ │ │ │ +00036000: 6469 6d65 6e73 696f 6e20 636f 6d70 7574 dimension comput │ │ │ │ +00036010: 6564 2c20 3d20 3320 2020 2020 2020 207c ed, = 3 | │ │ │ │ +00036020: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036030: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036040: 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 RandomNonZero │ │ │ │ +00036050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036070: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036080: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036090: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ +000360a0: 6572 6d20 2020 2020 2020 2020 2020 2020 erm │ │ │ │ +000360b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000360c0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000360d0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000360e0: 5261 6e64 6f6d 2020 2020 2020 2020 2020 Random │ │ │ │ +000360f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036100: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036110: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036120: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036130: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00036140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036150: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036160: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036170: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036180: 4752 6576 4c65 7853 6d61 6c6c 6573 7420 GRevLexSmallest │ │ │ │ +00036190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000361a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000361b0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000361c0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000361d0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000361e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000361f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036200: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036210: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036220: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00036230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036250: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00036260: 656e 7369 6f6e 3a20 204c 6f6f 7020 7374 ension: Loop st │ │ │ │ +00036270: 6570 2c20 6162 6f75 7420 746f 2063 6f6d ep, about to com │ │ │ │ +00036280: 7075 7465 2064 696d 656e 7369 6f6e 2e20 pute dimension. │ │ │ │ +00036290: 2053 7562 6d61 7472 6963 6573 2063 6f7c Submatrices co| │ │ │ │ +000362a0: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +000362b0: 656e 7369 6f6e 3a20 2069 7343 6f64 696d ension: isCodim │ │ │ │ +000362c0: 4174 4c65 6173 7420 6661 696c 6564 2c20 AtLeast failed, │ │ │ │ +000362d0: 636f 6d70 7574 696e 6720 636f 6469 6d2e computing codim. │ │ │ │ +000362e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000362f0: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00036300: 656e 7369 6f6e 3a20 2070 6172 7469 616c ension: partial │ │ │ │ +00036310: 2073 696e 6775 6c61 7220 6c6f 6375 7320 singular locus │ │ │ │ +00036320: 6469 6d65 6e73 696f 6e20 636f 6d70 7574 dimension comput │ │ │ │ +00036330: 6564 2c20 3d20 3320 2020 2020 2020 207c ed, = 3 | │ │ │ │ +00036340: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036350: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036360: 4752 6576 4c65 7853 6d61 6c6c 6573 7420 GRevLexSmallest │ │ │ │ +00036370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036380: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036390: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000363a0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000363b0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000363c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000363d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000363e0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000363f0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036400: 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 RandomNonZero │ │ │ │ +00036410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036420: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036430: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036440: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036450: 5261 6e64 6f6d 2020 2020 2020 2020 2020 Random │ │ │ │ +00036460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036480: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036490: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000364a0: 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 RandomNonZero │ │ │ │ +000364b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000364c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000364d0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000364e0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000364f0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00036500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036510: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036520: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036530: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036540: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00036550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036570: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036580: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036590: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ +000365a0: 6572 6d20 2020 2020 2020 2020 2020 2020 erm │ │ │ │ +000365b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000365c0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000365d0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000365e0: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ +000365f0: 6572 6d20 2020 2020 2020 2020 2020 2020 erm │ │ │ │ +00036600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036610: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00036620: 656e 7369 6f6e 3a20 204c 6f6f 7020 7374 ension: Loop st │ │ │ │ +00036630: 6570 2c20 6162 6f75 7420 746f 2063 6f6d ep, about to com │ │ │ │ +00036640: 7075 7465 2064 696d 656e 7369 6f6e 2e20 pute dimension. │ │ │ │ +00036650: 2053 7562 6d61 7472 6963 6573 2063 6f7c Submatrices co| │ │ │ │ +00036660: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00036670: 656e 7369 6f6e 3a20 2069 7343 6f64 696d ension: isCodim │ │ │ │ +00036680: 4174 4c65 6173 7420 6661 696c 6564 2c20 AtLeast failed, │ │ │ │ +00036690: 636f 6d70 7574 696e 6720 636f 6469 6d2e computing codim. │ │ │ │ +000366a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000366b0: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +000366c0: 656e 7369 6f6e 3a20 2070 6172 7469 616c ension: partial │ │ │ │ +000366d0: 2073 696e 6775 6c61 7220 6c6f 6375 7320 singular locus │ │ │ │ +000366e0: 6469 6d65 6e73 696f 6e20 636f 6d70 7574 dimension comput │ │ │ │ +000366f0: 6564 2c20 3d20 3320 2020 2020 2020 207c ed, = 3 | │ │ │ │ +00036700: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036710: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036720: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00036730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036750: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036760: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036770: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00036780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036790: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000367a0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000367b0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000367c0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +000367d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000367e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000367f0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036800: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036810: 5261 6e64 6f6d 2020 2020 2020 2020 2020 Random │ │ │ │ +00036820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036830: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036840: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036850: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036860: 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 RandomNonZero │ │ │ │ +00036870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036880: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036890: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000368a0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000368b0: 4752 6576 4c65 7853 6d61 6c6c 6573 7420 GRevLexSmallest │ │ │ │ +000368c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000368d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000368e0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000368f0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036900: 5261 6e64 6f6d 2020 2020 2020 2020 2020 Random │ │ │ │ +00036910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036930: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036940: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036950: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ +00036960: 6572 6d20 2020 2020 2020 2020 2020 2020 erm │ │ │ │ +00036970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036980: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036990: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000369a0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000369b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000369c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000369d0: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +000369e0: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +000369f0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00036a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036a10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036a20: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036a30: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036a40: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00036a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036a60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036a70: 0a7c 696e 7465 726e 616c 4368 6f6f 7365 .|internalChoose │ │ │ │ +00036a80: 4d69 6e6f 723a 2043 686f 6f73 696e 6720 Minor: Choosing │ │ │ │ +00036a90: 5261 6e64 6f6d 2020 2020 2020 2020 2020 Random │ │ │ │ +00036aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036ab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036ac0: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00036ad0: 656e 7369 6f6e 3a20 204c 6f6f 7020 7374 ension: Loop st │ │ │ │ +00036ae0: 6570 2c20 6162 6f75 7420 746f 2063 6f6d ep, about to com │ │ │ │ +00036af0: 7075 7465 2064 696d 656e 7369 6f6e 2e20 pute dimension. │ │ │ │ +00036b00: 2053 7562 6d61 7472 6963 6573 2063 6f7c Submatrices co| │ │ │ │ +00036b10: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00036b20: 656e 7369 6f6e 3a20 2073 696e 6775 6c61 ension: singula │ │ │ │ +00036b30: 724c 6f63 7573 2064 696d 656e 7369 6f6e rLocus dimension │ │ │ │ +00036b40: 2076 6572 6966 6965 6420 6279 2069 7343 verified by isC │ │ │ │ +00036b50: 6f64 696d 4174 4c65 6173 7420 2020 207c odimAtLeast | │ │ │ │ +00036b60: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00036b70: 656e 7369 6f6e 3a20 2070 6172 7469 616c ension: partial │ │ │ │ +00036b80: 2073 696e 6775 6c61 7220 6c6f 6375 7320 singular locus │ │ │ │ +00036b90: 6469 6d65 6e73 696f 6e20 636f 6d70 7574 dimension comput │ │ │ │ +00036ba0: 6564 2c20 3d20 3220 2020 2020 2020 207c ed, = 2 | │ │ │ │ +00036bb0: 0a7c 7265 6775 6c61 7249 6e43 6f64 696d .|regularInCodim │ │ │ │ +00036bc0: 656e 7369 6f6e 3a20 204c 6f6f 7020 636f ension: Loop co │ │ │ │ +00036bd0: 6d70 6c65 7465 642c 2073 7562 6d61 7472 mpleted, submatr │ │ │ │ +00036be0: 6963 6573 2063 6f6e 7369 6465 7265 6420 ices considered │ │ │ │ +00036bf0: 3d20 3439 2c20 616e 6420 636f 6d70 757c = 49, and compu| │ │ │ │ +00036c00: 0a7c 6420 3d20 3339 2e20 2073 696e 6775 .|d = 39. singu │ │ │ │ +00036c10: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ +00036c20: 696f 6e20 6170 7065 6172 7320 746f 2062 ion appears to b │ │ │ │ +00036c30: 6520 3d20 3220 2020 2020 2020 2020 2020 e = 2 │ │ │ │ +00036c40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036c50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00036c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036cb0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ -00036cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036d00: 2d7c 0a7c 6e6f 7273 2c20 7765 2077 696c -|.|nors, we wil │ │ │ │ -00036d10: 6c20 636f 6d70 7574 6520 7570 2074 6f20 l compute up to │ │ │ │ -00036d20: 3435 322e 3930 3820 6f66 2074 6865 6d2e 452.908 of them. │ │ │ │ -00036d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036d50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00036d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036c90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036ca0: 0a7c 6f36 203d 2074 7275 6520 2020 2020 .|o6 = true │ │ │ │ +00036cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036ce0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036cf0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00036d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00036d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00036d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00036d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00036d40: 0a7c 6e6f 7273 2c20 7765 2077 696c 6c20 .|nors, we will │ │ │ │ +00036d50: 636f 6d70 7574 6520 7570 2074 6f20 3435 compute up to 45 │ │ │ │ +00036d60: 322e 3930 3820 6f66 2074 6865 6d2e 2020 2.908 of them. │ │ │ │ 00036d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036da0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036d90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00036da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036df0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036dd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036de0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00036df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036e20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036e30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00036e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036e70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036e80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00036e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036ee0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036ec0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036ed0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00036ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036f10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036f20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00036f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036f60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036f70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00036f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036fd0: 207c 0a7c 6e73 6964 6572 6564 3a20 372c |.|nsidered: 7, │ │ │ │ -00036fe0: 2061 6e64 2063 6f6d 7075 7465 6420 3d20 and computed = │ │ │ │ -00036ff0: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ -00037000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037020: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036fc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00036fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037000: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037010: 0a7c 6e73 6964 6572 6564 3a20 372c 2061 .|nsidered: 7, a │ │ │ │ +00037020: 6e64 2063 6f6d 7075 7465 6420 3d20 3720 nd computed = 7 │ │ │ │ 00037030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037070: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037060: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00037070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000370a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000370b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000370c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000370a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000370b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000370c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000370d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000370e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000370f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037110: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000370f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037100: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00037110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037160: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037150: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00037160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000371a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000371b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037190: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000371a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000371b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000371c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000371d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000371e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000371f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037200: 207c 0a7c 6e73 6964 6572 6564 3a20 3131 |.|nsidered: 11 │ │ │ │ -00037210: 2c20 616e 6420 636f 6d70 7574 6564 203d , and computed = │ │ │ │ -00037220: 2031 3020 2020 2020 2020 2020 2020 2020 10 │ │ │ │ -00037230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037250: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00037260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000371e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000371f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00037200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037230: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037240: 0a7c 6e73 6964 6572 6564 3a20 3131 2c20 .|nsidered: 11, │ │ │ │ +00037250: 616e 6420 636f 6d70 7574 6564 203d 2031 and computed = 1 │ │ │ │ +00037260: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 00037270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000372a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037280: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037290: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000372a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000372b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000372c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000372d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000372e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000372f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000372d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000372e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000372f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037340: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00037340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037390: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037380: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00037390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000373a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000373b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000373c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000373d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000373e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000373c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000373d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000373e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000373f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037430: 207c 0a7c 6e73 6964 6572 6564 3a20 3135 |.|nsidered: 15 │ │ │ │ -00037440: 2c20 616e 6420 636f 6d70 7574 6564 203d , and computed = │ │ │ │ -00037450: 2031 3320 2020 2020 2020 2020 2020 2020 13 │ │ │ │ -00037460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037480: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00037490: 2020 2020 2020 2020 2020 2020 2020 2020 TRUNCATED DUE TO SIZE LIMIT: 10485760 bytes